]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/wireless/zd1211rw/zd_usb.c
[PATCH] zd1211rw: Firmware version vs bootcode version mismatch handling
[linux-2.6-omap-h63xx.git] / drivers / net / wireless / zd1211rw / zd_usb.c
1 /* zd_usb.c
2  *
3  * This program is free software; you can redistribute it and/or modify
4  * it under the terms of the GNU General Public License as published by
5  * the Free Software Foundation; either version 2 of the License, or
6  * (at your option) any later version.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
16  */
17
18 #include <asm/unaligned.h>
19 #include <linux/kernel.h>
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/firmware.h>
23 #include <linux/device.h>
24 #include <linux/errno.h>
25 #include <linux/skbuff.h>
26 #include <linux/usb.h>
27 #include <net/ieee80211.h>
28
29 #include "zd_def.h"
30 #include "zd_netdev.h"
31 #include "zd_mac.h"
32 #include "zd_usb.h"
33 #include "zd_util.h"
34
35 static struct usb_device_id usb_ids[] = {
36         /* ZD1211 */
37         { USB_DEVICE(0x0ace, 0x1211), .driver_info = DEVICE_ZD1211 },
38         { USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211 },
39         { USB_DEVICE(0x126f, 0xa006), .driver_info = DEVICE_ZD1211 },
40         { USB_DEVICE(0x6891, 0xa727), .driver_info = DEVICE_ZD1211 },
41         { USB_DEVICE(0x0df6, 0x9071), .driver_info = DEVICE_ZD1211 },
42         { USB_DEVICE(0x157e, 0x300b), .driver_info = DEVICE_ZD1211 },
43         { USB_DEVICE(0x079b, 0x004a), .driver_info = DEVICE_ZD1211 },
44         { USB_DEVICE(0x1740, 0x2000), .driver_info = DEVICE_ZD1211 },
45         { USB_DEVICE(0x157e, 0x3204), .driver_info = DEVICE_ZD1211 },
46         /* ZD1211B */
47         { USB_DEVICE(0x0ace, 0x1215), .driver_info = DEVICE_ZD1211B },
48         { USB_DEVICE(0x157e, 0x300d), .driver_info = DEVICE_ZD1211B },
49         { USB_DEVICE(0x079b, 0x0062), .driver_info = DEVICE_ZD1211B },
50         {}
51 };
52
53 MODULE_LICENSE("GPL");
54 MODULE_DESCRIPTION("USB driver for devices with the ZD1211 chip.");
55 MODULE_AUTHOR("Ulrich Kunitz");
56 MODULE_AUTHOR("Daniel Drake");
57 MODULE_VERSION("1.0");
58 MODULE_DEVICE_TABLE(usb, usb_ids);
59
60 #define FW_ZD1211_PREFIX        "zd1211/zd1211_"
61 #define FW_ZD1211B_PREFIX       "zd1211/zd1211b_"
62
63 /* register address handling */
64
65 #ifdef DEBUG
66 static int check_addr(struct zd_usb *usb, zd_addr_t addr)
67 {
68         u32 base = ZD_ADDR_BASE(addr);
69         u32 offset = ZD_OFFSET(addr);
70
71         if ((u32)addr & ADDR_ZERO_MASK)
72                 goto invalid_address;
73         switch (base) {
74         case USB_BASE:
75                 break;
76         case CR_BASE:
77                 if (offset > CR_MAX_OFFSET) {
78                         dev_dbg(zd_usb_dev(usb),
79                                 "CR offset %#010x larger than"
80                                 " CR_MAX_OFFSET %#10x\n",
81                                 offset, CR_MAX_OFFSET);
82                         goto invalid_address;
83                 }
84                 if (offset & 1) {
85                         dev_dbg(zd_usb_dev(usb),
86                                 "CR offset %#010x is not a multiple of 2\n",
87                                 offset);
88                         goto invalid_address;
89                 }
90                 break;
91         case E2P_BASE:
92                 if (offset > E2P_MAX_OFFSET) {
93                         dev_dbg(zd_usb_dev(usb),
94                                 "E2P offset %#010x larger than"
95                                 " E2P_MAX_OFFSET %#010x\n",
96                                 offset, E2P_MAX_OFFSET);
97                         goto invalid_address;
98                 }
99                 break;
100         case FW_BASE:
101                 if (!usb->fw_base_offset) {
102                         dev_dbg(zd_usb_dev(usb),
103                                "ERROR: fw base offset has not been set\n");
104                         return -EAGAIN;
105                 }
106                 if (offset > FW_MAX_OFFSET) {
107                         dev_dbg(zd_usb_dev(usb),
108                                 "FW offset %#10x is larger than"
109                                 " FW_MAX_OFFSET %#010x\n",
110                                 offset, FW_MAX_OFFSET);
111                         goto invalid_address;
112                 }
113                 break;
114         default:
115                 dev_dbg(zd_usb_dev(usb),
116                         "address has unsupported base %#010x\n", addr);
117                 goto invalid_address;
118         }
119
120         return 0;
121 invalid_address:
122         dev_dbg(zd_usb_dev(usb),
123                 "ERROR: invalid address: %#010x\n", addr);
124         return -EINVAL;
125 }
126 #endif /* DEBUG */
127
128 static u16 usb_addr(struct zd_usb *usb, zd_addr_t addr)
129 {
130         u32 base;
131         u16 offset;
132
133         base = ZD_ADDR_BASE(addr);
134         offset = ZD_OFFSET(addr);
135
136         ZD_ASSERT(check_addr(usb, addr) == 0);
137
138         switch (base) {
139         case CR_BASE:
140                 offset += CR_BASE_OFFSET;
141                 break;
142         case E2P_BASE:
143                 offset += E2P_BASE_OFFSET;
144                 break;
145         case FW_BASE:
146                 offset += usb->fw_base_offset;
147                 break;
148         }
149
150         return offset;
151 }
152
153 /* USB device initialization */
154
155 static int request_fw_file(
156         const struct firmware **fw, const char *name, struct device *device)
157 {
158         int r;
159
160         dev_dbg_f(device, "fw name %s\n", name);
161
162         r = request_firmware(fw, name, device);
163         if (r)
164                 dev_err(device,
165                        "Could not load firmware file %s. Error number %d\n",
166                        name, r);
167         return r;
168 }
169
170 static inline u16 get_bcdDevice(const struct usb_device *udev)
171 {
172         return le16_to_cpu(udev->descriptor.bcdDevice);
173 }
174
175 enum upload_code_flags {
176         REBOOT = 1,
177 };
178
179 /* Ensures that MAX_TRANSFER_SIZE is even. */
180 #define MAX_TRANSFER_SIZE (USB_MAX_TRANSFER_SIZE & ~1)
181
182 static int upload_code(struct usb_device *udev,
183         const u8 *data, size_t size, u16 code_offset, int flags)
184 {
185         u8 *p;
186         int r;
187
188         /* USB request blocks need "kmalloced" buffers.
