]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/wireless/p54/p54common.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc-2.6
[linux-2.6-omap-h63xx.git] / drivers / net / wireless / p54 / p54common.c
1 /*
2  * Common code for mac80211 Prism54 drivers
3  *
4  * Copyright (c) 2006, Michael Wu <flamingice@sourmilk.net>
5  * Copyright (c) 2007, Christian Lamparter <chunkeey@web.de>
6  * Copyright 2008, Johannes Berg <johannes@sipsolutions.net>
7  *
8  * Based on:
9  * - the islsm (softmac prism54) driver, which is:
10  *   Copyright 2004-2006 Jean-Baptiste Note <jbnote@gmail.com>, et al.
11  * - stlc45xx driver
12  *   Copyright (C) 2008 Nokia Corporation and/or its subsidiary(-ies).
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2 as
16  * published by the Free Software Foundation.
17  */
18
19 #include <linux/init.h>
20 #include <linux/firmware.h>
21 #include <linux/etherdevice.h>
22
23 #include <net/mac80211.h>
24
25 #include "p54.h"
26 #include "p54common.h"
27
28 static int modparam_nohwcrypt;
29 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
30 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
31 MODULE_AUTHOR("Michael Wu <flamingice@sourmilk.net>");
32 MODULE_DESCRIPTION("Softmac Prism54 common code");
33 MODULE_LICENSE("GPL");
34 MODULE_ALIAS("prism54common");
35
36 static struct ieee80211_rate p54_bgrates[] = {
37         { .bitrate = 10, .hw_value = 0, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
38         { .bitrate = 20, .hw_value = 1, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
39         { .bitrate = 55, .hw_value = 2, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
40         { .bitrate = 110, .hw_value = 3, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
41         { .bitrate = 60, .hw_value = 4, },
42         { .bitrate = 90, .hw_value = 5, },
43         { .bitrate = 120, .hw_value = 6, },
44         { .bitrate = 180, .hw_value = 7, },
45         { .bitrate = 240, .hw_value = 8, },
46         { .bitrate = 360, .hw_value = 9, },
47         { .bitrate = 480, .hw_value = 10, },
48         { .bitrate = 540, .hw_value = 11, },
49 };
50
51 static struct ieee80211_channel p54_bgchannels[] = {
52         { .center_freq = 2412, .hw_value = 1, },
53         { .center_freq = 2417, .hw_value = 2, },
54         { .center_freq = 2422, .hw_value = 3, },
55         { .center_freq = 2427, .hw_value = 4, },
56         { .center_freq = 2432, .hw_value = 5, },
57         { .center_freq = 2437, .hw_value = 6, },
58         { .center_freq = 2442, .hw_value = 7, },
59         { .center_freq = 2447, .hw_value = 8, },
60         { .center_freq = 2452, .hw_value = 9, },
61         { .center_freq = 2457, .hw_value = 10, },
62         { .center_freq = 2462, .hw_value = 11, },
63         { .center_freq = 2467, .hw_value = 12, },
64         { .center_freq = 2472, .hw_value = 13, },
65         { .center_freq = 2484, .hw_value = 14, },
66 };
67
68 static struct ieee80211_supported_band band_2GHz = {
69         .channels = p54_bgchannels,
70         .n_channels = ARRAY_SIZE(p54_bgchannels),
71         .bitrates = p54_bgrates,
72         .n_bitrates = ARRAY_SIZE(p54_bgrates),
73 };
74
75 static struct ieee80211_rate p54_arates[] = {
76         { .bitrate = 60, .hw_value = 4, },
77         { .bitrate = 90, .hw_value = 5, },
78         { .bitrate = 120, .hw_value = 6, },
79         { .bitrate = 180, .hw_value = 7, },
80         { .bitrate = 240, .hw_value = 8, },
81         { .bitrate = 360, .hw_value = 9, },
82         { .bitrate = 480, .hw_value = 10, },
83         { .bitrate = 540, .hw_value = 11, },
84 };
85
86 static struct ieee80211_channel p54_achannels[] = {
87         { .center_freq = 4920 },
88         { .center_freq = 4940 },
89         { .center_freq = 4960 },
90         { .center_freq = 4980 },
91         { .center_freq = 5040 },
92         { .center_freq = 5060 },
93         { .center_freq = 5080 },
94         { .center_freq = 5170 },
95         { .center_freq = 5180 },
96         { .center_freq = 5190 },
97         { .center_freq = 5200 },
98         { .center_freq = 5210 },
99         { .center_freq = 5220 },
100         { .center_freq = 5230 },
101         { .center_freq = 5240 },
102         { .center_freq = 5260 },
103         { .center_freq = 5280 },
104         { .center_freq = 5300 },
105         { .center_freq = 5320 },
106         { .center_freq = 5500 },
107         { .center_freq = 5520 },
108         { .center_freq = 5540 },
109         { .center_freq = 5560 },
110         { .center_freq = 5580 },
111         { .center_freq = 5600 },
112         { .center_freq = 5620 },
113         { .center_freq = 5640 },
114         { .center_freq = 5660 },
115         { .center_freq = 5680 },
116         { .center_freq = 5700 },
117         { .center_freq = 5745 },
118         { .center_freq = 5765 },
119         { .center_freq = 5785 },
120         { .center_freq = 5805 },
121         { .center_freq = 5825 },
122 };
123
124 static struct ieee80211_supported_band band_5GHz = {
125         .channels = p54_achannels,
126         .n_channels = ARRAY_SIZE(p54_achannels),
127         .bitrates = p54_arates,
128         .n_bitrates = ARRAY_SIZE(p54_arates),
129 };
130
131 int p54_parse_firmware(struct ieee80211_hw *dev, const struct firmware *fw)
132 {
133         struct p54_common *priv = dev->priv;
134         struct bootrec_exp_if *exp_if;
135         struct bootrec *bootrec;
136         u32 *data = (u32 *)fw->data;
137         u32 *end_data = (u32 *)fw->data + (fw->size >> 2);
138         u8 *fw_version = NULL;
139         size_t len;
140         int i;
141         int maxlen;
142
143         if (priv->rx_start)
144                 return 0;
145
146         while (data < end_data && *data)
147                 data++;
148
149         while (data < end_data && !*data)
150                 data++;
151
152         bootrec = (struct bootrec *) data;
153
154         while (bootrec->data <= end_data &&
155                (bootrec->data + (len = le32_to_cpu(bootrec->len))) <= end_data) {
156                 u32 code = le32_to_cpu(bootrec->code);
157                 switch (code) {
158                 case BR_CODE_COMPONENT_ID:
159                         priv->fw_interface = be32_to_cpup((__be32 *)
160                                              bootrec->data);
161                         switch (priv->fw_interface) {
162                         case FW_LM86:
163                         case FW_LM20:
164                         case FW_LM87: {
165                                 char *iftype = (char *)bootrec->data;
166                                 printk(KERN_INFO "%s: p54 detected a LM%c%c "
167                                                  "firmware\n",
168                                         wiphy_name(dev->wiphy),
169                                         iftype[2], iftype[3]);
170                                 break;
171                                 }
172                         case FW_FMAC:
173                         default:
174                                 printk(KERN_ERR "%s: unsupported firmware\n",
175                                         wiphy_name(dev->wiphy));
176                                 return -ENODEV;
177                         }
178                         break;
179                 case BR_CODE_COMPONENT_VERSION:
180                         /* 24 bytes should be enough for all firmwares */
181                         if (strnlen((unsigned char*)bootrec->data, 24) < 24)
182                                 fw_version = (unsigned char*)bootrec->data;
183                         break;
184                 case BR_CODE_DESCR: {
185                         struct bootrec_desc *desc =
186                                 (struct bootrec_desc *)bootrec->data;
187                         priv->rx_start = le32_to_cpu(desc->rx_start);
188                         /* FIXME add sanity checking */
189                         priv->rx_end = le32_to_cpu(desc->rx_end) - 0x3500;
190                         priv->headroom = desc->headroom;
191                         priv->tailroom = desc->tailroom;
192                         priv->privacy_caps = desc->privacy_caps;
193                         priv->rx_keycache_size = desc->rx_keycache_size;
194                         if (le32_to_cpu(bootrec->len) == 11)
195                                 priv->rx_mtu = le16_to_cpu(desc->rx_mtu);
196                         else
197                                 priv->rx_mtu = (size_t)
198                                         0x620 - priv->tx_hdr_len;
199                         maxlen = priv->tx_hdr_len + /* USB devices */
200                                  sizeof(struct p54_rx_data) +
201                                  4 + /* rx alignment */
202                                  IEEE80211_MAX_FRAG_THRESHOLD;
203                         if (priv->rx_mtu > maxlen && PAGE_SIZE == 4096) {
204                                 printk(KERN_INFO "p54: rx_mtu reduced from %d "
205                                                  "to %d\n", priv->rx_mtu,
206                                                  maxlen);
207                                 priv->rx_mtu = maxlen;
208                         }
209                         break;
210                         }
211                 case BR_CODE_EXPOSED_IF:
212                         exp_if = (struct bootrec_exp_if *) bootrec->data;
213                         for (i = 0; i < (len * sizeof(*exp_if) / 4); i++)
214                                 if (exp_if[i].if_id == cpu_to_le16(0x1a))
215                                         priv->fw_var = le16_to_cpu(exp_if[i].variant);
216                         break;
217                 case BR_CODE_DEPENDENT_IF:
218                         break;
219                 case BR_CODE_END_OF_BRA:
220                 case LEGACY_BR_CODE_END_OF_BRA:
221                         end_data = NULL;
222                         break;
223                 default:
224                         break;
225                 }
226                 bootrec = (struct bootrec *)&bootrec->data[len];
227         }
228
229         if (fw_version)
230                 printk(KERN_INFO "%s: FW rev %s - Softmac protocol %x.%x\n",
231                         wiphy_name(dev->wiphy), fw_version,
232                         priv->fw_var >> 8, priv->fw_var & 0xff);
233
234         if (priv->fw_var < 0x500)
235                 printk(KERN_INFO "%s: you are using an obsolete firmware. "
236                        "visit http://wireless.kernel.org/en/users/Drivers/p54 "
237                        "and grab one for \"kernel >= 2.6.28\"!\n",
238                         wiphy_name(dev->wiphy));
239
240         if (priv->fw_var >= 0x300) {
241                 /* Firmware supports QoS, use it! */
242                 priv->tx_stats[4].limit = 3;            /* AC_VO */
243                 priv->tx_stats[5].limit = 4;            /* AC_VI */
244                 priv->tx_stats[6].limit = 3;            /* AC_BE */
245                 priv->tx_stats[7].limit = 2;            /* AC_BK */
246                 dev->queues = 4;
247         }
248
249         if (!modparam_nohwcrypt)
250                 printk(KERN_INFO "%s: cryptographic accelerator "
251                                  "WEP:%s, TKIP:%s, CCMP:%s\n",
252                         wiphy_name(dev->wiphy),
253                         (priv->privacy_caps & BR_DESC_PRIV_CAP_WEP) ? "YES" :
254                         "no", (priv->privacy_caps & (BR_DESC_PRIV_CAP_TKIP |
255                          BR_DESC_PRIV_CAP_MICHAEL)) ? "YES" : "no",
256                         (priv->privacy_caps & BR_DESC_PRIV_CAP_AESCCMP) ?
