]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/wireless/p54/p54common.c
drm/i915: lock correct mutex around object unreference.
[linux-2.6-omap-h63xx.git] / drivers / net / wireless / p54 / p54common.c
1 /*
2  * Common code for mac80211 Prism54 drivers
3  *
4  * Copyright (c) 2006, Michael Wu <flamingice@sourmilk.net>
5  * Copyright (c) 2007, Christian Lamparter <chunkeey@web.de>
6  * Copyright 2008, Johannes Berg <johannes@sipsolutions.net>
7  *
8  * Based on:
9  * - the islsm (softmac prism54) driver, which is:
10  *   Copyright 2004-2006 Jean-Baptiste Note <jbnote@gmail.com>, et al.
11  * - stlc45xx driver
12  *   Copyright (C) 2008 Nokia Corporation and/or its subsidiary(-ies).
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2 as
16  * published by the Free Software Foundation.
17  */
18
19 #include <linux/init.h>
20 #include <linux/firmware.h>
21 #include <linux/etherdevice.h>
22
23 #include <net/mac80211.h>
24
25 #include "p54.h"
26 #include "p54common.h"
27
28 static int modparam_nohwcrypt;
29 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
30 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
31 MODULE_AUTHOR("Michael Wu <flamingice@sourmilk.net>");
32 MODULE_DESCRIPTION("Softmac Prism54 common code");
33 MODULE_LICENSE("GPL");
34 MODULE_ALIAS("prism54common");
35
36 static struct ieee80211_rate p54_bgrates[] = {
37         { .bitrate = 10, .hw_value = 0, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
38         { .bitrate = 20, .hw_value = 1, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
39         { .bitrate = 55, .hw_value = 2, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
40         { .bitrate = 110, .hw_value = 3, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
41         { .bitrate = 60, .hw_value = 4, },
42         { .bitrate = 90, .hw_value = 5, },
43         { .bitrate = 120, .hw_value = 6, },
44         { .bitrate = 180, .hw_value = 7, },
45         { .bitrate = 240, .hw_value = 8, },
46         { .bitrate = 360, .hw_value = 9, },
47         { .bitrate = 480, .hw_value = 10, },
48         { .bitrate = 540, .hw_value = 11, },
49 };
50
51 static struct ieee80211_channel p54_bgchannels[] = {
52         { .center_freq = 2412, .hw_value = 1, },
53         { .center_freq = 2417, .hw_value = 2, },
54         { .center_freq = 2422, .hw_value = 3, },
55         { .center_freq = 2427, .hw_value = 4, },
56         { .center_freq = 2432, .hw_value = 5, },
57         { .center_freq = 2437, .hw_value = 6, },
58         { .center_freq = 2442, .hw_value = 7, },
59         { .center_freq = 2447, .hw_value = 8, },
60         { .center_freq = 2452, .hw_value = 9, },
61         { .center_freq = 2457, .hw_value = 10, },
62         { .center_freq = 2462, .hw_value = 11, },
63         { .center_freq = 2467, .hw_value = 12, },
64         { .center_freq = 2472, .hw_value = 13, },
65         { .center_freq = 2484, .hw_value = 14, },
66 };
67
68 static struct ieee80211_supported_band band_2GHz = {
69         .channels = p54_bgchannels,
70         .n_channels = ARRAY_SIZE(p54_bgchannels),
71         .bitrates = p54_bgrates,
72         .n_bitrates = ARRAY_SIZE(p54_bgrates),
73 };
74
75 static struct ieee80211_rate p54_arates[] = {
76         { .bitrate = 60, .hw_value = 4, },
77         { .bitrate = 90, .hw_value = 5, },
78         { .bitrate = 120, .hw_value = 6, },
79         { .bitrate = 180, .hw_value = 7, },
80         { .bitrate = 240, .hw_value = 8, },
81         { .bitrate = 360, .hw_value = 9, },
82         { .bitrate = 480, .hw_value = 10, },
83         { .bitrate = 540, .hw_value = 11, },
84 };
85
86 static struct ieee80211_channel p54_achannels[] = {
87         { .center_freq = 4920 },
88         { .center_freq = 4940 },
89         { .center_freq = 4960 },
90         { .center_freq = 4980 },
91         { .center_freq = 5040 },
92         { .center_freq = 5060 },
93         { .center_freq = 5080 },
94         { .center_freq = 5170 },
95         { .center_freq = 5180 },
96         { .center_freq = 5190 },
97         { .center_freq = 5200 },
98         { .center_freq = 5210 },
99         { .center_freq = 5220 },
100         { .center_freq = 5230 },
101         { .center_freq = 5240 },
102         { .center_freq = 5260 },
103         { .center_freq = 5280 },
104         { .center_freq = 5300 },
105         { .center_freq = 5320 },
106         { .center_freq = 5500 },
107         { .center_freq = 5520 },
108         { .center_freq = 5540 },
109         { .center_freq = 5560 },
110         { .center_freq = 5580 },
111         { .center_freq = 5600 },
112         { .center_freq = 5620 },
113         { .center_freq = 5640 },
114         { .center_freq = 5660 },
115         { .center_freq = 5680 },
116         { .center_freq = 5700 },
117         { .center_freq = 5745 },
118         { .center_freq = 5765 },
119         { .center_freq = 5785 },
120         { .center_freq = 5805 },
121         { .center_freq = 5825 },
122 };
123
124 static struct ieee80211_supported_band band_5GHz = {
125         .channels = p54_achannels,
126         .n_channels = ARRAY_SIZE(p54_achannels),
127         .bitrates = p54_arates,
128         .n_bitrates = ARRAY_SIZE(p54_arates),
129 };
130
131 int p54_parse_firmware(struct ieee80211_hw *dev, const struct firmware *fw)
132 {
133         struct p54_common *priv = dev->priv;
134         struct bootrec_exp_if *exp_if;
135         struct bootrec *bootrec;
136         u32 *data = (u32 *)fw->data;
137         u32 *end_data = (u32 *)fw->data + (fw->size >> 2);
138         u8 *fw_version = NULL;
139         size_t len;
140         int i;
141
142         if (priv->rx_start)
143                 return 0;
144
145         while (data < end_data && *data)
146                 data++;
147
148         while (data < end_data && !*data)
149                 data++;
150
151         bootrec = (struct bootrec *) data;
152
153         while (bootrec->data <= end_data &&
154                (bootrec->data + (len = le32_to_cpu(bootrec->len))) <= end_data) {
155                 u32 code = le32_to_cpu(bootrec->code);
156                 switch (code) {
157                 case BR_CODE_COMPONENT_ID:
158                         priv->fw_interface = be32_to_cpup((__be32 *)
159                                              bootrec->data);
160                         switch (priv->fw_interface) {
161                         case FW_LM86:
162                         case FW_LM20:
163                         case FW_LM87: {
164                                 char *iftype = (char *)bootrec->data;
165                                 printk(KERN_INFO "%s: p54 detected a LM%c%c "
166                                                  "firmware\n",
167                                         wiphy_name(dev->wiphy),
168                                         iftype[2], iftype[3]);
169                                 break;
170                                 }
171                         case FW_FMAC:
172                         default:
173                                 printk(KERN_ERR "%s: unsupported firmware\n",
174                                         wiphy_name(dev->wiphy));
175                                 return -ENODEV;
176                         }
177                         break;
178                 case BR_CODE_COMPONENT_VERSION:
179                         /* 24 bytes should be enough for all firmwares */
180                         if (strnlen((unsigned char*)bootrec->data, 24) < 24)
181                                 fw_version = (unsigned char*)bootrec->data;
182                         break;
183                 case BR_CODE_DESCR: {
184                         struct bootrec_desc *desc =
185                                 (struct bootrec_desc *)bootrec->data;
186                         priv->rx_start = le32_to_cpu(desc->rx_start);
187                         /* FIXME add sanity checking */
188                         priv->rx_end = le32_to_cpu(desc->rx_end) - 0x3500;
189                         priv->headroom = desc->headroom;
190                         priv->tailroom = desc->tailroom;
191                         priv->privacy_caps = desc->privacy_caps;
192                         priv->rx_keycache_size = desc->rx_keycache_size;
193                         if (le32_to_cpu(bootrec->len) == 11)
194                                 priv->rx_mtu = le16_to_cpu(desc->rx_mtu);
195                         else
196                                 priv->rx_mtu = (size_t)
197                                         0x620 - priv->tx_hdr_len;
198                         break;
199                         }
200                 case BR_CODE_EXPOSED_IF:
201                         exp_if = (struct bootrec_exp_if *) bootrec->data;
202                         for (i = 0; i < (len * sizeof(*exp_if) / 4); i++)
203                                 if (exp_if[i].if_id == cpu_to_le16(0x1a))
204                                         priv->fw_var = le16_to_cpu(exp_if[i].variant);
205                         break;
206                 case BR_CODE_DEPENDENT_IF:
207                         break;
208                 case BR_CODE_END_OF_BRA:
209                 case LEGACY_BR_CODE_END_OF_BRA:
210                         end_data = NULL;
211                         break;
212                 default:
213                         break;
214                 }
215                 bootrec = (struct bootrec *)&bootrec->data[len];
216         }
217
218         if (fw_version)
219                 printk(KERN_INFO "%s: FW rev %s - Softmac protocol %x.%x\n",
220                         wiphy_name(dev->wiphy), fw_version,
221                         priv->fw_var >> 8, priv->fw_var & 0xff);
222
223         if (priv->fw_var < 0x500)
224                 printk(KERN_INFO "%s: you are using an obsolete firmware. "
225                        "visit http://wireless.kernel.org/en/users/Drivers/p54 "
226                        "and grab one for \"kernel >= 2.6.28\"!\n",
227                         wiphy_name(dev->wiphy));
228
229         if (priv->fw_var >= 0x300) {
230                 /* Firmware supports QoS, use it! */
231                 priv->tx_stats[4].limit = 3;            /* AC_VO */
232                 priv->tx_stats[5].limit = 4;            /* AC_VI */
233                 priv->tx_stats[6].limit = 3;            /* AC_BE */
234                 priv->tx_stats[7].limit = 2;            /* AC_BK */
235                 dev->queues = 4;
236         }
237
238         if (!modparam_nohwcrypt)
239                 printk(KERN_INFO "%s: cryptographic accelerator "
240                                  "WEP:%s, TKIP:%s, CCMP:%s\n",
241                         wiphy_name(dev->wiphy),
242                         (priv->privacy_caps & BR_DESC_PRIV_CAP_WEP) ? "YES" :
243                         "no", (priv->privacy_caps & (BR_DESC_PRIV_CAP_TKIP |
244                          BR_DESC_PRIV_CAP_MICHAEL)) ? "YES" : "no",
245                         (priv->privacy_caps & BR_DESC_PRIV_CAP_AESCCMP) ?
