]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/wireless/ipw2200.c
ea14b55e2633aa26d9d01d474e4bcb9953826f32
[linux-2.6-omap-h63xx.git] / drivers / net / wireless / ipw2200.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   802.11 status code portion of this file from ethereal-0.10.6:
6     Copyright 2000, Axis Communications AB
7     Ethereal - Network traffic analyzer
8     By Gerald Combs <gerald@ethereal.com>
9     Copyright 1998 Gerald Combs
10
11   This program is free software; you can redistribute it and/or modify it
12   under the terms of version 2 of the GNU General Public License as
13   published by the Free Software Foundation.
14
15   This program is distributed in the hope that it will be useful, but WITHOUT
16   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18   more details.
19
20   You should have received a copy of the GNU General Public License along with
21   this program; if not, write to the Free Software Foundation, Inc., 59
22   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
23
24   The full GNU General Public License is included in this distribution in the
25   file called LICENSE.
26
27   Contact Information:
28   James P. Ketrenos <ipw2100-admin@linux.intel.com>
29   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30
31 ******************************************************************************/
32
33 #include "ipw2200.h"
34 #include <linux/version.h>
35
36
37 #ifndef KBUILD_EXTMOD
38 #define VK "k"
39 #else
40 #define VK
41 #endif
42
43 #ifdef CONFIG_IPW2200_DEBUG
44 #define VD "d"
45 #else
46 #define VD
47 #endif
48
49 #ifdef CONFIG_IPW2200_MONITOR
50 #define VM "m"
51 #else
52 #define VM
53 #endif
54
55 #ifdef CONFIG_IPW2200_PROMISCUOUS
56 #define VP "p"
57 #else
58 #define VP
59 #endif
60
61 #ifdef CONFIG_IPW2200_RADIOTAP
62 #define VR "r"
63 #else
64 #define VR
65 #endif
66
67 #ifdef CONFIG_IPW2200_QOS
68 #define VQ "q"
69 #else
70 #define VQ
71 #endif
72
73 #define IPW2200_VERSION "1.1.2" VK VD VM VP VR VQ
74 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
75 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
76 #define DRV_VERSION     IPW2200_VERSION
77
78 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
79
80 MODULE_DESCRIPTION(DRV_DESCRIPTION);
81 MODULE_VERSION(DRV_VERSION);
82 MODULE_AUTHOR(DRV_COPYRIGHT);
83 MODULE_LICENSE("GPL");
84
85 static int cmdlog = 0;
86 #ifdef CONFIG_IPW2200_DEBUG
87 static int debug = 0;
88 #endif
89 static int channel = 0;
90 static int mode = 0;
91
92 static u32 ipw_debug_level;
93 static int associate = 1;
94 static int auto_create = 1;
95 static int led = 0;
96 static int disable = 0;
97 static int bt_coexist = 0;
98 static int hwcrypto = 0;
99 static int roaming = 1;
100 static const char ipw_modes[] = {
101         'a', 'b', 'g', '?'
102 };
103 static int antenna = CFG_SYS_ANTENNA_BOTH;
104
105 #ifdef CONFIG_IPW2200_PROMISCUOUS
106 static int rtap_iface = 0;     /* def: 0 -- do not create rtap interface */
107 #endif
108
109
110 #ifdef CONFIG_IPW2200_QOS
111 static int qos_enable = 0;
112 static int qos_burst_enable = 0;
113 static int qos_no_ack_mask = 0;
114 static int burst_duration_CCK = 0;
115 static int burst_duration_OFDM = 0;
116
117 static struct ieee80211_qos_parameters def_qos_parameters_OFDM = {
118         {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
119          QOS_TX3_CW_MIN_OFDM},
120         {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
121          QOS_TX3_CW_MAX_OFDM},
122         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
123         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
124         {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
125          QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
126 };
127
128 static struct ieee80211_qos_parameters def_qos_parameters_CCK = {
129         {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
130          QOS_TX3_CW_MIN_CCK},
131         {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
132          QOS_TX3_CW_MAX_CCK},
133         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
134         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
135         {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
136          QOS_TX3_TXOP_LIMIT_CCK}
137 };
138
139 static struct ieee80211_qos_parameters def_parameters_OFDM = {
140         {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
141          DEF_TX3_CW_MIN_OFDM},
142         {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
143          DEF_TX3_CW_MAX_OFDM},
144         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
145         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
146         {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
147          DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
148 };
149
150 static struct ieee80211_qos_parameters def_parameters_CCK = {
151         {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
152          DEF_TX3_CW_MIN_CCK},
153         {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
154          DEF_TX3_CW_MAX_CCK},
155         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
156         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
157         {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
158          DEF_TX3_TXOP_LIMIT_CCK}
159 };
160
161 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
162
163 static int from_priority_to_tx_queue[] = {
164         IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
165         IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
166 };
167
168 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
169
170 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
171                                        *qos_param);
172 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
173                                      *qos_param);
174 #endif                          /* CONFIG_IPW2200_QOS */
175
176 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
177 static void ipw_remove_current_network(struct ipw_priv *priv);
178 static void ipw_rx(struct ipw_priv *priv);
179 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
180                                 struct clx2_tx_queue *txq, int qindex);
181 static int ipw_queue_reset(struct ipw_priv *priv);
182
183 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
184                              int len, int sync);
185
186 static void ipw_tx_queue_free(struct ipw_priv *);
187
188 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
189 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
190 static void ipw_rx_queue_replenish(void *);
191 static int ipw_up(struct ipw_priv *);
192 static void ipw_bg_up(void *);
193 static void ipw_down(struct ipw_priv *);
194 static void ipw_bg_down(void *);
195 static int ipw_config(struct ipw_priv *);
196 static int init_supported_rates(struct ipw_priv *priv,
197                                 struct ipw_supported_rates *prates);
198 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
199 static void ipw_send_wep_keys(struct ipw_priv *, int);
200
201 static int snprint_line(char *buf, size_t count,
202                         const u8 * data, u32 len, u32 ofs)
203 {
204         int out, i, j, l;
205         char c;
206
207         out = snprintf(buf, count, "%08X", ofs);
208
209         for (l = 0, i = 0; i < 2; i++) {
210                 out += snprintf(buf + out, count - out, " ");
211                 for (j = 0; j < 8 && l < len; j++, l++)
212                         out += snprintf(buf + out, count - out, "%02X ",
213                                         data[(i * 8 + j)]);
214                 for (; j < 8; j++)
215                         out += snprintf(buf + out, count - out, "   ");
216         }
217
218         out += snprintf(buf + out, count - out, " ");
219         for (l = 0, i = 0; i < 2; i++) {
220                 out += snprintf(buf + out, count - out, " ");
221                 for (j = 0; j < 8 && l < len; j++, l++) {
222                         c = data[(i * 8 + j)];
223                         if (!isascii(c) || !isprint(c))
224                                 c = '.';
225
226                         out += snprintf(buf + out, count - out, "%c", c);
227                 }
228
229                 for (; j < 8; j++)
230                         out += snprintf(buf + out, count - out, " ");
231         }
232
233         return out;
234 }
235
236 static void printk_buf(int level, const u8 * data, u32 len)
237 {
238         char line[81];
239         u32 ofs = 0;
240         if (!(ipw_debug_level & level))
241                 return;
242
243         while (len) {
244                 snprint_line(line, sizeof(line), &data[ofs],
245                              min(len, 16U), ofs);
246                 printk(KERN_DEBUG "%s\n", line);
247                 ofs += 16;
248                 len -= min(len, 16U);
249         }
250 }
251
252 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
253 {
254         size_t out = size;
255         u32 ofs = 0;
256         int total = 0;
257
258         while (size && len) {
259                 out = snprint_line(output, size, &data[ofs],
260                                    min_t(size_t, len, 16U), ofs);
261
262                 ofs += 16;
263                 output += out;
264                 size -= out;
265                 len -= min_t(size_t, len, 16U);
266                 total += out;
267         }
268         return total;
269 }
270
271 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
272 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
273 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
274
275 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
276 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
277 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
278
279 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
280 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
281 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
282 {
283         IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
284                      __LINE__, (u32) (b), (u32) (c));
285         _ipw_write_reg8(a, b, c);
286 }
287
288 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
289 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
290 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
291 {
292         IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
293                      __LINE__, (u32) (b), (u32) (c));
294         _ipw_write_reg16(a, b, c);
295 }
296
297 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
298 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
299 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
300 {
301         IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
302                      __LINE__, (u32) (b), (u32) (c));
303         _ipw_write_reg32(a, b, c);
304 }
305
306 /* 8-bit direct write (low 4K) */
307 #define _ipw_write8(ipw, ofs, val) writeb((val), (ipw)->hw_base + (ofs))
308
309 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
310 #define ipw_write8(ipw, ofs, val) \
311  IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
312  _ipw_write8(ipw, ofs, val)
313
314 /* 16-bit direct write (low 4K) */
315 #define _ipw_write16(ipw, ofs, val) writew((val), (ipw)->hw_base + (ofs))
316
317 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
318 #define ipw_write16(ipw, ofs, val) \
319  IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
320  _ipw_write16(ipw, ofs, val)
321
322 /* 32-bit direct write (low 4K) */
323 #define _ipw_write32(ipw, ofs, val) writel((val), (ipw)->hw_base + (ofs))
324
325 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
326 #define ipw_write32(ipw, ofs, val) \
327  IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
328  _ipw_write32(ipw, ofs, val)
329
330 /* 8-bit direct read (low 4K) */
331 #define _ipw_read8(ipw, ofs) readb((ipw)->hw_base + (ofs))
332
333 /* 8-bit direct read (low 4K), with debug wrapper */
334 static inline u8 __ipw_read8(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
335 {
336         IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", f, l, (u32) (ofs));
337         return _ipw_read8(ipw, ofs);
338 }
339
340 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
341 #define ipw_read8(ipw, ofs) __ipw_read8(__FILE__, __LINE__, ipw, ofs)
342
343 /* 16-bit direct read (low 4K) */
344 #define _ipw_read16(ipw, ofs) readw((ipw)->hw_base + (ofs))
345
346 /* 16-bit direct read (low 4K), with debug wrapper */
347 static inline u16 __ipw_read16(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
348 {
349         IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", f, l, (u32) (ofs));
350         return _ipw_read16(ipw, ofs);
351 }
352
353 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
354 #define ipw_read16(ipw, ofs) __ipw_read16(__FILE__, __LINE__, ipw, ofs)
355
356 /* 32-bit direct read (low 4K) */
357 #define _ipw_read32(ipw, ofs) readl((ipw)->hw_base + (ofs))
358
359 /* 32-bit direct read (low 4K), with debug wrapper */
360 static inline u32 __ipw_read32(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
361 {
362         IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", f, l, (u32) (ofs));
363         return _ipw_read32(ipw, ofs);
364 }
365
366 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
367 #define ipw_read32(ipw, ofs) __ipw_read32(__FILE__, __LINE__, ipw, ofs)
368
369 /* multi-byte read (above 4K), with debug wrapper */
370 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
371 static inline void __ipw_read_indirect(const char *f, int l,
372                                        struct ipw_priv *a, u32 b, u8 * c, int d)
373 {
374         IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %d bytes\n", f, l, (u32) (b),
375                      d);
376         _ipw_read_indirect(a, b, c, d);
377 }
378
379 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
380 #define ipw_read_indirect(a, b, c, d) __ipw_read_indirect(__FILE__, __LINE__, a, b, c, d)
381
382 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
383 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
384                                 int num);
385 #define ipw_write_indirect(a, b, c, d) \
386         IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %d bytes\n", __FILE__, __LINE__, (u32)(b), d); \
387         _ipw_write_indirect(a, b, c, d)
388
389 /* 32-bit indirect write (above 4K) */
390 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
391 {
392         IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
393         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
394         _ipw_write32(priv, IPW_INDIRECT_DATA, value);
395 }
396
397 /* 8-bit indirect write (above 4K) */
398 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
399 {
400         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
401         u32 dif_len = reg - aligned_addr;
402
403         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
404         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
405         _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
406 }
407
408 /* 16-bit indirect write (above 4K) */
409 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
410 {
411         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
412         u32 dif_len = (reg - aligned_addr) & (~0x1ul);
413
414         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
415         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
416         _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
417 }
418
419 /* 8-bit indirect read (above 4K) */
420 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
421 {
422         u32 word;
423         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
424         IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
425         word = _ipw_read32(priv, IPW_INDIRECT_DATA);
426         return (word >> ((reg & 0x3) * 8)) & 0xff;
427 }
428
429 /* 32-bit indirect read (above 4K) */
430 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
431 {
432         u32 value;
433
434         IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
435
436         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
437         value = _ipw_read32(priv, IPW_INDIRECT_DATA);
438         IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
439         return value;
440 }
441
442 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
443 /*    for area above 1st 4K of SRAM/reg space */
444 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
445                                int num)
446 {
447         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
448         u32 dif_len = addr - aligned_addr;
449         u32 i;
450
451         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
452
453         if (num <= 0) {
454                 return;
455         }
456
457         /* Read the first dword (or portion) byte by byte */
458         if (unlikely(dif_len)) {
459                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
460                 /* Start reading at aligned_addr + dif_len */
461                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
462                         *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
463                 aligned_addr += 4;
464         }
465
466         /* Read all of the middle dwords as dwords, with auto-increment */
467         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
468         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
469                 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
470
471         /* Read the last dword (or portion) byte by byte */
472         if (unlikely(num)) {
473                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
474                 for (i = 0; num > 0; i++, num--)
475                         *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
476         }
477 }
478
479 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
480 /*    for area above 1st 4K of SRAM/reg space */
481 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
482                                 int num)
483 {
484         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
485         u32 dif_len = addr - aligned_addr;
486         u32 i;
487
488         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
489
490         if (num <= 0) {
491                 return;
492         }
493
494         /* Write the first dword (or portion) byte by byte */
495         if (unlikely(dif_len)) {
496                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
497                 /* Start writing at aligned_addr + dif_len */
498                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
499                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
500                 aligned_addr += 4;
501         }
502
503         /* Write all of the middle dwords as dwords, with auto-increment */
504         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
505         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
506                 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
507
508         /* Write the last dword (or portion) byte by byte */
509         if (unlikely(num)) {
510                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
511                 for (i = 0; num > 0; i++, num--, buf++)
512                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
513         }
514 }
515
516 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
517 /*    for 1st 4K of SRAM/regs space */
518 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
519                              int num)
520 {
521         memcpy_toio((priv->hw_base + addr), buf, num);
522 }
523
524 /* Set bit(s) in low 4K of SRAM/regs */
525 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
526 {
527         ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
528 }
529
530 /* Clear bit(s) in low 4K of SRAM/regs */
531 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
532 {
533         ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
534 }
535
536 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
537 {
538         if (priv->status & STATUS_INT_ENABLED)
539                 return;
540         priv->status |= STATUS_INT_ENABLED;
541         ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
542 }
543
544 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
545 {
546         if (!(priv->status & STATUS_INT_ENABLED))
547                 return;
548         priv->status &= ~STATUS_INT_ENABLED;
549         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
550 }
551
552 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
553 {
554         unsigned long flags;
555
556         spin_lock_irqsave(&priv->irq_lock, flags);
557         __ipw_enable_interrupts(priv);
558         spin_unlock_irqrestore(&priv->irq_lock, flags);
559 }
560
561 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
562 {
563         unsigned long flags;
564
565         spin_lock_irqsave(&priv->irq_lock, flags);
566         __ipw_disable_interrupts(priv);
567         spin_unlock_irqrestore(&priv->irq_lock, flags);
568 }
569
570 static char *ipw_error_desc(u32 val)
571 {
572         switch (val) {
573         case IPW_FW_ERROR_OK:
574                 return "ERROR_OK";
575         case IPW_FW_ERROR_FAIL:
576                 return "ERROR_FAIL";
577         case IPW_FW_ERROR_MEMORY_UNDERFLOW:
578                 return "MEMORY_UNDERFLOW";
579         case IPW_FW_ERROR_MEMORY_OVERFLOW:
580                 return "MEMORY_OVERFLOW";
581         case IPW_FW_ERROR_BAD_PARAM:
582                 return "BAD_PARAM";
583         case IPW_FW_ERROR_BAD_CHECKSUM:
584                 return "BAD_CHECKSUM";
585         case IPW_FW_ERROR_NMI_INTERRUPT:
586                 return "NMI_INTERRUPT";
587         case IPW_FW_ERROR_BAD_DATABASE:
588                 return "BAD_DATABASE";
589         case IPW_FW_ERROR_ALLOC_FAIL:
590                 return "ALLOC_FAIL";
591         case IPW_FW_ERROR_DMA_UNDERRUN:
592                 return "DMA_UNDERRUN";
593         case IPW_FW_ERROR_DMA_STATUS:
594                 return "DMA_STATUS";
595         case IPW_FW_ERROR_DINO_ERROR:
596                 return "DINO_ERROR";
597         case IPW_FW_ERROR_EEPROM_ERROR:
598                 return "EEPROM_ERROR";
599         case IPW_FW_ERROR_SYSASSERT:
600                 return "SYSASSERT";
601         case IPW_FW_ERROR_FATAL_ERROR:
602                 return "FATAL_ERROR";
603         default:
604                 return "UNKNOWN_ERROR";
605         }
606 }
607
608 static void ipw_dump_error_log(struct ipw_priv *priv,
609                                struct ipw_fw_error *error)
610 {
611         u32 i;
612
613         if (!error) {
614                 IPW_ERROR("Error allocating and capturing error log.  "
615                           "Nothing to dump.\n");
616                 return;
617         }
618
619         IPW_ERROR("Start IPW Error Log Dump:\n");
620         IPW_ERROR("Status: 0x%08X, Config: %08X\n",
621                   error->status, error->config);
622
623         for (i = 0; i < error->elem_len; i++)
624                 IPW_ERROR("%s %i 0x%08x  0x%08x  0x%08x  0x%08x  0x%08x\n",
625                           ipw_error_desc(error->elem[i].desc),
626                           error->elem[i].time,
627                           error->elem[i].blink1,
628                           error->elem[i].blink2,
629                           error->elem[i].link1,
630                           error->elem[i].link2, error->elem[i].data);
631         for (i = 0; i < error->log_len; i++)
632                 IPW_ERROR("%i\t0x%08x\t%i\n",
633                           error->log[i].time,
634                           error->log[i].data, error->log[i].event);
635 }
636
637 static inline int ipw_is_init(struct ipw_priv *priv)
638 {
639         return (priv->status & STATUS_INIT) ? 1 : 0;
640 }
641
642 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
643 {
644         u32 addr, field_info, field_len, field_count, total_len;
645
646         IPW_DEBUG_ORD("ordinal = %i\n", ord);
647
648         if (!priv || !val || !len) {
649                 IPW_DEBUG_ORD("Invalid argument\n");
650                 return -EINVAL;
651         }
652
653         /* verify device ordinal tables have been initialized */
654         if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
655                 IPW_DEBUG_ORD("Access ordinals before initialization\n");
656                 return -EINVAL;
657         }
658
659         switch (IPW_ORD_TABLE_ID_MASK & ord) {
660         case IPW_ORD_TABLE_0_MASK:
661                 /*
662                  * TABLE 0: Direct access to a table of 32 bit values
663                  *
664                  * This is a very simple table with the data directly
665                  * read from the table
666                  */
667
668                 /* remove the table id from the ordinal */
669                 ord &= IPW_ORD_TABLE_VALUE_MASK;
670
671                 /* boundary check */
672                 if (ord > priv->table0_len) {
673                         IPW_DEBUG_ORD("ordinal value (%i) longer then "
674                                       "max (%i)\n", ord, priv->table0_len);
675                         return -EINVAL;
676                 }
677
678                 /* verify we have enough room to store the value */
679                 if (*len < sizeof(u32)) {
680                         IPW_DEBUG_ORD("ordinal buffer length too small, "
681                                       "need %zd\n", sizeof(u32));
682                         return -EINVAL;
683                 }
684
685                 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
686                               ord, priv->table0_addr + (ord << 2));
687
688                 *len = sizeof(u32);
689                 ord <<= 2;
690                 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
691                 break;
692
693         case IPW_ORD_TABLE_1_MASK:
694                 /*
695                  * TABLE 1: Indirect access to a table of 32 bit values
696                  *
697                  * This is a fairly large table of u32 values each
698                  * representing starting addr for the data (which is
699                  * also a u32)
700                  */
701
702                 /* remove the table id from the ordinal */
703                 ord &= IPW_ORD_TABLE_VALUE_MASK;
704
705                 /* boundary check */
706                 if (ord > priv->table1_len) {
707                         IPW_DEBUG_ORD("ordinal value too long\n");
708                         return -EINVAL;
709                 }
710
711                 /* verify we have enough room to store the value */
712                 if (*len < sizeof(u32)) {
713                         IPW_DEBUG_ORD("ordinal buffer length too small, "
714                                       "need %zd\n", sizeof(u32));
715                         return -EINVAL;
716                 }
717
718                 *((u32 *) val) =
719                     ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
720                 *len = sizeof(u32);
721                 break;
722
723         case IPW_ORD_TABLE_2_MASK:
724                 /*
725                  * TABLE 2: Indirect access to a table of variable sized values
726                  *
727                  * This table consist of six values, each containing
728                  *     - dword containing the starting offset of the data
729                  *     - dword containing the lengh in the first 16bits
730                  *       and the count in the second 16bits
731                  */
732
733                 /* remove the table id from the ordinal */
734                 ord &= IPW_ORD_TABLE_VALUE_MASK;
735
736                 /* boundary check */
737                 if (ord > priv->table2_len) {
738                         IPW_DEBUG_ORD("ordinal value too long\n");
739                         return -EINVAL;
740                 }
741
742                 /* get the address of statistic */
743                 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
744
745                 /* get the second DW of statistics ;
746                  * two 16-bit words - first is length, second is count */
747                 field_info =
748                     ipw_read_reg32(priv,
749                                    priv->table2_addr + (ord << 3) +
750                                    sizeof(u32));
751
752                 /* get each entry length */
753                 field_len = *((u16 *) & field_info);
754
755                 /* get number of entries */
756                 field_count = *(((u16 *) & field_info) + 1);
757
758                 /* abort if not enought memory */
759                 total_len = field_len * field_count;