257                         "YES" : "no");
258
259         return 0;
260 }
261 EXPORT_SYMBOL_GPL(p54_parse_firmware);
262
263 static int p54_convert_rev0(struct ieee80211_hw *dev,
264                             struct pda_pa_curve_data *curve_data)
265 {
266         struct p54_common *priv = dev->priv;
267         struct p54_pa_curve_data_sample *dst;
268         struct pda_pa_curve_data_sample_rev0 *src;
269         size_t cd_len = sizeof(*curve_data) +
270                 (curve_data->points_per_channel*sizeof(*dst) + 2) *
271                  curve_data->channels;
272         unsigned int i, j;
273         void *source, *target;
274
275         priv->curve_data = kmalloc(cd_len, GFP_KERNEL);
276         if (!priv->curve_data)
277                 return -ENOMEM;
278
279         memcpy(priv->curve_data, curve_data, sizeof(*curve_data));
280         source = curve_data->data;
281         target = priv->curve_data->data;
282         for (i = 0; i < curve_data->channels; i++) {
283                 __le16 *freq = source;
284                 source += sizeof(__le16);
285                 *((__le16 *)target) = *freq;
286                 target += sizeof(__le16);
287                 for (j = 0; j < curve_data->points_per_channel; j++) {
288                         dst = target;
289                         src = source;
290
291                         dst->rf_power = src->rf_power;
292                         dst->pa_detector = src->pa_detector;
293                         dst->data_64qam = src->pcv;
294                         /* "invent" the points for the other modulations */
295 #define SUB(x,y) (u8)((x) - (y)) > (x) ? 0 : (x) - (y)
296                         dst->data_16qam = SUB(src->pcv, 12);
297                         dst->data_qpsk = SUB(dst->data_16qam, 12);
298                         dst->data_bpsk = SUB(dst->data_qpsk, 12);
299                         dst->data_barker = SUB(dst->data_bpsk, 14);
300 #undef SUB
301                         target += sizeof(*dst);
302                         source += sizeof(*src);
303                 }
304         }
305
306         return 0;
307 }
308
309 static int p54_convert_rev1(struct ieee80211_hw *dev,
310                             struct pda_pa_curve_data *curve_data)
311 {
312         struct p54_common *priv = dev->priv;
313         struct p54_pa_curve_data_sample *dst;
314         struct pda_pa_curve_data_sample_rev1 *src;
315         size_t cd_len = sizeof(*curve_data) +
316                 (curve_data->points_per_channel*sizeof(*dst) + 2) *
317                  curve_data->channels;
318         unsigned int i, j;
319         void *source, *target;
320
321         priv->curve_data = kmalloc(cd_len, GFP_KERNEL);
322         if (!priv->curve_data)
323                 return -ENOMEM;
324
325         memcpy(priv->curve_data, curve_data, sizeof(*curve_data));
326         source = curve_data->data;
327         target = priv->curve_data->data;
328         for (i = 0; i < curve_data->channels; i++) {
329                 __le16 *freq = source;
330                 source += sizeof(__le16);
331                 *((__le16 *)target) = *freq;
332                 target += sizeof(__le16);
333                 for (j = 0; j < curve_data->points_per_channel; j++) {
334                         memcpy(target, source, sizeof(*src));
335
336                         target += sizeof(*dst);
337                         source += sizeof(*src);
338                 }
339                 source++;
340         }
341
342         return 0;
343 }
344
345 static const char *p54_rf_chips[] = { "NULL", "Duette3", "Duette2",
346                               "Frisbee", "Xbow", "Longbow", "NULL", "NULL" };
347 static int p54_init_xbow_synth(struct ieee80211_hw *dev);
348
349 static void p54_parse_rssical(struct ieee80211_hw *dev, void *data, int len,
350                              u16 type)
351 {
352         struct p54_common *priv = dev->priv;
353         int offset = (type == PDR_RSSI_LINEAR_APPROXIMATION_EXTENDED) ? 2 : 0;
354         int entry_size = sizeof(struct pda_rssi_cal_entry) + offset;
355         int num_entries = (type == PDR_RSSI_LINEAR_APPROXIMATION) ? 1 : 2;
356         int i;
357
358         if (len != (entry_size * num_entries)) {
359                 printk(KERN_ERR "%s: unknown rssi calibration data packing "
360                                  " type:(%x) len:%d.\n",
361                        wiphy_name(dev->wiphy), type, len);
362
363                 print_hex_dump_bytes("rssical:", DUMP_PREFIX_NONE,
364                                      data, len);
365
366                 printk(KERN_ERR "%s: please report this issue.\n",
367                         wiphy_name(dev->wiphy));
368                 return;
369         }
370
371         for (i = 0; i < num_entries; i++) {
372                 struct pda_rssi_cal_entry *cal = data +
373                                                  (offset + i * entry_size);
374                 priv->rssical_db[i].mul = (s16) le16_to_cpu(cal->mul);
375                 priv->rssical_db[i].add = (s16) le16_to_cpu(cal->add);
376         }
377 }
378
379 static int p54_parse_eeprom(struct ieee80211_hw *dev, void *eeprom, int len)
380 {
381         struct p54_common *priv = dev->priv;
382         struct eeprom_pda_wrap *wrap = NULL;
383         struct pda_entry *entry;
384         unsigned int data_len, entry_len;
385         void *tmp;
386         int err;
387         u8 *end = (u8 *)eeprom + len;
388         u16 synth = 0;
389
390         wrap = (struct eeprom_pda_wrap *) eeprom;
391         entry = (void *)wrap->data + le16_to_cpu(wrap->len);
392
393         /* verify that at least the entry length/code fits */
394         while ((u8 *)entry <= end - sizeof(*entry)) {
395                 entry_len = le16_to_cpu(entry->len);
396                 data_len = ((entry_len - 1) << 1);
397
398                 /* abort if entry exceeds whole structure */
399                 if ((u8 *)entry + sizeof(*entry) + data_len > end)
400                         break;
401
402                 switch (le16_to_cpu(entry->code)) {
403                 case PDR_MAC_ADDRESS:
404                         SET_IEEE80211_PERM_ADDR(dev, entry->data);
405                         break;
406                 case PDR_PRISM_PA_CAL_OUTPUT_POWER_LIMITS:
407                         if (data_len < 2) {
408                                 err = -EINVAL;
409                                 goto err;
410                         }
411
412                         if (2 + entry->data[1]*sizeof(*priv->output_limit) > data_len) {
413                                 err = -EINVAL;
414                                 goto err;
415                         }
416
417                         priv->output_limit = kmalloc(entry->data[1] *
418                                 sizeof(*priv->output_limit), GFP_KERNEL);
419
420                         if (!priv->output_limit) {
421                                 err = -ENOMEM;
422                                 goto err;
423                         }
424
425                         memcpy(priv->output_limit, &entry->data[2],
426                                entry->data[1]*sizeof(*priv->output_limit));
427                         priv->output_limit_len = entry->data[1];
428                         break;
429                 case PDR_PRISM_PA_CAL_CURVE_DATA: {
430                         struct pda_pa_curve_data *curve_data =
431                                 (struct pda_pa_curve_data *)entry->data;
432                         if (data_len < sizeof(*curve_data)) {
433                                 err = -EINVAL;
434                                 goto err;
435                         }
436
437                         switch (curve_data->cal_method_rev) {
438                         case 0:
439                                 err = p54_convert_rev0(dev, curve_data);
440                                 break;
441                         case 1:
442                                 err = p54_convert_rev1(dev, curve_data);
443                                 break;
444                         default:
445                                 printk(KERN_ERR "%s: unknown curve data "
446                                                 "revision %d\n",
447                                                 wiphy_name(dev->wiphy),
448                                                 curve_data->cal_method_rev);
449                                 err = -ENODEV;
450                                 break;
451                         }
452                         if (err)
453                                 goto err;
454
455                 }
456                 case PDR_PRISM_ZIF_TX_IQ_CALIBRATION:
457                         priv->iq_autocal = kmalloc(data_len, GFP_KERNEL);
458                         if (!priv->iq_autocal) {
459                                 err = -ENOMEM;
460                                 goto err;
461                         }
462
463                         memcpy(priv->iq_autocal, entry->data, data_len);
464                         priv->iq_autocal_len = data_len / sizeof(struct pda_iq_autocal_entry);
465                         break;
466                 case PDR_INTERFACE_LIST:
467                         tmp = entry->data;
468                         while ((u8 *)tmp < entry->data + data_len) {
469                                 struct bootrec_exp_if *exp_if = tmp;
470                                 if (le16_to_cpu(exp_if->if_id) == 0xf)
471                                         synth = le16_to_cpu(exp_if->variant);
472                                 tmp += sizeof(struct bootrec_exp_if);
473                         }
474                         break;
475                 case PDR_HARDWARE_PLATFORM_COMPONENT_ID:
476                         priv->version = *(u8 *)(entry->data + 1);
477                         break;
478                 case PDR_RSSI_LINEAR_APPROXIMATION:
479                 case PDR_RSSI_LINEAR_APPROXIMATION_DUAL_BAND:
480                 case PDR_RSSI_LINEAR_APPROXIMATION_EXTENDED:
481                         p54_parse_rssical(dev, entry->data, data_len,
482                                           le16_to_cpu(entry->code));
483                         break;
484                 case PDR_END:
485                         /* make it overrun */
486                         entry_len = len;
487                         break;
488                 case PDR_MANUFACTURING_PART_NUMBER:
489                 case PDR_PDA_VERSION:
490                 case PDR_NIC_SERIAL_NUMBER:
491                 case PDR_REGULATORY_DOMAIN_LIST:
492                 case PDR_TEMPERATURE_TYPE:
493                 case PDR_PRISM_PCI_IDENTIFIER:
494                 case PDR_COUNTRY_INFORMATION:
495                 case PDR_OEM_NAME:
496                 case PDR_PRODUCT_NAME:
497                 case PDR_UTF8_OEM_NAME:
498                 case PDR_UTF8_PRODUCT_NAME:
499                 case PDR_COUNTRY_LIST:
500                 case PDR_DEFAULT_COUNTRY:
501                 case PDR_ANTENNA_GAIN:
502                 case PDR_PRISM_INDIGO_PA_CALIBRATION_DATA:
503                 case PDR_REGULATORY_POWER_LIMITS:
504                 case PDR_RADIATED_TRANSMISSION_CORRECTION:
505                 case PDR_PRISM_TX_IQ_CALIBRATION:
506                 case PDR_BASEBAND_REGISTERS:
507                 case PDR_PER_CHANNEL_BASEBAND_REGISTERS:
508                         break;
509                 default:
510                         printk(KERN_INFO "%s: unknown eeprom code : 0x%x\n",
511                                 wiphy_name(dev->wiphy),
512                                 le16_to_cpu(entry->code));
513                         break;
514                 }
515
516                 entry = (void *)entry + (entry_len + 1)*2;
517         }
518
519         if (!synth || !priv->iq_autocal || !priv->output_limit ||
520             !priv->curve_data) {
521                 printk(KERN_ERR "%s: not all required entries found in eeprom!\n",
522                         wiphy_name(dev->wiphy));
523                 err = -EINVAL;
524                 goto err;
525         }
526
527         priv->rxhw = synth & PDR_SYNTH_FRONTEND_MASK;
528         if (priv->rxhw == 4)
529                 p54_init_xbow_synth(dev);
530         if (!(synth & PDR_SYNTH_24_GHZ_DISABLED))
531                 dev->wiphy->bands[IEEE80211_BAND_2GHZ] = &band_2GHz;
532         if (!(synth & PDR_SYNTH_5_GHZ_DISABLED))
533                 dev->wiphy->bands[IEEE80211_BAND_5GHZ] = &band_5GHz;
534
535         if (!is_valid_ether_addr(dev->wiphy->perm_addr)) {
536                 u8 perm_addr[ETH_ALEN];
537
538                 printk(KERN_WARNING "%s: Invalid hwaddr! Using randomly generated MAC addr\n",
539                         wiphy_name(dev->wiphy));
540                 random_ether_addr(perm_addr);
541                 SET_IEEE80211_PERM_ADDR(dev, perm_addr);
542         }
543
544         printk(KERN_INFO "%s: hwaddr %pM, MAC:isl38%02x RF:%s\n",
545                 wiphy_name(dev->wiphy),
546                 dev->wiphy->perm_addr,
547                 priv->version, p54_rf_chips[priv->rxhw]);
548
549         return 0;
550
551   err:
552         if (priv->iq_autocal) {
553                 kfree(priv->iq_autocal);
554                 priv->iq_autocal = NULL;
555         }
556
557         if (priv->output_limit) {
558                 kfree(priv->output_limit);
559                 priv->output_limit = NULL;
560         }
561
562         if (priv->curve_data) {
563                 kfree(priv->curve_data);
564                 priv->curve_data = NULL;
565         }
566
567         printk(KERN_ERR "%s: eeprom parse failed!\n",
568                 wiphy_name(dev->wiphy));
569         return err;
570 }
571
572 static int p54_rssi_to_dbm(struct ieee80211_hw *dev, int rssi)
573 {
574         struct p54_common *priv = dev->priv;
575         int band = dev->conf.channel->band;
576
577         return ((rssi * priv->rssical_db[band].mul) / 64 +
578                          priv->rssical_db[band].add) / 4;
579 }
580
581 static int p54_rx_data(struct ieee80211_hw *dev, struct sk_buff *skb)
582 {
583         struct p54_common *priv = dev->priv;
584         struct p54_rx_data *hdr = (struct p54_rx_data *) skb->data;
585         struct ieee80211_rx_status rx_status = {0};
586         u16 freq = le16_to_cpu(hdr->freq);
587         size_t header_len = sizeof(*hdr);
588         u32 tsf32;
589         u8 rate = hdr->rate & 0xf;
590
591         /*
592          * If the device is in a unspecified state we have to
593          * ignore all data frames. Else we could end up with a
594          * nasty crash.