189          */
190         p = kmalloc(MAX_TRANSFER_SIZE, GFP_KERNEL);
191         if (!p) {
192                 dev_err(&udev->dev, "out of memory\n");
193                 r = -ENOMEM;
194                 goto error;
195         }
196
197         size &= ~1;
198         while (size > 0) {
199                 size_t transfer_size = size <= MAX_TRANSFER_SIZE ?
200                         size : MAX_TRANSFER_SIZE;
201
202                 dev_dbg_f(&udev->dev, "transfer size %zu\n", transfer_size);
203
204                 memcpy(p, data, transfer_size);
205                 r = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
206                         USB_REQ_FIRMWARE_DOWNLOAD,
207                         USB_DIR_OUT | USB_TYPE_VENDOR,
208                         code_offset, 0, p, transfer_size, 1000 /* ms */);
209                 if (r < 0) {
210                         dev_err(&udev->dev,
211                                "USB control request for firmware upload"
212                                " failed. Error number %d\n", r);
213                         goto error;
214                 }
215                 transfer_size = r & ~1;
216
217                 size -= transfer_size;
218                 data += transfer_size;
219                 code_offset += transfer_size/sizeof(u16);
220         }
221
222         if (flags & REBOOT) {
223                 u8 ret;
224
225                 r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
226                         USB_REQ_FIRMWARE_CONFIRM,
227                         USB_DIR_IN | USB_TYPE_VENDOR,
228                         0, 0, &ret, sizeof(ret), 5000 /* ms */);
229                 if (r != sizeof(ret)) {
230                         dev_err(&udev->dev,
231                                 "control request firmeware confirmation failed."
232                                 " Return value %d\n", r);
233                         if (r >= 0)
234                                 r = -ENODEV;
235                         goto error;
236                 }
237                 if (ret & 0x80) {
238                         dev_err(&udev->dev,
239                                 "Internal error while downloading."
240                                 " Firmware confirm return value %#04x\n",
241                                 (unsigned int)ret);
242                         r = -ENODEV;
243                         goto error;
244                 }
245                 dev_dbg_f(&udev->dev, "firmware confirm return value %#04x\n",
246                         (unsigned int)ret);
247         }
248
249         r = 0;
250 error:
251         kfree(p);
252         return r;
253 }
254
255 static u16 get_word(const void *data, u16 offset)
256 {
257         const __le16 *p = data;
258         return le16_to_cpu(p[offset]);
259 }
260
261 static char *get_fw_name(char *buffer, size_t size, u8 device_type,
262                        const char* postfix)
263 {
264         scnprintf(buffer, size, "%s%s",
265                 device_type == DEVICE_ZD1211B ?
266                         FW_ZD1211B_PREFIX : FW_ZD1211_PREFIX,
267                 postfix);
268         return buffer;
269 }
270
271 static int handle_version_mismatch(struct usb_device *udev, u8 device_type,
272         const struct firmware *ub_fw)
273 {
274         const struct firmware *ur_fw = NULL;
275         int offset;
276         int r = 0;
277         char fw_name[128];
278
279         r = request_fw_file(&ur_fw,
280                 get_fw_name(fw_name, sizeof(fw_name), device_type, "ur"),
281                 &udev->dev);
282         if (r)
283                 goto error;
284
285         r = upload_code(udev, ur_fw->data, ur_fw->size, FW_START_OFFSET,
286                 REBOOT);
287         if (r)
288                 goto error;
289
290         offset = ((EEPROM_REGS_OFFSET + EEPROM_REGS_SIZE) * sizeof(u16));
291         r = upload_code(udev, ub_fw->data + offset, ub_fw->size - offset,
292                 E2P_BASE_OFFSET + EEPROM_REGS_SIZE, REBOOT);
293
294         /* At this point, the vendor driver downloads the whole firmware
295          * image, hacks around with version IDs, and uploads it again,
296          * completely overwriting the boot code. We do not do this here as
297          * it is not required on any tested devices, and it is suspected to
298          * cause problems. */
299 error:
300         release_firmware(ur_fw);
301         return r;
302 }
303
304 static int upload_firmware(struct usb_device *udev, u8 device_type)
305 {
306         int r;
307         u16 fw_bcdDevice;
308         u16 bcdDevice;
309         const struct firmware *ub_fw = NULL;
310         const struct firmware *uph_fw = NULL;
311         char fw_name[128];
312
313         bcdDevice = get_bcdDevice(udev);
314
315         r = request_fw_file(&ub_fw,
316                 get_fw_name(fw_name, sizeof(fw_name), device_type,  "ub"),
317                 &udev->dev);
318         if (r)
319                 goto error;
320
321         fw_bcdDevice = get_word(ub_fw->data, EEPROM_REGS_OFFSET);
322
323         if (fw_bcdDevice != bcdDevice) {
324                 dev_info(&udev->dev,
325                         "firmware version %#06x and device bootcode version "
326                         "%#06x differ\n", fw_bcdDevice, bcdDevice);
327                 if (bcdDevice <= 0x4313)
328                         dev_warn(&udev->dev, "device has old bootcode, please "
329                                 "report success or failure\n");
330
331                 r = handle_version_mismatch(udev, device_type, ub_fw);
332                 if (r)
333                         goto error;
334         } else {
335                 dev_dbg_f(&udev->dev,
336                         "firmware device id %#06x is equal to the "
