]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/wireless/zd1211rw/zd_mac.c
zd1211rw: port to mac80211
[linux-2.6-omap-h63xx.git] / drivers / net / wireless / zd1211rw / zd_mac.c
1 /* zd_mac.c
2  *
3  * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18  */
19
20 #include <linux/netdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/usb.h>
23 #include <linux/jiffies.h>
24 #include <net/ieee80211_radiotap.h>
25
26 #include "zd_def.h"
27 #include "zd_chip.h"
28 #include "zd_mac.h"
29 #include "zd_ieee80211.h"
30 #include "zd_rf.h"
31
32 /* This table contains the hardware specific values for the modulation rates. */
33 static const struct ieee80211_rate zd_rates[] = {
34         { .rate = 10,
35           .val = ZD_CCK_RATE_1M,
36           .flags = IEEE80211_RATE_CCK },
37         { .rate = 20,
38           .val = ZD_CCK_RATE_2M,
39           .val2 = ZD_CCK_RATE_2M | ZD_CCK_PREA_SHORT,
40           .flags = IEEE80211_RATE_CCK_2 },
41         { .rate = 55,
42           .val = ZD_CCK_RATE_5_5M,
43           .val2 = ZD_CCK_RATE_5_5M | ZD_CCK_PREA_SHORT,
44           .flags = IEEE80211_RATE_CCK_2 },
45         { .rate = 110,
46           .val = ZD_CCK_RATE_11M,
47           .val2 = ZD_CCK_RATE_11M | ZD_CCK_PREA_SHORT,
48           .flags = IEEE80211_RATE_CCK_2 },
49         { .rate = 60,
50           .val = ZD_OFDM_RATE_6M,
51           .flags = IEEE80211_RATE_OFDM },
52         { .rate = 90,
53           .val = ZD_OFDM_RATE_9M,
54           .flags = IEEE80211_RATE_OFDM },
55         { .rate = 120,
56           .val = ZD_OFDM_RATE_12M,
57           .flags = IEEE80211_RATE_OFDM },
58         { .rate = 180,
59           .val = ZD_OFDM_RATE_18M,
60           .flags = IEEE80211_RATE_OFDM },
61         { .rate = 240,
62           .val = ZD_OFDM_RATE_24M,
63           .flags = IEEE80211_RATE_OFDM },
64         { .rate = 360,
65           .val = ZD_OFDM_RATE_36M,
66           .flags = IEEE80211_RATE_OFDM },
67         { .rate = 480,
68           .val = ZD_OFDM_RATE_48M,
69           .flags = IEEE80211_RATE_OFDM },
70         { .rate = 540,
71           .val = ZD_OFDM_RATE_54M,
72           .flags = IEEE80211_RATE_OFDM },
73 };
74
75 static const struct ieee80211_channel zd_channels[] = {
76         { .chan = 1,
77           .freq = 2412},
78         { .chan = 2,
79           .freq = 2417},
80         { .chan = 3,
81           .freq = 2422},
82         { .chan = 4,
83           .freq = 2427},
84         { .chan = 5,
85           .freq = 2432},
86         { .chan = 6,
87           .freq = 2437},
88         { .chan = 7,
89           .freq = 2442},
90         { .chan = 8,
91           .freq = 2447},
92         { .chan = 9,
93           .freq = 2452},
94         { .chan = 10,
95           .freq = 2457},
96         { .chan = 11,
97           .freq = 2462},
98         { .chan = 12,
99           .freq = 2467},
100         { .chan = 13,
101           .freq = 2472},
102         { .chan = 14,
103           .freq = 2484}
104 };
105
106 static void housekeeping_init(struct zd_mac *mac);
107 static void housekeeping_enable(struct zd_mac *mac);
108 static void housekeeping_disable(struct zd_mac *mac);
109
110 int zd_mac_preinit_hw(struct ieee80211_hw *hw)
111 {
112         int r;
113         u8 addr[ETH_ALEN];
114         struct zd_mac *mac = zd_hw_mac(hw);
115
116         r = zd_chip_read_mac_addr_fw(&mac->chip, addr);
117         if (r)
118                 return r;
119
120         SET_IEEE80211_PERM_ADDR(hw, addr);
121
122         return 0;
123 }
124
125 int zd_mac_init_hw(struct ieee80211_hw *hw)
126 {
127         int r;
128         struct zd_mac *mac = zd_hw_mac(hw);
129         struct zd_chip *chip = &mac->chip;
130         u8 default_regdomain;
131
132         r = zd_chip_enable_int(chip);
133         if (r)
134                 goto out;
135         r = zd_chip_init_hw(chip);
136         if (r)
137                 goto disable_int;
138
139         ZD_ASSERT(!irqs_disabled());
140
141         r = zd_read_regdomain(chip, &default_regdomain);
142         if (r)
143                 goto disable_int;
144         spin_lock_irq(&mac->lock);
145         mac->regdomain = mac->default_regdomain = default_regdomain;
