]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/wireless/wavelan.c
wavelan: Test arraysize before an element of the array.
[linux-2.6-omap-h63xx.git] / drivers / net / wireless / wavelan.c
1 /*
2  *      WaveLAN ISA driver
3  *
4  *              Jean II - HPLB '96
5  *
6  * Reorganisation and extension of the driver.
7  * Original copyright follows (also see the end of this file).
8  * See wavelan.p.h for details.
9  *
10  *
11  *
12  * AT&T GIS (nee NCR) WaveLAN card:
13  *      An Ethernet-like radio transceiver
14  *      controlled by an Intel 82586 coprocessor.
15  */
16
17 #include "wavelan.p.h"          /* Private header */
18
19 /************************* MISC SUBROUTINES **************************/
20 /*
21  * Subroutines which won't fit in one of the following category
22  * (WaveLAN modem or i82586)
23  */
24
25 /*------------------------------------------------------------------*/
26 /*
27  * Translate irq number to PSA irq parameter
28  */
29 static u8 wv_irq_to_psa(int irq)
30 {
31         if (irq < 0 || irq >= ARRAY_SIZE(irqvals))
32                 return 0;
33
34         return irqvals[irq];
35 }
36
37 /*------------------------------------------------------------------*/
38 /*
39  * Translate PSA irq parameter to irq number 
40  */
41 static int __init wv_psa_to_irq(u8 irqval)
42 {
43         int i;
44
45         for (i = 0; i < ARRAY_SIZE(irqvals); i++)
46                 if (irqvals[i] == irqval)
47                         return i;
48
49         return -1;
50 }
51
52 /********************* HOST ADAPTER SUBROUTINES *********************/
53 /*
54  * Useful subroutines to manage the WaveLAN ISA interface
55  *
56  * One major difference with the PCMCIA hardware (except the port mapping)
57  * is that we have to keep the state of the Host Control Register
58  * because of the interrupt enable & bus size flags.
59  */
60
61 /*------------------------------------------------------------------*/
62 /*
63  * Read from card's Host Adaptor Status Register.
64  */
65 static inline u16 hasr_read(unsigned long ioaddr)
66 {
67         return (inw(HASR(ioaddr)));
68 }                               /* hasr_read */
69
70 /*------------------------------------------------------------------*/
71 /*
72  * Write to card's Host Adapter Command Register.
73  */
74 static inline void hacr_write(unsigned long ioaddr, u16 hacr)
75 {
76         outw(hacr, HACR(ioaddr));
77 }                               /* hacr_write */
78
79 /*------------------------------------------------------------------*/
80 /*
81  * Write to card's Host Adapter Command Register. Include a delay for
82  * those times when it is needed.
83  */
84 static void hacr_write_slow(unsigned long ioaddr, u16 hacr)
85 {
86         hacr_write(ioaddr, hacr);
87         /* delay might only be needed sometimes */
88         mdelay(1);
89 }                               /* hacr_write_slow */
90
91 /*------------------------------------------------------------------*/
92 /*
93  * Set the channel attention bit.
94  */
95 static inline void set_chan_attn(unsigned long ioaddr, u16 hacr)
96 {
97         hacr_write(ioaddr, hacr | HACR_CA);
98 }                               /* set_chan_attn */
99
100 /*------------------------------------------------------------------*/
101 /*
102  * Reset, and then set host adaptor into default mode.
103  */
104 static inline void wv_hacr_reset(unsigned long ioaddr)
105 {
106         hacr_write_slow(ioaddr, HACR_RESET);
107         hacr_write(ioaddr, HACR_DEFAULT);
108 }                               /* wv_hacr_reset */
109
110 /*------------------------------------------------------------------*/
111 /*
112  * Set the I/O transfer over the ISA bus to 8-bit mode
113  */
114 static inline void wv_16_off(unsigned long ioaddr, u16 hacr)
115 {
116         hacr &= ~HACR_16BITS;
117         hacr_write(ioaddr, hacr);
118 }                               /* wv_16_off */
119
120 /*------------------------------------------------------------------*/
121 /*
122  * Set the I/O transfer over the ISA bus to 8-bit mode
123  */
124 static inline void wv_16_on(unsigned long ioaddr, u16 hacr)
125 {
126         hacr |= HACR_16BITS;
127         hacr_write(ioaddr, hacr);
128 }                               /* wv_16_on */
129
130 /*------------------------------------------------------------------*/
131 /*
132  * Disable interrupts on the WaveLAN hardware.
133  * (called by wv_82586_stop())
134  */
135 static inline void wv_ints_off(struct net_device * dev)
136 {
137         net_local *lp = netdev_priv(dev);
138         unsigned long ioaddr = dev->base_addr;
139         
140         lp->hacr &= ~HACR_INTRON;
141         hacr_write(ioaddr, lp->hacr);
142 }                               /* wv_ints_off */
143
144 /*------------------------------------------------------------------*/
145 /*
146  * Enable interrupts on the WaveLAN hardware.
147  * (called by wv_hw_reset())
148  */
149 static inline void wv_ints_on(struct net_device * dev)
150 {
151         net_local *lp = netdev_priv(dev);
152         unsigned long ioaddr = dev->base_addr;
153
154         lp->hacr |= HACR_INTRON;
155         hacr_write(ioaddr, lp->hacr);
156 }                               /* wv_ints_on */
157
158 /******************* MODEM MANAGEMENT SUBROUTINES *******************/
159 /*
160  * Useful subroutines to manage the modem of the WaveLAN
161  */
162
163 /*------------------------------------------------------------------*/
164 /*
165  * Read the Parameter Storage Area from the WaveLAN card's memory
166  */
167 /*
168  * Read bytes from the PSA.
169  */
170 static void psa_read(unsigned long ioaddr, u16 hacr, int o,     /* offset in PSA */
171                      u8 * b,    /* buffer to fill */
172                      int n)
173 {                               /* size to read */
174         wv_16_off(ioaddr, hacr);
175
176         while (n-- > 0) {
177                 outw(o, PIOR2(ioaddr));
178                 o++;
179                 *b++ = inb(PIOP2(ioaddr));
180         }
181
182         wv_16_on(ioaddr, hacr);
183 }                               /* psa_read */
184
185 /*------------------------------------------------------------------*/
186 /*
187  * Write the Parameter Storage Area to the WaveLAN card's memory.
188  */
189 static void psa_write(unsigned long ioaddr, u16 hacr, int o,    /* Offset in PSA */
190                       u8 * b,   /* Buffer in memory */
191                       int n)
192 {                               /* Length of buffer */
193         int count = 0;
194
195         wv_16_off(ioaddr, hacr);
196
197         while (n-- > 0) {
198                 outw(o, PIOR2(ioaddr));
199                 o++;
200
201                 outb(*b, PIOP2(ioaddr));
202                 b++;
203
204                 /* Wait for the memory to finish its write cycle */
205                 count = 0;
206                 while ((count++ < 100) &&
207                        (hasr_read(ioaddr) & HASR_PSA_BUSY)) mdelay(1);
208         }
209
210         wv_16_on(ioaddr, hacr);
211 }                               /* psa_write */
212
213 #ifdef SET_PSA_CRC
214 /*------------------------------------------------------------------*/
215 /*
216  * Calculate the PSA CRC
217  * Thanks to Valster, Nico <NVALSTER@wcnd.nl.lucent.com> for the code
218  * NOTE: By specifying a length including the CRC position the
219  * returned value should be zero. (i.e. a correct checksum in the PSA)
220  *
221  * The Windows drivers don't use the CRC, but the AP and the PtP tool
222  * depend on it.
223  */
224 static u16 psa_crc(u8 * psa,    /* The PSA */
225                               int size)
226 {                               /* Number of short for CRC */
227         int byte_cnt;           /* Loop on the PSA */
228         u16 crc_bytes = 0;      /* Data in the PSA */
229         int bit_cnt;            /* Loop on the bits of the short */
230
231         for (byte_cnt = 0; byte_cnt < size; byte_cnt++) {
232                 crc_bytes ^= psa[byte_cnt];     /* Its an xor */
233
234                 for (bit_cnt = 1; bit_cnt < 9; bit_cnt++) {
235                         if (crc_bytes & 0x0001)
236                                 crc_bytes = (crc_bytes >> 1) ^ 0xA001;
237                         else
238                                 crc_bytes >>= 1;
239                 }
240         }
241
242         return crc_bytes;
243 }                               /* psa_crc */
244 #endif                          /* SET_PSA_CRC */
245
246 /*------------------------------------------------------------------*/
247 /*
248  * update the checksum field in the Wavelan's PSA
249  */
250 static void update_psa_checksum(struct net_device * dev, unsigned long ioaddr, u16 hacr)
251 {
252 #ifdef SET_PSA_CRC
253         psa_t psa;
254         u16 crc;
255
256         /* read the parameter storage area */
257         psa_read(ioaddr, hacr, 0, (unsigned char *) &psa, sizeof(psa));
258
259         /* update the checksum */
260         crc = psa_crc((unsigned char *) &psa,
261                       sizeof(psa) - sizeof(psa.psa_crc[0]) -
262                       sizeof(psa.psa_crc[1])
263                       - sizeof(psa.psa_crc_status));
264
265         psa.psa_crc[0] = crc & 0xFF;
266         psa.psa_crc[1] = (crc & 0xFF00) >> 8;
267
268         /* Write it ! */
269         psa_write(ioaddr, hacr, (char *) &psa.psa_crc - (char *) &psa,
270                   (unsigned char *) &psa.psa_crc, 2);
271
272 #ifdef DEBUG_IOCTL_INFO
273         printk(KERN_DEBUG "%s: update_psa_checksum(): crc = 0x%02x%02x\n",
274                dev->name, psa.psa_crc[0], psa.psa_crc[1]);
275
276         /* Check again (luxury !) */
277         crc = psa_crc((unsigned char *) &psa,
278                       sizeof(psa) - sizeof(psa.psa_crc_status));
279
280         if (crc != 0)
281                 printk(KERN_WARNING
282                        "%s: update_psa_checksum(): CRC does not agree with PSA data (even after recalculating)\n",
283                        dev->name);
284 #endif                          /* DEBUG_IOCTL_INFO */
285 #endif                          /* SET_PSA_CRC */
286 }                               /* update_psa_checksum */
287
288 /*------------------------------------------------------------------*/
289 /*
290  * Write 1 byte to the MMC.
291  */
292 static void mmc_out(unsigned long ioaddr, u16 o, u8 d)
293 {
294         int count = 0;
295
296         /* Wait for MMC to go idle */
297         while ((count++ < 100) && (inw(HASR(ioaddr)) & HASR_MMC_BUSY))
298                 udelay(10);
299
300         outw((u16) (((u16) d << 8) | (o << 1) | 1), MMCR(ioaddr));
301 }
302
303 /*------------------------------------------------------------------*/
304 /*
305  * Routine to write bytes to the Modem Management Controller.
306  * We start at the end because it is the way it should be!
307  */
308 static void mmc_write(unsigned long ioaddr, u8 o, u8 * b, int n)
309 {
310         o += n;
311         b += n;
312
313         while (n-- > 0)
314                 mmc_out(ioaddr, --o, *(--b));
315 }                               /* mmc_write */
316
317 /*------------------------------------------------------------------*/
318 /*
319  * Read a byte from the MMC.
320  * Optimised version for 1 byte, avoid using memory.
321  */
322 static u8 mmc_in(unsigned long ioaddr, u16 o)
323 {
324         int count = 0;
325
326         while ((count++ < 100) && (inw(HASR(ioaddr)) & HASR_MMC_BUSY))
327                 udelay(10);
328         outw(o << 1, MMCR(ioaddr));
329
330         while ((count++ < 100) && (inw(HASR(ioaddr)) & HASR_MMC_BUSY))
331                 udelay(10);
332         return (u8) (inw(MMCR(ioaddr)) >> 8);
333 }
334
335 /*------------------------------------------------------------------*/
336 /*
337  * Routine to read bytes from the Modem Management Controller.
338  * The implementation is complicated by a lack of address lines,
339  * which prevents decoding of the low-order bit.
340  * (code has just been moved in the above function)
341  * We start at the end because it is the way it should be!
342  */
343 static inline void mmc_read(unsigned long ioaddr, u8 o, u8 * b, int n)
344 {
345         o += n;
346         b += n;
347
348         while (n-- > 0)
349                 *(--b) = mmc_in(ioaddr, --o);
350 }                               /* mmc_read */
351
352 /*------------------------------------------------------------------*/
353 /*
354  * Get the type of encryption available.
355  */
356 static inline int mmc_encr(unsigned long ioaddr)
357 {                               /* I/O port of the card */
358         int temp;
359
360         temp = mmc_in(ioaddr, mmroff(0, mmr_des_avail));
361         if ((temp != MMR_DES_AVAIL_DES) && (temp != MMR_DES_AVAIL_AES))
362                 return 0;
363         else
364                 return temp;
365 }
366
367 /*------------------------------------------------------------------*/
368 /*
369  * Wait for the frequency EEPROM to complete a command.
370  * I hope this one will be optimally inlined.
371  */
372 static inline void fee_wait(unsigned long ioaddr,       /* I/O port of the card */
373                             int delay,  /* Base delay to wait for */
374                             int number)
375 {                               /* Number of time to wait */
376         int count = 0;          /* Wait only a limited time */
377
378         while ((count++ < number) &&
379                (mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
380                 MMR_FEE_STATUS_BUSY)) udelay(delay);
381 }
382
383 /*------------------------------------------------------------------*/
384 /*
385  * Read bytes from the Frequency EEPROM (frequency select cards).
386  */
387 static void fee_read(unsigned long ioaddr,      /* I/O port of the card */
388                      u16 o,     /* destination offset */
389                      u16 * b,   /* data buffer */
390                      int n)
391 {                               /* number of registers */
392         b += n;                 /* Position at the end of the area */
393
394         /* Write the address */
395         mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), o + n - 1);
396
397         /* Loop on all buffer */
398         while (n-- > 0) {
399                 /* Write the read command */
400                 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
401                         MMW_FEE_CTRL_READ);
402
403                 /* Wait until EEPROM is ready (should be quick). */
404                 fee_wait(ioaddr, 10, 100);
405
406                 /* Read the value. */
407                 *--b = ((mmc_in(ioaddr, mmroff(0, mmr_fee_data_h)) << 8) |
408                         mmc_in(ioaddr, mmroff(0, mmr_fee_data_l)));
409         }
410 }
411
412
413 /*------------------------------------------------------------------*/
414 /*
415  * Write bytes from the Frequency EEPROM (frequency select cards).
416  * This is a bit complicated, because the frequency EEPROM has to
417  * be unprotected and the write enabled.
418  * Jean II
419  */
420 static void fee_write(unsigned long ioaddr,     /* I/O port of the card */
421                       u16 o,    /* destination offset */
422                       u16 * b,  /* data buffer */
423                       int n)
424 {                               /* number of registers */
425         b += n;                 /* Position at the end of the area. */
426
427 #ifdef EEPROM_IS_PROTECTED      /* disabled */
428 #ifdef DOESNT_SEEM_TO_WORK      /* disabled */
429         /* Ask to read the protected register */
430         mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRREAD);
431
432         fee_wait(ioaddr, 10, 100);
433
434         /* Read the protected register. */
435         printk("Protected 2:  %02X-%02X\n",
436                mmc_in(ioaddr, mmroff(0, mmr_fee_data_h)),
437                mmc_in(ioaddr, mmroff(0, mmr_fee_data_l)));
438 #endif                          /* DOESNT_SEEM_TO_WORK */
439
440         /* Enable protected register. */
441         mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_EN);
442         mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PREN);
443
444         fee_wait(ioaddr, 10, 100);
445
446         /* Unprotect area. */
447         mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), o + n);
448         mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRWRITE);
449 #ifdef DOESNT_SEEM_TO_WORK      /* disabled */
450         /* or use: */
451         mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRCLEAR);
452 #endif                          /* DOESNT_SEEM_TO_WORK */
453
454         fee_wait(ioaddr, 10, 100);
455 #endif                          /* EEPROM_IS_PROTECTED */
456
457         /* Write enable. */
458         mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_EN);
459         mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_WREN);
460
461         fee_wait(ioaddr, 10, 100);
462
463         /* Write the EEPROM address. */
464         mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), o + n - 1);
465
466         /* Loop on all buffer */
467         while (n-- > 0) {
468                 /* Write the value. */
469                 mmc_out(ioaddr, mmwoff(0, mmw_fee_data_h), (*--b) >> 8);
470                 mmc_out(ioaddr, mmwoff(0, mmw_fee_data_l), *b & 0xFF);
471
472                 /* Write the write command. */
473                 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
474                         MMW_FEE_CTRL_WRITE);
475
476                 /* WaveLAN documentation says to wait at least 10 ms for EEBUSY = 0 */
477                 mdelay(10);
478                 fee_wait(ioaddr, 10, 100);
479         }
480
481         /* Write disable. */
482         mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_DS);
483         mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_WDS);
484
485         fee_wait(ioaddr, 10, 100);
486
487 #ifdef EEPROM_IS_PROTECTED      /* disabled */
488         /* Reprotect EEPROM. */
489         mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), 0x00);
490         mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRWRITE);
491
492         fee_wait(ioaddr, 10, 100);
493 #endif                          /* EEPROM_IS_PROTECTED */
494 }
495
496 /************************ I82586 SUBROUTINES *************************/
497 /*
498  * Useful subroutines to manage the Ethernet controller
499  */
500
501 /*------------------------------------------------------------------*/
502 /*
503  * Read bytes from the on-board RAM.
504  * Why does inlining this function make it fail?
505  */
506 static /*inline */ void obram_read(unsigned long ioaddr,
507                                    u16 o, u8 * b, int n)
508 {
509         outw(o, PIOR1(ioaddr));
510         insw(PIOP1(ioaddr), (unsigned short *) b, (n + 1) >> 1);
511 }
512
513 /*------------------------------------------------------------------*/
514 /*
515  * Write bytes to the on-board RAM.
516  */
517 static inline void obram_write(unsigned long ioaddr, u16 o, u8 * b, int n)
518 {
519         outw(o, PIOR1(ioaddr));
520         outsw(PIOP1(ioaddr), (unsigned short *) b, (n + 1) >> 1);
521 }
522
523 /*------------------------------------------------------------------*/
524 /*
525  * Acknowledge the reading of the status issued by the i82586.
526  */
527 static void wv_ack(struct net_device * dev)
528 {
529         net_local *lp = netdev_priv(dev);
530         unsigned long ioaddr = dev->base_addr;
531         u16 scb_cs;
532         int i;
533
534         obram_read(ioaddr, scboff(OFFSET_SCB, scb_status),
535                    (unsigned char *) &scb_cs, sizeof(scb_cs));
536         scb_cs &= SCB_ST_INT;
537
538         if (scb_cs == 0)
539                 return;
540
541         obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
542                     (unsigned char *) &scb_cs, sizeof(scb_cs));
543
544         set_chan_attn(ioaddr, lp->hacr);
545
546         for (i = 1000; i > 0; i--) {
547                 obram_read(ioaddr, scboff(OFFSET_SCB, scb_command),
548                            (unsigned char *) &scb_cs, sizeof(scb_cs));
549                 if (scb_cs == 0)
550                         break;
551
552                 udelay(10);
553         }
554         udelay(100);
555
556 #ifdef DEBUG_CONFIG_ERROR
557         if (i <= 0)
558                 printk(KERN_INFO
559                        "%s: wv_ack(): board not accepting command.\n",
560                        dev->name);
561 #endif
562 }
563
564 /*------------------------------------------------------------------*/
565 /*
566  * Set channel attention bit and busy wait until command has
567  * completed, then acknowledge completion of the command.
568  */
569 static int wv_synchronous_cmd(struct net_device * dev, const char *str)
570 {
571         net_local *lp = netdev_priv(dev);
572         unsigned long ioaddr = dev->base_addr;
573         u16 scb_cmd;
574         ach_t cb;
575         int i;
576
577         scb_cmd = SCB_CMD_CUC & SCB_CMD_CUC_GO;
578         obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
579                     (unsigned char *) &scb_cmd, sizeof(scb_cmd));
580
581         set_chan_attn(ioaddr, lp->hacr);
582
583         for (i = 1000; i > 0; i--) {
584                 obram_read(ioaddr, OFFSET_CU, (unsigned char *) &cb,
585                            sizeof(cb));
586                 if (cb.ac_status & AC_SFLD_C)
587                         break;
588
589                 udelay(10);
590         }
591         udelay(100);
592
593         if (i <= 0 || !(cb.ac_status & AC_SFLD_OK)) {
594 #ifdef DEBUG_CONFIG_ERROR
595                 printk(KERN_INFO "%s: %s failed; status = 0x%x\n",
596                        dev->name, str, cb.ac_status);
597 #endif
598 #ifdef DEBUG_I82586_SHOW
599                 wv_scb_show(ioaddr);
600 #endif
601                 return -1;
602         }
603
604         /* Ack the status */
605         wv_ack(dev);
606
607         return 0;
608 }
609
610 /*------------------------------------------------------------------*/
611 /*
612  * Configuration commands completion interrupt.
613  * Check if done, and if OK.
614  */
615 static int
616 wv_config_complete(struct net_device * dev, unsigned long ioaddr, net_local * lp)
617 {
618         unsigned short mcs_addr;
619         unsigned short status;
620         int ret;
621
622 #ifdef DEBUG_INTERRUPT_TRACE
623         printk(KERN_DEBUG "%s: ->wv_config_complete()\n", dev->name);
624 #endif
625
626         mcs_addr = lp->tx_first_in_use + sizeof(ac_tx_t) + sizeof(ac_nop_t)
627             + sizeof(tbd_t) + sizeof(ac_cfg_t) + sizeof(ac_ias_t);
628
629         /* Read the status of the last command (set mc list). */
630         obram_read(ioaddr, acoff(mcs_addr, ac_status),
631                    (unsigned char *) &status, sizeof(status));
632
633         /* If not completed -> exit */
634         if ((status & AC_SFLD_C) == 0)
635                 ret = 0;        /* Not ready to be scrapped */
636         else {
637 #ifdef DEBUG_CONFIG_ERROR
638                 unsigned short cfg_addr;
639                 unsigned short ias_addr;
640
641                 /* Check mc_config command */
642                 if ((status & AC_SFLD_OK) != AC_SFLD_OK)
643                         printk(KERN_INFO
644                                "%s: wv_config_complete(): set_multicast_address failed; status = 0x%x\n",
645                                dev->name, status);
646
647                 /* check ia-config command */
648                 ias_addr = mcs_addr - sizeof(ac_ias_t);
649                 obram_read(ioaddr, acoff(ias_addr, ac_status),
650                            (unsigned char *) &status, sizeof(status));
651                 if ((status & AC_SFLD_OK) != AC_SFLD_OK)
652                         printk(KERN_INFO
653                                "%s: wv_config_complete(): set_MAC_address failed; status = 0x%x\n",
654                                dev->name, status);
655
656                 /* Check config command. */
657                 cfg_addr = ias_addr - sizeof(ac_cfg_t);
658                 obram_read(ioaddr, acoff(cfg_addr, ac_status),
659                            (unsigned char *) &status, sizeof(status));
660                 if ((status & AC_SFLD_OK) != AC_SFLD_OK)
661                         printk(KERN_INFO
662                                "%s: wv_config_complete(): configure failed; status = 0x%x\n",
663                                dev->name, status);
664 #endif  /* DEBUG_CONFIG_ERROR */
665
666                 ret = 1;        /* Ready to be scrapped */
667         }
668
669 #ifdef DEBUG_INTERRUPT_TRACE
670         printk(KERN_DEBUG "%s: <-wv_config_complete() - %d\n", dev->name,
671                ret);
672 #endif
673         return ret;
674 }
675
676 /*------------------------------------------------------------------*/
677 /*
678  * Command completion interrupt.