337                         "actual device id\n", fw_bcdDevice);
338         }
339
340
341         r = request_fw_file(&uph_fw,
342                 get_fw_name(fw_name, sizeof(fw_name), device_type, "uphr"),
343                 &udev->dev);
344         if (r)
345                 goto error;
346
347         r = upload_code(udev, uph_fw->data, uph_fw->size, FW_START_OFFSET,
348                         REBOOT);
349         if (r) {
350                 dev_err(&udev->dev,
351                         "Could not upload firmware code uph. Error number %d\n",
352                         r);
353         }
354
355         /* FALL-THROUGH */
356 error:
357         release_firmware(ub_fw);
358         release_firmware(uph_fw);
359         return r;
360 }
361
362 static void disable_read_regs_int(struct zd_usb *usb)
363 {
364         struct zd_usb_interrupt *intr = &usb->intr;
365
366         spin_lock(&intr->lock);
367         intr->read_regs_enabled = 0;
368         spin_unlock(&intr->lock);
369 }
370
371 #define urb_dev(urb) (&(urb)->dev->dev)
372
373 static inline void handle_regs_int(struct urb *urb)
374 {
375         struct zd_usb *usb = urb->context;
376         struct zd_usb_interrupt *intr = &usb->intr;
377         int len;
378
379         ZD_ASSERT(in_interrupt());
380         spin_lock(&intr->lock);
381
382         if (intr->read_regs_enabled) {
383                 intr->read_regs.length = len = urb->actual_length;
384
385                 if (len > sizeof(intr->read_regs.buffer))
386                         len = sizeof(intr->read_regs.buffer);
387                 memcpy(intr->read_regs.buffer, urb->transfer_buffer, len);
388                 intr->read_regs_enabled = 0;
389                 complete(&intr->read_regs.completion);
390                 goto out;
391         }
392
393         dev_dbg_f(urb_dev(urb), "regs interrupt ignored\n");
394 out:
395         spin_unlock(&intr->lock);
396 }
397
398 static inline void handle_retry_failed_int(struct urb *urb)
399 {
400         dev_dbg_f(urb_dev(urb), "retry failed interrupt\n");
401 }
402
403
404 static void int_urb_complete(struct urb *urb, struct pt_regs *pt_regs)
405 {
406         int r;
407         struct usb_int_header *hdr;
408
409         switch (urb->status) {
410         case 0:
411                 break;
412         case -ESHUTDOWN:
413         case -EINVAL:
414         case -ENODEV:
415         case -ENOENT:
416         case -ECONNRESET:
417         case -EPIPE:
418                 goto kfree;
419         default:
420                 goto resubmit;
421         }
422
423         if (urb->actual_length < sizeof(hdr)) {
424                 dev_dbg_f(urb_dev(urb), "error: urb %p to small\n", urb);
425                 goto resubmit;
426         }
427
428         hdr = urb->transfer_buffer;
429         if (hdr->type != USB_INT_TYPE) {
430                 dev_dbg_f(urb_dev(urb), "error: urb %p wrong type\n", urb);
431                 goto resubmit;
432         }
433
434         switch (hdr->id) {
435         case USB_INT_ID_REGS:
436                 handle_regs_int(urb);
437                 break;
438         case USB_INT_ID_RETRY_FAILED:
439                 handle_retry_failed_int(urb);
440                 break;
441         default:
442                 dev_dbg_f(urb_dev(urb), "error: urb %p unknown id %x\n", urb,
443                         (unsigned int)hdr->id);
444                 goto resubmit;
445         }
446
447 resubmit:
448         r = usb_submit_urb(urb, GFP_ATOMIC);
449         if (r) {
450                 dev_dbg_f(urb_dev(urb), "resubmit urb %p\n", urb);
451                 goto kfree;
452         }
453         return;
454 kfree:
455         kfree(urb->transfer_buffer);
456 }
457
458 static inline int int_urb_interval(struct usb_device *udev)
459 {
460         switch (udev->speed) {
461         case USB_SPEED_HIGH:
462                 return 4;
463         case USB_SPEED_LOW:
464                 return 10;
465         case USB_SPEED_FULL:
466         default:
467                 return 1;
468         }
469 }
470
471 static inline int usb_int_enabled(struct zd_usb *usb)
472 {
473         unsigned long flags;
474         struct zd_usb_interrupt *intr = &usb->intr;
475         struct urb *urb;
476
477         spin_lock_irqsave(&intr->lock, flags);
478         urb = intr->urb;
479         spin_unlock_irqrestore(&intr->lock, flags);
480         return urb != NULL;
481 }
482
483 int zd_usb_enable_int(struct zd_usb *usb)
484 {
485         int r;
486         struct usb_device *udev;
487         struct zd_usb_interrupt *intr = &usb->intr;
488         void *transfer_buffer = NULL;
489         struct urb *urb;
490
491         dev_dbg_f(zd_usb_dev(usb), "\n");
492
493         urb = usb_alloc_urb(0, GFP_NOFS);
494         if (!urb) {
495                 r = -ENOMEM;
496                 goto out;
497         }
498
499         ZD_ASSERT(!irqs_disabled());
500         spin_lock_irq(&intr->lock);
501         if (intr->urb) {
502                 spin_unlock_irq(&intr->lock);
503                 r = 0;
504                 goto error_free_urb;
505         }
506         intr->urb = urb;
507         spin_unlock_irq(&intr->lock);
508
509         /* TODO: make it a DMA buffer */
510         r = -ENOMEM;
511         transfer_buffer = kmalloc(USB_MAX_EP_INT_BUFFER, GFP_NOFS);
512         if (!transfer_buffer) {
513                 dev_dbg_f(zd_usb_dev(usb),
514                         "couldn't allocate transfer_buffer\n");
515                 goto error_set_urb_null;
516         }
517
518         udev = zd_usb_to_usbdev(usb);
519         usb_fill_int_urb(urb, udev, usb_rcvintpipe(udev, EP_INT_IN),
520                          transfer_buffer, USB_MAX_EP_INT_BUFFER,
521                          int_urb_complete, usb,
522                          intr->interval);