146         spin_unlock_irq(&mac->lock);
147
148         /* We must inform the device that we are doing encryption/decryption in
149          * software at the moment. */
150         r = zd_set_encryption_type(chip, ENC_SNIFFER);
151         if (r)
152                 goto disable_int;
153
154         zd_geo_init(hw, mac->regdomain);
155
156         r = 0;
157 disable_int:
158         zd_chip_disable_int(chip);
159 out:
160         return r;
161 }
162
163 void zd_mac_clear(struct zd_mac *mac)
164 {
165         flush_workqueue(zd_workqueue);
166         zd_chip_clear(&mac->chip);
167         ZD_ASSERT(!spin_is_locked(&mac->lock));
168         ZD_MEMCLEAR(mac, sizeof(struct zd_mac));
169 }
170
171 static int set_rx_filter(struct zd_mac *mac)
172 {
173         unsigned long flags;
174         u32 filter = STA_RX_FILTER;
175
176         spin_lock_irqsave(&mac->lock, flags);
177         if (mac->pass_ctrl)
178                 filter |= RX_FILTER_CTRL;
179         spin_unlock_irqrestore(&mac->lock, flags);
180
181         return zd_iowrite32(&mac->chip, CR_RX_FILTER, filter);
182 }
183
184 static int set_mc_hash(struct zd_mac *mac)
185 {
186         struct zd_mc_hash hash;
187         zd_mc_clear(&hash);
188         return zd_chip_set_multicast_hash(&mac->chip, &hash);
189 }
190
191 static int zd_op_start(struct ieee80211_hw *hw)
192 {
193         struct zd_mac *mac = zd_hw_mac(hw);
194         struct zd_chip *chip = &mac->chip;
195         struct zd_usb *usb = &chip->usb;
196         int r;
197
198         if (!usb->initialized) {
199                 r = zd_usb_init_hw(usb);
200                 if (r)
201                         goto out;
202         }
203
204         r = zd_chip_enable_int(chip);
205         if (r < 0)
206                 goto out;
207
208         r = zd_chip_set_basic_rates(chip, CR_RATES_80211B | CR_RATES_80211G);
209         if (r < 0)
210                 goto disable_int;
211         r = set_rx_filter(mac);
212         if (r)
213                 goto disable_int;
214         r = set_mc_hash(mac);
215         if (r)
216                 goto disable_int;
217         r = zd_chip_switch_radio_on(chip);
218         if (r < 0)
219                 goto disable_int;
220         r = zd_chip_enable_rxtx(chip);
221         if (r < 0)
222                 goto disable_radio;
223         r = zd_chip_enable_hwint(chip);
224         if (r < 0)
225                 goto disable_rxtx;
226
227         housekeeping_enable(mac);
228         return 0;
229 disable_rxtx:
230         zd_chip_disable_rxtx(chip);
231 disable_radio:
232         zd_chip_switch_radio_off(chip);
233 disable_int:
234         zd_chip_disable_int(chip);
235 out:
236         return r;
237 }
238
239 /**
240  * clear_tx_skb_control_block - clears the control block of tx skbuffs
241  * @skb: a &struct sk_buff pointer
242  *
243  * This clears the control block of skbuff buffers, which were transmitted to
244  * the device. Notify that the function is not thread-safe, so prevent
245  * multiple calls.
246  */
247 static void clear_tx_skb_control_block(struct sk_buff *skb)
248 {
249         struct zd_tx_skb_control_block *cb =
250                 (struct zd_tx_skb_control_block *)skb->cb;
251
252         kfree(cb->control);
253         cb->control = NULL;
254 }
255
256 /**
257  * kfree_tx_skb - frees a tx skbuff
258  * @skb: a &struct sk_buff pointer
259  *
260  * Frees the tx skbuff. Frees also the allocated control structure in the
261  * control block if necessary.
262  */
263 static void kfree_tx_skb(struct sk_buff *skb)
264 {
265         clear_tx_skb_control_block(skb);
266         dev_kfree_skb_any(skb);
267 }
268
269 static void zd_op_stop(struct ieee80211_hw *hw)
270 {
271         struct zd_mac *mac = zd_hw_mac(hw);
272         struct zd_chip *chip = &mac->chip;
273         struct sk_buff *skb;
274         struct sk_buff_head *ack_wait_queue = &mac->ack_wait_queue;
275
276         /* The order here deliberately is a little different from the open()
277          * method, since we need to make sure there is no opportunity for RX
278          * frames to be processed by mac80211 after we have stopped it.