679  * Reclaim as many freed tx buffers as we can.
680  * (called in wavelan_interrupt()).
681  * Note : the spinlock is already grabbed for us.
682  */
683 static int wv_complete(struct net_device * dev, unsigned long ioaddr, net_local * lp)
684 {
685         int nreaped = 0;
686
687 #ifdef DEBUG_INTERRUPT_TRACE
688         printk(KERN_DEBUG "%s: ->wv_complete()\n", dev->name);
689 #endif
690
691         /* Loop on all the transmit buffers */
692         while (lp->tx_first_in_use != I82586NULL) {
693                 unsigned short tx_status;
694
695                 /* Read the first transmit buffer */
696                 obram_read(ioaddr, acoff(lp->tx_first_in_use, ac_status),
697                            (unsigned char *) &tx_status,
698                            sizeof(tx_status));
699
700                 /* If not completed -> exit */
701                 if ((tx_status & AC_SFLD_C) == 0)
702                         break;
703
704                 /* Hack for reconfiguration */
705                 if (tx_status == 0xFFFF)
706                         if (!wv_config_complete(dev, ioaddr, lp))
707                                 break;  /* Not completed */
708
709                 /* We now remove this buffer */
710                 nreaped++;
711                 --lp->tx_n_in_use;
712
713 /*
714 if (lp->tx_n_in_use > 0)
715         printk("%c", "0123456789abcdefghijk"[lp->tx_n_in_use]);
716 */
717
718                 /* Was it the last one? */
719                 if (lp->tx_n_in_use <= 0)
720                         lp->tx_first_in_use = I82586NULL;
721                 else {
722                         /* Next one in the chain */
723                         lp->tx_first_in_use += TXBLOCKZ;
724                         if (lp->tx_first_in_use >=
725                             OFFSET_CU +
726                             NTXBLOCKS * TXBLOCKZ) lp->tx_first_in_use -=
727                                     NTXBLOCKS * TXBLOCKZ;
728                 }
729
730                 /* Hack for reconfiguration */
731                 if (tx_status == 0xFFFF)
732                         continue;
733
734                 /* Now, check status of the finished command */
735                 if (tx_status & AC_SFLD_OK) {
736                         int ncollisions;
737
738                         lp->stats.tx_packets++;
739                         ncollisions = tx_status & AC_SFLD_MAXCOL;
740                         lp->stats.collisions += ncollisions;
741 #ifdef DEBUG_TX_INFO
742                         if (ncollisions > 0)
743                                 printk(KERN_DEBUG
744                                        "%s: wv_complete(): tx completed after %d collisions.\n",
745                                        dev->name, ncollisions);
746 #endif
747                 } else {
748                         lp->stats.tx_errors++;
749                         if (tx_status & AC_SFLD_S10) {
750                                 lp->stats.tx_carrier_errors++;
751 #ifdef DEBUG_TX_FAIL
752                                 printk(KERN_DEBUG
753                                        "%s: wv_complete(): tx error: no CS.\n",
754                                        dev->name);
755 #endif
756                         }
757                         if (tx_status & AC_SFLD_S9) {
758                                 lp->stats.tx_carrier_errors++;
759 #ifdef DEBUG_TX_FAIL
760                                 printk(KERN_DEBUG
761                                        "%s: wv_complete(): tx error: lost CTS.\n",
762                                        dev->name);
763 #endif
764                         }
765                         if (tx_status & AC_SFLD_S8) {
766                                 lp->stats.tx_fifo_errors++;
767 #ifdef DEBUG_TX_FAIL
768                                 printk(KERN_DEBUG
769                                        "%s: wv_complete(): tx error: slow DMA.\n",
770                                        dev->name);
771 #endif
772                         }
773                         if (tx_status & AC_SFLD_S6) {
774                                 lp->stats.tx_heartbeat_errors++;
775 #ifdef DEBUG_TX_FAIL
776                                 printk(KERN_DEBUG
777                                        "%s: wv_complete(): tx error: heart beat.\n",
778                                        dev->name);
779 #endif
780                         }
781                         if (tx_status & AC_SFLD_S5) {
782                                 lp->stats.tx_aborted_errors++;
783 #ifdef DEBUG_TX_FAIL
784                                 printk(KERN_DEBUG
785                                        "%s: wv_complete(): tx error: too many collisions.\n",
786                                        dev->name);
787 #endif
788                         }
789                 }
790
791 #ifdef DEBUG_TX_INFO
792                 printk(KERN_DEBUG
793                        "%s: wv_complete(): tx completed, tx_status 0x%04x\n",
794                        dev->name, tx_status);
795 #endif
796         }
797
798 #ifdef DEBUG_INTERRUPT_INFO
799         if (nreaped > 1)
800                 printk(KERN_DEBUG "%s: wv_complete(): reaped %d\n",
801                        dev->name, nreaped);
802 #endif
803
804         /*
805          * Inform upper layers.
806          */
807         if (lp->tx_n_in_use < NTXBLOCKS - 1) {
808                 netif_wake_queue(dev);
809         }
810 #ifdef DEBUG_INTERRUPT_TRACE
811         printk(KERN_DEBUG "%s: <-wv_complete()\n", dev->name);
812 #endif
813         return nreaped;
814 }
815
816 /*------------------------------------------------------------------*/
817 /*
818  * Reconfigure the i82586, or at least ask for it.
819  * Because wv_82586_config uses a transmission buffer, we must do it
820  * when we are sure that there is one left, so we do it now
821  * or in wavelan_packet_xmit() (I can't find any better place,
822  * wavelan_interrupt is not an option), so you may experience
823  * delays sometimes.
824  */
825 static void wv_82586_reconfig(struct net_device * dev)
826 {
827         net_local *lp = netdev_priv(dev);
828         unsigned long flags;
829
830         /* Arm the flag, will be cleard in wv_82586_config() */
831         lp->reconfig_82586 = 1;
832
833         /* Check if we can do it now ! */
834         if((netif_running(dev)) && !(netif_queue_stopped(dev))) {
835                 spin_lock_irqsave(&lp->spinlock, flags);
836                 /* May fail */
837                 wv_82586_config(dev);
838                 spin_unlock_irqrestore(&lp->spinlock, flags);
839         }
840         else {
841 #ifdef DEBUG_CONFIG_INFO
842                 printk(KERN_DEBUG
843                        "%s: wv_82586_reconfig(): delayed (state = %lX)\n",
844                                dev->name, dev->state);
845 #endif
846         }
847 }
848
849 /********************* DEBUG & INFO SUBROUTINES *********************/
850 /*
851  * This routine is used in the code to show information for debugging.
852  * Most of the time, it dumps the contents of hardware structures.
853  */
854
855 #ifdef DEBUG_PSA_SHOW
856 /*------------------------------------------------------------------*/
857 /*
858  * Print the formatted contents of the Parameter Storage Area.
859  */
860 static void wv_psa_show(psa_t * p)
861 {
862         printk(KERN_DEBUG "##### WaveLAN PSA contents: #####\n");
863         printk(KERN_DEBUG "psa_io_base_addr_1: 0x%02X %02X %02X %02X\n",
864                p->psa_io_base_addr_1,
865                p->psa_io_base_addr_2,
866                p->psa_io_base_addr_3, p->psa_io_base_addr_4);
867         printk(KERN_DEBUG "psa_rem_boot_addr_1: 0x%02X %02X %02X\n",
868                p->psa_rem_boot_addr_1,
869                p->psa_rem_boot_addr_2, p->psa_rem_boot_addr_3);
870         printk(KERN_DEBUG "psa_holi_params: 0x%02x, ", p->psa_holi_params);
871         printk("psa_int_req_no: %d\n", p->psa_int_req_no);
872 #ifdef DEBUG_SHOW_UNUSED
873         printk(KERN_DEBUG "psa_unused0[]: %pM\n", p->psa_unused0);
874 #endif                          /* DEBUG_SHOW_UNUSED */
875         printk(KERN_DEBUG "psa_univ_mac_addr[]: %pM\n", p->psa_univ_mac_addr);
876         printk(KERN_DEBUG "psa_local_mac_addr[]: %pM\n", p->psa_local_mac_addr);
877         printk(KERN_DEBUG "psa_univ_local_sel: %d, ",
878                p->psa_univ_local_sel);
879         printk("psa_comp_number: %d, ", p->psa_comp_number);
880         printk("psa_thr_pre_set: 0x%02x\n", p->psa_thr_pre_set);
881         printk(KERN_DEBUG "psa_feature_select/decay_prm: 0x%02x, ",
882                p->psa_feature_select);
883         printk("psa_subband/decay_update_prm: %d\n", p->psa_subband);
884         printk(KERN_DEBUG "psa_quality_thr: 0x%02x, ", p->psa_quality_thr);
885         printk("psa_mod_delay: 0x%02x\n", p->psa_mod_delay);
886         printk(KERN_DEBUG "psa_nwid: 0x%02x%02x, ", p->psa_nwid[0],
887                p->psa_nwid[1]);
888         printk("psa_nwid_select: %d\n", p->psa_nwid_select);
889         printk(KERN_DEBUG "psa_encryption_select: %d, ",
890                p->psa_encryption_select);
891         printk
892             ("psa_encryption_key[]: %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\n",
893              p->psa_encryption_key[0], p->psa_encryption_key[1],
894              p->psa_encryption_key[2], p->psa_encryption_key[3],
895              p->psa_encryption_key[4], p->psa_encryption_key[5],
896              p->psa_encryption_key[6], p->psa_encryption_key[7]);
897         printk(KERN_DEBUG "psa_databus_width: %d\n", p->psa_databus_width);
898         printk(KERN_DEBUG "psa_call_code/auto_squelch: 0x%02x, ",
899                p->psa_call_code[0]);
900         printk
901             ("psa_call_code[]: %02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
902              p->psa_call_code[0], p->psa_call_code[1], p->psa_call_code[2],
903              p->psa_call_code[3], p->psa_call_code[4], p->psa_call_code[5],
904              p->psa_call_code[6], p->psa_call_code[7]);
905 #ifdef DEBUG_SHOW_UNUSED
906         printk(KERN_DEBUG "psa_reserved[]: %02X:%02X\n",
907                p->psa_reserved[0],
908                p->psa_reserved[1]);
909 #endif                          /* DEBUG_SHOW_UNUSED */
910         printk(KERN_DEBUG "psa_conf_status: %d, ", p->psa_conf_status);
911         printk("psa_crc: 0x%02x%02x, ", p->psa_crc[0], p->psa_crc[1]);
912         printk("psa_crc_status: 0x%02x\n", p->psa_crc_status);
913 }                               /* wv_psa_show */
914 #endif                          /* DEBUG_PSA_SHOW */
915
916 #ifdef DEBUG_MMC_SHOW
917 /*------------------------------------------------------------------*/
918 /*
919  * Print the formatted status of the Modem Management Controller.
920  * This function needs to be completed.
921  */
922 static void wv_mmc_show(struct net_device * dev)
923 {
924         unsigned long ioaddr = dev->base_addr;
925         net_local *lp = netdev_priv(dev);
926         mmr_t m;
927
928         /* Basic check */
929         if (hasr_read(ioaddr) & HASR_NO_CLK) {
930                 printk(KERN_WARNING
931                        "%s: wv_mmc_show: modem not connected\n",
932                        dev->name);
933                 return;
934         }
935
936         /* Read the mmc */
937         mmc_out(ioaddr, mmwoff(0, mmw_freeze), 1);
938         mmc_read(ioaddr, 0, (u8 *) & m, sizeof(m));
939         mmc_out(ioaddr, mmwoff(0, mmw_freeze), 0);
940
941         /* Don't forget to update statistics */
942         lp->wstats.discard.nwid +=
943             (m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l;
944
945         printk(KERN_DEBUG "##### WaveLAN modem status registers: #####\n");
946 #ifdef DEBUG_SHOW_UNUSED
947         printk(KERN_DEBUG
948                "mmc_unused0[]: %02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
949                m.mmr_unused0[0], m.mmr_unused0[1], m.mmr_unused0[2],
950                m.mmr_unused0[3], m.mmr_unused0[4], m.mmr_unused0[5],
951                m.mmr_unused0[6], m.mmr_unused0[7]);
952 #endif                          /* DEBUG_SHOW_UNUSED */
953         printk(KERN_DEBUG "Encryption algorithm: %02X - Status: %02X\n",
954                m.mmr_des_avail, m.mmr_des_status);
955 #ifdef DEBUG_SHOW_UNUSED
956         printk(KERN_DEBUG "mmc_unused1[]: %02X:%02X:%02X:%02X:%02X\n",
957                m.mmr_unused1[0],
958                m.mmr_unused1[1],
959                m.mmr_unused1[2], m.mmr_unused1[3], m.mmr_unused1[4]);
960 #endif                          /* DEBUG_SHOW_UNUSED */
961         printk(KERN_DEBUG "dce_status: 0x%x [%s%s%s%s]\n",
962                m.mmr_dce_status,
963                (m.
964                 mmr_dce_status & MMR_DCE_STATUS_RX_BUSY) ?
965                "energy detected," : "",
966                (m.
967                 mmr_dce_status & MMR_DCE_STATUS_LOOPT_IND) ?
968                "loop test indicated," : "",
969                (m.
970                 mmr_dce_status & MMR_DCE_STATUS_TX_BUSY) ?
971                "transmitter on," : "",
972                (m.
973                 mmr_dce_status & MMR_DCE_STATUS_JBR_EXPIRED) ?
974                "jabber timer expired," : "");
975         printk(KERN_DEBUG "Dsp ID: %02X\n", m.mmr_dsp_id);
976 #ifdef DEBUG_SHOW_UNUSED
977         printk(KERN_DEBUG "mmc_unused2[]: %02X:%02X\n",
978                m.mmr_unused2[0], m.mmr_unused2[1]);
979 #endif                          /* DEBUG_SHOW_UNUSED */
980         printk(KERN_DEBUG "# correct_nwid: %d, # wrong_nwid: %d\n",
981                (m.mmr_correct_nwid_h << 8) | m.mmr_correct_nwid_l,
982                (m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l);
983         printk(KERN_DEBUG "thr_pre_set: 0x%x [current signal %s]\n",
984                m.mmr_thr_pre_set & MMR_THR_PRE_SET,
985                (m.
986                 mmr_thr_pre_set & MMR_THR_PRE_SET_CUR) ? "above" :
987                "below");
988         printk(KERN_DEBUG "signal_lvl: %d [%s], ",
989                m.mmr_signal_lvl & MMR_SIGNAL_LVL,
990                (m.
991                 mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) ? "new msg" :
992                "no new msg");
993         printk("silence_lvl: %d [%s], ",
994                m.mmr_silence_lvl & MMR_SILENCE_LVL,
995                (m.
996                 mmr_silence_lvl & MMR_SILENCE_LVL_VALID) ? "update done" :
997                "no new update");
998         printk("sgnl_qual: 0x%x [%s]\n", m.mmr_sgnl_qual & MMR_SGNL_QUAL,
999                (m.
1000                 mmr_sgnl_qual & MMR_SGNL_QUAL_ANT) ? "Antenna 1" :
1001                "Antenna 0");
1002 #ifdef DEBUG_SHOW_UNUSED
1003         printk(KERN_DEBUG "netw_id_l: %x\n", m.mmr_netw_id_l);
1004 #endif                          /* DEBUG_SHOW_UNUSED */
1005 }                               /* wv_mmc_show */
1006 #endif                          /* DEBUG_MMC_SHOW */
1007
1008 #ifdef DEBUG_I82586_SHOW
1009 /*------------------------------------------------------------------*/
1010 /*
1011  * Print the last block of the i82586 memory.
1012  */
1013 static void wv_scb_show(unsigned long ioaddr)
1014 {
1015         scb_t scb;
1016
1017         obram_read(ioaddr, OFFSET_SCB, (unsigned char *) &scb,
1018                    sizeof(scb));
1019
1020         printk(KERN_DEBUG "##### WaveLAN system control block: #####\n");
1021
1022         printk(KERN_DEBUG "status: ");
1023         printk("stat 0x%x[%s%s%s%s] ",
1024                (scb.
1025                 scb_status & (SCB_ST_CX | SCB_ST_FR | SCB_ST_CNA |
1026                               SCB_ST_RNR)) >> 12,
1027                (scb.
1028                 scb_status & SCB_ST_CX) ? "command completion interrupt," :
1029                "", (scb.scb_status & SCB_ST_FR) ? "frame received," : "",
1030                (scb.
1031                 scb_status & SCB_ST_CNA) ? "command unit not active," : "",
1032                (scb.
1033                 scb_status & SCB_ST_RNR) ? "receiving unit not ready," :
1034                "");
1035         printk("cus 0x%x[%s%s%s] ", (scb.scb_status & SCB_ST_CUS) >> 8,
1036                ((scb.scb_status & SCB_ST_CUS) ==
1037                 SCB_ST_CUS_IDLE) ? "idle" : "",
1038                ((scb.scb_status & SCB_ST_CUS) ==
1039                 SCB_ST_CUS_SUSP) ? "suspended" : "",
1040                ((scb.scb_status & SCB_ST_CUS) ==
1041                 SCB_ST_CUS_ACTV) ? "active" : "");
1042         printk("rus 0x%x[%s%s%s%s]\n", (scb.scb_status & SCB_ST_RUS) >> 4,
1043                ((scb.scb_status & SCB_ST_RUS) ==
1044                 SCB_ST_RUS_IDLE) ? "idle" : "",
1045                ((scb.scb_status & SCB_ST_RUS) ==
1046                 SCB_ST_RUS_SUSP) ? "suspended" : "",
1047                ((scb.scb_status & SCB_ST_RUS) ==
1048                 SCB_ST_RUS_NRES) ? "no resources" : "",
1049                ((scb.scb_status & SCB_ST_RUS) ==
1050                 SCB_ST_RUS_RDY) ? "ready" : "");
1051
1052         printk(KERN_DEBUG "command: ");
1053         printk("ack 0x%x[%s%s%s%s] ",
1054                (scb.
1055                 scb_command & (SCB_CMD_ACK_CX | SCB_CMD_ACK_FR |
1056                                SCB_CMD_ACK_CNA | SCB_CMD_ACK_RNR)) >> 12,
1057                (scb.
1058                 scb_command & SCB_CMD_ACK_CX) ? "ack cmd completion," : "",
1059                (scb.
1060                 scb_command & SCB_CMD_ACK_FR) ? "ack frame received," : "",
1061                (scb.
1062                 scb_command & SCB_CMD_ACK_CNA) ? "ack CU not active," : "",
1063                (scb.
1064                 scb_command & SCB_CMD_ACK_RNR) ? "ack RU not ready," : "");
1065         printk("cuc 0x%x[%s%s%s%s%s] ",
1066                (scb.scb_command & SCB_CMD_CUC) >> 8,
1067                ((scb.scb_command & SCB_CMD_CUC) ==
1068                 SCB_CMD_CUC_NOP) ? "nop" : "",
1069                ((scb.scb_command & SCB_CMD_CUC) ==
1070                 SCB_CMD_CUC_GO) ? "start cbl_offset" : "",
1071                ((scb.scb_command & SCB_CMD_CUC) ==
1072                 SCB_CMD_CUC_RES) ? "resume execution" : "",
1073                ((scb.scb_command & SCB_CMD_CUC) ==
1074                 SCB_CMD_CUC_SUS) ? "suspend execution" : "",
1075                ((scb.scb_command & SCB_CMD_CUC) ==
1076                 SCB_CMD_CUC_ABT) ? "abort execution" : "");
1077         printk("ruc 0x%x[%s%s%s%s%s]\n",
1078                (scb.scb_command & SCB_CMD_RUC) >> 4,
1079                ((scb.scb_command & SCB_CMD_RUC) ==
1080                 SCB_CMD_RUC_NOP) ? "nop" : "",
1081                ((scb.scb_command & SCB_CMD_RUC) ==
1082                 SCB_CMD_RUC_GO) ? "start rfa_offset" : "",
1083                ((scb.scb_command & SCB_CMD_RUC) ==
1084                 SCB_CMD_RUC_RES) ? "resume reception" : "",
1085                ((scb.scb_command & SCB_CMD_RUC) ==
1086                 SCB_CMD_RUC_SUS) ? "suspend reception" : "",
1087                ((scb.scb_command & SCB_CMD_RUC) ==
1088                 SCB_CMD_RUC_ABT) ? "abort reception" : "");
1089
1090         printk(KERN_DEBUG "cbl_offset 0x%x ", scb.scb_cbl_offset);
1091         printk("rfa_offset 0x%x\n", scb.scb_rfa_offset);
1092
1093         printk(KERN_DEBUG "crcerrs %d ", scb.scb_crcerrs);
1094         printk("alnerrs %d ", scb.scb_alnerrs);
1095         printk("rscerrs %d ", scb.scb_rscerrs);
1096         printk("ovrnerrs %d\n", scb.scb_ovrnerrs);
1097 }
1098
1099 /*------------------------------------------------------------------*/
1100 /*
1101  * Print the formatted status of the i82586's receive unit.
