]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/wireless/rt2x00/rt61pci.c
Merge branch 'upstream' of git://ftp.linux-mips.org/pub/scm/upstream-linus
[linux-2.6-omap-h63xx.git] / drivers / net / wireless / rt2x00 / rt61pci.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt61pci
23         Abstract: rt61pci device specific routines.
24         Supported chipsets: RT2561, RT2561s, RT2661.
25  */
26
27 #include <linux/crc-itu-t.h>
28 #include <linux/delay.h>
29 #include <linux/etherdevice.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/pci.h>
34 #include <linux/eeprom_93cx6.h>
35
36 #include "rt2x00.h"
37 #include "rt2x00pci.h"
38 #include "rt61pci.h"
39
40 /*
41  * Register access.
42  * BBP and RF register require indirect register access,
43  * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
44  * These indirect registers work with busy bits,
45  * and we will try maximal REGISTER_BUSY_COUNT times to access
46  * the register while taking a REGISTER_BUSY_DELAY us delay
47  * between each attampt. When the busy bit is still set at that time,
48  * the access attempt is considered to have failed,
49  * and we will print an error.
50  */
51 static u32 rt61pci_bbp_check(struct rt2x00_dev *rt2x00dev)
52 {
53         u32 reg;
54         unsigned int i;
55
56         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
57                 rt2x00pci_register_read(rt2x00dev, PHY_CSR3, &reg);
58                 if (!rt2x00_get_field32(reg, PHY_CSR3_BUSY))
59                         break;
60                 udelay(REGISTER_BUSY_DELAY);
61         }
62
63         return reg;
64 }
65
66 static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
67                               const unsigned int word, const u8 value)
68 {
69         u32 reg;
70
71         /*
72          * Wait until the BBP becomes ready.
73          */
74         reg = rt61pci_bbp_check(rt2x00dev);
75         if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
76                 ERROR(rt2x00dev, "PHY_CSR3 register busy. Write failed.\n");
77                 return;
78         }
79
80         /*
81          * Write the data into the BBP.
82          */
83         reg = 0;
84         rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
85         rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
86         rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
87         rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
88
89         rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
90 }
91
92 static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
93                              const unsigned int word, u8 *value)
94 {
95         u32 reg;
96
97         /*
98          * Wait until the BBP becomes ready.
99          */
100         reg = rt61pci_bbp_check(rt2x00dev);
101         if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
102                 ERROR(rt2x00dev, "PHY_CSR3 register busy. Read failed.\n");
103                 return;
104         }
105
106         /*
107          * Write the request into the BBP.
108          */
109         reg = 0;
110         rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
111         rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
112         rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
113
114         rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
115
116         /*
117          * Wait until the BBP becomes ready.
118          */
119         reg = rt61pci_bbp_check(rt2x00dev);
120         if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) {
121                 ERROR(rt2x00dev, "PHY_CSR3 register busy. Read failed.\n");
122                 *value = 0xff;
123                 return;
124         }
125
126         *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
127 }
128
129 static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
130                              const unsigned int word, const u32 value)
131 {
132         u32 reg;
133         unsigned int i;
134
135         if (!word)
136                 return;
137
138         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
139                 rt2x00pci_register_read(rt2x00dev, PHY_CSR4, &reg);
140                 if (!rt2x00_get_field32(reg, PHY_CSR4_BUSY))
141                         goto rf_write;
142                 udelay(REGISTER_BUSY_DELAY);
143         }
144
145         ERROR(rt2x00dev, "PHY_CSR4 register busy. Write failed.\n");
146         return;
147
148 rf_write:
149         reg = 0;
150         rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
151         rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
152         rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
153         rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
154
155         rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg);
156         rt2x00_rf_write(rt2x00dev, word, value);
157 }
158
159 #ifdef CONFIG_RT61PCI_LEDS
160 /*
161  * This function is only called from rt61pci_led_brightness()
162  * make gcc happy by placing this function inside the
163  * same ifdef statement as the caller.
164  */
165 static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
166                                 const u8 command, const u8 token,
167                                 const u8 arg0, const u8 arg1)
168 {
169         u32 reg;
170
171         rt2x00pci_register_read(rt2x00dev, H2M_MAILBOX_CSR, &reg);
172
173         if (rt2x00_get_field32(reg, H2M_MAILBOX_CSR_OWNER)) {
174                 ERROR(rt2x00dev, "mcu request error. "
175                       "Request 0x%02x failed for token 0x%02x.\n",
176                       command, token);
177                 return;
178         }
179
180         rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
181         rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
182         rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
183         rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
184         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
185
186         rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
187         rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
188         rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
189         rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg);
190 }
191 #endif /* CONFIG_RT61PCI_LEDS */
192
193 static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
194 {
195         struct rt2x00_dev *rt2x00dev = eeprom->data;
196         u32 reg;
197
198         rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
199
200         eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
201         eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
202         eeprom->reg_data_clock =
203             !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
204         eeprom->reg_chip_select =
205             !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
206 }
207
208 static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
209 {
210         struct rt2x00_dev *rt2x00dev = eeprom->data;
211         u32 reg = 0;
212
213         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
214         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
215         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
216                            !!eeprom->reg_data_clock);
217         rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
218                            !!eeprom->reg_chip_select);
219
220         rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
221 }
222
223 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
224 #define CSR_OFFSET(__word)      ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
225
226 static void rt61pci_read_csr(struct rt2x00_dev *rt2x00dev,
227                              const unsigned int word, u32 *data)
228 {
229         rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
230 }
231
232 static void rt61pci_write_csr(struct rt2x00_dev *rt2x00dev,
233                               const unsigned int word, u32 data)
234 {
235         rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
236 }
237
238 static const struct rt2x00debug rt61pci_rt2x00debug = {
239         .owner  = THIS_MODULE,
240         .csr    = {
241                 .read           = rt61pci_read_csr,
242                 .write          = rt61pci_write_csr,
243                 .word_size      = sizeof(u32),
244                 .word_count     = CSR_REG_SIZE / sizeof(u32),
245         },
246         .eeprom = {
247                 .read           = rt2x00_eeprom_read,
248                 .write          = rt2x00_eeprom_write,
249                 .word_size      = sizeof(u16),
250                 .word_count     = EEPROM_SIZE / sizeof(u16),
251         },
252         .bbp    = {
253                 .read           = rt61pci_bbp_read,
254                 .write          = rt61pci_bbp_write,
255                 .word_size      = sizeof(u8),
256                 .word_count     = BBP_SIZE / sizeof(u8),
257         },
258         .rf     = {
259                 .read           = rt2x00_rf_read,
260                 .write          = rt61pci_rf_write,
261                 .word_size      = sizeof(u32),
262                 .word_count     = RF_SIZE / sizeof(u32),
263         },
264 };
265 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
266
267 #ifdef CONFIG_RT61PCI_RFKILL
268 static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
269 {
270         u32 reg;
271
272         rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
273         return rt2x00_get_field32(reg, MAC_CSR13_BIT5);
274 }
275 #else
276 #define rt61pci_rfkill_poll     NULL
277 #endif /* CONFIG_RT61PCI_RFKILL */
278
279 #ifdef CONFIG_RT61PCI_LEDS
280 static void rt61pci_brightness_set(struct led_classdev *led_cdev,
281                                    enum led_brightness brightness)
282 {
283         struct rt2x00_led *led =
284             container_of(led_cdev, struct rt2x00_led, led_dev);
285         unsigned int enabled = brightness != LED_OFF;
286         unsigned int a_mode =
287             (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
288         unsigned int bg_mode =
289             (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
290
291         if (led->type == LED_TYPE_RADIO) {
292                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
293                                    MCU_LEDCS_RADIO_STATUS, enabled);
294
295                 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
296                                     (led->rt2x00dev->led_mcu_reg & 0xff),
297                                     ((led->rt2x00dev->led_mcu_reg >> 8)));
298         } else if (led->type == LED_TYPE_ASSOC) {
299                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
300                                    MCU_LEDCS_LINK_BG_STATUS, bg_mode);
301                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
302                                    MCU_LEDCS_LINK_A_STATUS, a_mode);
303
304                 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
305                                     (led->rt2x00dev->led_mcu_reg & 0xff),
306                                     ((led->rt2x00dev->led_mcu_reg >> 8)));
307         } else if (led->type == LED_TYPE_QUALITY) {
308                 /*
309                  * The brightness is divided into 6 levels (0 - 5),
310                  * this means we need to convert the brightness
311                  * argument into the matching level within that range.