523
524         dev_dbg_f(zd_usb_dev(usb), "submit urb %p\n", intr->urb);
525         r = usb_submit_urb(urb, GFP_NOFS);
526         if (r) {
527                 dev_dbg_f(zd_usb_dev(usb),
528                          "Couldn't submit urb. Error number %d\n", r);
529                 goto error;
530         }
531
532         return 0;
533 error:
534         kfree(transfer_buffer);
535 error_set_urb_null:
536         spin_lock_irq(&intr->lock);
537         intr->urb = NULL;
538         spin_unlock_irq(&intr->lock);
539 error_free_urb:
540         usb_free_urb(urb);
541 out:
542         return r;
543 }
544
545 void zd_usb_disable_int(struct zd_usb *usb)
546 {
547         unsigned long flags;
548         struct zd_usb_interrupt *intr = &usb->intr;
549         struct urb *urb;
550
551         spin_lock_irqsave(&intr->lock, flags);
552         urb = intr->urb;
553         if (!urb) {
554                 spin_unlock_irqrestore(&intr->lock, flags);
555                 return;
556         }
557         intr->urb = NULL;
558         spin_unlock_irqrestore(&intr->lock, flags);
559
560         usb_kill_urb(urb);
561         dev_dbg_f(zd_usb_dev(usb), "urb %p killed\n", urb);
562         usb_free_urb(urb);
563 }
564
565 static void handle_rx_packet(struct zd_usb *usb, const u8 *buffer,
566                              unsigned int length)
567 {
568         int i;
569         struct zd_mac *mac = zd_usb_to_mac(usb);
570         const struct rx_length_info *length_info;
571
572         if (length < sizeof(struct rx_length_info)) {
573                 /* It's not a complete packet anyhow. */
574                 return;
575         }
576         length_info = (struct rx_length_info *)
577                 (buffer + length - sizeof(struct rx_length_info));
578
579         /* It might be that three frames are merged into a single URB
580          * transaction. We have to check for the length info tag.
581          *
582          * While testing we discovered that length_info might be unaligned,
583          * because if USB transactions are merged, the last packet will not
584          * be padded. Unaligned access might also happen if the length_info
585          * structure is not present.
586          */
587         if (get_unaligned(&length_info->tag) == cpu_to_le16(RX_LENGTH_INFO_TAG))
588         {
589                 unsigned int l, k, n;
590                 for (i = 0, l = 0;; i++) {
591                         k = le16_to_cpu(get_unaligned(&length_info->length[i]));
592                         n = l+k;
593                         if (n > length)
594                                 return;
595                         zd_mac_rx(mac, buffer+l, k);
596                         if (i >= 2)
597                                 return;
598                         l = (n+3) & ~3;
599                 }
600         } else {
601                 zd_mac_rx(mac, buffer, length);
602         }
603 }
604
605 static void rx_urb_complete(struct urb *urb, struct pt_regs *pt_regs)
606 {
607         struct zd_usb *usb;
608         struct zd_usb_rx *rx;
609         const u8 *buffer;
610         unsigned int length;
611
612         switch (urb->status) {
613         case 0:
614                 break;
615         case -ESHUTDOWN:
616         case -EINVAL:
617         case -ENODEV:
618         case -ENOENT:
619         case -ECONNRESET:
620         case -EPIPE:
621                 return;
622         default:
623                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
624                 goto resubmit;
625         }
626
627         buffer = urb->transfer_buffer;
628         length = urb->actual_length;
629         usb = urb->context;
630         rx = &usb->rx;
631
632         if (length%rx->usb_packet_size > rx->usb_packet_size-4) {
633                 /* If there is an old first fragment, we don't care. */
634                 dev_dbg_f(urb_dev(urb), "*** first fragment ***\n");
635                 ZD_ASSERT(length <= ARRAY_SIZE(rx->fragment));
636                 spin_lock(&rx->lock);
637                 memcpy(rx->fragment, buffer, length);
638                 rx->fragment_length = length;
639                 spin_unlock(&rx->lock);
640                 goto resubmit;
641         }
642
643         spin_lock(&rx->lock);
644         if (rx->fragment_length > 0) {
645                 /* We are on a second fragment, we believe */
646                 ZD_ASSERT(length + rx->fragment_length <=
647                           ARRAY_SIZE(rx->fragment));
648                 dev_dbg_f(urb_dev(urb), "*** second fragment ***\n");
649                 memcpy(rx->fragment+rx->fragment_length, buffer, length);
650                 handle_rx_packet(usb, rx->fragment,
651                                  rx->fragment_length + length);
652                 rx->fragment_length = 0;
653                 spin_unlock(&rx->lock);
654         } else {
655                 spin_unlock(&rx->lock);
656                 handle_rx_packet(usb, buffer, length);
657         }
658
659 resubmit:
660         usb_submit_urb(urb, GFP_ATOMIC);
661 }
662
663 struct urb *alloc_urb(struct zd_usb *usb)
664 {
665         struct usb_device *udev = zd_usb_to_usbdev(usb);
666         struct urb *urb;
667         void *buffer;
668
669         urb = usb_alloc_urb(0, GFP_NOFS);
670         if (!urb)
671                 return NULL;
672         buffer = usb_buffer_alloc(udev, USB_MAX_RX_SIZE, GFP_NOFS,
673                                   &urb->transfer_dma);
674         if (!buffer) {
675                 usb_free_urb(urb);
676                 return NULL;
677         }
678
679         usb_fill_bulk_urb(urb, udev, usb_rcvbulkpipe(udev, EP_DATA_IN),
680                           buffer, USB_MAX_RX_SIZE,
681                           rx_urb_complete, usb);