595          */
596         if (unlikely(priv->mode == NL80211_IFTYPE_UNSPECIFIED))
597                 return 0;
598
599         if (!(hdr->flags & cpu_to_le16(P54_HDR_FLAG_DATA_IN_FCS_GOOD))) {
600                 if (priv->filter_flags & FIF_FCSFAIL)
601                         rx_status.flag |= RX_FLAG_FAILED_FCS_CRC;
602                 else
603                         return 0;
604         }
605
606         if (hdr->decrypt_status == P54_DECRYPT_OK)
607                 rx_status.flag |= RX_FLAG_DECRYPTED;
608         if ((hdr->decrypt_status == P54_DECRYPT_FAIL_MICHAEL) ||
609             (hdr->decrypt_status == P54_DECRYPT_FAIL_TKIP))
610                 rx_status.flag |= RX_FLAG_MMIC_ERROR;
611
612         rx_status.signal = p54_rssi_to_dbm(dev, hdr->rssi);
613         rx_status.noise = priv->noise;
614         /* XX correct? */
615         rx_status.qual = (100 * hdr->rssi) / 127;
616         if (hdr->rate & 0x10)
617                 rx_status.flag |= RX_FLAG_SHORTPRE;
618         if (dev->conf.channel->band == IEEE80211_BAND_5GHZ)
619                 rx_status.rate_idx = (rate < 4) ? 0 : rate - 4;
620         else
621                 rx_status.rate_idx = rate;
622
623         rx_status.freq = freq;
624         rx_status.band =  dev->conf.channel->band;
625         rx_status.antenna = hdr->antenna;
626
627         tsf32 = le32_to_cpu(hdr->tsf32);
628         if (tsf32 < priv->tsf_low32)
629                 priv->tsf_high32++;
630         rx_status.mactime = ((u64)priv->tsf_high32) << 32 | tsf32;
631         priv->tsf_low32 = tsf32;
632
633         rx_status.flag |= RX_FLAG_TSFT;
634
635         if (hdr->flags & cpu_to_le16(P54_HDR_FLAG_DATA_ALIGN))
636                 header_len += hdr->align[0];
637
638         skb_pull(skb, header_len);
639         skb_trim(skb, le16_to_cpu(hdr->len));
640
641         ieee80211_rx_irqsafe(dev, skb, &rx_status);
642
643         queue_delayed_work(dev->workqueue, &priv->work,
644                            msecs_to_jiffies(P54_STATISTICS_UPDATE));
645
646         return -1;
647 }
648
649 static void inline p54_wake_free_queues(struct ieee80211_hw *dev)
650 {
651         struct p54_common *priv = dev->priv;
652         int i;
653
654         if (priv->mode == NL80211_IFTYPE_UNSPECIFIED)
655                 return ;
656
657         for (i = 0; i < dev->queues; i++)
658                 if (priv->tx_stats[i + 4].len < priv->tx_stats[i + 4].limit)
659                         ieee80211_wake_queue(dev, i);
660 }
661
662 void p54_free_skb(struct ieee80211_hw *dev, struct sk_buff *skb)
663 {
664         struct p54_common *priv = dev->priv;
665         struct ieee80211_tx_info *info;
666         struct memrecord *range;
667         unsigned long flags;
668         u32 freed = 0, last_addr = priv->rx_start;
669
670         if (unlikely(!skb || !dev || !skb_queue_len(&priv->tx_queue)))
671                 return;
672
673         /*
674          * don't try to free an already unlinked skb
675          */
676         if (unlikely((!skb->next) || (!skb->prev)))
677                 return;
678
679         spin_lock_irqsave(&priv->tx_queue.lock, flags);
680         info = IEEE80211_SKB_CB(skb);
681         range = (void *)info->rate_driver_data;
682         if (skb->prev != (struct sk_buff *)&priv->tx_queue) {
683                 struct ieee80211_tx_info *ni;
684                 struct memrecord *mr;
685
686                 ni = IEEE80211_SKB_CB(skb->prev);
687                 mr = (struct memrecord *)ni->rate_driver_data;
688                 last_addr = mr->end_addr;
689         }
690         if (skb->next != (struct sk_buff *)&priv->tx_queue) {
691                 struct ieee80211_tx_info *ni;
692                 struct memrecord *mr;
693
694                 ni = IEEE80211_SKB_CB(skb->next);
695                 mr = (struct memrecord *)ni->rate_driver_data;
696                 freed = mr->start_addr - last_addr;
697         } else
698                 freed = priv->rx_end - last_addr;
699         __skb_unlink(skb, &priv->tx_queue);
700         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
701         dev_kfree_skb_any(skb);
702
703         if (freed >= priv->headroom + sizeof(struct p54_hdr) + 48 +
704                      IEEE80211_MAX_RTS_THRESHOLD + priv->tailroom)
705                 p54_wake_free_queues(dev);
706 }
707 EXPORT_SYMBOL_GPL(p54_free_skb);
708
709 static struct sk_buff *p54_find_tx_entry(struct ieee80211_hw *dev,
710                                            __le32 req_id)
711 {
712         struct p54_common *priv = dev->priv;
713         struct sk_buff *entry = priv->tx_queue.next;
714         unsigned long flags;
715
716         spin_lock_irqsave(&priv->tx_queue.lock, flags);
717         while (entry != (struct sk_buff *)&priv->tx_queue) {
718                 struct p54_hdr *hdr = (struct p54_hdr *) entry->data;
719
720                 if (hdr->req_id == req_id) {
721                         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
722                         return entry;
723                 }
724                 entry = entry->next;
725         }
726         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
727         return NULL;
728 }
729
730 static void p54_rx_frame_sent(struct ieee80211_hw *dev, struct sk_buff *skb)
731 {
732         struct p54_common *priv = dev->priv;
733         struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
734         struct p54_frame_sent *payload = (struct p54_frame_sent *) hdr->data;
735         struct sk_buff *entry = (struct sk_buff *) priv->tx_queue.next;
736         u32 addr = le32_to_cpu(hdr->req_id) - priv->headroom;
737         struct memrecord *range = NULL;
738         u32 freed = 0;
739         u32 last_addr = priv->rx_start;
740         unsigned long flags;
741         int count, idx;
742
743         spin_lock_irqsave(&priv->tx_queue.lock, flags);
744         while (entry != (struct sk_buff *)&priv->tx_queue) {
745                 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(entry);
746                 struct p54_hdr *entry_hdr;
747                 struct p54_tx_data *entry_data;
748                 int pad = 0;
749
750                 range = (void *)info->rate_driver_data;
751                 if (range->start_addr != addr) {
752                         last_addr = range->end_addr;
753                         entry = entry->next;
754                         continue;
755                 }
756
757                 if (entry->next != (struct sk_buff *)&priv->tx_queue) {
758                         struct ieee80211_tx_info *ni;
759                         struct memrecord *mr;
760
761                         ni = IEEE80211_SKB_CB(entry->next);
762                         mr = (struct memrecord *)ni->rate_driver_data;
763                         freed = mr->start_addr - last_addr;
764                 } else
765                         freed = priv->rx_end - last_addr;
766
767                 last_addr = range->end_addr;
768                 __skb_unlink(entry, &priv->tx_queue);
769                 spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
770
771                 entry_hdr = (struct p54_hdr *) entry->data;
772                 entry_data = (struct p54_tx_data *) entry_hdr->data;
773                 priv->tx_stats[entry_data->hw_queue].len--;
774                 priv->stats.dot11ACKFailureCount += payload->tries - 1;
775
776                 if (unlikely(entry == priv->cached_beacon)) {
777                         kfree_skb(entry);
778                         priv->cached_beacon = NULL;
779                         goto out;
780                 }
781
782                 /*
783                  * Clear manually, ieee80211_tx_info_clear_status would
784                  * clear the counts too and we need them.
