]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/wireless/p54/p54common.c
ARM: OMAP: Fix GPIO switch initial output state handling
[linux-2.6-omap-h63xx.git] / drivers / net / wireless / p54 / p54common.c
1 /*
2  * Common code for mac80211 Prism54 drivers
3  *
4  * Copyright (c) 2006, Michael Wu <flamingice@sourmilk.net>
5  * Copyright (c) 2007, Christian Lamparter <chunkeey@web.de>
6  * Copyright 2008, Johannes Berg <johannes@sipsolutions.net>
7  *
8  * Based on:
9  * - the islsm (softmac prism54) driver, which is:
10  *   Copyright 2004-2006 Jean-Baptiste Note <jbnote@gmail.com>, et al.
11  * - stlc45xx driver
12  *   Copyright (C) 2008 Nokia Corporation and/or its subsidiary(-ies).
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2 as
16  * published by the Free Software Foundation.
17  */
18
19 #include <linux/init.h>
20 #include <linux/firmware.h>
21 #include <linux/etherdevice.h>
22
23 #include <net/mac80211.h>
24
25 #include "p54.h"
26 #include "p54common.h"
27
28 static int modparam_nohwcrypt;
29 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
30 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
31 MODULE_AUTHOR("Michael Wu <flamingice@sourmilk.net>");
32 MODULE_DESCRIPTION("Softmac Prism54 common code");
33 MODULE_LICENSE("GPL");
34 MODULE_ALIAS("prism54common");
35
36 static struct ieee80211_rate p54_bgrates[] = {
37         { .bitrate = 10, .hw_value = 0, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
38         { .bitrate = 20, .hw_value = 1, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
39         { .bitrate = 55, .hw_value = 2, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
40         { .bitrate = 110, .hw_value = 3, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
41         { .bitrate = 60, .hw_value = 4, },
42         { .bitrate = 90, .hw_value = 5, },
43         { .bitrate = 120, .hw_value = 6, },
44         { .bitrate = 180, .hw_value = 7, },
45         { .bitrate = 240, .hw_value = 8, },
46         { .bitrate = 360, .hw_value = 9, },
47         { .bitrate = 480, .hw_value = 10, },
48         { .bitrate = 540, .hw_value = 11, },
49 };
50
51 static struct ieee80211_channel p54_bgchannels[] = {
52         { .center_freq = 2412, .hw_value = 1, },
53         { .center_freq = 2417, .hw_value = 2, },
54         { .center_freq = 2422, .hw_value = 3, },
55         { .center_freq = 2427, .hw_value = 4, },
56         { .center_freq = 2432, .hw_value = 5, },
57         { .center_freq = 2437, .hw_value = 6, },
58         { .center_freq = 2442, .hw_value = 7, },
59         { .center_freq = 2447, .hw_value = 8, },
60         { .center_freq = 2452, .hw_value = 9, },
61         { .center_freq = 2457, .hw_value = 10, },
62         { .center_freq = 2462, .hw_value = 11, },
63         { .center_freq = 2467, .hw_value = 12, },
64         { .center_freq = 2472, .hw_value = 13, },
65         { .center_freq = 2484, .hw_value = 14, },
66 };
67
68 static struct ieee80211_supported_band band_2GHz = {
69         .channels = p54_bgchannels,
70         .n_channels = ARRAY_SIZE(p54_bgchannels),
71         .bitrates = p54_bgrates,
72         .n_bitrates = ARRAY_SIZE(p54_bgrates),
73 };
74
75 static struct ieee80211_rate p54_arates[] = {
76         { .bitrate = 60, .hw_value = 4, },
77         { .bitrate = 90, .hw_value = 5, },
78         { .bitrate = 120, .hw_value = 6, },
79         { .bitrate = 180, .hw_value = 7, },
80         { .bitrate = 240, .hw_value = 8, },
81         { .bitrate = 360, .hw_value = 9, },
82         { .bitrate = 480, .hw_value = 10, },
83         { .bitrate = 540, .hw_value = 11, },
84 };
85
86 static struct ieee80211_channel p54_achannels[] = {
87         { .center_freq = 4920 },
88         { .center_freq = 4940 },
89         { .center_freq = 4960 },
90         { .center_freq = 4980 },
91         { .center_freq = 5040 },
92         { .center_freq = 5060 },
93         { .center_freq = 5080 },
94         { .center_freq = 5170 },
95         { .center_freq = 5180 },
96         { .center_freq = 5190 },
97         { .center_freq = 5200 },
98         { .center_freq = 5210 },
99         { .center_freq = 5220 },
100         { .center_freq = 5230 },
101         { .center_freq = 5240 },
102         { .center_freq = 5260 },
103         { .center_freq = 5280 },
104         { .center_freq = 5300 },
105         { .center_freq = 5320 },
106         { .center_freq = 5500 },
107         { .center_freq = 5520 },
108         { .center_freq = 5540 },
109         { .center_freq = 5560 },
110         { .center_freq = 5580 },
111         { .center_freq = 5600 },
112         { .center_freq = 5620 },
113         { .center_freq = 5640 },
114         { .center_freq = 5660 },
115         { .center_freq = 5680 },
116         { .center_freq = 5700 },
117         { .center_freq = 5745 },
118         { .center_freq = 5765 },
119         { .center_freq = 5785 },
120         { .center_freq = 5805 },
121         { .center_freq = 5825 },
122 };
123
124 static struct ieee80211_supported_band band_5GHz = {
125         .channels = p54_achannels,
126         .n_channels = ARRAY_SIZE(p54_achannels),
127         .bitrates = p54_arates,
128         .n_bitrates = ARRAY_SIZE(p54_arates),
129 };
130
131 int p54_parse_firmware(struct ieee80211_hw *dev, const struct firmware *fw)
132 {
133         struct p54_common *priv = dev->priv;
134         struct bootrec_exp_if *exp_if;
135         struct bootrec *bootrec;
136         u32 *data = (u32 *)fw->data;
137         u32 *end_data = (u32 *)fw->data + (fw->size >> 2);
138         u8 *fw_version = NULL;
139         size_t len;
140         int i;
141         int maxlen;
142
143         if (priv->rx_start)
144                 return 0;
145
146         while (data < end_data && *data)
147                 data++;
148
149         while (data < end_data && !*data)
150                 data++;
151
152         bootrec = (struct bootrec *) data;
153
154         while (bootrec->data <= end_data &&
155                (bootrec->data + (len = le32_to_cpu(bootrec->len))) <= end_data) {
156                 u32 code = le32_to_cpu(bootrec->code);
157                 switch (code) {
158                 case BR_CODE_COMPONENT_ID:
159                         priv->fw_interface = be32_to_cpup((__be32 *)
160                                              bootrec->data);
161                         switch (priv->fw_interface) {
162                         case FW_LM86:
163                         case FW_LM20:
164                         case FW_LM87: {
165                                 char *iftype = (char *)bootrec->data;
166                                 printk(KERN_INFO "%s: p54 detected a LM%c%c "
167                                                  "firmware\n",
168                                         wiphy_name(dev->wiphy),
169                                         iftype[2], iftype[3]);
170                                 break;
171                                 }
172                         case FW_FMAC:
173                         default:
174                                 printk(KERN_ERR "%s: unsupported firmware\n",
175                                         wiphy_name(dev->wiphy));
176                                 return -ENODEV;
177                         }
178                         break;
179                 case BR_CODE_COMPONENT_VERSION:
180                         /* 24 bytes should be enough for all firmwares */
181                         if (strnlen((unsigned char*)bootrec->data, 24) < 24)
182                                 fw_version = (unsigned char*)bootrec->data;
183                         break;
184                 case BR_CODE_DESCR: {
185                         struct bootrec_desc *desc =
186                                 (struct bootrec_desc *)bootrec->data;
187                         priv->rx_start = le32_to_cpu(desc->rx_start);
188                         /* FIXME add sanity checking */
189                         priv->rx_end = le32_to_cpu(desc->rx_end) - 0x3500;
190                         priv->headroom = desc->headroom;
191                         priv->tailroom = desc->tailroom;
192                         priv->privacy_caps = desc->privacy_caps;
193                         priv->rx_keycache_size = desc->rx_keycache_size;
194                         if (le32_to_cpu(bootrec->len) == 11)
195                                 priv->rx_mtu = le16_to_cpu(desc->rx_mtu);
196                         else
197                                 priv->rx_mtu = (size_t)
198                                         0x620 - priv->tx_hdr_len;
199                         maxlen = priv->tx_hdr_len + /* USB devices */
200                                  sizeof(struct p54_rx_data) +
201                                  4 + /* rx alignment */
202                                  IEEE80211_MAX_FRAG_THRESHOLD;
203                         if (priv->rx_mtu > maxlen && PAGE_SIZE == 4096) {
204                                 printk(KERN_INFO "p54: rx_mtu reduced from %d "
205                                                  "to %d\n", priv->rx_mtu,
206                                                  maxlen);
207                                 priv->rx_mtu = maxlen;
208                         }
209                         break;
210                         }
211                 case BR_CODE_EXPOSED_IF:
212                         exp_if = (struct bootrec_exp_if *) bootrec->data;
213                         for (i = 0; i < (len * sizeof(*exp_if) / 4); i++)
214                                 if (exp_if[i].if_id == cpu_to_le16(0x1a))
215                                         priv->fw_var = le16_to_cpu(exp_if[i].variant);
216                         break;
217                 case BR_CODE_DEPENDENT_IF:
218                         break;
219                 case BR_CODE_END_OF_BRA:
220                 case LEGACY_BR_CODE_END_OF_BRA:
221                         end_data = NULL;
222                         break;
223                 default:
224                         break;
225                 }
226                 bootrec = (struct bootrec *)&bootrec->data[len];
227         }
228
229         if (fw_version)
230                 printk(KERN_INFO "%s: FW rev %s - Softmac protocol %x.%x\n",
231                         wiphy_name(dev->wiphy), fw_version,
232                         priv->fw_var >> 8, priv->fw_var & 0xff);
233
234         if (priv->fw_var < 0x500)
235                 printk(KERN_INFO "%s: you are using an obsolete firmware. "
236                        "visit http://wireless.kernel.org/en/users/Drivers/p54 "
237                        "and grab one for \"kernel >= 2.6.28\"!\n",
238                         wiphy_name(dev->wiphy));
239
240         if (priv->fw_var >= 0x300) {
241                 /* Firmware supports QoS, use it! */
242                 priv->tx_stats[4].limit = 3;            /* AC_VO */
243                 priv->tx_stats[5].limit = 4;            /* AC_VI */
244                 priv->tx_stats[6].limit = 3;            /* AC_BE */
245                 priv->tx_stats[7].limit = 2;            /* AC_BK */
246                 dev->queues = 4;
247         }
248
249         if (!modparam_nohwcrypt)
250                 printk(KERN_INFO "%s: cryptographic accelerator "
251                                  "WEP:%s, TKIP:%s, CCMP:%s\n",
252                         wiphy_name(dev->wiphy),
253                         (priv->privacy_caps & BR_DESC_PRIV_CAP_WEP) ? "YES" :
254                         "no", (priv->privacy_caps & (BR_DESC_PRIV_CAP_TKIP |
255                          BR_DESC_PRIV_CAP_MICHAEL)) ? "YES" : "no",
256                         (priv->privacy_caps & BR_DESC_PRIV_CAP_AESCCMP) ?