760                 if (total_len > *len) {
761                         *len = total_len;
762                         return -EINVAL;
763                 }
764
765                 *len = total_len;
766                 if (!total_len)
767                         return 0;
768
769                 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
770                               "field_info = 0x%08x\n",
771                               addr, total_len, field_info);
772                 ipw_read_indirect(priv, addr, val, total_len);
773                 break;
774
775         default:
776                 IPW_DEBUG_ORD("Invalid ordinal!\n");
777                 return -EINVAL;
778
779         }
780
781         return 0;
782 }
783
784 static void ipw_init_ordinals(struct ipw_priv *priv)
785 {
786         priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
787         priv->table0_len = ipw_read32(priv, priv->table0_addr);
788
789         IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
790                       priv->table0_addr, priv->table0_len);
791
792         priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
793         priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
794
795         IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
796                       priv->table1_addr, priv->table1_len);
797
798         priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
799         priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
800         priv->table2_len &= 0x0000ffff; /* use first two bytes */
801
802         IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
803                       priv->table2_addr, priv->table2_len);
804
805 }
806
807 static u32 ipw_register_toggle(u32 reg)
808 {
809         reg &= ~IPW_START_STANDBY;
810         if (reg & IPW_GATE_ODMA)
811                 reg &= ~IPW_GATE_ODMA;
812         if (reg & IPW_GATE_IDMA)
813                 reg &= ~IPW_GATE_IDMA;
814         if (reg & IPW_GATE_ADMA)
815                 reg &= ~IPW_GATE_ADMA;
816         return reg;
817 }
818
819 /*
820  * LED behavior:
821  * - On radio ON, turn on any LEDs that require to be on during start
822  * - On initialization, start unassociated blink
823  * - On association, disable unassociated blink
824  * - On disassociation, start unassociated blink
825  * - On radio OFF, turn off any LEDs started during radio on
826  *
827  */
828 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
829 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
830 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
831
832 static void ipw_led_link_on(struct ipw_priv *priv)
833 {
834         unsigned long flags;
835         u32 led;
836
837         /* If configured to not use LEDs, or nic_type is 1,
838          * then we don't toggle a LINK led */
839         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
840                 return;
841
842         spin_lock_irqsave(&priv->lock, flags);
843
844         if (!(priv->status & STATUS_RF_KILL_MASK) &&
845             !(priv->status & STATUS_LED_LINK_ON)) {
846                 IPW_DEBUG_LED("Link LED On\n");
847                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
848                 led |= priv->led_association_on;
849
850                 led = ipw_register_toggle(led);
851
852                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
853                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
854
855                 priv->status |= STATUS_LED_LINK_ON;
856
857                 /* If we aren't associated, schedule turning the LED off */
858                 if (!(priv->status & STATUS_ASSOCIATED))
859                         queue_delayed_work(priv->workqueue,
860                                            &priv->led_link_off,
861                                            LD_TIME_LINK_ON);
862         }
863
864         spin_unlock_irqrestore(&priv->lock, flags);
865 }
866
867 static void ipw_bg_led_link_on(void *data)
868 {
869         struct ipw_priv *priv = data;
870         mutex_lock(&priv->mutex);
871         ipw_led_link_on(data);
872         mutex_unlock(&priv->mutex);
873 }
874
875 static void ipw_led_link_off(struct ipw_priv *priv)
876 {
877         unsigned long flags;
878         u32 led;
879
880         /* If configured not to use LEDs, or nic type is 1,
881          * then we don't goggle the LINK led. */
882         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
883                 return;
884
885         spin_lock_irqsave(&priv->lock, flags);
886
887         if (priv->status & STATUS_LED_LINK_ON) {
888                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
889                 led &= priv->led_association_off;
890                 led = ipw_register_toggle(led);
891
892                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
893                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
894
895                 IPW_DEBUG_LED("Link LED Off\n");
896
897                 priv->status &= ~STATUS_LED_LINK_ON;
898
899                 /* If we aren't associated and the radio is on, schedule
900                  * turning the LED on (blink while unassociated) */
901                 if (!(priv->status & STATUS_RF_KILL_MASK) &&
902                     !(priv->status & STATUS_ASSOCIATED))
903                         queue_delayed_work(priv->workqueue, &priv->led_link_on,
904                                            LD_TIME_LINK_OFF);
905
906         }
907
908         spin_unlock_irqrestore(&priv->lock, flags);
909 }
910
911 static void ipw_bg_led_link_off(void *data)
912 {
913         struct ipw_priv *priv = data;
914         mutex_lock(&priv->mutex);
915         ipw_led_link_off(data);
916         mutex_unlock(&priv->mutex);
917 }
918
919 static void __ipw_led_activity_on(struct ipw_priv *priv)
920 {
921         u32 led;
922
923         if (priv->config & CFG_NO_LED)
924                 return;
925
926         if (priv->status & STATUS_RF_KILL_MASK)
927                 return;
928
929         if (!(priv->status & STATUS_LED_ACT_ON)) {
930                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
931                 led |= priv->led_activity_on;
932
933                 led = ipw_register_toggle(led);
934
935                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
936                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
937
938                 IPW_DEBUG_LED("Activity LED On\n");
939
940                 priv->status |= STATUS_LED_ACT_ON;
941
942                 cancel_delayed_work(&priv->led_act_off);
943                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
944                                    LD_TIME_ACT_ON);
945         } else {
946                 /* Reschedule LED off for full time period */
947                 cancel_delayed_work(&priv->led_act_off);
948                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
949                                    LD_TIME_ACT_ON);
950         }
951 }
952
953 #if 0
954 void ipw_led_activity_on(struct ipw_priv *priv)
955 {
956         unsigned long flags;
957         spin_lock_irqsave(&priv->lock, flags);
958         __ipw_led_activity_on(priv);
959         spin_unlock_irqrestore(&priv->lock, flags);
960 }
961 #endif  /*  0  */
962
963 static void ipw_led_activity_off(struct ipw_priv *priv)
964 {
965         unsigned long flags;
966         u32 led;
967
968         if (priv->config & CFG_NO_LED)
969                 return;
970
971         spin_lock_irqsave(&priv->lock, flags);
972
973         if (priv->status & STATUS_LED_ACT_ON) {
974                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
975                 led &= priv->led_activity_off;
976
977                 led = ipw_register_toggle(led);
978
979                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
980                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
981
982                 IPW_DEBUG_LED("Activity LED Off\n");
983
984                 priv->status &= ~STATUS_LED_ACT_ON;
985         }
986
987         spin_unlock_irqrestore(&priv->lock, flags);
988 }
989
990 static void ipw_bg_led_activity_off(void *data)
991 {
992         struct ipw_priv *priv = data;
993         mutex_lock(&priv->mutex);
994         ipw_led_activity_off(data);
995         mutex_unlock(&priv->mutex);
996 }
997
998 static void ipw_led_band_on(struct ipw_priv *priv)
999 {
1000         unsigned long flags;
1001         u32 led;
1002
1003         /* Only nic type 1 supports mode LEDs */
1004         if (priv->config & CFG_NO_LED ||
1005             priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1006                 return;
1007
1008         spin_lock_irqsave(&priv->lock, flags);
1009
1010         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1011         if (priv->assoc_network->mode == IEEE_A) {
1012                 led |= priv->led_ofdm_on;
1013                 led &= priv->led_association_off;
1014                 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1015         } else if (priv->assoc_network->mode == IEEE_G) {
1016                 led |= priv->led_ofdm_on;
1017                 led |= priv->led_association_on;
1018                 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1019         } else {
1020                 led &= priv->led_ofdm_off;
1021                 led |= priv->led_association_on;
1022                 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1023         }
1024
1025         led = ipw_register_toggle(led);
1026
1027         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1028         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1029
1030         spin_unlock_irqrestore(&priv->lock, flags);
1031 }
1032
1033 static void ipw_led_band_off(struct ipw_priv *priv)
1034 {
1035         unsigned long flags;
1036         u32 led;
1037
1038         /* Only nic type 1 supports mode LEDs */
1039         if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1040                 return;
1041
1042         spin_lock_irqsave(&priv->lock, flags);
1043
1044         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1045         led &= priv->led_ofdm_off;
1046         led &= priv->led_association_off;
1047
1048         led = ipw_register_toggle(led);
1049
1050         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1051         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1052
1053         spin_unlock_irqrestore(&priv->lock, flags);
1054 }
1055
1056 static void ipw_led_radio_on(struct ipw_priv *priv)
1057 {
1058         ipw_led_link_on(priv);
1059 }
1060
1061 static void ipw_led_radio_off(struct ipw_priv *priv)
1062 {
1063         ipw_led_activity_off(priv);
1064         ipw_led_link_off(priv);
1065 }
1066
1067 static void ipw_led_link_up(struct ipw_priv *priv)
1068 {
1069         /* Set the Link Led on for all nic types */
1070         ipw_led_link_on(priv);
1071 }
1072
1073 static void ipw_led_link_down(struct ipw_priv *priv)
1074 {
1075         ipw_led_activity_off(priv);
1076         ipw_led_link_off(priv);
1077
1078         if (priv->status & STATUS_RF_KILL_MASK)
1079                 ipw_led_radio_off(priv);
1080 }
1081
1082 static void ipw_led_init(struct ipw_priv *priv)
1083 {
1084         priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1085
1086         /* Set the default PINs for the link and activity leds */
1087         priv->led_activity_on = IPW_ACTIVITY_LED;
1088         priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1089
1090         priv->led_association_on = IPW_ASSOCIATED_LED;
1091         priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1092
1093         /* Set the default PINs for the OFDM leds */
1094         priv->led_ofdm_on = IPW_OFDM_LED;
1095         priv->led_ofdm_off = ~(IPW_OFDM_LED);
1096
1097         switch (priv->nic_type) {
1098         case EEPROM_NIC_TYPE_1:
1099                 /* In this NIC type, the LEDs are reversed.... */
1100                 priv->led_activity_on = IPW_ASSOCIATED_LED;
1101                 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1102                 priv->led_association_on = IPW_ACTIVITY_LED;
1103                 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1104
1105                 if (!(priv->config & CFG_NO_LED))
1106                         ipw_led_band_on(priv);
1107
1108                 /* And we don't blink link LEDs for this nic, so
1109                  * just return here */
1110                 return;
1111
1112         case EEPROM_NIC_TYPE_3:
1113         case EEPROM_NIC_TYPE_2:
1114         case EEPROM_NIC_TYPE_4:
1115         case EEPROM_NIC_TYPE_0:
1116                 break;
1117
1118         default:
1119                 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1120                                priv->nic_type);
1121                 priv->nic_type = EEPROM_NIC_TYPE_0;
1122                 break;
1123         }
1124
1125         if (!(priv->config & CFG_NO_LED)) {
1126                 if (priv->status & STATUS_ASSOCIATED)
1127                         ipw_led_link_on(priv);
1128                 else
1129                         ipw_led_link_off(priv);
1130         }
1131 }
1132
1133 static void ipw_led_shutdown(struct ipw_priv *priv)
1134 {
1135         ipw_led_activity_off(priv);
1136         ipw_led_link_off(priv);
1137         ipw_led_band_off(priv);
1138         cancel_delayed_work(&priv->led_link_on);
1139         cancel_delayed_work(&priv->led_link_off);
1140         cancel_delayed_work(&priv->led_act_off);
1141 }
1142
1143 /*
1144  * The following adds a new attribute to the sysfs representation
1145  * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1146  * used for controling the debug level.
1147  *
1148  * See the level definitions in ipw for details.
1149  */
1150 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1151 {
1152         return sprintf(buf, "0x%08X\n", ipw_debug_level);
1153 }
1154
1155 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1156                                  size_t count)
1157 {
1158         char *p = (char *)buf;
1159         u32 val;
1160
1161         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1162                 p++;
1163                 if (p[0] == 'x' || p[0] == 'X')
1164                         p++;
1165                 val = simple_strtoul(p, &p, 16);
1166         } else
1167                 val = simple_strtoul(p, &p, 10);
1168         if (p == buf)
1169                 printk(KERN_INFO DRV_NAME
1170                        ": %s is not in hex or decimal form.\n", buf);
1171         else
1172                 ipw_debug_level = val;
1173
1174         return strnlen(buf, count);
1175 }
1176
1177 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1178                    show_debug_level, store_debug_level);
1179
1180 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1181 {
1182         /* length = 1st dword in log */
1183         return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1184 }
1185
1186 static void ipw_capture_event_log(struct ipw_priv *priv,
1187                                   u32 log_len, struct ipw_event *log)
1188 {
1189         u32 base;
1190
1191         if (log_len) {
1192                 base = ipw_read32(priv, IPW_EVENT_LOG);
1193                 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1194                                   (u8 *) log, sizeof(*log) * log_len);
1195         }
1196 }
1197
1198 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1199 {
1200         struct ipw_fw_error *error;
1201         u32 log_len = ipw_get_event_log_len(priv);
1202         u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1203         u32 elem_len = ipw_read_reg32(priv, base);
1204
1205         error = kmalloc(sizeof(*error) +
1206                         sizeof(*error->elem) * elem_len +
1207                         sizeof(*error->log) * log_len, GFP_ATOMIC);
1208         if (!error) {
1209                 IPW_ERROR("Memory allocation for firmware error log "
1210                           "failed.\n");
1211                 return NULL;
1212         }
1213         error->jiffies = jiffies;
1214         error->status = priv->status;
1215         error->config = priv->config;
1216         error->elem_len = elem_len;
1217         error->log_len = log_len;
1218         error->elem = (struct ipw_error_elem *)error->payload;
1219         error->log = (struct ipw_event *)(error->elem + elem_len);
1220
1221         ipw_capture_event_log(priv, log_len, error->log);
1222
1223         if (elem_len)
1224                 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1225                                   sizeof(*error->elem) * elem_len);
1226
1227         return error;
1228 }
1229
1230 static ssize_t show_event_log(struct device *d,
1231                               struct device_attribute *attr, char *buf)
1232 {
1233         struct ipw_priv *priv = dev_get_drvdata(d);
1234         u32 log_len = ipw_get_event_log_len(priv);
1235         struct ipw_event log[log_len];
1236         u32 len = 0, i;
1237
1238         ipw_capture_event_log(priv, log_len, log);
1239
1240         len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1241         for (i = 0; i < log_len; i++)
1242                 len += snprintf(buf + len, PAGE_SIZE - len,
1243                                 "\n%08X%08X%08X",
1244                                 log[i].time, log[i].event, log[i].data);
1245         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1246         return len;
1247 }
1248
1249 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1250
1251 static ssize_t show_error(struct device *d,
1252                           struct device_attribute *attr, char *buf)
1253 {
1254         struct ipw_priv *priv = dev_get_drvdata(d);
1255         u32 len = 0, i;
1256         if (!priv->error)
1257                 return 0;
1258         len += snprintf(buf + len, PAGE_SIZE - len,
1259                         "%08lX%08X%08X%08X",
1260                         priv->error->jiffies,
1261                         priv->error->status,
1262                         priv->error->config, priv->error->elem_len);
1263         for (i = 0; i < priv->error->elem_len; i++)
1264                 len += snprintf(buf + len, PAGE_SIZE - len,
1265                                 "\n%08X%08X%08X%08X%08X%08X%08X",
1266                                 priv->error->elem[i].time,
1267                                 priv->error->elem[i].desc,
1268                                 priv->error->elem[i].blink1,
1269                                 priv->error->elem[i].blink2,
1270                                 priv->error->elem[i].link1,
1271                                 priv->error->elem[i].link2,
1272                                 priv->error->elem[i].data);
1273
1274         len += snprintf(buf + len, PAGE_SIZE - len,
1275                         "\n%08X", priv->error->log_len);
1276         for (i = 0; i < priv->error->log_len; i++)
1277                 len += snprintf(buf + len, PAGE_SIZE - len,
1278                                 "\n%08X%08X%08X",
1279                                 priv->error->log[i].time,
1280                                 priv->error->log[i].event,
1281                                 priv->error->log[i].data);
1282         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1283         return len;
1284 }
1285
1286 static ssize_t clear_error(struct device *d,
1287                            struct device_attribute *attr,
1288                            const char *buf, size_t count)
1289 {
1290         struct ipw_priv *priv = dev_get_drvdata(d);
1291
1292         kfree(priv->error);
1293         priv->error = NULL;
1294         return count;
1295 }
1296
1297 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1298
1299 static ssize_t show_cmd_log(struct device *d,
1300                             struct device_attribute *attr, char *buf)
1301 {
1302         struct ipw_priv *priv = dev_get_drvdata(d);
1303         u32 len = 0, i;
1304         if (!priv->cmdlog)
1305                 return 0;
1306         for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1307              (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1308              i = (i + 1) % priv->cmdlog_len) {
1309                 len +=
1310                     snprintf(buf + len, PAGE_SIZE - len,
1311                              "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1312                              priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1313                              priv->cmdlog[i].cmd.len);
1314                 len +=
1315                     snprintk_buf(buf + len, PAGE_SIZE - len,
1316                                  (u8 *) priv->cmdlog[i].cmd.param,
1317                                  priv->cmdlog[i].cmd.len);
1318                 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1319         }
1320         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1321         return len;
1322 }
1323
1324 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1325
1326 #ifdef CONFIG_IPW2200_PROMISCUOUS
1327 static void ipw_prom_free(struct ipw_priv *priv);
1328 static int ipw_prom_alloc(struct ipw_priv *priv);
1329 static ssize_t store_rtap_iface(struct device *d,
1330                          struct device_attribute *attr,
1331                          const char *buf, size_t count)
1332 {
1333         struct ipw_priv *priv = dev_get_drvdata(d);
1334         int rc = 0;
1335
1336         if (count < 1)
1337                 return -EINVAL;
1338
1339         switch (buf[0]) {
1340         case '0':
1341                 if (!rtap_iface)
1342                         return count;
1343
1344                 if (netif_running(priv->prom_net_dev)) {
1345                         IPW_WARNING("Interface is up.  Cannot unregister.\n");
1346                         return count;
1347                 }
1348
1349                 ipw_prom_free(priv);
1350                 rtap_iface = 0;
1351                 break;
1352
1353         case '1':
1354                 if (rtap_iface)
1355                         return count;
1356
1357                 rc = ipw_prom_alloc(priv);
1358                 if (!rc)
1359                         rtap_iface = 1;
1360                 break;
1361
1362         default:
1363                 return -EINVAL;
1364         }
1365
1366         if (rc) {
1367                 IPW_ERROR("Failed to register promiscuous network "
1368                           "device (error %d).\n", rc);
1369         }
1370
1371         return count;
1372 }
1373
1374 static ssize_t show_rtap_iface(struct device *d,
1375                         struct device_attribute *attr,
1376                         char *buf)
1377 {
1378         struct ipw_priv *priv = dev_get_drvdata(d);
1379         if (rtap_iface)
1380                 return sprintf(buf, "%s", priv->prom_net_dev->name);
1381         else {
1382                 buf[0] = '-';
1383                 buf[1] = '1';
1384                 buf[2] = '\0';
1385                 return 3;
1386         }
1387 }
1388
1389 static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1390                    store_rtap_iface);
1391
1392 static ssize_t store_rtap_filter(struct device *d,
1393                          struct device_attribute *attr,
1394                          const char *buf, size_t count)
1395 {
1396         struct ipw_priv *priv = dev_get_drvdata(d);
1397
1398         if (!priv->prom_priv) {
1399                 IPW_ERROR("Attempting to set filter without "
1400                           "rtap_iface enabled.\n");
1401                 return -EPERM;
1402         }
1403
1404         priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1405
1406         IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1407                        BIT_ARG16(priv->prom_priv->filter));
1408
1409         return count;
1410 }
1411
1412 static ssize_t show_rtap_filter(struct device *d,
1413                         struct device_attribute *attr,
1414                         char *buf)
1415 {
1416         struct ipw_priv *priv = dev_get_drvdata(d);
1417         return sprintf(buf, "0x%04X",
1418                        priv->prom_priv ? priv->prom_priv->filter : 0);
1419 }
1420
1421 static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1422                    store_rtap_filter);
1423 #endif
1424
1425 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1426                              char *buf)
1427 {
1428         struct ipw_priv *priv = dev_get_drvdata(d);
1429         return sprintf(buf, "%d\n", priv->ieee->scan_age);
1430 }
1431
1432 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1433                               const char *buf, size_t count)
1434 {
1435         struct ipw_priv *priv = dev_get_drvdata(d);
1436         struct net_device *dev = priv->net_dev;
1437         char buffer[] = "00000000";
1438         unsigned long len =
1439             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1440         unsigned long val;
1441         char *p = buffer;
1442
1443         IPW_DEBUG_INFO("enter\n");
1444
1445         strncpy(buffer, buf, len);
1446         buffer[len] = 0;
1447
1448         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1449                 p++;
1450                 if (p[0] == 'x' || p[0] == 'X')
1451                         p++;
1452                 val = simple_strtoul(p, &p, 16);
1453         } else
1454                 val = simple_strtoul(p, &p, 10);
1455         if (p == buffer) {
1456                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1457         } else {
1458                 priv->ieee->scan_age = val;
1459                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1460         }
1461
1462         IPW_DEBUG_INFO("exit\n");
1463         return len;
1464 }
1465
1466 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1467
1468 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1469                         char *buf)
1470 {
1471         struct ipw_priv *priv = dev_get_drvdata(d);
1472         return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1473 }
1474
1475 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1476                          const char *buf, size_t count)
1477 {
1478         struct ipw_priv *priv = dev_get_drvdata(d);
1479
1480         IPW_DEBUG_INFO("enter\n");
1481
1482         if (count == 0)
1483                 return 0;
1484
1485         if (*buf == 0) {
1486                 IPW_DEBUG_LED("Disabling LED control.\n");
1487                 priv->config |= CFG_NO_LED;
1488                 ipw_led_shutdown(priv);
1489         } else {
1490                 IPW_DEBUG_LED("Enabling LED control.\n");
1491                 priv->config &= ~CFG_NO_LED;
1492                 ipw_led_init(priv);
1493         }
1494
1495         IPW_DEBUG_INFO("exit\n");
1496         return count;
1497 }
1498
1499 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1500
1501 static ssize_t show_status(struct device *d,
1502                            struct device_attribute *attr, char *buf)
1503 {
1504         struct ipw_priv *p = d->driver_data;
1505         return sprintf(buf, "0x%08x\n", (int)p->status);
1506 }
1507
1508 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1509
1510 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1511                         char *buf)
1512 {
1513         struct ipw_priv *p = d->driver_data;
1514         return sprintf(buf, "0x%08x\n", (int)p->config);
1515 }
1516
1517 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1518
1519 static ssize_t show_nic_type(struct device *d,
1520                              struct device_attribute *attr, char *buf)
1521 {
1522         struct ipw_priv *priv = d->driver_data;
1523         return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1524 }
1525
1526 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1527
1528 static ssize_t show_ucode_version(struct device *d,
1529                                   struct device_attribute *attr, char *buf)
1530 {
1531         u32 len = sizeof(u32), tmp = 0;
1532         struct ipw_priv *p = d->driver_data;
1533
1534         if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1535                 return 0;
1536
1537         return sprintf(buf, "0x%08x\n", tmp);
1538 }
1539
1540 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1541
1542 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1543                         char *buf)
1544 {
1545         u32 len = sizeof(u32), tmp = 0;
1546         struct ipw_priv *p = d->driver_data;
1547
1548         if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1549                 return 0;
1550
1551         return sprintf(buf, "0x%08x\n", tmp);
1552 }
1553
1554 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1555
1556 /*
1557  * Add a device attribute to view/control the delay between eeprom
1558  * operations.
