]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/wireless/rt2x00/rt2x00queue.c
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/sfrench/cifs-2.6
[linux-2.6-omap-h63xx.git] / drivers / net / wireless / rt2x00 / rt2x00queue.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2x00lib
23         Abstract: rt2x00 queue specific routines.
24  */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/dma-mapping.h>
29
30 #include "rt2x00.h"
31 #include "rt2x00lib.h"
32
33 struct sk_buff *rt2x00queue_alloc_rxskb(struct rt2x00_dev *rt2x00dev,
34                                         struct queue_entry *entry)
35 {
36         unsigned int frame_size;
37         unsigned int reserved_size;
38         struct sk_buff *skb;
39         struct skb_frame_desc *skbdesc;
40
41         /*
42          * The frame size includes descriptor size, because the
43          * hardware directly receive the frame into the skbuffer.
44          */
45         frame_size = entry->queue->data_size + entry->queue->desc_size;
46
47         /*
48          * The payload should be aligned to a 4-byte boundary,
49          * this means we need at least 3 bytes for moving the frame
50          * into the correct offset.
51          */
52         reserved_size = 4;
53
54         /*
55          * Allocate skbuffer.
56          */
57         skb = dev_alloc_skb(frame_size + reserved_size);
58         if (!skb)
59                 return NULL;
60
61         skb_reserve(skb, reserved_size);
62         skb_put(skb, frame_size);
63
64         /*
65          * Populate skbdesc.
66          */
67         skbdesc = get_skb_frame_desc(skb);
68         memset(skbdesc, 0, sizeof(*skbdesc));
69         skbdesc->entry = entry;
70
71         if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags)) {
72                 skbdesc->skb_dma = dma_map_single(rt2x00dev->dev,
73                                                   skb->data,
74                                                   skb->len,
75                                                   DMA_FROM_DEVICE);
76                 skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
77         }
78
79         return skb;
80 }
81
82 void rt2x00queue_map_txskb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
83 {
84         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
85
86         skbdesc->skb_dma = dma_map_single(rt2x00dev->dev, skb->data, skb->len,
87                                           DMA_TO_DEVICE);
88         skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
89 }
90 EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
91
92 void rt2x00queue_unmap_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
93 {
94         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
95
96         if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
97                 dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma, skb->len,
98                                  DMA_FROM_DEVICE);
99                 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
100         }
101
102         if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
103                 dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma, skb->len,
104                                  DMA_TO_DEVICE);
105                 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
106         }
107 }
108
109 void rt2x00queue_free_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
110 {
111         if (!skb)
112                 return;
113
114         rt2x00queue_unmap_skb(rt2x00dev, skb);
115         dev_kfree_skb_any(skb);
116 }
117
118 static void rt2x00queue_create_tx_descriptor(struct queue_entry *entry,
119                                              struct txentry_desc *txdesc)
120 {
121         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
122         struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
123         struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
124         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
125         struct ieee80211_rate *rate =
126             ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
127         const struct rt2x00_rate *hwrate;
128         unsigned int data_length;
129         unsigned int duration;
130         unsigned int residual;
131         unsigned long irqflags;
132
133         memset(txdesc, 0, sizeof(*txdesc));
134
135         /*
136          * Initialize information from queue
137          */
138         txdesc->queue = entry->queue->qid;
139         txdesc->cw_min = entry->queue->cw_min;
140         txdesc->cw_max = entry->queue->cw_max;
141         txdesc->aifs = entry->queue->aifs;
142
143         /* Data length should be extended with 4 bytes for CRC */
144         data_length = entry->skb->len + 4;
145
146         /*
147          * Check whether this frame is to be acked.
148          */
149         if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
150                 __set_bit(ENTRY_TXD_ACK, &txdesc->flags);
151
152         /*
153          * Check if this is a RTS/CTS frame
154          */
155         if (ieee80211_is_rts(hdr->frame_control) ||
156             ieee80211_is_cts(hdr->frame_control)) {
157                 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
158                 if (ieee80211_is_rts(hdr->frame_control))
159                         __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
160                 else
161                         __set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
162                 if (tx_info->control.rts_cts_rate_idx >= 0)
163                         rate =
164                             ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
165         }
166
167         /*
168          * Determine retry information.