785                  */
786                 memset(&info->status.ampdu_ack_len, 0,
787                        sizeof(struct ieee80211_tx_info) -
788                        offsetof(struct ieee80211_tx_info, status.ampdu_ack_len));
789                 BUILD_BUG_ON(offsetof(struct ieee80211_tx_info,
790                                       status.ampdu_ack_len) != 23);
791
792                 if (entry_hdr->flags & cpu_to_le16(P54_HDR_FLAG_DATA_ALIGN))
793                         pad = entry_data->align[0];
794
795                 /* walk through the rates array and adjust the counts */
796                 count = payload->tries;
797                 for (idx = 0; idx < 4; idx++) {
798                         if (count >= info->status.rates[idx].count) {
799                                 count -= info->status.rates[idx].count;
800                         } else if (count > 0) {
801                                 info->status.rates[idx].count = count;
802                                 count = 0;
803                         } else {
804                                 info->status.rates[idx].idx = -1;
805                                 info->status.rates[idx].count = 0;
806                         }
807                 }
808
809                 if (!(info->flags & IEEE80211_TX_CTL_NO_ACK) &&
810                      (!payload->status))
811                         info->flags |= IEEE80211_TX_STAT_ACK;
812                 if (payload->status & P54_TX_PSM_CANCELLED)
813                         info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
814                 info->status.ack_signal = p54_rssi_to_dbm(dev,
815                                 (int)payload->ack_rssi);
816
817                 if (entry_data->key_type == P54_CRYPTO_TKIPMICHAEL) {
818                         u8 *iv = (u8 *)(entry_data->align + pad +
819                                         entry_data->crypt_offset);
820
821                         /* Restore the original TKIP IV. */
822                         iv[2] = iv[0];
823                         iv[0] = iv[1];
824                         iv[1] = (iv[0] | 0x20) & 0x7f;  /* WEPSeed - 8.3.2.2 */
825                 }
826                 skb_pull(entry, sizeof(*hdr) + pad + sizeof(*entry_data));
827                 ieee80211_tx_status_irqsafe(dev, entry);
828                 goto out;
829         }
830         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
831
832 out:
833         if (freed >= priv->headroom + sizeof(struct p54_hdr) + 48 +
834                      IEEE80211_MAX_RTS_THRESHOLD + priv->tailroom)
835                 p54_wake_free_queues(dev);
836 }
837
838 static void p54_rx_eeprom_readback(struct ieee80211_hw *dev,
839                                    struct sk_buff *skb)
840 {
841         struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
842         struct p54_eeprom_lm86 *eeprom = (struct p54_eeprom_lm86 *) hdr->data;
843         struct p54_common *priv = dev->priv;
844
845         if (!priv->eeprom)
846                 return ;
847
848         if (priv->fw_var >= 0x509) {
849                 memcpy(priv->eeprom, eeprom->v2.data,
850                        le16_to_cpu(eeprom->v2.len));
851         } else {
852                 memcpy(priv->eeprom, eeprom->v1.data,
853                        le16_to_cpu(eeprom->v1.len));
854         }
855
856         complete(&priv->eeprom_comp);
857 }
858
859 static void p54_rx_stats(struct ieee80211_hw *dev, struct sk_buff *skb)
860 {
861         struct p54_common *priv = dev->priv;
862         struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
863         struct p54_statistics *stats = (struct p54_statistics *) hdr->data;
864         u32 tsf32;
865
866         if (unlikely(priv->mode == NL80211_IFTYPE_UNSPECIFIED))
867                 return ;
868
869         tsf32 = le32_to_cpu(stats->tsf32);
870         if (tsf32 < priv->tsf_low32)
871                 priv->tsf_high32++;
872         priv->tsf_low32 = tsf32;
873
874         priv->stats.dot11RTSFailureCount = le32_to_cpu(stats->rts_fail);
875         priv->stats.dot11RTSSuccessCount = le32_to_cpu(stats->rts_success);
876         priv->stats.dot11FCSErrorCount = le32_to_cpu(stats->rx_bad_fcs);
877
878         priv->noise = p54_rssi_to_dbm(dev, le32_to_cpu(stats->noise));
879
880         p54_free_skb(dev, p54_find_tx_entry(dev, hdr->req_id));
881 }
882
883 static void p54_rx_trap(struct ieee80211_hw *dev, struct sk_buff *skb)
884 {
885         struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
886         struct p54_trap *trap = (struct p54_trap *) hdr->data;
887         u16 event = le16_to_cpu(trap->event);
888         u16 freq = le16_to_cpu(trap->frequency);
889
890         switch (event) {
891         case P54_TRAP_BEACON_TX:
892                 break;
893         case P54_TRAP_RADAR:
894                 printk(KERN_INFO "%s: radar (freq:%d MHz)\n",
895                         wiphy_name(dev->wiphy), freq);
896                 break;
897         case P54_TRAP_NO_BEACON:
898                 break;
899         case P54_TRAP_SCAN:
900                 break;
901         case P54_TRAP_TBTT:
902                 break;
903         case P54_TRAP_TIMER:
904                 break;
905         default:
906                 printk(KERN_INFO "%s: received event:%x freq:%d\n",
907                        wiphy_name(dev->wiphy), event, freq);
908                 break;
909         }
910 }
911
912 static int p54_rx_control(struct ieee80211_hw *dev, struct sk_buff *skb)
913 {
914         struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
915
916         switch (le16_to_cpu(hdr->type)) {
917         case P54_CONTROL_TYPE_TXDONE:
918                 p54_rx_frame_sent(dev, skb);
919                 break;
920         case P54_CONTROL_TYPE_TRAP:
921                 p54_rx_trap(dev, skb);
922                 break;
923         case P54_CONTROL_TYPE_BBP:
924                 break;
925         case P54_CONTROL_TYPE_STAT_READBACK:
926                 p54_rx_stats(dev, skb);
927                 break;
928         case P54_CONTROL_TYPE_EEPROM_READBACK:
929                 p54_rx_eeprom_readback(dev, skb);
930                 break;
931         default:
932                 printk(KERN_DEBUG "%s: not handling 0x%02x type control frame\n",
933                        wiphy_name(dev->wiphy), le16_to_cpu(hdr->type));
934                 break;
935         }
936
937         return 0;
938 }
939
940 /* returns zero if skb can be reused */
941 int p54_rx(struct ieee80211_hw *dev, struct sk_buff *skb)
942 {
943         u16 type = le16_to_cpu(*((__le16 *)skb->data));
944
945         if (type & P54_HDR_FLAG_CONTROL)
946                 return p54_rx_control(dev, skb);
947         else
948                 return p54_rx_data(dev, skb);
949 }
950 EXPORT_SYMBOL_GPL(p54_rx);
951
952 /*
953  * So, the firmware is somewhat stupid and doesn't know what places in its
954  * memory incoming data should go to. By poking around in the firmware, we
955  * can find some unused memory to upload our packets to. However, data that we
956  * want the card to TX needs to stay intact until the card has told us that
957  * it is done with it. This function finds empty places we can upload to and
958  * marks allocated areas as reserved if necessary. p54_rx_frame_sent frees
959  * allocated areas.
960  */
961 static int p54_assign_address(struct ieee80211_hw *dev, struct sk_buff *skb,
962                                struct p54_hdr *data, u32 len)
963 {
964         struct p54_common *priv = dev->priv;
965         struct sk_buff *entry = priv->tx_queue.next;
966         struct sk_buff *target_skb = NULL;
967         struct ieee80211_tx_info *info;
968         struct memrecord *range;
969         u32 last_addr = priv->rx_start;
970         u32 largest_hole = 0;
971         u32 target_addr = priv->rx_start;
972         unsigned long flags;
973         unsigned int left;
974         len = (len + priv->headroom + priv->tailroom + 3) & ~0x3;
975
976         if (!skb)
977                 return -EINVAL;
978
979         spin_lock_irqsave(&priv->tx_queue.lock, flags);
980
981         left = skb_queue_len(&priv->tx_queue);
982         if (unlikely(left >= 28)) {
983                 /*
984                  * The tx_queue is nearly full!
985                  * We have throttle normal data traffic, because we must
986                  * have a few spare slots for control frames left.
987                  */
988                 ieee80211_stop_queues(dev);
989                 queue_delayed_work(dev->workqueue, &priv->work,
990                                    msecs_to_jiffies(P54_TX_TIMEOUT));
991
992                 if (unlikely(left == 32)) {
993                         /*
994                          * The tx_queue is now really full.
995                          *
996                          * TODO: check if the device has crashed and reset it.
997                          */
998                         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
999                         return -ENOSPC;
1000                 }
1001         }
1002
1003         while (left--) {
1004                 u32 hole_size;
1005                 info = IEEE80211_SKB_CB(entry);
1006                 range = (void *)info->rate_driver_data;
1007                 hole_size = range->start_addr - last_addr;
1008                 if (!target_skb && hole_size >= len) {
1009                         target_skb = entry->prev;
1010                         hole_size -= len;
1011                         target_addr = last_addr;
1012                 }
1013                 largest_hole = max(largest_hole, hole_size);
1014                 last_addr = range->end_addr;
1015                 entry = entry->next;
1016         }
1017         if (!target_skb && priv->rx_end - last_addr >= len) {
1018                 target_skb = priv->tx_queue.prev;
1019                 largest_hole = max(largest_hole, priv->rx_end - last_addr - len);
1020                 if (!skb_queue_empty(&priv->tx_queue)) {
1021                         info = IEEE80211_SKB_CB(target_skb);
1022                         range = (void *)info->rate_driver_data;
1023                         target_addr = range->end_addr;
1024                 }
1025         } else
1026                 largest_hole = max(largest_hole, priv->rx_end - last_addr);
1027
1028         if (!target_skb) {
1029                 spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
1030                 ieee80211_stop_queues(dev);
1031                 return -ENOSPC;
1032         }
1033
1034         info = IEEE80211_SKB_CB(skb);
1035         range = (void *)info->rate_driver_data;
1036         range->start_addr = target_addr;
1037         range->end_addr = target_addr + len;
1038         __skb_queue_after(&priv->tx_queue, target_skb, skb);
1039         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
1040
1041         if (largest_hole < priv->headroom + sizeof(struct p54_hdr) +
1042                            48 + IEEE80211_MAX_RTS_THRESHOLD + priv->tailroom)
1043                 ieee80211_stop_queues(dev);
1044
1045         data->req_id = cpu_to_le32(target_addr + priv->headroom);
1046         return 0;
1047 }
1048
1049 static struct sk_buff *p54_alloc_skb(struct ieee80211_hw *dev,
1050                 u16 hdr_flags, u16 len, u16 type, gfp_t memflags)
1051 {
1052         struct p54_common *priv = dev->priv;
1053         struct p54_hdr *hdr;
1054         struct sk_buff *skb;
1055
1056         skb = __dev_alloc_skb(len + priv->tx_hdr_len, memflags);
1057         if (!skb)
1058                 return NULL;
1059         skb_reserve(skb, priv->tx_hdr_len);
1060
1061         hdr = (struct p54_hdr *) skb_put(skb, sizeof(*hdr));