1559  */
1560 static ssize_t show_eeprom_delay(struct device *d,
1561                                  struct device_attribute *attr, char *buf)
1562 {
1563         int n = ((struct ipw_priv *)d->driver_data)->eeprom_delay;
1564         return sprintf(buf, "%i\n", n);
1565 }
1566 static ssize_t store_eeprom_delay(struct device *d,
1567                                   struct device_attribute *attr,
1568                                   const char *buf, size_t count)
1569 {
1570         struct ipw_priv *p = d->driver_data;
1571         sscanf(buf, "%i", &p->eeprom_delay);
1572         return strnlen(buf, count);
1573 }
1574
1575 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1576                    show_eeprom_delay, store_eeprom_delay);
1577
1578 static ssize_t show_command_event_reg(struct device *d,
1579                                       struct device_attribute *attr, char *buf)
1580 {
1581         u32 reg = 0;
1582         struct ipw_priv *p = d->driver_data;
1583
1584         reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1585         return sprintf(buf, "0x%08x\n", reg);
1586 }
1587 static ssize_t store_command_event_reg(struct device *d,
1588                                        struct device_attribute *attr,
1589                                        const char *buf, size_t count)
1590 {
1591         u32 reg;
1592         struct ipw_priv *p = d->driver_data;
1593
1594         sscanf(buf, "%x", &reg);
1595         ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1596         return strnlen(buf, count);
1597 }
1598
1599 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1600                    show_command_event_reg, store_command_event_reg);
1601
1602 static ssize_t show_mem_gpio_reg(struct device *d,
1603                                  struct device_attribute *attr, char *buf)
1604 {
1605         u32 reg = 0;
1606         struct ipw_priv *p = d->driver_data;
1607
1608         reg = ipw_read_reg32(p, 0x301100);
1609         return sprintf(buf, "0x%08x\n", reg);
1610 }
1611 static ssize_t store_mem_gpio_reg(struct device *d,
1612                                   struct device_attribute *attr,
1613                                   const char *buf, size_t count)
1614 {
1615         u32 reg;
1616         struct ipw_priv *p = d->driver_data;
1617
1618         sscanf(buf, "%x", &reg);
1619         ipw_write_reg32(p, 0x301100, reg);
1620         return strnlen(buf, count);
1621 }
1622
1623 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1624                    show_mem_gpio_reg, store_mem_gpio_reg);
1625
1626 static ssize_t show_indirect_dword(struct device *d,
1627                                    struct device_attribute *attr, char *buf)
1628 {
1629         u32 reg = 0;
1630         struct ipw_priv *priv = d->driver_data;
1631
1632         if (priv->status & STATUS_INDIRECT_DWORD)
1633                 reg = ipw_read_reg32(priv, priv->indirect_dword);
1634         else
1635                 reg = 0;
1636
1637         return sprintf(buf, "0x%08x\n", reg);
1638 }
1639 static ssize_t store_indirect_dword(struct device *d,
1640                                     struct device_attribute *attr,
1641                                     const char *buf, size_t count)
1642 {
1643         struct ipw_priv *priv = d->driver_data;
1644
1645         sscanf(buf, "%x", &priv->indirect_dword);
1646         priv->status |= STATUS_INDIRECT_DWORD;
1647         return strnlen(buf, count);
1648 }
1649
1650 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1651                    show_indirect_dword, store_indirect_dword);
1652
1653 static ssize_t show_indirect_byte(struct device *d,
1654                                   struct device_attribute *attr, char *buf)
1655 {
1656         u8 reg = 0;
1657         struct ipw_priv *priv = d->driver_data;
1658
1659         if (priv->status & STATUS_INDIRECT_BYTE)
1660                 reg = ipw_read_reg8(priv, priv->indirect_byte);
1661         else
1662                 reg = 0;
1663
1664         return sprintf(buf, "0x%02x\n", reg);
1665 }
1666 static ssize_t store_indirect_byte(struct device *d,
1667                                    struct device_attribute *attr,
1668                                    const char *buf, size_t count)
1669 {
1670         struct ipw_priv *priv = d->driver_data;
1671
1672         sscanf(buf, "%x", &priv->indirect_byte);
1673         priv->status |= STATUS_INDIRECT_BYTE;
1674         return strnlen(buf, count);
1675 }
1676
1677 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1678                    show_indirect_byte, store_indirect_byte);
1679
1680 static ssize_t show_direct_dword(struct device *d,
1681                                  struct device_attribute *attr, char *buf)
1682 {
1683         u32 reg = 0;
1684         struct ipw_priv *priv = d->driver_data;
1685
1686         if (priv->status & STATUS_DIRECT_DWORD)
1687                 reg = ipw_read32(priv, priv->direct_dword);
1688         else
1689                 reg = 0;
1690
1691         return sprintf(buf, "0x%08x\n", reg);
1692 }
1693 static ssize_t store_direct_dword(struct device *d,
1694                                   struct device_attribute *attr,
1695                                   const char *buf, size_t count)
1696 {
1697         struct ipw_priv *priv = d->driver_data;
1698
1699         sscanf(buf, "%x", &priv->direct_dword);
1700         priv->status |= STATUS_DIRECT_DWORD;
1701         return strnlen(buf, count);
1702 }
1703
1704 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1705                    show_direct_dword, store_direct_dword);
1706
1707 static int rf_kill_active(struct ipw_priv *priv)
1708 {
1709         if (0 == (ipw_read32(priv, 0x30) & 0x10000))
1710                 priv->status |= STATUS_RF_KILL_HW;
1711         else
1712                 priv->status &= ~STATUS_RF_KILL_HW;
1713
1714         return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1715 }
1716
1717 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1718                             char *buf)
1719 {
1720         /* 0 - RF kill not enabled
1721            1 - SW based RF kill active (sysfs)
1722            2 - HW based RF kill active
1723            3 - Both HW and SW baed RF kill active */
1724         struct ipw_priv *priv = d->driver_data;
1725         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1726             (rf_kill_active(priv) ? 0x2 : 0x0);
1727         return sprintf(buf, "%i\n", val);
1728 }
1729
1730 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1731 {
1732         if ((disable_radio ? 1 : 0) ==
1733             ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1734                 return 0;
1735
1736         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
1737                           disable_radio ? "OFF" : "ON");
1738
1739         if (disable_radio) {
1740                 priv->status |= STATUS_RF_KILL_SW;
1741
1742                 if (priv->workqueue)
1743                         cancel_delayed_work(&priv->request_scan);
1744                 queue_work(priv->workqueue, &priv->down);
1745         } else {
1746                 priv->status &= ~STATUS_RF_KILL_SW;
1747                 if (rf_kill_active(priv)) {
1748                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1749                                           "disabled by HW switch\n");
1750                         /* Make sure the RF_KILL check timer is running */
1751                         cancel_delayed_work(&priv->rf_kill);
1752                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
1753                                            2 * HZ);
1754                 } else
1755                         queue_work(priv->workqueue, &priv->up);
1756         }
1757
1758         return 1;
1759 }
1760
1761 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1762                              const char *buf, size_t count)
1763 {
1764         struct ipw_priv *priv = d->driver_data;
1765
1766         ipw_radio_kill_sw(priv, buf[0] == '1');
1767
1768         return count;
1769 }
1770
1771 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1772
1773 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1774                                char *buf)
1775 {
1776         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1777         int pos = 0, len = 0;
1778         if (priv->config & CFG_SPEED_SCAN) {
1779                 while (priv->speed_scan[pos] != 0)
1780                         len += sprintf(&buf[len], "%d ",
1781                                        priv->speed_scan[pos++]);
1782                 return len + sprintf(&buf[len], "\n");
1783         }
1784
1785         return sprintf(buf, "0\n");
1786 }
1787
1788 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1789                                 const char *buf, size_t count)
1790 {
1791         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1792         int channel, pos = 0;
1793         const char *p = buf;
1794
1795         /* list of space separated channels to scan, optionally ending with 0 */
1796         while ((channel = simple_strtol(p, NULL, 0))) {
1797                 if (pos == MAX_SPEED_SCAN - 1) {
1798                         priv->speed_scan[pos] = 0;
1799                         break;
1800                 }
1801
1802                 if (ieee80211_is_valid_channel(priv->ieee, channel))
1803                         priv->speed_scan[pos++] = channel;
1804                 else
1805                         IPW_WARNING("Skipping invalid channel request: %d\n",
1806                                     channel);
1807                 p = strchr(p, ' ');
1808                 if (!p)
1809                         break;
1810                 while (*p == ' ' || *p == '\t')
1811                         p++;
1812         }
1813
1814         if (pos == 0)
1815                 priv->config &= ~CFG_SPEED_SCAN;
1816         else {
1817                 priv->speed_scan_pos = 0;
1818                 priv->config |= CFG_SPEED_SCAN;
1819         }
1820
1821         return count;
1822 }
1823
1824 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1825                    store_speed_scan);
1826
1827 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1828                               char *buf)
1829 {
1830         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1831         return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1832 }
1833
1834 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1835                                const char *buf, size_t count)
1836 {
1837         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1838         if (buf[0] == '1')
1839                 priv->config |= CFG_NET_STATS;
1840         else
1841                 priv->config &= ~CFG_NET_STATS;
1842
1843         return count;
1844 }
1845
1846 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1847                    show_net_stats, store_net_stats);
1848
1849 static void notify_wx_assoc_event(struct ipw_priv *priv)
1850 {
1851         union iwreq_data wrqu;
1852         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1853         if (priv->status & STATUS_ASSOCIATED)
1854                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1855         else
1856                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1857         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1858 }
1859
1860 static void ipw_irq_tasklet(struct ipw_priv *priv)
1861 {
1862         u32 inta, inta_mask, handled = 0;
1863         unsigned long flags;
1864         int rc = 0;
1865
1866         spin_lock_irqsave(&priv->irq_lock, flags);
1867
1868         inta = ipw_read32(priv, IPW_INTA_RW);
1869         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1870         inta &= (IPW_INTA_MASK_ALL & inta_mask);
1871
1872         /* Add any cached INTA values that need to be handled */
1873         inta |= priv->isr_inta;
1874
1875         spin_unlock_irqrestore(&priv->irq_lock, flags);
1876
1877         spin_lock_irqsave(&priv->lock, flags);
1878
1879         /* handle all the justifications for the interrupt */
1880         if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1881                 ipw_rx(priv);
1882                 handled |= IPW_INTA_BIT_RX_TRANSFER;
1883         }
1884
1885         if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1886                 IPW_DEBUG_HC("Command completed.\n");
1887                 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1888                 priv->status &= ~STATUS_HCMD_ACTIVE;
1889                 wake_up_interruptible(&priv->wait_command_queue);
1890                 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1891         }
1892
1893         if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1894                 IPW_DEBUG_TX("TX_QUEUE_1\n");
1895                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1896                 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1897         }
1898
1899         if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1900                 IPW_DEBUG_TX("TX_QUEUE_2\n");
1901                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1902                 handled |= IPW_INTA_BIT_TX_QUEUE_2;
1903         }
1904
1905         if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
1906                 IPW_DEBUG_TX("TX_QUEUE_3\n");
1907                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
1908                 handled |= IPW_INTA_BIT_TX_QUEUE_3;
1909         }
1910
1911         if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
1912                 IPW_DEBUG_TX("TX_QUEUE_4\n");
1913                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
1914                 handled |= IPW_INTA_BIT_TX_QUEUE_4;
1915         }
1916
1917         if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
1918                 IPW_WARNING("STATUS_CHANGE\n");
1919                 handled |= IPW_INTA_BIT_STATUS_CHANGE;
1920         }
1921
1922         if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
1923                 IPW_WARNING("TX_PERIOD_EXPIRED\n");
1924                 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
1925         }
1926
1927         if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
1928                 IPW_WARNING("HOST_CMD_DONE\n");
1929                 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
1930         }
1931
1932         if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
1933                 IPW_WARNING("FW_INITIALIZATION_DONE\n");
1934                 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
1935         }
1936
1937         if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
1938                 IPW_WARNING("PHY_OFF_DONE\n");
1939                 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
1940         }
1941
1942         if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
1943                 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
1944                 priv->status |= STATUS_RF_KILL_HW;
1945                 wake_up_interruptible(&priv->wait_command_queue);
1946                 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1947                 cancel_delayed_work(&priv->request_scan);
1948                 schedule_work(&priv->link_down);
1949                 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
1950                 handled |= IPW_INTA_BIT_RF_KILL_DONE;
1951         }
1952
1953         if (inta & IPW_INTA_BIT_FATAL_ERROR) {
1954                 IPW_WARNING("Firmware error detected.  Restarting.\n");
1955                 if (priv->error) {
1956                         IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
1957                         if (ipw_debug_level & IPW_DL_FW_ERRORS) {
1958                                 struct ipw_fw_error *error =
1959                                     ipw_alloc_error_log(priv);
1960                                 ipw_dump_error_log(priv, error);
1961                                 kfree(error);
1962                         }
1963                 } else {
1964                         priv->error = ipw_alloc_error_log(priv);
1965                         if (priv->error)
1966                                 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
1967                         else
1968                                 IPW_DEBUG_FW("Error allocating sysfs 'error' "
1969                                              "log.\n");
1970                         if (ipw_debug_level & IPW_DL_FW_ERRORS)
1971                                 ipw_dump_error_log(priv, priv->error);
1972                 }
1973
1974                 /* XXX: If hardware encryption is for WPA/WPA2,
1975                  * we have to notify the supplicant. */
1976                 if (priv->ieee->sec.encrypt) {
1977                         priv->status &= ~STATUS_ASSOCIATED;
1978                         notify_wx_assoc_event(priv);
1979                 }
1980
1981                 /* Keep the restart process from trying to send host
1982                  * commands by clearing the INIT status bit */
1983                 priv->status &= ~STATUS_INIT;
1984
1985                 /* Cancel currently queued command. */
1986                 priv->status &= ~STATUS_HCMD_ACTIVE;
1987                 wake_up_interruptible(&priv->wait_command_queue);
1988
1989                 queue_work(priv->workqueue, &priv->adapter_restart);
1990                 handled |= IPW_INTA_BIT_FATAL_ERROR;
1991         }
1992
1993         if (inta & IPW_INTA_BIT_PARITY_ERROR) {
1994                 IPW_ERROR("Parity error\n");
1995                 handled |= IPW_INTA_BIT_PARITY_ERROR;
1996         }
1997
1998         if (handled != inta) {
1999                 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2000         }
2001
2002         spin_unlock_irqrestore(&priv->lock, flags);
2003
2004         /* enable all interrupts */
2005         ipw_enable_interrupts(priv);
2006 }
2007
2008 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2009 static char *get_cmd_string(u8 cmd)
2010 {
2011         switch (cmd) {
2012                 IPW_CMD(HOST_COMPLETE);
2013                 IPW_CMD(POWER_DOWN);
2014                 IPW_CMD(SYSTEM_CONFIG);
2015                 IPW_CMD(MULTICAST_ADDRESS);
2016                 IPW_CMD(SSID);
2017                 IPW_CMD(ADAPTER_ADDRESS);
2018                 IPW_CMD(PORT_TYPE);
2019                 IPW_CMD(RTS_THRESHOLD);
2020                 IPW_CMD(FRAG_THRESHOLD);
2021                 IPW_CMD(POWER_MODE);
2022                 IPW_CMD(WEP_KEY);
2023                 IPW_CMD(TGI_TX_KEY);
2024                 IPW_CMD(SCAN_REQUEST);
2025                 IPW_CMD(SCAN_REQUEST_EXT);
2026                 IPW_CMD(ASSOCIATE);
2027                 IPW_CMD(SUPPORTED_RATES);
2028                 IPW_CMD(SCAN_ABORT);
2029                 IPW_CMD(TX_FLUSH);
2030                 IPW_CMD(QOS_PARAMETERS);
2031                 IPW_CMD(DINO_CONFIG);
2032                 IPW_CMD(RSN_CAPABILITIES);
2033                 IPW_CMD(RX_KEY);
2034                 IPW_CMD(CARD_DISABLE);
2035                 IPW_CMD(SEED_NUMBER);
2036                 IPW_CMD(TX_POWER);
2037                 IPW_CMD(COUNTRY_INFO);
2038                 IPW_CMD(AIRONET_INFO);
2039                 IPW_CMD(AP_TX_POWER);
2040                 IPW_CMD(CCKM_INFO);
2041                 IPW_CMD(CCX_VER_INFO);
2042                 IPW_CMD(SET_CALIBRATION);
2043                 IPW_CMD(SENSITIVITY_CALIB);
2044                 IPW_CMD(RETRY_LIMIT);
2045                 IPW_CMD(IPW_PRE_POWER_DOWN);
2046                 IPW_CMD(VAP_BEACON_TEMPLATE);
2047                 IPW_CMD(VAP_DTIM_PERIOD);
2048                 IPW_CMD(EXT_SUPPORTED_RATES);
2049                 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2050                 IPW_CMD(VAP_QUIET_INTERVALS);
2051                 IPW_CMD(VAP_CHANNEL_SWITCH);
2052                 IPW_CMD(VAP_MANDATORY_CHANNELS);