257                         "YES" : "no");
258
259         return 0;
260 }
261 EXPORT_SYMBOL_GPL(p54_parse_firmware);
262
263 static int p54_convert_rev0(struct ieee80211_hw *dev,
264                             struct pda_pa_curve_data *curve_data)
265 {
266         struct p54_common *priv = dev->priv;
267         struct p54_pa_curve_data_sample *dst;
268         struct pda_pa_curve_data_sample_rev0 *src;
269         size_t cd_len = sizeof(*curve_data) +
270                 (curve_data->points_per_channel*sizeof(*dst) + 2) *
271                  curve_data->channels;
272         unsigned int i, j;
273         void *source, *target;
274
275         priv->curve_data = kmalloc(cd_len, GFP_KERNEL);
276         if (!priv->curve_data)
277                 return -ENOMEM;
278
279         memcpy(priv->curve_data, curve_data, sizeof(*curve_data));
280         source = curve_data->data;
281         target = priv->curve_data->data;
282         for (i = 0; i < curve_data->channels; i++) {
283                 __le16 *freq = source;
284                 source += sizeof(__le16);
285                 *((__le16 *)target) = *freq;
286                 target += sizeof(__le16);
287                 for (j = 0; j < curve_data->points_per_channel; j++) {
288                         dst = target;
289                         src = source;
290
291                         dst->rf_power = src->rf_power;
292                         dst->pa_detector = src->pa_detector;
293                         dst->data_64qam = src->pcv;
294                         /* "invent" the points for the other modulations */
295 #define SUB(x,y) (u8)((x) - (y)) > (x) ? 0 : (x) - (y)
296                         dst->data_16qam = SUB(src->pcv, 12);
297                         dst->data_qpsk = SUB(dst->data_16qam, 12);
298                         dst->data_bpsk = SUB(dst->data_qpsk, 12);
299                         dst->data_barker = SUB(dst->data_bpsk, 14);
300 #undef SUB
301                         target += sizeof(*dst);
302                         source += sizeof(*src);
303                 }
304         }
305
306         return 0;
307 }
308
309 static int p54_convert_rev1(struct ieee80211_hw *dev,
310                             struct pda_pa_curve_data *curve_data)
311 {
312         struct p54_common *priv = dev->priv;
313         struct p54_pa_curve_data_sample *dst;
314         struct pda_pa_curve_data_sample_rev1 *src;
315         size_t cd_len = sizeof(*curve_data) +
316                 (curve_data->points_per_channel*sizeof(*dst) + 2) *
317                  curve_data->channels;
318         unsigned int i, j;
319         void *source, *target;
320
321         priv->curve_data = kmalloc(cd_len, GFP_KERNEL);
322         if (!priv->curve_data)
323                 return -ENOMEM;
324
325         memcpy(priv->curve_data, curve_data, sizeof(*curve_data));
326         source = curve_data->data;
327         target = priv->curve_data->data;
328         for (i = 0; i < curve_data->channels; i++) {
329                 __le16 *freq = source;
330                 source += sizeof(__le16);
331                 *((__le16 *)target) = *freq;
332                 target += sizeof(__le16);
333                 for (j = 0; j < curve_data->points_per_channel; j++) {
334                         memcpy(target, source, sizeof(*src));
335
336                         target += sizeof(*dst);
337                         source += sizeof(*src);
338                 }
339                 source++;
340         }
341
342         return 0;
343 }
344
345 static const char *p54_rf_chips[] = { "NULL", "Duette3", "Duette2",
346                               "Frisbee", "Xbow", "Longbow", "NULL", "NULL" };
347 static int p54_init_xbow_synth(struct ieee80211_hw *dev);
348
349 static void p54_parse_rssical(struct ieee80211_hw *dev, void *data, int len,
350                              u16 type)
351 {
352         struct p54_common *priv = dev->priv;
353         int offset = (type == PDR_RSSI_LINEAR_APPROXIMATION_EXTENDED) ? 2 : 0;
354         int entry_size = sizeof(struct pda_rssi_cal_entry) + offset;
355         int num_entries = (type == PDR_RSSI_LINEAR_APPROXIMATION) ? 1 : 2;
356         int i;
357
358         if (len != (entry_size * num_entries)) {
359                 printk(KERN_ERR "%s: unknown rssi calibration data packing "
360                                  " type:(%x) len:%d.\n",
361                        wiphy_name(dev->wiphy), type, len);
362
363                 print_hex_dump_bytes("rssical:", DUMP_PREFIX_NONE,
364                                      data, len);
365
366                 printk(KERN_ERR "%s: please report this issue.\n",
367                         wiphy_name(dev->wiphy));
368                 return;
369         }
370
371         for (i = 0; i < num_entries; i++) {
372                 struct pda_rssi_cal_entry *cal = data +
373                                                  (offset + i * entry_size);
374                 priv->rssical_db[i].mul = (s16) le16_to_cpu(cal->mul);
375                 priv->rssical_db[i].add = (s16) le16_to_cpu(cal->add);
376         }
377 }
378
379 static int p54_parse_eeprom(struct ieee80211_hw *dev, void *eeprom, int len)
380 {
381         struct p54_common *priv = dev->priv;
382         struct eeprom_pda_wrap *wrap = NULL;
383         struct pda_entry *entry;
384         unsigned int data_len, entry_len;
385         void *tmp;
386         int err;
387         u8 *end = (u8 *)eeprom + len;
388         u16 synth = 0;
389
390         wrap = (struct eeprom_pda_wrap *) eeprom;
391         entry = (void *)wrap->data + le16_to_cpu(wrap->len);
392
393         /* verify that at least the entry length/code fits */
394         while ((u8 *)entry <= end - sizeof(*entry)) {
395                 entry_len = le16_to_cpu(entry->len);
396                 data_len = ((entry_len - 1) << 1);
397
398                 /* abort if entry exceeds whole structure */
399                 if ((u8 *)entry + sizeof(*entry) + data_len > end)
400                         break;
401
402                 switch (le16_to_cpu(entry->code)) {
403                 case PDR_MAC_ADDRESS:
404                         SET_IEEE80211_PERM_ADDR(dev, entry->data);
405                         break;
406                 case PDR_PRISM_PA_CAL_OUTPUT_POWER_LIMITS:
407                         if (data_len < 2) {
408                                 err = -EINVAL;
409                                 goto err;
410                         }
411
412                         if (2 + entry->data[1]*sizeof(*priv->output_limit) > data_len) {
413                                 err = -EINVAL;
414                                 goto err;
415                         }
416
417                         priv->output_limit = kmalloc(entry->data[1] *
418                                 sizeof(*priv->output_limit), GFP_KERNEL);
419
420                         if (!priv->output_limit) {
421                                 err = -ENOMEM;
422                                 goto err;
423                         }
424
425                         memcpy(priv->output_limit, &entry->data[2],
426                                entry->data[1]*sizeof(*priv->output_limit));
427                         priv->output_limit_len = entry->data[1];
428                         break;
429                 case PDR_PRISM_PA_CAL_CURVE_DATA: {
430                         struct pda_pa_curve_data *curve_data =
431                                 (struct pda_pa_curve_data *)entry->data;
432                         if (data_len < sizeof(*curve_data)) {
433                                 err = -EINVAL;
434                                 goto err;
435                         }
436
437                         switch (curve_data->cal_method_rev) {
438                         case 0:
439                                 err = p54_convert_rev0(dev, curve_data);
440                                 break;
441                         case 1:
442                                 err = p54_convert_rev1(dev, curve_data);
443                                 break;
444                         default:
445                                 printk(KERN_ERR "%s: unknown curve data "
446                                                 "revision %d\n",
447                                                 wiphy_name(dev->wiphy),
448                                                 curve_data->cal_method_rev);
449                                 err = -ENODEV;
450                                 break;
451                         }
452                         if (err)
453                                 goto err;
454                         }
455                         break;
456                 case PDR_PRISM_ZIF_TX_IQ_CALIBRATION:
457                         priv->iq_autocal = kmalloc(data_len, GFP_KERNEL);
458                         if (!priv->iq_autocal) {
459                                 err = -ENOMEM;
460                                 goto err;
461                         }
462
463                         memcpy(priv->iq_autocal, entry->data, data_len);
464                         priv->iq_autocal_len = data_len / sizeof(struct pda_iq_autocal_entry);
465                         break;
466                 case PDR_INTERFACE_LIST:
467                         tmp = entry->data;
468                         while ((u8 *)tmp < entry->data + data_len) {
469                                 struct bootrec_exp_if *exp_if = tmp;
470                                 if (le16_to_cpu(exp_if->if_id) == 0xf)
471                                         synth = le16_to_cpu(exp_if->variant);
472                                 tmp += sizeof(struct bootrec_exp_if);
473                         }
474                         break;
475                 case PDR_HARDWARE_PLATFORM_COMPONENT_ID:
476                         priv->version = *(u8 *)(entry->data + 1);
477                         break;
478                 case PDR_RSSI_LINEAR_APPROXIMATION:
479                 case PDR_RSSI_LINEAR_APPROXIMATION_DUAL_BAND:
480                 case PDR_RSSI_LINEAR_APPROXIMATION_EXTENDED:
481                         p54_parse_rssical(dev, entry->data, data_len,
482                                           le16_to_cpu(entry->code));
483                         break;
484                 case PDR_END:
485                         /* make it overrun */
486                         entry_len = len;
487                         break;
488                 case PDR_MANUFACTURING_PART_NUMBER:
489                 case PDR_PDA_VERSION:
490                 case PDR_NIC_SERIAL_NUMBER:
491                 case PDR_REGULATORY_DOMAIN_LIST:
492                 case PDR_TEMPERATURE_TYPE:
493                 case PDR_PRISM_PCI_IDENTIFIER:
494                 case PDR_COUNTRY_INFORMATION:
495                 case PDR_OEM_NAME:
496                 case PDR_PRODUCT_NAME:
497                 case PDR_UTF8_OEM_NAME:
498                 case PDR_UTF8_PRODUCT_NAME:
499                 case PDR_COUNTRY_LIST:
500                 case PDR_DEFAULT_COUNTRY:
501                 case PDR_ANTENNA_GAIN:
502                 case PDR_PRISM_INDIGO_PA_CALIBRATION_DATA:
503                 case PDR_REGULATORY_POWER_LIMITS:
504                 case PDR_RADIATED_TRANSMISSION_CORRECTION:
505                 case PDR_PRISM_TX_IQ_CALIBRATION:
506                 case PDR_BASEBAND_REGISTERS:
507                 case PDR_PER_CHANNEL_BASEBAND_REGISTERS:
508                         break;
509                 default:
510                         printk(KERN_INFO "%s: unknown eeprom code : 0x%x\n",
511                                 wiphy_name(dev->wiphy),
512                                 le16_to_cpu(entry->code));
513                         break;
514                 }
515
516                 entry = (void *)entry + (entry_len + 1)*2;
517         }
518
519         if (!synth || !priv->iq_autocal || !priv->output_limit ||
520             !priv->curve_data) {
521                 printk(KERN_ERR "%s: not all required entries found in eeprom!\n",
522                         wiphy_name(dev->wiphy));
523                 err = -EINVAL;
524                 goto err;
525         }
526
527         priv->rxhw = synth & PDR_SYNTH_FRONTEND_MASK;
528         if (priv->rxhw == 4)
529                 p54_init_xbow_synth(dev);
530         if (!(synth & PDR_SYNTH_24_GHZ_DISABLED))
531                 dev->wiphy->bands[IEEE80211_BAND_2GHZ] = &band_2GHz;
532         if (!(synth & PDR_SYNTH_5_GHZ_DISABLED))
533                 dev->wiphy->bands[IEEE80211_BAND_5GHZ] = &band_5GHz;
534
535         if (!is_valid_ether_addr(dev->wiphy->perm_addr)) {
536                 u8 perm_addr[ETH_ALEN];
537
538                 printk(KERN_WARNING "%s: Invalid hwaddr! Using randomly generated MAC addr\n",
539                         wiphy_name(dev->wiphy));
540                 random_ether_addr(perm_addr);
541                 SET_IEEE80211_PERM_ADDR(dev, perm_addr);
542         }
543
544         printk(KERN_INFO "%s: hwaddr %pM, MAC:isl38%02x RF:%s\n",
545                 wiphy_name(dev->wiphy),
546                 dev->wiphy->perm_addr,
547                 priv->version, p54_rf_chips[priv->rxhw]);
548
549         return 0;
550
551   err:
552         if (priv->iq_autocal) {
553                 kfree(priv->iq_autocal);
554                 priv->iq_autocal = NULL;
555         }
556
557         if (priv->output_limit) {
558                 kfree(priv->output_limit);
559                 priv->output_limit = NULL;
560         }
561
562         if (priv->curve_data) {
563                 kfree(priv->curve_data);
564                 priv->curve_data = NULL;
565         }
566
567         printk(KERN_ERR "%s: eeprom parse failed!\n",
568                 wiphy_name(dev->wiphy));
569         return err;
570 }
571
572 static int p54_rssi_to_dbm(struct ieee80211_hw *dev, int rssi)
573 {
574         struct p54_common *priv = dev->priv;
575         int band = dev->conf.channel->band;
576
577         return ((rssi * priv->rssical_db[band].mul) / 64 +
578                          priv->rssical_db[band].add) / 4;
579 }
580
581 static int p54_rx_data(struct ieee80211_hw *dev, struct sk_buff *skb)
582 {
583         struct p54_common *priv = dev->priv;
584         struct p54_rx_data *hdr = (struct p54_rx_data *) skb->data;
585         struct ieee80211_rx_status rx_status = {0};
586         u16 freq = le16_to_cpu(hdr->freq);
587         size_t header_len = sizeof(*hdr);
588         u32 tsf32;
589         u8 rate = hdr->rate & 0xf;
590
591         /*
592          * If the device is in a unspecified state we have to
593          * ignore all data frames. Else we could end up with a
594          * nasty crash.