246                         "YES" : "no");
247
248         return 0;
249 }
250 EXPORT_SYMBOL_GPL(p54_parse_firmware);
251
252 static int p54_convert_rev0(struct ieee80211_hw *dev,
253                             struct pda_pa_curve_data *curve_data)
254 {
255         struct p54_common *priv = dev->priv;
256         struct p54_pa_curve_data_sample *dst;
257         struct pda_pa_curve_data_sample_rev0 *src;
258         size_t cd_len = sizeof(*curve_data) +
259                 (curve_data->points_per_channel*sizeof(*dst) + 2) *
260                  curve_data->channels;
261         unsigned int i, j;
262         void *source, *target;
263
264         priv->curve_data = kmalloc(cd_len, GFP_KERNEL);
265         if (!priv->curve_data)
266                 return -ENOMEM;
267
268         memcpy(priv->curve_data, curve_data, sizeof(*curve_data));
269         source = curve_data->data;
270         target = priv->curve_data->data;
271         for (i = 0; i < curve_data->channels; i++) {
272                 __le16 *freq = source;
273                 source += sizeof(__le16);
274                 *((__le16 *)target) = *freq;
275                 target += sizeof(__le16);
276                 for (j = 0; j < curve_data->points_per_channel; j++) {
277                         dst = target;
278                         src = source;
279
280                         dst->rf_power = src->rf_power;
281                         dst->pa_detector = src->pa_detector;
282                         dst->data_64qam = src->pcv;
283                         /* "invent" the points for the other modulations */
284 #define SUB(x,y) (u8)((x) - (y)) > (x) ? 0 : (x) - (y)
285                         dst->data_16qam = SUB(src->pcv, 12);
286                         dst->data_qpsk = SUB(dst->data_16qam, 12);
287                         dst->data_bpsk = SUB(dst->data_qpsk, 12);
288                         dst->data_barker = SUB(dst->data_bpsk, 14);
289 #undef SUB
290                         target += sizeof(*dst);
291                         source += sizeof(*src);
292                 }
293         }
294
295         return 0;
296 }
297
298 static int p54_convert_rev1(struct ieee80211_hw *dev,
299                             struct pda_pa_curve_data *curve_data)
300 {
301         struct p54_common *priv = dev->priv;
302         struct p54_pa_curve_data_sample *dst;
303         struct pda_pa_curve_data_sample_rev1 *src;
304         size_t cd_len = sizeof(*curve_data) +
305                 (curve_data->points_per_channel*sizeof(*dst) + 2) *
306                  curve_data->channels;
307         unsigned int i, j;
308         void *source, *target;
309
310         priv->curve_data = kmalloc(cd_len, GFP_KERNEL);
311         if (!priv->curve_data)
312                 return -ENOMEM;
313
314         memcpy(priv->curve_data, curve_data, sizeof(*curve_data));
315         source = curve_data->data;
316         target = priv->curve_data->data;
317         for (i = 0; i < curve_data->channels; i++) {
318                 __le16 *freq = source;
319                 source += sizeof(__le16);
320                 *((__le16 *)target) = *freq;
321                 target += sizeof(__le16);
322                 for (j = 0; j < curve_data->points_per_channel; j++) {
323                         memcpy(target, source, sizeof(*src));
324
325                         target += sizeof(*dst);
326                         source += sizeof(*src);
327                 }
328                 source++;
329         }
330
331         return 0;
332 }
333
334 static const char *p54_rf_chips[] = { "NULL", "Duette3", "Duette2",
335                               "Frisbee", "Xbow", "Longbow", "NULL", "NULL" };
336 static int p54_init_xbow_synth(struct ieee80211_hw *dev);
337
338 static void p54_parse_rssical(struct ieee80211_hw *dev, void *data, int len,
339                              u16 type)
340 {
341         struct p54_common *priv = dev->priv;
342         int offset = (type == PDR_RSSI_LINEAR_APPROXIMATION_EXTENDED) ? 2 : 0;
343         int entry_size = sizeof(struct pda_rssi_cal_entry) + offset;
344         int num_entries = (type == PDR_RSSI_LINEAR_APPROXIMATION) ? 1 : 2;
345         int i;
346
347         if (len != (entry_size * num_entries)) {
348                 printk(KERN_ERR "%s: unknown rssi calibration data packing "
349                                  " type:(%x) len:%d.\n",
350                        wiphy_name(dev->wiphy), type, len);
351
352                 print_hex_dump_bytes("rssical:", DUMP_PREFIX_NONE,
353                                      data, len);
354
355                 printk(KERN_ERR "%s: please report this issue.\n",
356                         wiphy_name(dev->wiphy));
357                 return;
358         }
359
360         for (i = 0; i < num_entries; i++) {
361                 struct pda_rssi_cal_entry *cal = data +
362                                                  (offset + i * entry_size);
363                 priv->rssical_db[i].mul = (s16) le16_to_cpu(cal->mul);
364                 priv->rssical_db[i].add = (s16) le16_to_cpu(cal->add);
365         }
366 }
367
368 static int p54_parse_eeprom(struct ieee80211_hw *dev, void *eeprom, int len)
369 {
370         struct p54_common *priv = dev->priv;
371         struct eeprom_pda_wrap *wrap = NULL;
372         struct pda_entry *entry;
373         unsigned int data_len, entry_len;
374         void *tmp;
375         int err;
376         u8 *end = (u8 *)eeprom + len;
377         u16 synth = 0;
378
379         wrap = (struct eeprom_pda_wrap *) eeprom;
380         entry = (void *)wrap->data + le16_to_cpu(wrap->len);
381
382         /* verify that at least the entry length/code fits */
383         while ((u8 *)entry <= end - sizeof(*entry)) {
384                 entry_len = le16_to_cpu(entry->len);
385                 data_len = ((entry_len - 1) << 1);
386
387                 /* abort if entry exceeds whole structure */
388                 if ((u8 *)entry + sizeof(*entry) + data_len > end)
389                         break;
390
391                 switch (le16_to_cpu(entry->code)) {
392                 case PDR_MAC_ADDRESS:
393                         SET_IEEE80211_PERM_ADDR(dev, entry->data);
394                         break;
395                 case PDR_PRISM_PA_CAL_OUTPUT_POWER_LIMITS:
396                         if (data_len < 2) {
397                                 err = -EINVAL;
398                                 goto err;
399                         }
400
401                         if (2 + entry->data[1]*sizeof(*priv->output_limit) > data_len) {
402                                 err = -EINVAL;
403                                 goto err;
404                         }
405
406                         priv->output_limit = kmalloc(entry->data[1] *
407                                 sizeof(*priv->output_limit), GFP_KERNEL);
408
409                         if (!priv->output_limit) {
410                                 err = -ENOMEM;
411                                 goto err;
412                         }
413
414                         memcpy(priv->output_limit, &entry->data[2],
415                                entry->data[1]*sizeof(*priv->output_limit));
416                         priv->output_limit_len = entry->data[1];
417                         break;
418                 case PDR_PRISM_PA_CAL_CURVE_DATA: {
419                         struct pda_pa_curve_data *curve_data =
420                                 (struct pda_pa_curve_data *)entry->data;
421                         if (data_len < sizeof(*curve_data)) {
422                                 err = -EINVAL;
423                                 goto err;
424                         }
425
426                         switch (curve_data->cal_method_rev) {
427                         case 0:
428                                 err = p54_convert_rev0(dev, curve_data);
429                                 break;
430                         case 1:
431                                 err = p54_convert_rev1(dev, curve_data);
432                                 break;
433                         default:
434                                 printk(KERN_ERR "%s: unknown curve data "
435                                                 "revision %d\n",
436                                                 wiphy_name(dev->wiphy),
437                                                 curve_data->cal_method_rev);
438                                 err = -ENODEV;
439                                 break;
440                         }
441                         if (err)
442                                 goto err;
443
444                 }
445                 case PDR_PRISM_ZIF_TX_IQ_CALIBRATION:
446                         priv->iq_autocal = kmalloc(data_len, GFP_KERNEL);
447                         if (!priv->iq_autocal) {
448                                 err = -ENOMEM;
449                                 goto err;
450                         }
451
452                         memcpy(priv->iq_autocal, entry->data, data_len);
453                         priv->iq_autocal_len = data_len / sizeof(struct pda_iq_autocal_entry);
454                         break;
455                 case PDR_INTERFACE_LIST:
456                         tmp = entry->data;
457                         while ((u8 *)tmp < entry->data + data_len) {
458                                 struct bootrec_exp_if *exp_if = tmp;
459                                 if (le16_to_cpu(exp_if->if_id) == 0xf)
460                                         synth = le16_to_cpu(exp_if->variant);
461                                 tmp += sizeof(struct bootrec_exp_if);
462                         }
463                         break;
464                 case PDR_HARDWARE_PLATFORM_COMPONENT_ID:
465                         priv->version = *(u8 *)(entry->data + 1);
466                         break;
467                 case PDR_RSSI_LINEAR_APPROXIMATION:
468                 case PDR_RSSI_LINEAR_APPROXIMATION_DUAL_BAND:
469                 case PDR_RSSI_LINEAR_APPROXIMATION_EXTENDED:
470                         p54_parse_rssical(dev, entry->data, data_len,
471                                           le16_to_cpu(entry->code));
472                         break;
473                 case PDR_END:
474                         /* make it overrun */
475                         entry_len = len;
476                         break;
477                 case PDR_MANUFACTURING_PART_NUMBER:
478                 case PDR_PDA_VERSION:
479                 case PDR_NIC_SERIAL_NUMBER:
480                 case PDR_REGULATORY_DOMAIN_LIST:
481                 case PDR_TEMPERATURE_TYPE:
482                 case PDR_PRISM_PCI_IDENTIFIER:
483                 case PDR_COUNTRY_INFORMATION:
484                 case PDR_OEM_NAME:
485                 case PDR_PRODUCT_NAME:
486                 case PDR_UTF8_OEM_NAME:
487                 case PDR_UTF8_PRODUCT_NAME:
488                 case PDR_COUNTRY_LIST:
489                 case PDR_DEFAULT_COUNTRY:
490                 case PDR_ANTENNA_GAIN:
491                 case PDR_PRISM_INDIGO_PA_CALIBRATION_DATA:
492                 case PDR_REGULATORY_POWER_LIMITS:
493                 case PDR_RADIATED_TRANSMISSION_CORRECTION:
494                 case PDR_PRISM_TX_IQ_CALIBRATION:
495                 case PDR_BASEBAND_REGISTERS:
496                 case PDR_PER_CHANNEL_BASEBAND_REGISTERS:
497                         break;
498                 default:
499                         printk(KERN_INFO "%s: unknown eeprom code : 0x%x\n",
500                                 wiphy_name(dev->wiphy),
501                                 le16_to_cpu(entry->code));
502                         break;
503                 }
504
505                 entry = (void *)entry + (entry_len + 1)*2;
506         }
507
508         if (!synth || !priv->iq_autocal || !priv->output_limit ||
509             !priv->curve_data) {
510                 printk(KERN_ERR "%s: not all required entries found in eeprom!\n",
511                         wiphy_name(dev->wiphy));
512                 err = -EINVAL;
513                 goto err;
514         }
515
516         priv->rxhw = synth & PDR_SYNTH_FRONTEND_MASK;
517         if (priv->rxhw == 4)
518                 p54_init_xbow_synth(dev);
519         if (!(synth & PDR_SYNTH_24_GHZ_DISABLED))
520                 dev->wiphy->bands[IEEE80211_BAND_2GHZ] = &band_2GHz;
521         if (!(synth & PDR_SYNTH_5_GHZ_DISABLED))
522                 dev->wiphy->bands[IEEE80211_BAND_5GHZ] = &band_5GHz;
523
524         if (!is_valid_ether_addr(dev->wiphy->perm_addr)) {
525                 u8 perm_addr[ETH_ALEN];
526
527                 printk(KERN_WARNING "%s: Invalid hwaddr! Using randomly generated MAC addr\n",
528                         wiphy_name(dev->wiphy));
529                 random_ether_addr(perm_addr);
530                 SET_IEEE80211_PERM_ADDR(dev, perm_addr);
531         }
532
533         printk(KERN_INFO "%s: hwaddr %pM, MAC:isl38%02x RF:%s\n",
534                 wiphy_name(dev->wiphy),
535                 dev->wiphy->perm_addr,
536                 priv->version, p54_rf_chips[priv->rxhw]);
537
538         return 0;
539
540   err:
541         if (priv->iq_autocal) {
542                 kfree(priv->iq_autocal);
543                 priv->iq_autocal = NULL;
544         }
545
546         if (priv->output_limit) {
547                 kfree(priv->output_limit);
548                 priv->output_limit = NULL;
549         }
550
551         if (priv->curve_data) {
552                 kfree(priv->curve_data);
553                 priv->curve_data = NULL;
554         }
555
556         printk(KERN_ERR "%s: eeprom parse failed!\n",
557                 wiphy_name(dev->wiphy));
558         return err;
559 }
560
561 static int p54_rssi_to_dbm(struct ieee80211_hw *dev, int rssi)
562 {
563         struct p54_common *priv = dev->priv;
564         int band = dev->conf.channel->band;
565
566         return ((rssi * priv->rssical_db[band].mul) / 64 +
567                          priv->rssical_db[band].add) / 4;
568 }
569
570 static int p54_rx_data(struct ieee80211_hw *dev, struct sk_buff *skb)
571 {
572         struct p54_common *priv = dev->priv;
573         struct p54_rx_data *hdr = (struct p54_rx_data *) skb->data;
574         struct ieee80211_rx_status rx_status = {0};
575         u16 freq = le16_to_cpu(hdr->freq);
576         size_t header_len = sizeof(*hdr);
577         u32 tsf32;
578
579         /*
580          * If the device is in a unspecified state we have to
581          * ignore all data frames. Else we could end up with a
582          * nasty crash.