169          */
170         txdesc->retry_limit = tx_info->control.retry_limit;
171         if (tx_info->flags & IEEE80211_TX_CTL_LONG_RETRY_LIMIT)
172                 __set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
173
174         /*
175          * Check if more fragments are pending
176          */
177         if (ieee80211_has_morefrags(hdr->frame_control)) {
178                 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
179                 __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
180         }
181
182         /*
183          * Beacons and probe responses require the tsf timestamp
184          * to be inserted into the frame.
185          */
186         if (ieee80211_is_beacon(hdr->frame_control) ||
187             ieee80211_is_probe_resp(hdr->frame_control))
188                 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
189
190         /*
191          * Determine with what IFS priority this frame should be send.
192          * Set ifs to IFS_SIFS when the this is not the first fragment,
193          * or this fragment came after RTS/CTS.
194          */
195         if (test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags)) {
196                 txdesc->ifs = IFS_SIFS;
197         } else if (tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) {
198                 __set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
199                 txdesc->ifs = IFS_BACKOFF;
200         } else {
201                 txdesc->ifs = IFS_SIFS;
202         }
203
204         /*
205          * Hardware should insert sequence counter.
206          * FIXME: We insert a software sequence counter first for
207          * hardware that doesn't support hardware sequence counting.
208          *
209          * This is wrong because beacons are not getting sequence
210          * numbers assigned properly.
211          *
212          * A secondary problem exists for drivers that cannot toggle
213          * sequence counting per-frame, since those will override the
214          * sequence counter given by mac80211.
215          */
216         if (tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
217                 spin_lock_irqsave(&intf->seqlock, irqflags);
218
219                 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
220                         intf->seqno += 0x10;
221                 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
222                 hdr->seq_ctrl |= cpu_to_le16(intf->seqno);
223
224                 spin_unlock_irqrestore(&intf->seqlock, irqflags);
225
226                 __set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
227         }
228
229         /*
230          * PLCP setup
231          * Length calculation depends on OFDM/CCK rate.
232          */
233         hwrate = rt2x00_get_rate(rate->hw_value);
234         txdesc->signal = hwrate->plcp;
235         txdesc->service = 0x04;
236
237         if (hwrate->flags & DEV_RATE_OFDM) {
238                 __set_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags);
239
240                 txdesc->length_high = (data_length >> 6) & 0x3f;
241                 txdesc->length_low = data_length & 0x3f;
242         } else {
243                 /*
244                  * Convert length to microseconds.
245                  */
246                 residual = get_duration_res(data_length, hwrate->bitrate);
247                 duration = get_duration(data_length, hwrate->bitrate);
248
249                 if (residual != 0) {
250                         duration++;
251
252                         /*
253                          * Check if we need to set the Length Extension
254                          */
255                         if (hwrate->bitrate == 110 && residual <= 30)
256                                 txdesc->service |= 0x80;
257                 }
258
259                 txdesc->length_high = (duration >> 8) & 0xff;
260                 txdesc->length_low = duration & 0xff;
261
262                 /*
263                  * When preamble is enabled we should set the
264                  * preamble bit for the signal.
265                  */
266                 if (rt2x00_get_rate_preamble(rate->hw_value))
267                         txdesc->signal |= 0x08;
268         }
269 }
270
271 static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
272                                             struct txentry_desc *txdesc)
273 {
274         struct data_queue *queue = entry->queue;
275         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
276
277         rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, entry->skb, txdesc);
278
279         /*
280          * All processing on the frame has been completed, this means
281          * it is now ready to be dumped to userspace through debugfs.
282          */
283         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TX, entry->skb);
284
285         /*
286          * Check if we need to kick the queue, there are however a few rules
287          *      1) Don't kick beacon queue
288          *      2) Don't kick unless this is the last in frame in a burst.
289          *         When the burst flag is set, this frame is always followed
290          *         by another frame which in some way are related to eachother.
291          *         This is true for fragments, RTS or CTS-to-self frames.
292          *      3) Rule 2 can be broken when the available entries
293          *         in the queue are less then a certain threshold.