595          */
596         if (unlikely(priv->mode == NL80211_IFTYPE_UNSPECIFIED))
597                 return 0;
598
599         if (!(hdr->flags & cpu_to_le16(P54_HDR_FLAG_DATA_IN_FCS_GOOD))) {
600                 if (priv->filter_flags & FIF_FCSFAIL)
601                         rx_status.flag |= RX_FLAG_FAILED_FCS_CRC;
602                 else
603                         return 0;
604         }
605
606         if (hdr->decrypt_status == P54_DECRYPT_OK)
607                 rx_status.flag |= RX_FLAG_DECRYPTED;
608         if ((hdr->decrypt_status == P54_DECRYPT_FAIL_MICHAEL) ||
609             (hdr->decrypt_status == P54_DECRYPT_FAIL_TKIP))
610                 rx_status.flag |= RX_FLAG_MMIC_ERROR;
611
612         rx_status.signal = p54_rssi_to_dbm(dev, hdr->rssi);
613         rx_status.noise = priv->noise;
614         /* XX correct? */
615         rx_status.qual = (100 * hdr->rssi) / 127;
616         if (hdr->rate & 0x10)
617                 rx_status.flag |= RX_FLAG_SHORTPRE;
618         if (dev->conf.channel->band == IEEE80211_BAND_5GHZ)
619                 rx_status.rate_idx = (rate < 4) ? 0 : rate - 4;
620         else
621                 rx_status.rate_idx = rate;
622
623         rx_status.freq = freq;
624         rx_status.band =  dev->conf.channel->band;
625         rx_status.antenna = hdr->antenna;
626
627         tsf32 = le32_to_cpu(hdr->tsf32);
628         if (tsf32 < priv->tsf_low32)
629                 priv->tsf_high32++;
630         rx_status.mactime = ((u64)priv->tsf_high32) << 32 | tsf32;
631         priv->tsf_low32 = tsf32;
632
633         rx_status.flag |= RX_FLAG_TSFT;
634
635         if (hdr->flags & cpu_to_le16(P54_HDR_FLAG_DATA_ALIGN))
636                 header_len += hdr->align[0];
637
638         skb_pull(skb, header_len);
639         skb_trim(skb, le16_to_cpu(hdr->len));
640
641         ieee80211_rx_irqsafe(dev, skb, &rx_status);
642
643         queue_delayed_work(dev->workqueue, &priv->work,
644                            msecs_to_jiffies(P54_STATISTICS_UPDATE));
645
646         return -1;
647 }
648
649 static void inline p54_wake_free_queues(struct ieee80211_hw *dev)
650 {
651         struct p54_common *priv = dev->priv;
652         int i;
653
654         if (priv->mode == NL80211_IFTYPE_UNSPECIFIED)
655                 return ;
656
657         for (i = 0; i < dev->queues; i++)
658                 if (priv->tx_stats[i + 4].len < priv->tx_stats[i + 4].limit)
659                         ieee80211_wake_queue(dev, i);
660 }
661
662 void p54_free_skb(struct ieee80211_hw *dev, struct sk_buff *skb)
663 {
664         struct p54_common *priv = dev->priv;
665         struct ieee80211_tx_info *info;
666         struct memrecord *range;
667         unsigned long flags;
668         u32 freed = 0, last_addr = priv->rx_start;
669
670         if (unlikely(!skb || !dev || !skb_queue_len(&priv->tx_queue)))
671                 return;
672
673         /*
674          * don't try to free an already unlinked skb
675          */
676         if (unlikely((!skb->next) || (!skb->prev)))
677                 return;
678
679         spin_lock_irqsave(&priv->tx_queue.lock, flags);
680         info = IEEE80211_SKB_CB(skb);
681         range = (void *)info->rate_driver_data;
682         if (skb->prev != (struct sk_buff *)&priv->tx_queue) {
683                 struct ieee80211_tx_info *ni;
684                 struct memrecord *mr;
685
686                 ni = IEEE80211_SKB_CB(skb->prev);
687                 mr = (struct memrecord *)ni->rate_driver_data;
688                 last_addr = mr->end_addr;
689         }
690         if (skb->next != (struct sk_buff *)&priv->tx_queue) {
691                 struct ieee80211_tx_info *ni;
692                 struct memrecord *mr;
693
694                 ni = IEEE80211_SKB_CB(skb->next);
695                 mr = (struct memrecord *)ni->rate_driver_data;
696                 freed = mr->start_addr - last_addr;
697         } else
698                 freed = priv->rx_end - last_addr;
699         __skb_unlink(skb, &priv->tx_queue);
700         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
701         dev_kfree_skb_any(skb);
702
703         if (freed >= priv->headroom + sizeof(struct p54_hdr) + 48 +
704                      IEEE80211_MAX_RTS_THRESHOLD + priv->tailroom)
705                 p54_wake_free_queues(dev);
706 }
707 EXPORT_SYMBOL_GPL(p54_free_skb);
708
709 static struct sk_buff *p54_find_tx_entry(struct ieee80211_hw *dev,
710                                            __le32 req_id)
711 {
712         struct p54_common *priv = dev->priv;
713         struct sk_buff *entry = priv->tx_queue.next;
714         unsigned long flags;
715
716         spin_lock_irqsave(&priv->tx_queue.lock, flags);
717         while (entry != (struct sk_buff *)&priv->tx_queue) {
718                 struct p54_hdr *hdr = (struct p54_hdr *) entry->data;
719
720                 if (hdr->req_id == req_id) {
721                         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
722                         return entry;
723                 }
724                 entry = entry->next;
725         }
726         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
727         return NULL;
728 }
729
730 static void p54_rx_frame_sent(struct ieee80211_hw *dev, struct sk_buff *skb)
731 {
732         struct p54_common *priv = dev->priv;
733         struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
734         struct p54_frame_sent *payload = (struct p54_frame_sent *) hdr->data;
735         struct sk_buff *entry = (struct sk_buff *) priv->tx_queue.next;
736         u32 addr = le32_to_cpu(hdr->req_id) - priv->headroom;
737         struct memrecord *range = NULL;
738         u32 freed = 0;
739         u32 last_addr = priv->rx_start;
740         unsigned long flags;
741         int count, idx;
742
743         spin_lock_irqsave(&priv->tx_queue.lock, flags);
744         while (entry != (struct sk_buff *)&priv->tx_queue) {
745                 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(entry);
746                 struct p54_hdr *entry_hdr;
747                 struct p54_tx_data *entry_data;
748                 unsigned int pad = 0, frame_len;
749
750                 range = (void *)info->rate_driver_data;
751                 if (range->start_addr != addr) {
752                         last_addr = range->end_addr;
753                         entry = entry->next;
754                         continue;
755                 }
756
757                 if (entry->next != (struct sk_buff *)&priv->tx_queue) {
758                         struct ieee80211_tx_info *ni;
759                         struct memrecord *mr;
760
761                         ni = IEEE80211_SKB_CB(entry->next);
762                         mr = (struct memrecord *)ni->rate_driver_data;
763                         freed = mr->start_addr - last_addr;
764                 } else
765                         freed = priv->rx_end - last_addr;
766
767                 last_addr = range->end_addr;
768                 __skb_unlink(entry, &priv->tx_queue);
769                 spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
770
771                 frame_len = entry->len;
772                 entry_hdr = (struct p54_hdr *) entry->data;
773                 entry_data = (struct p54_tx_data *) entry_hdr->data;
774                 priv->tx_stats[entry_data->hw_queue].len--;
775                 priv->stats.dot11ACKFailureCount += payload->tries - 1;
776
777                 if (unlikely(entry == priv->cached_beacon)) {
778                         kfree_skb(entry);
779                         priv->cached_beacon = NULL;
780                         goto out;
781                 }
782
783                 /*
784                  * Clear manually, ieee80211_tx_info_clear_status would
785                  * clear the counts too and we need them.