1062         hdr->flags = cpu_to_le16(hdr_flags);
1063         hdr->len = cpu_to_le16(len - sizeof(*hdr));
1064         hdr->type = cpu_to_le16(type);
1065         hdr->tries = hdr->rts_tries = 0;
1066
1067         if (unlikely(p54_assign_address(dev, skb, hdr, len))) {
1068                 kfree_skb(skb);
1069                 return NULL;
1070         }
1071         return skb;
1072 }
1073
1074 int p54_read_eeprom(struct ieee80211_hw *dev)
1075 {
1076         struct p54_common *priv = dev->priv;
1077         struct p54_hdr *hdr = NULL;
1078         struct p54_eeprom_lm86 *eeprom_hdr;
1079         struct sk_buff *skb;
1080         size_t eeprom_size = 0x2020, offset = 0, blocksize, maxblocksize;
1081         int ret = -ENOMEM;
1082         void *eeprom = NULL;
1083
1084         maxblocksize = EEPROM_READBACK_LEN;
1085         if (priv->fw_var >= 0x509)
1086                 maxblocksize -= 0xc;
1087         else
1088                 maxblocksize -= 0x4;
1089
1090         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL, sizeof(*hdr) +
1091                             sizeof(*eeprom_hdr) + maxblocksize,
1092                             P54_CONTROL_TYPE_EEPROM_READBACK, GFP_KERNEL);
1093         if (!skb)
1094                 goto free;
1095         priv->eeprom = kzalloc(EEPROM_READBACK_LEN, GFP_KERNEL);
1096         if (!priv->eeprom)
1097                 goto free;
1098         eeprom = kzalloc(eeprom_size, GFP_KERNEL);
1099         if (!eeprom)
1100                 goto free;
1101
1102         eeprom_hdr = (struct p54_eeprom_lm86 *) skb_put(skb,
1103                      sizeof(*eeprom_hdr) + maxblocksize);
1104
1105         while (eeprom_size) {
1106                 blocksize = min(eeprom_size, maxblocksize);
1107                 if (priv->fw_var < 0x509) {
1108                         eeprom_hdr->v1.offset = cpu_to_le16(offset);
1109                         eeprom_hdr->v1.len = cpu_to_le16(blocksize);
1110                 } else {
1111                         eeprom_hdr->v2.offset = cpu_to_le32(offset);
1112                         eeprom_hdr->v2.len = cpu_to_le16(blocksize);
1113                         eeprom_hdr->v2.magic2 = 0xf;
1114                         memcpy(eeprom_hdr->v2.magic, (const char *)"LOCK", 4);
1115                 }
1116                 priv->tx(dev, skb);
1117
1118                 if (!wait_for_completion_interruptible_timeout(&priv->eeprom_comp, HZ)) {
1119                         printk(KERN_ERR "%s: device does not respond!\n",
1120                                 wiphy_name(dev->wiphy));
1121                         ret = -EBUSY;
1122                         goto free;
1123                 }
1124
1125                 memcpy(eeprom + offset, priv->eeprom, blocksize);
1126                 offset += blocksize;
1127                 eeprom_size -= blocksize;
1128         }
1129
1130         ret = p54_parse_eeprom(dev, eeprom, offset);
1131 free:
1132         kfree(priv->eeprom);
1133         priv->eeprom = NULL;
1134         p54_free_skb(dev, skb);
1135         kfree(eeprom);
1136
1137         return ret;
1138 }
1139 EXPORT_SYMBOL_GPL(p54_read_eeprom);
1140
1141 static int p54_set_tim(struct ieee80211_hw *dev, struct ieee80211_sta *sta,
1142                 bool set)
1143 {
1144         struct p54_common *priv = dev->priv;
1145         struct sk_buff *skb;
1146         struct p54_tim *tim;
1147
1148         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET,
1149                       sizeof(struct p54_hdr) + sizeof(*tim),
1150                       P54_CONTROL_TYPE_TIM, GFP_KERNEL);
1151         if (!skb)
1152                 return -ENOMEM;
1153
1154         tim = (struct p54_tim *) skb_put(skb, sizeof(*tim));
1155         tim->count = 1;
1156         tim->entry[0] = cpu_to_le16(set ? (sta->aid | 0x8000) : sta->aid);
1157         priv->tx(dev, skb);
1158         return 0;
1159 }
1160
1161 static int p54_sta_unlock(struct ieee80211_hw *dev, u8 *addr)
1162 {
1163         struct p54_common *priv = dev->priv;
1164         struct sk_buff *skb;
1165         struct p54_sta_unlock *sta;
1166
1167         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET,
1168                 sizeof(struct p54_hdr) + sizeof(*sta),
1169                 P54_CONTROL_TYPE_PSM_STA_UNLOCK, GFP_ATOMIC);
1170         if (!skb)
1171                 return -ENOMEM;
1172
1173         sta = (struct p54_sta_unlock *)skb_put(skb, sizeof(*sta));
1174         memcpy(sta->addr, addr, ETH_ALEN);
1175         priv->tx(dev, skb);
1176         return 0;
1177 }
1178
1179 static void p54_sta_notify(struct ieee80211_hw *dev, struct ieee80211_vif *vif,
1180                               enum sta_notify_cmd notify_cmd,
1181                               struct ieee80211_sta *sta)
1182 {
1183         switch (notify_cmd) {
1184         case STA_NOTIFY_ADD:
1185         case STA_NOTIFY_REMOVE:
1186                 /*
1187                  * Notify the firmware that we don't want or we don't
1188                  * need to buffer frames for this station anymore.
1189                  */
1190
1191                 p54_sta_unlock(dev, sta->addr);
1192                 break;
1193         case STA_NOTIFY_AWAKE:
1194                 /* update the firmware's filter table */
1195                 p54_sta_unlock(dev, sta->addr);
1196                 break;
1197         default:
1198                 break;
1199         }
1200 }
1201
1202 static int p54_tx_cancel(struct ieee80211_hw *dev, struct sk_buff *entry)
1203 {
1204         struct p54_common *priv = dev->priv;
1205         struct sk_buff *skb;
1206         struct p54_hdr *hdr;
1207         struct p54_txcancel *cancel;
1208
1209         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET,
1210                 sizeof(struct p54_hdr) + sizeof(*cancel),
1211                 P54_CONTROL_TYPE_TXCANCEL, GFP_ATOMIC);
1212         if (!skb)
1213                 return -ENOMEM;
1214
1215         hdr = (void *)entry->data;
1216         cancel = (struct p54_txcancel *)skb_put(skb, sizeof(*cancel));
1217         cancel->req_id = hdr->req_id;
1218         priv->tx(dev, skb);
1219         return 0;
1220 }
1221
1222 static int p54_tx_fill(struct ieee80211_hw *dev, struct sk_buff *skb,
1223                 struct ieee80211_tx_info *info, u8 *queue, size_t *extra_len,
1224                 u16 *flags, u16 *aid)
1225 {
1226         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1227         struct p54_common *priv = dev->priv;
1228         int ret = 0;
1229
1230         if (unlikely(ieee80211_is_mgmt(hdr->frame_control))) {
1231                 if (ieee80211_is_beacon(hdr->frame_control)) {
1232                         *aid = 0;
1233                         *queue = 0;
1234                         *extra_len = IEEE80211_MAX_TIM_LEN;
1235                         *flags = P54_HDR_FLAG_DATA_OUT_TIMESTAMP;
1236                         return 0;
1237                 } else if (ieee80211_is_probe_resp(hdr->frame_control)) {
1238                         *aid = 0;
1239                         *queue = 2;
1240                         *flags = P54_HDR_FLAG_DATA_OUT_TIMESTAMP |
1241                                  P54_HDR_FLAG_DATA_OUT_NOCANCEL;
1242                         return 0;
1243                 } else {
1244                         *queue = 2;
1245                         ret = 0;
1246                 }
1247         } else {
1248                 *queue += 4;
1249                 ret = 1;
1250         }
1251
1252         switch (priv->mode) {
1253         case NL80211_IFTYPE_STATION:
1254                 *aid = 1;
1255                 break;
1256         case NL80211_IFTYPE_AP:
1257         case NL80211_IFTYPE_ADHOC:
1258         case NL80211_IFTYPE_MESH_POINT:
1259                 if (info->flags & IEEE80211_TX_CTL_SEND_AFTER_DTIM) {
1260                         *aid = 0;
1261                         *queue = 3;
1262                         return 0;
1263                 }
1264                 if (info->control.sta)
1265                         *aid = info->control.sta->aid;
1266                 else
1267                         *flags |= P54_HDR_FLAG_DATA_OUT_NOCANCEL;
1268         }
1269         return ret;
1270 }
1271
1272 static u8 p54_convert_algo(enum ieee80211_key_alg alg)
1273 {
1274         switch (alg) {
1275         case ALG_WEP:
1276                 return P54_CRYPTO_WEP;
1277         case ALG_TKIP:
1278                 return P54_CRYPTO_TKIPMICHAEL;
1279         case ALG_CCMP:
1280                 return P54_CRYPTO_AESCCMP;
1281         default:
1282                 return 0;
1283         }
1284 }
1285
1286 static int p54_tx(struct ieee80211_hw *dev, struct sk_buff *skb)
1287 {
1288         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1289         struct ieee80211_tx_queue_stats *current_queue = NULL;
1290         struct p54_common *priv = dev->priv;
1291         struct p54_hdr *hdr;
1292         struct p54_tx_data *txhdr;
1293         size_t padding, len, tim_len = 0;
1294         int i, j, ridx, ret;
1295         u16 hdr_flags = 0, aid = 0;
1296         u8 rate, queue, crypt_offset = 0;
1297         u8 cts_rate = 0x20;
1298         u8 rc_flags;
1299         u8 calculated_tries[4];
1300         u8 nrates = 0, nremaining = 8;
1301
1302         queue = skb_get_queue_mapping(skb);
1303
1304         ret = p54_tx_fill(dev, skb, info, &queue, &tim_len, &hdr_flags, &aid);
1305         current_queue = &priv->tx_stats[queue];
1306         if (unlikely((current_queue->len > current_queue->limit) && ret))
1307                 return NETDEV_TX_BUSY;
1308         current_queue->len++;
1309         current_queue->count++;
1310         if ((current_queue->len == current_queue->limit) && ret)
1311                 ieee80211_stop_queue(dev, skb_get_queue_mapping(skb));
1312
1313         padding = (unsigned long)(skb->data - (sizeof(*hdr) + sizeof(*txhdr))) & 3;
1314         len = skb->len;
1315
1316         if (info->control.hw_key) {
1317                 crypt_offset = ieee80211_get_hdrlen_from_skb(skb);
1318                 if (info->control.hw_key->alg == ALG_TKIP) {
1319                         u8 *iv = (u8 *)(skb->data + crypt_offset);
1320                         /*
1321                          * The firmware excepts that the IV has to have
1322                          * this special format
1323                          */
1324                         iv[1] = iv[0];
1325                         iv[0] = iv[2];
1326                         iv[2] = 0;
1327                 }
1328         }
1329
1330         txhdr = (struct p54_tx_data *) skb_push(skb, sizeof(*txhdr) + padding);
1331         hdr = (struct p54_hdr *) skb_push(skb, sizeof(*hdr));
1332
1333         if (padding)
1334                 hdr_flags |= P54_HDR_FLAG_DATA_ALIGN;
1335         hdr->type = cpu_to_le16(aid);
1336         hdr->rts_tries = info->control.rates[0].count;
1337
1338         /*
1339          * we register the rates in perfect order, and
1340          * RTS/CTS won't happen on 5 GHz
1341          */
1342         cts_rate = info->control.rts_cts_rate_idx;
1343
1344         memset(&txhdr->rateset, 0, sizeof(txhdr->rateset));
1345
1346         /* see how many rates got used */
1347         for (i = 0; i < 4; i++) {
1348                 if (info->control.rates[i].idx < 0)
1349                         break;
1350                 nrates++;
1351         }
1352
1353         /* limit tries to 8/nrates per rate */
1354         for (i = 0; i < nrates; i++) {
1355                 /*
1356                  * The magic expression here is equivalent to 8/nrates for
1357                  * all values that matter, but avoids division and jumps.
1358                  * Note that nrates can only take the values 1 through 4.