279          */
280
281         zd_chip_disable_rxtx(chip);
282         housekeeping_disable(mac);
283         flush_workqueue(zd_workqueue);
284
285         zd_chip_disable_hwint(chip);
286         zd_chip_switch_radio_off(chip);
287         zd_chip_disable_int(chip);
288
289
290         while ((skb = skb_dequeue(ack_wait_queue)))
291                 kfree_tx_skb(skb);
292 }
293
294 /**
295  * init_tx_skb_control_block - initializes skb control block
296  * @skb: a &sk_buff pointer
297  * @dev: pointer to the mac80221 device
298  * @control: mac80211 tx control applying for the frame in @skb
299  *
300  * Initializes the control block of the skbuff to be transmitted.
301  */
302 static int init_tx_skb_control_block(struct sk_buff *skb,
303                                      struct ieee80211_hw *hw,
304                                      struct ieee80211_tx_control *control)
305 {
306         struct zd_tx_skb_control_block *cb =
307                 (struct zd_tx_skb_control_block *)skb->cb;
308
309         ZD_ASSERT(sizeof(*cb) <= sizeof(skb->cb));
310         memset(cb, 0, sizeof(*cb));
311         cb->hw= hw;
312         cb->control = kmalloc(sizeof(*control), GFP_ATOMIC);
313         if (cb->control == NULL)
314                 return -ENOMEM;
315         memcpy(cb->control, control, sizeof(*control));
316
317         return 0;
318 }
319
320 /**
321  * tx_status - reports tx status of a packet if required
322  * @hw - a &struct ieee80211_hw pointer
323  * @skb - a sk-buffer
324  * @status - the tx status of the packet without control information
325  * @success - True for successfull transmission of the frame
326  *
327  * This information calls ieee80211_tx_status_irqsafe() if required by the
328  * control information. It copies the control information into the status
329  * information.
330  *
331  * If no status information has been requested, the skb is freed.
332  */
333 static void tx_status(struct ieee80211_hw *hw, struct sk_buff *skb,
334                       struct ieee80211_tx_status *status,
335                       bool success)
336 {
337         struct zd_tx_skb_control_block *cb = (struct zd_tx_skb_control_block *)
338                 skb->cb;
339
340         ZD_ASSERT(cb->control != NULL);
341         memcpy(&status->control, cb->control, sizeof(status->control));
342         if (!success)
343                 status->excessive_retries = 1;
344         clear_tx_skb_control_block(skb);
345         ieee80211_tx_status_irqsafe(hw, skb, status);
346 }
347
348 /**
349  * zd_mac_tx_failed - callback for failed frames
350  * @dev: the mac80211 wireless device
351  *
352  * This function is called if a frame couldn't be succesfully be
353  * transferred. The first frame from the tx queue, will be selected and
354  * reported as error to the upper layers.
355  */
356 void zd_mac_tx_failed(struct ieee80211_hw *hw)
357 {
358         struct sk_buff_head *q = &zd_hw_mac(hw)->ack_wait_queue;
359         struct sk_buff *skb;
360         struct ieee80211_tx_status status = {{0}};
361
362         skb = skb_dequeue(q);
363         if (skb == NULL)
364                 return;
365         tx_status(hw, skb, &status, 0);
366 }
367
368 /**
369  * zd_mac_tx_to_dev - callback for USB layer
370  * @skb: a &sk_buff pointer
371  * @error: error value, 0 if transmission successful
372  *
373  * Informs the MAC layer that the frame has successfully transferred to the
374  * device. If an ACK is required and the transfer to the device has been
375  * successful, the packets are put on the @ack_wait_queue with
376  * the control set removed.
377  */
378 void zd_mac_tx_to_dev(struct sk_buff *skb, int error)
379 {
380         struct zd_tx_skb_control_block *cb =
381                 (struct zd_tx_skb_control_block *)skb->cb;
382         struct ieee80211_hw *hw = cb->hw;
383
384         if (likely(cb->control)) {
385                 skb_pull(skb, sizeof(struct zd_ctrlset));
386                 if (unlikely(error ||
387                     (cb->control->flags & IEEE80211_TXCTL_NO_ACK)))
388                 {
389                         struct ieee80211_tx_status status = {{0}};
390                         tx_status(hw, skb, &status, !error);
391                 } else {
392                         struct sk_buff_head *q =
393                                 &zd_hw_mac(hw)->ack_wait_queue;
394
395                         skb_queue_tail(q, skb);
396                         while (skb_queue_len(q) > ZD_MAC_MAX_ACK_WAITERS)
397                                 zd_mac_tx_failed(hw);
398                 }
399         } else {
400                 kfree_tx_skb(skb);
401         }
402 }
403
404 static int zd_calc_tx_length_us(u8 *service, u8 zd_rate, u16 tx_length)
405 {
406         /* ZD_PURE_RATE() must be used to remove the modulation type flag of
407          * the zd-rate values.