786                  */
787                 memset(&info->status.ampdu_ack_len, 0,
788                        sizeof(struct ieee80211_tx_info) -
789                        offsetof(struct ieee80211_tx_info, status.ampdu_ack_len));
790                 BUILD_BUG_ON(offsetof(struct ieee80211_tx_info,
791                                       status.ampdu_ack_len) != 23);
792
793                 if (entry_hdr->flags & cpu_to_le16(P54_HDR_FLAG_DATA_ALIGN))
794                         pad = entry_data->align[0];
795
796                 /* walk through the rates array and adjust the counts */
797                 count = payload->tries;
798                 for (idx = 0; idx < 4; idx++) {
799                         if (count >= info->status.rates[idx].count) {
800                                 count -= info->status.rates[idx].count;
801                         } else if (count > 0) {
802                                 info->status.rates[idx].count = count;
803                                 count = 0;
804                         } else {
805                                 info->status.rates[idx].idx = -1;
806                                 info->status.rates[idx].count = 0;
807                         }
808                 }
809
810                 if (!(info->flags & IEEE80211_TX_CTL_NO_ACK) &&
811                      (!payload->status))
812                         info->flags |= IEEE80211_TX_STAT_ACK;
813                 if (payload->status & P54_TX_PSM_CANCELLED)
814                         info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
815                 info->status.ack_signal = p54_rssi_to_dbm(dev,
816                                 (int)payload->ack_rssi);
817
818                 /* Undo all changes to the frame. */
819                 switch (entry_data->key_type) {
820                 case P54_CRYPTO_TKIPMICHAEL: {
821                         u8 *iv = (u8 *)(entry_data->align + pad +
822                                         entry_data->crypt_offset);
823
824                         /* Restore the original TKIP IV. */
825                         iv[2] = iv[0];
826                         iv[0] = iv[1];
827                         iv[1] = (iv[0] | 0x20) & 0x7f;  /* WEPSeed - 8.3.2.2 */
828
829                         frame_len -= 12; /* remove TKIP_MMIC + TKIP_ICV */
830                         break;
831                         }
832                 case P54_CRYPTO_AESCCMP:
833                         frame_len -= 8; /* remove CCMP_MIC */
834                         break;
835                 case P54_CRYPTO_WEP:
836                         frame_len -= 4; /* remove WEP_ICV */
837                         break;
838                 }
839                 skb_trim(entry, frame_len);
840                 skb_pull(entry, sizeof(*hdr) + pad + sizeof(*entry_data));
841                 ieee80211_tx_status_irqsafe(dev, entry);
842                 goto out;
843         }
844         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
845
846 out:
847         if (freed >= priv->headroom + sizeof(struct p54_hdr) + 48 +
848                      IEEE80211_MAX_RTS_THRESHOLD + priv->tailroom)
849                 p54_wake_free_queues(dev);
850 }
851
852 static void p54_rx_eeprom_readback(struct ieee80211_hw *dev,
853                                    struct sk_buff *skb)
854 {
855         struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
856         struct p54_eeprom_lm86 *eeprom = (struct p54_eeprom_lm86 *) hdr->data;
857         struct p54_common *priv = dev->priv;
858
859         if (!priv->eeprom)
860                 return ;
861
862         if (priv->fw_var >= 0x509) {
863                 memcpy(priv->eeprom, eeprom->v2.data,
864                        le16_to_cpu(eeprom->v2.len));
865         } else {
866                 memcpy(priv->eeprom, eeprom->v1.data,
867                        le16_to_cpu(eeprom->v1.len));
868         }
869
870         complete(&priv->eeprom_comp);
871 }
872
873 static void p54_rx_stats(struct ieee80211_hw *dev, struct sk_buff *skb)
874 {
875         struct p54_common *priv = dev->priv;
876         struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
877         struct p54_statistics *stats = (struct p54_statistics *) hdr->data;
878         u32 tsf32;
879
880         if (unlikely(priv->mode == NL80211_IFTYPE_UNSPECIFIED))
881                 return ;
882
883         tsf32 = le32_to_cpu(stats->tsf32);
884         if (tsf32 < priv->tsf_low32)
885                 priv->tsf_high32++;
886         priv->tsf_low32 = tsf32;
887
888         priv->stats.dot11RTSFailureCount = le32_to_cpu(stats->rts_fail);
889         priv->stats.dot11RTSSuccessCount = le32_to_cpu(stats->rts_success);
890         priv->stats.dot11FCSErrorCount = le32_to_cpu(stats->rx_bad_fcs);
891
892         priv->noise = p54_rssi_to_dbm(dev, le32_to_cpu(stats->noise));
893
894         p54_free_skb(dev, p54_find_tx_entry(dev, hdr->req_id));
895 }
896
897 static void p54_rx_trap(struct ieee80211_hw *dev, struct sk_buff *skb)
898 {
899         struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
900         struct p54_trap *trap = (struct p54_trap *) hdr->data;
901         u16 event = le16_to_cpu(trap->event);
902         u16 freq = le16_to_cpu(trap->frequency);
903
904         switch (event) {
905         case P54_TRAP_BEACON_TX:
906                 break;
907         case P54_TRAP_RADAR:
908                 printk(KERN_INFO "%s: radar (freq:%d MHz)\n",
909                         wiphy_name(dev->wiphy), freq);
910                 break;
911         case P54_TRAP_NO_BEACON:
912                 break;
913         case P54_TRAP_SCAN:
914                 break;
915         case P54_TRAP_TBTT:
916                 break;
917         case P54_TRAP_TIMER:
918                 break;
919         default:
920                 printk(KERN_INFO "%s: received event:%x freq:%d\n",
921                        wiphy_name(dev->wiphy), event, freq);
922                 break;
923         }
924 }
925
926 static int p54_rx_control(struct ieee80211_hw *dev, struct sk_buff *skb)
927 {
928         struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
929
930         switch (le16_to_cpu(hdr->type)) {
931         case P54_CONTROL_TYPE_TXDONE:
932                 p54_rx_frame_sent(dev, skb);
933                 break;
934         case P54_CONTROL_TYPE_TRAP:
935                 p54_rx_trap(dev, skb);
936                 break;
937         case P54_CONTROL_TYPE_BBP:
938                 break;
939         case P54_CONTROL_TYPE_STAT_READBACK:
940                 p54_rx_stats(dev, skb);
941                 break;
942         case P54_CONTROL_TYPE_EEPROM_READBACK:
943                 p54_rx_eeprom_readback(dev, skb);
944                 break;
945         default:
946                 printk(KERN_DEBUG "%s: not handling 0x%02x type control frame\n",
947                        wiphy_name(dev->wiphy), le16_to_cpu(hdr->type));
948                 break;
949         }
950
951         return 0;
952 }
953
954 /* returns zero if skb can be reused */
955 int p54_rx(struct ieee80211_hw *dev, struct sk_buff *skb)
956 {
957         u16 type = le16_to_cpu(*((__le16 *)skb->data));
958
959         if (type & P54_HDR_FLAG_CONTROL)
960                 return p54_rx_control(dev, skb);
961         else
962                 return p54_rx_data(dev, skb);
963 }
964 EXPORT_SYMBOL_GPL(p54_rx);
965
966 /*
967  * So, the firmware is somewhat stupid and doesn't know what places in its
968  * memory incoming data should go to. By poking around in the firmware, we
969  * can find some unused memory to upload our packets to. However, data that we
970  * want the card to TX needs to stay intact until the card has told us that
971  * it is done with it. This function finds empty places we can upload to and
972  * marks allocated areas as reserved if necessary. p54_rx_frame_sent frees
973  * allocated areas.
974  */
975 static int p54_assign_address(struct ieee80211_hw *dev, struct sk_buff *skb,
976                                struct p54_hdr *data, u32 len)
977 {
978         struct p54_common *priv = dev->priv;
979         struct sk_buff *entry = priv->tx_queue.next;
980         struct sk_buff *target_skb = NULL;
981         struct ieee80211_tx_info *info;
982         struct memrecord *range;
983         u32 last_addr = priv->rx_start;
984         u32 largest_hole = 0;
985         u32 target_addr = priv->rx_start;
986         unsigned long flags;
987         unsigned int left;
988         len = (len + priv->headroom + priv->tailroom + 3) & ~0x3;
989
990         if (!skb)
991                 return -EINVAL;
992
993         spin_lock_irqsave(&priv->tx_queue.lock, flags);
994
995         left = skb_queue_len(&priv->tx_queue);
996         if (unlikely(left >= 28)) {
997                 /*
998                  * The tx_queue is nearly full!
999                  * We have throttle normal data traffic, because we must
1000                  * have a few spare slots for control frames left.
1001                  */
1002                 ieee80211_stop_queues(dev);
1003                 queue_delayed_work(dev->workqueue, &priv->work,
1004                                    msecs_to_jiffies(P54_TX_TIMEOUT));
1005
1006                 if (unlikely(left == 32)) {
1007                         /*
1008                          * The tx_queue is now really full.
1009                          *
1010                          * TODO: check if the device has crashed and reset it.
1011                          */
1012                         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
1013                         return -ENOSPC;
1014                 }
1015         }
1016
1017         while (left--) {
1018                 u32 hole_size;
1019                 info = IEEE80211_SKB_CB(entry);
1020                 range = (void *)info->rate_driver_data;
1021                 hole_size = range->start_addr - last_addr;
1022                 if (!target_skb && hole_size >= len) {
1023                         target_skb = entry->prev;
1024                         hole_size -= len;
1025                         target_addr = last_addr;
1026                 }
1027                 largest_hole = max(largest_hole, hole_size);
1028                 last_addr = range->end_addr;
1029                 entry = entry->next;
1030         }
1031         if (!target_skb && priv->rx_end - last_addr >= len) {
1032                 target_skb = priv->tx_queue.prev;
1033                 largest_hole = max(largest_hole, priv->rx_end - last_addr - len);
1034                 if (!skb_queue_empty(&priv->tx_queue)) {
1035                         info = IEEE80211_SKB_CB(target_skb);
1036                         range = (void *)info->rate_driver_data;
1037                         target_addr = range->end_addr;
1038                 }
1039         } else
1040                 largest_hole = max(largest_hole, priv->rx_end - last_addr);
1041
1042         if (!target_skb) {
1043                 spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
1044                 ieee80211_stop_queues(dev);
1045                 return -ENOSPC;
1046         }
1047
1048         info = IEEE80211_SKB_CB(skb);
1049         range = (void *)info->rate_driver_data;
1050         range->start_addr = target_addr;
1051         range->end_addr = target_addr + len;
1052         __skb_queue_after(&priv->tx_queue, target_skb, skb);
1053         spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
1054
1055         if (largest_hole < priv->headroom + sizeof(struct p54_hdr) +
1056                            48 + IEEE80211_MAX_RTS_THRESHOLD + priv->tailroom)
1057                 ieee80211_stop_queues(dev);
1058
1059         data->req_id = cpu_to_le32(target_addr + priv->headroom);
1060         return 0;
1061 }
1062
1063 static struct sk_buff *p54_alloc_skb(struct ieee80211_hw *dev,
1064                 u16 hdr_flags, u16 len, u16 type, gfp_t memflags)
1065 {
1066         struct p54_common *priv = dev->priv;
1067         struct p54_hdr *hdr;