682         urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
683
684         return urb;
685 }
686
687 void free_urb(struct urb *urb)
688 {
689         if (!urb)
690                 return;
691         usb_buffer_free(urb->dev, urb->transfer_buffer_length,
692                         urb->transfer_buffer, urb->transfer_dma);
693         usb_free_urb(urb);
694 }
695
696 int zd_usb_enable_rx(struct zd_usb *usb)
697 {
698         int i, r;
699         struct zd_usb_rx *rx = &usb->rx;
700         struct urb **urbs;
701
702         dev_dbg_f(zd_usb_dev(usb), "\n");
703
704         r = -ENOMEM;
705         urbs = kcalloc(URBS_COUNT, sizeof(struct urb *), GFP_NOFS);
706         if (!urbs)
707                 goto error;
708         for (i = 0; i < URBS_COUNT; i++) {
709                 urbs[i] = alloc_urb(usb);
710                 if (!urbs[i])
711                         goto error;
712         }
713
714         ZD_ASSERT(!irqs_disabled());
715         spin_lock_irq(&rx->lock);
716         if (rx->urbs) {
717                 spin_unlock_irq(&rx->lock);
718                 r = 0;
719                 goto error;
720         }
721         rx->urbs = urbs;
722         rx->urbs_count = URBS_COUNT;
723         spin_unlock_irq(&rx->lock);
724
725         for (i = 0; i < URBS_COUNT; i++) {
726                 r = usb_submit_urb(urbs[i], GFP_NOFS);
727                 if (r)
728                         goto error_submit;
729         }
730
731         return 0;
732 error_submit:
733         for (i = 0; i < URBS_COUNT; i++) {
734                 usb_kill_urb(urbs[i]);
735         }
736         spin_lock_irq(&rx->lock);
737         rx->urbs = NULL;
738         rx->urbs_count = 0;
739         spin_unlock_irq(&rx->lock);
740 error:
741         if (urbs) {
742                 for (i = 0; i < URBS_COUNT; i++)
743                         free_urb(urbs[i]);
744         }
745         return r;
746 }
747
748 void zd_usb_disable_rx(struct zd_usb *usb)
749 {
750         int i;
751         unsigned long flags;
752         struct urb **urbs;
753         unsigned int count;
754         struct zd_usb_rx *rx = &usb->rx;
755
756         spin_lock_irqsave(&rx->lock, flags);
757         urbs = rx->urbs;
758         count = rx->urbs_count;
759         spin_unlock_irqrestore(&rx->lock, flags);
760         if (!urbs)
761                 return;
762
763         for (i = 0; i < count; i++) {
764                 usb_kill_urb(urbs[i]);
765                 free_urb(urbs[i]);
766         }
767         kfree(urbs);
768
769         spin_lock_irqsave(&rx->lock, flags);
770         rx->urbs = NULL;
771         rx->urbs_count = 0;
772         spin_unlock_irqrestore(&rx->lock, flags);
773 }
774
775 static void tx_urb_complete(struct urb *urb, struct pt_regs *pt_regs)
776 {
777         int r;
778
779         switch (urb->status) {
780         case 0:
781                 break;
782         case -ESHUTDOWN:
783         case -EINVAL:
784         case -ENODEV:
785         case -ENOENT:
786         case -ECONNRESET:
787         case -EPIPE:
788                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
789                 break;
790         default:
791                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
792                 goto resubmit;
793         }
794 free_urb:
795         usb_buffer_free(urb->dev, urb->transfer_buffer_length,
796                         urb->transfer_buffer, urb->transfer_dma);
797         usb_free_urb(urb);
798         return;
799 resubmit:
800         r = usb_submit_urb(urb, GFP_ATOMIC);
801         if (r) {
802                 dev_dbg_f(urb_dev(urb), "error resubmit urb %p %d\n", urb, r);
803                 goto free_urb;
804         }
805 }
806
807 /* Puts the frame on the USB endpoint. It doesn't wait for
808  * completion. The frame must contain the control set.
809  */
810 int zd_usb_tx(struct zd_usb *usb, const u8 *frame, unsigned int length)
811 {
812         int r;
813         struct usb_device *udev = zd_usb_to_usbdev(usb);
814         struct urb *urb;
815         void *buffer;
816
817         urb = usb_alloc_urb(0, GFP_ATOMIC);
818         if (!urb) {
819                 r = -ENOMEM;
820                 goto out;
821         }
822
823         buffer = usb_buffer_alloc(zd_usb_to_usbdev(usb), length, GFP_ATOMIC,
824                                   &urb->transfer_dma);
825         if (!buffer) {
826                 r = -ENOMEM;
827                 goto error_free_urb;
828         }
829         memcpy(buffer, frame, length);
830
831         usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_DATA_OUT),
832                           buffer, length, tx_urb_complete, NULL);
833         urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
834
835         r = usb_submit_urb(urb, GFP_ATOMIC);
836         if (r)
837                 goto error;
838         return 0;
839 error:
840         usb_buffer_free(zd_usb_to_usbdev(usb), length, buffer,
841                         urb->transfer_dma);
842 error_free_urb:
843         usb_free_urb(urb);
844 out:
845         return r;
846 }
847
848 static inline void init_usb_interrupt(struct zd_usb *usb)
849 {
850         struct zd_usb_interrupt *intr = &usb->intr;
851
852         spin_lock_init(&intr->lock);
853         intr->interval = int_urb_interval(zd_usb_to_usbdev(usb));
854         init_completion(&intr->read_regs.completion);
855         intr->read_regs.cr_int_addr = cpu_to_le16(usb_addr(usb, CR_INTERRUPT));
856 }
857
858 static inline void init_usb_rx(struct zd_usb *usb)
859 {
860         struct zd_usb_rx *rx = &usb->rx;
861         spin_lock_init(&rx->lock);
862         if (interface_to_usbdev(usb->intf)->speed == USB_SPEED_HIGH) {
863                 rx->usb_packet_size = 512;
864         } else {
865                 rx->usb_packet_size = 64;