583          */
584         if (unlikely(priv->mode == NL80211_IFTYPE_UNSPECIFIED))
585                 return 0;
586
587         if (!(hdr->flags & cpu_to_le16(P54_HDR_FLAG_DATA_IN_FCS_GOOD))) {
588                 if (priv->filter_flags & FIF_FCSFAIL)
589                         rx_status.flag |= RX_FLAG_FAILED_FCS_CRC;
590                 else
591                         return 0;
592         }
593
594         if (hdr->decrypt_status == P54_DECRYPT_OK)
595                 rx_status.flag |= RX_FLAG_DECRYPTED;
596         if ((hdr->decrypt_status == P54_DECRYPT_FAIL_MICHAEL) ||
597             (hdr->decrypt_status == P54_DECRYPT_FAIL_TKIP))
598                 rx_status.flag |= RX_FLAG_MMIC_ERROR;
599
600         rx_status.signal = p54_rssi_to_dbm(dev, hdr->rssi);
601         rx_status.noise = priv->noise;
602         /* XX correct? */
603         rx_status.qual = (100 * hdr->rssi) / 127;
604         if (hdr->rate & 0x10)
605                 rx_status.flag |= RX_FLAG_SHORTPRE;
606         rx_status.rate_idx = (dev->conf.channel->band == IEEE80211_BAND_2GHZ ?
607                         hdr->rate : (hdr->rate - 4)) & 0xf;
608         rx_status.freq = freq;
609         rx_status.band =  dev->conf.channel->band;
610         rx_status.antenna = hdr->antenna;
611
612         tsf32 = le32_to_cpu(hdr->tsf32);
613         if (tsf32 < priv->tsf_low32)
614                 priv->tsf_high32++;
615         rx_status.mactime = ((u64)priv->tsf_high32) << 32 | tsf32;
616         priv->tsf_low32 = tsf32;
617
618         rx_status.flag |= RX_FLAG_TSFT;
619
620         if (hdr->flags & cpu_to_le16(P54_HDR_FLAG_DATA_ALIGN))
621                 header_len += hdr->align[0];
622
623         skb_pull(skb, header_len);
624         skb_trim(skb, le16_to_cpu(hdr->len));
625
626         ieee80211_rx_irqsafe(dev, skb, &rx_status);
627
628         queue_delayed_work(dev->workqueue, &priv->work,
629                            msecs_to_jiffies(P54_STATISTICS_UPDATE));
630
631         return -1;
632 }
633
634 static void inline p54_wake_free_queues(struct ieee80211_hw *dev)
635 {
636         struct p54_common *priv = dev->priv;
637         int i;
638
639         if (priv->mode == NL80211_IFTYPE_UNSPECIFIED)
640                 return ;
641
642         for (i = 0; i < dev->queues; i++)
643                 if (priv->tx_stats[i + 4].len < priv->tx_stats[i + 4].limit)
644                         ieee80211_wake_queue(dev, i);
645 }
646
647 void p54_free_skb(struct ieee80211_hw *dev, struct sk_buff *skb)
648 {
649         struct p54_common *priv = dev->priv;
650         struct ieee80211_tx_info *info;
651         struct memrecord *range;
652         unsigned long flags;
653         u32 freed = 0, last_addr = priv->rx_start;
654
655         if (unlikely(!skb || !dev || !skb_queue_len(&priv->tx_queue)))
656                 return;
657
658         /*
659          * don't try to free an already unlinked skb
660          */
661         if (unlikely((!skb->next) || (!skb->prev)))
662                 return;
663
664         spin_lock_irqsave(&priv->tx_queue.lock, flags);
665         info = IEEE80211_SKB_CB(skb);
666         range = (void *)info->rate_driver_data;
667         if (skb->prev != (struct sk_buff *)&priv->tx_queue) {
668                 struct ieee80211_tx_info *ni;
669                 struct memrecord *mr;
670
671                 ni = IEEE80211_SKB_CB(skb->prev);
672                 mr = (struct memrecord *)ni->rate_driver_data;
673                 last_addr = mr->end_addr;
674         }
675         if (skb->next != (struct sk_buff *)&priv->tx_queue) {
676                 struct ieee80211_tx_info *ni;
677                 struct memrecord *mr;
678
679                 ni = IEEE80211_SKB_CB(skb->next);
680                 mr = (struct memrecord *)ni->rate_driver_data;
681                 freed = mr->start_addr - last_addr;
682         } else
683                 freed = priv->rx_end - last_addr;
684         __skb_unlink(skb, &priv->tx_queue);
685         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
686         dev_kfree_skb_any(skb);
687
688         if (freed >= priv->headroom + sizeof(struct p54_hdr) + 48 +
689                      IEEE80211_MAX_RTS_THRESHOLD + priv->tailroom)
690                 p54_wake_free_queues(dev);
691 }
692 EXPORT_SYMBOL_GPL(p54_free_skb);
693
694 static struct sk_buff *p54_find_tx_entry(struct ieee80211_hw *dev,
695                                            __le32 req_id)
696 {
697         struct p54_common *priv = dev->priv;
698         struct sk_buff *entry = priv->tx_queue.next;
699         unsigned long flags;
700
701         spin_lock_irqsave(&priv->tx_queue.lock, flags);
702         while (entry != (struct sk_buff *)&priv->tx_queue) {
703                 struct p54_hdr *hdr = (struct p54_hdr *) entry->data;
704
705                 if (hdr->req_id == req_id) {
706                         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
707                         return entry;
708                 }
709                 entry = entry->next;
710         }
711         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
712         return NULL;
713 }
714
715 static void p54_rx_frame_sent(struct ieee80211_hw *dev, struct sk_buff *skb)
716 {
717         struct p54_common *priv = dev->priv;
718         struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
719         struct p54_frame_sent *payload = (struct p54_frame_sent *) hdr->data;
720         struct sk_buff *entry = (struct sk_buff *) priv->tx_queue.next;
721         u32 addr = le32_to_cpu(hdr->req_id) - priv->headroom;
722         struct memrecord *range = NULL;
723         u32 freed = 0;
724         u32 last_addr = priv->rx_start;
725         unsigned long flags;
726         int count, idx;
727
728         spin_lock_irqsave(&priv->tx_queue.lock, flags);
729         while (entry != (struct sk_buff *)&priv->tx_queue) {
730                 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(entry);
731                 struct p54_hdr *entry_hdr;
732                 struct p54_tx_data *entry_data;
733                 int pad = 0;
734
735                 range = (void *)info->rate_driver_data;
736                 if (range->start_addr != addr) {
737                         last_addr = range->end_addr;
738                         entry = entry->next;
739                         continue;
740                 }
741
742                 if (entry->next != (struct sk_buff *)&priv->tx_queue) {
743                         struct ieee80211_tx_info *ni;
744                         struct memrecord *mr;
745
746                         ni = IEEE80211_SKB_CB(entry->next);
747                         mr = (struct memrecord *)ni->rate_driver_data;
748                         freed = mr->start_addr - last_addr;
749                 } else
750                         freed = priv->rx_end - last_addr;
751
752                 last_addr = range->end_addr;
753                 __skb_unlink(entry, &priv->tx_queue);
754                 spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
755
756                 entry_hdr = (struct p54_hdr *) entry->data;
757                 entry_data = (struct p54_tx_data *) entry_hdr->data;
758                 priv->tx_stats[entry_data->hw_queue].len--;
759                 priv->stats.dot11ACKFailureCount += payload->tries - 1;
760
761                 if (unlikely(entry == priv->cached_beacon)) {
762                         kfree_skb(entry);
763                         priv->cached_beacon = NULL;
764                         goto out;
765                 }
766
767                 /*
768                  * Clear manually, ieee80211_tx_info_clear_status would
769                  * clear the counts too and we need them.