1068         struct sk_buff *skb;
1069
1070         skb = __dev_alloc_skb(len + priv->tx_hdr_len, memflags);
1071         if (!skb)
1072                 return NULL;
1073         skb_reserve(skb, priv->tx_hdr_len);
1074
1075         hdr = (struct p54_hdr *) skb_put(skb, sizeof(*hdr));
1076         hdr->flags = cpu_to_le16(hdr_flags);
1077         hdr->len = cpu_to_le16(len - sizeof(*hdr));
1078         hdr->type = cpu_to_le16(type);
1079         hdr->tries = hdr->rts_tries = 0;
1080
1081         if (unlikely(p54_assign_address(dev, skb, hdr, len))) {
1082                 kfree_skb(skb);
1083                 return NULL;
1084         }
1085         return skb;
1086 }
1087
1088 int p54_read_eeprom(struct ieee80211_hw *dev)
1089 {
1090         struct p54_common *priv = dev->priv;
1091         struct p54_hdr *hdr = NULL;
1092         struct p54_eeprom_lm86 *eeprom_hdr;
1093         struct sk_buff *skb;
1094         size_t eeprom_size = 0x2020, offset = 0, blocksize, maxblocksize;
1095         int ret = -ENOMEM;
1096         void *eeprom = NULL;
1097
1098         maxblocksize = EEPROM_READBACK_LEN;
1099         if (priv->fw_var >= 0x509)
1100                 maxblocksize -= 0xc;
1101         else
1102                 maxblocksize -= 0x4;
1103
1104         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL, sizeof(*hdr) +
1105                             sizeof(*eeprom_hdr) + maxblocksize,
1106                             P54_CONTROL_TYPE_EEPROM_READBACK, GFP_KERNEL);
1107         if (!skb)
1108                 goto free;
1109         priv->eeprom = kzalloc(EEPROM_READBACK_LEN, GFP_KERNEL);
1110         if (!priv->eeprom)
1111                 goto free;
1112         eeprom = kzalloc(eeprom_size, GFP_KERNEL);
1113         if (!eeprom)
1114                 goto free;
1115
1116         eeprom_hdr = (struct p54_eeprom_lm86 *) skb_put(skb,
1117                      sizeof(*eeprom_hdr) + maxblocksize);
1118
1119         while (eeprom_size) {
1120                 blocksize = min(eeprom_size, maxblocksize);
1121                 if (priv->fw_var < 0x509) {
1122                         eeprom_hdr->v1.offset = cpu_to_le16(offset);
1123                         eeprom_hdr->v1.len = cpu_to_le16(blocksize);
1124                 } else {
1125                         eeprom_hdr->v2.offset = cpu_to_le32(offset);
1126                         eeprom_hdr->v2.len = cpu_to_le16(blocksize);
1127                         eeprom_hdr->v2.magic2 = 0xf;
1128                         memcpy(eeprom_hdr->v2.magic, (const char *)"LOCK", 4);
1129                 }
1130                 priv->tx(dev, skb);
1131
1132                 if (!wait_for_completion_interruptible_timeout(&priv->eeprom_comp, HZ)) {
1133                         printk(KERN_ERR "%s: device does not respond!\n",
1134                                 wiphy_name(dev->wiphy));
1135                         ret = -EBUSY;
1136                         goto free;
1137                 }
1138
1139                 memcpy(eeprom + offset, priv->eeprom, blocksize);
1140                 offset += blocksize;
1141                 eeprom_size -= blocksize;
1142         }
1143
1144         ret = p54_parse_eeprom(dev, eeprom, offset);
1145 free:
1146         kfree(priv->eeprom);
1147         priv->eeprom = NULL;
1148         p54_free_skb(dev, skb);
1149         kfree(eeprom);
1150
1151         return ret;
1152 }
1153 EXPORT_SYMBOL_GPL(p54_read_eeprom);
1154
1155 static int p54_set_tim(struct ieee80211_hw *dev, struct ieee80211_sta *sta,
1156                 bool set)
1157 {
1158         struct p54_common *priv = dev->priv;
1159         struct sk_buff *skb;
1160         struct p54_tim *tim;
1161
1162         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET,
1163                       sizeof(struct p54_hdr) + sizeof(*tim),
1164                       P54_CONTROL_TYPE_TIM, GFP_ATOMIC);
1165         if (!skb)
1166                 return -ENOMEM;
1167
1168         tim = (struct p54_tim *) skb_put(skb, sizeof(*tim));
1169         tim->count = 1;
1170         tim->entry[0] = cpu_to_le16(set ? (sta->aid | 0x8000) : sta->aid);
1171         priv->tx(dev, skb);
1172         return 0;
1173 }
1174
1175 static int p54_sta_unlock(struct ieee80211_hw *dev, u8 *addr)
1176 {
1177         struct p54_common *priv = dev->priv;
1178         struct sk_buff *skb;
1179         struct p54_sta_unlock *sta;
1180
1181         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET,
1182                 sizeof(struct p54_hdr) + sizeof(*sta),
1183                 P54_CONTROL_TYPE_PSM_STA_UNLOCK, GFP_ATOMIC);
1184         if (!skb)
1185                 return -ENOMEM;
1186
1187         sta = (struct p54_sta_unlock *)skb_put(skb, sizeof(*sta));
1188         memcpy(sta->addr, addr, ETH_ALEN);
1189         priv->tx(dev, skb);
1190         return 0;
1191 }
1192
1193 static void p54_sta_notify(struct ieee80211_hw *dev, struct ieee80211_vif *vif,
1194                               enum sta_notify_cmd notify_cmd,
1195                               struct ieee80211_sta *sta)
1196 {
1197         switch (notify_cmd) {
1198         case STA_NOTIFY_ADD:
1199         case STA_NOTIFY_REMOVE:
1200                 /*
1201                  * Notify the firmware that we don't want or we don't
1202                  * need to buffer frames for this station anymore.
1203                  */
1204
1205                 p54_sta_unlock(dev, sta->addr);
1206                 break;
1207         case STA_NOTIFY_AWAKE:
1208                 /* update the firmware's filter table */
1209                 p54_sta_unlock(dev, sta->addr);
1210                 break;
1211         default:
1212                 break;
1213         }
1214 }
1215
1216 static int p54_tx_cancel(struct ieee80211_hw *dev, struct sk_buff *entry)
1217 {
1218         struct p54_common *priv = dev->priv;
1219         struct sk_buff *skb;
1220         struct p54_hdr *hdr;
1221         struct p54_txcancel *cancel;
1222
1223         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET,
1224                 sizeof(struct p54_hdr) + sizeof(*cancel),
1225                 P54_CONTROL_TYPE_TXCANCEL, GFP_ATOMIC);
1226         if (!skb)
1227                 return -ENOMEM;
1228
1229         hdr = (void *)entry->data;
1230         cancel = (struct p54_txcancel *)skb_put(skb, sizeof(*cancel));
1231         cancel->req_id = hdr->req_id;
1232         priv->tx(dev, skb);
1233         return 0;
1234 }
1235
1236 static int p54_tx_fill(struct ieee80211_hw *dev, struct sk_buff *skb,
1237                 struct ieee80211_tx_info *info, u8 *queue, size_t *extra_len,
1238                 u16 *flags, u16 *aid)
1239 {
1240         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1241         struct p54_common *priv = dev->priv;
1242         int ret = 0;
1243
1244         if (unlikely(ieee80211_is_mgmt(hdr->frame_control))) {
1245                 if (ieee80211_is_beacon(hdr->frame_control)) {
1246                         *aid = 0;
1247                         *queue = 0;
1248                         *extra_len = IEEE80211_MAX_TIM_LEN;
1249                         *flags = P54_HDR_FLAG_DATA_OUT_TIMESTAMP;
1250                         return 0;
1251                 } else if (ieee80211_is_probe_resp(hdr->frame_control)) {
1252                         *aid = 0;
1253                         *queue = 2;
1254                         *flags = P54_HDR_FLAG_DATA_OUT_TIMESTAMP |
1255                                  P54_HDR_FLAG_DATA_OUT_NOCANCEL;
1256                         return 0;
1257                 } else {
1258                         *queue = 2;
1259                         ret = 0;
1260                 }
1261         } else {
1262                 *queue += 4;
1263                 ret = 1;
1264         }
1265
1266         switch (priv->mode) {
1267         case NL80211_IFTYPE_STATION:
1268                 *aid = 1;
1269                 break;
1270         case NL80211_IFTYPE_AP:
1271         case NL80211_IFTYPE_ADHOC:
1272         case NL80211_IFTYPE_MESH_POINT:
1273                 if (info->flags & IEEE80211_TX_CTL_SEND_AFTER_DTIM) {
1274                         *aid = 0;
1275                         *queue = 3;
1276                         return 0;
1277                 }
1278                 if (info->control.sta)
1279                         *aid = info->control.sta->aid;
1280                 else
1281                         *flags |= P54_HDR_FLAG_DATA_OUT_NOCANCEL;
1282         }
1283         return ret;
1284 }
1285
1286 static u8 p54_convert_algo(enum ieee80211_key_alg alg)
1287 {
1288         switch (alg) {
1289         case ALG_WEP:
1290                 return P54_CRYPTO_WEP;
1291         case ALG_TKIP:
1292                 return P54_CRYPTO_TKIPMICHAEL;
1293         case ALG_CCMP:
1294                 return P54_CRYPTO_AESCCMP;
1295         default:
1296                 return 0;
1297         }
1298 }
1299
1300 static int p54_tx(struct ieee80211_hw *dev, struct sk_buff *skb)
1301 {
1302         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1303         struct ieee80211_tx_queue_stats *current_queue = NULL;
1304         struct p54_common *priv = dev->priv;
1305         struct p54_hdr *hdr;
1306         struct p54_tx_data *txhdr;
1307         size_t padding, len, tim_len = 0;
1308         int i, j, ridx, ret;
1309         u16 hdr_flags = 0, aid = 0;
1310         u8 rate, queue, crypt_offset = 0;
1311         u8 cts_rate = 0x20;
1312         u8 rc_flags;
1313         u8 calculated_tries[4];
1314         u8 nrates = 0, nremaining = 8;
1315
1316         queue = skb_get_queue_mapping(skb);
1317
1318         ret = p54_tx_fill(dev, skb, info, &queue, &tim_len, &hdr_flags, &aid);
1319         current_queue = &priv->tx_stats[queue];
1320         if (unlikely((current_queue->len > current_queue->limit) && ret))
1321                 return NETDEV_TX_BUSY;
1322         current_queue->len++;
1323         current_queue->count++;
1324         if ((current_queue->len == current_queue->limit) && ret)
1325                 ieee80211_stop_queue(dev, skb_get_queue_mapping(skb));
1326
1327         padding = (unsigned long)(skb->data - (sizeof(*hdr) + sizeof(*txhdr))) & 3;
1328         len = skb->len;
1329
1330         if (info->control.hw_key) {
1331                 crypt_offset = ieee80211_get_hdrlen_from_skb(skb);
1332                 if (info->control.hw_key->alg == ALG_TKIP) {
1333                         u8 *iv = (u8 *)(skb->data + crypt_offset);
1334                         /*
1335                          * The firmware excepts that the IV has to have
1336                          * this special format
1337                          */
1338                         iv[1] = iv[0];
1339                         iv[0] = iv[2];
1340                         iv[2] = 0;
1341                 }
1342         }
1343
1344         txhdr = (struct p54_tx_data *) skb_push(skb, sizeof(*txhdr) + padding);
1345         hdr = (struct p54_hdr *) skb_push(skb, sizeof(*hdr));
1346
1347         if (padding)
1348                 hdr_flags |= P54_HDR_FLAG_DATA_ALIGN;
1349         hdr->type = cpu_to_le16(aid);
1350         hdr->rts_tries = info->control.rates[0].count;
1351
1352         /*
1353          * we register the rates in perfect order, and
1354          * RTS/CTS won't happen on 5 GHz
1355          */
1356         cts_rate = info->control.rts_cts_rate_idx;
1357
1358         memset(&txhdr->rateset, 0, sizeof(txhdr->rateset));
1359
1360         /* see how many rates got used */
1361         for (i = 0; i < 4; i++) {
1362                 if (info->control.rates[i].idx < 0)
1363                         break;
1364                 nrates++;
1365         }
1366
1367         /* limit tries to 8/nrates per rate */
1368         for (i = 0; i < nrates; i++) {
1369                 /*
1370                  * The magic expression here is equivalent to 8/nrates for
1371                  * all values that matter, but avoids division and jumps.
1372                  * Note that nrates can only take the values 1 through 4.