1102  */
1103 static void wv_ru_show(struct net_device * dev)
1104 {
1105         printk(KERN_DEBUG
1106                "##### WaveLAN i82586 receiver unit status: #####\n");
1107         printk(KERN_DEBUG "ru:");
1108         /*
1109          * Not implemented yet
1110          */
1111         printk("\n");
1112 }                               /* wv_ru_show */
1113
1114 /*------------------------------------------------------------------*/
1115 /*
1116  * Display info about one control block of the i82586 memory.
1117  */
1118 static void wv_cu_show_one(struct net_device * dev, net_local * lp, int i, u16 p)
1119 {
1120         unsigned long ioaddr;
1121         ac_tx_t actx;
1122
1123         ioaddr = dev->base_addr;
1124
1125         printk("%d: 0x%x:", i, p);
1126
1127         obram_read(ioaddr, p, (unsigned char *) &actx, sizeof(actx));
1128         printk(" status=0x%x,", actx.tx_h.ac_status);
1129         printk(" command=0x%x,", actx.tx_h.ac_command);
1130
1131         /*
1132            {
1133            tbd_t      tbd;
1134
1135            obram_read(ioaddr, actx.tx_tbd_offset, (unsigned char *)&tbd, sizeof(tbd));
1136            printk(" tbd_status=0x%x,", tbd.tbd_status);
1137            }
1138          */
1139
1140         printk("|");
1141 }
1142
1143 /*------------------------------------------------------------------*/
1144 /*
1145  * Print status of the command unit of the i82586.
1146  */
1147 static void wv_cu_show(struct net_device * dev)
1148 {
1149         net_local *lp = netdev_priv(dev);
1150         unsigned int i;
1151         u16 p;
1152
1153         printk(KERN_DEBUG
1154                "##### WaveLAN i82586 command unit status: #####\n");
1155
1156         printk(KERN_DEBUG);
1157         for (i = 0, p = lp->tx_first_in_use; i < NTXBLOCKS; i++) {
1158                 wv_cu_show_one(dev, lp, i, p);
1159
1160                 p += TXBLOCKZ;
1161                 if (p >= OFFSET_CU + NTXBLOCKS * TXBLOCKZ)
1162                         p -= NTXBLOCKS * TXBLOCKZ;
1163         }
1164         printk("\n");
1165 }
1166 #endif                          /* DEBUG_I82586_SHOW */
1167
1168 #ifdef DEBUG_DEVICE_SHOW
1169 /*------------------------------------------------------------------*/
1170 /*
1171  * Print the formatted status of the WaveLAN PCMCIA device driver.
1172  */
1173 static void wv_dev_show(struct net_device * dev)
1174 {
1175         printk(KERN_DEBUG "dev:");
1176         printk(" state=%lX,", dev->state);
1177         printk(" trans_start=%ld,", dev->trans_start);
1178         printk(" flags=0x%x,", dev->flags);
1179         printk("\n");
1180 }                               /* wv_dev_show */
1181
1182 /*------------------------------------------------------------------*/
1183 /*
1184  * Print the formatted status of the WaveLAN PCMCIA device driver's
1185  * private information.
1186  */
1187 static void wv_local_show(struct net_device * dev)
1188 {
1189         net_local *lp;
1190
1191         lp = netdev_priv(dev);
1192
1193         printk(KERN_DEBUG "local:");
1194         printk(" tx_n_in_use=%d,", lp->tx_n_in_use);
1195         printk(" hacr=0x%x,", lp->hacr);
1196         printk(" rx_head=0x%x,", lp->rx_head);
1197         printk(" rx_last=0x%x,", lp->rx_last);
1198         printk(" tx_first_free=0x%x,", lp->tx_first_free);
1199         printk(" tx_first_in_use=0x%x,", lp->tx_first_in_use);
1200         printk("\n");
1201 }                               /* wv_local_show */
1202 #endif                          /* DEBUG_DEVICE_SHOW */
1203
1204 #if defined(DEBUG_RX_INFO) || defined(DEBUG_TX_INFO)
1205 /*------------------------------------------------------------------*/
1206 /*
1207  * Dump packet header (and content if necessary) on the screen
1208  */
1209 static inline void wv_packet_info(u8 * p,       /* Packet to dump */
1210                                   int length,   /* Length of the packet */
1211                                   char *msg1,   /* Name of the device */
1212                                   char *msg2)
1213 {                               /* Name of the function */
1214         int i;
1215         int maxi;
1216
1217         printk(KERN_DEBUG
1218                "%s: %s(): dest %pM, length %d\n",
1219                msg1, msg2, p, length);
1220         printk(KERN_DEBUG
1221                "%s: %s(): src %pM, type 0x%02X%02X\n",
1222                msg1, msg2, &p[6], p[12], p[13]);
1223
1224 #ifdef DEBUG_PACKET_DUMP
1225
1226         printk(KERN_DEBUG "data=\"");
1227
1228         if ((maxi = length) > DEBUG_PACKET_DUMP)
1229                 maxi = DEBUG_PACKET_DUMP;
1230         for (i = 14; i < maxi; i++)
1231                 if (p[i] >= ' ' && p[i] <= '~')
1232                         printk(" %c", p[i]);
1233                 else
1234                         printk("%02X", p[i]);
1235         if (maxi < length)
1236                 printk("..");
1237         printk("\"\n");
1238         printk(KERN_DEBUG "\n");
1239 #endif                          /* DEBUG_PACKET_DUMP */
1240 }
1241 #endif                          /* defined(DEBUG_RX_INFO) || defined(DEBUG_TX_INFO) */
1242
1243 /*------------------------------------------------------------------*/
1244 /*
1245  * This is the information which is displayed by the driver at startup.
1246  * There are lots of flags for configuring it to your liking.
1247  */
1248 static void wv_init_info(struct net_device * dev)
1249 {
1250         short ioaddr = dev->base_addr;
1251         net_local *lp = netdev_priv(dev);
1252         psa_t psa;
1253
1254         /* Read the parameter storage area */
1255         psa_read(ioaddr, lp->hacr, 0, (unsigned char *) &psa, sizeof(psa));
1256
1257 #ifdef DEBUG_PSA_SHOW
1258         wv_psa_show(&psa);
1259 #endif
1260 #ifdef DEBUG_MMC_SHOW
1261         wv_mmc_show(dev);
1262 #endif
1263 #ifdef DEBUG_I82586_SHOW
1264         wv_cu_show(dev);
1265 #endif
1266
1267 #ifdef DEBUG_BASIC_SHOW
1268         /* Now, let's go for the basic stuff. */
1269         printk(KERN_NOTICE "%s: WaveLAN at %#x, %pM, IRQ %d",
1270                dev->name, ioaddr, dev->dev_addr, dev->irq);
1271
1272         /* Print current network ID. */
1273         if (psa.psa_nwid_select)
1274                 printk(", nwid 0x%02X-%02X", psa.psa_nwid[0],
1275                        psa.psa_nwid[1]);
1276         else
1277                 printk(", nwid off");
1278
1279         /* If 2.00 card */
1280         if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
1281               (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
1282                 unsigned short freq;
1283
1284                 /* Ask the EEPROM to read the frequency from the first area. */
1285                 fee_read(ioaddr, 0x00, &freq, 1);
1286
1287                 /* Print frequency */
1288                 printk(", 2.00, %ld", (freq >> 6) + 2400L);
1289
1290                 /* Hack! */
1291                 if (freq & 0x20)
1292                         printk(".5");
1293         } else {
1294                 printk(", PC");
1295                 switch (psa.psa_comp_number) {
1296                 case PSA_COMP_PC_AT_915:
1297                 case PSA_COMP_PC_AT_2400:
1298                         printk("-AT");
1299                         break;
1300                 case PSA_COMP_PC_MC_915:
1301                 case PSA_COMP_PC_MC_2400:
1302                         printk("-MC");
1303                         break;
1304                 case PSA_COMP_PCMCIA_915:
1305                         printk("MCIA");
1306                         break;
1307                 default:
1308                         printk("?");
1309                 }
1310                 printk(", ");
1311                 switch (psa.psa_subband) {
1312                 case PSA_SUBBAND_915:
1313                         printk("915");
1314                         break;
1315                 case PSA_SUBBAND_2425:
1316                         printk("2425");
1317                         break;
1318                 case PSA_SUBBAND_2460:
1319                         printk("2460");
1320                         break;
1321                 case PSA_SUBBAND_2484:
1322                         printk("2484");
1323                         break;
1324                 case PSA_SUBBAND_2430_5:
1325                         printk("2430.5");
1326                         break;
1327                 default:
1328                         printk("?");
1329                 }
1330         }
1331
1332         printk(" MHz\n");
1333 #endif                          /* DEBUG_BASIC_SHOW */
1334
1335 #ifdef DEBUG_VERSION_SHOW
1336         /* Print version information */
1337         printk(KERN_NOTICE "%s", version);
1338 #endif
1339 }                               /* wv_init_info */
1340
1341 /********************* IOCTL, STATS & RECONFIG *********************/
1342 /*
1343  * We found here routines that are called by Linux on different
1344  * occasions after the configuration and not for transmitting data
1345  * These may be called when the user use ifconfig, /proc/net/dev
1346  * or wireless extensions
1347  */
1348
1349 /*------------------------------------------------------------------*/
1350 /*
1351  * Get the current Ethernet statistics. This may be called with the
1352  * card open or closed.
1353  * Used when the user read /proc/net/dev
1354  */
1355 static en_stats *wavelan_get_stats(struct net_device * dev)
1356 {
1357 #ifdef DEBUG_IOCTL_TRACE
1358         printk(KERN_DEBUG "%s: <>wavelan_get_stats()\n", dev->name);
1359 #endif
1360
1361         return &((net_local *)netdev_priv(dev))->stats;
1362 }
1363
1364 /*------------------------------------------------------------------*/
1365 /*
1366  * Set or clear the multicast filter for this adaptor.
1367  * num_addrs == -1      Promiscuous mode, receive all packets
1368  * num_addrs == 0       Normal mode, clear multicast list
1369  * num_addrs > 0        Multicast mode, receive normal and MC packets,
1370  *                      and do best-effort filtering.
1371  */
1372 static void wavelan_set_multicast_list(struct net_device * dev)
1373 {
1374         net_local *lp = netdev_priv(dev);
1375
1376 #ifdef DEBUG_IOCTL_TRACE
1377         printk(KERN_DEBUG "%s: ->wavelan_set_multicast_list()\n",
1378                dev->name);
1379 #endif
1380
1381 #ifdef DEBUG_IOCTL_INFO
1382         printk(KERN_DEBUG
1383                "%s: wavelan_set_multicast_list(): setting Rx mode %02X to %d addresses.\n",
1384                dev->name, dev->flags, dev->mc_count);
1385 #endif
1386
1387         /* Are we asking for promiscuous mode,
1388          * or all multicast addresses (we don't have that!)
1389          * or too many multicast addresses for the hardware filter? */
1390         if ((dev->flags & IFF_PROMISC) ||
1391             (dev->flags & IFF_ALLMULTI) ||
1392             (dev->mc_count > I82586_MAX_MULTICAST_ADDRESSES)) {
1393                 /*
1394                  * Enable promiscuous mode: receive all packets.
1395                  */
1396                 if (!lp->promiscuous) {
1397                         lp->promiscuous = 1;
1398                         lp->mc_count = 0;
1399
1400                         wv_82586_reconfig(dev);
1401                 }
1402         } else
1403                 /* Are there multicast addresses to send? */
1404         if (dev->mc_list != (struct dev_mc_list *) NULL) {
1405                 /*
1406                  * Disable promiscuous mode, but receive all packets
1407                  * in multicast list
1408                  */
1409 #ifdef MULTICAST_AVOID
1410                 if (lp->promiscuous || (dev->mc_count != lp->mc_count))
1411 #endif
1412                 {
1413                         lp->promiscuous = 0;
1414                         lp->mc_count = dev->mc_count;
1415
1416                         wv_82586_reconfig(dev);
1417                 }
1418         } else {
1419                 /*
1420                  * Switch to normal mode: disable promiscuous mode and 
1421                  * clear the multicast list.
1422                  */
1423                 if (lp->promiscuous || lp->mc_count == 0) {
1424                         lp->promiscuous = 0;
1425                         lp->mc_count = 0;
1426
1427                         wv_82586_reconfig(dev);
1428                 }
1429         }
1430 #ifdef DEBUG_IOCTL_TRACE
1431         printk(KERN_DEBUG "%s: <-wavelan_set_multicast_list()\n",
1432                dev->name);
1433 #endif
1434 }
1435
1436 /*------------------------------------------------------------------*/
1437 /*
1438  * This function doesn't exist.
1439  * (Note : it was a nice way to test the reconfigure stuff...)
1440  */
1441 #ifdef SET_MAC_ADDRESS
1442 static int wavelan_set_mac_address(struct net_device * dev, void *addr)
1443 {
1444         struct sockaddr *mac = addr;
1445
1446         /* Copy the address. */
1447         memcpy(dev->dev_addr, mac->sa_data, WAVELAN_ADDR_SIZE);
1448
1449         /* Reconfigure the beast. */
1450         wv_82586_reconfig(dev);
1451
1452         return 0;
1453 }
1454 #endif                          /* SET_MAC_ADDRESS */
1455
1456
1457 /*------------------------------------------------------------------*/
1458 /*
1459  * Frequency setting (for hardware capable of it)
1460  * It's a bit complicated and you don't really want to look into it.
1461  * (called in wavelan_ioctl)
1462  */
1463 static int wv_set_frequency(unsigned long ioaddr,       /* I/O port of the card */
1464                                    iw_freq * frequency)
1465 {
1466         const int BAND_NUM = 10;        /* Number of bands */
1467         long freq = 0L;         /* offset to 2.4 GHz in .5 MHz */
1468 #ifdef DEBUG_IOCTL_INFO
1469         int i;
1470 #endif
1471
1472         /* Setting by frequency */
1473         /* Theoretically, you may set any frequency between
1474          * the two limits with a 0.5 MHz precision. In practice,
1475          * I don't want you to have trouble with local regulations.
1476          */
1477         if ((frequency->e == 1) &&
1478             (frequency->m >= (int) 2.412e8)
1479             && (frequency->m <= (int) 2.487e8)) {
1480                 freq = ((frequency->m / 10000) - 24000L) / 5;
1481         }
1482
1483         /* Setting by channel (same as wfreqsel) */
1484         /* Warning: each channel is 22 MHz wide, so some of the channels
1485          * will interfere. */
1486         if ((frequency->e == 0) && (frequency->m < BAND_NUM)) {
1487                 /* Get frequency offset. */
1488                 freq = channel_bands[frequency->m] >> 1;
1489         }
1490
1491         /* Verify that the frequency is allowed. */
1492         if (freq != 0L) {
1493                 u16 table[10];  /* Authorized frequency table */
1494
1495                 /* Read the frequency table. */
1496                 fee_read(ioaddr, 0x71, table, 10);
1497
1498 #ifdef DEBUG_IOCTL_INFO
1499                 printk(KERN_DEBUG "Frequency table: ");
1500                 for (i = 0; i < 10; i++) {
1501                         printk(" %04X", table[i]);
1502                 }
1503                 printk("\n");
1504 #endif
1505
1506                 /* Look in the table to see whether the frequency is allowed. */
1507                 if (!(table[9 - ((freq - 24) / 16)] &
1508                       (1 << ((freq - 24) % 16)))) return -EINVAL;       /* not allowed */
1509         } else
1510                 return -EINVAL;
1511
1512         /* if we get a usable frequency */
1513         if (freq != 0L) {
1514                 unsigned short area[16];
1515                 unsigned short dac[2];
1516                 unsigned short area_verify[16];
1517                 unsigned short dac_verify[2];
1518                 /* Corresponding gain (in the power adjust value table)
1519                  * See AT&T WaveLAN Data Manual, REF 407-024689/E, page 3-8
1520                  * and WCIN062D.DOC, page 6.2.9. */
1521                 unsigned short power_limit[] = { 40, 80, 120, 160, 0 };
1522                 int power_band = 0;     /* Selected band */
1523                 unsigned short power_adjust;    /* Correct value */
1524
1525                 /* Search for the gain. */
1526                 power_band = 0;
1527                 while ((freq > power_limit[power_band]) &&
1528                        (power_limit[++power_band] != 0));
1529
1530                 /* Read the first area. */
1531                 fee_read(ioaddr, 0x00, area, 16);
1532
1533                 /* Read the DAC. */
1534                 fee_read(ioaddr, 0x60, dac, 2);
1535
1536                 /* Read the new power adjust value. */
1537                 fee_read(ioaddr, 0x6B - (power_band >> 1), &power_adjust,
1538                          1);
1539                 if (power_band & 0x1)
1540                         power_adjust >>= 8;
1541                 else
1542                         power_adjust &= 0xFF;
1543
1544 #ifdef DEBUG_IOCTL_INFO
1545                 printk(KERN_DEBUG "WaveLAN EEPROM Area 1: ");
1546                 for (i = 0; i < 16; i++) {
1547                         printk(" %04X", area[i]);
1548                 }
1549                 printk("\n");
1550
1551                 printk(KERN_DEBUG "WaveLAN EEPROM DAC: %04X %04X\n",
1552                        dac[0], dac[1]);
1553 #endif
1554
1555                 /* Frequency offset (for info only) */
1556                 area[0] = ((freq << 5) & 0xFFE0) | (area[0] & 0x1F);
1557
1558                 /* Receiver Principle main divider coefficient */
1559                 area[3] = (freq >> 1) + 2400L - 352L;
1560                 area[2] = ((freq & 0x1) << 4) | (area[2] & 0xFFEF);
1561
1562                 /* Transmitter Main divider coefficient */
1563                 area[13] = (freq >> 1) + 2400L;
1564                 area[12] = ((freq & 0x1) << 4) | (area[2] & 0xFFEF);
1565
1566                 /* Other parts of the area are flags, bit streams or unused. */
1567
1568                 /* Set the value in the DAC. */
1569                 dac[1] = ((power_adjust >> 1) & 0x7F) | (dac[1] & 0xFF80);
1570                 dac[0] = ((power_adjust & 0x1) << 4) | (dac[0] & 0xFFEF);
1571
1572                 /* Write the first area. */
1573                 fee_write(ioaddr, 0x00, area, 16);
1574
1575                 /* Write the DAC. */
1576                 fee_write(ioaddr, 0x60, dac, 2);
1577
1578                 /* We now should verify here that the writing of the EEPROM went OK. */
1579
1580                 /* Reread the first area. */
1581                 fee_read(ioaddr, 0x00, area_verify, 16);
1582
1583                 /* Reread the DAC. */
1584                 fee_read(ioaddr, 0x60, dac_verify, 2);
1585
1586                 /* Compare. */
1587                 if (memcmp(area, area_verify, 16 * 2) ||
1588                     memcmp(dac, dac_verify, 2 * 2)) {
1589 #ifdef DEBUG_IOCTL_ERROR
1590                         printk(KERN_INFO
1591                                "WaveLAN: wv_set_frequency: unable to write new frequency to EEPROM(?).\n");
1592 #endif
1593                         return -EOPNOTSUPP;
1594                 }
1595
1596                 /* We must download the frequency parameters to the
1597                  * synthesizers (from the EEPROM - area 1)
1598                  * Note: as the EEPROM is automatically decremented, we set the end
1599                  * if the area... */
1600                 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), 0x0F);
1601                 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
1602                         MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD);
1603
1604                 /* Wait until the download is finished. */
1605                 fee_wait(ioaddr, 100, 100);
1606
1607                 /* We must now download the power adjust value (gain) to
1608                  * the synthesizers (from the EEPROM - area 7 - DAC). */
1609                 mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), 0x61);
1610                 mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl),
1611                         MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD);
1612
1613                 /* Wait for the download to finish. */
1614                 fee_wait(ioaddr, 100, 100);
1615
1616 #ifdef DEBUG_IOCTL_INFO
1617                 /* Verification of what we have done */
1618
1619                 printk(KERN_DEBUG "WaveLAN EEPROM Area 1: ");
1620                 for (i = 0; i < 16; i++) {
1621                         printk(" %04X", area_verify[i]);
1622                 }
1623                 printk("\n");
1624
1625                 printk(KERN_DEBUG "WaveLAN EEPROM DAC:  %04X %04X\n",
1626                        dac_verify[0], dac_verify[1]);
1627 #endif
1628
1629                 return 0;
1630         } else
1631                 return -EINVAL; /* Bah, never get there... */
1632 }
1633
1634 /*------------------------------------------------------------------*/
1635 /*
1636  * Give the list of available frequencies.
1637  */
1638 static int wv_frequency_list(unsigned long ioaddr,      /* I/O port of the card */
1639                                     iw_freq * list,     /* List of frequencies to fill */
1640                                     int max)
1641 {                               /* Maximum number of frequencies */
1642         u16 table[10];  /* Authorized frequency table */
1643         long freq = 0L;         /* offset to 2.4 GHz in .5 MHz + 12 MHz */
1644         int i;                  /* index in the table */
1645         int c = 0;              /* Channel number */
1646
1647         /* Read the frequency table. */
1648         fee_read(ioaddr, 0x71 /* frequency table */ , table, 10);
1649
1650         /* Check all frequencies. */
1651         i = 0;
1652         for (freq = 0; freq < 150; freq++)
1653                 /* Look in the table if the frequency is allowed */
1654                 if (table[9 - (freq / 16)] & (1 << (freq % 16))) {
1655                         /* Compute approximate channel number */
1656                         while ((c < ARRAY_SIZE(channel_bands)) &&
1657                                 (((channel_bands[c] >> 1) - 24) < freq)) 
1658                                 c++;
1659                         list[i].i = c;  /* Set the list index */
1660
1661                         /* put in the list */
1662                         list[i].m = (((freq + 24) * 5) + 24000L) * 10000;
1663                         list[i++].e = 1;
1664
1665                         /* Check number. */
1666                         if (i >= max)
1667                                 return (i);
1668                 }
1669
1670         return (i);
1671 }
1672
1673 #ifdef IW_WIRELESS_SPY
1674 /*------------------------------------------------------------------*/
1675 /*
1676  * Gather wireless spy statistics:  for each packet, compare the source
1677  * address with our list, and if they match, get the statistics.
1678  * Sorry, but this function really needs the wireless extensions.