770                  */
771                 memset(&info->status.ampdu_ack_len, 0,
772                        sizeof(struct ieee80211_tx_info) -
773                        offsetof(struct ieee80211_tx_info, status.ampdu_ack_len));
774                 BUILD_BUG_ON(offsetof(struct ieee80211_tx_info,
775                                       status.ampdu_ack_len) != 23);
776
777                 if (entry_hdr->flags & cpu_to_le16(P54_HDR_FLAG_DATA_ALIGN))
778                         pad = entry_data->align[0];
779
780                 /* walk through the rates array and adjust the counts */
781                 count = payload->tries;
782                 for (idx = 0; idx < 4; idx++) {
783                         if (count >= info->status.rates[idx].count) {
784                                 count -= info->status.rates[idx].count;
785                         } else if (count > 0) {
786                                 info->status.rates[idx].count = count;
787                                 count = 0;
788                         } else {
789                                 info->status.rates[idx].idx = -1;
790                                 info->status.rates[idx].count = 0;
791                         }
792                 }
793
794                 if (!(info->flags & IEEE80211_TX_CTL_NO_ACK) &&
795                      (!payload->status))
796                         info->flags |= IEEE80211_TX_STAT_ACK;
797                 if (payload->status & P54_TX_PSM_CANCELLED)
798                         info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
799                 info->status.ack_signal = p54_rssi_to_dbm(dev,
800                                 (int)payload->ack_rssi);
801                 skb_pull(entry, sizeof(*hdr) + pad + sizeof(*entry_data));
802                 ieee80211_tx_status_irqsafe(dev, entry);
803                 goto out;
804         }
805         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
806
807 out:
808         if (freed >= priv->headroom + sizeof(struct p54_hdr) + 48 +
809                      IEEE80211_MAX_RTS_THRESHOLD + priv->tailroom)
810                 p54_wake_free_queues(dev);
811 }
812
813 static void p54_rx_eeprom_readback(struct ieee80211_hw *dev,
814                                    struct sk_buff *skb)
815 {
816         struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
817         struct p54_eeprom_lm86 *eeprom = (struct p54_eeprom_lm86 *) hdr->data;
818         struct p54_common *priv = dev->priv;
819
820         if (!priv->eeprom)
821                 return ;
822
823         if (priv->fw_var >= 0x509) {
824                 memcpy(priv->eeprom, eeprom->v2.data,
825                        le16_to_cpu(eeprom->v2.len));
826         } else {
827                 memcpy(priv->eeprom, eeprom->v1.data,
828                        le16_to_cpu(eeprom->v1.len));
829         }
830
831         complete(&priv->eeprom_comp);
832 }
833
834 static void p54_rx_stats(struct ieee80211_hw *dev, struct sk_buff *skb)
835 {
836         struct p54_common *priv = dev->priv;
837         struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
838         struct p54_statistics *stats = (struct p54_statistics *) hdr->data;
839         u32 tsf32;
840
841         if (unlikely(priv->mode == NL80211_IFTYPE_UNSPECIFIED))
842                 return ;
843
844         tsf32 = le32_to_cpu(stats->tsf32);
845         if (tsf32 < priv->tsf_low32)
846                 priv->tsf_high32++;
847         priv->tsf_low32 = tsf32;
848
849         priv->stats.dot11RTSFailureCount = le32_to_cpu(stats->rts_fail);
850         priv->stats.dot11RTSSuccessCount = le32_to_cpu(stats->rts_success);
851         priv->stats.dot11FCSErrorCount = le32_to_cpu(stats->rx_bad_fcs);
852
853         priv->noise = p54_rssi_to_dbm(dev, le32_to_cpu(stats->noise));
854
855         p54_free_skb(dev, p54_find_tx_entry(dev, hdr->req_id));
856 }
857
858 static void p54_rx_trap(struct ieee80211_hw *dev, struct sk_buff *skb)
859 {
860         struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
861         struct p54_trap *trap = (struct p54_trap *) hdr->data;
862         u16 event = le16_to_cpu(trap->event);
863         u16 freq = le16_to_cpu(trap->frequency);
864
865         switch (event) {
866         case P54_TRAP_BEACON_TX:
867                 break;
868         case P54_TRAP_RADAR:
869                 printk(KERN_INFO "%s: radar (freq:%d MHz)\n",
870                         wiphy_name(dev->wiphy), freq);
871                 break;
872         case P54_TRAP_NO_BEACON:
873                 break;
874         case P54_TRAP_SCAN:
875                 break;
876         case P54_TRAP_TBTT:
877                 break;
878         case P54_TRAP_TIMER:
879                 break;
880         default:
881                 printk(KERN_INFO "%s: received event:%x freq:%d\n",
882                        wiphy_name(dev->wiphy), event, freq);
883                 break;
884         }
885 }
886
887 static int p54_rx_control(struct ieee80211_hw *dev, struct sk_buff *skb)
888 {
889         struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
890
891         switch (le16_to_cpu(hdr->type)) {
892         case P54_CONTROL_TYPE_TXDONE:
893                 p54_rx_frame_sent(dev, skb);
894                 break;
895         case P54_CONTROL_TYPE_TRAP:
896                 p54_rx_trap(dev, skb);
897                 break;
898         case P54_CONTROL_TYPE_BBP:
899                 break;
900         case P54_CONTROL_TYPE_STAT_READBACK:
901                 p54_rx_stats(dev, skb);
902                 break;
903         case P54_CONTROL_TYPE_EEPROM_READBACK:
904                 p54_rx_eeprom_readback(dev, skb);
905                 break;
906         default:
907                 printk(KERN_DEBUG "%s: not handling 0x%02x type control frame\n",
908                        wiphy_name(dev->wiphy), le16_to_cpu(hdr->type));
909                 break;
910         }
911
912         return 0;
913 }
914
915 /* returns zero if skb can be reused */
916 int p54_rx(struct ieee80211_hw *dev, struct sk_buff *skb)
917 {
918         u16 type = le16_to_cpu(*((__le16 *)skb->data));
919
920         if (type & P54_HDR_FLAG_CONTROL)
921                 return p54_rx_control(dev, skb);
922         else
923                 return p54_rx_data(dev, skb);
924 }
925 EXPORT_SYMBOL_GPL(p54_rx);
926
927 /*
928  * So, the firmware is somewhat stupid and doesn't know what places in its
929  * memory incoming data should go to. By poking around in the firmware, we
930  * can find some unused memory to upload our packets to. However, data that we
931  * want the card to TX needs to stay intact until the card has told us that
932  * it is done with it. This function finds empty places we can upload to and
933  * marks allocated areas as reserved if necessary. p54_rx_frame_sent frees
934  * allocated areas.
935  */
936 static int p54_assign_address(struct ieee80211_hw *dev, struct sk_buff *skb,
937                                struct p54_hdr *data, u32 len)
938 {
939         struct p54_common *priv = dev->priv;
940         struct sk_buff *entry = priv->tx_queue.next;
941         struct sk_buff *target_skb = NULL;
942         struct ieee80211_tx_info *info;
943         struct memrecord *range;
944         u32 last_addr = priv->rx_start;
945         u32 largest_hole = 0;
946         u32 target_addr = priv->rx_start;
947         unsigned long flags;
948         unsigned int left;
949         len = (len + priv->headroom + priv->tailroom + 3) & ~0x3;
950
951         if (!skb)
952                 return -EINVAL;
953
954         spin_lock_irqsave(&priv->tx_queue.lock, flags);
955
956         left = skb_queue_len(&priv->tx_queue);
957         if (unlikely(left >= 28)) {
958                 /*
959                  * The tx_queue is nearly full!
960                  * We have throttle normal data traffic, because we must
961                  * have a few spare slots for control frames left.
962                  */
963                 ieee80211_stop_queues(dev);
964                 queue_delayed_work(dev->workqueue, &priv->work,
965                                    msecs_to_jiffies(P54_TX_TIMEOUT));
966
967                 if (unlikely(left == 32)) {
968                         /*
969                          * The tx_queue is now really full.
970                          *
971                          * TODO: check if the device has crashed and reset it.
972                          */
973                         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
974                         return -ENOSPC;
975                 }
976         }
977
978         while (left--) {
979                 u32 hole_size;
980                 info = IEEE80211_SKB_CB(entry);
981                 range = (void *)info->rate_driver_data;
982                 hole_size = range->start_addr - last_addr;
983                 if (!target_skb && hole_size >= len) {
984                         target_skb = entry->prev;
985                         hole_size -= len;
986                         target_addr = last_addr;
987                 }
988                 largest_hole = max(largest_hole, hole_size);
989                 last_addr = range->end_addr;
990                 entry = entry->next;
991         }
992         if (!target_skb && priv->rx_end - last_addr >= len) {
993                 target_skb = priv->tx_queue.prev;
994                 largest_hole = max(largest_hole, priv->rx_end - last_addr - len);
995                 if (!skb_queue_empty(&priv->tx_queue)) {
996                         info = IEEE80211_SKB_CB(target_skb);
997                         range = (void *)info->rate_driver_data;
998                         target_addr = range->end_addr;
999                 }
1000         } else
1001                 largest_hole = max(largest_hole, priv->rx_end - last_addr);
1002
1003         if (!target_skb) {
1004                 spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
1005                 ieee80211_stop_queues(dev);
1006                 return -ENOSPC;
1007         }
1008
1009         info = IEEE80211_SKB_CB(skb);
1010         range = (void *)info->rate_driver_data;
1011         range->start_addr = target_addr;
1012         range->end_addr = target_addr + len;
1013         __skb_queue_after(&priv->tx_queue, target_skb, skb);
1014         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
1015
1016         if (largest_hole < priv->headroom + sizeof(struct p54_hdr) +
1017                            48 + IEEE80211_MAX_RTS_THRESHOLD + priv->tailroom)
1018                 ieee80211_stop_queues(dev);
1019
1020         data->req_id = cpu_to_le32(target_addr + priv->headroom);
1021         return 0;
1022 }
1023
1024 static struct sk_buff *p54_alloc_skb(struct ieee80211_hw *dev,
1025                 u16 hdr_flags, u16 len, u16 type, gfp_t memflags)
1026 {
1027         struct p54_common *priv = dev->priv;
1028         struct p54_hdr *hdr;
1029         struct sk_buff *skb;
1030
1031         skb = __dev_alloc_skb(len + priv->tx_hdr_len, memflags);
1032         if (!skb)
1033                 return NULL;
1034         skb_reserve(skb, priv->tx_hdr_len);
1035
1036         hdr = (struct p54_hdr *) skb_put(skb, sizeof(*hdr));
1037         hdr->flags = cpu_to_le16(hdr_flags);
1038         hdr->len = cpu_to_le16(len - sizeof(*hdr));
1039         hdr->type = cpu_to_le16(type);
1040         hdr->tries = hdr->rts_tries = 0;
1041
1042         if (unlikely(p54_assign_address(dev, skb, hdr, len))) {
1043                 kfree_skb(skb);
1044                 return NULL;
1045         }
1046         return skb;
1047 }
1048
1049 int p54_read_eeprom(struct ieee80211_hw *dev)
1050 {
1051         struct p54_common *priv = dev->priv;
1052         struct p54_hdr *hdr = NULL;
1053         struct p54_eeprom_lm86 *eeprom_hdr;
1054         struct sk_buff *skb;
1055         size_t eeprom_size = 0x2020, offset = 0, blocksize, maxblocksize;
1056         int ret = -ENOMEM;
1057         void *eeprom = NULL;
1058
1059         maxblocksize = EEPROM_READBACK_LEN;
1060         if (priv->fw_var >= 0x509)
1061                 maxblocksize -= 0xc;
1062         else
1063                 maxblocksize -= 0x4;
1064
1065         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL, sizeof(*hdr) +
1066                             sizeof(*eeprom_hdr) + maxblocksize,
1067                             P54_CONTROL_TYPE_EEPROM_READBACK, GFP_KERNEL);
1068         if (!skb)
1069                 goto free;
1070         priv->eeprom = kzalloc(EEPROM_READBACK_LEN, GFP_KERNEL);
1071         if (!priv->eeprom)
1072                 goto free;
1073         eeprom = kzalloc(eeprom_size, GFP_KERNEL);
1074         if (!eeprom)
1075                 goto free;
1076
1077         eeprom_hdr = (struct p54_eeprom_lm86 *) skb_put(skb,
1078                      sizeof(*eeprom_hdr) + maxblocksize);
1079
1080         while (eeprom_size) {
1081                 blocksize = min(eeprom_size, maxblocksize);
1082                 if (priv->fw_var < 0x509) {
1083                         eeprom_hdr->v1.offset = cpu_to_le16(offset);
1084                         eeprom_hdr->v1.len = cpu_to_le16(blocksize);
1085                 } else {
1086                         eeprom_hdr->v2.offset = cpu_to_le32(offset);
1087                         eeprom_hdr->v2.len = cpu_to_le16(blocksize);
1088                         eeprom_hdr->v2.magic2 = 0xf;
1089                         memcpy(eeprom_hdr->v2.magic, (const char *)"LOCK", 4);
1090                 }
1091                 priv->tx(dev, skb);
1092
1093                 if (!wait_for_completion_interruptible_timeout(&priv->eeprom_comp, HZ)) {
1094                         printk(KERN_ERR "%s: device does not respond!\n",
1095                                 wiphy_name(dev->wiphy));
1096                         ret = -EBUSY;
1097                         goto free;
1098                 }
1099
1100                 memcpy(eeprom + offset, priv->eeprom, blocksize);
1101                 offset += blocksize;
1102                 eeprom_size -= blocksize;
1103         }
1104
1105         ret = p54_parse_eeprom(dev, eeprom, offset);
1106 free:
1107         kfree(priv->eeprom);
1108         priv->eeprom = NULL;
1109         p54_free_skb(dev, skb);
1110         kfree(eeprom);
1111
1112         return ret;
1113 }
1114 EXPORT_SYMBOL_GPL(p54_read_eeprom);
1115
1116 static int p54_set_tim(struct ieee80211_hw *dev, struct ieee80211_sta *sta,
1117                 bool set)
1118 {
1119         struct p54_common *priv = dev->priv;
1120         struct sk_buff *skb;
1121         struct p54_tim *tim;
1122
1123         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET,
1124                       sizeof(struct p54_hdr) + sizeof(*tim),
1125                       P54_CONTROL_TYPE_TIM, GFP_KERNEL);
1126         if (!skb)
1127                 return -ENOMEM;
1128
1129         tim = (struct p54_tim *) skb_put(skb, sizeof(*tim));
1130         tim->count = 1;
1131         tim->entry[0] = cpu_to_le16(set ? (sta->aid | 0x8000) : sta->aid);
1132         priv->tx(dev, skb);
1133         return 0;
1134 }
1135
1136 static int p54_sta_unlock(struct ieee80211_hw *dev, u8 *addr)
1137 {
1138         struct p54_common *priv = dev->priv;
1139         struct sk_buff *skb;
1140         struct p54_sta_unlock *sta;
1141
1142         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET,
1143                 sizeof(struct p54_hdr) + sizeof(*sta),
1144                 P54_CONTROL_TYPE_PSM_STA_UNLOCK, GFP_ATOMIC);
1145         if (!skb)
1146                 return -ENOMEM;
1147
1148         sta = (struct p54_sta_unlock *)skb_put(skb, sizeof(*sta));
1149         memcpy(sta->addr, addr, ETH_ALEN);
1150         priv->tx(dev, skb);
1151         return 0;
1152 }
1153
1154 static void p54_sta_notify(struct ieee80211_hw *dev, struct ieee80211_vif *vif,
1155                               enum sta_notify_cmd notify_cmd,
1156                               struct ieee80211_sta *sta)
1157 {
1158         switch (notify_cmd) {
1159         case STA_NOTIFY_ADD:
1160         case STA_NOTIFY_REMOVE:
1161                 /*
1162                  * Notify the firmware that we don't want or we don't
1163                  * need to buffer frames for this station anymore.