866         }
867         ZD_ASSERT(rx->fragment_length == 0);
868 }
869
870 static inline void init_usb_tx(struct zd_usb *usb)
871 {
872         /* FIXME: at this point we will allocate a fixed number of urb's for
873          * use in a cyclic scheme */
874 }
875
876 void zd_usb_init(struct zd_usb *usb, struct net_device *netdev,
877                  struct usb_interface *intf)
878 {
879         memset(usb, 0, sizeof(*usb));
880         usb->intf = usb_get_intf(intf);
881         usb_set_intfdata(usb->intf, netdev);
882         init_usb_interrupt(usb);
883         init_usb_tx(usb);
884         init_usb_rx(usb);
885 }
886
887 int zd_usb_init_hw(struct zd_usb *usb)
888 {
889         int r;
890         struct zd_chip *chip = zd_usb_to_chip(usb);
891
892         ZD_ASSERT(mutex_is_locked(&chip->mutex));
893         r = zd_ioread16_locked(chip, &usb->fw_base_offset,
894                         USB_REG((u16)FW_BASE_ADDR_OFFSET));
895         if (r)
896                 return r;
897         dev_dbg_f(zd_usb_dev(usb), "fw_base_offset: %#06hx\n",
898                  usb->fw_base_offset);
899
900         return 0;
901 }
902
903 void zd_usb_clear(struct zd_usb *usb)
904 {
905         usb_set_intfdata(usb->intf, NULL);
906         usb_put_intf(usb->intf);
907         memset(usb, 0, sizeof(*usb));
908         /* FIXME: usb_interrupt, usb_tx, usb_rx? */
909 }
910
911 static const char *speed(enum usb_device_speed speed)
912 {
913         switch (speed) {
914         case USB_SPEED_LOW:
915                 return "low";
916         case USB_SPEED_FULL:
917                 return "full";
918         case USB_SPEED_HIGH:
919                 return "high";
920         default:
921                 return "unknown speed";
922         }
923 }
924
925 static int scnprint_id(struct usb_device *udev, char *buffer, size_t size)
926 {
927         return scnprintf(buffer, size, "%04hx:%04hx v%04hx %s",
928                 le16_to_cpu(udev->descriptor.idVendor),
929                 le16_to_cpu(udev->descriptor.idProduct),
930                 get_bcdDevice(udev),
931                 speed(udev->speed));
932 }
933
934 int zd_usb_scnprint_id(struct zd_usb *usb, char *buffer, size_t size)
935 {
936         struct usb_device *udev = interface_to_usbdev(usb->intf);
937         return scnprint_id(udev, buffer, size);
938 }
939
940 #ifdef DEBUG
941 static void print_id(struct usb_device *udev)
942 {
943         char buffer[40];
944
945         scnprint_id(udev, buffer, sizeof(buffer));
946         buffer[sizeof(buffer)-1] = 0;
947         dev_dbg_f(&udev->dev, "%s\n", buffer);
948 }
949 #else
950 #define print_id(udev) do { } while (0)
951 #endif
952
953 static int probe(struct usb_interface *intf, const struct usb_device_id *id)
954 {
955         int r;
956         struct usb_device *udev = interface_to_usbdev(intf);
957         struct net_device *netdev = NULL;
958
959         print_id(udev);
960
961         switch (udev->speed) {
962         case USB_SPEED_LOW:
963         case USB_SPEED_FULL:
964         case USB_SPEED_HIGH:
965                 break;
966         default:
967                 dev_dbg_f(&intf->dev, "Unknown USB speed\n");
968                 r = -ENODEV;
969                 goto error;
970         }
971
972         netdev = zd_netdev_alloc(intf);
973         if (netdev == NULL) {
974                 r = -ENOMEM;
975                 goto error;
976         }
977
978         r = upload_firmware(udev, id->driver_info);
979         if (r) {
980                 dev_err(&intf->dev,
981                        "couldn't load firmware. Error number %d\n", r);
982                 goto error;
983         }
984
985         r = usb_reset_configuration(udev);
986         if (r) {
987                 dev_dbg_f(&intf->dev,
988                         "couldn't reset configuration. Error number %d\n", r);
989                 goto error;
990         }
991
992         /* At this point the interrupt endpoint is not generally enabled. We
993          * save the USB bandwidth until the network device is opened. But
994          * notify that the initialization of the MAC will require the
995          * interrupts to be temporary enabled.
996          */
997         r = zd_mac_init_hw(zd_netdev_mac(netdev), id->driver_info);
998         if (r) {
999                 dev_dbg_f(&intf->dev,
1000                          "couldn't initialize mac. Error number %d\n", r);
1001                 goto error;
1002         }
1003
1004         r = register_netdev(netdev);
1005         if (r) {
1006                 dev_dbg_f(&intf->dev,
1007                          "couldn't register netdev. Error number %d\n", r);
1008                 goto error;
1009         }
1010
1011         dev_dbg_f(&intf->dev, "successful\n");
1012         dev_info(&intf->dev,"%s\n", netdev->name);
1013         return 0;
1014 error:
1015         usb_reset_device(interface_to_usbdev(intf));
1016         zd_netdev_free(netdev);
1017         return r;
1018 }
1019
1020 static void disconnect(struct usb_interface *intf)
1021 {
1022         struct net_device *netdev = zd_intf_to_netdev(intf);
1023         struct zd_mac *mac = zd_netdev_mac(netdev);
1024         struct zd_usb *usb = &mac->chip.usb;
1025
1026         dev_dbg_f(zd_usb_dev(usb), "\n");
1027
1028         zd_netdev_disconnect(netdev);
1029
1030         /* Just in case something has gone wrong! */
1031         zd_usb_disable_rx(usb);
1032         zd_usb_disable_int(usb);
1033
1034         /* If the disconnect has been caused by a removal of the
1035          * driver module, the reset allows reloading of the driver. If the
1036          * reset will not be executed here, the upload of the firmware in the
1037          * probe function caused by the reloading of the driver will fail.