408          */
409         static const u8 rate_divisor[] = {
410                 [ZD_PURE_RATE(ZD_CCK_RATE_1M)]   =  1,
411                 [ZD_PURE_RATE(ZD_CCK_RATE_2M)]   =  2,
412                 /* Bits must be doubled. */
413                 [ZD_PURE_RATE(ZD_CCK_RATE_5_5M)] = 11,
414                 [ZD_PURE_RATE(ZD_CCK_RATE_11M)]  = 11,
415                 [ZD_PURE_RATE(ZD_OFDM_RATE_6M)]  =  6,
416                 [ZD_PURE_RATE(ZD_OFDM_RATE_9M)]  =  9,
417                 [ZD_PURE_RATE(ZD_OFDM_RATE_12M)] = 12,
418                 [ZD_PURE_RATE(ZD_OFDM_RATE_18M)] = 18,
419                 [ZD_PURE_RATE(ZD_OFDM_RATE_24M)] = 24,
420                 [ZD_PURE_RATE(ZD_OFDM_RATE_36M)] = 36,
421                 [ZD_PURE_RATE(ZD_OFDM_RATE_48M)] = 48,
422                 [ZD_PURE_RATE(ZD_OFDM_RATE_54M)] = 54,
423         };
424
425         u32 bits = (u32)tx_length * 8;
426         u32 divisor;
427
428         divisor = rate_divisor[ZD_PURE_RATE(zd_rate)];
429         if (divisor == 0)
430                 return -EINVAL;
431
432         switch (zd_rate) {
433         case ZD_CCK_RATE_5_5M:
434                 bits = (2*bits) + 10; /* round up to the next integer */
435                 break;
436         case ZD_CCK_RATE_11M:
437                 if (service) {
438                         u32 t = bits % 11;
439                         *service &= ~ZD_PLCP_SERVICE_LENGTH_EXTENSION;
440                         if (0 < t && t <= 3) {
441                                 *service |= ZD_PLCP_SERVICE_LENGTH_EXTENSION;
442                         }
443                 }
444                 bits += 10; /* round up to the next integer */
445                 break;
446         }
447
448         return bits/divisor;
449 }
450
451 static void cs_set_control(struct zd_mac *mac, struct zd_ctrlset *cs,
452                            struct ieee80211_hdr *header, u32 flags)
453 {
454         u16 fctl = le16_to_cpu(header->frame_control);
455
456         /*
457          * CONTROL TODO:
458          * - if backoff needed, enable bit 0
459          * - if burst (backoff not needed) disable bit 0
460          */
461
462         cs->control = 0;
463
464         /* First fragment */
465         if (flags & IEEE80211_TXCTL_FIRST_FRAGMENT)
466                 cs->control |= ZD_CS_NEED_RANDOM_BACKOFF;
467
468         /* Multicast */
469         if (is_multicast_ether_addr(header->addr1))
470                 cs->control |= ZD_CS_MULTICAST;
471
472         /* PS-POLL */
473         if ((fctl & (IEEE80211_FCTL_FTYPE|IEEE80211_FCTL_STYPE)) ==
474             (IEEE80211_FTYPE_CTL|IEEE80211_STYPE_PSPOLL))
475                 cs->control |= ZD_CS_PS_POLL_FRAME;
476
477         if (flags & IEEE80211_TXCTL_USE_RTS_CTS)
478                 cs->control |= ZD_CS_RTS;
479
480         if (flags & IEEE80211_TXCTL_USE_CTS_PROTECT)
481                 cs->control |= ZD_CS_SELF_CTS;
482
483         /* FIXME: Management frame? */
484 }
485
486 static int fill_ctrlset(struct zd_mac *mac,
487                         struct sk_buff *skb,
488                         struct ieee80211_tx_control *control)
489 {
490         int r;
491         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
492         unsigned int frag_len = skb->len + FCS_LEN;
493         unsigned int packet_length;
494         struct zd_ctrlset *cs = (struct zd_ctrlset *)
495                 skb_push(skb, sizeof(struct zd_ctrlset));
496
497         ZD_ASSERT(frag_len <= 0xffff);
498
499         cs->modulation = control->tx_rate;
500
501         cs->tx_length = cpu_to_le16(frag_len);
502
503         cs_set_control(mac, cs, hdr, control->flags);
504
505         packet_length = frag_len + sizeof(struct zd_ctrlset) + 10;
506         ZD_ASSERT(packet_length <= 0xffff);
507         /* ZD1211B: Computing the length difference this way, gives us
508          * flexibility to compute the packet length.