2053                 IPW_CMD(VAP_CELL_PWR_LIMIT);
2054                 IPW_CMD(VAP_CF_PARAM_SET);
2055                 IPW_CMD(VAP_SET_BEACONING_STATE);
2056                 IPW_CMD(MEASUREMENT);
2057                 IPW_CMD(POWER_CAPABILITY);
2058                 IPW_CMD(SUPPORTED_CHANNELS);
2059                 IPW_CMD(TPC_REPORT);
2060                 IPW_CMD(WME_INFO);
2061                 IPW_CMD(PRODUCTION_COMMAND);
2062         default:
2063                 return "UNKNOWN";
2064         }
2065 }
2066
2067 #define HOST_COMPLETE_TIMEOUT HZ
2068
2069 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2070 {
2071         int rc = 0;
2072         unsigned long flags;
2073
2074         spin_lock_irqsave(&priv->lock, flags);
2075         if (priv->status & STATUS_HCMD_ACTIVE) {
2076                 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2077                           get_cmd_string(cmd->cmd));
2078                 spin_unlock_irqrestore(&priv->lock, flags);
2079                 return -EAGAIN;
2080         }
2081
2082         priv->status |= STATUS_HCMD_ACTIVE;
2083
2084         if (priv->cmdlog) {
2085                 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2086                 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2087                 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2088                 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2089                        cmd->len);
2090                 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2091         }
2092
2093         IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2094                      get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2095                      priv->status);
2096
2097 #ifndef DEBUG_CMD_WEP_KEY
2098         if (cmd->cmd == IPW_CMD_WEP_KEY)
2099                 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2100         else
2101 #endif
2102                 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2103
2104         rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2105         if (rc) {
2106                 priv->status &= ~STATUS_HCMD_ACTIVE;
2107                 IPW_ERROR("Failed to send %s: Reason %d\n",
2108                           get_cmd_string(cmd->cmd), rc);
2109                 spin_unlock_irqrestore(&priv->lock, flags);
2110                 goto exit;
2111         }
2112         spin_unlock_irqrestore(&priv->lock, flags);
2113
2114         rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2115                                               !(priv->
2116                                                 status & STATUS_HCMD_ACTIVE),
2117                                               HOST_COMPLETE_TIMEOUT);
2118         if (rc == 0) {
2119                 spin_lock_irqsave(&priv->lock, flags);
2120                 if (priv->status & STATUS_HCMD_ACTIVE) {
2121                         IPW_ERROR("Failed to send %s: Command timed out.\n",
2122                                   get_cmd_string(cmd->cmd));
2123                         priv->status &= ~STATUS_HCMD_ACTIVE;
2124                         spin_unlock_irqrestore(&priv->lock, flags);
2125                         rc = -EIO;
2126                         goto exit;
2127                 }
2128                 spin_unlock_irqrestore(&priv->lock, flags);
2129         } else
2130                 rc = 0;
2131
2132         if (priv->status & STATUS_RF_KILL_HW) {
2133                 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2134                           get_cmd_string(cmd->cmd));
2135                 rc = -EIO;
2136                 goto exit;
2137         }
2138
2139       exit:
2140         if (priv->cmdlog) {
2141                 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2142                 priv->cmdlog_pos %= priv->cmdlog_len;
2143         }
2144         return rc;
2145 }
2146
2147 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2148 {
2149         struct host_cmd cmd = {
2150                 .cmd = command,
2151         };
2152
2153         return __ipw_send_cmd(priv, &cmd);
2154 }
2155
2156 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2157                             void *data)
2158 {
2159         struct host_cmd cmd = {
2160                 .cmd = command,
2161                 .len = len,
2162                 .param = data,
2163         };
2164
2165         return __ipw_send_cmd(priv, &cmd);
2166 }
2167
2168 static int ipw_send_host_complete(struct ipw_priv *priv)
2169 {
2170         if (!priv) {
2171                 IPW_ERROR("Invalid args\n");
2172                 return -1;
2173         }
2174
2175         return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2176 }
2177
2178 static int ipw_send_system_config(struct ipw_priv *priv)
2179 {
2180         return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2181                                 sizeof(priv->sys_config),
2182                                 &priv->sys_config);
2183 }
2184
2185 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2186 {
2187         if (!priv || !ssid) {
2188                 IPW_ERROR("Invalid args\n");
2189                 return -1;
2190         }
2191
2192         return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2193                                 ssid);
2194 }
2195
2196 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2197 {
2198         if (!priv || !mac) {
2199                 IPW_ERROR("Invalid args\n");
2200                 return -1;
2201         }
2202
2203         IPW_DEBUG_INFO("%s: Setting MAC to " MAC_FMT "\n",
2204                        priv->net_dev->name, MAC_ARG(mac));
2205
2206         return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2207 }
2208
2209 /*
2210  * NOTE: This must be executed from our workqueue as it results in udelay
2211  * being called which may corrupt the keyboard if executed on default
2212  * workqueue
2213  */
2214 static void ipw_adapter_restart(void *adapter)
2215 {
2216         struct ipw_priv *priv = adapter;
2217
2218         if (priv->status & STATUS_RF_KILL_MASK)
2219                 return;
2220
2221         ipw_down(priv);
2222
2223         if (priv->assoc_network &&
2224             (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2225                 ipw_remove_current_network(priv);
2226
2227         if (ipw_up(priv)) {
2228                 IPW_ERROR("Failed to up device\n");
2229                 return;
2230         }
2231 }
2232
2233 static void ipw_bg_adapter_restart(void *data)
2234 {
2235         struct ipw_priv *priv = data;
2236         mutex_lock(&priv->mutex);
2237         ipw_adapter_restart(data);
2238         mutex_unlock(&priv->mutex);
2239 }
2240
2241 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2242
2243 static void ipw_scan_check(void *data)
2244 {
2245         struct ipw_priv *priv = data;
2246         if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
2247                 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2248                                "adapter after (%dms).\n",
2249                                jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2250                 queue_work(priv->workqueue, &priv->adapter_restart);
2251         }
2252 }
2253
2254 static void ipw_bg_scan_check(void *data)
2255 {
2256         struct ipw_priv *priv = data;
2257         mutex_lock(&priv->mutex);
2258         ipw_scan_check(data);
2259         mutex_unlock(&priv->mutex);
2260 }
2261
2262 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2263                                      struct ipw_scan_request_ext *request)
2264 {
2265         return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2266                                 sizeof(*request), request);
2267 }
2268
2269 static int ipw_send_scan_abort(struct ipw_priv *priv)
2270 {
2271         if (!priv) {
2272                 IPW_ERROR("Invalid args\n");
2273                 return -1;
2274         }
2275
2276         return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2277 }
2278
2279 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2280 {
2281         struct ipw_sensitivity_calib calib = {
2282                 .beacon_rssi_raw = cpu_to_le16(sens),
2283         };
2284
2285         return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2286                                 &calib);
2287 }
2288
2289 static int ipw_send_associate(struct ipw_priv *priv,
2290                               struct ipw_associate *associate)
2291 {
2292         struct ipw_associate tmp_associate;
2293
2294         if (!priv || !associate) {
2295                 IPW_ERROR("Invalid args\n");
2296                 return -1;
2297         }
2298
2299         memcpy(&tmp_associate, associate, sizeof(*associate));
2300         tmp_associate.policy_support =
2301             cpu_to_le16(tmp_associate.policy_support);
2302         tmp_associate.assoc_tsf_msw = cpu_to_le32(tmp_associate.assoc_tsf_msw);
2303         tmp_associate.assoc_tsf_lsw = cpu_to_le32(tmp_associate.assoc_tsf_lsw);
2304         tmp_associate.capability = cpu_to_le16(tmp_associate.capability);
2305         tmp_associate.listen_interval =
2306             cpu_to_le16(tmp_associate.listen_interval);
2307         tmp_associate.beacon_interval =
2308             cpu_to_le16(tmp_associate.beacon_interval);
2309         tmp_associate.atim_window = cpu_to_le16(tmp_associate.atim_window);
2310
2311         return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(tmp_associate),
2312                                 &tmp_associate);
2313 }
2314
2315 static int ipw_send_supported_rates(struct ipw_priv *priv,
2316                                     struct ipw_supported_rates *rates)
2317 {
2318         if (!priv || !rates) {
2319                 IPW_ERROR("Invalid args\n");
2320                 return -1;
2321         }
2322
2323         return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2324                                 rates);
2325 }
2326
2327 static int ipw_set_random_seed(struct ipw_priv *priv)
2328 {
2329         u32 val;
2330
2331         if (!priv) {
2332                 IPW_ERROR("Invalid args\n");
2333                 return -1;
2334         }
2335
2336         get_random_bytes(&val, sizeof(val));
2337
2338         return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2339 }
2340
2341 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2342 {
2343         if (!priv) {
2344                 IPW_ERROR("Invalid args\n");
2345                 return -1;
2346         }
2347
2348         phy_off = cpu_to_le32(phy_off);
2349         return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(phy_off),
2350                                 &phy_off);
2351 }
2352
2353 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2354 {
2355         if (!priv || !power) {
2356                 IPW_ERROR("Invalid args\n");
2357                 return -1;
2358         }
2359
2360         return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2361 }
2362
2363 static int ipw_set_tx_power(struct ipw_priv *priv)
2364 {
2365         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
2366         struct ipw_tx_power tx_power;
2367         s8 max_power;
2368         int i;
2369
2370         memset(&tx_power, 0, sizeof(tx_power));
2371
2372         /* configure device for 'G' band */
2373         tx_power.ieee_mode = IPW_G_MODE;
2374         tx_power.num_channels = geo->bg_channels;
2375         for (i = 0; i < geo->bg_channels; i++) {
2376                 max_power = geo->bg[i].max_power;
2377                 tx_power.channels_tx_power[i].channel_number =
2378                     geo->bg[i].channel;
2379                 tx_power.channels_tx_power[i].tx_power = max_power ?
2380                     min(max_power, priv->tx_power) : priv->tx_power;
2381         }
2382         if (ipw_send_tx_power(priv, &tx_power))
2383                 return -EIO;
2384
2385         /* configure device to also handle 'B' band */
2386         tx_power.ieee_mode = IPW_B_MODE;
2387         if (ipw_send_tx_power(priv, &tx_power))
2388                 return -EIO;
2389
2390         /* configure device to also handle 'A' band */
2391         if (priv->ieee->abg_true) {
2392                 tx_power.ieee_mode = IPW_A_MODE;
2393                 tx_power.num_channels = geo->a_channels;
2394                 for (i = 0; i < tx_power.num_channels; i++) {
2395                         max_power = geo->a[i].max_power;
2396                         tx_power.channels_tx_power[i].channel_number =
2397                             geo->a[i].channel;
2398                         tx_power.channels_tx_power[i].tx_power = max_power ?
2399                             min(max_power, priv->tx_power) : priv->tx_power;
2400                 }
2401                 if (ipw_send_tx_power(priv, &tx_power))
2402                         return -EIO;
2403         }
2404         return 0;
2405 }
2406
2407 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2408 {
2409         struct ipw_rts_threshold rts_threshold = {
2410                 .rts_threshold = cpu_to_le16(rts),
2411         };
2412
2413         if (!priv) {
2414                 IPW_ERROR("Invalid args\n");
2415                 return -1;
2416         }
2417
2418         return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2419                                 sizeof(rts_threshold), &rts_threshold);
2420 }
2421
2422 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2423 {
2424         struct ipw_frag_threshold frag_threshold = {
2425                 .frag_threshold = cpu_to_le16(frag),
2426         };
2427
2428         if (!priv) {
2429                 IPW_ERROR("Invalid args\n");
2430                 return -1;
2431         }
2432
2433         return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2434                                 sizeof(frag_threshold), &frag_threshold);
2435 }
2436
2437 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2438 {
2439         u32 param;
2440
2441         if (!priv) {
2442                 IPW_ERROR("Invalid args\n");
2443                 return -1;
2444         }
2445
2446         /* If on battery, set to 3, if AC set to CAM, else user
2447          * level */
2448         switch (mode) {
2449         case IPW_POWER_BATTERY:
2450                 param = IPW_POWER_INDEX_3;
2451                 break;
2452         case IPW_POWER_AC:
2453                 param = IPW_POWER_MODE_CAM;
2454                 break;
2455         default:
2456                 param = mode;
2457                 break;
2458         }
2459
2460         param = cpu_to_le32(mode);
2461         return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2462                                 &param);
2463 }
2464
2465 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2466 {
2467         struct ipw_retry_limit retry_limit = {
2468                 .short_retry_limit = slimit,
2469                 .long_retry_limit = llimit
2470         };
2471
2472         if (!priv) {
2473                 IPW_ERROR("Invalid args\n");
2474                 return -1;
2475         }
2476
2477         return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2478                                 &retry_limit);
2479 }
2480
2481 /*
2482  * The IPW device contains a Microwire compatible EEPROM that stores
2483  * various data like the MAC address.  Usually the firmware has exclusive
2484  * access to the eeprom, but during device initialization (before the
2485  * device driver has sent the HostComplete command to the firmware) the
2486  * device driver has read access to the EEPROM by way of indirect addressing
2487  * through a couple of memory mapped registers.
2488  *
2489  * The following is a simplified implementation for pulling data out of the
2490  * the eeprom, along with some helper functions to find information in
2491  * the per device private data's copy of the eeprom.
2492  *
2493  * NOTE: To better understand how these functions work (i.e what is a chip
2494  *       select and why do have to keep driving the eeprom clock?), read
2495  *       just about any data sheet for a Microwire compatible EEPROM.
2496  */
2497
2498 /* write a 32 bit value into the indirect accessor register */
2499 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2500 {
2501         ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2502
2503         /* the eeprom requires some time to complete the operation */
2504         udelay(p->eeprom_delay);
2505
2506         return;
2507 }
2508
2509 /* perform a chip select operation */
2510 static void eeprom_cs(struct ipw_priv *priv)
2511 {
2512         eeprom_write_reg(priv, 0);
2513         eeprom_write_reg(priv, EEPROM_BIT_CS);
2514         eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2515         eeprom_write_reg(priv, EEPROM_BIT_CS);
2516 }
2517
2518 /* perform a chip select operation */
2519 static void eeprom_disable_cs(struct ipw_priv *priv)
2520 {
2521         eeprom_write_reg(priv, EEPROM_BIT_CS);
2522         eeprom_write_reg(priv, 0);
2523         eeprom_write_reg(priv, EEPROM_BIT_SK);
2524 }
2525
2526 /* push a single bit down to the eeprom */
2527 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2528 {
2529         int d = (bit ? EEPROM_BIT_DI : 0);
2530         eeprom_write_reg(p, EEPROM_BIT_CS | d);
2531         eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2532 }
2533
2534 /* push an opcode followed by an address down to the eeprom */
2535 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2536 {
2537         int i;
2538
2539         eeprom_cs(priv);
2540         eeprom_write_bit(priv, 1);
2541         eeprom_write_bit(priv, op & 2);
2542         eeprom_write_bit(priv, op & 1);
2543         for (i = 7; i >= 0; i--) {
2544                 eeprom_write_bit(priv, addr & (1 << i));
2545         }
2546 }
2547
2548 /* pull 16 bits off the eeprom, one bit at a time */
2549 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2550 {
2551         int i;
2552         u16 r = 0;
2553
2554         /* Send READ Opcode */
2555         eeprom_op(priv, EEPROM_CMD_READ, addr);
2556
2557         /* Send dummy bit */
2558         eeprom_write_reg(priv, EEPROM_BIT_CS);
2559
2560         /* Read the byte off the eeprom one bit at a time */
2561         for (i = 0; i < 16; i++) {
2562                 u32 data = 0;
2563                 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2564                 eeprom_write_reg(priv, EEPROM_BIT_CS);
2565                 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2566                 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2567         }
2568
2569         /* Send another dummy bit */
2570         eeprom_write_reg(priv, 0);
2571         eeprom_disable_cs(priv);
2572
2573         return r;
2574 }
2575
2576 /* helper function for pulling the mac address out of the private */
2577 /* data's copy of the eeprom data                                 */
2578 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2579 {
2580         memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2581 }
2582
2583 /*
2584  * Either the device driver (i.e. the host) or the firmware can
2585  * load eeprom data into the designated region in SRAM.  If neither
2586  * happens then the FW will shutdown with a fatal error.
2587  *
2588  * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2589  * bit needs region of shared SRAM needs to be non-zero.
2590  */
2591 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2592 {
2593         int i;
2594         u16 *eeprom = (u16 *) priv->eeprom;
2595
2596         IPW_DEBUG_TRACE(">>\n");
2597
2598         /* read entire contents of eeprom into private buffer */
2599         for (i = 0; i < 128; i++)
2600                 eeprom[i] = le16_to_cpu(eeprom_read_u16(priv, (u8) i));
2601
2602         /*
2603            If the data looks correct, then copy it to our private
2604            copy.  Otherwise let the firmware know to perform the operation
2605            on its own.