1373                  */
1374                 calculated_tries[i] = min_t(int, ((15 >> nrates) | 1) + 1,
1375                                                  info->control.rates[i].count);
1376                 nremaining -= calculated_tries[i];
1377         }
1378
1379         /* if there are tries left, distribute from back to front */
1380         for (i = nrates - 1; nremaining > 0 && i >= 0; i--) {
1381                 int tmp = info->control.rates[i].count - calculated_tries[i];
1382
1383                 if (tmp <= 0)
1384                         continue;
1385                 /* RC requested more tries at this rate */
1386
1387                 tmp = min_t(int, tmp, nremaining);
1388                 calculated_tries[i] += tmp;
1389                 nremaining -= tmp;
1390         }
1391
1392         ridx = 0;
1393         for (i = 0; i < nrates && ridx < 8; i++) {
1394                 /* we register the rates in perfect order */
1395                 rate = info->control.rates[i].idx;
1396                 if (info->band == IEEE80211_BAND_5GHZ)
1397                         rate += 4;
1398
1399                 /* store the count we actually calculated for TX status */
1400                 info->control.rates[i].count = calculated_tries[i];
1401
1402                 rc_flags = info->control.rates[i].flags;
1403                 if (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) {
1404                         rate |= 0x10;
1405                         cts_rate |= 0x10;
1406                 }
1407                 if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS)
1408                         rate |= 0x40;
1409                 else if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
1410                         rate |= 0x20;
1411                 for (j = 0; j < calculated_tries[i] && ridx < 8; j++) {
1412                         txhdr->rateset[ridx] = rate;
1413                         ridx++;
1414                 }
1415         }
1416
1417         if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ)
1418                 hdr_flags |= P54_HDR_FLAG_DATA_OUT_SEQNR;
1419
1420         /* TODO: enable bursting */
1421         hdr->flags = cpu_to_le16(hdr_flags);
1422         hdr->tries = ridx;
1423         txhdr->rts_rate_idx = 0;
1424         if (info->control.hw_key) {
1425                 txhdr->key_type = p54_convert_algo(info->control.hw_key->alg);
1426                 txhdr->key_len = min((u8)16, info->control.hw_key->keylen);
1427                 memcpy(txhdr->key, info->control.hw_key->key, txhdr->key_len);
1428                 if (info->control.hw_key->alg == ALG_TKIP) {
1429                         if (unlikely(skb_tailroom(skb) < 12))
1430                                 goto err;
1431                         /* reserve space for the MIC key */
1432                         len += 8;
1433                         memcpy(skb_put(skb, 8), &(info->control.hw_key->key
1434                                 [NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY]), 8);
1435                 }
1436                 /* reserve some space for ICV */
1437                 len += info->control.hw_key->icv_len;
1438                 memset(skb_put(skb, info->control.hw_key->icv_len), 0,
1439                        info->control.hw_key->icv_len);
1440         } else {
1441                 txhdr->key_type = 0;
1442                 txhdr->key_len = 0;
1443         }
1444         txhdr->crypt_offset = crypt_offset;
1445         txhdr->hw_queue = queue;
1446         if (current_queue)
1447                 txhdr->backlog = current_queue->len;
1448         else
1449                 txhdr->backlog = 0;
1450         memset(txhdr->durations, 0, sizeof(txhdr->durations));
1451         txhdr->tx_antenna = (info->antenna_sel_tx == 0) ?
1452                 2 : info->antenna_sel_tx - 1;
1453         txhdr->output_power = priv->output_power;
1454         txhdr->cts_rate = cts_rate;
1455         if (padding)
1456                 txhdr->align[0] = padding;
1457
1458         hdr->len = cpu_to_le16(len);
1459         /* modifies skb->cb and with it info, so must be last! */
1460         if (unlikely(p54_assign_address(dev, skb, hdr, skb->len + tim_len)))
1461                 goto err;
1462         priv->tx(dev, skb);
1463
1464         queue_delayed_work(dev->workqueue, &priv->work,
1465                            msecs_to_jiffies(P54_TX_FRAME_LIFETIME));
1466
1467         return 0;
1468
1469  err:
1470         skb_pull(skb, sizeof(*hdr) + sizeof(*txhdr) + padding);
1471         if (current_queue) {
1472                 current_queue->len--;
1473                 current_queue->count--;
1474         }
1475         return NETDEV_TX_BUSY;
1476 }
1477
1478 static int p54_setup_mac(struct ieee80211_hw *dev)
1479 {
1480         struct p54_common *priv = dev->priv;
1481         struct sk_buff *skb;
1482         struct p54_setup_mac *setup;
1483         u16 mode;
1484
1485         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*setup) +
1486                             sizeof(struct p54_hdr), P54_CONTROL_TYPE_SETUP,
1487                             GFP_ATOMIC);
1488         if (!skb)
1489                 return -ENOMEM;
1490
1491         setup = (struct p54_setup_mac *) skb_put(skb, sizeof(*setup));
1492         if (dev->conf.radio_enabled) {
1493                 switch (priv->mode) {
1494                 case NL80211_IFTYPE_STATION:
1495                         mode = P54_FILTER_TYPE_STATION;
1496                         break;
1497                 case NL80211_IFTYPE_AP:
1498                         mode = P54_FILTER_TYPE_AP;
1499                         break;
1500                 case NL80211_IFTYPE_ADHOC:
1501                 case NL80211_IFTYPE_MESH_POINT:
1502                         mode = P54_FILTER_TYPE_IBSS;
1503                         break;
1504                 default:
1505                         mode = P54_FILTER_TYPE_NONE;
1506                         break;
1507                 }
1508                 if (priv->filter_flags & FIF_PROMISC_IN_BSS)
1509                         mode |= P54_FILTER_TYPE_TRANSPARENT;
1510         } else
1511                 mode = P54_FILTER_TYPE_RX_DISABLED;
1512
1513         setup->mac_mode = cpu_to_le16(mode);
1514         memcpy(setup->mac_addr, priv->mac_addr, ETH_ALEN);
1515         memcpy(setup->bssid, priv->bssid, ETH_ALEN);
1516         setup->rx_antenna = 2; /* automatic */
1517         setup->rx_align = 0;
1518         if (priv->fw_var < 0x500) {
1519                 setup->v1.basic_rate_mask = cpu_to_le32(priv->basic_rate_mask);
1520                 memset(setup->v1.rts_rates, 0, 8);
1521                 setup->v1.rx_addr = cpu_to_le32(priv->rx_end);
1522                 setup->v1.max_rx = cpu_to_le16(priv->rx_mtu);
1523                 setup->v1.rxhw = cpu_to_le16(priv->rxhw);
1524                 setup->v1.wakeup_timer = cpu_to_le16(priv->wakeup_timer);
1525                 setup->v1.unalloc0 = cpu_to_le16(0);
1526         } else {
1527                 setup->v2.rx_addr = cpu_to_le32(priv->rx_end);
1528                 setup->v2.max_rx = cpu_to_le16(priv->rx_mtu);
1529                 setup->v2.rxhw = cpu_to_le16(priv->rxhw);
1530                 setup->v2.timer = cpu_to_le16(priv->wakeup_timer);
1531                 setup->v2.truncate = cpu_to_le16(48896);
1532                 setup->v2.basic_rate_mask = cpu_to_le32(priv->basic_rate_mask);
1533                 setup->v2.sbss_offset = 0;
1534                 setup->v2.mcast_window = 0;
1535                 setup->v2.rx_rssi_threshold = 0;
1536                 setup->v2.rx_ed_threshold = 0;
1537                 setup->v2.ref_clock = cpu_to_le32(644245094);
1538                 setup->v2.lpf_bandwidth = cpu_to_le16(65535);
1539                 setup->v2.osc_start_delay = cpu_to_le16(65535);
1540         }
1541         priv->tx(dev, skb);
1542         return 0;
1543 }
1544
1545 static int p54_scan(struct ieee80211_hw *dev, u16 mode, u16 dwell)
1546 {
1547         struct p54_common *priv = dev->priv;
1548         struct sk_buff *skb;
1549         struct p54_scan *chan;
1550         unsigned int i;
1551         void *entry;
1552         __le16 freq = cpu_to_le16(dev->conf.channel->center_freq);
1553         int band = dev->conf.channel->band;
1554
1555         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*chan) +
1556                             sizeof(struct p54_hdr), P54_CONTROL_TYPE_SCAN,
1557                             GFP_ATOMIC);
1558         if (!skb)
1559                 return -ENOMEM;
1560
1561         chan = (struct p54_scan *) skb_put(skb, sizeof(*chan));
1562         memset(chan->padding1, 0, sizeof(chan->padding1));
1563         chan->mode = cpu_to_le16(mode);
1564         chan->dwell = cpu_to_le16(dwell);
1565
1566         for (i = 0; i < priv->iq_autocal_len; i++) {
1567                 if (priv->iq_autocal[i].freq != freq)
1568                         continue;
1569
1570                 memcpy(&chan->iq_autocal, &priv->iq_autocal[i],
1571                        sizeof(*priv->iq_autocal));
1572                 break;
1573         }
1574         if (i == priv->iq_autocal_len)
1575                 goto err;
1576
1577         for (i = 0; i < priv->output_limit_len; i++) {
1578                 if (priv->output_limit[i].freq != freq)
1579                         continue;
1580
1581                 chan->val_barker = 0x38;
1582                 chan->val_bpsk = chan->dup_bpsk =
1583                         priv->output_limit[i].val_bpsk;
1584                 chan->val_qpsk = chan->dup_qpsk =
1585                         priv->output_limit[i].val_qpsk;
1586                 chan->val_16qam = chan->dup_16qam =
1587                         priv->output_limit[i].val_16qam;
1588                 chan->val_64qam = chan->dup_64qam =
1589                         priv->output_limit[i].val_64qam;
1590                 break;
1591         }
1592         if (i == priv->output_limit_len)
1593                 goto err;
1594
1595         entry = priv->curve_data->data;
1596         for (i = 0; i < priv->curve_data->channels; i++) {
1597                 if (*((__le16 *)entry) != freq) {
1598                         entry += sizeof(__le16);
1599                         entry += sizeof(struct p54_pa_curve_data_sample) *
1600                                  priv->curve_data->points_per_channel;
1601                         continue;
1602                 }
1603
1604                 entry += sizeof(__le16);
1605                 chan->pa_points_per_curve = 8;
1606                 memset(chan->curve_data, 0, sizeof(*chan->curve_data));
1607                 memcpy(chan->curve_data, entry,
1608                        sizeof(struct p54_pa_curve_data_sample) *
1609                        min((u8)8, priv->curve_data->points_per_channel));
1610                 break;
1611         }
1612
1613         if (priv->fw_var < 0x500) {
1614                 chan->v1_rssi.mul = cpu_to_le16(priv->rssical_db[band].mul);
1615                 chan->v1_rssi.add = cpu_to_le16(priv->rssical_db[band].add);
1616         } else {
1617                 chan->v2.rssi.mul = cpu_to_le16(priv->rssical_db[band].mul);
1618                 chan->v2.rssi.add = cpu_to_le16(priv->rssical_db[band].add);
1619                 chan->v2.basic_rate_mask = cpu_to_le32(priv->basic_rate_mask);
1620                 memset(chan->v2.rts_rates, 0, 8);
1621         }
1622         priv->tx(dev, skb);
1623         return 0;
1624
1625  err:
1626         printk(KERN_ERR "%s: frequency change failed\n", wiphy_name(dev->wiphy));
1627         p54_free_skb(dev, skb);
1628         return -EINVAL;
1629 }
1630
1631 static int p54_set_leds(struct ieee80211_hw *dev, int mode, int link, int act)
1632 {
1633         struct p54_common *priv = dev->priv;
1634         struct sk_buff *skb;
1635         struct p54_led *led;
1636
1637         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*led) +
1638                         sizeof(struct p54_hdr), P54_CONTROL_TYPE_LED,
1639                         GFP_ATOMIC);
1640         if (!skb)
1641                 return -ENOMEM;
1642
1643         led = (struct p54_led *)skb_put(skb, sizeof(*led));
1644         led->mode = cpu_to_le16(mode);
1645         led->led_permanent = cpu_to_le16(link);
1646         led->led_temporary = cpu_to_le16(act);
1647         led->duration = cpu_to_le16(1000);
1648         priv->tx(dev, skb);
1649         return 0;
1650 }
1651
1652 #define P54_SET_QUEUE(queue, ai_fs, cw_min, cw_max, _txop)      \
1653 do {                                                            \
1654         queue.aifs = cpu_to_le16(ai_fs);                        \
1655         queue.cwmin = cpu_to_le16(cw_min);                      \
1656         queue.cwmax = cpu_to_le16(cw_max);                      \
1657         queue.txop = cpu_to_le16(_txop);                        \
1658 } while(0)
1659
1660 static int p54_set_edcf(struct ieee80211_hw *dev)
1661 {
1662         struct p54_common *priv = dev->priv;
1663         struct sk_buff *skb;
1664         struct p54_edcf *edcf;
1665
1666         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*edcf) +
1667                         sizeof(struct p54_hdr), P54_CONTROL_TYPE_DCFINIT,
1668                         GFP_ATOMIC);
1669         if (!skb)
1670                 return -ENOMEM;
1671
1672         edcf = (struct p54_edcf *)skb_put(skb, sizeof(*edcf));
1673         if (priv->use_short_slot) {
1674                 edcf->slottime = 9;
1675                 edcf->sifs = 0x10;
1676                 edcf->eofpad = 0x00;
1677         } else {
1678                 edcf->slottime = 20;
1679                 edcf->sifs = 0x0a;
1680                 edcf->eofpad = 0x06;
1681         }
1682         /* (see prism54/isl_oid.h for further details) */
1683         edcf->frameburst = cpu_to_le16(0);
1684         edcf->round_trip_delay = cpu_to_le16(0);
1685         edcf->flags = 0;
1686         memset(edcf->mapping, 0, sizeof(edcf->mapping));
1687         memcpy(edcf->queue, priv->qos_params, sizeof(edcf->queue));
1688         priv->tx(dev, skb);
1689         return 0;
1690 }
1691
1692 static int p54_beacon_tim(struct sk_buff *skb)
1693 {
1694         /*
1695          * the good excuse for this mess is ... the firmware.