509          */
510         cs->packet_length = cpu_to_le16(zd_chip_is_zd1211b(&mac->chip) ?
511                         packet_length - frag_len : packet_length);
512
513         /*
514          * CURRENT LENGTH:
515          * - transmit frame length in microseconds
516          * - seems to be derived from frame length
517          * - see Cal_Us_Service() in zdinlinef.h
518          * - if macp->bTxBurstEnable is enabled, then multiply by 4
519          *  - bTxBurstEnable is never set in the vendor driver
520          *
521          * SERVICE:
522          * - "for PLCP configuration"
523          * - always 0 except in some situations at 802.11b 11M
524          * - see line 53 of zdinlinef.h
525          */
526         cs->service = 0;
527         r = zd_calc_tx_length_us(&cs->service, ZD_RATE(cs->modulation),
528                                  le16_to_cpu(cs->tx_length));
529         if (r < 0)
530                 return r;
531         cs->current_length = cpu_to_le16(r);
532         cs->next_frame_length = 0;
533
534         return 0;
535 }
536
537 /**
538  * zd_op_tx - transmits a network frame to the device
539  *
540  * @dev: mac80211 hardware device
541  * @skb: socket buffer
542  * @control: the control structure
543  *
544  * This function transmit an IEEE 802.11 network frame to the device. The
545  * control block of the skbuff will be initialized. If necessary the incoming
546  * mac80211 queues will be stopped.
547  */
548 static int zd_op_tx(struct ieee80211_hw *hw, struct sk_buff *skb,
549                      struct ieee80211_tx_control *control)
550 {
551         struct zd_mac *mac = zd_hw_mac(hw);
552         int r;
553
554         r = fill_ctrlset(mac, skb, control);
555         if (r)
556                 return r;
557
558         r = init_tx_skb_control_block(skb, hw, control);
559         if (r)
560                 return r;
561         r = zd_usb_tx(&mac->chip.usb, skb);
562         if (r) {
563                 clear_tx_skb_control_block(skb);
564                 return r;
565         }
566         return 0;
567 }
568
569 /**
570  * filter_ack - filters incoming packets for acknowledgements
571  * @dev: the mac80211 device
572  * @rx_hdr: received header
573  * @stats: the status for the received packet
574  *
575  * This functions looks for ACK packets and tries to match them with the
576  * frames in the tx queue. If a match is found the frame will be dequeued and
577  * the upper layers is informed about the successful transmission. If
578  * mac80211 queues have been stopped and the number of frames still to be
579  * transmitted is low the queues will be opened again.
580  *
581  * Returns 1 if the frame was an ACK, 0 if it was ignored.
582  */
583 static int filter_ack(struct ieee80211_hw *hw, struct ieee80211_hdr *rx_hdr,
584                       struct ieee80211_rx_status *stats)
585 {
586         u16 fc = le16_to_cpu(rx_hdr->frame_control);
587         struct sk_buff *skb;
588         struct sk_buff_head *q;
589         unsigned long flags;
590
591         if ((fc & (IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) !=
592             (IEEE80211_FTYPE_CTL | IEEE80211_STYPE_ACK))
593                 return 0;
594
595         q = &zd_hw_mac(hw)->ack_wait_queue;
596         spin_lock_irqsave(&q->lock, flags);
597         for (skb = q->next; skb != (struct sk_buff *)q; skb = skb->next) {
598                 struct ieee80211_hdr *tx_hdr;
599
600                 tx_hdr = (struct ieee80211_hdr *)skb->data;
601                 if (likely(!compare_ether_addr(tx_hdr->addr2, rx_hdr->addr1)))
602                 {
603                         struct ieee80211_tx_status status = {{0}};
604                         status.flags = IEEE80211_TX_STATUS_ACK;
605                         status.ack_signal = stats->ssi;
606                         __skb_unlink(skb, q);
607                         tx_status(hw, skb, &status, 1);
608                         goto out;
609                 }
610         }
611 out:
612         spin_unlock_irqrestore(&q->lock, flags);
613         return 1;
614 }
615
616 int zd_mac_rx(struct ieee80211_hw *hw, const u8 *buffer, unsigned int length)
617 {
618         struct zd_mac *mac = zd_hw_mac(hw);
619         struct ieee80211_rx_status stats;
620         const struct rx_status *status;
621         struct sk_buff *skb;
622         int bad_frame = 0;
623
624         if (length < ZD_PLCP_HEADER_SIZE + 10 /* IEEE80211_1ADDR_LEN */ +
625                      FCS_LEN + sizeof(struct rx_status))
626                 return -EINVAL;
627
628         memset(&stats, 0, sizeof(stats));
629
630         /* Note about pass_failed_fcs and pass_ctrl access below:
631          * mac locking intentionally omitted here, as this is the only unlocked
632          * reader and the only writer is configure_filter. Plus, if there were
633          * any races accessing these variables, it wouldn't really matter.