2606          */
2607         if (priv->eeprom[EEPROM_VERSION] != 0) {
2608                 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2609
2610                 /* write the eeprom data to sram */
2611                 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2612                         ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2613
2614                 /* Do not load eeprom data on fatal error or suspend */
2615                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2616         } else {
2617                 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2618
2619                 /* Load eeprom data on fatal error or suspend */
2620                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2621         }
2622
2623         IPW_DEBUG_TRACE("<<\n");
2624 }
2625
2626 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2627 {
2628         count >>= 2;
2629         if (!count)
2630                 return;
2631         _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2632         while (count--)
2633                 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2634 }
2635
2636 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2637 {
2638         ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2639                         CB_NUMBER_OF_ELEMENTS_SMALL *
2640                         sizeof(struct command_block));
2641 }
2642
2643 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2644 {                               /* start dma engine but no transfers yet */
2645
2646         IPW_DEBUG_FW(">> : \n");
2647
2648         /* Start the dma */
2649         ipw_fw_dma_reset_command_blocks(priv);
2650
2651         /* Write CB base address */
2652         ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2653
2654         IPW_DEBUG_FW("<< : \n");
2655         return 0;
2656 }
2657
2658 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2659 {
2660         u32 control = 0;
2661
2662         IPW_DEBUG_FW(">> :\n");
2663
2664         /* set the Stop and Abort bit */
2665         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2666         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2667         priv->sram_desc.last_cb_index = 0;
2668
2669         IPW_DEBUG_FW("<< \n");
2670 }
2671
2672 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2673                                           struct command_block *cb)
2674 {
2675         u32 address =
2676             IPW_SHARED_SRAM_DMA_CONTROL +
2677             (sizeof(struct command_block) * index);
2678         IPW_DEBUG_FW(">> :\n");
2679
2680         ipw_write_indirect(priv, address, (u8 *) cb,
2681                            (int)sizeof(struct command_block));
2682
2683         IPW_DEBUG_FW("<< :\n");
2684         return 0;
2685
2686 }
2687
2688 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2689 {
2690         u32 control = 0;
2691         u32 index = 0;
2692
2693         IPW_DEBUG_FW(">> :\n");
2694
2695         for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2696                 ipw_fw_dma_write_command_block(priv, index,
2697                                                &priv->sram_desc.cb_list[index]);
2698
2699         /* Enable the DMA in the CSR register */
2700         ipw_clear_bit(priv, IPW_RESET_REG,
2701                       IPW_RESET_REG_MASTER_DISABLED |
2702                       IPW_RESET_REG_STOP_MASTER);
2703
2704         /* Set the Start bit. */
2705         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2706         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2707
2708         IPW_DEBUG_FW("<< :\n");
2709         return 0;
2710 }
2711
2712 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2713 {
2714         u32 address;
2715         u32 register_value = 0;
2716         u32 cb_fields_address = 0;
2717
2718         IPW_DEBUG_FW(">> :\n");
2719         address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2720         IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);
2721
2722         /* Read the DMA Controlor register */
2723         register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2724         IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x \n", register_value);
2725
2726         /* Print the CB values */
2727         cb_fields_address = address;
2728         register_value = ipw_read_reg32(priv, cb_fields_address);
2729         IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);
2730
2731         cb_fields_address += sizeof(u32);
2732         register_value = ipw_read_reg32(priv, cb_fields_address);
2733         IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);
2734
2735         cb_fields_address += sizeof(u32);
2736         register_value = ipw_read_reg32(priv, cb_fields_address);
2737         IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
2738                           register_value);
2739
2740         cb_fields_address += sizeof(u32);
2741         register_value = ipw_read_reg32(priv, cb_fields_address);
2742         IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);
2743
2744         IPW_DEBUG_FW(">> :\n");
2745 }
2746
2747 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2748 {
2749         u32 current_cb_address = 0;
2750         u32 current_cb_index = 0;
2751
2752         IPW_DEBUG_FW("<< :\n");
2753         current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2754
2755         current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2756             sizeof(struct command_block);
2757
2758         IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
2759                           current_cb_index, current_cb_address);
2760
2761         IPW_DEBUG_FW(">> :\n");
2762         return current_cb_index;
2763
2764 }
2765
2766 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2767                                         u32 src_address,
2768                                         u32 dest_address,
2769                                         u32 length,
2770                                         int interrupt_enabled, int is_last)
2771 {
2772
2773         u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2774             CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2775             CB_DEST_SIZE_LONG;
2776         struct command_block *cb;
2777         u32 last_cb_element = 0;
2778
2779         IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2780                           src_address, dest_address, length);
2781
2782         if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2783                 return -1;
2784
2785         last_cb_element = priv->sram_desc.last_cb_index;
2786         cb = &priv->sram_desc.cb_list[last_cb_element];
2787         priv->sram_desc.last_cb_index++;
2788
2789         /* Calculate the new CB control word */
2790         if (interrupt_enabled)
2791                 control |= CB_INT_ENABLED;
2792
2793         if (is_last)
2794                 control |= CB_LAST_VALID;
2795
2796         control |= length;
2797
2798         /* Calculate the CB Element's checksum value */
2799         cb->status = control ^ src_address ^ dest_address;
2800
2801         /* Copy the Source and Destination addresses */
2802         cb->dest_addr = dest_address;
2803         cb->source_addr = src_address;
2804
2805         /* Copy the Control Word last */
2806         cb->control = control;
2807
2808         return 0;
2809 }
2810
2811 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv,
2812                                  u32 src_phys, u32 dest_address, u32 length)
2813 {
2814         u32 bytes_left = length;
2815         u32 src_offset = 0;
2816         u32 dest_offset = 0;
2817         int status = 0;
2818         IPW_DEBUG_FW(">> \n");
2819         IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n",
2820                           src_phys, dest_address, length);
2821         while (bytes_left > CB_MAX_LENGTH) {
2822                 status = ipw_fw_dma_add_command_block(priv,
2823                                                       src_phys + src_offset,
2824                                                       dest_address +
2825                                                       dest_offset,
2826                                                       CB_MAX_LENGTH, 0, 0);
2827                 if (status) {
2828                         IPW_DEBUG_FW_INFO(": Failed\n");
2829                         return -1;
2830                 } else
2831                         IPW_DEBUG_FW_INFO(": Added new cb\n");
2832
2833                 src_offset += CB_MAX_LENGTH;
2834                 dest_offset += CB_MAX_LENGTH;
2835                 bytes_left -= CB_MAX_LENGTH;
2836         }
2837
2838         /* add the buffer tail */
2839         if (bytes_left > 0) {
2840                 status =
2841                     ipw_fw_dma_add_command_block(priv, src_phys + src_offset,
2842                                                  dest_address + dest_offset,
2843                                                  bytes_left, 0, 0);
2844                 if (status) {
2845                         IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n");
2846                         return -1;
2847                 } else
2848                         IPW_DEBUG_FW_INFO
2849                             (": Adding new cb - the buffer tail\n");
2850         }
2851
2852         IPW_DEBUG_FW("<< \n");
2853         return 0;
2854 }
2855
2856 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2857 {
2858         u32 current_index = 0, previous_index;
2859         u32 watchdog = 0;
2860
2861         IPW_DEBUG_FW(">> : \n");
2862
2863         current_index = ipw_fw_dma_command_block_index(priv);
2864         IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2865                           (int)priv->sram_desc.last_cb_index);
2866
2867         while (current_index < priv->sram_desc.last_cb_index) {
2868                 udelay(50);
2869                 previous_index = current_index;
2870                 current_index = ipw_fw_dma_command_block_index(priv);
2871
2872                 if (previous_index < current_index) {
2873                         watchdog = 0;
2874                         continue;
2875                 }
2876                 if (++watchdog > 400) {
2877                         IPW_DEBUG_FW_INFO("Timeout\n");
2878                         ipw_fw_dma_dump_command_block(priv);
2879                         ipw_fw_dma_abort(priv);
2880                         return -1;
2881                 }
2882         }
2883
2884         ipw_fw_dma_abort(priv);
2885
2886         /*Disable the DMA in the CSR register */
2887         ipw_set_bit(priv, IPW_RESET_REG,
2888                     IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2889
2890         IPW_DEBUG_FW("<< dmaWaitSync \n");
2891         return 0;
2892 }
2893
2894 static void ipw_remove_current_network(struct ipw_priv *priv)
2895 {
2896         struct list_head *element, *safe;
2897         struct ieee80211_network *network = NULL;
2898         unsigned long flags;
2899
2900         spin_lock_irqsave(&priv->ieee->lock, flags);
2901         list_for_each_safe(element, safe, &priv->ieee->network_list) {
2902                 network = list_entry(element, struct ieee80211_network, list);
2903                 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
2904                         list_del(element);
2905                         list_add_tail(&network->list,
2906                                       &priv->ieee->network_free_list);
2907                 }
2908         }
2909         spin_unlock_irqrestore(&priv->ieee->lock, flags);
2910 }
2911
2912 /**
2913  * Check that card is still alive.
2914  * Reads debug register from domain0.
2915  * If card is present, pre-defined value should
2916  * be found there.
2917  *
2918  * @param priv
2919  * @return 1 if card is present, 0 otherwise
2920  */
2921 static inline int ipw_alive(struct ipw_priv *priv)
2922 {
2923         return ipw_read32(priv, 0x90) == 0xd55555d5;
2924 }
2925
2926 /* timeout in msec, attempted in 10-msec quanta */
2927 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
2928                                int timeout)
2929 {
2930         int i = 0;
2931
2932         do {
2933                 if ((ipw_read32(priv, addr) & mask) == mask)
2934                         return i;
2935                 mdelay(10);
2936                 i += 10;
2937         } while (i < timeout);
2938
2939         return -ETIME;
2940 }
2941
2942 /* These functions load the firmware and micro code for the operation of
2943  * the ipw hardware.  It assumes the buffer has all the bits for the
2944  * image and the caller is handling the memory allocation and clean up.
2945  */
2946
2947 static int ipw_stop_master(struct ipw_priv *priv)
2948 {
2949         int rc;
2950
2951         IPW_DEBUG_TRACE(">> \n");
2952         /* stop master. typical delay - 0 */
2953         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
2954
2955         /* timeout is in msec, polled in 10-msec quanta */
2956         rc = ipw_poll_bit(priv, IPW_RESET_REG,
2957                           IPW_RESET_REG_MASTER_DISABLED, 100);
2958         if (rc < 0) {
2959                 IPW_ERROR("wait for stop master failed after 100ms\n");
2960                 return -1;
2961         }
2962
2963         IPW_DEBUG_INFO("stop master %dms\n", rc);
2964
2965         return rc;
2966 }
2967
2968 static void ipw_arc_release(struct ipw_priv *priv)
2969 {
2970         IPW_DEBUG_TRACE(">> \n");
2971         mdelay(5);
2972
2973         ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
2974
2975         /* no one knows timing, for safety add some delay */
2976         mdelay(5);
2977 }
2978
2979 struct fw_chunk {
2980         u32 address;
2981         u32 length;
2982 };
2983
2984 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
2985 {
2986         int rc = 0, i, addr;
2987         u8 cr = 0;
2988         u16 *image;
2989
2990         image = (u16 *) data;
2991
2992         IPW_DEBUG_TRACE(">> \n");
2993
2994         rc = ipw_stop_master(priv);
2995
2996         if (rc < 0)
2997                 return rc;
2998
2999         for (addr = IPW_SHARED_LOWER_BOUND;
3000              addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3001                 ipw_write32(priv, addr, 0);
3002         }
3003
3004         /* no ucode (yet) */
3005         memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3006         /* destroy DMA queues */
3007         /* reset sequence */
3008
3009         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3010         ipw_arc_release(priv);
3011         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3012         mdelay(1);
3013
3014         /* reset PHY */
3015         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3016         mdelay(1);
3017
3018         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3019         mdelay(1);
3020
3021         /* enable ucode store */
3022         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3023         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3024         mdelay(1);
3025
3026         /* write ucode */
3027         /**
3028          * @bug
3029          * Do NOT set indirect address register once and then
3030          * store data to indirect data register in the loop.
3031          * It seems very reasonable, but in this case DINO do not
3032          * accept ucode. It is essential to set address each time.
3033          */
3034         /* load new ipw uCode */
3035         for (i = 0; i < len / 2; i++)
3036                 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3037                                 cpu_to_le16(image[i]));
3038
3039         /* enable DINO */
3040         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3041         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3042
3043         /* this is where the igx / win driver deveates from the VAP driver. */
3044
3045         /* wait for alive response */
3046         for (i = 0; i < 100; i++) {
3047                 /* poll for incoming data */
3048                 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3049                 if (cr & DINO_RXFIFO_DATA)
3050                         break;
3051                 mdelay(1);
3052         }
3053
3054         if (cr & DINO_RXFIFO_DATA) {
3055                 /* alive_command_responce size is NOT multiple of 4 */
3056                 u32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3057
3058                 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3059                         response_buffer[i] =
3060                             le32_to_cpu(ipw_read_reg32(priv,
3061                                                        IPW_BASEBAND_RX_FIFO_READ));
3062                 memcpy(&priv->dino_alive, response_buffer,
3063                        sizeof(priv->dino_alive));
3064                 if (priv->dino_alive.alive_command == 1
3065                     && priv->dino_alive.ucode_valid == 1) {
3066                         rc = 0;
3067                         IPW_DEBUG_INFO
3068                             ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3069                              "of %02d/%02d/%02d %02d:%02d\n",
3070                              priv->dino_alive.software_revision,
3071                              priv->dino_alive.software_revision,
3072                              priv->dino_alive.device_identifier,
3073                              priv->dino_alive.device_identifier,
3074                              priv->dino_alive.time_stamp[0],
3075                              priv->dino_alive.time_stamp[1],
3076                              priv->dino_alive.time_stamp[2],
3077                              priv->dino_alive.time_stamp[3],
3078                              priv->dino_alive.time_stamp[4]);
3079                 } else {
3080                         IPW_DEBUG_INFO("Microcode is not alive\n");
3081                         rc = -EINVAL;
3082                 }
3083         } else {
3084                 IPW_DEBUG_INFO("No alive response from DINO\n");
3085                 rc = -ETIME;
3086         }
3087
3088         /* disable DINO, otherwise for some reason
3089            firmware have problem getting alive resp. */
3090         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3091
3092         return rc;
3093 }
3094
3095 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3096 {
3097         int rc = -1;
3098         int offset = 0;
3099         struct fw_chunk *chunk;
3100         dma_addr_t shared_phys;
3101         u8 *shared_virt;
3102
3103         IPW_DEBUG_TRACE("<< : \n");
3104         shared_virt = pci_alloc_consistent(priv->pci_dev, len, &shared_phys);
3105
3106         if (!shared_virt)
3107                 return -ENOMEM;
3108
3109         memmove(shared_virt, data, len);
3110
3111         /* Start the Dma */
3112         rc = ipw_fw_dma_enable(priv);
3113
3114         if (priv->sram_desc.last_cb_index > 0) {
3115                 /* the DMA is already ready this would be a bug. */
3116                 BUG();
3117                 goto out;
3118         }
3119
3120         do {
3121                 chunk = (struct fw_chunk *)(data + offset);
3122                 offset += sizeof(struct fw_chunk);
3123                 /* build DMA packet and queue up for sending */
3124                 /* dma to chunk->address, the chunk->length bytes from data +
3125                  * offeset*/
3126                 /* Dma loading */
3127                 rc = ipw_fw_dma_add_buffer(priv, shared_phys + offset,
3128                                            le32_to_cpu(chunk->address),
3129                                            le32_to_cpu(chunk->length));
3130                 if (rc) {
3131                         IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3132                         goto out;
3133                 }
3134
3135                 offset += le32_to_cpu(chunk->length);
3136         } while (offset < len);
3137
3138         /* Run the DMA and wait for the answer */
3139         rc = ipw_fw_dma_kick(priv);
3140         if (rc) {
3141                 IPW_ERROR("dmaKick Failed\n");
3142                 goto out;
3143         }
3144
3145         rc = ipw_fw_dma_wait(priv);
3146         if (rc) {
3147                 IPW_ERROR("dmaWaitSync Failed\n");
3148                 goto out;
3149         }
3150       out:
3151         pci_free_consistent(priv->pci_dev, len, shared_virt, shared_phys);
3152         return rc;
3153 }
3154
3155 /* stop nic */
3156 static int ipw_stop_nic(struct ipw_priv *priv)
3157 {
3158         int rc = 0;
3159
3160         /* stop */
3161         ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3162
3163         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3164                           IPW_RESET_REG_MASTER_DISABLED, 500);
3165         if (rc < 0) {
3166                 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3167                 return rc;
3168         }
3169
3170         ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3171
3172         return rc;
3173 }
3174
3175 static void ipw_start_nic(struct ipw_priv *priv)
3176 {
3177         IPW_DEBUG_TRACE(">>\n");
3178
3179         /* prvHwStartNic  release ARC */
3180         ipw_clear_bit(priv, IPW_RESET_REG,
3181                       IPW_RESET_REG_MASTER_DISABLED |
3182                       IPW_RESET_REG_STOP_MASTER |
3183                       CBD_RESET_REG_PRINCETON_RESET);
3184
3185         /* enable power management */
3186         ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3187                     IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3188
3189         IPW_DEBUG_TRACE("<<\n");
3190 }
3191
3192 static int ipw_init_nic(struct ipw_priv *priv)
3193 {
3194         int rc;
3195
3196         IPW_DEBUG_TRACE(">>\n");
3197         /* reset */
3198         /*prvHwInitNic */
3199         /* set "initialization complete" bit to move adapter to D0 state */
3200         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3201
3202         /* low-level PLL activation */
3203         ipw_write32(priv, IPW_READ_INT_REGISTER,
3204                     IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3205
3206         /* wait for clock stabilization */
3207         rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3208                           IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3209         if (rc < 0)
3210                 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3211
3212         /* assert SW reset */
3213         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3214
3215         udelay(10);
3216
3217         /* set "initialization complete" bit to move adapter to D0 state */
3218         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3219
3220         IPW_DEBUG_TRACE(">>\n");
3221         return 0;
3222 }
3223
3224 /* Call this function from process context, it will sleep in request_firmware.
3225  * Probe is an ok place to call this from.
3226  */
3227 static int ipw_reset_nic(struct ipw_priv *priv)
3228 {
3229         int rc = 0;
3230         unsigned long flags;
3231
3232         IPW_DEBUG_TRACE(">>\n");
3233
3234         rc = ipw_init_nic(priv);
3235
3236         spin_lock_irqsave(&priv->lock, flags);
3237         /* Clear the 'host command active' bit... */
3238         priv->status &= ~STATUS_HCMD_ACTIVE;
3239         wake_up_interruptible(&priv->wait_command_queue);
3240         priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3241         wake_up_interruptible(&priv->wait_state);
3242         spin_unlock_irqrestore(&priv->lock, flags);
3243
3244         IPW_DEBUG_TRACE("<<\n");
3245         return rc;
3246 }
3247
3248
3249 struct ipw_fw {
3250         __le32 ver;
3251         __le32 boot_size;
3252         __le32 ucode_size;
3253         __le32 fw_size;
3254         u8 data[0];
3255 };
3256
3257 static int ipw_get_fw(struct ipw_priv *priv,
3258                       const struct firmware **raw, const char *name)
3259 {
3260         struct ipw_fw *fw;
3261         int rc;
3262
3263         /* ask firmware_class module to get the boot firmware off disk */
3264         rc = request_firmware(raw, name, &priv->pci_dev->dev);
3265         if (rc < 0) {
3266                 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3267                 return rc;
3268         }
3269
3270         if ((*raw)->size < sizeof(*fw)) {
3271                 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3272                 return -EINVAL;
3273         }
3274
3275         fw = (void *)(*raw)->data;
3276
3277         if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3278             le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3279                 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3280                           name, (*raw)->size);
3281                 return -EINVAL;
3282         }
3283
3284         IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3285                        name,
3286                        le32_to_cpu(fw->ver) >> 16,
3287                        le32_to_cpu(fw->ver) & 0xff,
3288                        (*raw)->size - sizeof(*fw));
3289         return 0;
3290 }
3291
3292 #define IPW_RX_BUF_SIZE (3000)
3293
3294 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3295                                       struct ipw_rx_queue *rxq)
3296 {
3297         unsigned long flags;
3298         int i;
3299
3300         spin_lock_irqsave(&rxq->lock, flags);
3301
3302         INIT_LIST_HEAD(&rxq->rx_free);
3303         INIT_LIST_HEAD(&rxq->rx_used);
3304
3305         /* Fill the rx_used queue with _all_ of the Rx buffers */
3306         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3307                 /* In the reset function, these buffers may have been allocated
3308                  * to an SKB, so we need to unmap and free potential storage */
3309                 if (rxq->pool[i].skb != NULL) {
3310                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3311                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3312                         dev_kfree_skb(rxq->pool[i].skb);
3313                         rxq->pool[i].skb = NULL;
3314                 }
3315                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3316         }
3317
3318         /* Set us so that we have processed and used all buffers, but have
3319          * not restocked the Rx queue with fresh buffers */
3320         rxq->read = rxq->write = 0;
3321         rxq->processed = RX_QUEUE_SIZE - 1;
3322         rxq->free_count = 0;
3323         spin_unlock_irqrestore(&rxq->lock, flags);
3324 }
3325
3326 #ifdef CONFIG_PM
3327 static int fw_loaded = 0;
3328 static const struct firmware *raw = NULL;
3329
3330 static void free_firmware(void)
3331 {
3332         if (fw_loaded) {
3333                 release_firmware(raw);
3334                 raw = NULL;
3335                 fw_loaded = 0;
3336         }
3337 }
3338 #else
3339 #define free_firmware() do {} while (0)
3340 #endif
3341
3342 static int ipw_load(struct ipw_priv *priv)
3343 {
3344 #ifndef CONFIG_PM
3345         const struct firmware *raw = NULL;
3346 #endif
3347         struct ipw_fw *fw;
3348         u8 *boot_img, *ucode_img, *fw_img;
3349         u8 *name = NULL;
3350         int rc = 0, retries = 3;
3351
3352         switch (priv->ieee->iw_mode) {
3353         case IW_MODE_ADHOC:
3354                 name = "ipw2200-ibss.fw";
3355                 break;
3356 #ifdef CONFIG_IPW2200_MONITOR
3357         case IW_MODE_MONITOR:
3358                 name = "ipw2200-sniffer.fw";
3359                 break;
3360 #endif
3361         case IW_MODE_INFRA:
3362                 name = "ipw2200-bss.fw";
3363                 break;
3364         }
3365
3366         if (!name) {
3367                 rc = -EINVAL;
3368                 goto error;
3369         }
3370
3371 #ifdef CONFIG_PM
3372         if (!fw_loaded) {
3373 #endif
3374                 rc = ipw_get_fw(priv, &raw, name);
3375                 if (rc < 0)
3376                         goto error;
3377 #ifdef CONFIG_PM
3378         }
3379 #endif
3380
3381         fw = (void *)raw->data;
3382         boot_img = &fw->data[0];
3383         ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3384         fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3385                            le32_to_cpu(fw->ucode_size)];
3386
3387         if (rc < 0)
3388                 goto error;
3389
3390         if (!priv->rxq)
3391                 priv->rxq = ipw_rx_queue_alloc(priv);
3392         else
3393                 ipw_rx_queue_reset(priv, priv->rxq);
3394         if (!priv->rxq) {
3395                 IPW_ERROR("Unable to initialize Rx queue\n");
3396                 goto error;
3397         }
3398
3399       retry:
3400         /* Ensure interrupts are disabled */
3401         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3402         priv->status &= ~STATUS_INT_ENABLED;
3403
3404         /* ack pending interrupts */
3405         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3406
3407         ipw_stop_nic(priv);
3408
3409         rc = ipw_reset_nic(priv);
3410         if (rc < 0) {
3411                 IPW_ERROR("Unable to reset NIC\n");
3412                 goto error;
3413         }
3414
3415         ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3416                         IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3417
3418         /* DMA the initial boot firmware into the device */
3419         rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3420         if (rc < 0) {
3421                 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3422                 goto error;
3423         }
3424
3425         /* kick start the device */
3426         ipw_start_nic(priv);
3427
3428         /* wait for the device to finish its initial startup sequence */
3429         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3430                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3431         if (rc < 0) {
3432                 IPW_ERROR("device failed to boot initial fw image\n");
3433                 goto error;
3434         }
3435         IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3436
3437         /* ack fw init done interrupt */
3438         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3439
3440         /* DMA the ucode into the device */
3441         rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3442         if (rc < 0) {
3443                 IPW_ERROR("Unable to load ucode: %d\n", rc);
3444                 goto error;
3445         }
3446
3447         /* stop nic */
3448         ipw_stop_nic(priv);
3449
3450         /* DMA bss firmware into the device */
3451         rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3452         if (rc < 0) {
3453                 IPW_ERROR("Unable to load firmware: %d\n", rc);
3454                 goto error;
3455         }
3456 #ifdef CONFIG_PM
3457         fw_loaded = 1;
3458 #endif
3459
3460         ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3461
3462         rc = ipw_queue_reset(priv);
3463         if (rc < 0) {
3464                 IPW_ERROR("Unable to initialize queues\n");
3465                 goto error;
3466         }
3467
3468         /* Ensure interrupts are disabled */
3469         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3470         /* ack pending interrupts */
3471         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3472
3473         /* kick start the device */
3474         ipw_start_nic(priv);
3475
3476         if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3477                 if (retries > 0) {
3478                         IPW_WARNING("Parity error.  Retrying init.\n");
3479                         retries--;
3480                         goto retry;
3481                 }
3482
3483                 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3484                 rc = -EIO;
3485                 goto error;
3486         }
3487
3488         /* wait for the device */
3489         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3490                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3491         if (rc < 0) {
3492                 IPW_ERROR("device failed to start within 500ms\n");
3493                 goto error;
3494         }
3495         IPW_DEBUG_INFO("device response after %dms\n", rc);
3496
3497         /* ack fw init done interrupt */
3498         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3499
3500         /* read eeprom data and initialize the eeprom region of sram */
3501         priv->eeprom_delay = 1;
3502         ipw_eeprom_init_sram(priv);
3503
3504         /* enable interrupts */
3505         ipw_enable_interrupts(priv);
3506
3507         /* Ensure our queue has valid packets */
3508         ipw_rx_queue_replenish(priv);
3509
3510         ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3511
3512         /* ack pending interrupts */
3513         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3514
3515 #ifndef CONFIG_PM
3516         release_firmware(raw);
3517 #endif
3518         return 0;
3519
3520       error:
3521         if (priv->rxq) {
3522                 ipw_rx_queue_free(priv, priv->rxq);
3523                 priv->rxq = NULL;
3524         }
3525         ipw_tx_queue_free(priv);
3526         if (raw)
3527                 release_firmware(raw);
3528 #ifdef CONFIG_PM
3529         fw_loaded = 0;
3530         raw = NULL;
3531 #endif
3532
3533         return rc;
3534 }
3535
3536 /**
3537  * DMA services
3538  *
3539  * Theory of operation
3540  *
3541  * A queue is a circular buffers with 'Read' and 'Write' pointers.