1696          * The dummy TIM MUST be at the end of the beacon frame,
1697          * because it'll be overwritten!
1698          */
1699
1700         struct ieee80211_mgmt *mgmt = (void *)skb->data;
1701         u8 *pos, *end;
1702
1703         if (skb->len <= sizeof(mgmt))
1704                 return -EINVAL;
1705
1706         pos = (u8 *)mgmt->u.beacon.variable;
1707         end = skb->data + skb->len;
1708         while (pos < end) {
1709                 if (pos + 2 + pos[1] > end)
1710                         return -EINVAL;
1711
1712                 if (pos[0] == WLAN_EID_TIM) {
1713                         u8 dtim_len = pos[1];
1714                         u8 dtim_period = pos[3];
1715                         u8 *next = pos + 2 + dtim_len;
1716
1717                         if (dtim_len < 3)
1718                                 return -EINVAL;
1719
1720                         memmove(pos, next, end - next);
1721
1722                         if (dtim_len > 3)
1723                                 skb_trim(skb, skb->len - (dtim_len - 3));
1724
1725                         pos = end - (dtim_len + 2);
1726
1727                         /* add the dummy at the end */
1728                         pos[0] = WLAN_EID_TIM;
1729                         pos[1] = 3;
1730                         pos[2] = 0;
1731                         pos[3] = dtim_period;
1732                         pos[4] = 0;
1733                         return 0;
1734                 }
1735                 pos += 2 + pos[1];
1736         }
1737         return 0;
1738 }
1739
1740 static int p54_beacon_update(struct ieee80211_hw *dev,
1741                         struct ieee80211_vif *vif)
1742 {
1743         struct p54_common *priv = dev->priv;
1744         struct sk_buff *beacon;
1745         int ret;
1746
1747         if (priv->cached_beacon) {
1748                 p54_tx_cancel(dev, priv->cached_beacon);
1749                 /* wait for the last beacon the be freed */
1750                 msleep(10);
1751         }
1752
1753         beacon = ieee80211_beacon_get(dev, vif);
1754         if (!beacon)
1755                 return -ENOMEM;
1756         ret = p54_beacon_tim(beacon);
1757         if (ret)
1758                 return ret;
1759         ret = p54_tx(dev, beacon);
1760         if (ret)
1761                 return ret;
1762         priv->cached_beacon = beacon;
1763         priv->tsf_high32 = 0;
1764         priv->tsf_low32 = 0;
1765
1766         return 0;
1767 }
1768
1769 static int p54_start(struct ieee80211_hw *dev)
1770 {
1771         struct p54_common *priv = dev->priv;
1772         int err;
1773
1774         mutex_lock(&priv->conf_mutex);
1775         err = priv->open(dev);
1776         if (err)
1777                 goto out;
1778         P54_SET_QUEUE(priv->qos_params[0], 0x0002, 0x0003, 0x0007, 47);
1779         P54_SET_QUEUE(priv->qos_params[1], 0x0002, 0x0007, 0x000f, 94);
1780         P54_SET_QUEUE(priv->qos_params[2], 0x0003, 0x000f, 0x03ff, 0);
1781         P54_SET_QUEUE(priv->qos_params[3], 0x0007, 0x000f, 0x03ff, 0);
1782         err = p54_set_edcf(dev);
1783         if (err)
1784                 goto out;
1785
1786         memset(priv->bssid, ~0, ETH_ALEN);
1787         priv->mode = NL80211_IFTYPE_MONITOR;
1788         err = p54_setup_mac(dev);
1789         if (err) {
1790                 priv->mode = NL80211_IFTYPE_UNSPECIFIED;
1791                 goto out;
1792         }
1793
1794         queue_delayed_work(dev->workqueue, &priv->work, 0);
1795
1796 out:
1797         mutex_unlock(&priv->conf_mutex);
1798         return err;
1799 }
1800
1801 static void p54_stop(struct ieee80211_hw *dev)
1802 {
1803         struct p54_common *priv = dev->priv;
1804         struct sk_buff *skb;
1805
1806         mutex_lock(&priv->conf_mutex);
1807         priv->mode = NL80211_IFTYPE_UNSPECIFIED;
1808         cancel_delayed_work_sync(&priv->work);
1809         if (priv->cached_beacon)
1810                 p54_tx_cancel(dev, priv->cached_beacon);
1811
1812         priv->stop(dev);
1813         while ((skb = skb_dequeue(&priv->tx_queue)))
1814                 kfree_skb(skb);
1815         priv->cached_beacon = NULL;
1816         priv->tsf_high32 = priv->tsf_low32 = 0;
1817         mutex_unlock(&priv->conf_mutex);
1818 }
1819
1820 static int p54_add_interface(struct ieee80211_hw *dev,
1821                              struct ieee80211_if_init_conf *conf)
1822 {
1823         struct p54_common *priv = dev->priv;
1824
1825         mutex_lock(&priv->conf_mutex);
1826         if (priv->mode != NL80211_IFTYPE_MONITOR) {
1827                 mutex_unlock(&priv->conf_mutex);
1828                 return -EOPNOTSUPP;
1829         }
1830
1831         switch (conf->type) {
1832         case NL80211_IFTYPE_STATION:
1833         case NL80211_IFTYPE_ADHOC:
1834         case NL80211_IFTYPE_AP:
1835         case NL80211_IFTYPE_MESH_POINT:
1836                 priv->mode = conf->type;
1837                 break;
1838         default:
1839                 mutex_unlock(&priv->conf_mutex);
1840                 return -EOPNOTSUPP;
1841         }
1842
1843         memcpy(priv->mac_addr, conf->mac_addr, ETH_ALEN);
1844         p54_setup_mac(dev);
1845         p54_set_leds(dev, 1, 0, 0);
1846         mutex_unlock(&priv->conf_mutex);
1847         return 0;
1848 }
1849
1850 static void p54_remove_interface(struct ieee80211_hw *dev,
1851                                  struct ieee80211_if_init_conf *conf)
1852 {
1853         struct p54_common *priv = dev->priv;
1854
1855         mutex_lock(&priv->conf_mutex);
1856         if (priv->cached_beacon)
1857                 p54_tx_cancel(dev, priv->cached_beacon);
1858         priv->mode = NL80211_IFTYPE_MONITOR;
1859         memset(priv->mac_addr, 0, ETH_ALEN);
1860         memset(priv->bssid, 0, ETH_ALEN);
1861         p54_setup_mac(dev);
1862         mutex_unlock(&priv->conf_mutex);
1863 }
1864
1865 static int p54_config(struct ieee80211_hw *dev, u32 changed)
1866 {
1867         int ret = 0;
1868         struct p54_common *priv = dev->priv;
1869         struct ieee80211_conf *conf = &dev->conf;
1870
1871         mutex_lock(&priv->conf_mutex);
1872         if (changed & IEEE80211_CONF_CHANGE_POWER)
1873                 priv->output_power = conf->power_level << 2;
1874         if (changed & IEEE80211_CONF_CHANGE_RADIO_ENABLED) {
1875                 ret = p54_setup_mac(dev);
1876                 if (ret)
1877                         goto out;
1878         }
1879         if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
1880                 ret = p54_scan(dev, P54_SCAN_EXIT, 0);
1881                 if (ret)
1882                         goto out;
1883         }
1884
1885 out:
1886         mutex_unlock(&priv->conf_mutex);
1887         return ret;
1888 }
1889
1890 static int p54_config_interface(struct ieee80211_hw *dev,
1891                                 struct ieee80211_vif *vif,
1892                                 struct ieee80211_if_conf *conf)
1893 {
1894         struct p54_common *priv = dev->priv;
1895         int ret = 0;
1896
1897         mutex_lock(&priv->conf_mutex);
1898         if (conf->changed & IEEE80211_IFCC_BSSID) {
1899                 memcpy(priv->bssid, conf->bssid, ETH_ALEN);
1900                 ret = p54_setup_mac(dev);
1901                 if (ret)
1902                         goto out;
1903         }
1904
1905         if (conf->changed & IEEE80211_IFCC_BEACON) {
1906                 ret = p54_scan(dev, P54_SCAN_EXIT, 0);
1907                 if (ret)
1908                         goto out;
1909                 ret = p54_setup_mac(dev);
1910                 if (ret)
1911                         goto out;
1912                 ret = p54_beacon_update(dev, vif);
1913                 if (ret)
1914                         goto out;
1915                 ret = p54_set_edcf(dev);
1916                 if (ret)
1917                         goto out;
1918         }
1919
1920         ret = p54_set_leds(dev, 1, !is_multicast_ether_addr(priv->bssid), 0);
1921
1922 out:
1923         mutex_unlock(&priv->conf_mutex);
1924         return ret;
1925 }
1926
1927 static void p54_configure_filter(struct ieee80211_hw *dev,
1928                                  unsigned int changed_flags,
1929                                  unsigned int *total_flags,
1930                                  int mc_count, struct dev_mc_list *mclist)
1931 {
1932         struct p54_common *priv = dev->priv;
1933
1934         *total_flags &= FIF_PROMISC_IN_BSS |
1935                         (*total_flags & FIF_PROMISC_IN_BSS) ?