1164                  */
1165
1166                 p54_sta_unlock(dev, sta->addr);
1167                 break;
1168         case STA_NOTIFY_AWAKE:
1169                 /* update the firmware's filter table */
1170                 p54_sta_unlock(dev, sta->addr);
1171                 break;
1172         default:
1173                 break;
1174         }
1175 }
1176
1177 static int p54_tx_cancel(struct ieee80211_hw *dev, struct sk_buff *entry)
1178 {
1179         struct p54_common *priv = dev->priv;
1180         struct sk_buff *skb;
1181         struct p54_hdr *hdr;
1182         struct p54_txcancel *cancel;
1183
1184         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET,
1185                 sizeof(struct p54_hdr) + sizeof(*cancel),
1186                 P54_CONTROL_TYPE_TXCANCEL, GFP_ATOMIC);
1187         if (!skb)
1188                 return -ENOMEM;
1189
1190         hdr = (void *)entry->data;
1191         cancel = (struct p54_txcancel *)skb_put(skb, sizeof(*cancel));
1192         cancel->req_id = hdr->req_id;
1193         priv->tx(dev, skb);
1194         return 0;
1195 }
1196
1197 static int p54_tx_fill(struct ieee80211_hw *dev, struct sk_buff *skb,
1198                 struct ieee80211_tx_info *info, u8 *queue, size_t *extra_len,
1199                 u16 *flags, u16 *aid)
1200 {
1201         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1202         struct p54_common *priv = dev->priv;
1203         int ret = 0;
1204
1205         if (unlikely(ieee80211_is_mgmt(hdr->frame_control))) {
1206                 if (ieee80211_is_beacon(hdr->frame_control)) {
1207                         *aid = 0;
1208                         *queue = 0;
1209                         *extra_len = IEEE80211_MAX_TIM_LEN;
1210                         *flags = P54_HDR_FLAG_DATA_OUT_TIMESTAMP;
1211                         return 0;
1212                 } else if (ieee80211_is_probe_resp(hdr->frame_control)) {
1213                         *aid = 0;
1214                         *queue = 2;
1215                         *flags = P54_HDR_FLAG_DATA_OUT_TIMESTAMP |
1216                                  P54_HDR_FLAG_DATA_OUT_NOCANCEL;
1217                         return 0;
1218                 } else {
1219                         *queue = 2;
1220                         ret = 0;
1221                 }
1222         } else {
1223                 *queue += 4;
1224                 ret = 1;
1225         }
1226
1227         switch (priv->mode) {
1228         case NL80211_IFTYPE_STATION:
1229                 *aid = 1;
1230                 break;
1231         case NL80211_IFTYPE_AP:
1232         case NL80211_IFTYPE_ADHOC:
1233         case NL80211_IFTYPE_MESH_POINT:
1234                 if (info->flags & IEEE80211_TX_CTL_SEND_AFTER_DTIM) {
1235                         *aid = 0;
1236                         *queue = 3;
1237                         return 0;
1238                 }
1239                 if (info->control.sta)
1240                         *aid = info->control.sta->aid;
1241                 else
1242                         *flags |= P54_HDR_FLAG_DATA_OUT_NOCANCEL;
1243         }
1244         return ret;
1245 }
1246
1247 static u8 p54_convert_algo(enum ieee80211_key_alg alg)
1248 {
1249         switch (alg) {
1250         case ALG_WEP:
1251                 return P54_CRYPTO_WEP;
1252         case ALG_TKIP:
1253                 return P54_CRYPTO_TKIPMICHAEL;
1254         case ALG_CCMP:
1255                 return P54_CRYPTO_AESCCMP;
1256         default:
1257                 return 0;
1258         }
1259 }
1260
1261 static int p54_tx(struct ieee80211_hw *dev, struct sk_buff *skb)
1262 {
1263         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1264         struct ieee80211_tx_queue_stats *current_queue = NULL;
1265         struct p54_common *priv = dev->priv;
1266         struct p54_hdr *hdr;
1267         struct p54_tx_data *txhdr;
1268         size_t padding, len, tim_len = 0;
1269         int i, j, ridx, ret;
1270         u16 hdr_flags = 0, aid = 0;
1271         u8 rate, queue, crypt_offset = 0;
1272         u8 cts_rate = 0x20;
1273         u8 rc_flags;
1274         u8 calculated_tries[4];
1275         u8 nrates = 0, nremaining = 8;
1276
1277         queue = skb_get_queue_mapping(skb);
1278
1279         ret = p54_tx_fill(dev, skb, info, &queue, &tim_len, &hdr_flags, &aid);
1280         current_queue = &priv->tx_stats[queue];
1281         if (unlikely((current_queue->len > current_queue->limit) && ret))
1282                 return NETDEV_TX_BUSY;
1283         current_queue->len++;
1284         current_queue->count++;
1285         if ((current_queue->len == current_queue->limit) && ret)
1286                 ieee80211_stop_queue(dev, skb_get_queue_mapping(skb));
1287
1288         padding = (unsigned long)(skb->data - (sizeof(*hdr) + sizeof(*txhdr))) & 3;
1289         len = skb->len;
1290
1291         if (info->control.hw_key) {
1292                 crypt_offset = ieee80211_get_hdrlen_from_skb(skb);
1293                 if (info->control.hw_key->alg == ALG_TKIP) {
1294                         u8 *iv = (u8 *)(skb->data + crypt_offset);
1295                         /*
1296                          * The firmware excepts that the IV has to have
1297                          * this special format
1298                          */
1299                         iv[1] = iv[0];
1300                         iv[0] = iv[2];
1301                         iv[2] = 0;
1302                 }
1303         }
1304
1305         txhdr = (struct p54_tx_data *) skb_push(skb, sizeof(*txhdr) + padding);
1306         hdr = (struct p54_hdr *) skb_push(skb, sizeof(*hdr));
1307
1308         if (padding)
1309                 hdr_flags |= P54_HDR_FLAG_DATA_ALIGN;
1310         hdr->type = cpu_to_le16(aid);
1311         hdr->rts_tries = info->control.rates[0].count;
1312
1313         /*
1314          * we register the rates in perfect order, and
1315          * RTS/CTS won't happen on 5 GHz
1316          */
1317         cts_rate = info->control.rts_cts_rate_idx;
1318
1319         memset(&txhdr->rateset, 0, sizeof(txhdr->rateset));
1320
1321         /* see how many rates got used */
1322         for (i = 0; i < 4; i++) {
1323                 if (info->control.rates[i].idx < 0)
1324                         break;
1325                 nrates++;
1326         }
1327
1328         /* limit tries to 8/nrates per rate */
1329         for (i = 0; i < nrates; i++) {
1330                 /*
1331                  * The magic expression here is equivalent to 8/nrates for
1332                  * all values that matter, but avoids division and jumps.
1333                  * Note that nrates can only take the values 1 through 4.