3542  * 2 empty entries always kept in the buffer to protect from overflow.
3543  *
3544  * For Tx queue, there are low mark and high mark limits. If, after queuing
3545  * the packet for Tx, free space become < low mark, Tx queue stopped. When
3546  * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3547  * Tx queue resumed.
3548  *
3549  * The IPW operates with six queues, one receive queue in the device's
3550  * sram, one transmit queue for sending commands to the device firmware,
3551  * and four transmit queues for data.
3552  *
3553  * The four transmit queues allow for performing quality of service (qos)
3554  * transmissions as per the 802.11 protocol.  Currently Linux does not
3555  * provide a mechanism to the user for utilizing prioritized queues, so
3556  * we only utilize the first data transmit queue (queue1).
3557  */
3558
3559 /**
3560  * Driver allocates buffers of this size for Rx
3561  */
3562
3563 static inline int ipw_queue_space(const struct clx2_queue *q)
3564 {
3565         int s = q->last_used - q->first_empty;
3566         if (s <= 0)
3567                 s += q->n_bd;
3568         s -= 2;                 /* keep some reserve to not confuse empty and full situations */
3569         if (s < 0)
3570                 s = 0;
3571         return s;
3572 }
3573
3574 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3575 {
3576         return (++index == n_bd) ? 0 : index;
3577 }
3578
3579 /**
3580  * Initialize common DMA queue structure
3581  *
3582  * @param q                queue to init
3583  * @param count            Number of BD's to allocate. Should be power of 2
3584  * @param read_register    Address for 'read' register
3585  *                         (not offset within BAR, full address)
3586  * @param write_register   Address for 'write' register
3587  *                         (not offset within BAR, full address)
3588  * @param base_register    Address for 'base' register
3589  *                         (not offset within BAR, full address)
3590  * @param size             Address for 'size' register
3591  *                         (not offset within BAR, full address)
3592  */
3593 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3594                            int count, u32 read, u32 write, u32 base, u32 size)
3595 {
3596         q->n_bd = count;
3597
3598         q->low_mark = q->n_bd / 4;
3599         if (q->low_mark < 4)
3600                 q->low_mark = 4;
3601
3602         q->high_mark = q->n_bd / 8;
3603         if (q->high_mark < 2)
3604                 q->high_mark = 2;
3605
3606         q->first_empty = q->last_used = 0;
3607         q->reg_r = read;
3608         q->reg_w = write;
3609
3610         ipw_write32(priv, base, q->dma_addr);
3611         ipw_write32(priv, size, count);
3612         ipw_write32(priv, read, 0);
3613         ipw_write32(priv, write, 0);
3614
3615         _ipw_read32(priv, 0x90);
3616 }
3617
3618 static int ipw_queue_tx_init(struct ipw_priv *priv,
3619                              struct clx2_tx_queue *q,
3620                              int count, u32 read, u32 write, u32 base, u32 size)
3621 {
3622         struct pci_dev *dev = priv->pci_dev;
3623
3624         q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3625         if (!q->txb) {
3626                 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3627                 return -ENOMEM;
3628         }
3629
3630         q->bd =
3631             pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3632         if (!q->bd) {
3633                 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3634                           sizeof(q->bd[0]) * count);
3635                 kfree(q->txb);
3636                 q->txb = NULL;
3637                 return -ENOMEM;
3638         }
3639
3640         ipw_queue_init(priv, &q->q, count, read, write, base, size);
3641         return 0;
3642 }
3643
3644 /**
3645  * Free one TFD, those at index [txq->q.last_used].
3646  * Do NOT advance any indexes
3647  *
3648  * @param dev
3649  * @param txq
3650  */
3651 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3652                                   struct clx2_tx_queue *txq)
3653 {
3654         struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3655         struct pci_dev *dev = priv->pci_dev;
3656         int i;
3657
3658         /* classify bd */
3659         if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3660                 /* nothing to cleanup after for host commands */
3661                 return;
3662
3663         /* sanity check */
3664         if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3665                 IPW_ERROR("Too many chunks: %i\n",
3666                           le32_to_cpu(bd->u.data.num_chunks));
3667                 /** @todo issue fatal error, it is quite serious situation */
3668                 return;
3669         }
3670
3671         /* unmap chunks if any */
3672         for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3673                 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3674                                  le16_to_cpu(bd->u.data.chunk_len[i]),
3675                                  PCI_DMA_TODEVICE);
3676                 if (txq->txb[txq->q.last_used]) {
3677                         ieee80211_txb_free(txq->txb[txq->q.last_used]);
3678                         txq->txb[txq->q.last_used] = NULL;
3679                 }
3680         }
3681 }
3682
3683 /**
3684  * Deallocate DMA queue.
3685  *
3686  * Empty queue by removing and destroying all BD's.
3687  * Free all buffers.
3688  *
3689  * @param dev
3690  * @param q
3691  */
3692 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3693 {
3694         struct clx2_queue *q = &txq->q;
3695         struct pci_dev *dev = priv->pci_dev;
3696
3697         if (q->n_bd == 0)
3698                 return;
3699
3700         /* first, empty all BD's */
3701         for (; q->first_empty != q->last_used;
3702              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3703                 ipw_queue_tx_free_tfd(priv, txq);
3704         }
3705
3706         /* free buffers belonging to queue itself */
3707         pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3708                             q->dma_addr);
3709         kfree(txq->txb);
3710
3711         /* 0 fill whole structure */
3712         memset(txq, 0, sizeof(*txq));
3713 }
3714
3715 /**
3716  * Destroy all DMA queues and structures
3717  *
3718  * @param priv
3719  */
3720 static void ipw_tx_queue_free(struct ipw_priv *priv)
3721 {
3722         /* Tx CMD queue */
3723         ipw_queue_tx_free(priv, &priv->txq_cmd);
3724
3725         /* Tx queues */
3726         ipw_queue_tx_free(priv, &priv->txq[0]);
3727         ipw_queue_tx_free(priv, &priv->txq[1]);
3728         ipw_queue_tx_free(priv, &priv->txq[2]);
3729         ipw_queue_tx_free(priv, &priv->txq[3]);
3730 }
3731
3732 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3733 {
3734         /* First 3 bytes are manufacturer */
3735         bssid[0] = priv->mac_addr[0];
3736         bssid[1] = priv->mac_addr[1];
3737         bssid[2] = priv->mac_addr[2];
3738
3739         /* Last bytes are random */
3740         get_random_bytes(&bssid[3], ETH_ALEN - 3);
3741
3742         bssid[0] &= 0xfe;       /* clear multicast bit */
3743         bssid[0] |= 0x02;       /* set local assignment bit (IEEE802) */
3744 }
3745
3746 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3747 {
3748         struct ipw_station_entry entry;
3749         int i;
3750
3751         for (i = 0; i < priv->num_stations; i++) {
3752                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3753                         /* Another node is active in network */
3754                         priv->missed_adhoc_beacons = 0;
3755                         if (!(priv->config & CFG_STATIC_CHANNEL))
3756                                 /* when other nodes drop out, we drop out */
3757                                 priv->config &= ~CFG_ADHOC_PERSIST;
3758
3759                         return i;
3760                 }
3761         }
3762
3763         if (i == MAX_STATIONS)
3764                 return IPW_INVALID_STATION;
3765
3766         IPW_DEBUG_SCAN("Adding AdHoc station: " MAC_FMT "\n", MAC_ARG(bssid));
3767
3768         entry.reserved = 0;
3769         entry.support_mode = 0;
3770         memcpy(entry.mac_addr, bssid, ETH_ALEN);
3771         memcpy(priv->stations[i], bssid, ETH_ALEN);
3772         ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3773                          &entry, sizeof(entry));
3774         priv->num_stations++;
3775
3776         return i;
3777 }
3778
3779 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3780 {
3781         int i;
3782
3783         for (i = 0; i < priv->num_stations; i++)
3784                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3785                         return i;
3786
3787         return IPW_INVALID_STATION;
3788 }
3789
3790 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3791 {
3792         int err;
3793
3794         if (priv->status & STATUS_ASSOCIATING) {
3795                 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3796                 queue_work(priv->workqueue, &priv->disassociate);
3797                 return;
3798         }
3799
3800         if (!(priv->status & STATUS_ASSOCIATED)) {
3801                 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3802                 return;
3803         }
3804
3805         IPW_DEBUG_ASSOC("Disassocation attempt from " MAC_FMT " "
3806                         "on channel %d.\n",
3807                         MAC_ARG(priv->assoc_request.bssid),
3808                         priv->assoc_request.channel);
3809
3810         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3811         priv->status |= STATUS_DISASSOCIATING;
3812
3813         if (quiet)
3814                 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3815         else
3816                 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3817
3818         err = ipw_send_associate(priv, &priv->assoc_request);
3819         if (err) {
3820                 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3821                              "failed.\n");
3822                 return;
3823         }
3824
3825 }
3826
3827 static int ipw_disassociate(void *data)
3828 {
3829         struct ipw_priv *priv = data;
3830         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3831                 return 0;
3832         ipw_send_disassociate(data, 0);
3833         return 1;
3834 }
3835
3836 static void ipw_bg_disassociate(void *data)
3837 {
3838         struct ipw_priv *priv = data;
3839         mutex_lock(&priv->mutex);
3840         ipw_disassociate(data);
3841         mutex_unlock(&priv->mutex);
3842 }
3843
3844 static void ipw_system_config(void *data)
3845 {
3846         struct ipw_priv *priv = data;
3847
3848 #ifdef CONFIG_IPW2200_PROMISCUOUS
3849         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
3850                 priv->sys_config.accept_all_data_frames = 1;
3851                 priv->sys_config.accept_non_directed_frames = 1;
3852                 priv->sys_config.accept_all_mgmt_bcpr = 1;
3853                 priv->sys_config.accept_all_mgmt_frames = 1;
3854         }
3855 #endif
3856
3857         ipw_send_system_config(priv);
3858 }
3859
3860 struct ipw_status_code {
3861         u16 status;
3862         const char *reason;
3863 };
3864
3865 static const struct ipw_status_code ipw_status_codes[] = {
3866         {0x00, "Successful"},
3867         {0x01, "Unspecified failure"},
3868         {0x0A, "Cannot support all requested capabilities in the "
3869          "Capability information field"},
3870         {0x0B, "Reassociation denied due to inability to confirm that "
3871          "association exists"},
3872         {0x0C, "Association denied due to reason outside the scope of this "
3873          "standard"},
3874         {0x0D,
3875          "Responding station does not support the specified authentication "
3876          "algorithm"},
3877         {0x0E,
3878          "Received an Authentication frame with authentication sequence "
3879          "transaction sequence number out of expected sequence"},
3880         {0x0F, "Authentication rejected because of challenge failure"},
3881         {0x10, "Authentication rejected due to timeout waiting for next "
3882          "frame in sequence"},
3883         {0x11, "Association denied because AP is unable to handle additional "
3884          "associated stations"},
3885         {0x12,
3886          "Association denied due to requesting station not supporting all "
3887          "of the datarates in the BSSBasicServiceSet Parameter"},
3888         {0x13,
3889          "Association denied due to requesting station not supporting "
3890          "short preamble operation"},
3891         {0x14,
3892          "Association denied due to requesting station not supporting "
3893          "PBCC encoding"},
3894         {0x15,
3895          "Association denied due to requesting station not supporting "
3896          "channel agility"},
3897         {0x19,
3898          "Association denied due to requesting station not supporting "
3899          "short slot operation"},
3900         {0x1A,
3901          "Association denied due to requesting station not supporting "
3902          "DSSS-OFDM operation"},
3903         {0x28, "Invalid Information Element"},
3904         {0x29, "Group Cipher is not valid"},
3905         {0x2A, "Pairwise Cipher is not valid"},
3906         {0x2B, "AKMP is not valid"},
3907         {0x2C, "Unsupported RSN IE version"},
3908         {0x2D, "Invalid RSN IE Capabilities"},
3909         {0x2E, "Cipher suite is rejected per security policy"},
3910 };
3911
3912 static const char *ipw_get_status_code(u16 status)
3913 {
3914         int i;
3915         for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
3916                 if (ipw_status_codes[i].status == (status & 0xff))
3917                         return ipw_status_codes[i].reason;
3918         return "Unknown status value.";
3919 }
3920
3921 static void inline average_init(struct average *avg)
3922 {
3923         memset(avg, 0, sizeof(*avg));
3924 }
3925
3926 #define DEPTH_RSSI 8
3927 #define DEPTH_NOISE 16
3928 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
3929 {
3930         return ((depth-1)*prev_avg +  val)/depth;
3931 }
3932
3933 static void average_add(struct average *avg, s16 val)
3934 {
3935         avg->sum -= avg->entries[avg->pos];
3936         avg->sum += val;
3937         avg->entries[avg->pos++] = val;
3938         if (unlikely(avg->pos == AVG_ENTRIES)) {
3939                 avg->init = 1;
3940                 avg->pos = 0;
3941         }
3942 }
3943
3944 static s16 average_value(struct average *avg)
3945 {
3946         if (!unlikely(avg->init)) {
3947                 if (avg->pos)
3948                         return avg->sum / avg->pos;
3949                 return 0;
3950         }
3951
3952         return avg->sum / AVG_ENTRIES;
3953 }
3954
3955 static void ipw_reset_stats(struct ipw_priv *priv)
3956 {
3957         u32 len = sizeof(u32);
3958
3959         priv->quality = 0;
3960
3961         average_init(&priv->average_missed_beacons);
3962         priv->exp_avg_rssi = -60;
3963         priv->exp_avg_noise = -85 + 0x100;
3964
3965         priv->last_rate = 0;
3966         priv->last_missed_beacons = 0;
3967         priv->last_rx_packets = 0;
3968         priv->last_tx_packets = 0;
3969         priv->last_tx_failures = 0;
3970
3971         /* Firmware managed, reset only when NIC is restarted, so we have to
3972          * normalize on the current value */
3973         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
3974                         &priv->last_rx_err, &len);
3975         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
3976                         &priv->last_tx_failures, &len);
3977
3978         /* Driver managed, reset with each association */
3979         priv->missed_adhoc_beacons = 0;
3980         priv->missed_beacons = 0;
3981         priv->tx_packets = 0;
3982         priv->rx_packets = 0;
3983
3984 }
3985
3986 static u32 ipw_get_max_rate(struct ipw_priv *priv)
3987 {
3988         u32 i = 0x80000000;
3989         u32 mask = priv->rates_mask;
3990         /* If currently associated in B mode, restrict the maximum
3991          * rate match to B rates */
3992         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
3993                 mask &= IEEE80211_CCK_RATES_MASK;
3994
3995         /* TODO: Verify that the rate is supported by the current rates
3996          * list. */
3997
3998         while (i && !(mask & i))
3999                 i >>= 1;
4000         switch (i) {
4001         case IEEE80211_CCK_RATE_1MB_MASK:
4002                 return 1000000;
4003         case IEEE80211_CCK_RATE_2MB_MASK:
4004                 return 2000000;
4005         case IEEE80211_CCK_RATE_5MB_MASK:
4006                 return 5500000;
4007         case IEEE80211_OFDM_RATE_6MB_MASK:
4008                 return 6000000;
4009         case IEEE80211_OFDM_RATE_9MB_MASK:
4010                 return 9000000;
4011         case IEEE80211_CCK_RATE_11MB_MASK:
4012                 return 11000000;
4013         case IEEE80211_OFDM_RATE_12MB_MASK:
4014                 return 12000000;
4015         case IEEE80211_OFDM_RATE_18MB_MASK:
4016                 return 18000000;
4017         case IEEE80211_OFDM_RATE_24MB_MASK:
4018                 return 24000000;
4019         case IEEE80211_OFDM_RATE_36MB_MASK:
4020                 return 36000000;
4021         case IEEE80211_OFDM_RATE_48MB_MASK:
4022                 return 48000000;
4023         case IEEE80211_OFDM_RATE_54MB_MASK:
4024                 return 54000000;
4025         }
4026
4027         if (priv->ieee->mode == IEEE_B)
4028                 return 11000000;
4029         else
4030                 return 54000000;
4031 }
4032
4033 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4034 {
4035         u32 rate, len = sizeof(rate);
4036         int err;
4037
4038         if (!(priv->status & STATUS_ASSOCIATED))
4039                 return 0;
4040
4041         if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4042                 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4043                                       &len);
4044                 if (err) {
4045                         IPW_DEBUG_INFO("failed querying ordinals.\n");
4046                         return 0;
4047                 }
4048         } else
4049                 return ipw_get_max_rate(priv);
4050
4051         switch (rate) {
4052         case IPW_TX_RATE_1MB:
4053                 return 1000000;
4054         case IPW_TX_RATE_2MB:
4055                 return 2000000;
4056         case IPW_TX_RATE_5MB:
4057                 return 5500000;
4058         case IPW_TX_RATE_6MB:
4059                 return 6000000;
4060         case IPW_TX_RATE_9MB:
4061                 return 9000000;
4062         case IPW_TX_RATE_11MB:
4063                 return 11000000;
4064         case IPW_TX_RATE_12MB:
4065                 return 12000000;
4066         case IPW_TX_RATE_18MB:
4067                 return 18000000;
4068         case IPW_TX_RATE_24MB:
4069                 return 24000000;
4070         case IPW_TX_RATE_36MB:
4071                 return 36000000;
4072         case IPW_TX_RATE_48MB:
4073                 return 48000000;
4074         case IPW_TX_RATE_54MB:
4075                 return 54000000;
4076         }
4077
4078         return 0;
4079 }
4080
4081 #define IPW_STATS_INTERVAL (2 * HZ)
4082 static void ipw_gather_stats(struct ipw_priv *priv)
4083 {
4084         u32 rx_err, rx_err_delta, rx_packets_delta;
4085         u32 tx_failures, tx_failures_delta, tx_packets_delta;
4086         u32 missed_beacons_percent, missed_beacons_delta;
4087         u32 quality = 0;
4088         u32 len = sizeof(u32);
4089         s16 rssi;
4090         u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4091             rate_quality;
4092         u32 max_rate;
4093
4094         if (!(priv->status & STATUS_ASSOCIATED)) {
4095                 priv->quality = 0;
4096                 return;
4097         }
4098
4099         /* Update the statistics */
4100         ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4101                         &priv->missed_beacons, &len);
4102         missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4103         priv->last_missed_beacons = priv->missed_beacons;
4104         if (priv->assoc_request.beacon_interval) {
4105                 missed_beacons_percent = missed_beacons_delta *
4106                     (HZ * priv->assoc_request.beacon_interval) /
4107                     (IPW_STATS_INTERVAL * 10);
4108         } else {
4109                 missed_beacons_percent = 0;
4110         }
4111         average_add(&priv->average_missed_beacons, missed_beacons_percent);
4112
4113         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4114         rx_err_delta = rx_err - priv->last_rx_err;
4115         priv->last_rx_err = rx_err;
4116
4117         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4118         tx_failures_delta = tx_failures - priv->last_tx_failures;
4119         priv->last_tx_failures = tx_failures;
4120
4121         rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4122         priv->last_rx_packets = priv->rx_packets;
4123
4124         tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4125         priv->last_tx_packets = priv->tx_packets;
4126
4127         /* Calculate quality based on the following:
4128          *
4129          * Missed beacon: 100% = 0, 0% = 70% missed
4130          * Rate: 60% = 1Mbs, 100% = Max
4131          * Rx and Tx errors represent a straight % of total Rx/Tx
4132          * RSSI: 100% = > -50,  0% = < -80
4133          * Rx errors: 100% = 0, 0% = 50% missed
4134          *
4135          * The lowest computed quality is used.