312                  */
313                 rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
314                                     brightness / (LED_FULL / 6), 0);
315         }
316 }
317
318 static int rt61pci_blink_set(struct led_classdev *led_cdev,
319                              unsigned long *delay_on,
320                              unsigned long *delay_off)
321 {
322         struct rt2x00_led *led =
323             container_of(led_cdev, struct rt2x00_led, led_dev);
324         u32 reg;
325
326         rt2x00pci_register_read(led->rt2x00dev, MAC_CSR14, &reg);
327         rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
328         rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
329         rt2x00pci_register_write(led->rt2x00dev, MAC_CSR14, reg);
330
331         return 0;
332 }
333
334 static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
335                              struct rt2x00_led *led,
336                              enum led_type type)
337 {
338         led->rt2x00dev = rt2x00dev;
339         led->type = type;
340         led->led_dev.brightness_set = rt61pci_brightness_set;
341         led->led_dev.blink_set = rt61pci_blink_set;
342         led->flags = LED_INITIALIZED;
343 }
344 #endif /* CONFIG_RT61PCI_LEDS */
345
346 /*
347  * Configuration handlers.
348  */
349 static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
350                                   const unsigned int filter_flags)
351 {
352         u32 reg;
353
354         /*
355          * Start configuration steps.
356          * Note that the version error will always be dropped
357          * and broadcast frames will always be accepted since
358          * there is no filter for it at this time.
359          */
360         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
361         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
362                            !(filter_flags & FIF_FCSFAIL));
363         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
364                            !(filter_flags & FIF_PLCPFAIL));
365         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
366                            !(filter_flags & FIF_CONTROL));
367         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
368                            !(filter_flags & FIF_PROMISC_IN_BSS));
369         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
370                            !(filter_flags & FIF_PROMISC_IN_BSS) &&
371                            !rt2x00dev->intf_ap_count);
372         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
373         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
374                            !(filter_flags & FIF_ALLMULTI));
375         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
376         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
377                            !(filter_flags & FIF_CONTROL));
378         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
379 }
380
381 static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
382                                 struct rt2x00_intf *intf,
383                                 struct rt2x00intf_conf *conf,
384                                 const unsigned int flags)
385 {
386         unsigned int beacon_base;
387         u32 reg;
388
389         if (flags & CONFIG_UPDATE_TYPE) {
390                 /*
391                  * Clear current synchronisation setup.
392                  * For the Beacon base registers we only need to clear
393                  * the first byte since that byte contains the VALID and OWNER
394                  * bits which (when set to 0) will invalidate the entire beacon.
395                  */
396                 beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
397                 rt2x00pci_register_write(rt2x00dev, beacon_base, 0);
398
399                 /*
400                  * Enable synchronisation.
401                  */
402                 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
403                 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
404                 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
405                 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
406                 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
407         }
408
409         if (flags & CONFIG_UPDATE_MAC) {
410                 reg = le32_to_cpu(conf->mac[1]);
411                 rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
412                 conf->mac[1] = cpu_to_le32(reg);
413
414                 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2,
415                                               conf->mac, sizeof(conf->mac));
416         }
417
418         if (flags & CONFIG_UPDATE_BSSID) {
419                 reg = le32_to_cpu(conf->bssid[1]);
420                 rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
421                 conf->bssid[1] = cpu_to_le32(reg);
422
423                 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4,
424                                               conf->bssid, sizeof(conf->bssid));
425         }
426 }
427
428 static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
429                                struct rt2x00lib_erp *erp)
430 {
431         u32 reg;
432
433         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
434         rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, erp->ack_timeout);
435         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
436
437         rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
438         rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
439                            !!erp->short_preamble);
440         rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
441 }
442
443 static void rt61pci_config_phymode(struct rt2x00_dev *rt2x00dev,
444                                    const int basic_rate_mask)
445 {
446         rt2x00pci_register_write(rt2x00dev, TXRX_CSR5, basic_rate_mask);
447 }
448
449 static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
450                                    struct rf_channel *rf, const int txpower)
451 {
452         u8 r3;
453         u8 r94;
454         u8 smart;
455
456         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
457         rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
458
459         smart = !(rt2x00_rf(&rt2x00dev->chip, RF5225) ||
460                   rt2x00_rf(&rt2x00dev->chip, RF2527));
461
462         rt61pci_bbp_read(rt2x00dev, 3, &r3);
463         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
464         rt61pci_bbp_write(rt2x00dev, 3, r3);
465
466         r94 = 6;
467         if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
468                 r94 += txpower - MAX_TXPOWER;
469         else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
470                 r94 += txpower;
471         rt61pci_bbp_write(rt2x00dev, 94, r94);
472
473         rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
474         rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
475         rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
476         rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
477
478         udelay(200);
479
480         rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
481         rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
482         rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
483         rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
484
485         udelay(200);
486
487         rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
488         rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
489         rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
490         rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
491
492         msleep(1);
493 }
494
495 static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
496                                    const int txpower)
497 {
498         struct rf_channel rf;
499
500         rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
501         rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
502         rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
503         rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
504
505         rt61pci_config_channel(rt2x00dev, &rf, txpower);
506 }
507
508 static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
509                                       struct antenna_setup *ant)
510 {
511         u8 r3;
512         u8 r4;
513         u8 r77;
514
515         rt61pci_bbp_read(rt2x00dev, 3, &r3);
516         rt61pci_bbp_read(rt2x00dev, 4, &r4);
517         rt61pci_bbp_read(rt2x00dev, 77, &r77);
518
519         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
520                           rt2x00_rf(&rt2x00dev->chip, RF5325));
521
522         /*
523          * Configure the RX antenna.
524          */
525         switch (ant->rx) {
526         case ANTENNA_HW_DIVERSITY:
527                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
528                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
529                                   (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
530                 break;
531         case ANTENNA_A:
532                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
533                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
534                 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
535                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
536                 else
537                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
538                 break;
539         case ANTENNA_B:
540         default:
541                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
542                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
543                 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
544                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
545                 else
546                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
547                 break;
548         }
549
550         rt61pci_bbp_write(rt2x00dev, 77, r77);
551         rt61pci_bbp_write(rt2x00dev, 3, r3);
552         rt61pci_bbp_write(rt2x00dev, 4, r4);
553 }
554
555 static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
556                                       struct antenna_setup *ant)
557 {
558         u8 r3;
559         u8 r4;
560         u8 r77;
561
562         rt61pci_bbp_read(rt2x00dev, 3, &r3);
563         rt61pci_bbp_read(rt2x00dev, 4, &r4);
564         rt61pci_bbp_read(rt2x00dev, 77, &r77);
565
566         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
567                           rt2x00_rf(&rt2x00dev->chip, RF2529));
568         rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
569                           !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
570
571         /*
572          * Configure the RX antenna.
573          */
574         switch (ant->rx) {
575         case ANTENNA_HW_DIVERSITY:
576                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
577                 break;
578         case ANTENNA_A:
579                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
580                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
581                 break;
582         case ANTENNA_B:
583         default:
584                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
585                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
586                 break;
587         }
588
589         rt61pci_bbp_write(rt2x00dev, 77, r77);
590         rt61pci_bbp_write(rt2x00dev, 3, r3);
591         rt61pci_bbp_write(rt2x00dev, 4, r4);
592 }
593
594 static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
595                                            const int p1, const int p2)
596 {
597         u32 reg;
598
599         rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
600
601         rt2x00_set_field32(&reg, MAC_CSR13_BIT4, p1);
602         rt2x00_set_field32(&reg, MAC_CSR13_BIT12, 0);
603
604         rt2x00_set_field32(&reg, MAC_CSR13_BIT3, !p2);
605         rt2x00_set_field32(&reg, MAC_CSR13_BIT11, 0);
606
607         rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
608 }
609
610 static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
611                                         struct antenna_setup *ant)
612 {
613         u8 r3;
614         u8 r4;
615         u8 r77;
616
617         rt61pci_bbp_read(rt2x00dev, 3, &r3);
618         rt61pci_bbp_read(rt2x00dev, 4, &r4);
619         rt61pci_bbp_read(rt2x00dev, 77, &r77);
620
621         /*
622          * Configure the RX antenna.