294          */
295         if (entry->queue->qid == QID_BEACON)
296                 return;
297
298         if (rt2x00queue_threshold(queue) ||
299             !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
300                 rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, queue->qid);
301 }
302
303 int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb)
304 {
305         struct queue_entry *entry = rt2x00queue_get_entry(queue, Q_INDEX);
306         struct txentry_desc txdesc;
307         struct skb_frame_desc *skbdesc;
308
309         if (unlikely(rt2x00queue_full(queue)))
310                 return -EINVAL;
311
312         if (__test_and_set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags)) {
313                 ERROR(queue->rt2x00dev,
314                       "Arrived at non-free entry in the non-full queue %d.\n"
315                       "Please file bug report to %s.\n",
316                       queue->qid, DRV_PROJECT);
317                 return -EINVAL;
318         }
319
320         /*
321          * Copy all TX descriptor information into txdesc,
322          * after that we are free to use the skb->cb array
323          * for our information.
324          */
325         entry->skb = skb;
326         rt2x00queue_create_tx_descriptor(entry, &txdesc);
327
328         /*
329          * skb->cb array is now ours and we are free to use it.
330          */
331         skbdesc = get_skb_frame_desc(entry->skb);
332         memset(skbdesc, 0, sizeof(*skbdesc));
333         skbdesc->entry = entry;
334
335         if (unlikely(queue->rt2x00dev->ops->lib->write_tx_data(entry))) {
336                 __clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
337                 return -EIO;
338         }
339
340         if (test_bit(DRIVER_REQUIRE_DMA, &queue->rt2x00dev->flags))
341                 rt2x00queue_map_txskb(queue->rt2x00dev, skb);
342
343         __set_bit(ENTRY_DATA_PENDING, &entry->flags);
344
345         rt2x00queue_index_inc(queue, Q_INDEX);
346         rt2x00queue_write_tx_descriptor(entry, &txdesc);
347
348         return 0;
349 }
350
351 int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
352                               struct ieee80211_vif *vif)
353 {
354         struct rt2x00_intf *intf = vif_to_intf(vif);
355         struct skb_frame_desc *skbdesc;
356         struct txentry_desc txdesc;
357         __le32 desc[16];
358
359         if (unlikely(!intf->beacon))
360                 return -ENOBUFS;
361
362         intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
363         if (!intf->beacon->skb)
364                 return -ENOMEM;
365
366         /*
367          * Copy all TX descriptor information into txdesc,
368          * after that we are free to use the skb->cb array
369          * for our information.
370          */
371         rt2x00queue_create_tx_descriptor(intf->beacon, &txdesc);
372
373         /*
374          * For the descriptor we use a local array from where the
375          * driver can move it to the correct location required for
376          * the hardware.
377          */
378         memset(desc, 0, sizeof(desc));
379
380         /*
381          * Fill in skb descriptor
382          */
383         skbdesc = get_skb_frame_desc(intf->beacon->skb);
384         memset(skbdesc, 0, sizeof(*skbdesc));
385         skbdesc->desc = desc;
386         skbdesc->desc_len = intf->beacon->queue->desc_size;
387         skbdesc->entry = intf->beacon;
388
389         /*
390          * Write TX descriptor into reserved room in front of the beacon.
391          */
392         rt2x00queue_write_tx_descriptor(intf->beacon, &txdesc);
393
394         /*
395          * Send beacon to hardware.
396          * Also enable beacon generation, which might have been disabled
397          * by the driver during the config_beacon() callback function.