4136          *
4137          */
4138 #define BEACON_THRESHOLD 5
4139         beacon_quality = 100 - missed_beacons_percent;
4140         if (beacon_quality < BEACON_THRESHOLD)
4141                 beacon_quality = 0;
4142         else
4143                 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4144                     (100 - BEACON_THRESHOLD);
4145         IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4146                         beacon_quality, missed_beacons_percent);
4147
4148         priv->last_rate = ipw_get_current_rate(priv);
4149         max_rate = ipw_get_max_rate(priv);
4150         rate_quality = priv->last_rate * 40 / max_rate + 60;
4151         IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4152                         rate_quality, priv->last_rate / 1000000);
4153
4154         if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4155                 rx_quality = 100 - (rx_err_delta * 100) /
4156                     (rx_packets_delta + rx_err_delta);
4157         else
4158                 rx_quality = 100;
4159         IPW_DEBUG_STATS("Rx quality   : %3d%% (%u errors, %u packets)\n",
4160                         rx_quality, rx_err_delta, rx_packets_delta);
4161
4162         if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4163                 tx_quality = 100 - (tx_failures_delta * 100) /
4164                     (tx_packets_delta + tx_failures_delta);
4165         else
4166                 tx_quality = 100;
4167         IPW_DEBUG_STATS("Tx quality   : %3d%% (%u errors, %u packets)\n",
4168                         tx_quality, tx_failures_delta, tx_packets_delta);
4169
4170         rssi = priv->exp_avg_rssi;
4171         signal_quality =
4172             (100 *
4173              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4174              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4175              (priv->ieee->perfect_rssi - rssi) *
4176              (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4177               62 * (priv->ieee->perfect_rssi - rssi))) /
4178             ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4179              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4180         if (signal_quality > 100)
4181                 signal_quality = 100;
4182         else if (signal_quality < 1)
4183                 signal_quality = 0;
4184
4185         IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4186                         signal_quality, rssi);
4187
4188         quality = min(beacon_quality,
4189                       min(rate_quality,
4190                           min(tx_quality, min(rx_quality, signal_quality))));
4191         if (quality == beacon_quality)
4192                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4193                                 quality);
4194         if (quality == rate_quality)
4195                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4196                                 quality);
4197         if (quality == tx_quality)
4198                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4199                                 quality);
4200         if (quality == rx_quality)
4201                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4202                                 quality);
4203         if (quality == signal_quality)
4204                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4205                                 quality);
4206
4207         priv->quality = quality;
4208
4209         queue_delayed_work(priv->workqueue, &priv->gather_stats,
4210                            IPW_STATS_INTERVAL);
4211 }
4212
4213 static void ipw_bg_gather_stats(void *data)
4214 {
4215         struct ipw_priv *priv = data;
4216         mutex_lock(&priv->mutex);
4217         ipw_gather_stats(data);
4218         mutex_unlock(&priv->mutex);
4219 }
4220
4221 /* Missed beacon behavior:
4222  * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4223  * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4224  * Above disassociate threshold, give up and stop scanning.
4225  * Roaming is disabled if disassociate_threshold <= roaming_threshold  */
4226 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4227                                             int missed_count)
4228 {
4229         priv->notif_missed_beacons = missed_count;
4230
4231         if (missed_count > priv->disassociate_threshold &&
4232             priv->status & STATUS_ASSOCIATED) {
4233                 /* If associated and we've hit the missed
4234                  * beacon threshold, disassociate, turn
4235                  * off roaming, and abort any active scans */
4236                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4237                           IPW_DL_STATE | IPW_DL_ASSOC,
4238                           "Missed beacon: %d - disassociate\n", missed_count);
4239                 priv->status &= ~STATUS_ROAMING;
4240                 if (priv->status & STATUS_SCANNING) {
4241                         IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4242                                   IPW_DL_STATE,
4243                                   "Aborting scan with missed beacon.\n");
4244                         queue_work(priv->workqueue, &priv->abort_scan);
4245                 }
4246
4247                 queue_work(priv->workqueue, &priv->disassociate);
4248                 return;
4249         }
4250
4251         if (priv->status & STATUS_ROAMING) {
4252                 /* If we are currently roaming, then just
4253                  * print a debug statement... */
4254                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4255                           "Missed beacon: %d - roam in progress\n",
4256                           missed_count);
4257                 return;
4258         }
4259
4260         if (roaming &&
4261             (missed_count > priv->roaming_threshold &&
4262              missed_count <= priv->disassociate_threshold)) {
4263                 /* If we are not already roaming, set the ROAM
4264                  * bit in the status and kick off a scan.
4265                  * This can happen several times before we reach
4266                  * disassociate_threshold. */
4267                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4268                           "Missed beacon: %d - initiate "
4269                           "roaming\n", missed_count);
4270                 if (!(priv->status & STATUS_ROAMING)) {
4271                         priv->status |= STATUS_ROAMING;
4272                         if (!(priv->status & STATUS_SCANNING))
4273                                 queue_work(priv->workqueue,
4274                                            &priv->request_scan);
4275                 }
4276                 return;
4277         }
4278
4279         if (priv->status & STATUS_SCANNING) {
4280                 /* Stop scan to keep fw from getting
4281                  * stuck (only if we aren't roaming --
4282                  * otherwise we'll never scan more than 2 or 3
4283                  * channels..) */
4284                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4285                           "Aborting scan with missed beacon.\n");
4286                 queue_work(priv->workqueue, &priv->abort_scan);
4287         }
4288
4289         IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4290 }
4291
4292 /**
4293  * Handle host notification packet.
4294  * Called from interrupt routine
4295  */
4296 static void ipw_rx_notification(struct ipw_priv *priv,
4297                                        struct ipw_rx_notification *notif)
4298 {
4299         notif->size = le16_to_cpu(notif->size);
4300
4301         IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, notif->size);
4302
4303         switch (notif->subtype) {
4304         case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4305                         struct notif_association *assoc = &notif->u.assoc;
4306
4307                         switch (assoc->state) {
4308                         case CMAS_ASSOCIATED:{
4309                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4310                                                   IPW_DL_ASSOC,
4311                                                   "associated: '%s' " MAC_FMT
4312                                                   " \n",
4313                                                   escape_essid(priv->essid,
4314                                                                priv->essid_len),
4315                                                   MAC_ARG(priv->bssid));
4316
4317                                         switch (priv->ieee->iw_mode) {
4318                                         case IW_MODE_INFRA:
4319                                                 memcpy(priv->ieee->bssid,
4320                                                        priv->bssid, ETH_ALEN);
4321                                                 break;
4322
4323                                         case IW_MODE_ADHOC:
4324                                                 memcpy(priv->ieee->bssid,
4325                                                        priv->bssid, ETH_ALEN);
4326
4327                                                 /* clear out the station table */
4328                                                 priv->num_stations = 0;
4329
4330                                                 IPW_DEBUG_ASSOC
4331                                                     ("queueing adhoc check\n");
4332                                                 queue_delayed_work(priv->
4333                                                                    workqueue,
4334                                                                    &priv->
4335                                                                    adhoc_check,
4336                                                                    priv->
4337                                                                    assoc_request.
4338                                                                    beacon_interval);
4339                                                 break;
4340                                         }
4341
4342                                         priv->status &= ~STATUS_ASSOCIATING;
4343                                         priv->status |= STATUS_ASSOCIATED;
4344                                         queue_work(priv->workqueue,
4345                                                    &priv->system_config);
4346
4347 #ifdef CONFIG_IPW2200_QOS
4348 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4349                          le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_ctl))
4350                                         if ((priv->status & STATUS_AUTH) &&
4351                                             (IPW_GET_PACKET_STYPE(&notif->u.raw)
4352                                              == IEEE80211_STYPE_ASSOC_RESP)) {
4353                                                 if ((sizeof
4354                                                      (struct
4355                                                       ieee80211_assoc_response)
4356                                                      <= notif->size)
4357                                                     && (notif->size <= 2314)) {
4358                                                         struct
4359                                                         ieee80211_rx_stats
4360                                                             stats = {
4361                                                                 .len =
4362                                                                     notif->
4363                                                                     size - 1,
4364                                                         };
4365
4366                                                         IPW_DEBUG_QOS
4367                                                             ("QoS Associate "
4368                                                              "size %d\n",
4369                                                              notif->size);
4370                                                         ieee80211_rx_mgt(priv->
4371                                                                          ieee,
4372                                                                          (struct
4373                                                                           ieee80211_hdr_4addr
4374                                                                           *)
4375                                                                          &notif->u.raw, &stats);
4376                                                 }
4377                                         }
4378 #endif
4379
4380                                         schedule_work(&priv->link_up);
4381
4382                                         break;
4383                                 }
4384
4385                         case CMAS_AUTHENTICATED:{
4386                                         if (priv->
4387                                             status & (STATUS_ASSOCIATED |
4388                                                       STATUS_AUTH)) {
4389                                                 struct notif_authenticate *auth
4390                                                     = &notif->u.auth;
4391                                                 IPW_DEBUG(IPW_DL_NOTIF |
4392                                                           IPW_DL_STATE |
4393                                                           IPW_DL_ASSOC,
4394                                                           "deauthenticated: '%s' "
4395                                                           MAC_FMT
4396                                                           ": (0x%04X) - %s \n",
4397                                                           escape_essid(priv->
4398                                                                        essid,
4399                                                                        priv->
4400                                                                        essid_len),
4401                                                           MAC_ARG(priv->bssid),
4402                                                           ntohs(auth->status),
4403                                                           ipw_get_status_code
4404                                                           (ntohs
4405                                                            (auth->status)));
4406
4407                                                 priv->status &=
4408                                                     ~(STATUS_ASSOCIATING |
4409                                                       STATUS_AUTH |
4410                                                       STATUS_ASSOCIATED);
4411
4412                                                 schedule_work(&priv->link_down);
4413                                                 break;
4414                                         }
4415
4416                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4417                                                   IPW_DL_ASSOC,
4418                                                   "authenticated: '%s' " MAC_FMT
4419                                                   "\n",
4420                                                   escape_essid(priv->essid,
4421                                                                priv->essid_len),
4422                                                   MAC_ARG(priv->bssid));
4423                                         break;
4424                                 }
4425
4426                         case CMAS_INIT:{
4427                                         if (priv->status & STATUS_AUTH) {
4428                                                 struct
4429                                                     ieee80211_assoc_response
4430                                                 *resp;
4431                                                 resp =
4432                                                     (struct
4433                                                      ieee80211_assoc_response
4434                                                      *)&notif->u.raw;
4435                                                 IPW_DEBUG(IPW_DL_NOTIF |
4436                                                           IPW_DL_STATE |
4437                                                           IPW_DL_ASSOC,
4438                                                           "association failed (0x%04X): %s\n",
4439                                                           ntohs(resp->status),
4440                                                           ipw_get_status_code
4441                                                           (ntohs
4442                                                            (resp->status)));
4443                                         }
4444
4445                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4446                                                   IPW_DL_ASSOC,
4447                                                   "disassociated: '%s' " MAC_FMT
4448                                                   " \n",
4449                                                   escape_essid(priv->essid,
4450                                                                priv->essid_len),
4451                                                   MAC_ARG(priv->bssid));
4452
4453                                         priv->status &=
4454                                             ~(STATUS_DISASSOCIATING |
4455                                               STATUS_ASSOCIATING |
4456                                               STATUS_ASSOCIATED | STATUS_AUTH);
4457                                         if (priv->assoc_network
4458                                             && (priv->assoc_network->
4459                                                 capability &
4460                                                 WLAN_CAPABILITY_IBSS))
4461                                                 ipw_remove_current_network
4462                                                     (priv);
4463
4464                                         schedule_work(&priv->link_down);
4465
4466                                         break;
4467                                 }
4468
4469                         case CMAS_RX_ASSOC_RESP:
4470                                 break;
4471
4472                         default:
4473                                 IPW_ERROR("assoc: unknown (%d)\n",
4474                                           assoc->state);
4475                                 break;
4476                         }
4477
4478                         break;
4479                 }
4480
4481         case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4482                         struct notif_authenticate *auth = &notif->u.auth;
4483                         switch (auth->state) {
4484                         case CMAS_AUTHENTICATED:
4485                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4486                                           "authenticated: '%s' " MAC_FMT " \n",
4487                                           escape_essid(priv->essid,
4488                                                        priv->essid_len),
4489                                           MAC_ARG(priv->bssid));
4490                                 priv->status |= STATUS_AUTH;
4491                                 break;
4492
4493                         case CMAS_INIT:
4494                                 if (priv->status & STATUS_AUTH) {
4495                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4496                                                   IPW_DL_ASSOC,
4497                                                   "authentication failed (0x%04X): %s\n",
4498                                                   ntohs(auth->status),
4499                                                   ipw_get_status_code(ntohs
4500                                                                       (auth->
4501                                                                        status)));
4502                                 }
4503                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4504                                           IPW_DL_ASSOC,
4505                                           "deauthenticated: '%s' " MAC_FMT "\n",
4506                                           escape_essid(priv->essid,
4507                                                        priv->essid_len),
4508                                           MAC_ARG(priv->bssid));
4509
4510                                 priv->status &= ~(STATUS_ASSOCIATING |
4511                                                   STATUS_AUTH |
4512                                                   STATUS_ASSOCIATED);
4513
4514                                 schedule_work(&priv->link_down);
4515                                 break;
4516
4517                         case CMAS_TX_AUTH_SEQ_1:
4518                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4519                                           IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4520                                 break;
4521                         case CMAS_RX_AUTH_SEQ_2:
4522                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4523                                           IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4524                                 break;
4525                         case CMAS_AUTH_SEQ_1_PASS:
4526                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4527                                           IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4528                                 break;
4529                         case CMAS_AUTH_SEQ_1_FAIL:
4530                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4531                                           IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4532                                 break;
4533                         case CMAS_TX_AUTH_SEQ_3:
4534                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4535                                           IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4536                                 break;
4537                         case CMAS_RX_AUTH_SEQ_4:
4538                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4539                                           IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4540                                 break;
4541                         case CMAS_AUTH_SEQ_2_PASS:
4542                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4543                                           IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4544                                 break;
4545                         case CMAS_AUTH_SEQ_2_FAIL:
4546                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4547                                           IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4548                                 break;
4549                         case CMAS_TX_ASSOC:
4550                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4551                                           IPW_DL_ASSOC, "TX_ASSOC\n");
4552                                 break;
4553                         case CMAS_RX_ASSOC_RESP:
4554                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4555                                           IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4556
4557                                 break;
4558                         case CMAS_ASSOCIATED:
4559                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4560                                           IPW_DL_ASSOC, "ASSOCIATED\n");
4561                                 break;
4562                         default:
4563                                 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4564                                                 auth->state);
4565                                 break;
4566                         }
4567                         break;
4568                 }
4569
4570         case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4571                         struct notif_channel_result *x =
4572                             &notif->u.channel_result;
4573
4574                         if (notif->size == sizeof(*x)) {
4575                                 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4576                                                x->channel_num);
4577                         } else {
4578                                 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4579                                                "(should be %zd)\n",
4580                                                notif->size, sizeof(*x));
4581                         }
4582                         break;
4583                 }
4584
4585         case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4586                         struct notif_scan_complete *x = &notif->u.scan_complete;
4587                         if (notif->size == sizeof(*x)) {
4588                                 IPW_DEBUG_SCAN
4589                                     ("Scan completed: type %d, %d channels, "
4590                                      "%d status\n", x->scan_type,
4591                                      x->num_channels, x->status);
4592                         } else {
4593                                 IPW_ERROR("Scan completed of wrong size %d "
4594                                           "(should be %zd)\n",
4595                                           notif->size, sizeof(*x));
4596                         }
4597
4598                         priv->status &=
4599                             ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4600
4601                         wake_up_interruptible(&priv->wait_state);
4602                         cancel_delayed_work(&priv->scan_check);
4603
4604                         if (priv->status & STATUS_EXIT_PENDING)
4605                                 break;
4606
4607                         priv->ieee->scans++;
4608
4609 #ifdef CONFIG_IPW2200_MONITOR
4610                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4611                                 priv->status |= STATUS_SCAN_FORCED;
4612                                 queue_work(priv->workqueue,
4613                                            &priv->request_scan);
4614                                 break;
4615                         }
4616                         priv->status &= ~STATUS_SCAN_FORCED;
4617 #endif                          /* CONFIG_IPW2200_MONITOR */
4618
4619                         if (!(priv->status & (STATUS_ASSOCIATED |
4620                                               STATUS_ASSOCIATING |
4621                                               STATUS_ROAMING |
4622                                               STATUS_DISASSOCIATING)))
4623                                 queue_work(priv->workqueue, &priv->associate);
4624                         else if (priv->status & STATUS_ROAMING) {
4625                                 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4626                                         /* If a scan completed and we are in roam mode, then
4627                                          * the scan that completed was the one requested as a
4628                                          * result of entering roam... so, schedule the
4629                                          * roam work */
4630                                         queue_work(priv->workqueue,
4631                                                    &priv->roam);
4632                                 else
4633                                         /* Don't schedule if we aborted the scan */
4634                                         priv->status &= ~STATUS_ROAMING;
4635                         } else if (priv->status & STATUS_SCAN_PENDING)
4636                                 queue_work(priv->workqueue,
4637                                            &priv->request_scan);
4638                         else if (priv->config & CFG_BACKGROUND_SCAN
4639                                  && priv->status & STATUS_ASSOCIATED)
4640                                 queue_delayed_work(priv->workqueue,
4641                                                    &priv->request_scan, HZ);
4642
4643                         /* Send an empty event to user space.
4644                          * We don't send the received data on the event because
4645                          * it would require us to do complex transcoding, and
4646                          * we want to minimise the work done in the irq handler
4647                          * Use a request to extract the data.
4648                          * Also, we generate this even for any scan, regardless
4649                          * on how the scan was initiated. User space can just
4650                          * sync on periodic scan to get fresh data...