1679  */
1680 static inline void wl_spy_gather(struct net_device * dev,
1681                                  u8 *   mac,    /* MAC address */
1682                                  u8 *   stats)  /* Statistics to gather */
1683 {
1684         struct iw_quality wstats;
1685
1686         wstats.qual = stats[2] & MMR_SGNL_QUAL;
1687         wstats.level = stats[0] & MMR_SIGNAL_LVL;
1688         wstats.noise = stats[1] & MMR_SILENCE_LVL;
1689         wstats.updated = 0x7;
1690
1691         /* Update spy records */
1692         wireless_spy_update(dev, mac, &wstats);
1693 }
1694 #endif /* IW_WIRELESS_SPY */
1695
1696 #ifdef HISTOGRAM
1697 /*------------------------------------------------------------------*/
1698 /*
1699  * This function calculates a histogram of the signal level.
1700  * As the noise is quite constant, it's like doing it on the SNR.
1701  * We have defined a set of interval (lp->his_range), and each time
1702  * the level goes in that interval, we increment the count (lp->his_sum).
1703  * With this histogram you may detect if one WaveLAN is really weak,
1704  * or you may also calculate the mean and standard deviation of the level.
1705  */
1706 static inline void wl_his_gather(struct net_device * dev, u8 * stats)
1707 {                               /* Statistics to gather */
1708         net_local *lp = netdev_priv(dev);
1709         u8 level = stats[0] & MMR_SIGNAL_LVL;
1710         int i;
1711
1712         /* Find the correct interval. */
1713         i = 0;
1714         while ((i < (lp->his_number - 1))
1715                && (level >= lp->his_range[i++]));
1716
1717         /* Increment interval counter. */
1718         (lp->his_sum[i])++;
1719 }
1720 #endif /* HISTOGRAM */
1721
1722 /*------------------------------------------------------------------*/
1723 /*
1724  * Wireless Handler : get protocol name
1725  */
1726 static int wavelan_get_name(struct net_device *dev,
1727                             struct iw_request_info *info,
1728                             union iwreq_data *wrqu,
1729                             char *extra)
1730 {
1731         strcpy(wrqu->name, "WaveLAN");
1732         return 0;
1733 }
1734
1735 /*------------------------------------------------------------------*/
1736 /*
1737  * Wireless Handler : set NWID
1738  */
1739 static int wavelan_set_nwid(struct net_device *dev,
1740                             struct iw_request_info *info,
1741                             union iwreq_data *wrqu,
1742                             char *extra)
1743 {
1744         unsigned long ioaddr = dev->base_addr;
1745         net_local *lp = netdev_priv(dev);       /* lp is not unused */
1746         psa_t psa;
1747         mm_t m;
1748         unsigned long flags;
1749         int ret = 0;
1750
1751         /* Disable interrupts and save flags. */
1752         spin_lock_irqsave(&lp->spinlock, flags);
1753         
1754         /* Set NWID in WaveLAN. */
1755         if (!wrqu->nwid.disabled) {
1756                 /* Set NWID in psa */
1757                 psa.psa_nwid[0] = (wrqu->nwid.value & 0xFF00) >> 8;
1758                 psa.psa_nwid[1] = wrqu->nwid.value & 0xFF;
1759                 psa.psa_nwid_select = 0x01;
1760                 psa_write(ioaddr, lp->hacr,
1761                           (char *) psa.psa_nwid - (char *) &psa,
1762                           (unsigned char *) psa.psa_nwid, 3);
1763
1764                 /* Set NWID in mmc. */
1765                 m.w.mmw_netw_id_l = psa.psa_nwid[1];
1766                 m.w.mmw_netw_id_h = psa.psa_nwid[0];
1767                 mmc_write(ioaddr,
1768                           (char *) &m.w.mmw_netw_id_l -
1769                           (char *) &m,
1770                           (unsigned char *) &m.w.mmw_netw_id_l, 2);
1771                 mmc_out(ioaddr, mmwoff(0, mmw_loopt_sel), 0x00);
1772         } else {
1773                 /* Disable NWID in the psa. */
1774                 psa.psa_nwid_select = 0x00;
1775                 psa_write(ioaddr, lp->hacr,
1776                           (char *) &psa.psa_nwid_select -
1777                           (char *) &psa,
1778                           (unsigned char *) &psa.psa_nwid_select,
1779                           1);
1780
1781                 /* Disable NWID in the mmc (no filtering). */
1782                 mmc_out(ioaddr, mmwoff(0, mmw_loopt_sel),
1783                         MMW_LOOPT_SEL_DIS_NWID);
1784         }
1785         /* update the Wavelan checksum */
1786         update_psa_checksum(dev, ioaddr, lp->hacr);
1787
1788         /* Enable interrupts and restore flags. */
1789         spin_unlock_irqrestore(&lp->spinlock, flags);
1790
1791         return ret;
1792 }
1793
1794 /*------------------------------------------------------------------*/
1795 /*
1796  * Wireless Handler : get NWID 
1797  */
1798 static int wavelan_get_nwid(struct net_device *dev,
1799                             struct iw_request_info *info,
1800                             union iwreq_data *wrqu,
1801                             char *extra)
1802 {
1803         unsigned long ioaddr = dev->base_addr;
1804         net_local *lp = netdev_priv(dev);       /* lp is not unused */
1805         psa_t psa;
1806         unsigned long flags;
1807         int ret = 0;
1808
1809         /* Disable interrupts and save flags. */
1810         spin_lock_irqsave(&lp->spinlock, flags);
1811         
1812         /* Read the NWID. */
1813         psa_read(ioaddr, lp->hacr,
1814                  (char *) psa.psa_nwid - (char *) &psa,
1815                  (unsigned char *) psa.psa_nwid, 3);
1816         wrqu->nwid.value = (psa.psa_nwid[0] << 8) + psa.psa_nwid[1];
1817         wrqu->nwid.disabled = !(psa.psa_nwid_select);
1818         wrqu->nwid.fixed = 1;   /* Superfluous */
1819
1820         /* Enable interrupts and restore flags. */
1821         spin_unlock_irqrestore(&lp->spinlock, flags);
1822
1823         return ret;
1824 }
1825
1826 /*------------------------------------------------------------------*/
1827 /*
1828  * Wireless Handler : set frequency
1829  */
1830 static int wavelan_set_freq(struct net_device *dev,
1831                             struct iw_request_info *info,
1832                             union iwreq_data *wrqu,
1833                             char *extra)
1834 {
1835         unsigned long ioaddr = dev->base_addr;
1836         net_local *lp = netdev_priv(dev);       /* lp is not unused */
1837         unsigned long flags;
1838         int ret;
1839
1840         /* Disable interrupts and save flags. */
1841         spin_lock_irqsave(&lp->spinlock, flags);
1842         
1843         /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable). */
1844         if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
1845               (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY)))
1846                 ret = wv_set_frequency(ioaddr, &(wrqu->freq));
1847         else
1848                 ret = -EOPNOTSUPP;
1849
1850         /* Enable interrupts and restore flags. */
1851         spin_unlock_irqrestore(&lp->spinlock, flags);
1852
1853         return ret;
1854 }
1855
1856 /*------------------------------------------------------------------*/
1857 /*
1858  * Wireless Handler : get frequency
1859  */
1860 static int wavelan_get_freq(struct net_device *dev,
1861                             struct iw_request_info *info,
1862                             union iwreq_data *wrqu,
1863                             char *extra)
1864 {
1865         unsigned long ioaddr = dev->base_addr;
1866         net_local *lp = netdev_priv(dev);       /* lp is not unused */
1867         psa_t psa;
1868         unsigned long flags;
1869         int ret = 0;
1870
1871         /* Disable interrupts and save flags. */
1872         spin_lock_irqsave(&lp->spinlock, flags);
1873         
1874         /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable).
1875          * Does it work for everybody, especially old cards? */
1876         if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
1877               (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
1878                 unsigned short freq;
1879
1880                 /* Ask the EEPROM to read the frequency from the first area. */
1881                 fee_read(ioaddr, 0x00, &freq, 1);
1882                 wrqu->freq.m = ((freq >> 5) * 5 + 24000L) * 10000;
1883                 wrqu->freq.e = 1;
1884         } else {
1885                 psa_read(ioaddr, lp->hacr,
1886                          (char *) &psa.psa_subband - (char *) &psa,
1887                          (unsigned char *) &psa.psa_subband, 1);
1888
1889                 if (psa.psa_subband <= 4) {
1890                         wrqu->freq.m = fixed_bands[psa.psa_subband];
1891                         wrqu->freq.e = (psa.psa_subband != 0);
1892                 } else
1893                         ret = -EOPNOTSUPP;
1894         }
1895
1896         /* Enable interrupts and restore flags. */
1897         spin_unlock_irqrestore(&lp->spinlock, flags);
1898
1899         return ret;
1900 }
1901
1902 /*------------------------------------------------------------------*/
1903 /*
1904  * Wireless Handler : set level threshold
1905  */
1906 static int wavelan_set_sens(struct net_device *dev,
1907                             struct iw_request_info *info,
1908                             union iwreq_data *wrqu,
1909                             char *extra)
1910 {
1911         unsigned long ioaddr = dev->base_addr;
1912         net_local *lp = netdev_priv(dev);       /* lp is not unused */
1913         psa_t psa;
1914         unsigned long flags;
1915         int ret = 0;
1916
1917         /* Disable interrupts and save flags. */
1918         spin_lock_irqsave(&lp->spinlock, flags);
1919         
1920         /* Set the level threshold. */
1921         /* We should complain loudly if wrqu->sens.fixed = 0, because we
1922          * can't set auto mode... */
1923         psa.psa_thr_pre_set = wrqu->sens.value & 0x3F;
1924         psa_write(ioaddr, lp->hacr,
1925                   (char *) &psa.psa_thr_pre_set - (char *) &psa,
1926                   (unsigned char *) &psa.psa_thr_pre_set, 1);
1927         /* update the Wavelan checksum */
1928         update_psa_checksum(dev, ioaddr, lp->hacr);
1929         mmc_out(ioaddr, mmwoff(0, mmw_thr_pre_set),
1930                 psa.psa_thr_pre_set);
1931
1932         /* Enable interrupts and restore flags. */
1933         spin_unlock_irqrestore(&lp->spinlock, flags);
1934
1935         return ret;
1936 }
1937
1938 /*------------------------------------------------------------------*/
1939 /*
1940  * Wireless Handler : get level threshold
1941  */
1942 static int wavelan_get_sens(struct net_device *dev,
1943                             struct iw_request_info *info,
1944                             union iwreq_data *wrqu,
1945                             char *extra)
1946 {
1947         unsigned long ioaddr = dev->base_addr;
1948         net_local *lp = netdev_priv(dev);       /* lp is not unused */
1949         psa_t psa;
1950         unsigned long flags;
1951         int ret = 0;
1952
1953         /* Disable interrupts and save flags. */
1954         spin_lock_irqsave(&lp->spinlock, flags);
1955         
1956         /* Read the level threshold. */
1957         psa_read(ioaddr, lp->hacr,
1958                  (char *) &psa.psa_thr_pre_set - (char *) &psa,
1959                  (unsigned char *) &psa.psa_thr_pre_set, 1);
1960         wrqu->sens.value = psa.psa_thr_pre_set & 0x3F;
1961         wrqu->sens.fixed = 1;
1962
1963         /* Enable interrupts and restore flags. */
1964         spin_unlock_irqrestore(&lp->spinlock, flags);
1965
1966         return ret;
1967 }
1968
1969 /*------------------------------------------------------------------*/
1970 /*
1971  * Wireless Handler : set encryption key
1972  */
1973 static int wavelan_set_encode(struct net_device *dev,
1974                               struct iw_request_info *info,
1975                               union iwreq_data *wrqu,
1976                               char *extra)
1977 {
1978         unsigned long ioaddr = dev->base_addr;
1979         net_local *lp = netdev_priv(dev);       /* lp is not unused */
1980         unsigned long flags;
1981         psa_t psa;
1982         int ret = 0;
1983
1984         /* Disable interrupts and save flags. */
1985         spin_lock_irqsave(&lp->spinlock, flags);
1986
1987         /* Check if capable of encryption */
1988         if (!mmc_encr(ioaddr)) {
1989                 ret = -EOPNOTSUPP;
1990         }
1991
1992         /* Check the size of the key */
1993         if((wrqu->encoding.length != 8) && (wrqu->encoding.length != 0)) {
1994                 ret = -EINVAL;
1995         }
1996
1997         if(!ret) {
1998                 /* Basic checking... */
1999                 if (wrqu->encoding.length == 8) {
2000                         /* Copy the key in the driver */
2001                         memcpy(psa.psa_encryption_key, extra,
2002                                wrqu->encoding.length);
2003                         psa.psa_encryption_select = 1;
2004
2005                         psa_write(ioaddr, lp->hacr,
2006                                   (char *) &psa.psa_encryption_select -
2007                                   (char *) &psa,
2008                                   (unsigned char *) &psa.
2009                                   psa_encryption_select, 8 + 1);
2010
2011                         mmc_out(ioaddr, mmwoff(0, mmw_encr_enable),
2012                                 MMW_ENCR_ENABLE_EN | MMW_ENCR_ENABLE_MODE);
2013                         mmc_write(ioaddr, mmwoff(0, mmw_encr_key),
2014                                   (unsigned char *) &psa.
2015                                   psa_encryption_key, 8);
2016                 }
2017
2018                 /* disable encryption */
2019                 if (wrqu->encoding.flags & IW_ENCODE_DISABLED) {
2020                         psa.psa_encryption_select = 0;
2021                         psa_write(ioaddr, lp->hacr,
2022                                   (char *) &psa.psa_encryption_select -
2023                                   (char *) &psa,
2024                                   (unsigned char *) &psa.
2025                                   psa_encryption_select, 1);
2026
2027                         mmc_out(ioaddr, mmwoff(0, mmw_encr_enable), 0);
2028                 }
2029                 /* update the Wavelan checksum */
2030                 update_psa_checksum(dev, ioaddr, lp->hacr);
2031         }
2032
2033         /* Enable interrupts and restore flags. */
2034         spin_unlock_irqrestore(&lp->spinlock, flags);
2035
2036         return ret;
2037 }
2038
2039 /*------------------------------------------------------------------*/
2040 /*
2041  * Wireless Handler : get encryption key
2042  */
2043 static int wavelan_get_encode(struct net_device *dev,
2044                               struct iw_request_info *info,
2045                               union iwreq_data *wrqu,
2046                               char *extra)
2047 {
2048         unsigned long ioaddr = dev->base_addr;
2049         net_local *lp = netdev_priv(dev);       /* lp is not unused */
2050         psa_t psa;
2051         unsigned long flags;
2052         int ret = 0;
2053
2054         /* Disable interrupts and save flags. */
2055         spin_lock_irqsave(&lp->spinlock, flags);
2056         
2057         /* Check if encryption is available */
2058         if (!mmc_encr(ioaddr)) {
2059                 ret = -EOPNOTSUPP;
2060         } else {
2061                 /* Read the encryption key */
2062                 psa_read(ioaddr, lp->hacr,
2063                          (char *) &psa.psa_encryption_select -
2064                          (char *) &psa,
2065                          (unsigned char *) &psa.
2066                          psa_encryption_select, 1 + 8);
2067
2068                 /* encryption is enabled ? */
2069                 if (psa.psa_encryption_select)
2070                         wrqu->encoding.flags = IW_ENCODE_ENABLED;
2071                 else
2072                         wrqu->encoding.flags = IW_ENCODE_DISABLED;
2073                 wrqu->encoding.flags |= mmc_encr(ioaddr);
2074
2075                 /* Copy the key to the user buffer */
2076                 wrqu->encoding.length = 8;
2077                 memcpy(extra, psa.psa_encryption_key, wrqu->encoding.length);
2078         }
2079
2080         /* Enable interrupts and restore flags. */
2081         spin_unlock_irqrestore(&lp->spinlock, flags);
2082
2083         return ret;
2084 }
2085
2086 /*------------------------------------------------------------------*/
2087 /*
2088  * Wireless Handler : get range info
2089  */
2090 static int wavelan_get_range(struct net_device *dev,
2091                              struct iw_request_info *info,
2092                              union iwreq_data *wrqu,
2093                              char *extra)
2094 {
2095         unsigned long ioaddr = dev->base_addr;
2096         net_local *lp = netdev_priv(dev);       /* lp is not unused */
2097         struct iw_range *range = (struct iw_range *) extra;
2098         unsigned long flags;
2099         int ret = 0;
2100
2101         /* Set the length (very important for backward compatibility) */
2102         wrqu->data.length = sizeof(struct iw_range);
2103
2104         /* Set all the info we don't care or don't know about to zero */
2105         memset(range, 0, sizeof(struct iw_range));
2106
2107         /* Set the Wireless Extension versions */
2108         range->we_version_compiled = WIRELESS_EXT;
2109         range->we_version_source = 9;
2110
2111         /* Set information in the range struct.  */
2112         range->throughput = 1.6 * 1000 * 1000;  /* don't argue on this ! */
2113         range->min_nwid = 0x0000;
2114         range->max_nwid = 0xFFFF;
2115
2116         range->sensitivity = 0x3F;
2117         range->max_qual.qual = MMR_SGNL_QUAL;
2118         range->max_qual.level = MMR_SIGNAL_LVL;
2119         range->max_qual.noise = MMR_SILENCE_LVL;
2120         range->avg_qual.qual = MMR_SGNL_QUAL; /* Always max */
2121         /* Need to get better values for those two */
2122         range->avg_qual.level = 30;
2123         range->avg_qual.noise = 8;
2124
2125         range->num_bitrates = 1;
2126         range->bitrate[0] = 2000000;    /* 2 Mb/s */
2127
2128         /* Event capability (kernel + driver) */
2129         range->event_capa[0] = (IW_EVENT_CAPA_MASK(0x8B02) |
2130                                 IW_EVENT_CAPA_MASK(0x8B04));
2131         range->event_capa[1] = IW_EVENT_CAPA_K_1;
2132
2133         /* Disable interrupts and save flags. */
2134         spin_lock_irqsave(&lp->spinlock, flags);
2135         
2136         /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable). */
2137         if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
2138               (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
2139                 range->num_channels = 10;
2140                 range->num_frequency = wv_frequency_list(ioaddr, range->freq,
2141                                                         IW_MAX_FREQUENCIES);
2142         } else
2143                 range->num_channels = range->num_frequency = 0;
2144
2145         /* Encryption supported ? */
2146         if (mmc_encr(ioaddr)) {
2147                 range->encoding_size[0] = 8;    /* DES = 64 bits key */
2148                 range->num_encoding_sizes = 1;
2149                 range->max_encoding_tokens = 1; /* Only one key possible */
2150         } else {
2151                 range->num_encoding_sizes = 0;
2152                 range->max_encoding_tokens = 0;
2153         }
2154
2155         /* Enable interrupts and restore flags. */
2156         spin_unlock_irqrestore(&lp->spinlock, flags);
2157
2158         return ret;
2159 }
2160
2161 /*------------------------------------------------------------------*/
2162 /*
2163  * Wireless Private Handler : set quality threshold
2164  */
2165 static int wavelan_set_qthr(struct net_device *dev,
2166                             struct iw_request_info *info,
2167                             union iwreq_data *wrqu,
2168                             char *extra)
2169 {
2170         unsigned long ioaddr = dev->base_addr;
2171         net_local *lp = netdev_priv(dev);       /* lp is not unused */
2172         psa_t psa;
2173         unsigned long flags;
2174
2175         /* Disable interrupts and save flags. */
2176         spin_lock_irqsave(&lp->spinlock, flags);
2177         
2178         psa.psa_quality_thr = *(extra) & 0x0F;
2179         psa_write(ioaddr, lp->hacr,
2180                   (char *) &psa.psa_quality_thr - (char *) &psa,
2181                   (unsigned char *) &psa.psa_quality_thr, 1);
2182         /* update the Wavelan checksum */
2183         update_psa_checksum(dev, ioaddr, lp->hacr);
2184         mmc_out(ioaddr, mmwoff(0, mmw_quality_thr),
2185                 psa.psa_quality_thr);
2186
2187         /* Enable interrupts and restore flags. */
2188         spin_unlock_irqrestore(&lp->spinlock, flags);
2189
2190         return 0;
2191 }
2192
2193 /*------------------------------------------------------------------*/
2194 /*
2195  * Wireless Private Handler : get quality threshold
2196  */
2197 static int wavelan_get_qthr(struct net_device *dev,
2198                             struct iw_request_info *info,
2199                             union iwreq_data *wrqu,
2200                             char *extra)
2201 {
2202         unsigned long ioaddr = dev->base_addr;
2203         net_local *lp = netdev_priv(dev);       /* lp is not unused */
2204         psa_t psa;
2205         unsigned long flags;
2206
2207         /* Disable interrupts and save flags. */
2208         spin_lock_irqsave(&lp->spinlock, flags);
2209         
2210         psa_read(ioaddr, lp->hacr,
2211                  (char *) &psa.psa_quality_thr - (char *) &psa,
2212                  (unsigned char *) &psa.psa_quality_thr, 1);
2213         *(extra) = psa.psa_quality_thr & 0x0F;
2214
2215         /* Enable interrupts and restore flags. */
2216         spin_unlock_irqrestore(&lp->spinlock, flags);
2217
2218         return 0;
2219 }
2220
2221 #ifdef HISTOGRAM
2222 /*------------------------------------------------------------------*/
2223 /*
2224  * Wireless Private Handler : set histogram
2225  */
2226 static int wavelan_set_histo(struct net_device *dev,
2227                              struct iw_request_info *info,
2228                              union iwreq_data *wrqu,
2229                              char *extra)
2230 {
2231         net_local *lp = netdev_priv(dev);       /* lp is not unused */
2232
2233         /* Check the number of intervals. */
2234         if (wrqu->data.length > 16) {
2235                 return(-E2BIG);
2236         }
2237
2238         /* Disable histo while we copy the addresses.