623          */
624         switch (ant->rx) {
625         case ANTENNA_A:
626                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
627                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
628                 rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
629                 break;
630         case ANTENNA_HW_DIVERSITY:
631                 /*
632                  * FIXME: Antenna selection for the rf 2529 is very confusing
633                  * in the legacy driver. Just default to antenna B until the
634                  * legacy code can be properly translated into rt2x00 code.
635                  */
636         case ANTENNA_B:
637         default:
638                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
639                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
640                 rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
641                 break;
642         }
643
644         rt61pci_bbp_write(rt2x00dev, 77, r77);
645         rt61pci_bbp_write(rt2x00dev, 3, r3);
646         rt61pci_bbp_write(rt2x00dev, 4, r4);
647 }
648
649 struct antenna_sel {
650         u8 word;
651         /*
652          * value[0] -> non-LNA
653          * value[1] -> LNA
654          */
655         u8 value[2];
656 };
657
658 static const struct antenna_sel antenna_sel_a[] = {
659         { 96,  { 0x58, 0x78 } },
660         { 104, { 0x38, 0x48 } },
661         { 75,  { 0xfe, 0x80 } },
662         { 86,  { 0xfe, 0x80 } },
663         { 88,  { 0xfe, 0x80 } },
664         { 35,  { 0x60, 0x60 } },
665         { 97,  { 0x58, 0x58 } },
666         { 98,  { 0x58, 0x58 } },
667 };
668
669 static const struct antenna_sel antenna_sel_bg[] = {
670         { 96,  { 0x48, 0x68 } },
671         { 104, { 0x2c, 0x3c } },
672         { 75,  { 0xfe, 0x80 } },
673         { 86,  { 0xfe, 0x80 } },
674         { 88,  { 0xfe, 0x80 } },
675         { 35,  { 0x50, 0x50 } },
676         { 97,  { 0x48, 0x48 } },
677         { 98,  { 0x48, 0x48 } },
678 };
679
680 static void rt61pci_config_antenna(struct rt2x00_dev *rt2x00dev,
681                                    struct antenna_setup *ant)
682 {
683         const struct antenna_sel *sel;
684         unsigned int lna;
685         unsigned int i;
686         u32 reg;
687
688         /*
689          * We should never come here because rt2x00lib is supposed
690          * to catch this and send us the correct antenna explicitely.
691          */
692         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
693                ant->tx == ANTENNA_SW_DIVERSITY);
694
695         if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
696                 sel = antenna_sel_a;
697                 lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
698         } else {
699                 sel = antenna_sel_bg;
700                 lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
701         }
702
703         for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
704                 rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
705
706         rt2x00pci_register_read(rt2x00dev, PHY_CSR0, &reg);
707
708         rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
709                            rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
710         rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
711                            rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
712
713         rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg);
714
715         if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
716             rt2x00_rf(&rt2x00dev->chip, RF5325))
717                 rt61pci_config_antenna_5x(rt2x00dev, ant);
718         else if (rt2x00_rf(&rt2x00dev->chip, RF2527))
719                 rt61pci_config_antenna_2x(rt2x00dev, ant);
720         else if (rt2x00_rf(&rt2x00dev->chip, RF2529)) {
721                 if (test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags))
722                         rt61pci_config_antenna_2x(rt2x00dev, ant);
723                 else
724                         rt61pci_config_antenna_2529(rt2x00dev, ant);
725         }
726 }
727
728 static void rt61pci_config_duration(struct rt2x00_dev *rt2x00dev,
729                                     struct rt2x00lib_conf *libconf)
730 {
731         u32 reg;
732
733         rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
734         rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, libconf->slot_time);
735         rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
736
737         rt2x00pci_register_read(rt2x00dev, MAC_CSR8, &reg);
738         rt2x00_set_field32(&reg, MAC_CSR8_SIFS, libconf->sifs);
739         rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
740         rt2x00_set_field32(&reg, MAC_CSR8_EIFS, libconf->eifs);
741         rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg);
742
743         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
744         rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
745         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
746
747         rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
748         rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
749         rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
750
751         rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
752         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
753                            libconf->conf->beacon_int * 16);
754         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
755 }
756
757 static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
758                            struct rt2x00lib_conf *libconf,
759                            const unsigned int flags)
760 {
761         if (flags & CONFIG_UPDATE_PHYMODE)
762                 rt61pci_config_phymode(rt2x00dev, libconf->basic_rates);
763         if (flags & CONFIG_UPDATE_CHANNEL)
764                 rt61pci_config_channel(rt2x00dev, &libconf->rf,
765                                        libconf->conf->power_level);
766         if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
767                 rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
768         if (flags & CONFIG_UPDATE_ANTENNA)
769                 rt61pci_config_antenna(rt2x00dev, &libconf->ant);
770         if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
771                 rt61pci_config_duration(rt2x00dev, libconf);
772 }
773
774 /*
775  * Link tuning
776  */
777 static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
778                                struct link_qual *qual)
779 {
780         u32 reg;
781
782         /*
783          * Update FCS error count from register.
784          */
785         rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
786         qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
787
788         /*
789          * Update False CCA count from register.
790          */
791         rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
792         qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
793 }
794
795 static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
796 {
797         rt61pci_bbp_write(rt2x00dev, 17, 0x20);
798         rt2x00dev->link.vgc_level = 0x20;
799 }
800
801 static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev)
802 {
803         int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
804         u8 r17;
805         u8 up_bound;
806         u8 low_bound;
807
808         rt61pci_bbp_read(rt2x00dev, 17, &r17);
809
810         /*
811          * Determine r17 bounds.
812          */
813         if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
814                 low_bound = 0x28;
815                 up_bound = 0x48;
816                 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
817                         low_bound += 0x10;
818                         up_bound += 0x10;
819                 }
820         } else {
821                 low_bound = 0x20;
822                 up_bound = 0x40;
823                 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
824                         low_bound += 0x10;
825                         up_bound += 0x10;
826                 }
827         }
828
829         /*
830          * If we are not associated, we should go straight to the
831          * dynamic CCA tuning.
832          */
833         if (!rt2x00dev->intf_associated)
834                 goto dynamic_cca_tune;
835
836         /*
837          * Special big-R17 for very short distance
838          */
839         if (rssi >= -35) {
840                 if (r17 != 0x60)
841                         rt61pci_bbp_write(rt2x00dev, 17, 0x60);
842                 return;
843         }
844
845         /*
846          * Special big-R17 for short distance
847          */
848         if (rssi >= -58) {
849                 if (r17 != up_bound)
850                         rt61pci_bbp_write(rt2x00dev, 17, up_bound);
851                 return;
852         }
853
854         /*
855          * Special big-R17 for middle-short distance
856          */
857         if (rssi >= -66) {
858                 low_bound += 0x10;
859                 if (r17 != low_bound)
860                         rt61pci_bbp_write(rt2x00dev, 17, low_bound);
861                 return;
862         }
863
864         /*
865          * Special mid-R17 for middle distance
866          */
867         if (rssi >= -74) {
868                 low_bound += 0x08;
869                 if (r17 != low_bound)
870                         rt61pci_bbp_write(rt2x00dev, 17, low_bound);
871                 return;
872         }
873
874         /*
875          * Special case: Change up_bound based on the rssi.
876          * Lower up_bound when rssi is weaker then -74 dBm.
877          */
878         up_bound -= 2 * (-74 - rssi);
879         if (low_bound > up_bound)
880                 up_bound = low_bound;
881
882         if (r17 > up_bound) {
883                 rt61pci_bbp_write(rt2x00dev, 17, up_bound);
884                 return;
885         }
886
887 dynamic_cca_tune:
888
889         /*
890          * r17 does not yet exceed upper limit, continue and base
891          * the r17 tuning on the false CCA count.
892          */
893         if (rt2x00dev->link.qual.false_cca > 512 && r17 < up_bound) {
894                 if (++r17 > up_bound)
895                         r17 = up_bound;
896                 rt61pci_bbp_write(rt2x00dev, 17, r17);
897         } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > low_bound) {
898                 if (--r17 < low_bound)
899                         r17 = low_bound;
900                 rt61pci_bbp_write(rt2x00dev, 17, r17);
901         }
902 }
903
904 /*
905  * Firmware functions
906  */
907 static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
908 {
909         char *fw_name;
910
911         switch (rt2x00dev->chip.rt) {
912         case RT2561:
913                 fw_name = FIRMWARE_RT2561;
914                 break;
915         case RT2561s:
916                 fw_name = FIRMWARE_RT2561s;
917                 break;
918         case RT2661:
919                 fw_name = FIRMWARE_RT2661;
920                 break;
921         default:
922                 fw_name = NULL;
923                 break;
924         }
925
926         return fw_name;
927 }
928
929 static u16 rt61pci_get_firmware_crc(const void *data, const size_t len)
930 {
931         u16 crc;
932
933         /*
934          * Use the crc itu-t algorithm.