1359                  */
1360                 calculated_tries[i] = min_t(int, ((15 >> nrates) | 1) + 1,
1361                                                  info->control.rates[i].count);
1362                 nremaining -= calculated_tries[i];
1363         }
1364
1365         /* if there are tries left, distribute from back to front */
1366         for (i = nrates - 1; nremaining > 0 && i >= 0; i--) {
1367                 int tmp = info->control.rates[i].count - calculated_tries[i];
1368
1369                 if (tmp <= 0)
1370                         continue;
1371                 /* RC requested more tries at this rate */
1372
1373                 tmp = min_t(int, tmp, nremaining);
1374                 calculated_tries[i] += tmp;
1375                 nremaining -= tmp;
1376         }
1377
1378         ridx = 0;
1379         for (i = 0; i < nrates && ridx < 8; i++) {
1380                 /* we register the rates in perfect order */
1381                 rate = info->control.rates[i].idx;
1382                 if (info->band == IEEE80211_BAND_5GHZ)
1383                         rate += 4;
1384
1385                 /* store the count we actually calculated for TX status */
1386                 info->control.rates[i].count = calculated_tries[i];
1387
1388                 rc_flags = info->control.rates[i].flags;
1389                 if (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) {
1390                         rate |= 0x10;
1391                         cts_rate |= 0x10;
1392                 }
1393                 if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS)
1394                         rate |= 0x40;
1395                 else if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
1396                         rate |= 0x20;
1397                 for (j = 0; j < calculated_tries[i] && ridx < 8; j++) {
1398                         txhdr->rateset[ridx] = rate;
1399                         ridx++;
1400                 }
1401         }
1402
1403         if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ)
1404                 hdr_flags |= P54_HDR_FLAG_DATA_OUT_SEQNR;
1405
1406         /* TODO: enable bursting */
1407         hdr->flags = cpu_to_le16(hdr_flags);
1408         hdr->tries = ridx;
1409         txhdr->rts_rate_idx = 0;
1410         if (info->control.hw_key) {
1411                 txhdr->key_type = p54_convert_algo(info->control.hw_key->alg);
1412                 txhdr->key_len = min((u8)16, info->control.hw_key->keylen);
1413                 memcpy(txhdr->key, info->control.hw_key->key, txhdr->key_len);
1414                 if (info->control.hw_key->alg == ALG_TKIP) {
1415                         if (unlikely(skb_tailroom(skb) < 12))
1416                                 goto err;
1417                         /* reserve space for the MIC key */
1418                         len += 8;
1419                         memcpy(skb_put(skb, 8), &(info->control.hw_key->key
1420                                 [NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY]), 8);
1421                 }
1422                 /* reserve some space for ICV */
1423                 len += info->control.hw_key->icv_len;
1424                 memset(skb_put(skb, info->control.hw_key->icv_len), 0,
1425                        info->control.hw_key->icv_len);
1426         } else {
1427                 txhdr->key_type = 0;
1428                 txhdr->key_len = 0;
1429         }
1430         txhdr->crypt_offset = crypt_offset;
1431         txhdr->hw_queue = queue;
1432         if (current_queue)
1433                 txhdr->backlog = current_queue->len;
1434         else
1435                 txhdr->backlog = 0;
1436         memset(txhdr->durations, 0, sizeof(txhdr->durations));
1437         txhdr->tx_antenna = (info->antenna_sel_tx == 0) ?
1438                 2 : info->antenna_sel_tx - 1;
1439         txhdr->output_power = priv->output_power;
1440         txhdr->cts_rate = cts_rate;
1441         if (padding)
1442                 txhdr->align[0] = padding;
1443
1444         hdr->len = cpu_to_le16(len);
1445         /* modifies skb->cb and with it info, so must be last! */
1446         if (unlikely(p54_assign_address(dev, skb, hdr, skb->len + tim_len)))
1447                 goto err;
1448         priv->tx(dev, skb);
1449
1450         queue_delayed_work(dev->workqueue, &priv->work,
1451                            msecs_to_jiffies(P54_TX_FRAME_LIFETIME));
1452
1453         return 0;
1454
1455  err:
1456         skb_pull(skb, sizeof(*hdr) + sizeof(*txhdr) + padding);
1457         if (current_queue) {
1458                 current_queue->len--;
1459                 current_queue->count--;
1460         }
1461         return NETDEV_TX_BUSY;
1462 }
1463
1464 static int p54_setup_mac(struct ieee80211_hw *dev)
1465 {
1466         struct p54_common *priv = dev->priv;
1467         struct sk_buff *skb;
1468         struct p54_setup_mac *setup;
1469         u16 mode;
1470
1471         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*setup) +
1472                             sizeof(struct p54_hdr), P54_CONTROL_TYPE_SETUP,
1473                             GFP_ATOMIC);
1474         if (!skb)
1475                 return -ENOMEM;
1476
1477         setup = (struct p54_setup_mac *) skb_put(skb, sizeof(*setup));
1478         if (dev->conf.radio_enabled) {
1479                 switch (priv->mode) {
1480                 case NL80211_IFTYPE_STATION:
1481                         mode = P54_FILTER_TYPE_STATION;
1482                         break;
1483                 case NL80211_IFTYPE_AP:
1484                         mode = P54_FILTER_TYPE_AP;
1485                         break;
1486                 case NL80211_IFTYPE_ADHOC:
1487                 case NL80211_IFTYPE_MESH_POINT:
1488                         mode = P54_FILTER_TYPE_IBSS;
1489                         break;
1490                 default:
1491                         mode = P54_FILTER_TYPE_NONE;
1492                         break;
1493                 }
1494                 if (priv->filter_flags & FIF_PROMISC_IN_BSS)
1495                         mode |= P54_FILTER_TYPE_TRANSPARENT;
1496         } else
1497                 mode = P54_FILTER_TYPE_RX_DISABLED;
1498
1499         setup->mac_mode = cpu_to_le16(mode);
1500         memcpy(setup->mac_addr, priv->mac_addr, ETH_ALEN);
1501         memcpy(setup->bssid, priv->bssid, ETH_ALEN);
1502         setup->rx_antenna = 2; /* automatic */
1503         setup->rx_align = 0;
1504         if (priv->fw_var < 0x500) {
1505                 setup->v1.basic_rate_mask = cpu_to_le32(priv->basic_rate_mask);
1506                 memset(setup->v1.rts_rates, 0, 8);
1507                 setup->v1.rx_addr = cpu_to_le32(priv->rx_end);
1508                 setup->v1.max_rx = cpu_to_le16(priv->rx_mtu);
1509                 setup->v1.rxhw = cpu_to_le16(priv->rxhw);
1510                 setup->v1.wakeup_timer = cpu_to_le16(priv->wakeup_timer);
1511                 setup->v1.unalloc0 = cpu_to_le16(0);
1512         } else {
1513                 setup->v2.rx_addr = cpu_to_le32(priv->rx_end);
1514                 setup->v2.max_rx = cpu_to_le16(priv->rx_mtu);
1515                 setup->v2.rxhw = cpu_to_le16(priv->rxhw);
1516                 setup->v2.timer = cpu_to_le16(priv->wakeup_timer);
1517                 setup->v2.truncate = cpu_to_le16(48896);
1518                 setup->v2.basic_rate_mask = cpu_to_le32(priv->basic_rate_mask);
1519                 setup->v2.sbss_offset = 0;
1520                 setup->v2.mcast_window = 0;
1521                 setup->v2.rx_rssi_threshold = 0;
1522                 setup->v2.rx_ed_threshold = 0;
1523                 setup->v2.ref_clock = cpu_to_le32(644245094);
1524                 setup->v2.lpf_bandwidth = cpu_to_le16(65535);
1525                 setup->v2.osc_start_delay = cpu_to_le16(65535);
1526         }
1527         priv->tx(dev, skb);
1528         return 0;
1529 }
1530
1531 static int p54_scan(struct ieee80211_hw *dev, u16 mode, u16 dwell)
1532 {
1533         struct p54_common *priv = dev->priv;
1534         struct sk_buff *skb;
1535         struct p54_scan *chan;
1536         unsigned int i;
1537         void *entry;
1538         __le16 freq = cpu_to_le16(dev->conf.channel->center_freq);
1539         int band = dev->conf.channel->band;
1540
1541         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*chan) +
1542                             sizeof(struct p54_hdr), P54_CONTROL_TYPE_SCAN,
1543                             GFP_ATOMIC);
1544         if (!skb)
1545                 return -ENOMEM;
1546
1547         chan = (struct p54_scan *) skb_put(skb, sizeof(*chan));
1548         memset(chan->padding1, 0, sizeof(chan->padding1));
1549         chan->mode = cpu_to_le16(mode);
1550         chan->dwell = cpu_to_le16(dwell);
1551
1552         for (i = 0; i < priv->iq_autocal_len; i++) {
1553                 if (priv->iq_autocal[i].freq != freq)
1554                         continue;
1555
1556                 memcpy(&chan->iq_autocal, &priv->iq_autocal[i],
1557                        sizeof(*priv->iq_autocal));
1558                 break;
1559         }
1560         if (i == priv->iq_autocal_len)
1561                 goto err;
1562
1563         for (i = 0; i < priv->output_limit_len; i++) {
1564                 if (priv->output_limit[i].freq != freq)
1565                         continue;
1566
1567                 chan->val_barker = 0x38;
1568                 chan->val_bpsk = chan->dup_bpsk =
1569                         priv->output_limit[i].val_bpsk;
1570                 chan->val_qpsk = chan->dup_qpsk =
1571                         priv->output_limit[i].val_qpsk;
1572                 chan->val_16qam = chan->dup_16qam =
1573                         priv->output_limit[i].val_16qam;
1574                 chan->val_64qam = chan->dup_64qam =
1575                         priv->output_limit[i].val_64qam;
1576                 break;
1577         }
1578         if (i == priv->output_limit_len)
1579                 goto err;
1580
1581         entry = priv->curve_data->data;
1582         for (i = 0; i < priv->curve_data->channels; i++) {
1583                 if (*((__le16 *)entry) != freq) {
1584                         entry += sizeof(__le16);
1585                         entry += sizeof(struct p54_pa_curve_data_sample) *
1586                                  priv->curve_data->points_per_channel;
1587                         continue;
1588                 }
1589
1590                 entry += sizeof(__le16);
1591                 chan->pa_points_per_curve = 8;
1592                 memset(chan->curve_data, 0, sizeof(*chan->curve_data));
1593                 memcpy(chan->curve_data, entry,
1594                        sizeof(struct p54_pa_curve_data_sample) *
1595                        min((u8)8, priv->curve_data->points_per_channel));
1596                 break;
1597         }
1598
1599         if (priv->fw_var < 0x500) {
1600                 chan->v1_rssi.mul = cpu_to_le16(priv->rssical_db[band].mul);
1601                 chan->v1_rssi.add = cpu_to_le16(priv->rssical_db[band].add);
1602         } else {
1603                 chan->v2.rssi.mul = cpu_to_le16(priv->rssical_db[band].mul);
1604                 chan->v2.rssi.add = cpu_to_le16(priv->rssical_db[band].add);
1605                 chan->v2.basic_rate_mask = cpu_to_le32(priv->basic_rate_mask);
1606                 memset(chan->v2.rts_rates, 0, 8);
1607         }
1608         priv->tx(dev, skb);
1609         return 0;
1610
1611  err:
1612         printk(KERN_ERR "%s: frequency change failed\n", wiphy_name(dev->wiphy));
1613         kfree_skb(skb);
1614         return -EINVAL;
1615 }
1616
1617 static int p54_set_leds(struct ieee80211_hw *dev, int mode, int link, int act)
1618 {
1619         struct p54_common *priv = dev->priv;
1620         struct sk_buff *skb;
1621         struct p54_led *led;
1622
1623         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*led) +
1624                         sizeof(struct p54_hdr), P54_CONTROL_TYPE_LED,
1625                         GFP_ATOMIC);
1626         if (!skb)
1627                 return -ENOMEM;
1628
1629         led = (struct p54_led *)skb_put(skb, sizeof(*led));
1630         led->mode = cpu_to_le16(mode);
1631         led->led_permanent = cpu_to_le16(link);
1632         led->led_temporary = cpu_to_le16(act);
1633         led->duration = cpu_to_le16(1000);
1634         priv->tx(dev, skb);
1635         return 0;
1636 }
1637
1638 #define P54_SET_QUEUE(queue, ai_fs, cw_min, cw_max, _txop)      \
1639 do {                                                            \
1640         queue.aifs = cpu_to_le16(ai_fs);                        \
1641         queue.cwmin = cpu_to_le16(cw_min);                      \
1642         queue.cwmax = cpu_to_le16(cw_max);                      \
1643         queue.txop = cpu_to_le16(_txop);                        \
1644 } while(0)
1645
1646 static int p54_set_edcf(struct ieee80211_hw *dev)
1647 {
1648         struct p54_common *priv = dev->priv;
1649         struct sk_buff *skb;
1650         struct p54_edcf *edcf;
1651
1652         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*edcf) +
1653                         sizeof(struct p54_hdr), P54_CONTROL_TYPE_DCFINIT,
1654                         GFP_ATOMIC);
1655         if (!skb)
1656                 return -ENOMEM;
1657
1658         edcf = (struct p54_edcf *)skb_put(skb, sizeof(*edcf));
1659         if (priv->use_short_slot) {
1660                 edcf->slottime = 9;
1661                 edcf->sifs = 0x10;
1662                 edcf->eofpad = 0x00;
1663         } else {
1664                 edcf->slottime = 20;
1665                 edcf->sifs = 0x0a;
1666                 edcf->eofpad = 0x06;
1667         }
1668         /* (see prism54/isl_oid.h for further details) */
1669         edcf->frameburst = cpu_to_le16(0);
1670         edcf->round_trip_delay = cpu_to_le16(0);
1671         edcf->flags = 0;
1672         memset(edcf->mapping, 0, sizeof(edcf->mapping));
1673         memcpy(edcf->queue, priv->qos_params, sizeof(edcf->queue));
1674         priv->tx(dev, skb);
1675         return 0;
1676 }
1677
1678 static int p54_beacon_tim(struct sk_buff *skb)
1679 {
1680         /*
1681          * the good excuse for this mess is ... the firmware.