1334                  */
1335                 calculated_tries[i] = min_t(int, ((15 >> nrates) | 1) + 1,
1336                                                  info->control.rates[i].count);
1337                 nremaining -= calculated_tries[i];
1338         }
1339
1340         /* if there are tries left, distribute from back to front */
1341         for (i = nrates - 1; nremaining > 0 && i >= 0; i--) {
1342                 int tmp = info->control.rates[i].count - calculated_tries[i];
1343
1344                 if (tmp <= 0)
1345                         continue;
1346                 /* RC requested more tries at this rate */
1347
1348                 tmp = min_t(int, tmp, nremaining);
1349                 calculated_tries[i] += tmp;
1350                 nremaining -= tmp;
1351         }
1352
1353         ridx = 0;
1354         for (i = 0; i < nrates && ridx < 8; i++) {
1355                 /* we register the rates in perfect order */
1356                 rate = info->control.rates[i].idx;
1357                 if (info->band == IEEE80211_BAND_5GHZ)
1358                         rate += 4;
1359
1360                 /* store the count we actually calculated for TX status */
1361                 info->control.rates[i].count = calculated_tries[i];
1362
1363                 rc_flags = info->control.rates[i].flags;
1364                 if (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) {
1365                         rate |= 0x10;
1366                         cts_rate |= 0x10;
1367                 }
1368                 if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS)
1369                         rate |= 0x40;
1370                 else if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
1371                         rate |= 0x20;
1372                 for (j = 0; j < calculated_tries[i] && ridx < 8; j++) {
1373                         txhdr->rateset[ridx] = rate;
1374                         ridx++;
1375                 }
1376         }
1377
1378         if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ)
1379                 hdr_flags |= P54_HDR_FLAG_DATA_OUT_SEQNR;
1380
1381         /* TODO: enable bursting */
1382         hdr->flags = cpu_to_le16(hdr_flags);
1383         hdr->tries = ridx;
1384         txhdr->rts_rate_idx = 0;
1385         if (info->control.hw_key) {
1386                 crypt_offset += info->control.hw_key->iv_len;
1387                 txhdr->key_type = p54_convert_algo(info->control.hw_key->alg);
1388                 txhdr->key_len = min((u8)16, info->control.hw_key->keylen);
1389                 memcpy(txhdr->key, info->control.hw_key->key, txhdr->key_len);
1390                 if (info->control.hw_key->alg == ALG_TKIP) {
1391                         if (unlikely(skb_tailroom(skb) < 12))
1392                                 goto err;
1393                         /* reserve space for the MIC key */
1394                         len += 8;
1395                         memcpy(skb_put(skb, 8), &(info->control.hw_key->key
1396                                 [NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY]), 8);
1397                 }
1398                 /* reserve some space for ICV */
1399                 len += info->control.hw_key->icv_len;
1400         } else {
1401                 txhdr->key_type = 0;
1402                 txhdr->key_len = 0;
1403         }
1404         txhdr->crypt_offset = crypt_offset;
1405         txhdr->hw_queue = queue;
1406         if (current_queue)
1407                 txhdr->backlog = current_queue->len;
1408         else
1409                 txhdr->backlog = 0;
1410         memset(txhdr->durations, 0, sizeof(txhdr->durations));
1411         txhdr->tx_antenna = (info->antenna_sel_tx == 0) ?
1412                 2 : info->antenna_sel_tx - 1;
1413         txhdr->output_power = priv->output_power;
1414         txhdr->cts_rate = cts_rate;
1415         if (padding)
1416                 txhdr->align[0] = padding;
1417
1418         hdr->len = cpu_to_le16(len);
1419         /* modifies skb->cb and with it info, so must be last! */
1420         if (unlikely(p54_assign_address(dev, skb, hdr, skb->len + tim_len)))
1421                 goto err;
1422         priv->tx(dev, skb);
1423
1424         queue_delayed_work(dev->workqueue, &priv->work,
1425                            msecs_to_jiffies(P54_TX_FRAME_LIFETIME));
1426
1427         return 0;
1428
1429  err:
1430         skb_pull(skb, sizeof(*hdr) + sizeof(*txhdr) + padding);
1431         if (current_queue) {
1432                 current_queue->len--;
1433                 current_queue->count--;
1434         }
1435         return NETDEV_TX_BUSY;
1436 }
1437
1438 static int p54_setup_mac(struct ieee80211_hw *dev)
1439 {
1440         struct p54_common *priv = dev->priv;
1441         struct sk_buff *skb;
1442         struct p54_setup_mac *setup;
1443         u16 mode;
1444
1445         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*setup) +
1446                             sizeof(struct p54_hdr), P54_CONTROL_TYPE_SETUP,
1447                             GFP_ATOMIC);
1448         if (!skb)
1449                 return -ENOMEM;
1450
1451         setup = (struct p54_setup_mac *) skb_put(skb, sizeof(*setup));
1452         if (dev->conf.radio_enabled) {
1453                 switch (priv->mode) {
1454                 case NL80211_IFTYPE_STATION:
1455                         mode = P54_FILTER_TYPE_STATION;
1456                         break;
1457                 case NL80211_IFTYPE_AP:
1458                         mode = P54_FILTER_TYPE_AP;
1459                         break;
1460                 case NL80211_IFTYPE_ADHOC:
1461                 case NL80211_IFTYPE_MESH_POINT:
1462                         mode = P54_FILTER_TYPE_IBSS;
1463                         break;
1464                 default:
1465                         mode = P54_FILTER_TYPE_NONE;
1466                         break;
1467                 }
1468                 if (priv->filter_flags & FIF_PROMISC_IN_BSS)
1469                         mode |= P54_FILTER_TYPE_TRANSPARENT;
1470         } else
1471                 mode = P54_FILTER_TYPE_RX_DISABLED;
1472
1473         setup->mac_mode = cpu_to_le16(mode);
1474         memcpy(setup->mac_addr, priv->mac_addr, ETH_ALEN);
1475         memcpy(setup->bssid, priv->bssid, ETH_ALEN);
1476         setup->rx_antenna = 2; /* automatic */
1477         setup->rx_align = 0;
1478         if (priv->fw_var < 0x500) {
1479                 setup->v1.basic_rate_mask = cpu_to_le32(priv->basic_rate_mask);
1480                 memset(setup->v1.rts_rates, 0, 8);
1481                 setup->v1.rx_addr = cpu_to_le32(priv->rx_end);
1482                 setup->v1.max_rx = cpu_to_le16(priv->rx_mtu);
1483                 setup->v1.rxhw = cpu_to_le16(priv->rxhw);
1484                 setup->v1.wakeup_timer = cpu_to_le16(priv->wakeup_timer);
1485                 setup->v1.unalloc0 = cpu_to_le16(0);
1486         } else {
1487                 setup->v2.rx_addr = cpu_to_le32(priv->rx_end);
1488                 setup->v2.max_rx = cpu_to_le16(priv->rx_mtu);
1489                 setup->v2.rxhw = cpu_to_le16(priv->rxhw);
1490                 setup->v2.timer = cpu_to_le16(priv->wakeup_timer);
1491                 setup->v2.truncate = cpu_to_le16(48896);
1492                 setup->v2.basic_rate_mask = cpu_to_le32(priv->basic_rate_mask);
1493                 setup->v2.sbss_offset = 0;
1494                 setup->v2.mcast_window = 0;
1495                 setup->v2.rx_rssi_threshold = 0;
1496                 setup->v2.rx_ed_threshold = 0;
1497                 setup->v2.ref_clock = cpu_to_le32(644245094);
1498                 setup->v2.lpf_bandwidth = cpu_to_le16(65535);
1499                 setup->v2.osc_start_delay = cpu_to_le16(65535);
1500         }
1501         priv->tx(dev, skb);
1502         return 0;
1503 }
1504
1505 static int p54_scan(struct ieee80211_hw *dev, u16 mode, u16 dwell)
1506 {
1507         struct p54_common *priv = dev->priv;
1508         struct sk_buff *skb;
1509         struct p54_scan *chan;
1510         unsigned int i;
1511         void *entry;
1512         __le16 freq = cpu_to_le16(dev->conf.channel->center_freq);
1513         int band = dev->conf.channel->band;
1514
1515         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*chan) +
1516                             sizeof(struct p54_hdr), P54_CONTROL_TYPE_SCAN,
1517                             GFP_ATOMIC);
1518         if (!skb)
1519                 return -ENOMEM;
1520
1521         chan = (struct p54_scan *) skb_put(skb, sizeof(*chan));
1522         memset(chan->padding1, 0, sizeof(chan->padding1));
1523         chan->mode = cpu_to_le16(mode);
1524         chan->dwell = cpu_to_le16(dwell);
1525
1526         for (i = 0; i < priv->iq_autocal_len; i++) {
1527                 if (priv->iq_autocal[i].freq != freq)
1528                         continue;
1529
1530                 memcpy(&chan->iq_autocal, &priv->iq_autocal[i],
1531                        sizeof(*priv->iq_autocal));
1532                 break;
1533         }
1534         if (i == priv->iq_autocal_len)
1535                 goto err;
1536
1537         for (i = 0; i < priv->output_limit_len; i++) {
1538                 if (priv->output_limit[i].freq != freq)
1539                         continue;
1540
1541                 chan->val_barker = 0x38;
1542                 chan->val_bpsk = chan->dup_bpsk =
1543                         priv->output_limit[i].val_bpsk;
1544                 chan->val_qpsk = chan->dup_qpsk =
1545                         priv->output_limit[i].val_qpsk;
1546                 chan->val_16qam = chan->dup_16qam =
1547                         priv->output_limit[i].val_16qam;
1548                 chan->val_64qam = chan->dup_64qam =
1549                         priv->output_limit[i].val_64qam;
1550                 break;
1551         }
1552         if (i == priv->output_limit_len)
1553                 goto err;
1554
1555         entry = priv->curve_data->data;
1556         for (i = 0; i < priv->curve_data->channels; i++) {
1557                 if (*((__le16 *)entry) != freq) {
1558                         entry += sizeof(__le16);
1559                         entry += sizeof(struct p54_pa_curve_data_sample) *
1560                                  priv->curve_data->points_per_channel;
1561                         continue;
1562                 }
1563
1564                 entry += sizeof(__le16);
1565                 chan->pa_points_per_curve = 8;
1566                 memset(chan->curve_data, 0, sizeof(*chan->curve_data));
1567                 memcpy(chan->curve_data, entry,
1568                        sizeof(struct p54_pa_curve_data_sample) *
1569                        min((u8)8, priv->curve_data->points_per_channel));
1570                 break;
1571         }
1572
1573         if (priv->fw_var < 0x500) {
1574                 chan->v1_rssi.mul = cpu_to_le16(priv->rssical_db[band].mul);
1575                 chan->v1_rssi.add = cpu_to_le16(priv->rssical_db[band].add);
1576         } else {
1577                 chan->v2.rssi.mul = cpu_to_le16(priv->rssical_db[band].mul);
1578                 chan->v2.rssi.add = cpu_to_le16(priv->rssical_db[band].add);
1579                 chan->v2.basic_rate_mask = cpu_to_le32(priv->basic_rate_mask);
1580                 memset(chan->v2.rts_rates, 0, 8);
1581         }
1582         priv->tx(dev, skb);
1583         return 0;
1584
1585  err:
1586         printk(KERN_ERR "%s: frequency change failed\n", wiphy_name(dev->wiphy));
1587         kfree_skb(skb);
1588         return -EINVAL;
1589 }
1590
1591 static int p54_set_leds(struct ieee80211_hw *dev, int mode, int link, int act)
1592 {
1593         struct p54_common *priv = dev->priv;
1594         struct sk_buff *skb;
1595         struct p54_led *led;
1596
1597         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*led) +
1598                         sizeof(struct p54_hdr), P54_CONTROL_TYPE_LED,
1599                         GFP_ATOMIC);
1600         if (!skb)
1601                 return -ENOMEM;
1602
1603         led = (struct p54_led *)skb_put(skb, sizeof(*led));
1604         led->mode = cpu_to_le16(mode);
1605         led->led_permanent = cpu_to_le16(link);
1606         led->led_temporary = cpu_to_le16(act);
1607         led->duration = cpu_to_le16(1000);
1608         priv->tx(dev, skb);
1609         return 0;
1610 }
1611
1612 #define P54_SET_QUEUE(queue, ai_fs, cw_min, cw_max, _txop)      \
1613 do {                                                            \
1614         queue.aifs = cpu_to_le16(ai_fs);                        \
1615         queue.cwmin = cpu_to_le16(cw_min);                      \
1616         queue.cwmax = cpu_to_le16(cw_max);                      \
1617         queue.txop = cpu_to_le16(_txop);                        \
1618 } while(0)
1619
1620 static int p54_set_edcf(struct ieee80211_hw *dev)
1621 {
1622         struct p54_common *priv = dev->priv;
1623         struct sk_buff *skb;
1624         struct p54_edcf *edcf;
1625
1626         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*edcf) +
1627                         sizeof(struct p54_hdr), P54_CONTROL_TYPE_DCFINIT,
1628                         GFP_ATOMIC);
1629         if (!skb)
1630                 return -ENOMEM;
1631
1632         edcf = (struct p54_edcf *)skb_put(skb, sizeof(*edcf));
1633         if (priv->use_short_slot) {
1634                 edcf->slottime = 9;
1635                 edcf->sifs = 0x10;
1636                 edcf->eofpad = 0x00;
1637         } else {
1638                 edcf->slottime = 20;
1639                 edcf->sifs = 0x0a;
1640                 edcf->eofpad = 0x06;
1641         }
1642         /* (see prism54/isl_oid.h for further details) */
1643         edcf->frameburst = cpu_to_le16(0);
1644         edcf->round_trip_delay = cpu_to_le16(0);
1645         edcf->flags = 0;
1646         memset(edcf->mapping, 0, sizeof(edcf->mapping));
1647         memcpy(edcf->queue, priv->qos_params, sizeof(edcf->queue));
1648         priv->tx(dev, skb);
1649         return 0;
1650 }
1651
1652 static int p54_beacon_tim(struct sk_buff *skb)
1653 {
1654         /*
1655          * the good excuse for this mess is ... the firmware.