1038          */
1039         usb_reset_device(interface_to_usbdev(intf));
1040
1041         /* If somebody still waits on this lock now, this is an error. */
1042         zd_netdev_free(netdev);
1043         dev_dbg(&intf->dev, "disconnected\n");
1044 }
1045
1046 static struct usb_driver driver = {
1047         .name           = "zd1211rw",
1048         .id_table       = usb_ids,
1049         .probe          = probe,
1050         .disconnect     = disconnect,
1051 };
1052
1053 static int __init usb_init(void)
1054 {
1055         int r;
1056
1057         pr_debug("usb_init()\n");
1058
1059         r = usb_register(&driver);
1060         if (r) {
1061                 printk(KERN_ERR "usb_register() failed. Error number %d\n", r);
1062                 return r;
1063         }
1064
1065         pr_debug("zd1211rw initialized\n");
1066         return 0;
1067 }
1068
1069 static void __exit usb_exit(void)
1070 {
1071         pr_debug("usb_exit()\n");
1072         usb_deregister(&driver);
1073 }
1074
1075 module_init(usb_init);
1076 module_exit(usb_exit);
1077
1078 static int usb_int_regs_length(unsigned int count)
1079 {
1080         return sizeof(struct usb_int_regs) + count * sizeof(struct reg_data);
1081 }
1082
1083 static void prepare_read_regs_int(struct zd_usb *usb)
1084 {
1085         struct zd_usb_interrupt *intr = &usb->intr;
1086
1087         spin_lock(&intr->lock);
1088         intr->read_regs_enabled = 1;
1089         INIT_COMPLETION(intr->read_regs.completion);
1090         spin_unlock(&intr->lock);
1091 }
1092
1093 static int get_results(struct zd_usb *usb, u16 *values,
1094                        struct usb_req_read_regs *req, unsigned int count)
1095 {
1096         int r;
1097         int i;
1098         struct zd_usb_interrupt *intr = &usb->intr;
1099         struct read_regs_int *rr = &intr->read_regs;
1100         struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer;
1101
1102         spin_lock(&intr->lock);
1103
1104         r = -EIO;
1105         /* The created block size seems to be larger than expected.
1106          * However results appear to be correct.
1107          */
1108         if (rr->length < usb_int_regs_length(count)) {
1109                 dev_dbg_f(zd_usb_dev(usb),
1110                          "error: actual length %d less than expected %d\n",
1111                          rr->length, usb_int_regs_length(count));
1112                 goto error_unlock;
1113         }
1114         if (rr->length > sizeof(rr->buffer)) {
1115                 dev_dbg_f(zd_usb_dev(usb),
1116                          "error: actual length %d exceeds buffer size %zu\n",
1117                          rr->length, sizeof(rr->buffer));
1118                 goto error_unlock;
1119         }
1120
1121         for (i = 0; i < count; i++) {
1122                 struct reg_data *rd = &regs->regs[i];
1123                 if (rd->addr != req->addr[i]) {
1124                         dev_dbg_f(zd_usb_dev(usb),
1125                                  "rd[%d] addr %#06hx expected %#06hx\n", i,
1126                                  le16_to_cpu(rd->addr),
1127                                  le16_to_cpu(req->addr[i]));
1128                         goto error_unlock;
1129                 }
1130                 values[i] = le16_to_cpu(rd->value);
1131         }
1132
1133         r = 0;
1134 error_unlock:
1135         spin_unlock(&intr->lock);
1136         return r;
1137 }
1138
1139 int zd_usb_ioread16v(struct zd_usb *usb, u16 *values,
1140                      const zd_addr_t *addresses, unsigned int count)
1141 {
1142         int r;
1143         int i, req_len, actual_req_len;
1144         struct usb_device *udev;
1145         struct usb_req_read_regs *req = NULL;
1146         unsigned long timeout;
1147
1148         if (count < 1) {
1149                 dev_dbg_f(zd_usb_dev(usb), "error: count is zero\n");
1150                 return -EINVAL;
1151         }
1152         if (count > USB_MAX_IOREAD16_COUNT) {
1153                 dev_dbg_f(zd_usb_dev(usb),
1154                          "error: count %u exceeds possible max %u\n",
1155                          count, USB_MAX_IOREAD16_COUNT);
1156                 return -EINVAL;
1157         }
1158         if (in_atomic()) {
1159                 dev_dbg_f(zd_usb_dev(usb),
1160                          "error: io in atomic context not supported\n");
1161                 return -EWOULDBLOCK;
1162         }
1163         if (!usb_int_enabled(usb)) {
1164                  dev_dbg_f(zd_usb_dev(usb),
1165                           "error: usb interrupt not enabled\n");
1166                 return -EWOULDBLOCK;
1167         }
1168
1169         req_len = sizeof(struct usb_req_read_regs) + count * sizeof(__le16);
1170         req = kmalloc(req_len, GFP_NOFS);
1171         if (!req)
1172                 return -ENOMEM;
1173         req->id = cpu_to_le16(USB_REQ_READ_REGS);
1174         for (i = 0; i < count; i++)
1175                 req->addr[i] = cpu_to_le16(usb_addr(usb, addresses[i]));
1176
1177         udev = zd_usb_to_usbdev(usb);
1178         prepare_read_regs_int(usb);
1179         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1180                          req, req_len, &actual_req_len, 1000 /* ms */);
1181         if (r) {
1182                 dev_dbg_f(zd_usb_dev(usb),
1183                         "error in usb_bulk_msg(). Error number %d\n", r);
1184                 goto error;
1185         }
1186         if (req_len != actual_req_len) {
1187                 dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg()\n"
1188                         " req_len %d != actual_req_len %d\n",
1189                         req_len, actual_req_len);
1190                 r = -EIO;
1191                 goto error;
1192         }
1193
1194         timeout = wait_for_completion_timeout(&usb->intr.read_regs.completion,
1195                                               msecs_to_jiffies(1000));