634          * If mac80211 ever provides a way for us to access filter flags
635          * from outside configure_filter, we could improve on this. Also, this
636          * situation may change once we implement some kind of DMA-into-skb
637          * RX path. */
638
639         /* Caller has to ensure that length >= sizeof(struct rx_status). */
640         status = (struct rx_status *)
641                 (buffer + (length - sizeof(struct rx_status)));
642         if (status->frame_status & ZD_RX_ERROR) {
643                 if (mac->pass_failed_fcs &&
644                                 (status->frame_status & ZD_RX_CRC32_ERROR)) {
645                         stats.flag |= RX_FLAG_FAILED_FCS_CRC;
646                         bad_frame = 1;
647                 } else {
648                         return -EINVAL;
649                 }
650         }
651
652         stats.channel = _zd_chip_get_channel(&mac->chip);
653         stats.freq = zd_channels[stats.channel - 1].freq;
654         stats.phymode = MODE_IEEE80211G;
655         stats.ssi = status->signal_strength;
656         stats.signal = zd_rx_qual_percent(buffer,
657                                           length - sizeof(struct rx_status),
658                                           status);
659         stats.rate = zd_rx_rate(buffer, status);
660
661         length -= ZD_PLCP_HEADER_SIZE + sizeof(struct rx_status);
662         buffer += ZD_PLCP_HEADER_SIZE;
663
664         /* Except for bad frames, filter each frame to see if it is an ACK, in
665          * which case our internal TX tracking is updated. Normally we then
666          * bail here as there's no need to pass ACKs on up to the stack, but
667          * there is also the case where the stack has requested us to pass
668          * control frames on up (pass_ctrl) which we must consider. */
669         if (!bad_frame &&
670                         filter_ack(hw, (struct ieee80211_hdr *)buffer, &stats)
671                         && !mac->pass_ctrl)
672                 return 0;
673
674         skb = dev_alloc_skb(length);
675         if (skb == NULL)
676                 return -ENOMEM;
677         memcpy(skb_put(skb, length), buffer, length);
678
679         ieee80211_rx_irqsafe(hw, skb, &stats);
680         return 0;
681 }
682
683 static int zd_op_add_interface(struct ieee80211_hw *hw,
684                                 struct ieee80211_if_init_conf *conf)
685 {
686         struct zd_mac *mac = zd_hw_mac(hw);
687
688         /* using IEEE80211_IF_TYPE_INVALID to indicate no mode selected */
689         if (mac->type != IEEE80211_IF_TYPE_INVALID)
690                 return -EOPNOTSUPP;
691
692         switch (conf->type) {
693         case IEEE80211_IF_TYPE_MNTR:
694         case IEEE80211_IF_TYPE_STA:
695                 mac->type = conf->type;
696                 break;
697         default:
698                 return -EOPNOTSUPP;
699         }
700
701         return zd_write_mac_addr(&mac->chip, conf->mac_addr);
702 }
703
704 static void zd_op_remove_interface(struct ieee80211_hw *hw,
705                                     struct ieee80211_if_init_conf *conf)
706 {
707         struct zd_mac *mac = zd_hw_mac(hw);
708         mac->type = IEEE80211_IF_TYPE_INVALID;
709         zd_write_mac_addr(&mac->chip, NULL);
710 }
711
712 static int zd_op_config(struct ieee80211_hw *hw, struct ieee80211_conf *conf)
713 {
714         struct zd_mac *mac = zd_hw_mac(hw);
715         return zd_chip_set_channel(&mac->chip, conf->channel);
716 }
717
718 static int zd_op_config_interface(struct ieee80211_hw *hw, int if_id,
719                                    struct ieee80211_if_conf *conf)
720 {
721         struct zd_mac *mac = zd_hw_mac(hw);
722
723         spin_lock_irq(&mac->lock);
724         mac->associated = is_valid_ether_addr(conf->bssid);
725         spin_unlock_irq(&mac->lock);
726
727         /* TODO: do hardware bssid filtering */
728         return 0;
729 }
730
731 static void set_multicast_hash_handler(struct work_struct *work)
732 {
733         struct zd_mac *mac =
734                 container_of(work, struct zd_mac, set_multicast_hash_work);
735         struct zd_mc_hash hash;
736
737         spin_lock_irq(&mac->lock);
738         hash = mac->multicast_hash;
739         spin_unlock_irq(&mac->lock);
740
741         zd_chip_set_multicast_hash(&mac->chip, &hash);
742 }
743
744 static void set_rx_filter_handler(struct work_struct *work)