2239          * As we don't disable interrupts, we need to do this */
2240         lp->his_number = 0;
2241
2242         /* Are there ranges to copy? */
2243         if (wrqu->data.length > 0) {
2244                 /* Copy interval ranges to the driver */
2245                 memcpy(lp->his_range, extra, wrqu->data.length);
2246
2247                 {
2248                   int i;
2249                   printk(KERN_DEBUG "Histo :");
2250                   for(i = 0; i < wrqu->data.length; i++)
2251                     printk(" %d", lp->his_range[i]);
2252                   printk("\n");
2253                 }
2254
2255                 /* Reset result structure. */
2256                 memset(lp->his_sum, 0x00, sizeof(long) * 16);
2257         }
2258
2259         /* Now we can set the number of ranges */
2260         lp->his_number = wrqu->data.length;
2261
2262         return(0);
2263 }
2264
2265 /*------------------------------------------------------------------*/
2266 /*
2267  * Wireless Private Handler : get histogram
2268  */
2269 static int wavelan_get_histo(struct net_device *dev,
2270                              struct iw_request_info *info,
2271                              union iwreq_data *wrqu,
2272                              char *extra)
2273 {
2274         net_local *lp = netdev_priv(dev);       /* lp is not unused */
2275
2276         /* Set the number of intervals. */
2277         wrqu->data.length = lp->his_number;
2278
2279         /* Give back the distribution statistics */
2280         if(lp->his_number > 0)
2281                 memcpy(extra, lp->his_sum, sizeof(long) * lp->his_number);
2282
2283         return(0);
2284 }
2285 #endif                  /* HISTOGRAM */
2286
2287 /*------------------------------------------------------------------*/
2288 /*
2289  * Structures to export the Wireless Handlers
2290  */
2291
2292 static const iw_handler         wavelan_handler[] =
2293 {
2294         NULL,                           /* SIOCSIWNAME */
2295         wavelan_get_name,               /* SIOCGIWNAME */
2296         wavelan_set_nwid,               /* SIOCSIWNWID */
2297         wavelan_get_nwid,               /* SIOCGIWNWID */
2298         wavelan_set_freq,               /* SIOCSIWFREQ */
2299         wavelan_get_freq,               /* SIOCGIWFREQ */
2300         NULL,                           /* SIOCSIWMODE */
2301         NULL,                           /* SIOCGIWMODE */
2302         wavelan_set_sens,               /* SIOCSIWSENS */
2303         wavelan_get_sens,               /* SIOCGIWSENS */
2304         NULL,                           /* SIOCSIWRANGE */
2305         wavelan_get_range,              /* SIOCGIWRANGE */
2306         NULL,                           /* SIOCSIWPRIV */
2307         NULL,                           /* SIOCGIWPRIV */
2308         NULL,                           /* SIOCSIWSTATS */
2309         NULL,                           /* SIOCGIWSTATS */
2310         iw_handler_set_spy,             /* SIOCSIWSPY */
2311         iw_handler_get_spy,             /* SIOCGIWSPY */
2312         iw_handler_set_thrspy,          /* SIOCSIWTHRSPY */
2313         iw_handler_get_thrspy,          /* SIOCGIWTHRSPY */
2314         NULL,                           /* SIOCSIWAP */
2315         NULL,                           /* SIOCGIWAP */
2316         NULL,                           /* -- hole -- */
2317         NULL,                           /* SIOCGIWAPLIST */
2318         NULL,                           /* -- hole -- */
2319         NULL,                           /* -- hole -- */
2320         NULL,                           /* SIOCSIWESSID */
2321         NULL,                           /* SIOCGIWESSID */
2322         NULL,                           /* SIOCSIWNICKN */
2323         NULL,                           /* SIOCGIWNICKN */
2324         NULL,                           /* -- hole -- */
2325         NULL,                           /* -- hole -- */
2326         NULL,                           /* SIOCSIWRATE */
2327         NULL,                           /* SIOCGIWRATE */
2328         NULL,                           /* SIOCSIWRTS */
2329         NULL,                           /* SIOCGIWRTS */
2330         NULL,                           /* SIOCSIWFRAG */
2331         NULL,                           /* SIOCGIWFRAG */
2332         NULL,                           /* SIOCSIWTXPOW */
2333         NULL,                           /* SIOCGIWTXPOW */
2334         NULL,                           /* SIOCSIWRETRY */
2335         NULL,                           /* SIOCGIWRETRY */
2336         /* Bummer ! Why those are only at the end ??? */
2337         wavelan_set_encode,             /* SIOCSIWENCODE */
2338         wavelan_get_encode,             /* SIOCGIWENCODE */
2339 };
2340
2341 static const iw_handler         wavelan_private_handler[] =
2342 {
2343         wavelan_set_qthr,               /* SIOCIWFIRSTPRIV */
2344         wavelan_get_qthr,               /* SIOCIWFIRSTPRIV + 1 */
2345 #ifdef HISTOGRAM
2346         wavelan_set_histo,              /* SIOCIWFIRSTPRIV + 2 */
2347         wavelan_get_histo,              /* SIOCIWFIRSTPRIV + 3 */
2348 #endif  /* HISTOGRAM */
2349 };
2350
2351 static const struct iw_priv_args wavelan_private_args[] = {
2352 /*{ cmd,         set_args,                            get_args, name } */
2353   { SIOCSIPQTHR, IW_PRIV_TYPE_BYTE | IW_PRIV_SIZE_FIXED | 1, 0, "setqualthr" },
2354   { SIOCGIPQTHR, 0, IW_PRIV_TYPE_BYTE | IW_PRIV_SIZE_FIXED | 1, "getqualthr" },
2355   { SIOCSIPHISTO, IW_PRIV_TYPE_BYTE | 16,                    0, "sethisto" },
2356   { SIOCGIPHISTO, 0,                     IW_PRIV_TYPE_INT | 16, "gethisto" },
2357 };
2358
2359 static const struct iw_handler_def      wavelan_handler_def =
2360 {
2361         .num_standard   = ARRAY_SIZE(wavelan_handler),
2362         .num_private    = ARRAY_SIZE(wavelan_private_handler),
2363         .num_private_args = ARRAY_SIZE(wavelan_private_args),
2364         .standard       = wavelan_handler,
2365         .private        = wavelan_private_handler,
2366         .private_args   = wavelan_private_args,
2367         .get_wireless_stats = wavelan_get_wireless_stats,
2368 };
2369
2370 /*------------------------------------------------------------------*/
2371 /*
2372  * Get wireless statistics.
2373  * Called by /proc/net/wireless
2374  */
2375 static iw_stats *wavelan_get_wireless_stats(struct net_device * dev)
2376 {
2377         unsigned long ioaddr = dev->base_addr;
2378         net_local *lp = netdev_priv(dev);
2379         mmr_t m;
2380         iw_stats *wstats;
2381         unsigned long flags;
2382
2383 #ifdef DEBUG_IOCTL_TRACE
2384         printk(KERN_DEBUG "%s: ->wavelan_get_wireless_stats()\n",
2385                dev->name);
2386 #endif
2387
2388         /* Check */
2389         if (lp == (net_local *) NULL)
2390                 return (iw_stats *) NULL;
2391         
2392         /* Disable interrupts and save flags. */
2393         spin_lock_irqsave(&lp->spinlock, flags);
2394         
2395         wstats = &lp->wstats;
2396
2397         /* Get data from the mmc. */
2398         mmc_out(ioaddr, mmwoff(0, mmw_freeze), 1);
2399
2400         mmc_read(ioaddr, mmroff(0, mmr_dce_status), &m.mmr_dce_status, 1);
2401         mmc_read(ioaddr, mmroff(0, mmr_wrong_nwid_l), &m.mmr_wrong_nwid_l,
2402                  2);
2403         mmc_read(ioaddr, mmroff(0, mmr_thr_pre_set), &m.mmr_thr_pre_set,
2404                  4);
2405
2406         mmc_out(ioaddr, mmwoff(0, mmw_freeze), 0);
2407
2408         /* Copy data to wireless stuff. */
2409         wstats->status = m.mmr_dce_status & MMR_DCE_STATUS;
2410         wstats->qual.qual = m.mmr_sgnl_qual & MMR_SGNL_QUAL;
2411         wstats->qual.level = m.mmr_signal_lvl & MMR_SIGNAL_LVL;
2412         wstats->qual.noise = m.mmr_silence_lvl & MMR_SILENCE_LVL;
2413         wstats->qual.updated = (((m. mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) >> 7) 
2414                         | ((m.mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) >> 6) 
2415                         | ((m.mmr_silence_lvl & MMR_SILENCE_LVL_VALID) >> 5));
2416         wstats->discard.nwid += (m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l;
2417         wstats->discard.code = 0L;
2418         wstats->discard.misc = 0L;
2419
2420         /* Enable interrupts and restore flags. */
2421         spin_unlock_irqrestore(&lp->spinlock, flags);
2422
2423 #ifdef DEBUG_IOCTL_TRACE
2424         printk(KERN_DEBUG "%s: <-wavelan_get_wireless_stats()\n",
2425                dev->name);
2426 #endif
2427         return &lp->wstats;
2428 }
2429
2430 /************************* PACKET RECEPTION *************************/
2431 /*
2432  * This part deals with receiving the packets.
2433  * The interrupt handler gets an interrupt when a packet has been
2434  * successfully received and calls this part.
2435  */
2436
2437 /*------------------------------------------------------------------*/
2438 /*
2439  * This routine does the actual copying of data (including the Ethernet
2440  * header structure) from the WaveLAN card to an sk_buff chain that
2441  * will be passed up to the network interface layer. NOTE: we
2442  * currently don't handle trailer protocols (neither does the rest of
2443  * the network interface), so if that is needed, it will (at least in
2444  * part) be added here.  The contents of the receive ring buffer are
2445  * copied to a message chain that is then passed to the kernel.
2446  *
2447  * Note: if any errors occur, the packet is "dropped on the floor".
2448  * (called by wv_packet_rcv())
2449  */
2450 static void
2451 wv_packet_read(struct net_device * dev, u16 buf_off, int sksize)
2452 {
2453         net_local *lp = netdev_priv(dev);
2454         unsigned long ioaddr = dev->base_addr;
2455         struct sk_buff *skb;
2456
2457 #ifdef DEBUG_RX_TRACE
2458         printk(KERN_DEBUG "%s: ->wv_packet_read(0x%X, %d)\n",
2459                dev->name, buf_off, sksize);
2460 #endif
2461
2462         /* Allocate buffer for the data */
2463         if ((skb = dev_alloc_skb(sksize)) == (struct sk_buff *) NULL) {
2464 #ifdef DEBUG_RX_ERROR
2465                 printk(KERN_INFO
2466                        "%s: wv_packet_read(): could not alloc_skb(%d, GFP_ATOMIC).\n",
2467                        dev->name, sksize);
2468 #endif
2469                 lp->stats.rx_dropped++;
2470                 return;
2471         }
2472
2473         /* Copy the packet to the buffer. */
2474         obram_read(ioaddr, buf_off, skb_put(skb, sksize), sksize);
2475         skb->protocol = eth_type_trans(skb, dev);
2476
2477 #ifdef DEBUG_RX_INFO
2478         wv_packet_info(skb_mac_header(skb), sksize, dev->name,
2479                        "wv_packet_read");
2480 #endif                          /* DEBUG_RX_INFO */
2481
2482         /* Statistics-gathering and associated stuff.
2483          * It seem a bit messy with all the define, but it's really
2484          * simple... */
2485         if (
2486 #ifdef IW_WIRELESS_SPY          /* defined in iw_handler.h */
2487                    (lp->spy_data.spy_number > 0) ||
2488 #endif /* IW_WIRELESS_SPY */
2489 #ifdef HISTOGRAM
2490                    (lp->his_number > 0) ||
2491 #endif /* HISTOGRAM */
2492                    0) {
2493                 u8 stats[3];    /* signal level, noise level, signal quality */
2494
2495                 /* Read signal level, silence level and signal quality bytes */
2496                 /* Note: in the PCMCIA hardware, these are part of the frame.
2497                  * It seems that for the ISA hardware, it's nowhere to be
2498                  * found in the frame, so I'm obliged to do this (it has a
2499                  * side effect on /proc/net/wireless).
2500                  * Any ideas?
2501                  */
2502                 mmc_out(ioaddr, mmwoff(0, mmw_freeze), 1);
2503                 mmc_read(ioaddr, mmroff(0, mmr_signal_lvl), stats, 3);
2504                 mmc_out(ioaddr, mmwoff(0, mmw_freeze), 0);
2505
2506 #ifdef DEBUG_RX_INFO
2507                 printk(KERN_DEBUG
2508                        "%s: wv_packet_read(): Signal level %d/63, Silence level %d/63, signal quality %d/16\n",
2509                        dev->name, stats[0] & 0x3F, stats[1] & 0x3F,
2510                        stats[2] & 0x0F);
2511 #endif
2512
2513                 /* Spying stuff */
2514 #ifdef IW_WIRELESS_SPY
2515                 wl_spy_gather(dev, skb_mac_header(skb) + WAVELAN_ADDR_SIZE,
2516                               stats);
2517 #endif /* IW_WIRELESS_SPY */
2518 #ifdef HISTOGRAM
2519                 wl_his_gather(dev, stats);
2520 #endif /* HISTOGRAM */
2521         }
2522
2523         /*
2524          * Hand the packet to the network module.
2525          */
2526         netif_rx(skb);
2527
2528         /* Keep statistics up to date */
2529         lp->stats.rx_packets++;
2530         lp->stats.rx_bytes += sksize;
2531
2532 #ifdef DEBUG_RX_TRACE
2533         printk(KERN_DEBUG "%s: <-wv_packet_read()\n", dev->name);
2534 #endif
2535 }
2536
2537 /*------------------------------------------------------------------*/
2538 /*
2539  * Transfer as many packets as we can
2540  * from the device RAM.
2541  * (called in wavelan_interrupt()).
2542  * Note : the spinlock is already grabbed for us.
2543  */
2544 static void wv_receive(struct net_device * dev)
2545 {
2546         unsigned long ioaddr = dev->base_addr;
2547         net_local *lp = netdev_priv(dev);
2548         fd_t fd;
2549         rbd_t rbd;
2550         int nreaped = 0;
2551
2552 #ifdef DEBUG_RX_TRACE
2553         printk(KERN_DEBUG "%s: ->wv_receive()\n", dev->name);
2554 #endif
2555
2556         /* Loop on each received packet. */
2557         for (;;) {
2558                 obram_read(ioaddr, lp->rx_head, (unsigned char *) &fd,
2559                            sizeof(fd));
2560
2561                 /* Note about the status :
2562                  * It start up to be 0 (the value we set). Then, when the RU
2563                  * grab the buffer to prepare for reception, it sets the
2564                  * FD_STATUS_B flag. When the RU has finished receiving the
2565                  * frame, it clears FD_STATUS_B, set FD_STATUS_C to indicate
2566                  * completion and set the other flags to indicate the eventual
2567                  * errors. FD_STATUS_OK indicates that the reception was OK.
2568                  */
2569
2570                 /* If the current frame is not complete, we have reached the end. */
2571                 if ((fd.fd_status & FD_STATUS_C) != FD_STATUS_C)
2572                         break;  /* This is how we exit the loop. */
2573
2574                 nreaped++;
2575
2576                 /* Check whether frame was correctly received. */
2577                 if ((fd.fd_status & FD_STATUS_OK) == FD_STATUS_OK) {
2578                         /* Does the frame contain a pointer to the data?  Let's check. */
2579                         if (fd.fd_rbd_offset != I82586NULL) {
2580                                 /* Read the receive buffer descriptor */
2581                                 obram_read(ioaddr, fd.fd_rbd_offset,
2582                                            (unsigned char *) &rbd,
2583                                            sizeof(rbd));
2584
2585 #ifdef DEBUG_RX_ERROR
2586                                 if ((rbd.rbd_status & RBD_STATUS_EOF) !=
2587                                     RBD_STATUS_EOF) printk(KERN_INFO
2588                                                            "%s: wv_receive(): missing EOF flag.\n",
2589                                                            dev->name);
2590
2591                                 if ((rbd.rbd_status & RBD_STATUS_F) !=
2592                                     RBD_STATUS_F) printk(KERN_INFO
2593                                                          "%s: wv_receive(): missing F flag.\n",
2594                                                          dev->name);
2595 #endif                          /* DEBUG_RX_ERROR */
2596
2597                                 /* Read the packet and transmit to Linux */
2598                                 wv_packet_read(dev, rbd.rbd_bufl,
2599                                                rbd.
2600                                                rbd_status &
2601                                                RBD_STATUS_ACNT);
2602                         }
2603 #ifdef DEBUG_RX_ERROR
2604                         else    /* if frame has no data */
2605                                 printk(KERN_INFO
2606                                        "%s: wv_receive(): frame has no data.\n",
2607                                        dev->name);
2608 #endif
2609                 } else {        /* If reception was no successful */
2610
2611                         lp->stats.rx_errors++;
2612
2613 #ifdef DEBUG_RX_INFO
2614                         printk(KERN_DEBUG
2615                                "%s: wv_receive(): frame not received successfully (%X).\n",
2616                                dev->name, fd.fd_status);
2617 #endif
2618
2619 #ifdef DEBUG_RX_ERROR
2620                         if ((fd.fd_status & FD_STATUS_S6) != 0)
2621                                 printk(KERN_INFO
2622                                        "%s: wv_receive(): no EOF flag.\n",
2623                                        dev->name);
2624 #endif
2625
2626                         if ((fd.fd_status & FD_STATUS_S7) != 0) {
2627                                 lp->stats.rx_length_errors++;
2628 #ifdef DEBUG_RX_FAIL
2629                                 printk(KERN_DEBUG
2630                                        "%s: wv_receive(): frame too short.\n",
2631                                        dev->name);
2632 #endif
2633                         }
2634
2635                         if ((fd.fd_status & FD_STATUS_S8) != 0) {
2636                                 lp->stats.rx_over_errors++;
2637 #ifdef DEBUG_RX_FAIL
2638                                 printk(KERN_DEBUG
2639                                        "%s: wv_receive(): rx DMA overrun.\n",
2640                                        dev->name);
2641 #endif
2642                         }
2643
2644                         if ((fd.fd_status & FD_STATUS_S9) != 0) {
2645                                 lp->stats.rx_fifo_errors++;
2646 #ifdef DEBUG_RX_FAIL
2647                                 printk(KERN_DEBUG
2648                                        "%s: wv_receive(): ran out of resources.\n",
2649                                        dev->name);
2650 #endif
2651                         }
2652
2653                         if ((fd.fd_status & FD_STATUS_S10) != 0) {
2654                                 lp->stats.rx_frame_errors++;
2655 #ifdef DEBUG_RX_FAIL
2656                                 printk(KERN_DEBUG
2657                                        "%s: wv_receive(): alignment error.\n",
2658                                        dev->name);
2659 #endif
2660                         }
2661
2662                         if ((fd.fd_status & FD_STATUS_S11) != 0) {
2663                                 lp->stats.rx_crc_errors++;
2664 #ifdef DEBUG_RX_FAIL
2665                                 printk(KERN_DEBUG
2666                                        "%s: wv_receive(): CRC error.\n",
2667                                        dev->name);
2668 #endif
2669                         }
2670                 }
2671
2672                 fd.fd_status = 0;
2673                 obram_write(ioaddr, fdoff(lp->rx_head, fd_status),
2674                             (unsigned char *) &fd.fd_status,
2675                             sizeof(fd.fd_status));
2676
2677                 fd.fd_command = FD_COMMAND_EL;
2678                 obram_write(ioaddr, fdoff(lp->rx_head, fd_command),
2679                             (unsigned char *) &fd.fd_command,
2680                             sizeof(fd.fd_command));
2681
2682                 fd.fd_command = 0;
2683                 obram_write(ioaddr, fdoff(lp->rx_last, fd_command),
2684                             (unsigned char *) &fd.fd_command,
2685                             sizeof(fd.fd_command));
2686
2687                 lp->rx_last = lp->rx_head;
2688                 lp->rx_head = fd.fd_link_offset;
2689         }                       /* for(;;) -> loop on all frames */
2690
2691 #ifdef DEBUG_RX_INFO
2692         if (nreaped > 1)
2693                 printk(KERN_DEBUG "%s: wv_receive(): reaped %d\n",
2694                        dev->name, nreaped);
2695 #endif
2696 #ifdef DEBUG_RX_TRACE
2697         printk(KERN_DEBUG "%s: <-wv_receive()\n", dev->name);
2698 #endif
2699 }
2700
2701 /*********************** PACKET TRANSMISSION ***********************/
2702 /*
2703  * This part deals with sending packets through the WaveLAN.
2704  *
2705  */
2706
2707 /*------------------------------------------------------------------*/
2708 /*
2709  * This routine fills in the appropriate registers and memory
2710  * locations on the WaveLAN card and starts the card off on
2711  * the transmit.
2712  *
2713  * The principle:
2714  * Each block contains a transmit command, a NOP command,
2715  * a transmit block descriptor and a buffer.
2716  * The CU read the transmit block which point to the tbd,
2717  * read the tbd and the content of the buffer.
2718  * When it has finish with it, it goes to the next command
2719  * which in our case is the NOP. The NOP points on itself,
2720  * so the CU stop here.
2721  * When we add the next block, we modify the previous nop
2722  * to make it point on the new tx command.
2723  * Simple, isn't it ?
2724  *
2725  * (called in wavelan_packet_xmit())
2726  */
2727 static int wv_packet_write(struct net_device * dev, void *buf, short length)
2728 {
2729         net_local *lp = netdev_priv(dev);
2730         unsigned long ioaddr = dev->base_addr;
2731         unsigned short txblock;
2732         unsigned short txpred;
2733         unsigned short tx_addr;
2734         unsigned short nop_addr;
2735         unsigned short tbd_addr;
2736         unsigned short buf_addr;
2737         ac_tx_t tx;
2738         ac_nop_t nop;
2739         tbd_t tbd;
2740         int clen = length;
2741         unsigned long flags;
2742
2743 #ifdef DEBUG_TX_TRACE
2744         printk(KERN_DEBUG "%s: ->wv_packet_write(%d)\n", dev->name,
2745                length);
2746 #endif
2747
2748         spin_lock_irqsave(&lp->spinlock, flags);
2749
2750         /* Check nothing bad has happened */
2751         if (lp->tx_n_in_use == (NTXBLOCKS - 1)) {
2752 #ifdef DEBUG_TX_ERROR
2753                 printk(KERN_INFO "%s: wv_packet_write(): Tx queue full.\n",
2754                        dev->name);
2755 #endif
2756                 spin_unlock_irqrestore(&lp->spinlock, flags);
2757                 return 1;
2758         }
2759
2760         /* Calculate addresses of next block and previous block. */
2761         txblock = lp->tx_first_free;
2762         txpred = txblock - TXBLOCKZ;
2763         if (txpred < OFFSET_CU)
2764                 txpred += NTXBLOCKS * TXBLOCKZ;
2765         lp->tx_first_free += TXBLOCKZ;
2766         if (lp->tx_first_free >= OFFSET_CU + NTXBLOCKS * TXBLOCKZ)
2767                 lp->tx_first_free -= NTXBLOCKS * TXBLOCKZ;
2768
2769         lp->tx_n_in_use++;
2770
2771         /* Calculate addresses of the different parts of the block. */
2772         tx_addr = txblock;
2773         nop_addr = tx_addr + sizeof(tx);
2774         tbd_addr = nop_addr + sizeof(nop);
2775         buf_addr = tbd_addr + sizeof(tbd);
2776
2777         /*
2778          * Transmit command
2779          */
2780         tx.tx_h.ac_status = 0;
2781         obram_write(ioaddr, toff(ac_tx_t, tx_addr, tx_h.ac_status),
2782                     (unsigned char *) &tx.tx_h.ac_status,
2783                     sizeof(tx.tx_h.ac_status));
2784
2785         /*
2786          * NOP command
2787          */
2788         nop.nop_h.ac_status = 0;
2789         obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
2790                     (unsigned char *) &nop.nop_h.ac_status,
2791                     sizeof(nop.nop_h.ac_status));
2792         nop.nop_h.ac_link = nop_addr;
2793         obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
2794                     (unsigned char *) &nop.nop_h.ac_link,
2795                     sizeof(nop.nop_h.ac_link));
2796
2797         /*
2798          * Transmit buffer descriptor
2799          */
2800         tbd.tbd_status = TBD_STATUS_EOF | (TBD_STATUS_ACNT & clen);
2801         tbd.tbd_next_bd_offset = I82586NULL;
2802         tbd.tbd_bufl = buf_addr;
2803         tbd.tbd_bufh = 0;
2804         obram_write(ioaddr, tbd_addr, (unsigned char *) &tbd, sizeof(tbd));
2805
2806         /*
2807          * Data
2808          */
2809         obram_write(ioaddr, buf_addr, buf, length);
2810
2811         /*
2812          * Overwrite the predecessor NOP link
2813          * so that it points to this txblock.