935          * The last 2 bytes in the firmware array are the crc checksum itself,
936          * this means that we should never pass those 2 bytes to the crc
937          * algorithm.
938          */
939         crc = crc_itu_t(0, data, len - 2);
940         crc = crc_itu_t_byte(crc, 0);
941         crc = crc_itu_t_byte(crc, 0);
942
943         return crc;
944 }
945
946 static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev, const void *data,
947                                  const size_t len)
948 {
949         int i;
950         u32 reg;
951
952         /*
953          * Wait for stable hardware.
954          */
955         for (i = 0; i < 100; i++) {
956                 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
957                 if (reg)
958                         break;
959                 msleep(1);
960         }
961
962         if (!reg) {
963                 ERROR(rt2x00dev, "Unstable hardware.\n");
964                 return -EBUSY;
965         }
966
967         /*
968          * Prepare MCU and mailbox for firmware loading.
969          */
970         reg = 0;
971         rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
972         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
973         rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
974         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
975         rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0);
976
977         /*
978          * Write firmware to device.
979          */
980         reg = 0;
981         rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
982         rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
983         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
984
985         rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
986                                       data, len);
987
988         rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
989         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
990
991         rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
992         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
993
994         for (i = 0; i < 100; i++) {
995                 rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
996                 if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
997                         break;
998                 msleep(1);
999         }
1000
1001         if (i == 100) {
1002                 ERROR(rt2x00dev, "MCU Control register not ready.\n");
1003                 return -EBUSY;
1004         }
1005
1006         /*
1007          * Hardware needs another millisecond before it is ready.
1008          */
1009         msleep(1);
1010
1011         /*
1012          * Reset MAC and BBP registers.
1013          */
1014         reg = 0;
1015         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1016         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1017         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1018
1019         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1020         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1021         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1022         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1023
1024         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1025         rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1026         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1027
1028         return 0;
1029 }
1030
1031 /*
1032  * Initialization functions.
1033  */
1034 static void rt61pci_init_rxentry(struct rt2x00_dev *rt2x00dev,
1035                                  struct queue_entry *entry)
1036 {
1037         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1038         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1039         u32 word;
1040
1041         rt2x00_desc_read(entry_priv->desc, 5, &word);
1042         rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1043                            skbdesc->skb_dma);
1044         rt2x00_desc_write(entry_priv->desc, 5, word);
1045
1046         rt2x00_desc_read(entry_priv->desc, 0, &word);
1047         rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1048         rt2x00_desc_write(entry_priv->desc, 0, word);
1049 }
1050
1051 static void rt61pci_init_txentry(struct rt2x00_dev *rt2x00dev,
1052                                  struct queue_entry *entry)
1053 {
1054         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1055         u32 word;
1056
1057         rt2x00_desc_read(entry_priv->desc, 0, &word);
1058         rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1059         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1060         rt2x00_desc_write(entry_priv->desc, 0, word);
1061 }
1062
1063 static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
1064 {
1065         struct queue_entry_priv_pci *entry_priv;
1066         u32 reg;
1067
1068         /*
1069          * Initialize registers.
1070          */
1071         rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, &reg);
1072         rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
1073                            rt2x00dev->tx[0].limit);
1074         rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
1075                            rt2x00dev->tx[1].limit);
1076         rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
1077                            rt2x00dev->tx[2].limit);
1078         rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
1079                            rt2x00dev->tx[3].limit);
1080         rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg);
1081
1082         rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, &reg);
1083         rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
1084                            rt2x00dev->tx[0].desc_size / 4);
1085         rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg);
1086
1087         entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
1088         rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
1089         rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
1090                            entry_priv->desc_dma);
1091         rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1092
1093         entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
1094         rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
1095         rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
1096                            entry_priv->desc_dma);
1097         rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1098
1099         entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
1100         rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
1101         rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
1102                            entry_priv->desc_dma);
1103         rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1104
1105         entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
1106         rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
1107         rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
1108                            entry_priv->desc_dma);
1109         rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1110
1111         rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, &reg);
1112         rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
1113         rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
1114                            rt2x00dev->rx->desc_size / 4);
1115         rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1116         rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg);
1117
1118         entry_priv = rt2x00dev->rx->entries[0].priv_data;
1119         rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, &reg);
1120         rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
1121                            entry_priv->desc_dma);
1122         rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg);
1123
1124         rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
1125         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
1126         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
1127         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
1128         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
1129         rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1130
1131         rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
1132         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1133         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1134         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1135         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
1136         rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1137
1138         rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1139         rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
1140         rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1141
1142         return 0;
1143 }
1144
1145 static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1146 {
1147         u32 reg;
1148
1149         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1150         rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1151         rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1152         rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1153         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1154
1155         rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, &reg);
1156         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1157         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1158         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1159         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1160         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1161         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1162         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1163         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1164         rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg);
1165
1166         /*
1167          * CCK TXD BBP registers
1168          */
1169         rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, &reg);
1170         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1171         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1172         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1173         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1174         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1175         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1176         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1177         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1178         rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg);
1179
1180         /*
1181          * OFDM TXD BBP registers
1182          */
1183         rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, &reg);
1184         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1185         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1186         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1187         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1188         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1189         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1190         rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg);
1191
1192         rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, &reg);
1193         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1194         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1195         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1196         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1197         rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg);
1198
1199         rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, &reg);
1200         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1201         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1202         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1203         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1204         rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg);
1205
1206         rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1207         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1208         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1209         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1210         rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1211         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1212         rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1213         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1214
1215         rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1216
1217         rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1218
1219         rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
1220         rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1221         rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
1222
1223         rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1224
1225         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1226                 return -EBUSY;
1227
1228         rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1229
1230         /*
1231          * Invalidate all Shared Keys (SEC_CSR0),
1232          * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1233          */
1234         rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1235         rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1236         rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1237
1238         rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1239         rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1240         rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1241         rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1242
1243         rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1244
1245         rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1246
1247         rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1248
1249         rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR0, &reg);
1250         rt2x00_set_field32(&reg, AC_TXOP_CSR0_AC0_TX_OP, 0);
1251         rt2x00_set_field32(&reg, AC_TXOP_CSR0_AC1_TX_OP, 0);
1252         rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR0, reg);
1253
1254         rt2x00pci_register_read(rt2x00dev, AC_TXOP_CSR1, &reg);
1255         rt2x00_set_field32(&reg, AC_TXOP_CSR1_AC2_TX_OP, 192);
1256         rt2x00_set_field32(&reg, AC_TXOP_CSR1_AC3_TX_OP, 48);
1257         rt2x00pci_register_write(rt2x00dev, AC_TXOP_CSR1, reg);
1258
1259         /*
1260          * Clear all beacons
1261          * For the Beacon base registers we only need to clear
1262          * the first byte since that byte contains the VALID and OWNER
1263          * bits which (when set to 0) will invalidate the entire beacon.
1264          */
1265         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1266         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1267         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1268         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1269
1270         /*
1271          * We must clear the error counters.
1272          * These registers are cleared on read,
1273          * so we may pass a useless variable to store the value.
1274          */
1275         rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1276         rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1277         rt2x00pci_register_read(rt2x00dev, STA_CSR2, &reg);
1278
1279         /*
1280          * Reset MAC and BBP registers.