1196         if (!timeout) {
1197                 disable_read_regs_int(usb);
1198                 dev_dbg_f(zd_usb_dev(usb), "read timed out\n");
1199                 r = -ETIMEDOUT;
1200                 goto error;
1201         }
1202
1203         r = get_results(usb, values, req, count);
1204 error:
1205         kfree(req);
1206         return r;
1207 }
1208
1209 int zd_usb_iowrite16v(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
1210                       unsigned int count)
1211 {
1212         int r;
1213         struct usb_device *udev;
1214         struct usb_req_write_regs *req = NULL;
1215         int i, req_len, actual_req_len;
1216
1217         if (count == 0)
1218                 return 0;
1219         if (count > USB_MAX_IOWRITE16_COUNT) {
1220                 dev_dbg_f(zd_usb_dev(usb),
1221                         "error: count %u exceeds possible max %u\n",
1222                         count, USB_MAX_IOWRITE16_COUNT);
1223                 return -EINVAL;
1224         }
1225         if (in_atomic()) {
1226                 dev_dbg_f(zd_usb_dev(usb),
1227                         "error: io in atomic context not supported\n");
1228                 return -EWOULDBLOCK;
1229         }
1230
1231         req_len = sizeof(struct usb_req_write_regs) +
1232                   count * sizeof(struct reg_data);
1233         req = kmalloc(req_len, GFP_NOFS);
1234         if (!req)
1235                 return -ENOMEM;
1236
1237         req->id = cpu_to_le16(USB_REQ_WRITE_REGS);
1238         for (i = 0; i < count; i++) {
1239                 struct reg_data *rw  = &req->reg_writes[i];
1240                 rw->addr = cpu_to_le16(usb_addr(usb, ioreqs[i].addr));
1241                 rw->value = cpu_to_le16(ioreqs[i].value);
1242         }
1243
1244         udev = zd_usb_to_usbdev(usb);
1245         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1246                          req, req_len, &actual_req_len, 1000 /* ms */);
1247         if (r) {
1248                 dev_dbg_f(zd_usb_dev(usb),
1249                         "error in usb_bulk_msg(). Error number %d\n", r);
1250                 goto error;
1251         }
1252         if (req_len != actual_req_len) {
1253                 dev_dbg_f(zd_usb_dev(usb),
1254                         "error in usb_bulk_msg()"
1255                         " req_len %d != actual_req_len %d\n",
1256                         req_len, actual_req_len);
1257                 r = -EIO;
1258                 goto error;
1259         }
1260
1261         /* FALL-THROUGH with r == 0 */
1262 error:
1263         kfree(req);
1264         return r;
1265 }
1266
1267 int zd_usb_rfwrite(struct zd_usb *usb, u32 value, u8 bits)
1268 {
1269         int r;
1270         struct usb_device *udev;
1271         struct usb_req_rfwrite *req = NULL;
1272         int i, req_len, actual_req_len;
1273         u16 bit_value_template;
1274
1275         if (in_atomic()) {
1276                 dev_dbg_f(zd_usb_dev(usb),
1277                         "error: io in atomic context not supported\n");
1278                 return -EWOULDBLOCK;
1279         }
1280         if (bits < USB_MIN_RFWRITE_BIT_COUNT) {
1281                 dev_dbg_f(zd_usb_dev(usb),
1282                         "error: bits %d are smaller than"
1283                         " USB_MIN_RFWRITE_BIT_COUNT %d\n",
1284                         bits, USB_MIN_RFWRITE_BIT_COUNT);
1285                 return -EINVAL;
1286         }
1287         if (bits > USB_MAX_RFWRITE_BIT_COUNT) {
1288                 dev_dbg_f(zd_usb_dev(usb),
1289                         "error: bits %d exceed USB_MAX_RFWRITE_BIT_COUNT %d\n",
1290                         bits, USB_MAX_RFWRITE_BIT_COUNT);
1291                 return -EINVAL;
1292         }
1293 #ifdef DEBUG
1294         if (value & (~0UL << bits)) {
1295                 dev_dbg_f(zd_usb_dev(usb),
1296                         "error: value %#09x has bits >= %d set\n",
1297                         value, bits);
1298                 return -EINVAL;
1299         }
1300 #endif /* DEBUG */
1301
1302         dev_dbg_f(zd_usb_dev(usb), "value %#09x bits %d\n", value, bits);
1303
1304         r = zd_usb_ioread16(usb, &bit_value_template, CR203);
1305         if (r) {
1306                 dev_dbg_f(zd_usb_dev(usb),
1307                         "error %d: Couldn't read CR203\n", r);
1308                 goto out;
1309         }
1310         bit_value_template &= ~(RF_IF_LE|RF_CLK|RF_DATA);
1311
1312         req_len = sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16);
1313         req = kmalloc(req_len, GFP_NOFS);
1314         if (!req)
1315                 return -ENOMEM;
1316
1317         req->id = cpu_to_le16(USB_REQ_WRITE_RF);
1318         /* 1: 3683a, but not used in ZYDAS driver */
1319         req->value = cpu_to_le16(2);
1320         req->bits = cpu_to_le16(bits);
1321
1322         for (i = 0; i < bits; i++) {
1323                 u16 bv = bit_value_template;
1324                 if (value & (1 << (bits-1-i)))
1325                         bv |= RF_DATA;
1326                 req->bit_values[i] = cpu_to_le16(bv);
1327         }
1328
1329         udev = zd_usb_to_usbdev(usb);
1330         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1331                          req, req_len, &actual_req_len, 1000 /* ms */);
1332         if (r) {
1333                 dev_dbg_f(zd_usb_dev(usb),
1334                         "error in usb_bulk_msg(). Error number %d\n", r);
1335                 goto out;
1336         }
1337         if (req_len != actual_req_len) {
1338                 dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg()"
1339                         " req_len %d != actual_req_len %d\n",
1340                         req_len, actual_req_len);
1341                 r = -EIO;
1342                 goto out;
1343         }
1344
1345         /* FALL-THROUGH with r == 0 */
1346 out:
1347         kfree(req);
1348         return r;
1349 }