1656          * The dummy TIM MUST be at the end of the beacon frame,
1657          * because it'll be overwritten!
1658          */
1659
1660         struct ieee80211_mgmt *mgmt = (void *)skb->data;
1661         u8 *pos, *end;
1662
1663         if (skb->len <= sizeof(mgmt))
1664                 return -EINVAL;
1665
1666         pos = (u8 *)mgmt->u.beacon.variable;
1667         end = skb->data + skb->len;
1668         while (pos < end) {
1669                 if (pos + 2 + pos[1] > end)
1670                         return -EINVAL;
1671
1672                 if (pos[0] == WLAN_EID_TIM) {
1673                         u8 dtim_len = pos[1];
1674                         u8 dtim_period = pos[3];
1675                         u8 *next = pos + 2 + dtim_len;
1676
1677                         if (dtim_len < 3)
1678                                 return -EINVAL;
1679
1680                         memmove(pos, next, end - next);
1681
1682                         if (dtim_len > 3)
1683                                 skb_trim(skb, skb->len - (dtim_len - 3));
1684
1685                         pos = end - (dtim_len + 2);
1686
1687                         /* add the dummy at the end */
1688                         pos[0] = WLAN_EID_TIM;
1689                         pos[1] = 3;
1690                         pos[2] = 0;
1691                         pos[3] = dtim_period;
1692                         pos[4] = 0;
1693                         return 0;
1694                 }
1695                 pos += 2 + pos[1];
1696         }
1697         return 0;
1698 }
1699
1700 static int p54_beacon_update(struct ieee80211_hw *dev,
1701                         struct ieee80211_vif *vif)
1702 {
1703         struct p54_common *priv = dev->priv;
1704         struct sk_buff *beacon;
1705         int ret;
1706
1707         if (priv->cached_beacon) {
1708                 p54_tx_cancel(dev, priv->cached_beacon);
1709                 /* wait for the last beacon the be freed */
1710                 msleep(10);
1711         }
1712
1713         beacon = ieee80211_beacon_get(dev, vif);
1714         if (!beacon)
1715                 return -ENOMEM;
1716         ret = p54_beacon_tim(beacon);
1717         if (ret)
1718                 return ret;
1719         ret = p54_tx(dev, beacon);
1720         if (ret)
1721                 return ret;
1722         priv->cached_beacon = beacon;
1723         priv->tsf_high32 = 0;
1724         priv->tsf_low32 = 0;
1725
1726         return 0;
1727 }
1728
1729 static int p54_start(struct ieee80211_hw *dev)
1730 {
1731         struct p54_common *priv = dev->priv;
1732         int err;
1733
1734         mutex_lock(&priv->conf_mutex);
1735         err = priv->open(dev);
1736         if (err)
1737                 goto out;
1738         P54_SET_QUEUE(priv->qos_params[0], 0x0002, 0x0003, 0x0007, 47);
1739         P54_SET_QUEUE(priv->qos_params[1], 0x0002, 0x0007, 0x000f, 94);
1740         P54_SET_QUEUE(priv->qos_params[2], 0x0003, 0x000f, 0x03ff, 0);
1741         P54_SET_QUEUE(priv->qos_params[3], 0x0007, 0x000f, 0x03ff, 0);
1742         err = p54_set_edcf(dev);
1743         if (err)
1744                 goto out;
1745
1746         memset(priv->bssid, ~0, ETH_ALEN);
1747         priv->mode = NL80211_IFTYPE_MONITOR;
1748         err = p54_setup_mac(dev);
1749         if (err) {
1750                 priv->mode = NL80211_IFTYPE_UNSPECIFIED;
1751                 goto out;
1752         }
1753
1754         queue_delayed_work(dev->workqueue, &priv->work, 0);
1755
1756 out:
1757         mutex_unlock(&priv->conf_mutex);
1758         return err;
1759 }
1760
1761 static void p54_stop(struct ieee80211_hw *dev)
1762 {
1763         struct p54_common *priv = dev->priv;
1764         struct sk_buff *skb;
1765
1766         mutex_lock(&priv->conf_mutex);
1767         priv->mode = NL80211_IFTYPE_UNSPECIFIED;
1768         cancel_delayed_work_sync(&priv->work);
1769         if (priv->cached_beacon)
1770                 p54_tx_cancel(dev, priv->cached_beacon);
1771
1772         priv->stop(dev);
1773         while ((skb = skb_dequeue(&priv->tx_queue)))
1774                 kfree_skb(skb);
1775         priv->cached_beacon = NULL;
1776         priv->tsf_high32 = priv->tsf_low32 = 0;
1777         mutex_unlock(&priv->conf_mutex);
1778 }
1779
1780 static int p54_add_interface(struct ieee80211_hw *dev,
1781                              struct ieee80211_if_init_conf *conf)
1782 {
1783         struct p54_common *priv = dev->priv;
1784
1785         mutex_lock(&priv->conf_mutex);
1786         if (priv->mode != NL80211_IFTYPE_MONITOR) {
1787                 mutex_unlock(&priv->conf_mutex);
1788                 return -EOPNOTSUPP;
1789         }
1790
1791         switch (conf->type) {
1792         case NL80211_IFTYPE_STATION:
1793         case NL80211_IFTYPE_ADHOC:
1794         case NL80211_IFTYPE_AP:
1795         case NL80211_IFTYPE_MESH_POINT:
1796                 priv->mode = conf->type;
1797                 break;
1798         default:
1799                 mutex_unlock(&priv->conf_mutex);
1800                 return -EOPNOTSUPP;
1801         }
1802
1803         memcpy(priv->mac_addr, conf->mac_addr, ETH_ALEN);
1804         p54_setup_mac(dev);
1805         p54_set_leds(dev, 1, 0, 0);
1806         mutex_unlock(&priv->conf_mutex);
1807         return 0;
1808 }
1809
1810 static void p54_remove_interface(struct ieee80211_hw *dev,
1811                                  struct ieee80211_if_init_conf *conf)
1812 {
1813         struct p54_common *priv = dev->priv;
1814
1815         mutex_lock(&priv->conf_mutex);
1816         if (priv->cached_beacon)
1817                 p54_tx_cancel(dev, priv->cached_beacon);
1818         priv->mode = NL80211_IFTYPE_MONITOR;
1819         memset(priv->mac_addr, 0, ETH_ALEN);
1820         memset(priv->bssid, 0, ETH_ALEN);
1821         p54_setup_mac(dev);
1822         mutex_unlock(&priv->conf_mutex);
1823 }
1824
1825 static int p54_config(struct ieee80211_hw *dev, u32 changed)
1826 {
1827         int ret;
1828         struct p54_common *priv = dev->priv;
1829         struct ieee80211_conf *conf = &dev->conf;
1830
1831         mutex_lock(&priv->conf_mutex);
1832         if (changed & IEEE80211_CONF_CHANGE_POWER)
1833                 priv->output_power = conf->power_level << 2;
1834         if (changed & IEEE80211_CONF_CHANGE_RADIO_ENABLED) {
1835                 ret = p54_setup_mac(dev);
1836                 if (ret)
1837                         goto out;
1838         }
1839         if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
1840                 ret = p54_scan(dev, P54_SCAN_EXIT, 0);
1841                 if (ret)
1842                         goto out;
1843         }
1844
1845 out:
1846         mutex_unlock(&priv->conf_mutex);
1847         return ret;
1848 }
1849
1850 static int p54_config_interface(struct ieee80211_hw *dev,
1851                                 struct ieee80211_vif *vif,
1852                                 struct ieee80211_if_conf *conf)
1853 {
1854         struct p54_common *priv = dev->priv;
1855         int ret = 0;
1856
1857         mutex_lock(&priv->conf_mutex);
1858         if (conf->changed & IEEE80211_IFCC_BSSID) {
1859                 memcpy(priv->bssid, conf->bssid, ETH_ALEN);
1860                 ret = p54_setup_mac(dev);
1861                 if (ret)
1862                         goto out;
1863         }
1864
1865         if (conf->changed & IEEE80211_IFCC_BEACON) {
1866                 ret = p54_scan(dev, P54_SCAN_EXIT, 0);
1867                 if (ret)
1868                         goto out;
1869                 ret = p54_setup_mac(dev);
1870                 if (ret)
1871                         goto out;
1872                 ret = p54_beacon_update(dev, vif);
1873                 if (ret)
1874                         goto out;
1875                 ret = p54_set_edcf(dev);
1876                 if (ret)
1877                         goto out;
1878         }
1879
1880         ret = p54_set_leds(dev, 1, !is_multicast_ether_addr(priv->bssid), 0);
1881
1882 out:
1883         mutex_unlock(&priv->conf_mutex);
1884         return ret;
1885 }
1886
1887 static void p54_configure_filter(struct ieee80211_hw *dev,
1888                                  unsigned int changed_flags,
1889                                  unsigned int *total_flags,
1890                                  int mc_count, struct dev_mc_list *mclist)
1891 {
1892         struct p54_common *priv = dev->priv;
1893
1894         *total_flags &= FIF_PROMISC_IN_BSS |
1895                         (*total_flags & FIF_PROMISC_IN_BSS) ?