1281          */
1282         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1283         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1284         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1285         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1286
1287         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1288         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1289         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1290         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1291
1292         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1293         rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1294         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1295
1296         return 0;
1297 }
1298
1299 static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1300 {
1301         unsigned int i;
1302         u8 value;
1303
1304         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1305                 rt61pci_bbp_read(rt2x00dev, 0, &value);
1306                 if ((value != 0xff) && (value != 0x00))
1307                         return 0;
1308                 udelay(REGISTER_BUSY_DELAY);
1309         }
1310
1311         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1312         return -EACCES;
1313 }
1314
1315 static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1316 {
1317         unsigned int i;
1318         u16 eeprom;
1319         u8 reg_id;
1320         u8 value;
1321
1322         if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
1323                 return -EACCES;
1324
1325         rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1326         rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1327         rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1328         rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1329         rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1330         rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1331         rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1332         rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1333         rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1334         rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1335         rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1336         rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1337         rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1338         rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1339         rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1340         rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1341         rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1342         rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1343         rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1344         rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1345         rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1346         rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1347         rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1348         rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1349
1350         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1351                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1352
1353                 if (eeprom != 0xffff && eeprom != 0x0000) {
1354                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1355                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1356                         rt61pci_bbp_write(rt2x00dev, reg_id, value);
1357                 }
1358         }
1359
1360         return 0;
1361 }
1362
1363 /*
1364  * Device state switch handlers.
1365  */
1366 static void rt61pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1367                               enum dev_state state)
1368 {
1369         u32 reg;
1370
1371         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1372         rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX,
1373                            (state == STATE_RADIO_RX_OFF) ||
1374                            (state == STATE_RADIO_RX_OFF_LINK));
1375         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1376 }
1377
1378 static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1379                                enum dev_state state)
1380 {
1381         int mask = (state == STATE_RADIO_IRQ_OFF);
1382         u32 reg;
1383
1384         /*
1385          * When interrupts are being enabled, the interrupt registers
1386          * should clear the register to assure a clean state.
1387          */
1388         if (state == STATE_RADIO_IRQ_ON) {
1389                 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1390                 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1391
1392                 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
1393                 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1394         }
1395
1396         /*
1397          * Only toggle the interrupts bits we are going to use.
1398          * Non-checked interrupt bits are disabled by default.
1399          */
1400         rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
1401         rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
1402         rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
1403         rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1404         rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1405         rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
1406
1407         rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
1408         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
1409         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
1410         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
1411         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
1412         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
1413         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
1414         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
1415         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
1416         rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1417 }
1418
1419 static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1420 {
1421         u32 reg;
1422
1423         /*
1424          * Initialize all registers.
1425          */
1426         if (unlikely(rt61pci_init_queues(rt2x00dev) ||
1427                      rt61pci_init_registers(rt2x00dev) ||
1428                      rt61pci_init_bbp(rt2x00dev)))
1429                 return -EIO;
1430
1431         /*
1432          * Enable RX.
1433          */
1434         rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1435         rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1436         rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1437
1438         return 0;
1439 }
1440
1441 static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1442 {
1443         u32 reg;
1444
1445         rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1446
1447         /*
1448          * Disable synchronisation.
1449          */
1450         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, 0);
1451
1452         /*
1453          * Cancel RX and TX.
1454          */
1455         rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1456         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, 1);
1457         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, 1);
1458         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, 1);
1459         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, 1);
1460         rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1461 }
1462
1463 static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1464 {
1465         u32 reg;
1466         unsigned int i;
1467         char put_to_sleep;
1468
1469         put_to_sleep = (state != STATE_AWAKE);
1470
1471         rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1472         rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1473         rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1474         rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1475
1476         /*
1477          * Device is not guaranteed to be in the requested state yet.
1478          * We must wait until the register indicates that the
1479          * device has entered the correct state.
1480          */
1481         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1482                 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1483                 state = rt2x00_get_field32(reg, MAC_CSR12_BBP_CURRENT_STATE);
1484                 if (state == !put_to_sleep)
1485                         return 0;
1486                 msleep(10);
1487         }
1488
1489         return -EBUSY;
1490 }
1491
1492 static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1493                                     enum dev_state state)
1494 {
1495         int retval = 0;
1496
1497         switch (state) {
1498         case STATE_RADIO_ON:
1499                 retval = rt61pci_enable_radio(rt2x00dev);
1500                 break;
1501         case STATE_RADIO_OFF:
1502                 rt61pci_disable_radio(rt2x00dev);
1503                 break;
1504         case STATE_RADIO_RX_ON:
1505         case STATE_RADIO_RX_ON_LINK:
1506         case STATE_RADIO_RX_OFF:
1507         case STATE_RADIO_RX_OFF_LINK:
1508                 rt61pci_toggle_rx(rt2x00dev, state);
1509                 break;
1510         case STATE_RADIO_IRQ_ON:
1511         case STATE_RADIO_IRQ_OFF:
1512                 rt61pci_toggle_irq(rt2x00dev, state);
1513                 break;
1514         case STATE_DEEP_SLEEP:
1515         case STATE_SLEEP:
1516         case STATE_STANDBY:
1517         case STATE_AWAKE:
1518                 retval = rt61pci_set_state(rt2x00dev, state);
1519                 break;
1520         default:
1521                 retval = -ENOTSUPP;
1522                 break;
1523         }
1524
1525         if (unlikely(retval))
1526                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1527                       state, retval);
1528
1529         return retval;
1530 }
1531
1532 /*
1533  * TX descriptor initialization
1534  */
1535 static void rt61pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1536                                     struct sk_buff *skb,
1537                                     struct txentry_desc *txdesc)
1538 {
1539         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1540         __le32 *txd = skbdesc->desc;
1541         u32 word;
1542
1543         /*
1544          * Start writing the descriptor words.
1545          */
1546         rt2x00_desc_read(txd, 1, &word);
1547         rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, txdesc->queue);
1548         rt2x00_set_field32(&word, TXD_W1_AIFSN, txdesc->aifs);
1549         rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1550         rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1551         rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, IEEE80211_HEADER);
1552         rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1553                            test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1554         rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1555         rt2x00_desc_write(txd, 1, word);
1556
1557         rt2x00_desc_read(txd, 2, &word);
1558         rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1559         rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1560         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1561         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1562         rt2x00_desc_write(txd, 2, word);
1563
1564         rt2x00_desc_read(txd, 5, &word);
1565         rt2x00_set_field32(&word, TXD_W5_PID_TYPE, skbdesc->entry->queue->qid);
1566         rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE,
1567                            skbdesc->entry->entry_idx);
1568         rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1569                            TXPOWER_TO_DEV(rt2x00dev->tx_power));
1570         rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1571         rt2x00_desc_write(txd, 5, word);
1572
1573         rt2x00_desc_read(txd, 6, &word);
1574         rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
1575                            skbdesc->skb_dma);
1576         rt2x00_desc_write(txd, 6, word);
1577
1578         if (skbdesc->desc_len > TXINFO_SIZE) {
1579                 rt2x00_desc_read(txd, 11, &word);
1580                 rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0, skb->len);
1581                 rt2x00_desc_write(txd, 11, word);
1582         }
1583
1584         rt2x00_desc_read(txd, 0, &word);
1585         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1586         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1587         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1588                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1589         rt2x00_set_field32(&word, TXD_W0_ACK,
1590                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1591         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1592                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1593         rt2x00_set_field32(&word, TXD_W0_OFDM,
1594                            test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
1595         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1596         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1597                            test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1598         rt2x00_set_field32(&word, TXD_W0_TKIP_MIC, 0);
1599         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
1600         rt2x00_set_field32(&word, TXD_W0_BURST,
1601                            test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1602         rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1603         rt2x00_desc_write(txd, 0, word);
1604 }
1605
1606 /*
1607  * TX data initialization
1608  */
1609 static void rt61pci_write_beacon(struct queue_entry *entry)
1610 {
1611         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1612         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1613         unsigned int beacon_base;
1614         u32 reg;
1615
1616         /*
1617          * Disable beaconing while we are reloading the beacon data,
1618          * otherwise we might be sending out invalid data.
1619          */
1620         rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1621         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1622         rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1623         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1624         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1625
1626         /*
1627          * Write entire beacon with descriptor to register.
1628          */
1629         beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1630         rt2x00pci_register_multiwrite(rt2x00dev,
1631                                       beacon_base,
1632                                       skbdesc->desc, skbdesc->desc_len);
1633         rt2x00pci_register_multiwrite(rt2x00dev,
1634                                       beacon_base + skbdesc->desc_len,
1635                                       entry->skb->data, entry->skb->len);
1636
1637         /*
1638          * Clean up beacon skb.