398          */
399         rt2x00dev->ops->lib->write_beacon(intf->beacon);
400         rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, QID_BEACON);
401
402         return 0;
403 }
404
405 struct data_queue *rt2x00queue_get_queue(struct rt2x00_dev *rt2x00dev,
406                                          const enum data_queue_qid queue)
407 {
408         int atim = test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
409
410         if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx)
411                 return &rt2x00dev->tx[queue];
412
413         if (!rt2x00dev->bcn)
414                 return NULL;
415
416         if (queue == QID_BEACON)
417                 return &rt2x00dev->bcn[0];
418         else if (queue == QID_ATIM && atim)
419                 return &rt2x00dev->bcn[1];
420
421         return NULL;
422 }
423 EXPORT_SYMBOL_GPL(rt2x00queue_get_queue);
424
425 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
426                                           enum queue_index index)
427 {
428         struct queue_entry *entry;
429         unsigned long irqflags;
430
431         if (unlikely(index >= Q_INDEX_MAX)) {
432                 ERROR(queue->rt2x00dev,
433                       "Entry requested from invalid index type (%d)\n", index);
434                 return NULL;
435         }
436
437         spin_lock_irqsave(&queue->lock, irqflags);
438
439         entry = &queue->entries[queue->index[index]];
440
441         spin_unlock_irqrestore(&queue->lock, irqflags);
442
443         return entry;
444 }
445 EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
446
447 void rt2x00queue_index_inc(struct data_queue *queue, enum queue_index index)
448 {
449         unsigned long irqflags;
450
451         if (unlikely(index >= Q_INDEX_MAX)) {
452                 ERROR(queue->rt2x00dev,
453                       "Index change on invalid index type (%d)\n", index);
454                 return;
455         }
456
457         spin_lock_irqsave(&queue->lock, irqflags);
458
459         queue->index[index]++;
460         if (queue->index[index] >= queue->limit)
461                 queue->index[index] = 0;
462
463         if (index == Q_INDEX) {
464                 queue->length++;
465         } else if (index == Q_INDEX_DONE) {
466                 queue->length--;
467                 queue->count ++;
468         }
469
470         spin_unlock_irqrestore(&queue->lock, irqflags);
471 }
472
473 static void rt2x00queue_reset(struct data_queue *queue)
474 {
475         unsigned long irqflags;
476
477         spin_lock_irqsave(&queue->lock, irqflags);
478
479         queue->count = 0;
480         queue->length = 0;
481         memset(queue->index, 0, sizeof(queue->index));
482
483         spin_unlock_irqrestore(&queue->lock, irqflags);
484 }
485
486 void rt2x00queue_init_rx(struct rt2x00_dev *rt2x00dev)
487 {
488         struct data_queue *queue = rt2x00dev->rx;
489         unsigned int i;
490
491         rt2x00queue_reset(queue);
492
493         if (!rt2x00dev->ops->lib->init_rxentry)
494                 return;
495
496         for (i = 0; i < queue->limit; i++) {
497                 queue->entries[i].flags = 0;
498
499                 rt2x00dev->ops->lib->init_rxentry(rt2x00dev,
500                                                   &queue->entries[i]);
501         }
502 }
503
504 void rt2x00queue_init_tx(struct rt2x00_dev *rt2x00dev)
505 {
506         struct data_queue *queue;
507         unsigned int i;
508
509         txall_queue_for_each(rt2x00dev, queue) {
510                 rt2x00queue_reset(queue);
511
512                 if (!rt2x00dev->ops->lib->init_txentry)
513                         continue;
514
515                 for (i = 0; i < queue->limit; i++) {
516                         queue->entries[i].flags = 0;
517
518                         rt2x00dev->ops->lib->init_txentry(rt2x00dev,
519                                                           &queue->entries[i]);
520                 }
521         }
522 }
523
524 static int rt2x00queue_alloc_entries(struct data_queue *queue,
525                                      const struct data_queue_desc *qdesc)
526 {
527         struct queue_entry *entries;
528         unsigned int entry_size;
529         unsigned int i;
530
531         rt2x00queue_reset(queue);
532
533         queue->limit = qdesc->entry_num;
534         queue->threshold = DIV_ROUND_UP(qdesc->entry_num, 10);
535         queue->data_size = qdesc->data_size;
536         queue->desc_size = qdesc->desc_size;
537
538         /*
539          * Allocate all queue entries.