1896                                 FIF_FCSFAIL : 0;
1897
1898         priv->filter_flags = *total_flags;
1899
1900         if (changed_flags & FIF_PROMISC_IN_BSS)
1901                 p54_setup_mac(dev);
1902 }
1903
1904 static int p54_conf_tx(struct ieee80211_hw *dev, u16 queue,
1905                        const struct ieee80211_tx_queue_params *params)
1906 {
1907         struct p54_common *priv = dev->priv;
1908         int ret;
1909
1910         mutex_lock(&priv->conf_mutex);
1911         if ((params) && !(queue > 4)) {
1912                 P54_SET_QUEUE(priv->qos_params[queue], params->aifs,
1913                         params->cw_min, params->cw_max, params->txop);
1914                 ret = p54_set_edcf(dev);
1915         } else
1916                 ret = -EINVAL;
1917         mutex_unlock(&priv->conf_mutex);
1918         return ret;
1919 }
1920
1921 static int p54_init_xbow_synth(struct ieee80211_hw *dev)
1922 {
1923         struct p54_common *priv = dev->priv;
1924         struct sk_buff *skb;
1925         struct p54_xbow_synth *xbow;
1926
1927         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*xbow) +
1928                             sizeof(struct p54_hdr),
1929                             P54_CONTROL_TYPE_XBOW_SYNTH_CFG,
1930                             GFP_KERNEL);
1931         if (!skb)
1932                 return -ENOMEM;
1933
1934         xbow = (struct p54_xbow_synth *)skb_put(skb, sizeof(*xbow));
1935         xbow->magic1 = cpu_to_le16(0x1);
1936         xbow->magic2 = cpu_to_le16(0x2);
1937         xbow->freq = cpu_to_le16(5390);
1938         memset(xbow->padding, 0, sizeof(xbow->padding));
1939         priv->tx(dev, skb);
1940         return 0;
1941 }
1942
1943 static void p54_work(struct work_struct *work)
1944 {
1945         struct p54_common *priv = container_of(work, struct p54_common,
1946                                                work.work);
1947         struct ieee80211_hw *dev = priv->hw;
1948         struct sk_buff *skb;
1949
1950         if (unlikely(priv->mode == NL80211_IFTYPE_UNSPECIFIED))
1951                 return ;
1952
1953         /*
1954          * TODO: walk through tx_queue and do the following tasks
1955          *      1. initiate bursts.
1956          *      2. cancel stuck frames / reset the device if necessary.
1957          */
1958
1959         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL, sizeof(struct p54_hdr) +
1960                             sizeof(struct p54_statistics),
1961                             P54_CONTROL_TYPE_STAT_READBACK, GFP_KERNEL);
1962         if (!skb)
1963                 return ;
1964
1965         priv->tx(dev, skb);
1966 }
1967
1968 static int p54_get_stats(struct ieee80211_hw *dev,
1969                          struct ieee80211_low_level_stats *stats)
1970 {
1971         struct p54_common *priv = dev->priv;
1972
1973         memcpy(stats, &priv->stats, sizeof(*stats));
1974         return 0;
1975 }
1976
1977 static int p54_get_tx_stats(struct ieee80211_hw *dev,
1978                             struct ieee80211_tx_queue_stats *stats)
1979 {
1980         struct p54_common *priv = dev->priv;
1981
1982         memcpy(stats, &priv->tx_stats[4], sizeof(stats[0]) * dev->queues);
1983
1984         return 0;
1985 }
1986
1987 static void p54_bss_info_changed(struct ieee80211_hw *dev,
1988                                  struct ieee80211_vif *vif,
1989                                  struct ieee80211_bss_conf *info,
1990                                  u32 changed)
1991 {
1992         struct p54_common *priv = dev->priv;
1993
1994         if (changed & BSS_CHANGED_ERP_SLOT) {
1995                 priv->use_short_slot = info->use_short_slot;
1996                 p54_set_edcf(dev);
1997         }
1998         if (changed & BSS_CHANGED_BASIC_RATES) {
1999                 if (dev->conf.channel->band == IEEE80211_BAND_5GHZ)
2000                         priv->basic_rate_mask = (info->basic_rates << 4);
2001                 else
2002                         priv->basic_rate_mask = info->basic_rates;
2003                 p54_setup_mac(dev);
2004                 if (priv->fw_var >= 0x500)
2005                         p54_scan(dev, P54_SCAN_EXIT, 0);
2006         }
2007         if (changed & BSS_CHANGED_ASSOC) {
2008                 if (info->assoc) {
2009                         priv->aid = info->aid;
2010                         priv->wakeup_timer = info->beacon_int *
2011                                              info->dtim_period * 5;
2012                         p54_setup_mac(dev);
2013                 }
2014         }
2015
2016 }
2017
2018 static int p54_set_key(struct ieee80211_hw *dev, enum set_key_cmd cmd,
2019                        const u8 *local_address, const u8 *address,
2020                        struct ieee80211_key_conf *key)
2021 {
2022         struct p54_common *priv = dev->priv;
2023         struct sk_buff *skb;
2024         struct p54_keycache *rxkey;
2025         u8 algo = 0;
2026
2027         if (modparam_nohwcrypt)
2028                 return -EOPNOTSUPP;
2029
2030         if (cmd == DISABLE_KEY)
2031                 algo = 0;
2032         else {
2033                 switch (key->alg) {
2034                 case ALG_TKIP:
2035                         if (!(priv->privacy_caps & (BR_DESC_PRIV_CAP_MICHAEL |
2036                               BR_DESC_PRIV_CAP_TKIP)))
2037                                 return -EOPNOTSUPP;
2038                         key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2039                         algo = P54_CRYPTO_TKIPMICHAEL;
2040                         break;
2041                 case ALG_WEP:
2042                         if (!(priv->privacy_caps & BR_DESC_PRIV_CAP_WEP))
2043                                 return -EOPNOTSUPP;
2044                         key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2045                         algo = P54_CRYPTO_WEP;
2046                         break;
2047                 case ALG_CCMP:
2048                         if (!(priv->privacy_caps & BR_DESC_PRIV_CAP_AESCCMP))
2049                                 return -EOPNOTSUPP;
2050                         key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2051                         algo = P54_CRYPTO_AESCCMP;
2052                         break;
2053                 default:
2054                         return -EINVAL;
2055                 }
2056         }
2057
2058         if (key->keyidx > priv->rx_keycache_size) {
2059                 /*
2060                  * The device supports the choosen algorithm, but the firmware
2061                  * does not provide enough key slots to store all of them.
2062                  * So, incoming frames have to be decoded by the mac80211 stack,
2063                  * but we can still offload encryption for outgoing frames.
2064                  */
2065
2066                 return 0;
2067         }
2068
2069         mutex_lock(&priv->conf_mutex);
2070         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*rxkey) +
2071                         sizeof(struct p54_hdr), P54_CONTROL_TYPE_RX_KEYCACHE,
2072                         GFP_ATOMIC);
2073         if (!skb) {
2074                 mutex_unlock(&priv->conf_mutex);
2075                 return -ENOMEM;
2076         }
2077
2078         /* TODO: some devices have 4 more free slots for rx keys */
2079         rxkey = (struct p54_keycache *)skb_put(skb, sizeof(*rxkey));
2080         rxkey->entry = key->keyidx;
2081         rxkey->key_id = key->keyidx;
2082         rxkey->key_type = algo;
2083         if (address)
2084                 memcpy(rxkey->mac, address, ETH_ALEN);
2085         else
2086                 memset(rxkey->mac, ~0, ETH_ALEN);
2087         if (key->alg != ALG_TKIP) {
2088                 rxkey->key_len = min((u8)16, key->keylen);
2089                 memcpy(rxkey->key, key->key, rxkey->key_len);
2090         } else {
2091                 rxkey->key_len = 24;
2092                 memcpy(rxkey->key, key->key, 16);
2093                 memcpy(&(rxkey->key[16]), &(key->key
2094                         [NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY]), 8);
2095         }
2096
2097         priv->tx(dev, skb);
2098         mutex_unlock(&priv->conf_mutex);
2099         return 0;
2100 }
2101
2102 static const struct ieee80211_ops p54_ops = {
2103         .tx                     = p54_tx,
2104         .start                  = p54_start,
2105         .stop                   = p54_stop,
2106         .add_interface          = p54_add_interface,
2107         .remove_interface       = p54_remove_interface,
2108         .set_tim                = p54_set_tim,
2109         .sta_notify             = p54_sta_notify,
2110         .set_key                = p54_set_key,
2111         .config                 = p54_config,
2112         .config_interface       = p54_config_interface,
2113         .bss_info_changed       = p54_bss_info_changed,
2114         .configure_filter       = p54_configure_filter,
2115         .conf_tx                = p54_conf_tx,
2116         .get_stats              = p54_get_stats,
2117         .get_tx_stats           = p54_get_tx_stats
2118 };
2119
2120 struct ieee80211_hw *p54_init_common(size_t priv_data_len)
2121 {
2122         struct ieee80211_hw *dev;
2123         struct p54_common *priv;
2124
2125         dev = ieee80211_alloc_hw(priv_data_len, &p54_ops);
2126         if (!dev)
2127                 return NULL;
2128
2129         priv = dev->priv;
2130         priv->hw = dev;
2131         priv->mode = NL80211_IFTYPE_UNSPECIFIED;
2132         priv->basic_rate_mask = 0x15f;
2133         skb_queue_head_init(&priv->tx_queue);
2134         dev->flags = IEEE80211_HW_RX_INCLUDES_FCS |
2135                      IEEE80211_HW_SIGNAL_DBM |
2136                      IEEE80211_HW_NOISE_DBM;
2137
2138         dev->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
2139                                       BIT(NL80211_IFTYPE_ADHOC) |
2140                                       BIT(NL80211_IFTYPE_AP) |
2141                                       BIT(NL80211_IFTYPE_MESH_POINT);
2142
2143         dev->channel_change_time = 1000;        /* TODO: find actual value */
2144         priv->tx_stats[0].limit = 1;            /* Beacon queue */
2145         priv->tx_stats[1].limit = 1;            /* Probe queue for HW scan */
2146         priv->tx_stats[2].limit = 3;            /* queue for MLMEs */
2147         priv->tx_stats[3].limit = 3;            /* Broadcast / MC queue */
2148         priv->tx_stats[4].limit = 5;            /* Data */
2149         dev->queues = 1;
2150         priv->noise = -94;
2151         /*
2152          * We support at most 8 tries no matter which rate they're at,
2153          * we cannot support max_rates * max_rate_tries as we set it
2154          * here, but setting it correctly to 4/2 or so would limit us
2155          * artificially if the RC algorithm wants just two rates, so
2156          * let's say 4/7, we'll redistribute it at TX time, see the
2157          * comments there.
2158          */
2159         dev->max_rates = 4;
2160         dev->max_rate_tries = 7;
2161         dev->extra_tx_headroom = sizeof(struct p54_hdr) + 4 +
2162                                  sizeof(struct p54_tx_data);
2163
2164         mutex_init(&priv->conf_mutex);
2165         init_completion(&priv->eeprom_comp);
2166         INIT_DELAYED_WORK(&priv->work, p54_work);
2167
2168         return dev;
2169 }
2170 EXPORT_SYMBOL_GPL(p54_init_common);
2171
2172 void p54_free_common(struct ieee80211_hw *dev)
2173 {
2174         struct p54_common *priv = dev->priv;
2175         kfree(priv->iq_autocal);
2176         kfree(priv->output_limit);
2177         kfree(priv->curve_data);
2178 }
2179 EXPORT_SYMBOL_GPL(p54_free_common);
2180
2181 static int __init p54_init(void)
2182 {
2183         return 0;
2184 }
2185
2186 static void __exit p54_exit(void)
2187 {
2188 }
2189
2190 module_init(p54_init);
2191 module_exit(p54_exit);