745 {
746         struct zd_mac *mac =
747                 container_of(work, struct zd_mac, set_rx_filter_work);
748         int r;
749
750         dev_dbg_f(zd_mac_dev(mac), "\n");
751         r = set_rx_filter(mac);
752         if (r)
753                 dev_err(zd_mac_dev(mac), "set_rx_filter_handler error %d\n", r);
754 }
755
756 #define SUPPORTED_FIF_FLAGS \
757         (FIF_PROMISC_IN_BSS | FIF_ALLMULTI | FIF_FCSFAIL | FIF_CONTROL | \
758         FIF_OTHER_BSS)
759 static void zd_op_configure_filter(struct ieee80211_hw *hw,
760                         unsigned int changed_flags,
761                         unsigned int *new_flags,
762                         int mc_count, struct dev_mc_list *mclist)
763 {
764         struct zd_mc_hash hash;
765         struct zd_mac *mac = zd_hw_mac(hw);
766         unsigned long flags;
767         int i;
768
769         /* Only deal with supported flags */
770         changed_flags &= SUPPORTED_FIF_FLAGS;
771         *new_flags &= SUPPORTED_FIF_FLAGS;
772
773         /* changed_flags is always populated but this driver
774          * doesn't support all FIF flags so its possible we don't
775          * need to do anything */
776         if (!changed_flags)
777                 return;
778
779         if (*new_flags & (FIF_PROMISC_IN_BSS | FIF_ALLMULTI)) {
780                 zd_mc_add_all(&hash);
781         } else {
782                 DECLARE_MAC_BUF(macbuf);
783
784                 zd_mc_clear(&hash);
785                 for (i = 0; i < mc_count; i++) {
786                         if (!mclist)
787                                 break;
788                         dev_dbg_f(zd_mac_dev(mac), "mc addr %s\n",
789                                   print_mac(macbuf, mclist->dmi_addr));
790                         zd_mc_add_addr(&hash, mclist->dmi_addr);
791                         mclist = mclist->next;
792                 }
793         }
794
795         spin_lock_irqsave(&mac->lock, flags);
796         mac->pass_failed_fcs = !!(*new_flags & FIF_FCSFAIL);
797         mac->pass_ctrl = !!(*new_flags & FIF_CONTROL);
798         mac->multicast_hash = hash;
799         spin_unlock_irqrestore(&mac->lock, flags);
800         queue_work(zd_workqueue, &mac->set_multicast_hash_work);
801
802         if (changed_flags & FIF_CONTROL)
803                 queue_work(zd_workqueue, &mac->set_rx_filter_work);
804
805         /* no handling required for FIF_OTHER_BSS as we don't currently
806          * do BSSID filtering */
807         /* FIXME: in future it would be nice to enable the probe response
808          * filter (so that the driver doesn't see them) until
809          * FIF_BCN_PRBRESP_PROMISC is set. however due to atomicity here, we'd
810          * have to schedule work to enable prbresp reception, which might
811          * happen too late. For now we'll just listen and forward them all the
812          * time. */
813 }
814
815 static void set_rts_cts_work(struct work_struct *work)
816 {
817         struct zd_mac *mac =
818                 container_of(work, struct zd_mac, set_rts_cts_work);
819         unsigned long flags;
820         unsigned int short_preamble;
821
822         mutex_lock(&mac->chip.mutex);
823
824         spin_lock_irqsave(&mac->lock, flags);
825         mac->updating_rts_rate = 0;
826         short_preamble = mac->short_preamble;
827         spin_unlock_irqrestore(&mac->lock, flags);
828
829         zd_chip_set_rts_cts_rate_locked(&mac->chip, short_preamble);
830         mutex_unlock(&mac->chip.mutex);
831 }
832
833 static void zd_op_erp_ie_changed(struct ieee80211_hw *hw, u8 changes,
834                                  int cts_protection, int preamble)
835 {
836         struct zd_mac *mac = zd_hw_mac(hw);
837         unsigned long flags;
838
839         dev_dbg_f(zd_mac_dev(mac), "changes: %x\n", changes);
840
841         if (changes & IEEE80211_ERP_CHANGE_PREAMBLE) {
842                 spin_lock_irqsave(&mac->lock, flags);
843                 mac->short_preamble = !preamble;
844                 if (!mac->updating_rts_rate) {
845                         mac->updating_rts_rate = 1;
846                         /* FIXME: should disable TX here, until work has
847                          * completed and RTS_CTS reg is updated */
848                         queue_work(zd_workqueue, &mac->set_rts_cts_work);
849                 }