2814          */
2815         nop_addr = txpred + sizeof(tx);
2816         nop.nop_h.ac_status = 0;
2817         obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
2818                     (unsigned char *) &nop.nop_h.ac_status,
2819                     sizeof(nop.nop_h.ac_status));
2820         nop.nop_h.ac_link = txblock;
2821         obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
2822                     (unsigned char *) &nop.nop_h.ac_link,
2823                     sizeof(nop.nop_h.ac_link));
2824
2825         /* Make sure the watchdog will keep quiet for a while */
2826         dev->trans_start = jiffies;
2827
2828         /* Keep stats up to date. */
2829         lp->stats.tx_bytes += length;
2830
2831         if (lp->tx_first_in_use == I82586NULL)
2832                 lp->tx_first_in_use = txblock;
2833
2834         if (lp->tx_n_in_use < NTXBLOCKS - 1)
2835                 netif_wake_queue(dev);
2836
2837         spin_unlock_irqrestore(&lp->spinlock, flags);
2838         
2839 #ifdef DEBUG_TX_INFO
2840         wv_packet_info((u8 *) buf, length, dev->name,
2841                        "wv_packet_write");
2842 #endif                          /* DEBUG_TX_INFO */
2843
2844 #ifdef DEBUG_TX_TRACE
2845         printk(KERN_DEBUG "%s: <-wv_packet_write()\n", dev->name);
2846 #endif
2847
2848         return 0;
2849 }
2850
2851 /*------------------------------------------------------------------*/
2852 /*
2853  * This routine is called when we want to send a packet (NET3 callback)
2854  * In this routine, we check if the harware is ready to accept
2855  * the packet.  We also prevent reentrance.  Then we call the function
2856  * to send the packet.
2857  */
2858 static int wavelan_packet_xmit(struct sk_buff *skb, struct net_device * dev)
2859 {
2860         net_local *lp = netdev_priv(dev);
2861         unsigned long flags;
2862         char data[ETH_ZLEN];
2863
2864 #ifdef DEBUG_TX_TRACE
2865         printk(KERN_DEBUG "%s: ->wavelan_packet_xmit(0x%X)\n", dev->name,
2866                (unsigned) skb);
2867 #endif
2868
2869         /*
2870          * Block a timer-based transmit from overlapping.
2871          * In other words, prevent reentering this routine.
2872          */
2873         netif_stop_queue(dev);
2874
2875         /* If somebody has asked to reconfigure the controller, 
2876          * we can do it now.
2877          */
2878         if (lp->reconfig_82586) {
2879                 spin_lock_irqsave(&lp->spinlock, flags);
2880                 wv_82586_config(dev);
2881                 spin_unlock_irqrestore(&lp->spinlock, flags);
2882                 /* Check that we can continue */
2883                 if (lp->tx_n_in_use == (NTXBLOCKS - 1))
2884                         return 1;
2885         }
2886 #ifdef DEBUG_TX_ERROR
2887         if (skb->next)
2888                 printk(KERN_INFO "skb has next\n");
2889 #endif
2890
2891         /* Do we need some padding? */
2892         /* Note : on wireless the propagation time is in the order of 1us,
2893          * and we don't have the Ethernet specific requirement of beeing
2894          * able to detect collisions, therefore in theory we don't really
2895          * need to pad. Jean II */
2896         if (skb->len < ETH_ZLEN) {
2897                 memset(data, 0, ETH_ZLEN);
2898                 skb_copy_from_linear_data(skb, data, skb->len);
2899                 /* Write packet on the card */
2900                 if(wv_packet_write(dev, data, ETH_ZLEN))
2901                         return 1;       /* We failed */
2902         }
2903         else if(wv_packet_write(dev, skb->data, skb->len))
2904                 return 1;       /* We failed */
2905
2906
2907         dev_kfree_skb(skb);
2908
2909 #ifdef DEBUG_TX_TRACE
2910         printk(KERN_DEBUG "%s: <-wavelan_packet_xmit()\n", dev->name);
2911 #endif
2912         return 0;
2913 }
2914
2915 /*********************** HARDWARE CONFIGURATION ***********************/
2916 /*
2917  * This part does the real job of starting and configuring the hardware.
2918  */
2919
2920 /*--------------------------------------------------------------------*/
2921 /*
2922  * Routine to initialize the Modem Management Controller.
2923  * (called by wv_hw_reset())
2924  */
2925 static int wv_mmc_init(struct net_device * dev)
2926 {
2927         unsigned long ioaddr = dev->base_addr;
2928         net_local *lp = netdev_priv(dev);
2929         psa_t psa;
2930         mmw_t m;
2931         int configured;
2932
2933 #ifdef DEBUG_CONFIG_TRACE
2934         printk(KERN_DEBUG "%s: ->wv_mmc_init()\n", dev->name);
2935 #endif
2936
2937         /* Read the parameter storage area. */
2938         psa_read(ioaddr, lp->hacr, 0, (unsigned char *) &psa, sizeof(psa));
2939
2940 #ifdef USE_PSA_CONFIG
2941         configured = psa.psa_conf_status & 1;
2942 #else
2943         configured = 0;
2944 #endif
2945
2946         /* Is the PSA is not configured */
2947         if (!configured) {
2948                 /* User will be able to configure NWID later (with iwconfig). */
2949                 psa.psa_nwid[0] = 0;
2950                 psa.psa_nwid[1] = 0;
2951
2952                 /* no NWID checking since NWID is not set */
2953                 psa.psa_nwid_select = 0;
2954
2955                 /* Disable encryption */
2956                 psa.psa_encryption_select = 0;
2957
2958                 /* Set to standard values:
2959                  * 0x04 for AT,
2960                  * 0x01 for MCA,
2961                  * 0x04 for PCMCIA and 2.00 card (AT&T 407-024689/E document)
2962                  */
2963                 if (psa.psa_comp_number & 1)
2964                         psa.psa_thr_pre_set = 0x01;
2965                 else
2966                         psa.psa_thr_pre_set = 0x04;
2967                 psa.psa_quality_thr = 0x03;
2968
2969                 /* It is configured */
2970                 psa.psa_conf_status |= 1;
2971
2972 #ifdef USE_PSA_CONFIG
2973                 /* Write the psa. */
2974                 psa_write(ioaddr, lp->hacr,
2975                           (char *) psa.psa_nwid - (char *) &psa,
2976                           (unsigned char *) psa.psa_nwid, 4);
2977                 psa_write(ioaddr, lp->hacr,
2978                           (char *) &psa.psa_thr_pre_set - (char *) &psa,
2979                           (unsigned char *) &psa.psa_thr_pre_set, 1);
2980                 psa_write(ioaddr, lp->hacr,
2981                           (char *) &psa.psa_quality_thr - (char *) &psa,
2982                           (unsigned char *) &psa.psa_quality_thr, 1);
2983                 psa_write(ioaddr, lp->hacr,
2984                           (char *) &psa.psa_conf_status - (char *) &psa,
2985                           (unsigned char *) &psa.psa_conf_status, 1);
2986                 /* update the Wavelan checksum */
2987                 update_psa_checksum(dev, ioaddr, lp->hacr);
2988 #endif
2989         }
2990
2991         /* Zero the mmc structure. */
2992         memset(&m, 0x00, sizeof(m));
2993
2994         /* Copy PSA info to the mmc. */
2995         m.mmw_netw_id_l = psa.psa_nwid[1];
2996         m.mmw_netw_id_h = psa.psa_nwid[0];
2997
2998         if (psa.psa_nwid_select & 1)
2999                 m.mmw_loopt_sel = 0x00;
3000         else
3001                 m.mmw_loopt_sel = MMW_LOOPT_SEL_DIS_NWID;
3002
3003         memcpy(&m.mmw_encr_key, &psa.psa_encryption_key,
3004                sizeof(m.mmw_encr_key));
3005
3006         if (psa.psa_encryption_select)
3007                 m.mmw_encr_enable =
3008                     MMW_ENCR_ENABLE_EN | MMW_ENCR_ENABLE_MODE;
3009         else
3010                 m.mmw_encr_enable = 0;
3011
3012         m.mmw_thr_pre_set = psa.psa_thr_pre_set & 0x3F;
3013         m.mmw_quality_thr = psa.psa_quality_thr & 0x0F;
3014
3015         /*
3016          * Set default modem control parameters.
3017          * See NCR document 407-0024326 Rev. A.
3018          */
3019         m.mmw_jabber_enable = 0x01;
3020         m.mmw_freeze = 0;
3021         m.mmw_anten_sel = MMW_ANTEN_SEL_ALG_EN;
3022         m.mmw_ifs = 0x20;
3023         m.mmw_mod_delay = 0x04;
3024         m.mmw_jam_time = 0x38;
3025
3026         m.mmw_des_io_invert = 0;
3027         m.mmw_decay_prm = 0;
3028         m.mmw_decay_updat_prm = 0;
3029
3030         /* Write all info to MMC. */
3031         mmc_write(ioaddr, 0, (u8 *) & m, sizeof(m));
3032
3033         /* The following code starts the modem of the 2.00 frequency
3034          * selectable cards at power on.  It's not strictly needed for the
3035          * following boots.
3036          * The original patch was by Joe Finney for the PCMCIA driver, but
3037          * I've cleaned it up a bit and added documentation.
3038          * Thanks to Loeke Brederveld from Lucent for the info.
3039          */
3040
3041         /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable)
3042          * Does it work for everybody, especially old cards? */
3043         /* Note: WFREQSEL verifies that it is able to read a sensible
3044          * frequency from EEPROM (address 0x00) and that MMR_FEE_STATUS_ID
3045          * is 0xA (Xilinx version) or 0xB (Ariadne version).
3046          * My test is more crude but does work. */
3047         if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) &
3048               (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) {
3049                 /* We must download the frequency parameters to the
3050                  * synthesizers (from the EEPROM - area 1)
3051                  * Note: as the EEPROM is automatically decremented, we set the end
3052                  * if the area... */
3053                 m.mmw_fee_addr = 0x0F;
3054                 m.mmw_fee_ctrl = MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD;
3055                 mmc_write(ioaddr, (char *) &m.mmw_fee_ctrl - (char *) &m,
3056                           (unsigned char *) &m.mmw_fee_ctrl, 2);
3057
3058                 /* Wait until the download is finished. */
3059                 fee_wait(ioaddr, 100, 100);
3060
3061 #ifdef DEBUG_CONFIG_INFO
3062                 /* The frequency was in the last word downloaded. */
3063                 mmc_read(ioaddr, (char *) &m.mmw_fee_data_l - (char *) &m,
3064                          (unsigned char *) &m.mmw_fee_data_l, 2);
3065
3066                 /* Print some info for the user. */
3067                 printk(KERN_DEBUG
3068                        "%s: WaveLAN 2.00 recognised (frequency select).  Current frequency = %ld\n",
3069                        dev->name,
3070                        ((m.
3071                          mmw_fee_data_h << 4) | (m.mmw_fee_data_l >> 4)) *
3072                        5 / 2 + 24000L);
3073 #endif
3074
3075                 /* We must now download the power adjust value (gain) to
3076                  * the synthesizers (from the EEPROM - area 7 - DAC). */
3077                 m.mmw_fee_addr = 0x61;
3078                 m.mmw_fee_ctrl = MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD;
3079                 mmc_write(ioaddr, (char *) &m.mmw_fee_ctrl - (char *) &m,
3080                           (unsigned char *) &m.mmw_fee_ctrl, 2);
3081
3082                 /* Wait until the download is finished. */
3083         }
3084         /* if 2.00 card */
3085 #ifdef DEBUG_CONFIG_TRACE
3086         printk(KERN_DEBUG "%s: <-wv_mmc_init()\n", dev->name);
3087 #endif
3088         return 0;
3089 }
3090
3091 /*------------------------------------------------------------------*/
3092 /*
3093  * Construct the fd and rbd structures.
3094  * Start the receive unit.
3095  * (called by wv_hw_reset())
3096  */
3097 static int wv_ru_start(struct net_device * dev)
3098 {
3099         net_local *lp = netdev_priv(dev);
3100         unsigned long ioaddr = dev->base_addr;
3101         u16 scb_cs;
3102         fd_t fd;
3103         rbd_t rbd;
3104         u16 rx;
3105         u16 rx_next;
3106         int i;
3107
3108 #ifdef DEBUG_CONFIG_TRACE
3109         printk(KERN_DEBUG "%s: ->wv_ru_start()\n", dev->name);
3110 #endif
3111
3112         obram_read(ioaddr, scboff(OFFSET_SCB, scb_status),
3113                    (unsigned char *) &scb_cs, sizeof(scb_cs));
3114         if ((scb_cs & SCB_ST_RUS) == SCB_ST_RUS_RDY)
3115                 return 0;
3116
3117         lp->rx_head = OFFSET_RU;
3118
3119         for (i = 0, rx = lp->rx_head; i < NRXBLOCKS; i++, rx = rx_next) {
3120                 rx_next =
3121                     (i == NRXBLOCKS - 1) ? lp->rx_head : rx + RXBLOCKZ;
3122
3123                 fd.fd_status = 0;
3124                 fd.fd_command = (i == NRXBLOCKS - 1) ? FD_COMMAND_EL : 0;
3125                 fd.fd_link_offset = rx_next;
3126                 fd.fd_rbd_offset = rx + sizeof(fd);
3127                 obram_write(ioaddr, rx, (unsigned char *) &fd, sizeof(fd));
3128
3129                 rbd.rbd_status = 0;
3130                 rbd.rbd_next_rbd_offset = I82586NULL;
3131                 rbd.rbd_bufl = rx + sizeof(fd) + sizeof(rbd);
3132                 rbd.rbd_bufh = 0;
3133                 rbd.rbd_el_size = RBD_EL | (RBD_SIZE & MAXDATAZ);
3134                 obram_write(ioaddr, rx + sizeof(fd),
3135                             (unsigned char *) &rbd, sizeof(rbd));
3136
3137                 lp->rx_last = rx;
3138         }
3139
3140         obram_write(ioaddr, scboff(OFFSET_SCB, scb_rfa_offset),
3141                     (unsigned char *) &lp->rx_head, sizeof(lp->rx_head));
3142
3143         scb_cs = SCB_CMD_RUC_GO;
3144         obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
3145                     (unsigned char *) &scb_cs, sizeof(scb_cs));
3146
3147         set_chan_attn(ioaddr, lp->hacr);
3148
3149         for (i = 1000; i > 0; i--) {
3150                 obram_read(ioaddr, scboff(OFFSET_SCB, scb_command),
3151                            (unsigned char *) &scb_cs, sizeof(scb_cs));
3152                 if (scb_cs == 0)
3153                         break;
3154
3155                 udelay(10);
3156         }
3157
3158         if (i <= 0) {
3159 #ifdef DEBUG_CONFIG_ERROR
3160                 printk(KERN_INFO
3161                        "%s: wavelan_ru_start(): board not accepting command.\n",
3162                        dev->name);
3163 #endif
3164                 return -1;
3165         }
3166 #ifdef DEBUG_CONFIG_TRACE
3167         printk(KERN_DEBUG "%s: <-wv_ru_start()\n", dev->name);
3168 #endif
3169         return 0;
3170 }
3171
3172 /*------------------------------------------------------------------*/
3173 /*
3174  * Initialise the transmit blocks.
3175  * Start the command unit executing the NOP
3176  * self-loop of the first transmit block.
3177  *
3178  * Here we create the list of send buffers used to transmit packets
3179  * between the PC and the command unit. For each buffer, we create a
3180  * buffer descriptor (pointing on the buffer), a transmit command
3181  * (pointing to the buffer descriptor) and a NOP command.
3182  * The transmit command is linked to the NOP, and the NOP to itself.
3183  * When we will have finished executing the transmit command, we will
3184  * then loop on the NOP. By releasing the NOP link to a new command,
3185  * we may send another buffer.
3186  *
3187  * (called by wv_hw_reset())
3188  */
3189 static int wv_cu_start(struct net_device * dev)
3190 {
3191         net_local *lp = netdev_priv(dev);
3192         unsigned long ioaddr = dev->base_addr;
3193         int i;
3194         u16 txblock;
3195         u16 first_nop;
3196         u16 scb_cs;
3197
3198 #ifdef DEBUG_CONFIG_TRACE
3199         printk(KERN_DEBUG "%s: ->wv_cu_start()\n", dev->name);
3200 #endif
3201
3202         lp->tx_first_free = OFFSET_CU;
3203         lp->tx_first_in_use = I82586NULL;
3204
3205         for (i = 0, txblock = OFFSET_CU;
3206              i < NTXBLOCKS; i++, txblock += TXBLOCKZ) {
3207                 ac_tx_t tx;
3208                 ac_nop_t nop;
3209                 tbd_t tbd;
3210                 unsigned short tx_addr;
3211                 unsigned short nop_addr;
3212                 unsigned short tbd_addr;
3213                 unsigned short buf_addr;
3214
3215                 tx_addr = txblock;
3216                 nop_addr = tx_addr + sizeof(tx);
3217                 tbd_addr = nop_addr + sizeof(nop);
3218                 buf_addr = tbd_addr + sizeof(tbd);
3219
3220                 tx.tx_h.ac_status = 0;
3221                 tx.tx_h.ac_command = acmd_transmit | AC_CFLD_I;
3222                 tx.tx_h.ac_link = nop_addr;
3223                 tx.tx_tbd_offset = tbd_addr;
3224                 obram_write(ioaddr, tx_addr, (unsigned char *) &tx,
3225                             sizeof(tx));
3226
3227                 nop.nop_h.ac_status = 0;
3228                 nop.nop_h.ac_command = acmd_nop;
3229                 nop.nop_h.ac_link = nop_addr;
3230                 obram_write(ioaddr, nop_addr, (unsigned char *) &nop,
3231                             sizeof(nop));
3232
3233                 tbd.tbd_status = TBD_STATUS_EOF;
3234                 tbd.tbd_next_bd_offset = I82586NULL;
3235                 tbd.tbd_bufl = buf_addr;
3236                 tbd.tbd_bufh = 0;
3237                 obram_write(ioaddr, tbd_addr, (unsigned char *) &tbd,
3238                             sizeof(tbd));
3239         }
3240
3241         first_nop =
3242             OFFSET_CU + (NTXBLOCKS - 1) * TXBLOCKZ + sizeof(ac_tx_t);
3243         obram_write(ioaddr, scboff(OFFSET_SCB, scb_cbl_offset),
3244                     (unsigned char *) &first_nop, sizeof(first_nop));
3245
3246         scb_cs = SCB_CMD_CUC_GO;
3247         obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
3248                     (unsigned char *) &scb_cs, sizeof(scb_cs));
3249
3250         set_chan_attn(ioaddr, lp->hacr);
3251
3252         for (i = 1000; i > 0; i--) {
3253                 obram_read(ioaddr, scboff(OFFSET_SCB, scb_command),
3254                            (unsigned char *) &scb_cs, sizeof(scb_cs));
3255                 if (scb_cs == 0)
3256                         break;
3257
3258                 udelay(10);
3259         }
3260
3261         if (i <= 0) {
3262 #ifdef DEBUG_CONFIG_ERROR
3263                 printk(KERN_INFO
3264                        "%s: wavelan_cu_start(): board not accepting command.\n",
3265                        dev->name);
3266 #endif
3267                 return -1;
3268         }
3269
3270         lp->tx_n_in_use = 0;
3271         netif_start_queue(dev);
3272 #ifdef DEBUG_CONFIG_TRACE
3273         printk(KERN_DEBUG "%s: <-wv_cu_start()\n", dev->name);
3274 #endif
3275         return 0;
3276 }
3277
3278 /*------------------------------------------------------------------*/
3279 /*
3280  * This routine does a standard configuration of the WaveLAN 
3281  * controller (i82586).
3282  *
3283  * It initialises the scp, iscp and scb structure
3284  * The first two are just pointers to the next.
3285  * The last one is used for basic configuration and for basic
3286  * communication (interrupt status).
3287  *
3288  * (called by wv_hw_reset())
3289  */
3290 static int wv_82586_start(struct net_device * dev)
3291 {
3292         net_local *lp = netdev_priv(dev);
3293         unsigned long ioaddr = dev->base_addr;
3294         scp_t scp;              /* system configuration pointer */
3295         iscp_t iscp;            /* intermediate scp */
3296         scb_t scb;              /* system control block */
3297         ach_t cb;               /* Action command header */
3298         u8 zeroes[512];
3299         int i;
3300
3301 #ifdef DEBUG_CONFIG_TRACE
3302         printk(KERN_DEBUG "%s: ->wv_82586_start()\n", dev->name);
3303 #endif
3304
3305         /*
3306          * Clear the onboard RAM.
3307          */
3308         memset(&zeroes[0], 0x00, sizeof(zeroes));
3309         for (i = 0; i < I82586_MEMZ; i += sizeof(zeroes))
3310                 obram_write(ioaddr, i, &zeroes[0], sizeof(zeroes));
3311
3312         /*
3313          * Construct the command unit structures:
3314          * scp, iscp, scb, cb.