1682          * The dummy TIM MUST be at the end of the beacon frame,
1683          * because it'll be overwritten!
1684          */
1685
1686         struct ieee80211_mgmt *mgmt = (void *)skb->data;
1687         u8 *pos, *end;
1688
1689         if (skb->len <= sizeof(mgmt))
1690                 return -EINVAL;
1691
1692         pos = (u8 *)mgmt->u.beacon.variable;
1693         end = skb->data + skb->len;
1694         while (pos < end) {
1695                 if (pos + 2 + pos[1] > end)
1696                         return -EINVAL;
1697
1698                 if (pos[0] == WLAN_EID_TIM) {
1699                         u8 dtim_len = pos[1];
1700                         u8 dtim_period = pos[3];
1701                         u8 *next = pos + 2 + dtim_len;
1702
1703                         if (dtim_len < 3)
1704                                 return -EINVAL;
1705
1706                         memmove(pos, next, end - next);
1707
1708                         if (dtim_len > 3)
1709                                 skb_trim(skb, skb->len - (dtim_len - 3));
1710
1711                         pos = end - (dtim_len + 2);
1712
1713                         /* add the dummy at the end */
1714                         pos[0] = WLAN_EID_TIM;
1715                         pos[1] = 3;
1716                         pos[2] = 0;
1717                         pos[3] = dtim_period;
1718                         pos[4] = 0;
1719                         return 0;
1720                 }
1721                 pos += 2 + pos[1];
1722         }
1723         return 0;
1724 }
1725
1726 static int p54_beacon_update(struct ieee80211_hw *dev,
1727                         struct ieee80211_vif *vif)
1728 {
1729         struct p54_common *priv = dev->priv;
1730         struct sk_buff *beacon;
1731         int ret;
1732
1733         if (priv->cached_beacon) {
1734                 p54_tx_cancel(dev, priv->cached_beacon);
1735                 /* wait for the last beacon the be freed */
1736                 msleep(10);
1737         }
1738
1739         beacon = ieee80211_beacon_get(dev, vif);
1740         if (!beacon)
1741                 return -ENOMEM;
1742         ret = p54_beacon_tim(beacon);
1743         if (ret)
1744                 return ret;
1745         ret = p54_tx(dev, beacon);
1746         if (ret)
1747                 return ret;
1748         priv->cached_beacon = beacon;
1749         priv->tsf_high32 = 0;
1750         priv->tsf_low32 = 0;
1751
1752         return 0;
1753 }
1754
1755 static int p54_start(struct ieee80211_hw *dev)
1756 {
1757         struct p54_common *priv = dev->priv;
1758         int err;
1759
1760         mutex_lock(&priv->conf_mutex);
1761         err = priv->open(dev);
1762         if (err)
1763                 goto out;
1764         P54_SET_QUEUE(priv->qos_params[0], 0x0002, 0x0003, 0x0007, 47);
1765         P54_SET_QUEUE(priv->qos_params[1], 0x0002, 0x0007, 0x000f, 94);
1766         P54_SET_QUEUE(priv->qos_params[2], 0x0003, 0x000f, 0x03ff, 0);
1767         P54_SET_QUEUE(priv->qos_params[3], 0x0007, 0x000f, 0x03ff, 0);
1768         err = p54_set_edcf(dev);
1769         if (err)
1770                 goto out;
1771
1772         memset(priv->bssid, ~0, ETH_ALEN);
1773         priv->mode = NL80211_IFTYPE_MONITOR;
1774         err = p54_setup_mac(dev);
1775         if (err) {
1776                 priv->mode = NL80211_IFTYPE_UNSPECIFIED;
1777                 goto out;
1778         }
1779
1780         queue_delayed_work(dev->workqueue, &priv->work, 0);
1781
1782 out:
1783         mutex_unlock(&priv->conf_mutex);
1784         return err;
1785 }
1786
1787 static void p54_stop(struct ieee80211_hw *dev)
1788 {
1789         struct p54_common *priv = dev->priv;
1790         struct sk_buff *skb;
1791
1792         mutex_lock(&priv->conf_mutex);
1793         priv->mode = NL80211_IFTYPE_UNSPECIFIED;
1794         cancel_delayed_work_sync(&priv->work);
1795         if (priv->cached_beacon)
1796                 p54_tx_cancel(dev, priv->cached_beacon);
1797
1798         priv->stop(dev);
1799         while ((skb = skb_dequeue(&priv->tx_queue)))
1800                 kfree_skb(skb);
1801         priv->cached_beacon = NULL;
1802         priv->tsf_high32 = priv->tsf_low32 = 0;
1803         mutex_unlock(&priv->conf_mutex);
1804 }
1805
1806 static int p54_add_interface(struct ieee80211_hw *dev,
1807                              struct ieee80211_if_init_conf *conf)
1808 {
1809         struct p54_common *priv = dev->priv;
1810
1811         mutex_lock(&priv->conf_mutex);
1812         if (priv->mode != NL80211_IFTYPE_MONITOR) {
1813                 mutex_unlock(&priv->conf_mutex);
1814                 return -EOPNOTSUPP;
1815         }
1816
1817         switch (conf->type) {
1818         case NL80211_IFTYPE_STATION:
1819         case NL80211_IFTYPE_ADHOC:
1820         case NL80211_IFTYPE_AP:
1821         case NL80211_IFTYPE_MESH_POINT:
1822                 priv->mode = conf->type;
1823                 break;
1824         default:
1825                 mutex_unlock(&priv->conf_mutex);
1826                 return -EOPNOTSUPP;
1827         }
1828
1829         memcpy(priv->mac_addr, conf->mac_addr, ETH_ALEN);
1830         p54_setup_mac(dev);
1831         p54_set_leds(dev, 1, 0, 0);
1832         mutex_unlock(&priv->conf_mutex);
1833         return 0;
1834 }
1835
1836 static void p54_remove_interface(struct ieee80211_hw *dev,
1837                                  struct ieee80211_if_init_conf *conf)
1838 {
1839         struct p54_common *priv = dev->priv;
1840
1841         mutex_lock(&priv->conf_mutex);
1842         if (priv->cached_beacon)
1843                 p54_tx_cancel(dev, priv->cached_beacon);
1844         priv->mode = NL80211_IFTYPE_MONITOR;
1845         memset(priv->mac_addr, 0, ETH_ALEN);
1846         memset(priv->bssid, 0, ETH_ALEN);
1847         p54_setup_mac(dev);
1848         mutex_unlock(&priv->conf_mutex);
1849 }
1850
1851 static int p54_config(struct ieee80211_hw *dev, u32 changed)
1852 {
1853         int ret = 0;
1854         struct p54_common *priv = dev->priv;
1855         struct ieee80211_conf *conf = &dev->conf;
1856
1857         mutex_lock(&priv->conf_mutex);
1858         if (changed & IEEE80211_CONF_CHANGE_POWER)
1859                 priv->output_power = conf->power_level << 2;
1860         if (changed & IEEE80211_CONF_CHANGE_RADIO_ENABLED) {
1861                 ret = p54_setup_mac(dev);
1862                 if (ret)
1863                         goto out;
1864         }
1865         if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
1866                 ret = p54_scan(dev, P54_SCAN_EXIT, 0);
1867                 if (ret)
1868                         goto out;
1869         }
1870
1871 out:
1872         mutex_unlock(&priv->conf_mutex);
1873         return ret;
1874 }
1875
1876 static int p54_config_interface(struct ieee80211_hw *dev,
1877                                 struct ieee80211_vif *vif,
1878                                 struct ieee80211_if_conf *conf)
1879 {
1880         struct p54_common *priv = dev->priv;
1881         int ret = 0;
1882
1883         mutex_lock(&priv->conf_mutex);
1884         if (conf->changed & IEEE80211_IFCC_BSSID) {
1885                 memcpy(priv->bssid, conf->bssid, ETH_ALEN);
1886                 ret = p54_setup_mac(dev);
1887                 if (ret)
1888                         goto out;
1889         }
1890
1891         if (conf->changed & IEEE80211_IFCC_BEACON) {
1892                 ret = p54_scan(dev, P54_SCAN_EXIT, 0);
1893                 if (ret)
1894                         goto out;
1895                 ret = p54_setup_mac(dev);
1896                 if (ret)
1897                         goto out;
1898                 ret = p54_beacon_update(dev, vif);
1899                 if (ret)
1900                         goto out;
1901                 ret = p54_set_edcf(dev);
1902                 if (ret)
1903                         goto out;
1904         }
1905
1906         ret = p54_set_leds(dev, 1, !is_multicast_ether_addr(priv->bssid), 0);
1907
1908 out:
1909         mutex_unlock(&priv->conf_mutex);
1910         return ret;
1911 }
1912
1913 static void p54_configure_filter(struct ieee80211_hw *dev,
1914                                  unsigned int changed_flags,
1915                                  unsigned int *total_flags,
1916                                  int mc_count, struct dev_mc_list *mclist)
1917 {
1918         struct p54_common *priv = dev->priv;
1919
1920         *total_flags &= FIF_PROMISC_IN_BSS |
1921                         (*total_flags & FIF_PROMISC_IN_BSS) ?