1936                                 FIF_FCSFAIL : 0;
1937
1938         priv->filter_flags = *total_flags;
1939
1940         if (changed_flags & FIF_PROMISC_IN_BSS)
1941                 p54_setup_mac(dev);
1942 }
1943
1944 static int p54_conf_tx(struct ieee80211_hw *dev, u16 queue,
1945                        const struct ieee80211_tx_queue_params *params)
1946 {
1947         struct p54_common *priv = dev->priv;
1948         int ret;
1949
1950         mutex_lock(&priv->conf_mutex);
1951         if ((params) && !(queue > 4)) {
1952                 P54_SET_QUEUE(priv->qos_params[queue], params->aifs,
1953                         params->cw_min, params->cw_max, params->txop);
1954                 ret = p54_set_edcf(dev);
1955         } else
1956                 ret = -EINVAL;
1957         mutex_unlock(&priv->conf_mutex);
1958         return ret;
1959 }
1960
1961 static int p54_init_xbow_synth(struct ieee80211_hw *dev)
1962 {
1963         struct p54_common *priv = dev->priv;
1964         struct sk_buff *skb;
1965         struct p54_xbow_synth *xbow;
1966
1967         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*xbow) +
1968                             sizeof(struct p54_hdr),
1969                             P54_CONTROL_TYPE_XBOW_SYNTH_CFG,
1970                             GFP_KERNEL);
1971         if (!skb)
1972                 return -ENOMEM;
1973
1974         xbow = (struct p54_xbow_synth *)skb_put(skb, sizeof(*xbow));
1975         xbow->magic1 = cpu_to_le16(0x1);
1976         xbow->magic2 = cpu_to_le16(0x2);
1977         xbow->freq = cpu_to_le16(5390);
1978         memset(xbow->padding, 0, sizeof(xbow->padding));
1979         priv->tx(dev, skb);
1980         return 0;
1981 }
1982
1983 static void p54_work(struct work_struct *work)
1984 {
1985         struct p54_common *priv = container_of(work, struct p54_common,
1986                                                work.work);
1987         struct ieee80211_hw *dev = priv->hw;
1988         struct sk_buff *skb;
1989
1990         if (unlikely(priv->mode == NL80211_IFTYPE_UNSPECIFIED))
1991                 return ;
1992
1993         /*
1994          * TODO: walk through tx_queue and do the following tasks
1995          *      1. initiate bursts.
1996          *      2. cancel stuck frames / reset the device if necessary.
1997          */
1998
1999         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL, sizeof(struct p54_hdr) +
2000                             sizeof(struct p54_statistics),
2001                             P54_CONTROL_TYPE_STAT_READBACK, GFP_KERNEL);
2002         if (!skb)
2003                 return ;
2004
2005         priv->tx(dev, skb);
2006 }
2007
2008 static int p54_get_stats(struct ieee80211_hw *dev,
2009                          struct ieee80211_low_level_stats *stats)
2010 {
2011         struct p54_common *priv = dev->priv;
2012
2013         memcpy(stats, &priv->stats, sizeof(*stats));
2014         return 0;
2015 }
2016
2017 static int p54_get_tx_stats(struct ieee80211_hw *dev,
2018                             struct ieee80211_tx_queue_stats *stats)
2019 {
2020         struct p54_common *priv = dev->priv;
2021
2022         memcpy(stats, &priv->tx_stats[4], sizeof(stats[0]) * dev->queues);
2023
2024         return 0;
2025 }
2026
2027 static void p54_bss_info_changed(struct ieee80211_hw *dev,
2028                                  struct ieee80211_vif *vif,
2029                                  struct ieee80211_bss_conf *info,
2030                                  u32 changed)
2031 {
2032         struct p54_common *priv = dev->priv;
2033
2034         if (changed & BSS_CHANGED_ERP_SLOT) {
2035                 priv->use_short_slot = info->use_short_slot;
2036                 p54_set_edcf(dev);
2037         }
2038         if (changed & BSS_CHANGED_BASIC_RATES) {
2039                 if (dev->conf.channel->band == IEEE80211_BAND_5GHZ)
2040                         priv->basic_rate_mask = (info->basic_rates << 4);
2041                 else
2042                         priv->basic_rate_mask = info->basic_rates;
2043                 p54_setup_mac(dev);
2044                 if (priv->fw_var >= 0x500)
2045                         p54_scan(dev, P54_SCAN_EXIT, 0);
2046         }
2047         if (changed & BSS_CHANGED_ASSOC) {
2048                 if (info->assoc) {
2049                         priv->aid = info->aid;
2050                         priv->wakeup_timer = info->beacon_int *
2051                                              info->dtim_period * 5;
2052                         p54_setup_mac(dev);
2053                 }
2054         }
2055
2056 }
2057
2058 static int p54_set_key(struct ieee80211_hw *dev, enum set_key_cmd cmd,
2059                        const u8 *local_address, const u8 *address,
2060                        struct ieee80211_key_conf *key)
2061 {
2062         struct p54_common *priv = dev->priv;
2063         struct sk_buff *skb;
2064         struct p54_keycache *rxkey;
2065         u8 algo = 0;
2066
2067         if (modparam_nohwcrypt)
2068                 return -EOPNOTSUPP;
2069
2070         if (cmd == DISABLE_KEY)
2071                 algo = 0;
2072         else {
2073                 switch (key->alg) {
2074                 case ALG_TKIP:
2075                         if (!(priv->privacy_caps & (BR_DESC_PRIV_CAP_MICHAEL |
2076                               BR_DESC_PRIV_CAP_TKIP)))
2077                                 return -EOPNOTSUPP;
2078                         key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2079                         algo = P54_CRYPTO_TKIPMICHAEL;
2080                         break;
2081                 case ALG_WEP:
2082                         if (!(priv->privacy_caps & BR_DESC_PRIV_CAP_WEP))
2083                                 return -EOPNOTSUPP;
2084                         key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2085                         algo = P54_CRYPTO_WEP;
2086                         break;
2087                 case ALG_CCMP:
2088                         if (!(priv->privacy_caps & BR_DESC_PRIV_CAP_AESCCMP))
2089                                 return -EOPNOTSUPP;
2090                         key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2091                         algo = P54_CRYPTO_AESCCMP;
2092                         break;
2093                 default:
2094                         return -EOPNOTSUPP;
2095                 }
2096         }
2097
2098         if (key->keyidx > priv->rx_keycache_size) {
2099                 /*
2100                  * The device supports the choosen algorithm, but the firmware
2101                  * does not provide enough key slots to store all of them.
2102                  * So, incoming frames have to be decoded by the mac80211 stack,
2103                  * but we can still offload encryption for outgoing frames.
2104                  */
2105
2106                 return 0;
2107         }
2108
2109         mutex_lock(&priv->conf_mutex);
2110         skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*rxkey) +
2111                         sizeof(struct p54_hdr), P54_CONTROL_TYPE_RX_KEYCACHE,
2112                         GFP_ATOMIC);
2113         if (!skb) {
2114                 mutex_unlock(&priv->conf_mutex);
2115                 return -ENOMEM;
2116         }
2117
2118         /* TODO: some devices have 4 more free slots for rx keys */
2119         rxkey = (struct p54_keycache *)skb_put(skb, sizeof(*rxkey));
2120         rxkey->entry = key->keyidx;
2121         rxkey->key_id = key->keyidx;
2122         rxkey->key_type = algo;
2123         if (address)
2124                 memcpy(rxkey->mac, address, ETH_ALEN);
2125         else
2126                 memset(rxkey->mac, ~0, ETH_ALEN);
2127         if (key->alg != ALG_TKIP) {
2128                 rxkey->key_len = min((u8)16, key->keylen);
2129                 memcpy(rxkey->key, key->key, rxkey->key_len);
2130         } else {
2131                 rxkey->key_len = 24;
2132                 memcpy(rxkey->key, key->key, 16);
2133                 memcpy(&(rxkey->key[16]), &(key->key
2134                         [NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY]), 8);
2135         }
2136
2137         priv->tx(dev, skb);
2138         mutex_unlock(&priv->conf_mutex);
2139         return 0;
2140 }
2141
2142 static const struct ieee80211_ops p54_ops = {
2143         .tx                     = p54_tx,
2144         .start                  = p54_start,
2145         .stop                   = p54_stop,
2146         .add_interface          = p54_add_interface,
2147         .remove_interface       = p54_remove_interface,
2148         .set_tim                = p54_set_tim,
2149         .sta_notify             = p54_sta_notify,
2150         .set_key                = p54_set_key,
2151         .config                 = p54_config,
2152         .config_interface       = p54_config_interface,
2153         .bss_info_changed       = p54_bss_info_changed,
2154         .configure_filter       = p54_configure_filter,
2155         .conf_tx                = p54_conf_tx,
2156         .get_stats              = p54_get_stats,
2157         .get_tx_stats           = p54_get_tx_stats
2158 };
2159
2160 struct ieee80211_hw *p54_init_common(size_t priv_data_len)
2161 {
2162         struct ieee80211_hw *dev;
2163         struct p54_common *priv;
2164
2165         dev = ieee80211_alloc_hw(priv_data_len, &p54_ops);
2166         if (!dev)
2167                 return NULL;
2168
2169         priv = dev->priv;
2170         priv->hw = dev;
2171         priv->mode = NL80211_IFTYPE_UNSPECIFIED;
2172         priv->basic_rate_mask = 0x15f;
2173         skb_queue_head_init(&priv->tx_queue);
2174         dev->flags = IEEE80211_HW_RX_INCLUDES_FCS |
2175                      IEEE80211_HW_SIGNAL_DBM |
2176                      IEEE80211_HW_NOISE_DBM;
2177
2178         dev->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
2179                                       BIT(NL80211_IFTYPE_ADHOC) |
2180                                       BIT(NL80211_IFTYPE_AP) |
2181                                       BIT(NL80211_IFTYPE_MESH_POINT);
2182
2183         dev->channel_change_time = 1000;        /* TODO: find actual value */
2184         priv->tx_stats[0].limit = 1;            /* Beacon queue */
2185         priv->tx_stats[1].limit = 1;            /* Probe queue for HW scan */
2186         priv->tx_stats[2].limit = 3;            /* queue for MLMEs */
2187         priv->tx_stats[3].limit = 3;            /* Broadcast / MC queue */
2188         priv->tx_stats[4].limit = 5;            /* Data */
2189         dev->queues = 1;
2190         priv->noise = -94;
2191         /*
2192          * We support at most 8 tries no matter which rate they're at,
2193          * we cannot support max_rates * max_rate_tries as we set it
2194          * here, but setting it correctly to 4/2 or so would limit us
2195          * artificially if the RC algorithm wants just two rates, so
2196          * let's say 4/7, we'll redistribute it at TX time, see the
2197          * comments there.
2198          */
2199         dev->max_rates = 4;
2200         dev->max_rate_tries = 7;
2201         dev->extra_tx_headroom = sizeof(struct p54_hdr) + 4 +
2202                                  sizeof(struct p54_tx_data);
2203
2204         mutex_init(&priv->conf_mutex);
2205         init_completion(&priv->eeprom_comp);
2206         INIT_DELAYED_WORK(&priv->work, p54_work);
2207
2208         return dev;
2209 }
2210 EXPORT_SYMBOL_GPL(p54_init_common);
2211
2212 void p54_free_common(struct ieee80211_hw *dev)
2213 {
2214         struct p54_common *priv = dev->priv;
2215         kfree(priv->iq_autocal);
2216         kfree(priv->output_limit);
2217         kfree(priv->curve_data);
2218 }
2219 EXPORT_SYMBOL_GPL(p54_free_common);
2220
2221 static int __init p54_init(void)
2222 {
2223         return 0;
2224 }
2225
2226 static void __exit p54_exit(void)
2227 {
2228 }
2229
2230 module_init(p54_init);
2231 module_exit(p54_exit);