850                 spin_unlock_irqrestore(&mac->lock, flags);
851         }
852 }
853
854 static const struct ieee80211_ops zd_ops = {
855         .tx                     = zd_op_tx,
856         .start                  = zd_op_start,
857         .stop                   = zd_op_stop,
858         .add_interface          = zd_op_add_interface,
859         .remove_interface       = zd_op_remove_interface,
860         .config                 = zd_op_config,
861         .config_interface       = zd_op_config_interface,
862         .configure_filter       = zd_op_configure_filter,
863         .erp_ie_changed         = zd_op_erp_ie_changed,
864 };
865
866 struct ieee80211_hw *zd_mac_alloc_hw(struct usb_interface *intf)
867 {
868         struct zd_mac *mac;
869         struct ieee80211_hw *hw;
870         int i;
871
872         hw = ieee80211_alloc_hw(sizeof(struct zd_mac), &zd_ops);
873         if (!hw) {
874                 dev_dbg_f(&intf->dev, "out of memory\n");
875                 return NULL;
876         }
877
878         mac = zd_hw_mac(hw);
879
880         memset(mac, 0, sizeof(*mac));
881         spin_lock_init(&mac->lock);
882         mac->hw = hw;
883
884         mac->type = IEEE80211_IF_TYPE_INVALID;
885
886         memcpy(mac->channels, zd_channels, sizeof(zd_channels));
887         memcpy(mac->rates, zd_rates, sizeof(zd_rates));
888         mac->modes[0].mode = MODE_IEEE80211G;
889         mac->modes[0].num_rates = ARRAY_SIZE(zd_rates);
890         mac->modes[0].rates = mac->rates;
891         mac->modes[0].num_channels = ARRAY_SIZE(zd_channels);
892         mac->modes[0].channels = mac->channels;
893         mac->modes[1].mode = MODE_IEEE80211B;
894         mac->modes[1].num_rates = 4;
895         mac->modes[1].rates = mac->rates;
896         mac->modes[1].num_channels = ARRAY_SIZE(zd_channels);
897         mac->modes[1].channels = mac->channels;
898
899         hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
900                      IEEE80211_HW_DEFAULT_REG_DOMAIN_CONFIGURED;
901         hw->max_rssi = 100;
902         hw->max_signal = 100;
903
904         hw->queues = 1;
905         hw->extra_tx_headroom = sizeof(struct zd_ctrlset);
906
907         skb_queue_head_init(&mac->ack_wait_queue);
908
909         for (i = 0; i < 2; i++) {
910                 if (ieee80211_register_hwmode(hw, &mac->modes[i])) {
911                         dev_dbg_f(&intf->dev, "cannot register hwmode\n");
912                         ieee80211_free_hw(hw);
913                         return NULL;
914                 }
915         }
916
917         zd_chip_init(&mac->chip, hw, intf);
918         housekeeping_init(mac);
919         INIT_WORK(&mac->set_multicast_hash_work, set_multicast_hash_handler);
920         INIT_WORK(&mac->set_rts_cts_work, set_rts_cts_work);
921         INIT_WORK(&mac->set_rx_filter_work, set_rx_filter_handler);
922
923         SET_IEEE80211_DEV(hw, &intf->dev);
924         return hw;
925 }
926
927 #define LINK_LED_WORK_DELAY HZ
928
929 static void link_led_handler(struct work_struct *work)
930 {
931         struct zd_mac *mac =
932                 container_of(work, struct zd_mac, housekeeping.link_led_work.work);
933         struct zd_chip *chip = &mac->chip;
934         int is_associated;
935         int r;
936
937         spin_lock_irq(&mac->lock);
938         is_associated = mac->associated;
939         spin_unlock_irq(&mac->lock);
940
941         r = zd_chip_control_leds(chip,
942                                  is_associated ? LED_ASSOCIATED : LED_SCANNING);
943         if (r)
944                 dev_dbg_f(zd_mac_dev(mac), "zd_chip_control_leds error %d\n", r);
945
946         queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
947                            LINK_LED_WORK_DELAY);
948 }
949
950 static void housekeeping_init(struct zd_mac *mac)
951 {
952         INIT_DELAYED_WORK(&mac->housekeeping.link_led_work, link_led_handler);
953 }
954
955 static void housekeeping_enable(struct zd_mac *mac)
956 {
957         dev_dbg_f(zd_mac_dev(mac), "\n");
958         queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
959                            0);
960 }
961
962 static void housekeeping_disable(struct zd_mac *mac)
963 {
964         dev_dbg_f(zd_mac_dev(mac), "\n");
965         cancel_rearming_delayed_workqueue(zd_workqueue,
966                 &mac->housekeeping.link_led_work);
967         zd_chip_control_leds(&mac->chip, LED_OFF);
968 }