1922                                 FIF_FCSFAIL : 0;
1923
1924         priv->filter_flags = *total_flags;
1925
1926         if (changed_flags & FIF_PROMISC_IN_BSS)
1927                 p54_setup_mac(dev);
1928 }
1929
1930 static int p54_conf_tx(struct ieee80211_hw *dev, u16 queue,
1931                        const struct ieee80211_tx_queue_params *params)
1932 {
1933         struct p54_common *priv = dev->priv;
1934         int ret;
1935
1936         mutex_lock(&priv->conf_mutex);
1937         if ((params) && !(queue > 4)) {
1938                 P54_SET_QUEUE(priv->qos_params[queue], params->aifs,
1939                         params->cw_min, params->cw_max, params->txop);
1940                 ret = p54_set_edcf(dev);
1941         } else
1942                 ret = -EINVAL;
1943         mutex_unlock(&priv->conf_mutex);
1944         return ret;
1945 }
1946
1947 static int p54_init_xbow_synth(struct ieee80211_hw *dev)
1948 {
1949         struct p54_common *priv = dev->priv;
1950         struct sk_buff *skb;
1951         struct p54_xbow_synth *xbow;
1952
1953         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*xbow) +
1954                             sizeof(struct p54_hdr),
1955                             P54_CONTROL_TYPE_XBOW_SYNTH_CFG,
1956                             GFP_KERNEL);
1957         if (!skb)
1958                 return -ENOMEM;
1959
1960         xbow = (struct p54_xbow_synth *)skb_put(skb, sizeof(*xbow));
1961         xbow->magic1 = cpu_to_le16(0x1);
1962         xbow->magic2 = cpu_to_le16(0x2);
1963         xbow->freq = cpu_to_le16(5390);
1964         memset(xbow->padding, 0, sizeof(xbow->padding));
1965         priv->tx(dev, skb);
1966         return 0;
1967 }
1968
1969 static void p54_work(struct work_struct *work)
1970 {
1971         struct p54_common *priv = container_of(work, struct p54_common,
1972                                                work.work);
1973         struct ieee80211_hw *dev = priv->hw;
1974         struct sk_buff *skb;
1975
1976         if (unlikely(priv->mode == NL80211_IFTYPE_UNSPECIFIED))
1977                 return ;
1978
1979         /*
1980          * TODO: walk through tx_queue and do the following tasks
1981          *      1. initiate bursts.
1982          *      2. cancel stuck frames / reset the device if necessary.
1983          */
1984
1985         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL, sizeof(struct p54_hdr) +
1986                             sizeof(struct p54_statistics),
1987                             P54_CONTROL_TYPE_STAT_READBACK, GFP_KERNEL);
1988         if (!skb)
1989                 return ;
1990
1991         priv->tx(dev, skb);
1992 }
1993
1994 static int p54_get_stats(struct ieee80211_hw *dev,
1995                          struct ieee80211_low_level_stats *stats)
1996 {
1997         struct p54_common *priv = dev->priv;
1998
1999         memcpy(stats, &priv->stats, sizeof(*stats));
2000         return 0;
2001 }
2002
2003 static int p54_get_tx_stats(struct ieee80211_hw *dev,
2004                             struct ieee80211_tx_queue_stats *stats)
2005 {
2006         struct p54_common *priv = dev->priv;
2007
2008         memcpy(stats, &priv->tx_stats[4], sizeof(stats[0]) * dev->queues);
2009
2010         return 0;
2011 }
2012
2013 static void p54_bss_info_changed(struct ieee80211_hw *dev,
2014                                  struct ieee80211_vif *vif,
2015                                  struct ieee80211_bss_conf *info,
2016                                  u32 changed)
2017 {
2018         struct p54_common *priv = dev->priv;
2019
2020         if (changed & BSS_CHANGED_ERP_SLOT) {
2021                 priv->use_short_slot = info->use_short_slot;
2022                 p54_set_edcf(dev);
2023         }
2024         if (changed & BSS_CHANGED_BASIC_RATES) {
2025                 if (dev->conf.channel->band == IEEE80211_BAND_5GHZ)
2026                         priv->basic_rate_mask = (info->basic_rates << 4);
2027                 else
2028                         priv->basic_rate_mask = info->basic_rates;
2029                 p54_setup_mac(dev);
2030                 if (priv->fw_var >= 0x500)
2031                         p54_scan(dev, P54_SCAN_EXIT, 0);
2032         }
2033         if (changed & BSS_CHANGED_ASSOC) {
2034                 if (info->assoc) {
2035                         priv->aid = info->aid;
2036                         priv->wakeup_timer = info->beacon_int *
2037                                              info->dtim_period * 5;
2038                         p54_setup_mac(dev);
2039                 }
2040         }
2041
2042 }
2043
2044 static int p54_set_key(struct ieee80211_hw *dev, enum set_key_cmd cmd,
2045                        const u8 *local_address, const u8 *address,
2046                        struct ieee80211_key_conf *key)
2047 {
2048         struct p54_common *priv = dev->priv;
2049         struct sk_buff *skb;
2050         struct p54_keycache *rxkey;
2051         u8 algo = 0;
2052
2053         if (modparam_nohwcrypt)
2054                 return -EOPNOTSUPP;
2055
2056         if (cmd == DISABLE_KEY)
2057                 algo = 0;
2058         else {
2059                 switch (key->alg) {
2060                 case ALG_TKIP:
2061                         if (!(priv->privacy_caps & (BR_DESC_PRIV_CAP_MICHAEL |
2062                               BR_DESC_PRIV_CAP_TKIP)))
2063                                 return -EOPNOTSUPP;
2064                         key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2065                         algo = P54_CRYPTO_TKIPMICHAEL;
2066                         break;
2067                 case ALG_WEP:
2068                         if (!(priv->privacy_caps & BR_DESC_PRIV_CAP_WEP))
2069                                 return -EOPNOTSUPP;
2070                         key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2071                         algo = P54_CRYPTO_WEP;
2072                         break;
2073                 case ALG_CCMP:
2074                         if (!(priv->privacy_caps & BR_DESC_PRIV_CAP_AESCCMP))
2075                                 return -EOPNOTSUPP;
2076                         key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2077                         algo = P54_CRYPTO_AESCCMP;
2078                         break;
2079                 default:
2080                         return -EINVAL;
2081                 }
2082         }
2083
2084         if (key->keyidx > priv->rx_keycache_size) {
2085                 /*
2086                  * The device supports the choosen algorithm, but the firmware
2087                  * does not provide enough key slots to store all of them.
2088                  * So, incoming frames have to be decoded by the mac80211 stack,
2089                  * but we can still offload encryption for outgoing frames.
2090                  */
2091
2092                 return 0;
2093         }
2094
2095         mutex_lock(&priv->conf_mutex);
2096         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*rxkey) +
2097                         sizeof(struct p54_hdr), P54_CONTROL_TYPE_RX_KEYCACHE,
2098                         GFP_ATOMIC);
2099         if (!skb) {
2100                 mutex_unlock(&priv->conf_mutex);
2101                 return -ENOMEM;
2102         }
2103
2104         /* TODO: some devices have 4 more free slots for rx keys */
2105         rxkey = (struct p54_keycache *)skb_put(skb, sizeof(*rxkey));
2106         rxkey->entry = key->keyidx;
2107         rxkey->key_id = key->keyidx;
2108         rxkey->key_type = algo;
2109         if (address)
2110                 memcpy(rxkey->mac, address, ETH_ALEN);
2111         else
2112                 memset(rxkey->mac, ~0, ETH_ALEN);
2113         if (key->alg != ALG_TKIP) {
2114                 rxkey->key_len = min((u8)16, key->keylen);
2115                 memcpy(rxkey->key, key->key, rxkey->key_len);
2116         } else {
2117                 rxkey->key_len = 24;
2118                 memcpy(rxkey->key, key->key, 16);
2119                 memcpy(&(rxkey->key[16]), &(key->key
2120                         [NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY]), 8);
2121         }
2122
2123         priv->tx(dev, skb);
2124         mutex_unlock(&priv->conf_mutex);
2125         return 0;
2126 }
2127
2128 static const struct ieee80211_ops p54_ops = {
2129         .tx                     = p54_tx,
2130         .start                  = p54_start,
2131         .stop                   = p54_stop,
2132         .add_interface          = p54_add_interface,
2133         .remove_interface       = p54_remove_interface,
2134         .set_tim                = p54_set_tim,
2135         .sta_notify             = p54_sta_notify,
2136         .set_key                = p54_set_key,
2137         .config                 = p54_config,
2138         .config_interface       = p54_config_interface,
2139         .bss_info_changed       = p54_bss_info_changed,
2140         .configure_filter       = p54_configure_filter,
2141         .conf_tx                = p54_conf_tx,
2142         .get_stats              = p54_get_stats,
2143         .get_tx_stats           = p54_get_tx_stats
2144 };
2145
2146 struct ieee80211_hw *p54_init_common(size_t priv_data_len)
2147 {
2148         struct ieee80211_hw *dev;
2149         struct p54_common *priv;
2150
2151         dev = ieee80211_alloc_hw(priv_data_len, &p54_ops);
2152         if (!dev)
2153                 return NULL;
2154
2155         priv = dev->priv;
2156         priv->hw = dev;
2157         priv->mode = NL80211_IFTYPE_UNSPECIFIED;
2158         priv->basic_rate_mask = 0x15f;
2159         skb_queue_head_init(&priv->tx_queue);
2160         dev->flags = IEEE80211_HW_RX_INCLUDES_FCS |
2161                      IEEE80211_HW_SIGNAL_DBM |
2162                      IEEE80211_HW_NOISE_DBM;
2163
2164         dev->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
2165                                       BIT(NL80211_IFTYPE_ADHOC) |
2166                                       BIT(NL80211_IFTYPE_AP) |
2167                                       BIT(NL80211_IFTYPE_MESH_POINT);
2168
2169         dev->channel_change_time = 1000;        /* TODO: find actual value */
2170         priv->tx_stats[0].limit = 1;            /* Beacon queue */
2171         priv->tx_stats[1].limit = 1;            /* Probe queue for HW scan */
2172         priv->tx_stats[2].limit = 3;            /* queue for MLMEs */
2173         priv->tx_stats[3].limit = 3;            /* Broadcast / MC queue */
2174         priv->tx_stats[4].limit = 5;            /* Data */
2175         dev->queues = 1;
2176         priv->noise = -94;
2177         /*
2178          * We support at most 8 tries no matter which rate they're at,
2179          * we cannot support max_rates * max_rate_tries as we set it
2180          * here, but setting it correctly to 4/2 or so would limit us
2181          * artificially if the RC algorithm wants just two rates, so
2182          * let's say 4/7, we'll redistribute it at TX time, see the
2183          * comments there.
2184          */
2185         dev->max_rates = 4;
2186         dev->max_rate_tries = 7;
2187         dev->extra_tx_headroom = sizeof(struct p54_hdr) + 4 +
2188                                  sizeof(struct p54_tx_data);
2189
2190         mutex_init(&priv->conf_mutex);
2191         init_completion(&priv->eeprom_comp);
2192         INIT_DELAYED_WORK(&priv->work, p54_work);
2193
2194         return dev;
2195 }
2196 EXPORT_SYMBOL_GPL(p54_init_common);
2197
2198 void p54_free_common(struct ieee80211_hw *dev)
2199 {
2200         struct p54_common *priv = dev->priv;
2201         kfree(priv->iq_autocal);
2202         kfree(priv->output_limit);
2203         kfree(priv->curve_data);
2204 }
2205 EXPORT_SYMBOL_GPL(p54_free_common);
2206
2207 static int __init p54_init(void)
2208 {
2209         return 0;
2210 }
2211
2212 static void __exit p54_exit(void)
2213 {
2214 }
2215
2216 module_init(p54_init);
2217 module_exit(p54_exit);