1639          */
1640         dev_kfree_skb_any(entry->skb);
1641         entry->skb = NULL;
1642 }
1643
1644 static void rt61pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1645                                   const enum data_queue_qid queue)
1646 {
1647         u32 reg;
1648
1649         if (queue == QID_BEACON) {
1650                 /*
1651                  * For Wi-Fi faily generated beacons between participating
1652                  * stations. Set TBTT phase adaptive adjustment step to 8us.
1653                  */
1654                 rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1655
1656                 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1657                 if (!rt2x00_get_field32(reg, TXRX_CSR9_BEACON_GEN)) {
1658                         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1659                         rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1660                         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1661                         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1662                 }
1663                 return;
1664         }
1665
1666         rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1667         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, (queue == QID_AC_BE));
1668         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, (queue == QID_AC_BK));
1669         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, (queue == QID_AC_VI));
1670         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, (queue == QID_AC_VO));
1671         rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1672 }
1673
1674 /*
1675  * RX control handlers
1676  */
1677 static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1678 {
1679         u16 eeprom;
1680         u8 offset;
1681         u8 lna;
1682
1683         lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1684         switch (lna) {
1685         case 3:
1686                 offset = 90;
1687                 break;
1688         case 2:
1689                 offset = 74;
1690                 break;
1691         case 1:
1692                 offset = 64;
1693                 break;
1694         default:
1695                 return 0;
1696         }
1697
1698         if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1699                 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
1700                         offset += 14;
1701
1702                 if (lna == 3 || lna == 2)
1703                         offset += 10;
1704
1705                 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
1706                 offset -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
1707         } else {
1708                 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
1709                         offset += 14;
1710
1711                 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
1712                 offset -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
1713         }
1714
1715         return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1716 }
1717
1718 static void rt61pci_fill_rxdone(struct queue_entry *entry,
1719                                 struct rxdone_entry_desc *rxdesc)
1720 {
1721         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1722         u32 word0;
1723         u32 word1;
1724
1725         rt2x00_desc_read(entry_priv->desc, 0, &word0);
1726         rt2x00_desc_read(entry_priv->desc, 1, &word1);
1727
1728         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1729                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1730
1731         /*
1732          * Obtain the status about this packet.
1733          * When frame was received with an OFDM bitrate,
1734          * the signal is the PLCP value. If it was received with
1735          * a CCK bitrate the signal is the rate in 100kbit/s.
1736          */
1737         rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1738         rxdesc->rssi = rt61pci_agc_to_rssi(entry->queue->rt2x00dev, word1);
1739         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1740
1741         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1742                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1743         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1744                 rxdesc->dev_flags |= RXDONE_MY_BSS;
1745 }
1746
1747 /*
1748  * Interrupt functions.
1749  */
1750 static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
1751 {
1752         struct data_queue *queue;
1753         struct queue_entry *entry;
1754         struct queue_entry *entry_done;
1755         struct queue_entry_priv_pci *entry_priv;
1756         struct txdone_entry_desc txdesc;
1757         u32 word;
1758         u32 reg;
1759         u32 old_reg;
1760         int type;
1761         int index;
1762
1763         /*
1764          * During each loop we will compare the freshly read
1765          * STA_CSR4 register value with the value read from
1766          * the previous loop. If the 2 values are equal then
1767          * we should stop processing because the chance it
1768          * quite big that the device has been unplugged and
1769          * we risk going into an endless loop.
1770          */
1771         old_reg = 0;
1772
1773         while (1) {
1774                 rt2x00pci_register_read(rt2x00dev, STA_CSR4, &reg);
1775                 if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
1776                         break;
1777
1778                 if (old_reg == reg)
1779                         break;
1780                 old_reg = reg;
1781
1782                 /*
1783                  * Skip this entry when it contains an invalid
1784                  * queue identication number.
1785                  */
1786                 type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
1787                 queue = rt2x00queue_get_queue(rt2x00dev, type);
1788                 if (unlikely(!queue))
1789                         continue;
1790
1791                 /*
1792                  * Skip this entry when it contains an invalid
1793                  * index number.
1794                  */
1795                 index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
1796                 if (unlikely(index >= queue->limit))
1797                         continue;
1798
1799                 entry = &queue->entries[index];
1800                 entry_priv = entry->priv_data;
1801                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1802
1803                 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1804                     !rt2x00_get_field32(word, TXD_W0_VALID))
1805                         return;
1806
1807                 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1808                 while (entry != entry_done) {
1809                         /* Catch up.
1810                          * Just report any entries we missed as failed.
1811                          */
1812                         WARNING(rt2x00dev,
1813                                 "TX status report missed for entry %d\n",
1814                                 entry_done->entry_idx);
1815
1816                         txdesc.flags = 0;
1817                         __set_bit(TXDONE_UNKNOWN, &txdesc.flags);
1818                         txdesc.retry = 0;
1819
1820                         rt2x00lib_txdone(entry_done, &txdesc);
1821                         entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1822                 }
1823
1824                 /*
1825                  * Obtain the status about this packet.
1826                  */
1827                 txdesc.flags = 0;
1828                 switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
1829                 case 0: /* Success, maybe with retry */
1830                         __set_bit(TXDONE_SUCCESS, &txdesc.flags);
1831                         break;
1832                 case 6: /* Failure, excessive retries */
1833                         __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1834                         /* Don't break, this is a failed frame! */
1835                 default: /* Failure */
1836                         __set_bit(TXDONE_FAILURE, &txdesc.flags);
1837                 }
1838                 txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
1839
1840                 rt2x00lib_txdone(entry, &txdesc);
1841         }
1842 }
1843
1844 static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
1845 {
1846         struct rt2x00_dev *rt2x00dev = dev_instance;
1847         u32 reg_mcu;
1848         u32 reg;
1849
1850         /*
1851          * Get the interrupt sources & saved to local variable.
1852          * Write register value back to clear pending interrupts.
1853          */
1854         rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
1855         rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
1856
1857         rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1858         rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1859
1860         if (!reg && !reg_mcu)
1861                 return IRQ_NONE;
1862
1863         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
1864                 return IRQ_HANDLED;
1865
1866         /*
1867          * Handle interrupts, walk through all bits
1868          * and run the tasks, the bits are checked in order of
1869          * priority.
1870          */
1871
1872         /*
1873          * 1 - Rx ring done interrupt.
1874          */
1875         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
1876                 rt2x00pci_rxdone(rt2x00dev);
1877
1878         /*
1879          * 2 - Tx ring done interrupt.
1880          */
1881         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
1882                 rt61pci_txdone(rt2x00dev);
1883
1884         /*
1885          * 3 - Handle MCU command done.
1886          */
1887         if (reg_mcu)
1888                 rt2x00pci_register_write(rt2x00dev,
1889                                          M2H_CMD_DONE_CSR, 0xffffffff);
1890
1891         return IRQ_HANDLED;
1892 }
1893
1894 /*
1895  * Device probe functions.
1896  */
1897 static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1898 {
1899         struct eeprom_93cx6 eeprom;
1900         u32 reg;
1901         u16 word;
1902         u8 *mac;
1903         s8 value;
1904
1905         rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
1906
1907         eeprom.data = rt2x00dev;
1908         eeprom.register_read = rt61pci_eepromregister_read;
1909         eeprom.register_write = rt61pci_eepromregister_write;
1910         eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
1911             PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1912         eeprom.reg_data_in = 0;
1913         eeprom.reg_data_out = 0;
1914         eeprom.reg_data_clock = 0;
1915         eeprom.reg_chip_select = 0;
1916
1917         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1918                                EEPROM_SIZE / sizeof(u16));
1919
1920         /*
1921          * Start validation of the data that has been read.