3315          */
3316         memset(&scp, 0x00, sizeof(scp));
3317         scp.scp_sysbus = SCP_SY_16BBUS;
3318         scp.scp_iscpl = OFFSET_ISCP;
3319         obram_write(ioaddr, OFFSET_SCP, (unsigned char *) &scp,
3320                     sizeof(scp));
3321
3322         memset(&iscp, 0x00, sizeof(iscp));
3323         iscp.iscp_busy = 1;
3324         iscp.iscp_offset = OFFSET_SCB;
3325         obram_write(ioaddr, OFFSET_ISCP, (unsigned char *) &iscp,
3326                     sizeof(iscp));
3327
3328         /* Our first command is to reset the i82586. */
3329         memset(&scb, 0x00, sizeof(scb));
3330         scb.scb_command = SCB_CMD_RESET;
3331         scb.scb_cbl_offset = OFFSET_CU;
3332         scb.scb_rfa_offset = OFFSET_RU;
3333         obram_write(ioaddr, OFFSET_SCB, (unsigned char *) &scb,
3334                     sizeof(scb));
3335
3336         set_chan_attn(ioaddr, lp->hacr);
3337
3338         /* Wait for command to finish. */
3339         for (i = 1000; i > 0; i--) {
3340                 obram_read(ioaddr, OFFSET_ISCP, (unsigned char *) &iscp,
3341                            sizeof(iscp));
3342
3343                 if (iscp.iscp_busy == (unsigned short) 0)
3344                         break;
3345
3346                 udelay(10);
3347         }
3348
3349         if (i <= 0) {
3350 #ifdef DEBUG_CONFIG_ERROR
3351                 printk(KERN_INFO
3352                        "%s: wv_82586_start(): iscp_busy timeout.\n",
3353                        dev->name);
3354 #endif
3355                 return -1;
3356         }
3357
3358         /* Check command completion. */
3359         for (i = 15; i > 0; i--) {
3360                 obram_read(ioaddr, OFFSET_SCB, (unsigned char *) &scb,
3361                            sizeof(scb));
3362
3363                 if (scb.scb_status == (SCB_ST_CX | SCB_ST_CNA))
3364                         break;
3365
3366                 udelay(10);
3367         }
3368
3369         if (i <= 0) {
3370 #ifdef DEBUG_CONFIG_ERROR
3371                 printk(KERN_INFO
3372                        "%s: wv_82586_start(): status: expected 0x%02x, got 0x%02x.\n",
3373                        dev->name, SCB_ST_CX | SCB_ST_CNA, scb.scb_status);
3374 #endif
3375                 return -1;
3376         }
3377
3378         wv_ack(dev);
3379
3380         /* Set the action command header. */
3381         memset(&cb, 0x00, sizeof(cb));
3382         cb.ac_command = AC_CFLD_EL | (AC_CFLD_CMD & acmd_diagnose);
3383         cb.ac_link = OFFSET_CU;
3384         obram_write(ioaddr, OFFSET_CU, (unsigned char *) &cb, sizeof(cb));
3385
3386         if (wv_synchronous_cmd(dev, "diag()") == -1)
3387                 return -1;
3388
3389         obram_read(ioaddr, OFFSET_CU, (unsigned char *) &cb, sizeof(cb));
3390         if (cb.ac_status & AC_SFLD_FAIL) {
3391 #ifdef DEBUG_CONFIG_ERROR
3392                 printk(KERN_INFO
3393                        "%s: wv_82586_start(): i82586 Self Test failed.\n",
3394                        dev->name);
3395 #endif
3396                 return -1;
3397         }
3398 #ifdef DEBUG_I82586_SHOW
3399         wv_scb_show(ioaddr);
3400 #endif
3401
3402 #ifdef DEBUG_CONFIG_TRACE
3403         printk(KERN_DEBUG "%s: <-wv_82586_start()\n", dev->name);
3404 #endif
3405         return 0;
3406 }
3407
3408 /*------------------------------------------------------------------*/
3409 /*
3410  * This routine does a standard configuration of the WaveLAN
3411  * controller (i82586).
3412  *
3413  * This routine is a violent hack. We use the first free transmit block
3414  * to make our configuration. In the buffer area, we create the three
3415  * configuration commands (linked). We make the previous NOP point to
3416  * the beginning of the buffer instead of the tx command. After, we go
3417  * as usual to the NOP command.
3418  * Note that only the last command (mc_set) will generate an interrupt.
3419  *
3420  * (called by wv_hw_reset(), wv_82586_reconfig(), wavelan_packet_xmit())
3421  */
3422 static void wv_82586_config(struct net_device * dev)
3423 {
3424         net_local *lp = netdev_priv(dev);
3425         unsigned long ioaddr = dev->base_addr;
3426         unsigned short txblock;
3427         unsigned short txpred;
3428         unsigned short tx_addr;
3429         unsigned short nop_addr;
3430         unsigned short tbd_addr;
3431         unsigned short cfg_addr;
3432         unsigned short ias_addr;
3433         unsigned short mcs_addr;
3434         ac_tx_t tx;
3435         ac_nop_t nop;
3436         ac_cfg_t cfg;           /* Configure action */
3437         ac_ias_t ias;           /* IA-setup action */
3438         ac_mcs_t mcs;           /* Multicast setup */
3439         struct dev_mc_list *dmi;
3440
3441 #ifdef DEBUG_CONFIG_TRACE
3442         printk(KERN_DEBUG "%s: ->wv_82586_config()\n", dev->name);
3443 #endif
3444
3445         /* Check nothing bad has happened */
3446         if (lp->tx_n_in_use == (NTXBLOCKS - 1)) {
3447 #ifdef DEBUG_CONFIG_ERROR
3448                 printk(KERN_INFO "%s: wv_82586_config(): Tx queue full.\n",
3449                        dev->name);
3450 #endif
3451                 return;
3452         }
3453
3454         /* Calculate addresses of next block and previous block. */
3455         txblock = lp->tx_first_free;
3456         txpred = txblock - TXBLOCKZ;
3457         if (txpred < OFFSET_CU)
3458                 txpred += NTXBLOCKS * TXBLOCKZ;
3459         lp->tx_first_free += TXBLOCKZ;
3460         if (lp->tx_first_free >= OFFSET_CU + NTXBLOCKS * TXBLOCKZ)
3461                 lp->tx_first_free -= NTXBLOCKS * TXBLOCKZ;
3462
3463         lp->tx_n_in_use++;
3464
3465         /* Calculate addresses of the different parts of the block. */
3466         tx_addr = txblock;
3467         nop_addr = tx_addr + sizeof(tx);
3468         tbd_addr = nop_addr + sizeof(nop);
3469         cfg_addr = tbd_addr + sizeof(tbd_t);    /* beginning of the buffer */
3470         ias_addr = cfg_addr + sizeof(cfg);
3471         mcs_addr = ias_addr + sizeof(ias);
3472
3473         /*
3474          * Transmit command
3475          */
3476         tx.tx_h.ac_status = 0xFFFF;     /* Fake completion value */
3477         obram_write(ioaddr, toff(ac_tx_t, tx_addr, tx_h.ac_status),
3478                     (unsigned char *) &tx.tx_h.ac_status,
3479                     sizeof(tx.tx_h.ac_status));
3480
3481         /*
3482          * NOP command
3483          */
3484         nop.nop_h.ac_status = 0;
3485         obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
3486                     (unsigned char *) &nop.nop_h.ac_status,
3487                     sizeof(nop.nop_h.ac_status));
3488         nop.nop_h.ac_link = nop_addr;
3489         obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
3490                     (unsigned char *) &nop.nop_h.ac_link,
3491                     sizeof(nop.nop_h.ac_link));
3492
3493         /* Create a configure action. */
3494         memset(&cfg, 0x00, sizeof(cfg));
3495
3496         /*
3497          * For Linux we invert AC_CFG_ALOC() so as to conform
3498          * to the way that net packets reach us from above.
3499          * (See also ac_tx_t.)
3500          *
3501          * Updated from Wavelan Manual WCIN085B
3502          */
3503         cfg.cfg_byte_cnt =
3504             AC_CFG_BYTE_CNT(sizeof(ac_cfg_t) - sizeof(ach_t));
3505         cfg.cfg_fifolim = AC_CFG_FIFOLIM(4);
3506         cfg.cfg_byte8 = AC_CFG_SAV_BF(1) | AC_CFG_SRDY(0);
3507         cfg.cfg_byte9 = AC_CFG_ELPBCK(0) |
3508             AC_CFG_ILPBCK(0) |
3509             AC_CFG_PRELEN(AC_CFG_PLEN_2) |
3510             AC_CFG_ALOC(1) | AC_CFG_ADDRLEN(WAVELAN_ADDR_SIZE);
3511         cfg.cfg_byte10 = AC_CFG_BOFMET(1) |
3512             AC_CFG_ACR(6) | AC_CFG_LINPRIO(0);
3513         cfg.cfg_ifs = 0x20;
3514         cfg.cfg_slotl = 0x0C;
3515         cfg.cfg_byte13 = AC_CFG_RETRYNUM(15) | AC_CFG_SLTTMHI(0);
3516         cfg.cfg_byte14 = AC_CFG_FLGPAD(0) |
3517             AC_CFG_BTSTF(0) |
3518             AC_CFG_CRC16(0) |
3519             AC_CFG_NCRC(0) |
3520             AC_CFG_TNCRS(1) |
3521             AC_CFG_MANCH(0) |
3522             AC_CFG_BCDIS(0) | AC_CFG_PRM(lp->promiscuous);
3523         cfg.cfg_byte15 = AC_CFG_ICDS(0) |
3524             AC_CFG_CDTF(0) | AC_CFG_ICSS(0) | AC_CFG_CSTF(0);
3525 /*
3526   cfg.cfg_min_frm_len = AC_CFG_MNFRM(64);
3527 */
3528         cfg.cfg_min_frm_len = AC_CFG_MNFRM(8);
3529
3530         cfg.cfg_h.ac_command = (AC_CFLD_CMD & acmd_configure);
3531         cfg.cfg_h.ac_link = ias_addr;
3532         obram_write(ioaddr, cfg_addr, (unsigned char *) &cfg, sizeof(cfg));
3533
3534         /* Set up the MAC address */
3535         memset(&ias, 0x00, sizeof(ias));
3536         ias.ias_h.ac_command = (AC_CFLD_CMD & acmd_ia_setup);
3537         ias.ias_h.ac_link = mcs_addr;
3538         memcpy(&ias.ias_addr[0], (unsigned char *) &dev->dev_addr[0],
3539                sizeof(ias.ias_addr));
3540         obram_write(ioaddr, ias_addr, (unsigned char *) &ias, sizeof(ias));
3541
3542         /* Initialize adapter's Ethernet multicast addresses */
3543         memset(&mcs, 0x00, sizeof(mcs));
3544         mcs.mcs_h.ac_command = AC_CFLD_I | (AC_CFLD_CMD & acmd_mc_setup);
3545         mcs.mcs_h.ac_link = nop_addr;
3546         mcs.mcs_cnt = WAVELAN_ADDR_SIZE * lp->mc_count;
3547         obram_write(ioaddr, mcs_addr, (unsigned char *) &mcs, sizeof(mcs));
3548
3549         /* Any address to set? */
3550         if (lp->mc_count) {
3551                 for (dmi = dev->mc_list; dmi; dmi = dmi->next)
3552                         outsw(PIOP1(ioaddr), (u16 *) dmi->dmi_addr,
3553                               WAVELAN_ADDR_SIZE >> 1);
3554
3555 #ifdef DEBUG_CONFIG_INFO
3556                 printk(KERN_DEBUG
3557                        "%s: wv_82586_config(): set %d multicast addresses:\n",
3558                        dev->name, lp->mc_count);
3559                 for (dmi = dev->mc_list; dmi; dmi = dmi->next)
3560                         printk(KERN_DEBUG " %pM\n", dmi->dmi_addr);
3561 #endif
3562         }
3563
3564         /*
3565          * Overwrite the predecessor NOP link
3566          * so that it points to the configure action.
3567          */
3568         nop_addr = txpred + sizeof(tx);
3569         nop.nop_h.ac_status = 0;
3570         obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status),
3571                     (unsigned char *) &nop.nop_h.ac_status,
3572                     sizeof(nop.nop_h.ac_status));
3573         nop.nop_h.ac_link = cfg_addr;
3574         obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link),
3575                     (unsigned char *) &nop.nop_h.ac_link,
3576                     sizeof(nop.nop_h.ac_link));
3577
3578         /* Job done, clear the flag */
3579         lp->reconfig_82586 = 0;
3580
3581         if (lp->tx_first_in_use == I82586NULL)
3582                 lp->tx_first_in_use = txblock;
3583
3584         if (lp->tx_n_in_use == (NTXBLOCKS - 1))
3585                 netif_stop_queue(dev);
3586
3587 #ifdef DEBUG_CONFIG_TRACE
3588         printk(KERN_DEBUG "%s: <-wv_82586_config()\n", dev->name);
3589 #endif
3590 }
3591
3592 /*------------------------------------------------------------------*/
3593 /*
3594  * This routine, called by wavelan_close(), gracefully stops the 
3595  * WaveLAN controller (i82586).
3596  * (called by wavelan_close())
3597  */
3598 static void wv_82586_stop(struct net_device * dev)
3599 {
3600         net_local *lp = netdev_priv(dev);
3601         unsigned long ioaddr = dev->base_addr;
3602         u16 scb_cmd;
3603
3604 #ifdef DEBUG_CONFIG_TRACE
3605         printk(KERN_DEBUG "%s: ->wv_82586_stop()\n", dev->name);
3606 #endif
3607
3608         /* Suspend both command unit and receive unit. */
3609         scb_cmd =
3610             (SCB_CMD_CUC & SCB_CMD_CUC_SUS) | (SCB_CMD_RUC &
3611                                                SCB_CMD_RUC_SUS);
3612         obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
3613                     (unsigned char *) &scb_cmd, sizeof(scb_cmd));
3614         set_chan_attn(ioaddr, lp->hacr);
3615
3616         /* No more interrupts */
3617         wv_ints_off(dev);
3618
3619 #ifdef DEBUG_CONFIG_TRACE
3620         printk(KERN_DEBUG "%s: <-wv_82586_stop()\n", dev->name);
3621 #endif
3622 }
3623
3624 /*------------------------------------------------------------------*/
3625 /*
3626  * Totally reset the WaveLAN and restart it.
3627  * Performs the following actions:
3628  *      1. A power reset (reset DMA)
3629  *      2. Initialize the radio modem (using wv_mmc_init)
3630  *      3. Reset & Configure LAN controller (using wv_82586_start)
3631  *      4. Start the LAN controller's command unit
3632  *      5. Start the LAN controller's receive unit
3633  * (called by wavelan_interrupt(), wavelan_watchdog() & wavelan_open())
3634  */
3635 static int wv_hw_reset(struct net_device * dev)
3636 {
3637         net_local *lp = netdev_priv(dev);
3638         unsigned long ioaddr = dev->base_addr;
3639
3640 #ifdef DEBUG_CONFIG_TRACE
3641         printk(KERN_DEBUG "%s: ->wv_hw_reset(dev=0x%x)\n", dev->name,
3642                (unsigned int) dev);
3643 #endif
3644
3645         /* Increase the number of resets done. */
3646         lp->nresets++;
3647
3648         wv_hacr_reset(ioaddr);
3649         lp->hacr = HACR_DEFAULT;
3650
3651         if ((wv_mmc_init(dev) < 0) || (wv_82586_start(dev) < 0))
3652                 return -1;
3653
3654         /* Enable the card to send interrupts. */
3655         wv_ints_on(dev);
3656
3657         /* Start card functions */
3658         if (wv_cu_start(dev) < 0)
3659                 return -1;
3660
3661         /* Setup the controller and parameters */
3662         wv_82586_config(dev);
3663
3664         /* Finish configuration with the receive unit */
3665         if (wv_ru_start(dev) < 0)
3666                 return -1;
3667
3668 #ifdef DEBUG_CONFIG_TRACE
3669         printk(KERN_DEBUG "%s: <-wv_hw_reset()\n", dev->name);
3670 #endif
3671         return 0;
3672 }
3673
3674 /*------------------------------------------------------------------*/
3675 /*
3676  * Check if there is a WaveLAN at the specific base address.
3677  * As a side effect, this reads the MAC address.
3678  * (called in wavelan_probe() and init_module())
3679  */
3680 static int wv_check_ioaddr(unsigned long ioaddr, u8 * mac)
3681 {
3682         int i;                  /* Loop counter */
3683
3684         /* Check if the base address if available. */
3685         if (!request_region(ioaddr, sizeof(ha_t), "wavelan probe"))
3686                 return -EBUSY;          /* ioaddr already used */
3687
3688         /* Reset host interface */
3689         wv_hacr_reset(ioaddr);
3690
3691         /* Read the MAC address from the parameter storage area. */
3692         psa_read(ioaddr, HACR_DEFAULT, psaoff(0, psa_univ_mac_addr),
3693                  mac, 6);
3694
3695         release_region(ioaddr, sizeof(ha_t));
3696
3697         /*
3698          * Check the first three octets of the address for the manufacturer's code.
3699          * Note: if this can't find your WaveLAN card, you've got a
3700          * non-NCR/AT&T/Lucent ISA card.  See wavelan.p.h for detail on
3701          * how to configure your card.
3702          */
3703         for (i = 0; i < ARRAY_SIZE(MAC_ADDRESSES); i++)
3704                 if ((mac[0] == MAC_ADDRESSES[i][0]) &&
3705                     (mac[1] == MAC_ADDRESSES[i][1]) &&
3706                     (mac[2] == MAC_ADDRESSES[i][2]))
3707                         return 0;
3708
3709 #ifdef DEBUG_CONFIG_INFO
3710         printk(KERN_WARNING
3711                "WaveLAN (0x%3X): your MAC address might be %02X:%02X:%02X.\n",
3712                ioaddr, mac[0], mac[1], mac[2]);
3713 #endif
3714         return -ENODEV;
3715 }
3716
3717 /************************ INTERRUPT HANDLING ************************/
3718
3719 /*
3720  * This function is the interrupt handler for the WaveLAN card. This
3721  * routine will be called whenever: 
3722  */
3723 static irqreturn_t wavelan_interrupt(int irq, void *dev_id)
3724 {
3725         struct net_device *dev;
3726         unsigned long ioaddr;
3727         net_local *lp;
3728         u16 hasr;
3729         u16 status;
3730         u16 ack_cmd;
3731
3732         dev = dev_id;
3733
3734 #ifdef DEBUG_INTERRUPT_TRACE
3735         printk(KERN_DEBUG "%s: ->wavelan_interrupt()\n", dev->name);
3736 #endif
3737
3738         lp = netdev_priv(dev);
3739         ioaddr = dev->base_addr;
3740
3741 #ifdef DEBUG_INTERRUPT_INFO
3742         /* Check state of our spinlock */
3743         if(spin_is_locked(&lp->spinlock))
3744                 printk(KERN_DEBUG
3745                        "%s: wavelan_interrupt(): spinlock is already locked !!!\n",
3746                        dev->name);
3747 #endif
3748
3749         /* Prevent reentrancy. We need to do that because we may have
3750          * multiple interrupt handler running concurrently.
3751          * It is safe because interrupts are disabled before acquiring
3752          * the spinlock. */
3753         spin_lock(&lp->spinlock);
3754
3755         /* We always had spurious interrupts at startup, but lately I
3756          * saw them comming *between* the request_irq() and the
3757          * spin_lock_irqsave() in wavelan_open(), so the spinlock
3758          * protection is no enough.
3759          * So, we also check lp->hacr that will tell us is we enabled
3760          * irqs or not (see wv_ints_on()).
3761          * We can't use netif_running(dev) because we depend on the
3762          * proper processing of the irq generated during the config. */
3763
3764         /* Which interrupt it is ? */
3765         hasr = hasr_read(ioaddr);
3766
3767 #ifdef DEBUG_INTERRUPT_INFO
3768         printk(KERN_INFO
3769                "%s: wavelan_interrupt(): hasr 0x%04x; hacr 0x%04x.\n",
3770                dev->name, hasr, lp->hacr);
3771 #endif
3772
3773         /* Check modem interrupt */
3774         if ((hasr & HASR_MMC_INTR) && (lp->hacr & HACR_MMC_INT_ENABLE)) {
3775                 u8 dce_status;
3776
3777                 /*
3778                  * Interrupt from the modem management controller.
3779                  * This will clear it -- ignored for now.
3780                  */
3781                 mmc_read(ioaddr, mmroff(0, mmr_dce_status), &dce_status,
3782                          sizeof(dce_status));
3783
3784 #ifdef DEBUG_INTERRUPT_ERROR
3785                 printk(KERN_INFO
3786                        "%s: wavelan_interrupt(): unexpected mmc interrupt: status 0x%04x.\n",
3787                        dev->name, dce_status);
3788 #endif
3789         }
3790
3791         /* Check if not controller interrupt */
3792         if (((hasr & HASR_82586_INTR) == 0) ||
3793             ((lp->hacr & HACR_82586_INT_ENABLE) == 0)) {
3794 #ifdef DEBUG_INTERRUPT_ERROR
3795                 printk(KERN_INFO
3796                        "%s: wavelan_interrupt(): interrupt not coming from i82586 - hasr 0x%04x.\n",
3797                        dev->name, hasr);
3798 #endif
3799                 spin_unlock (&lp->spinlock);
3800                 return IRQ_NONE;
3801         }
3802
3803         /* Read interrupt data. */
3804         obram_read(ioaddr, scboff(OFFSET_SCB, scb_status),
3805                    (unsigned char *) &status, sizeof(status));
3806
3807         /*
3808          * Acknowledge the interrupt(s).