540          */
541         entry_size = sizeof(*entries) + qdesc->priv_size;
542         entries = kzalloc(queue->limit * entry_size, GFP_KERNEL);
543         if (!entries)
544                 return -ENOMEM;
545
546 #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
547         ( ((char *)(__base)) + ((__limit) * (__esize)) + \
548             ((__index) * (__psize)) )
549
550         for (i = 0; i < queue->limit; i++) {
551                 entries[i].flags = 0;
552                 entries[i].queue = queue;
553                 entries[i].skb = NULL;
554                 entries[i].entry_idx = i;
555                 entries[i].priv_data =
556                     QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
557                                             sizeof(*entries), qdesc->priv_size);
558         }
559
560 #undef QUEUE_ENTRY_PRIV_OFFSET
561
562         queue->entries = entries;
563
564         return 0;
565 }
566
567 static void rt2x00queue_free_skbs(struct rt2x00_dev *rt2x00dev,
568                                   struct data_queue *queue)
569 {
570         unsigned int i;
571
572         if (!queue->entries)
573                 return;
574
575         for (i = 0; i < queue->limit; i++) {
576                 if (queue->entries[i].skb)
577                         rt2x00queue_free_skb(rt2x00dev, queue->entries[i].skb);
578         }
579 }
580
581 static int rt2x00queue_alloc_rxskbs(struct rt2x00_dev *rt2x00dev,
582                                     struct data_queue *queue)
583 {
584         unsigned int i;
585         struct sk_buff *skb;
586
587         for (i = 0; i < queue->limit; i++) {
588                 skb = rt2x00queue_alloc_rxskb(rt2x00dev, &queue->entries[i]);
589                 if (!skb)
590                         return -ENOMEM;
591                 queue->entries[i].skb = skb;
592         }
593
594         return 0;
595 }
596
597 int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
598 {
599         struct data_queue *queue;
600         int status;
601
602         status = rt2x00queue_alloc_entries(rt2x00dev->rx, rt2x00dev->ops->rx);
603         if (status)
604                 goto exit;
605
606         tx_queue_for_each(rt2x00dev, queue) {
607                 status = rt2x00queue_alloc_entries(queue, rt2x00dev->ops->tx);
608                 if (status)
609                         goto exit;
610         }
611
612         status = rt2x00queue_alloc_entries(rt2x00dev->bcn, rt2x00dev->ops->bcn);
613         if (status)
614                 goto exit;
615
616         if (test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags)) {
617                 status = rt2x00queue_alloc_entries(&rt2x00dev->bcn[1],
618                                                    rt2x00dev->ops->atim);
619                 if (status)
620                         goto exit;
621         }
622
623         status = rt2x00queue_alloc_rxskbs(rt2x00dev, rt2x00dev->rx);
624         if (status)
625                 goto exit;
626
627         return 0;
628
629 exit:
630         ERROR(rt2x00dev, "Queue entries allocation failed.\n");
631
632         rt2x00queue_uninitialize(rt2x00dev);
633
634         return status;
635 }
636
637 void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
638 {
639         struct data_queue *queue;
640
641         rt2x00queue_free_skbs(rt2x00dev, rt2x00dev->rx);
642
643         queue_for_each(rt2x00dev, queue) {
644                 kfree(queue->entries);
645                 queue->entries = NULL;
646         }
647 }
648
649 static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
650                              struct data_queue *queue, enum data_queue_qid qid)
651 {
652         spin_lock_init(&queue->lock);
653
654         queue->rt2x00dev = rt2x00dev;
655         queue->qid = qid;
656         queue->aifs = 2;
657         queue->cw_min = 5;
658         queue->cw_max = 10;
659 }
660
661 int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
662 {
663         struct data_queue *queue;
664         enum data_queue_qid qid;
665         unsigned int req_atim =
666             !!test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
667
668         /*
669          * We need the following queues:
670          * RX: 1
671          * TX: ops->tx_queues
672          * Beacon: 1
673          * Atim: 1 (if required)
674          */
675         rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
676
677         queue = kzalloc(rt2x00dev->data_queues * sizeof(*queue), GFP_KERNEL);
678         if (!queue) {
679                 ERROR(rt2x00dev, "Queue allocation failed.\n");
680                 return -ENOMEM;
681         }
682
683         /*
684          * Initialize pointers
685          */
686         rt2x00dev->rx = queue;
687         rt2x00dev->tx = &queue[1];
688         rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
689
690         /*
691          * Initialize queue parameters.
692          * RX: qid = QID_RX
693          * TX: qid = QID_AC_BE + index
694          * TX: cw_min: 2^5 = 32.
695          * TX: cw_max: 2^10 = 1024.
696          * BCN: qid = QID_BEACON
697          * ATIM: qid = QID_ATIM
698          */
699         rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
700
701         qid = QID_AC_BE;
702         tx_queue_for_each(rt2x00dev, queue)
703                 rt2x00queue_init(rt2x00dev, queue, qid++);
704
705         rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[0], QID_BEACON);
706         if (req_atim)
707                 rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[1], QID_ATIM);
708
709         return 0;
710 }
711
712 void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
713 {
714         kfree(rt2x00dev->rx);
715         rt2x00dev->rx = NULL;
716         rt2x00dev->tx = NULL;
717         rt2x00dev->bcn = NULL;
718 }