1922          */
1923         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1924         if (!is_valid_ether_addr(mac)) {
1925                 DECLARE_MAC_BUF(macbuf);
1926
1927                 random_ether_addr(mac);
1928                 EEPROM(rt2x00dev, "MAC: %s\n", print_mac(macbuf, mac));
1929         }
1930
1931         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1932         if (word == 0xffff) {
1933                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1934                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1935                                    ANTENNA_B);
1936                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1937                                    ANTENNA_B);
1938                 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
1939                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1940                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1941                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
1942                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1943                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1944         }
1945
1946         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1947         if (word == 0xffff) {
1948                 rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
1949                 rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
1950                 rt2x00_set_field16(&word, EEPROM_NIC_TX_RX_FIXED, 0);
1951                 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
1952                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1953                 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
1954                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1955                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1956         }
1957
1958         rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
1959         if (word == 0xffff) {
1960                 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
1961                                    LED_MODE_DEFAULT);
1962                 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
1963                 EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
1964         }
1965
1966         rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
1967         if (word == 0xffff) {
1968                 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
1969                 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
1970                 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
1971                 EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
1972         }
1973
1974         rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
1975         if (word == 0xffff) {
1976                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1977                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1978                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1979                 EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
1980         } else {
1981                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
1982                 if (value < -10 || value > 10)
1983                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1984                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
1985                 if (value < -10 || value > 10)
1986                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1987                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1988         }
1989
1990         rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
1991         if (word == 0xffff) {
1992                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1993                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1994                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1995                 EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
1996         } else {
1997                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
1998                 if (value < -10 || value > 10)
1999                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2000                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
2001                 if (value < -10 || value > 10)
2002                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2003                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2004         }
2005
2006         return 0;
2007 }
2008
2009 static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
2010 {
2011         u32 reg;
2012         u16 value;
2013         u16 eeprom;
2014         u16 device;
2015
2016         /*
2017          * Read EEPROM word for configuration.
2018          */
2019         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
2020
2021         /*
2022          * Identify RF chipset.
2023          * To determine the RT chip we have to read the
2024          * PCI header of the device.
2025          */
2026         pci_read_config_word(to_pci_dev(rt2x00dev->dev),
2027                              PCI_CONFIG_HEADER_DEVICE, &device);
2028         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
2029         rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
2030         rt2x00_set_chip(rt2x00dev, device, value, reg);
2031
2032         if (!rt2x00_rf(&rt2x00dev->chip, RF5225) &&
2033             !rt2x00_rf(&rt2x00dev->chip, RF5325) &&
2034             !rt2x00_rf(&rt2x00dev->chip, RF2527) &&
2035             !rt2x00_rf(&rt2x00dev->chip, RF2529)) {
2036                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
2037                 return -ENODEV;
2038         }
2039
2040         /*
2041          * Determine number of antenna's.
2042          */
2043         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
2044                 __set_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags);
2045
2046         /*
2047          * Identify default antenna configuration.
2048          */
2049         rt2x00dev->default_ant.tx =
2050             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
2051         rt2x00dev->default_ant.rx =
2052             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
2053
2054         /*
2055          * Read the Frame type.
2056          */
2057         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2058                 __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
2059
2060         /*
2061          * Detect if this device has an hardware controlled radio.
2062          */
2063 #ifdef CONFIG_RT61PCI_RFKILL
2064         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2065                 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
2066 #endif /* CONFIG_RT61PCI_RFKILL */
2067
2068         /*
2069          * Read frequency offset and RF programming sequence.
2070          */
2071         rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
2072         if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2073                 __set_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags);
2074
2075         rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2076
2077         /*
2078          * Read external LNA informations.
2079          */
2080         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
2081
2082         if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2083                 __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
2084         if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2085                 __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
2086
2087         /*
2088          * When working with a RF2529 chip without double antenna
2089          * the antenna settings should be gathered from the NIC
2090          * eeprom word.
2091          */
2092         if (rt2x00_rf(&rt2x00dev->chip, RF2529) &&
2093             !test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags)) {
2094                 switch (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_RX_FIXED)) {
2095                 case 0:
2096                         rt2x00dev->default_ant.tx = ANTENNA_B;
2097                         rt2x00dev->default_ant.rx = ANTENNA_A;
2098                         break;
2099                 case 1:
2100                         rt2x00dev->default_ant.tx = ANTENNA_B;
2101                         rt2x00dev->default_ant.rx = ANTENNA_B;
2102                         break;
2103                 case 2:
2104                         rt2x00dev->default_ant.tx = ANTENNA_A;
2105                         rt2x00dev->default_ant.rx = ANTENNA_A;
2106                         break;
2107                 case 3:
2108                         rt2x00dev->default_ant.tx = ANTENNA_A;
2109                         rt2x00dev->default_ant.rx = ANTENNA_B;
2110                         break;
2111                 }
2112
2113                 if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2114                         rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2115                 if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2116                         rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2117         }
2118
2119         /*
2120          * Store led settings, for correct led behaviour.
2121          * If the eeprom value is invalid,
2122          * switch to default led mode.
2123          */
2124 #ifdef CONFIG_RT61PCI_LEDS
2125         rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
2126         value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2127
2128         rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
2129         rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
2130         if (value == LED_MODE_SIGNAL_STRENGTH)
2131                 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
2132                                  LED_TYPE_QUALITY);
2133
2134         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
2135         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
2136                            rt2x00_get_field16(eeprom,
2137                                               EEPROM_LED_POLARITY_GPIO_0));
2138         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
2139                            rt2x00_get_field16(eeprom,
2140                                               EEPROM_LED_POLARITY_GPIO_1));
2141         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
2142                            rt2x00_get_field16(eeprom,
2143                                               EEPROM_LED_POLARITY_GPIO_2));
2144         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
2145                            rt2x00_get_field16(eeprom,
2146                                               EEPROM_LED_POLARITY_GPIO_3));
2147         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
2148                            rt2x00_get_field16(eeprom,
2149                                               EEPROM_LED_POLARITY_GPIO_4));
2150         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
2151                            rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2152         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
2153                            rt2x00_get_field16(eeprom,
2154                                               EEPROM_LED_POLARITY_RDY_G));
2155         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
2156                            rt2x00_get_field16(eeprom,
2157                                               EEPROM_LED_POLARITY_RDY_A));
2158 #endif /* CONFIG_RT61PCI_LEDS */
2159
2160         return 0;
2161 }
2162
2163 /*
2164  * RF value list for RF5225 & RF5325
2165  * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2166  */
2167 static const struct rf_channel rf_vals_noseq[] = {
2168         { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2169         { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2170         { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2171         { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2172         { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2173         { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2174         { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2175         { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2176         { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2177         { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2178         { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2179         { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2180         { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2181         { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2182
2183         /* 802.11 UNI / HyperLan 2 */
2184         { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2185         { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2186         { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2187         { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2188         { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2189         { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2190         { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2191         { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2192
2193         /* 802.11 HyperLan 2 */
2194         { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2195         { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2196         { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2197         { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2198         { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2199         { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2200         { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2201         { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2202         { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2203         { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2204
2205         /* 802.11 UNII */
2206         { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2207         { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2208         { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2209         { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2210         { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2211         { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2212
2213         /* MMAC(Japan)J52 ch 34,38,42,46 */
2214         { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2215         { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2216         { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2217         { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2218 };
2219
2220 /*
2221  * RF value list for RF5225 & RF5325
2222  * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2223  */
2224 static const struct rf_channel rf_vals_seq[] = {
2225         { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2226         { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2227         { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2228         { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2229         { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2230         { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2231         { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2232         { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2233         { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2234         { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2235         { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2236         { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2237         { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2238         { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2239
2240         /* 802.11 UNI / HyperLan 2 */
2241         { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2242         { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2243         { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2244         { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2245         { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2246         { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2247         { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2248         { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2249
2250         /* 802.11 HyperLan 2 */
2251         { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2252         { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2253         { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2254         { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2255         { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2256         { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2257         { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2258         { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2259         { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2260         { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2261
2262         /* 802.11 UNII */
2263         { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2264         { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2265         { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2266         { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2267         { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2268         { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2269
2270         /* MMAC(Japan)J52 ch 34,38,42,46 */
2271         { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2272         { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2273         { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2274         { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2275 };
2276
2277 static void rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2278 {
2279         struct hw_mode_spec *spec = &rt2x00dev->spec;
2280         u8 *txpower;
2281         unsigned int i;
2282
2283         /*
2284          * Initialize all hw fields.
2285          */
2286         rt2x00dev->hw->flags =
2287             IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2288             IEEE80211_HW_SIGNAL_DBM;
2289         rt2x00dev->hw->extra_tx_headroom = 0;
2290
2291         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2292         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2293                                 rt2x00_eeprom_addr(rt2x00dev,
2294                                                    EEPROM_MAC_ADDR_0));
2295
2296         /*
2297          * Convert tx_power array in eeprom.
2298          */
2299         txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2300         for (i = 0; i < 14; i++)
2301                 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
2302
2303         /*
2304          * Initialize hw_mode information.