3809          */
3810         ack_cmd = status & SCB_ST_INT;
3811         obram_write(ioaddr, scboff(OFFSET_SCB, scb_command),
3812                     (unsigned char *) &ack_cmd, sizeof(ack_cmd));
3813         set_chan_attn(ioaddr, lp->hacr);
3814
3815 #ifdef DEBUG_INTERRUPT_INFO
3816         printk(KERN_DEBUG "%s: wavelan_interrupt(): status 0x%04x.\n",
3817                dev->name, status);
3818 #endif
3819
3820         /* Command completed. */
3821         if ((status & SCB_ST_CX) == SCB_ST_CX) {
3822 #ifdef DEBUG_INTERRUPT_INFO
3823                 printk(KERN_DEBUG
3824                        "%s: wavelan_interrupt(): command completed.\n",
3825                        dev->name);
3826 #endif
3827                 wv_complete(dev, ioaddr, lp);
3828         }
3829
3830         /* Frame received. */
3831         if ((status & SCB_ST_FR) == SCB_ST_FR) {
3832 #ifdef DEBUG_INTERRUPT_INFO
3833                 printk(KERN_DEBUG
3834                        "%s: wavelan_interrupt(): received packet.\n",
3835                        dev->name);
3836 #endif
3837                 wv_receive(dev);
3838         }
3839
3840         /* Check the state of the command unit. */
3841         if (((status & SCB_ST_CNA) == SCB_ST_CNA) ||
3842             (((status & SCB_ST_CUS) != SCB_ST_CUS_ACTV) &&
3843              (netif_running(dev)))) {
3844 #ifdef DEBUG_INTERRUPT_ERROR
3845                 printk(KERN_INFO
3846                        "%s: wavelan_interrupt(): CU inactive -- restarting\n",
3847                        dev->name);
3848 #endif
3849                 wv_hw_reset(dev);
3850         }
3851
3852         /* Check the state of the command unit. */
3853         if (((status & SCB_ST_RNR) == SCB_ST_RNR) ||
3854             (((status & SCB_ST_RUS) != SCB_ST_RUS_RDY) &&
3855              (netif_running(dev)))) {
3856 #ifdef DEBUG_INTERRUPT_ERROR
3857                 printk(KERN_INFO
3858                        "%s: wavelan_interrupt(): RU not ready -- restarting\n",
3859                        dev->name);
3860 #endif
3861                 wv_hw_reset(dev);
3862         }
3863
3864         /* Release spinlock */
3865         spin_unlock (&lp->spinlock);
3866
3867 #ifdef DEBUG_INTERRUPT_TRACE
3868         printk(KERN_DEBUG "%s: <-wavelan_interrupt()\n", dev->name);
3869 #endif
3870         return IRQ_HANDLED;
3871 }
3872
3873 /*------------------------------------------------------------------*/
3874 /*
3875  * Watchdog: when we start a transmission, a timer is set for us in the
3876  * kernel.  If the transmission completes, this timer is disabled. If
3877  * the timer expires, we are called and we try to unlock the hardware.
3878  */
3879 static void wavelan_watchdog(struct net_device *        dev)
3880 {
3881         net_local *lp = netdev_priv(dev);
3882         u_long          ioaddr = dev->base_addr;
3883         unsigned long   flags;
3884         unsigned int    nreaped;
3885
3886 #ifdef DEBUG_INTERRUPT_TRACE
3887         printk(KERN_DEBUG "%s: ->wavelan_watchdog()\n", dev->name);
3888 #endif
3889
3890 #ifdef DEBUG_INTERRUPT_ERROR
3891         printk(KERN_INFO "%s: wavelan_watchdog: watchdog timer expired\n",
3892                dev->name);
3893 #endif
3894
3895         /* Check that we came here for something */
3896         if (lp->tx_n_in_use <= 0) {
3897                 return;
3898         }
3899
3900         spin_lock_irqsave(&lp->spinlock, flags);
3901
3902         /* Try to see if some buffers are not free (in case we missed
3903          * an interrupt */
3904         nreaped = wv_complete(dev, ioaddr, lp);
3905
3906 #ifdef DEBUG_INTERRUPT_INFO
3907         printk(KERN_DEBUG
3908                "%s: wavelan_watchdog(): %d reaped, %d remain.\n",
3909                dev->name, nreaped, lp->tx_n_in_use);
3910 #endif
3911
3912 #ifdef DEBUG_PSA_SHOW
3913         {
3914                 psa_t psa;
3915                 psa_read(dev, 0, (unsigned char *) &psa, sizeof(psa));
3916                 wv_psa_show(&psa);
3917         }
3918 #endif
3919 #ifdef DEBUG_MMC_SHOW
3920         wv_mmc_show(dev);
3921 #endif
3922 #ifdef DEBUG_I82586_SHOW
3923         wv_cu_show(dev);
3924 #endif
3925
3926         /* If no buffer has been freed */
3927         if (nreaped == 0) {
3928 #ifdef DEBUG_INTERRUPT_ERROR
3929                 printk(KERN_INFO
3930                        "%s: wavelan_watchdog(): cleanup failed, trying reset\n",
3931                        dev->name);
3932 #endif
3933                 wv_hw_reset(dev);
3934         }
3935
3936         /* At this point, we should have some free Tx buffer ;-) */
3937         if (lp->tx_n_in_use < NTXBLOCKS - 1)
3938                 netif_wake_queue(dev);
3939
3940         spin_unlock_irqrestore(&lp->spinlock, flags);
3941         
3942 #ifdef DEBUG_INTERRUPT_TRACE
3943         printk(KERN_DEBUG "%s: <-wavelan_watchdog()\n", dev->name);
3944 #endif
3945 }
3946
3947 /********************* CONFIGURATION CALLBACKS *********************/
3948 /*
3949  * Here are the functions called by the Linux networking code (NET3)
3950  * for initialization, configuration and deinstallations of the 
3951  * WaveLAN ISA hardware.
3952  */
3953
3954 /*------------------------------------------------------------------*/
3955 /*
3956  * Configure and start up the WaveLAN PCMCIA adaptor.
3957  * Called by NET3 when it "opens" the device.
3958  */
3959 static int wavelan_open(struct net_device * dev)
3960 {
3961         net_local *lp = netdev_priv(dev);
3962         unsigned long   flags;
3963
3964 #ifdef DEBUG_CALLBACK_TRACE
3965         printk(KERN_DEBUG "%s: ->wavelan_open(dev=0x%x)\n", dev->name,
3966                (unsigned int) dev);
3967 #endif
3968
3969         /* Check irq */
3970         if (dev->irq == 0) {
3971 #ifdef DEBUG_CONFIG_ERROR
3972                 printk(KERN_WARNING "%s: wavelan_open(): no IRQ\n",
3973                        dev->name);
3974 #endif
3975                 return -ENXIO;
3976         }
3977
3978         if (request_irq(dev->irq, &wavelan_interrupt, 0, "WaveLAN", dev) != 0) 
3979         {
3980 #ifdef DEBUG_CONFIG_ERROR
3981                 printk(KERN_WARNING "%s: wavelan_open(): invalid IRQ\n",
3982                        dev->name);
3983 #endif
3984                 return -EAGAIN;
3985         }
3986
3987         spin_lock_irqsave(&lp->spinlock, flags);
3988         
3989         if (wv_hw_reset(dev) != -1) {
3990                 netif_start_queue(dev);
3991         } else {
3992                 free_irq(dev->irq, dev);
3993 #ifdef DEBUG_CONFIG_ERROR
3994                 printk(KERN_INFO
3995                        "%s: wavelan_open(): impossible to start the card\n",
3996                        dev->name);
3997 #endif
3998                 spin_unlock_irqrestore(&lp->spinlock, flags);
3999                 return -EAGAIN;
4000         }
4001         spin_unlock_irqrestore(&lp->spinlock, flags);
4002         
4003 #ifdef DEBUG_CALLBACK_TRACE
4004         printk(KERN_DEBUG "%s: <-wavelan_open()\n", dev->name);
4005 #endif
4006         return 0;
4007 }
4008
4009 /*------------------------------------------------------------------*/
4010 /*
4011  * Shut down the WaveLAN ISA card.
4012  * Called by NET3 when it "closes" the device.
4013  */
4014 static int wavelan_close(struct net_device * dev)
4015 {
4016         net_local *lp = netdev_priv(dev);
4017         unsigned long flags;
4018
4019 #ifdef DEBUG_CALLBACK_TRACE
4020         printk(KERN_DEBUG "%s: ->wavelan_close(dev=0x%x)\n", dev->name,
4021                (unsigned int) dev);
4022 #endif
4023
4024         netif_stop_queue(dev);
4025
4026         /*
4027          * Flush the Tx and disable Rx.
4028          */
4029         spin_lock_irqsave(&lp->spinlock, flags);
4030         wv_82586_stop(dev);
4031         spin_unlock_irqrestore(&lp->spinlock, flags);
4032
4033         free_irq(dev->irq, dev);
4034
4035 #ifdef DEBUG_CALLBACK_TRACE
4036         printk(KERN_DEBUG "%s: <-wavelan_close()\n", dev->name);
4037 #endif
4038         return 0;
4039 }
4040
4041 /*------------------------------------------------------------------*/
4042 /*
4043  * Probe an I/O address, and if the WaveLAN is there configure the
4044  * device structure
4045  * (called by wavelan_probe() and via init_module()).
4046  */
4047 static int __init wavelan_config(struct net_device *dev, unsigned short ioaddr)
4048 {
4049         u8 irq_mask;
4050         int irq;
4051         net_local *lp;
4052         mac_addr mac;
4053         int err;
4054
4055         if (!request_region(ioaddr, sizeof(ha_t), "wavelan"))
4056                 return -EADDRINUSE;
4057
4058         err = wv_check_ioaddr(ioaddr, mac);
4059         if (err)
4060                 goto out;
4061
4062         memcpy(dev->dev_addr, mac, 6);
4063
4064         dev->base_addr = ioaddr;
4065
4066 #ifdef DEBUG_CALLBACK_TRACE
4067         printk(KERN_DEBUG "%s: ->wavelan_config(dev=0x%x, ioaddr=0x%lx)\n",
4068                dev->name, (unsigned int) dev, ioaddr);
4069 #endif
4070
4071         /* Check IRQ argument on command line. */
4072         if (dev->irq != 0) {
4073                 irq_mask = wv_irq_to_psa(dev->irq);
4074
4075                 if (irq_mask == 0) {
4076 #ifdef DEBUG_CONFIG_ERROR
4077                         printk(KERN_WARNING
4078                                "%s: wavelan_config(): invalid IRQ %d ignored.\n",
4079                                dev->name, dev->irq);
4080 #endif
4081                         dev->irq = 0;
4082                 } else {
4083 #ifdef DEBUG_CONFIG_INFO
4084                         printk(KERN_DEBUG
4085                                "%s: wavelan_config(): changing IRQ to %d\n",
4086                                dev->name, dev->irq);
4087 #endif
4088                         psa_write(ioaddr, HACR_DEFAULT,
4089                                   psaoff(0, psa_int_req_no), &irq_mask, 1);
4090                         /* update the Wavelan checksum */
4091                         update_psa_checksum(dev, ioaddr, HACR_DEFAULT);
4092                         wv_hacr_reset(ioaddr);
4093                 }
4094         }
4095
4096         psa_read(ioaddr, HACR_DEFAULT, psaoff(0, psa_int_req_no),
4097                  &irq_mask, 1);
4098         if ((irq = wv_psa_to_irq(irq_mask)) == -1) {
4099 #ifdef DEBUG_CONFIG_ERROR
4100                 printk(KERN_INFO
4101                        "%s: wavelan_config(): could not wavelan_map_irq(%d).\n",
4102                        dev->name, irq_mask);
4103 #endif
4104                 err = -EAGAIN;
4105                 goto out;
4106         }
4107
4108         dev->irq = irq;
4109
4110         dev->mem_start = 0x0000;
4111         dev->mem_end = 0x0000;
4112         dev->if_port = 0;
4113
4114         /* Initialize device structures */
4115         memset(netdev_priv(dev), 0, sizeof(net_local));
4116         lp = netdev_priv(dev);
4117
4118         /* Back link to the device structure. */
4119         lp->dev = dev;
4120         /* Add the device at the beginning of the linked list. */
4121         lp->next = wavelan_list;
4122         wavelan_list = lp;
4123
4124         lp->hacr = HACR_DEFAULT;
4125
4126         /* Multicast stuff */
4127         lp->promiscuous = 0;
4128         lp->mc_count = 0;
4129
4130         /* Init spinlock */
4131         spin_lock_init(&lp->spinlock);
4132
4133         dev->open = wavelan_open;
4134         dev->stop = wavelan_close;
4135         dev->hard_start_xmit = wavelan_packet_xmit;
4136         dev->get_stats = wavelan_get_stats;
4137         dev->set_multicast_list = &wavelan_set_multicast_list;
4138         dev->tx_timeout         = &wavelan_watchdog;
4139         dev->watchdog_timeo     = WATCHDOG_JIFFIES;
4140 #ifdef SET_MAC_ADDRESS
4141         dev->set_mac_address = &wavelan_set_mac_address;
4142 #endif                          /* SET_MAC_ADDRESS */
4143
4144         dev->wireless_handlers = &wavelan_handler_def;
4145         lp->wireless_data.spy_data = &lp->spy_data;
4146         dev->wireless_data = &lp->wireless_data;
4147
4148         dev->mtu = WAVELAN_MTU;
4149
4150         /* Display nice information. */
4151         wv_init_info(dev);
4152
4153 #ifdef DEBUG_CALLBACK_TRACE
4154         printk(KERN_DEBUG "%s: <-wavelan_config()\n", dev->name);
4155 #endif
4156         return 0;
4157 out:
4158         release_region(ioaddr, sizeof(ha_t));
4159         return err;
4160 }
4161
4162 /*------------------------------------------------------------------*/
4163 /*
4164  * Check for a network adaptor of this type.  Return '0' iff one 
4165  * exists.  There seem to be different interpretations of
4166  * the initial value of dev->base_addr.
4167  * We follow the example in drivers/net/ne.c.
4168  * (called in "Space.c")
4169  */
4170 struct net_device * __init wavelan_probe(int unit)
4171 {
4172         struct net_device *dev;
4173         short base_addr;
4174         int def_irq;
4175         int i;
4176         int r = 0;
4177
4178         /* compile-time check the sizes of structures */
4179         BUILD_BUG_ON(sizeof(psa_t) != PSA_SIZE);
4180         BUILD_BUG_ON(sizeof(mmw_t) != MMW_SIZE);
4181         BUILD_BUG_ON(sizeof(mmr_t) != MMR_SIZE);
4182         BUILD_BUG_ON(sizeof(ha_t) != HA_SIZE);
4183
4184         dev = alloc_etherdev(sizeof(net_local));
4185         if (!dev)
4186                 return ERR_PTR(-ENOMEM);
4187
4188         sprintf(dev->name, "eth%d", unit);
4189         netdev_boot_setup_check(dev);
4190         base_addr = dev->base_addr;
4191         def_irq = dev->irq;
4192
4193 #ifdef DEBUG_CALLBACK_TRACE
4194         printk(KERN_DEBUG
4195                "%s: ->wavelan_probe(dev=%p (base_addr=0x%x))\n",
4196                dev->name, dev, (unsigned int) dev->base_addr);
4197 #endif
4198
4199         /* Don't probe at all. */
4200         if (base_addr < 0) {
4201 #ifdef DEBUG_CONFIG_ERROR
4202                 printk(KERN_WARNING
4203                        "%s: wavelan_probe(): invalid base address\n",
4204                        dev->name);
4205 #endif
4206                 r = -ENXIO;
4207         } else if (base_addr > 0x100) { /* Check a single specified location. */
4208                 r = wavelan_config(dev, base_addr);
4209 #ifdef DEBUG_CONFIG_INFO
4210                 if (r != 0)
4211                         printk(KERN_DEBUG
4212                                "%s: wavelan_probe(): no device at specified base address (0x%X) or address already in use\n",
4213                                dev->name, base_addr);
4214 #endif
4215
4216 #ifdef DEBUG_CALLBACK_TRACE
4217                 printk(KERN_DEBUG "%s: <-wavelan_probe()\n", dev->name);
4218 #endif
4219         } else { /* Scan all possible addresses of the WaveLAN hardware. */
4220                 for (i = 0; i < ARRAY_SIZE(iobase); i++) {
4221                         dev->irq = def_irq;
4222                         if (wavelan_config(dev, iobase[i]) == 0) {
4223 #ifdef DEBUG_CALLBACK_TRACE
4224                                 printk(KERN_DEBUG
4225                                        "%s: <-wavelan_probe()\n",
4226                                        dev->name);
4227 #endif
4228                                 break;
4229                         }
4230                 }
4231                 if (i == ARRAY_SIZE(iobase))
4232                         r = -ENODEV;
4233         }
4234         if (r) 
4235                 goto out;
4236         r = register_netdev(dev);
4237         if (r)
4238                 goto out1;
4239         return dev;
4240 out1:
4241         release_region(dev->base_addr, sizeof(ha_t));
4242         wavelan_list = wavelan_list->next;
4243 out:
4244         free_netdev(dev);
4245         return ERR_PTR(r);
4246 }
4247
4248 /****************************** MODULE ******************************/
4249 /*
4250  * Module entry point: insertion and removal
4251  */
4252
4253 #ifdef  MODULE
4254 /*------------------------------------------------------------------*/
4255 /*
4256  * Insertion of the module
4257  * I'm now quite proud of the multi-device support.
4258  */
4259 int __init init_module(void)
4260 {
4261         int ret = -EIO;         /* Return error if no cards found */
4262         int i;
4263
4264 #ifdef DEBUG_MODULE_TRACE
4265         printk(KERN_DEBUG "-> init_module()\n");
4266 #endif
4267
4268         /* If probing is asked */
4269         if (io[0] == 0) {
4270 #ifdef DEBUG_CONFIG_ERROR
4271                 printk(KERN_WARNING
4272                        "WaveLAN init_module(): doing device probing (bad !)\n");
4273                 printk(KERN_WARNING
4274                        "Specify base addresses while loading module to correct the problem\n");
4275 #endif
4276
4277                 /* Copy the basic set of address to be probed. */
4278                 for (i = 0; i < ARRAY_SIZE(iobase); i++)
4279                         io[i] = iobase[i];
4280         }
4281
4282
4283         /* Loop on all possible base addresses. */
4284         for (i = 0; i < ARRAY_SIZE(io) && io[i] != 0; i++) {
4285                 struct net_device *dev = alloc_etherdev(sizeof(net_local));
4286                 if (!dev)
4287                         break;
4288                 if (name[i])
4289                         strcpy(dev->name, name[i]);     /* Copy name */
4290                 dev->base_addr = io[i];
4291                 dev->irq = irq[i];
4292
4293                 /* Check if there is something at this base address. */
4294                 if (wavelan_config(dev, io[i]) == 0) {
4295                         if (register_netdev(dev) != 0) {
4296                                 release_region(dev->base_addr, sizeof(ha_t));
4297                                 wavelan_list = wavelan_list->next;
4298                         } else {
4299                                 ret = 0;
4300                                 continue;
4301                         }
4302                 }
4303                 free_netdev(dev);
4304         }
4305
4306 #ifdef DEBUG_CONFIG_ERROR
4307         if (!wavelan_list)
4308                 printk(KERN_WARNING
4309                        "WaveLAN init_module(): no device found\n");
4310 #endif
4311
4312 #ifdef DEBUG_MODULE_TRACE
4313         printk(KERN_DEBUG "<- init_module()\n");
4314 #endif
4315         return ret;
4316 }
4317
4318 /*------------------------------------------------------------------*/
4319 /*
4320  * Removal of the module
4321  */
4322 void cleanup_module(void)
4323 {
4324 #ifdef DEBUG_MODULE_TRACE
4325         printk(KERN_DEBUG "-> cleanup_module()\n");
4326 #endif
4327
4328         /* Loop on all devices and release them. */
4329         while (wavelan_list) {
4330                 struct net_device *dev = wavelan_list->dev;
4331
4332 #ifdef DEBUG_CONFIG_INFO
4333                 printk(KERN_DEBUG
4334                        "%s: cleanup_module(): removing device at 0x%x\n",
4335                        dev->name, (unsigned int) dev);
4336 #endif
4337                 unregister_netdev(dev);
4338
4339                 release_region(dev->base_addr, sizeof(ha_t));
4340                 wavelan_list = wavelan_list->next;
4341
4342                 free_netdev(dev);
4343         }
4344
4345 #ifdef DEBUG_MODULE_TRACE
4346         printk(KERN_DEBUG "<- cleanup_module()\n");
4347 #endif
4348 }
4349 #endif                          /* MODULE */
4350 MODULE_LICENSE("GPL");
4351
4352 /*
4353  * This software may only be used and distributed
4354  * according to the terms of the GNU General Public License.
4355  *
4356  * This software was developed as a component of the
4357  * Linux operating system.
4358  * It is based on other device drivers and information
4359  * either written or supplied by:
4360  *      Ajay Bakre (bakre@paul.rutgers.edu),
4361  *      Donald Becker (becker@scyld.com),
4362  *      Loeke Brederveld (Loeke.Brederveld@Utrecht.NCR.com),
4363  *      Anders Klemets (klemets@it.kth.se),
4364  *      Vladimir V. Kolpakov (w@stier.koenig.ru),
4365  *      Marc Meertens (Marc.Meertens@Utrecht.NCR.com),
4366  *      Pauline Middelink (middelin@polyware.iaf.nl),
4367  *      Robert Morris (rtm@das.harvard.edu),
4368  *      Jean Tourrilhes (jt@hplb.hpl.hp.com),
4369  *      Girish Welling (welling@paul.rutgers.edu),
4370  *
4371  * Thanks go also to:
4372  *      James Ashton (jaa101@syseng.anu.edu.au),
4373  *      Alan Cox (alan@lxorguk.ukuu.org.uk),
4374  *      Allan Creighton (allanc@cs.usyd.edu.au),
4375  *      Matthew Geier (matthew@cs.usyd.edu.au),
4376  *      Remo di Giovanni (remo@cs.usyd.edu.au),
4377  *      Eckhard Grah (grah@wrcs1.urz.uni-wuppertal.de),
4378  *      Vipul Gupta (vgupta@cs.binghamton.edu),
4379  *      Mark Hagan (mhagan@wtcpost.daytonoh.NCR.COM),
4380  *      Tim Nicholson (tim@cs.usyd.edu.au),
4381  *      Ian Parkin (ian@cs.usyd.edu.au),
4382  *      John Rosenberg (johnr@cs.usyd.edu.au),
4383  *      George Rossi (george@phm.gov.au),
4384  *      Arthur Scott (arthur@cs.usyd.edu.au),
4385  *      Peter Storey,
4386  * for their assistance and advice.
4387  *
4388  * Please send bug reports, updates, comments to:
4389  *
4390  * Bruce Janson                                    Email:  bruce@cs.usyd.edu.au
4391  * Basser Department of Computer Science           Phone:  +61-2-9351-3423
4392  * University of Sydney, N.S.W., 2006, AUSTRALIA   Fax:    +61-2-9351-3838
4393  */