2305          */
2306         spec->supported_bands = SUPPORT_BAND_2GHZ;
2307         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2308         spec->tx_power_a = NULL;
2309         spec->tx_power_bg = txpower;
2310         spec->tx_power_default = DEFAULT_TXPOWER;
2311
2312         if (!test_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags)) {
2313                 spec->num_channels = 14;
2314                 spec->channels = rf_vals_noseq;
2315         } else {
2316                 spec->num_channels = 14;
2317                 spec->channels = rf_vals_seq;
2318         }
2319
2320         if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
2321             rt2x00_rf(&rt2x00dev->chip, RF5325)) {
2322                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2323                 spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2324
2325                 txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2326                 for (i = 0; i < 14; i++)
2327                         txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
2328
2329                 spec->tx_power_a = txpower;
2330         }
2331 }
2332
2333 static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2334 {
2335         int retval;
2336
2337         /*
2338          * Allocate eeprom data.
2339          */
2340         retval = rt61pci_validate_eeprom(rt2x00dev);
2341         if (retval)
2342                 return retval;
2343
2344         retval = rt61pci_init_eeprom(rt2x00dev);
2345         if (retval)
2346                 return retval;
2347
2348         /*
2349          * Initialize hw specifications.
2350          */
2351         rt61pci_probe_hw_mode(rt2x00dev);
2352
2353         /*
2354          * This device requires firmware and DMA mapped skbs.
2355          */
2356         __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
2357         __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
2358
2359         /*
2360          * Set the rssi offset.
2361          */
2362         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2363
2364         return 0;
2365 }
2366
2367 /*
2368  * IEEE80211 stack callback functions.
2369  */
2370 static int rt61pci_set_retry_limit(struct ieee80211_hw *hw,
2371                                    u32 short_retry, u32 long_retry)
2372 {
2373         struct rt2x00_dev *rt2x00dev = hw->priv;
2374         u32 reg;
2375
2376         rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
2377         rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT, long_retry);
2378         rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT, short_retry);
2379         rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
2380
2381         return 0;
2382 }
2383
2384 static u64 rt61pci_get_tsf(struct ieee80211_hw *hw)
2385 {
2386         struct rt2x00_dev *rt2x00dev = hw->priv;
2387         u64 tsf;
2388         u32 reg;
2389
2390         rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, &reg);
2391         tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2392         rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, &reg);
2393         tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2394
2395         return tsf;
2396 }
2397
2398 static const struct ieee80211_ops rt61pci_mac80211_ops = {
2399         .tx                     = rt2x00mac_tx,
2400         .start                  = rt2x00mac_start,
2401         .stop                   = rt2x00mac_stop,
2402         .add_interface          = rt2x00mac_add_interface,
2403         .remove_interface       = rt2x00mac_remove_interface,
2404         .config                 = rt2x00mac_config,
2405         .config_interface       = rt2x00mac_config_interface,
2406         .configure_filter       = rt2x00mac_configure_filter,
2407         .get_stats              = rt2x00mac_get_stats,
2408         .set_retry_limit        = rt61pci_set_retry_limit,
2409         .bss_info_changed       = rt2x00mac_bss_info_changed,
2410         .conf_tx                = rt2x00mac_conf_tx,
2411         .get_tx_stats           = rt2x00mac_get_tx_stats,
2412         .get_tsf                = rt61pci_get_tsf,
2413 };
2414
2415 static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2416         .irq_handler            = rt61pci_interrupt,
2417         .probe_hw               = rt61pci_probe_hw,
2418         .get_firmware_name      = rt61pci_get_firmware_name,
2419         .get_firmware_crc       = rt61pci_get_firmware_crc,
2420         .load_firmware          = rt61pci_load_firmware,
2421         .initialize             = rt2x00pci_initialize,
2422         .uninitialize           = rt2x00pci_uninitialize,
2423         .init_rxentry           = rt61pci_init_rxentry,
2424         .init_txentry           = rt61pci_init_txentry,
2425         .set_device_state       = rt61pci_set_device_state,
2426         .rfkill_poll            = rt61pci_rfkill_poll,
2427         .link_stats             = rt61pci_link_stats,
2428         .reset_tuner            = rt61pci_reset_tuner,
2429         .link_tuner             = rt61pci_link_tuner,
2430         .write_tx_desc          = rt61pci_write_tx_desc,
2431         .write_tx_data          = rt2x00pci_write_tx_data,
2432         .write_beacon           = rt61pci_write_beacon,
2433         .kick_tx_queue          = rt61pci_kick_tx_queue,
2434         .fill_rxdone            = rt61pci_fill_rxdone,
2435         .config_filter          = rt61pci_config_filter,
2436         .config_intf            = rt61pci_config_intf,
2437         .config_erp             = rt61pci_config_erp,
2438         .config                 = rt61pci_config,
2439 };
2440
2441 static const struct data_queue_desc rt61pci_queue_rx = {
2442         .entry_num              = RX_ENTRIES,
2443         .data_size              = DATA_FRAME_SIZE,
2444         .desc_size              = RXD_DESC_SIZE,
2445         .priv_size              = sizeof(struct queue_entry_priv_pci),
2446 };
2447
2448 static const struct data_queue_desc rt61pci_queue_tx = {
2449         .entry_num              = TX_ENTRIES,
2450         .data_size              = DATA_FRAME_SIZE,
2451         .desc_size              = TXD_DESC_SIZE,
2452         .priv_size              = sizeof(struct queue_entry_priv_pci),
2453 };
2454
2455 static const struct data_queue_desc rt61pci_queue_bcn = {
2456         .entry_num              = 4 * BEACON_ENTRIES,
2457         .data_size              = 0, /* No DMA required for beacons */
2458         .desc_size              = TXINFO_SIZE,
2459         .priv_size              = sizeof(struct queue_entry_priv_pci),
2460 };
2461
2462 static const struct rt2x00_ops rt61pci_ops = {
2463         .name           = KBUILD_MODNAME,
2464         .max_sta_intf   = 1,
2465         .max_ap_intf    = 4,
2466         .eeprom_size    = EEPROM_SIZE,
2467         .rf_size        = RF_SIZE,
2468         .tx_queues      = NUM_TX_QUEUES,
2469         .rx             = &rt61pci_queue_rx,
2470         .tx             = &rt61pci_queue_tx,
2471         .bcn            = &rt61pci_queue_bcn,
2472         .lib            = &rt61pci_rt2x00_ops,
2473         .hw             = &rt61pci_mac80211_ops,
2474 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2475         .debugfs        = &rt61pci_rt2x00debug,
2476 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2477 };
2478
2479 /*
2480  * RT61pci module information.
2481  */
2482 static struct pci_device_id rt61pci_device_table[] = {
2483         /* RT2561s */
2484         { PCI_DEVICE(0x1814, 0x0301), PCI_DEVICE_DATA(&rt61pci_ops) },
2485         /* RT2561 v2 */
2486         { PCI_DEVICE(0x1814, 0x0302), PCI_DEVICE_DATA(&rt61pci_ops) },
2487         /* RT2661 */
2488         { PCI_DEVICE(0x1814, 0x0401), PCI_DEVICE_DATA(&rt61pci_ops) },
2489         { 0, }
2490 };
2491
2492 MODULE_AUTHOR(DRV_PROJECT);
2493 MODULE_VERSION(DRV_VERSION);
2494 MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
2495 MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
2496                         "PCI & PCMCIA chipset based cards");
2497 MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
2498 MODULE_FIRMWARE(FIRMWARE_RT2561);
2499 MODULE_FIRMWARE(FIRMWARE_RT2561s);
2500 MODULE_FIRMWARE(FIRMWARE_RT2661);
2501 MODULE_LICENSE("GPL");
2502
2503 static struct pci_driver rt61pci_driver = {
2504         .name           = KBUILD_MODNAME,
2505         .id_table       = rt61pci_device_table,
2506         .probe          = rt2x00pci_probe,
2507         .remove         = __devexit_p(rt2x00pci_remove),
2508         .suspend        = rt2x00pci_suspend,
2509         .resume         = rt2x00pci_resume,
2510 };
2511
2512 static int __init rt61pci_init(void)
2513 {
2514         return pci_register_driver(&rt61pci_driver);
2515 }
2516
2517 static void __exit rt61pci_exit(void)
2518 {
2519         pci_unregister_driver(&rt61pci_driver);
2520 }
2521
2522 module_init(rt61pci_init);
2523 module_exit(rt61pci_exit);