4651                          * Jean II */
4652                         if (x->status == SCAN_COMPLETED_STATUS_COMPLETE) {
4653                                 union iwreq_data wrqu;
4654
4655                                 wrqu.data.length = 0;
4656                                 wrqu.data.flags = 0;
4657                                 wireless_send_event(priv->net_dev, SIOCGIWSCAN,
4658                                                     &wrqu, NULL);
4659                         }
4660                         break;
4661                 }
4662
4663         case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4664                         struct notif_frag_length *x = &notif->u.frag_len;
4665
4666                         if (notif->size == sizeof(*x))
4667                                 IPW_ERROR("Frag length: %d\n",
4668                                           le16_to_cpu(x->frag_length));
4669                         else
4670                                 IPW_ERROR("Frag length of wrong size %d "
4671                                           "(should be %zd)\n",
4672                                           notif->size, sizeof(*x));
4673                         break;
4674                 }
4675
4676         case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4677                         struct notif_link_deterioration *x =
4678                             &notif->u.link_deterioration;
4679
4680                         if (notif->size == sizeof(*x)) {
4681                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4682                                         "link deterioration: type %d, cnt %d\n",
4683                                         x->silence_notification_type,
4684                                         x->silence_count);
4685                                 memcpy(&priv->last_link_deterioration, x,
4686                                        sizeof(*x));
4687                         } else {
4688                                 IPW_ERROR("Link Deterioration of wrong size %d "
4689                                           "(should be %zd)\n",
4690                                           notif->size, sizeof(*x));
4691                         }
4692                         break;
4693                 }
4694
4695         case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4696                         IPW_ERROR("Dino config\n");
4697                         if (priv->hcmd
4698                             && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4699                                 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4700
4701                         break;
4702                 }
4703
4704         case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4705                         struct notif_beacon_state *x = &notif->u.beacon_state;
4706                         if (notif->size != sizeof(*x)) {
4707                                 IPW_ERROR
4708                                     ("Beacon state of wrong size %d (should "
4709                                      "be %zd)\n", notif->size, sizeof(*x));
4710                                 break;
4711                         }
4712
4713                         if (le32_to_cpu(x->state) ==
4714                             HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4715                                 ipw_handle_missed_beacon(priv,
4716                                                          le32_to_cpu(x->
4717                                                                      number));
4718
4719                         break;
4720                 }
4721
4722         case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4723                         struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4724                         if (notif->size == sizeof(*x)) {
4725                                 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4726                                           "0x%02x station %d\n",
4727                                           x->key_state, x->security_type,
4728                                           x->station_index);
4729                                 break;
4730                         }
4731
4732                         IPW_ERROR
4733                             ("TGi Tx Key of wrong size %d (should be %zd)\n",
4734                              notif->size, sizeof(*x));
4735                         break;
4736                 }
4737
4738         case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4739                         struct notif_calibration *x = &notif->u.calibration;
4740
4741                         if (notif->size == sizeof(*x)) {
4742                                 memcpy(&priv->calib, x, sizeof(*x));
4743                                 IPW_DEBUG_INFO("TODO: Calibration\n");
4744                                 break;
4745                         }
4746
4747                         IPW_ERROR
4748                             ("Calibration of wrong size %d (should be %zd)\n",
4749                              notif->size, sizeof(*x));
4750                         break;
4751                 }
4752
4753         case HOST_NOTIFICATION_NOISE_STATS:{
4754                         if (notif->size == sizeof(u32)) {
4755                                 priv->exp_avg_noise =
4756                                     exponential_average(priv->exp_avg_noise,
4757                                     (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4758                                     DEPTH_NOISE);
4759                                 break;
4760                         }
4761
4762                         IPW_ERROR
4763                             ("Noise stat is wrong size %d (should be %zd)\n",
4764                              notif->size, sizeof(u32));
4765                         break;
4766                 }
4767
4768         default:
4769                 IPW_DEBUG_NOTIF("Unknown notification: "
4770                                 "subtype=%d,flags=0x%2x,size=%d\n",
4771                                 notif->subtype, notif->flags, notif->size);
4772         }
4773 }
4774
4775 /**
4776  * Destroys all DMA structures and initialise them again
4777  *
4778  * @param priv
4779  * @return error code
4780  */
4781 static int ipw_queue_reset(struct ipw_priv *priv)
4782 {
4783         int rc = 0;
4784         /** @todo customize queue sizes */
4785         int nTx = 64, nTxCmd = 8;
4786         ipw_tx_queue_free(priv);
4787         /* Tx CMD queue */
4788         rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4789                                IPW_TX_CMD_QUEUE_READ_INDEX,
4790                                IPW_TX_CMD_QUEUE_WRITE_INDEX,
4791                                IPW_TX_CMD_QUEUE_BD_BASE,
4792                                IPW_TX_CMD_QUEUE_BD_SIZE);
4793         if (rc) {
4794                 IPW_ERROR("Tx Cmd queue init failed\n");
4795                 goto error;
4796         }
4797         /* Tx queue(s) */
4798         rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4799                                IPW_TX_QUEUE_0_READ_INDEX,
4800                                IPW_TX_QUEUE_0_WRITE_INDEX,
4801                                IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4802         if (rc) {
4803                 IPW_ERROR("Tx 0 queue init failed\n");
4804                 goto error;
4805         }
4806         rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4807                                IPW_TX_QUEUE_1_READ_INDEX,
4808                                IPW_TX_QUEUE_1_WRITE_INDEX,
4809                                IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4810         if (rc) {
4811                 IPW_ERROR("Tx 1 queue init failed\n");
4812                 goto error;
4813         }
4814         rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4815                                IPW_TX_QUEUE_2_READ_INDEX,
4816                                IPW_TX_QUEUE_2_WRITE_INDEX,
4817                                IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4818         if (rc) {
4819                 IPW_ERROR("Tx 2 queue init failed\n");
4820                 goto error;
4821         }
4822         rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4823                                IPW_TX_QUEUE_3_READ_INDEX,
4824                                IPW_TX_QUEUE_3_WRITE_INDEX,
4825                                IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4826         if (rc) {
4827                 IPW_ERROR("Tx 3 queue init failed\n");
4828                 goto error;
4829         }
4830         /* statistics */
4831         priv->rx_bufs_min = 0;
4832         priv->rx_pend_max = 0;
4833         return rc;
4834
4835       error:
4836         ipw_tx_queue_free(priv);
4837         return rc;
4838 }
4839
4840 /**
4841  * Reclaim Tx queue entries no more used by NIC.
4842  *
4843  * When FW adwances 'R' index, all entries between old and
4844  * new 'R' index need to be reclaimed. As result, some free space
4845  * forms. If there is enough free space (> low mark), wake Tx queue.
4846  *
4847  * @note Need to protect against garbage in 'R' index
4848  * @param priv
4849  * @param txq
4850  * @param qindex
4851  * @return Number of used entries remains in the queue
4852  */
4853 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
4854                                 struct clx2_tx_queue *txq, int qindex)
4855 {
4856         u32 hw_tail;
4857         int used;
4858         struct clx2_queue *q = &txq->q;
4859
4860         hw_tail = ipw_read32(priv, q->reg_r);
4861         if (hw_tail >= q->n_bd) {
4862                 IPW_ERROR
4863                     ("Read index for DMA queue (%d) is out of range [0-%d)\n",
4864                      hw_tail, q->n_bd);
4865                 goto done;
4866         }
4867         for (; q->last_used != hw_tail;
4868              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
4869                 ipw_queue_tx_free_tfd(priv, txq);
4870                 priv->tx_packets++;
4871         }
4872       done:
4873         if ((ipw_queue_space(q) > q->low_mark) &&
4874             (qindex >= 0) &&
4875             (priv->status & STATUS_ASSOCIATED) && netif_running(priv->net_dev))
4876                 netif_wake_queue(priv->net_dev);
4877         used = q->first_empty - q->last_used;
4878         if (used < 0)
4879                 used += q->n_bd;
4880
4881         return used;
4882 }
4883
4884 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
4885                              int len, int sync)
4886 {
4887         struct clx2_tx_queue *txq = &priv->txq_cmd;
4888         struct clx2_queue *q = &txq->q;
4889         struct tfd_frame *tfd;
4890
4891         if (ipw_queue_space(q) < (sync ? 1 : 2)) {
4892                 IPW_ERROR("No space for Tx\n");
4893                 return -EBUSY;
4894         }
4895
4896         tfd = &txq->bd[q->first_empty];
4897         txq->txb[q->first_empty] = NULL;
4898
4899         memset(tfd, 0, sizeof(*tfd));
4900         tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
4901         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
4902         priv->hcmd_seq++;
4903         tfd->u.cmd.index = hcmd;
4904         tfd->u.cmd.length = len;
4905         memcpy(tfd->u.cmd.payload, buf, len);
4906         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
4907         ipw_write32(priv, q->reg_w, q->first_empty);
4908         _ipw_read32(priv, 0x90);
4909
4910         return 0;
4911 }
4912
4913 /*
4914  * Rx theory of operation
4915  *
4916  * The host allocates 32 DMA target addresses and passes the host address
4917  * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
4918  * 0 to 31
4919  *
4920  * Rx Queue Indexes
4921  * The host/firmware share two index registers for managing the Rx buffers.
4922  *
4923  * The READ index maps to the first position that the firmware may be writing
4924  * to -- the driver can read up to (but not including) this position and get
4925  * good data.
4926  * The READ index is managed by the firmware once the card is enabled.
4927  *
4928  * The WRITE index maps to the last position the driver has read from -- the
4929  * position preceding WRITE is the last slot the firmware can place a packet.
4930  *
4931  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
4932  * WRITE = READ.
4933  *
4934  * During initialization the host sets up the READ queue position to the first
4935  * INDEX position, and WRITE to the last (READ - 1 wrapped)
4936  *
4937  * When the firmware places a packet in a buffer it will advance the READ index
4938  * and fire the RX interrupt.  The driver can then query the READ index and
4939  * process as many packets as possible, moving the WRITE index forward as it
4940  * resets the Rx queue buffers with new memory.
4941  *
4942  * The management in the driver is as follows:
4943  * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free.  When
4944  *   ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
4945  *   to replensish the ipw->rxq->rx_free.
4946  * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
4947  *   ipw->rxq is replenished and the READ INDEX is updated (updating the
4948  *   'processed' and 'read' driver indexes as well)
4949  * + A received packet is processed and handed to the kernel network stack,
4950  *   detached from the ipw->rxq.  The driver 'processed' index is updated.
4951  * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
4952  *   list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
4953  *   INDEX is not incremented and ipw->status(RX_STALLED) is set.  If there
4954  *   were enough free buffers and RX_STALLED is set it is cleared.
4955  *
4956  *
4957  * Driver sequence:
4958  *
4959  * ipw_rx_queue_alloc()       Allocates rx_free
4960  * ipw_rx_queue_replenish()   Replenishes rx_free list from rx_used, and calls
4961  *                            ipw_rx_queue_restock
4962  * ipw_rx_queue_restock()     Moves available buffers from rx_free into Rx
4963  *                            queue, updates firmware pointers, and updates
4964  *                            the WRITE index.  If insufficient rx_free buffers
4965  *                            are available, schedules ipw_rx_queue_replenish
4966  *
4967  * -- enable interrupts --
4968  * ISR - ipw_rx()             Detach ipw_rx_mem_buffers from pool up to the
4969  *                            READ INDEX, detaching the SKB from the pool.
4970  *                            Moves the packet buffer from queue to rx_used.
4971  *                            Calls ipw_rx_queue_restock to refill any empty
4972  *                            slots.
4973  * ...
4974  *
4975  */
4976
4977 /*
4978  * If there are slots in the RX queue that  need to be restocked,
4979  * and we have free pre-allocated buffers, fill the ranks as much
4980  * as we can pulling from rx_free.
4981  *
4982  * This moves the 'write' index forward to catch up with 'processed', and
4983  * also updates the memory address in the firmware to reference the new
4984  * target buffer.
4985  */
4986 static void ipw_rx_queue_restock(struct ipw_priv *priv)
4987 {
4988         struct ipw_rx_queue *rxq = priv->rxq;
4989         struct list_head *element;
4990         struct ipw_rx_mem_buffer *rxb;
4991         unsigned long flags;
4992         int write;
4993
4994         spin_lock_irqsave(&rxq->lock, flags);
4995         write = rxq->write;
4996         while ((rxq->write != rxq->processed) && (rxq->free_count)) {
4997                 element = rxq->rx_free.next;
4998                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
4999                 list_del(element);
5000
5001                 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5002                             rxb->dma_addr);
5003                 rxq->queue[rxq->write] = rxb;
5004                 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5005                 rxq->free_count--;
5006         }
5007         spin_unlock_irqrestore(&rxq->lock, flags);
5008
5009         /* If the pre-allocated buffer pool is dropping low, schedule to
5010          * refill it */
5011         if (rxq->free_count <= RX_LOW_WATERMARK)
5012                 queue_work(priv->workqueue, &priv->rx_replenish);
5013
5014         /* If we've added more space for the firmware to place data, tell it */
5015         if (write != rxq->write)
5016                 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5017 }
5018
5019 /*
5020  * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5021  * Also restock the Rx queue via ipw_rx_queue_restock.
5022  *
5023  * This is called as a scheduled work item (except for during intialization)
5024  */
5025 static void ipw_rx_queue_replenish(void *data)
5026 {
5027         struct ipw_priv *priv = data;
5028         struct ipw_rx_queue *rxq = priv->rxq;
5029         struct list_head *element;
5030         struct ipw_rx_mem_buffer *rxb;
5031         unsigned long flags;
5032
5033         spin_lock_irqsave(&rxq->lock, flags);
5034         while (!list_empty(&rxq->rx_used)) {
5035                 element = rxq->rx_used.next;
5036                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5037                 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5038                 if (!rxb->skb) {
5039                         printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5040                                priv->net_dev->name);
5041                         /* We don't reschedule replenish work here -- we will
5042                          * call the restock method and if it still needs
5043                          * more buffers it will schedule replenish */
5044                         break;
5045                 }
5046                 list_del(element);
5047
5048                 rxb->dma_addr =
5049                     pci_map_single(priv->pci_dev, rxb->skb->data,
5050                                    IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5051
5052                 list_add_tail(&rxb->list, &rxq->rx_free);
5053                 rxq->free_count++;
5054         }
5055         spin_unlock_irqrestore(&rxq->lock, flags);
5056
5057         ipw_rx_queue_restock(priv);
5058 }
5059
5060 static void ipw_bg_rx_queue_replenish(void *data)
5061 {
5062         struct ipw_priv *priv = data;
5063         mutex_lock(&priv->mutex);
5064         ipw_rx_queue_replenish(data);
5065         mutex_unlock(&priv->mutex);
5066 }
5067
5068 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5069  * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5070  * This free routine walks the list of POOL entries and if SKB is set to
5071  * non NULL it is unmapped and freed
5072  */
5073 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5074 {
5075         int i;
5076
5077         if (!rxq)
5078                 return;
5079
5080         for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5081                 if (rxq->pool[i].skb != NULL) {
5082                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5083                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5084                         dev_kfree_skb(rxq->pool[i].skb);
5085                 }
5086         }
5087
5088         kfree(rxq);
5089 }
5090
5091 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5092 {
5093         struct ipw_rx_queue *rxq;
5094         int i;
5095
5096         rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5097         if (unlikely(!rxq)) {
5098                 IPW_ERROR("memory allocation failed\n");
5099                 return NULL;
5100         }
5101         spin_lock_init(&rxq->lock);
5102         INIT_LIST_HEAD(&rxq->rx_free);
5103         INIT_LIST_HEAD(&rxq->rx_used);
5104
5105         /* Fill the rx_used queue with _all_ of the Rx buffers */
5106         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5107                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5108
5109         /* Set us so that we have processed and used all buffers, but have
5110          * not restocked the Rx queue with fresh buffers */
5111         rxq->read = rxq->write = 0;
5112         rxq->processed = RX_QUEUE_SIZE - 1;
5113         rxq->free_count = 0;
5114
5115         return rxq;
5116 }
5117
5118 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5119 {
5120         rate &= ~IEEE80211_BASIC_RATE_MASK;
5121         if (ieee_mode == IEEE_A) {
5122                 switch (rate) {
5123                 case IEEE80211_OFDM_RATE_6MB:
5124                         return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ?
5125                             1 : 0;
5126                 case IEEE80211_OFDM_RATE_9MB:
5127                         return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ?
5128                             1 : 0;
5129                 case IEEE80211_OFDM_RATE_12MB:
5130                         return priv->
5131                             rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5132                 case IEEE80211_OFDM_RATE_18MB:
5133                         return priv->
5134                             rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5135                 case IEEE80211_OFDM_RATE_24MB:
5136                         return priv->
5137                             rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5138                 case IEEE80211_OFDM_RATE_36MB:
5139                         return priv->
5140                             rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5141                 case IEEE80211_OFDM_RATE_48MB:
5142                         return priv->
5143                             rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5144                 case IEEE80211_OFDM_RATE_54MB:
5145                         return priv->
5146                             rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5147                 default:
5148                         return 0;
5149                 }
5150         }
5151
5152         /* B and G mixed */
5153         switch (rate) {
5154         case IEEE80211_CCK_RATE_1MB:
5155                 return priv->rates_mask & IEEE80211_CCK_RATE_1MB_MASK ? 1 : 0;
5156         case IEEE80211_CCK_RATE_2MB:
5157                 return priv->rates_mask & IEEE80211_CCK_RATE_2MB_MASK ? 1 : 0;
5158         case IEEE80211_CCK_RATE_5MB:
5159                 return priv->rates_mask & IEEE80211_CCK_RATE_5MB_MASK ? 1 : 0;
5160         case IEEE80211_CCK_RATE_11MB:
5161                 return priv->rates_mask & IEEE80211_CCK_RATE_11MB_MASK ? 1 : 0;
5162         }
5163
5164         /* If we are limited to B modulations, bail at this point */
5165         if (ieee_mode == IEEE_B)
5166                 return 0;
5167
5168         /* G */
5169         switch (rate) {
5170         case IEEE80211_OFDM_RATE_6MB:
5171                 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0;
5172         case IEEE80211_OFDM_RATE_9MB:
5173                 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0;
5174         case IEEE80211_OFDM_RATE_12MB:
5175                 return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5176         case IEEE80211_OFDM_RATE_18MB:
5177                 return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5178         case IEEE80211_OFDM_RATE_24MB:
5179                 return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5180         case IEEE80211_OFDM_RATE_36MB:
5181                 return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5182         case IEEE80211_OFDM_RATE_48MB:
5183                 return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5184         case IEEE80211_OFDM_RATE_54MB:
5185                 return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5186         }
5187
5188         return 0;
5189 }
5190
5191 static int ipw_compatible_rates(struct ipw_priv *priv,
5192                                 const struct ieee80211_network *network,
5193                                 struct ipw_supported_rates *rates)
5194 {
5195         int num_rates, i;
5196
5197         memset(rates, 0, sizeof(*rates));
5198         num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5199         rates->num_rates = 0;
5200         for (i = 0; i < num_rates; i++) {
5201                 if (!ipw_is_rate_in_mask(priv, network->mode,
5202                                          network->rates[i])) {
5203
5204                         if (network->rates[i] & IEEE80211_BASIC_RATE_MASK) {
5205                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5206                                                "rate %02X\n",
5207                                                network->rates[i]);
5208                                 rates->supported_rates[rates->num_rates++] =
5209                                     network->rates[i];
5210                                 continue;
5211                         }
5212
5213                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5214                                        network->rates[i], priv->rates_mask);
5215                         continue;
5216                 }
5217
5218                 rates->supported_rates[rates->num_rates++] = network->rates[i];
5219         }
5220
5221         num_rates = min(network->rates_ex_len,
5222                         (u8) (IPW_MAX_RATES - num_rates));
5223         for (i = 0; i < num_rates; i++) {
5224                 if (!ipw_is_rate_in_mask(priv, network->mode,
5225                                          network->rates_ex[i])) {
5226                         if (network->rates_ex[i] & IEEE80211_BASIC_RATE_MASK) {
5227                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5228                                                "rate %02X\n",
5229                                                network->rates_ex[i]);
5230                                 rates->supported_rates[rates->num_rates++] =
5231                                     network->rates[i];
5232                                 continue;
5233                         }
5234
5235                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5236                                        network->rates_ex[i], priv->rates_mask);
5237                         continue;
5238                 }
5239
5240                 rates->supported_rates[rates->num_rates++] =
5241                     network->rates_ex[i];
5242         }
5243
5244         return 1;
5245 }
5246
5247 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5248                                   const struct ipw_supported_rates *src)
5249 {
5250         u8 i;
5251         for (i = 0; i < src->num_rates; i++)
5252                 dest->supported_rates[i] = src->supported_rates[i];
5253         dest->num_rates = src->num_rates;
5254 }
5255
5256 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5257  * mask should ever be used -- right now all callers to add the scan rates are
5258  * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5259 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5260                                    u8 modulation, u32 rate_mask)
5261 {
5262         u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5263             IEEE80211_BASIC_RATE_MASK : 0;
5264
5265         if (rate_mask & IEEE80211_CCK_RATE_1MB_MASK)
5266                 rates->supported_rates[rates->num_rates++] =
5267                     IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_1MB;
5268
5269         if (rate_mask & IEEE80211_CCK_RATE_2MB_MASK)
5270                 rates->supported_rates[rates->num_rates++] =
5271                     IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_2MB;
5272
5273         if (rate_mask & IEEE80211_CCK_RATE_5MB_MASK)
5274                 rates->supported_rates[rates->num_rates++] = basic_mask |
5275                     IEEE80211_CCK_RATE_5MB;
5276
5277         if (rate_mask & IEEE80211_CCK_RATE_11MB_MASK)
5278                 rates->supported_rates[rates->num_rates++] = basic_mask |
5279                     IEEE80211_CCK_RATE_11MB;
5280 }
5281
5282 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5283                                     u8 modulation, u32 rate_mask)
5284 {
5285         u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5286             IEEE80211_BASIC_RATE_MASK : 0;
5287
5288         if (rate_mask & IEEE80211_OFDM_RATE_6MB_MASK)
5289                 rates->supported_rates[rates->num_rates++] = basic_mask |
5290                     IEEE80211_OFDM_RATE_6MB;
5291
5292         if (rate_mask & IEEE80211_OFDM_RATE_9MB_MASK)
5293                 rates->supported_rates[rates->num_rates++] =
5294                     IEEE80211_OFDM_RATE_9MB;
5295
5296         if (rate_mask & IEEE80211_OFDM_RATE_12MB_MASK)
5297                 rates->supported_rates[rates->num_rates++] = basic_mask |
5298                     IEEE80211_OFDM_RATE_12MB;
5299
5300         if (rate_mask & IEEE80211_OFDM_RATE_18MB_MASK)
5301                 rates->supported_rates[rates->num_rates++] =
5302                     IEEE80211_OFDM_RATE_18MB;
5303
5304         if (rate_mask & IEEE80211_OFDM_RATE_24MB_MASK)
5305                 rates->supported_rates[rates->num_rates++] = basic_mask |
5306                     IEEE80211_OFDM_RATE_24MB;
5307
5308         if (rate_mask & IEEE80211_OFDM_RATE_36MB_MASK)
5309                 rates->supported_rates[rates->num_rates++] =
5310                     IEEE80211_OFDM_RATE_36MB;
5311
5312         if (rate_mask & IEEE80211_OFDM_RATE_48MB_MASK)
5313                 rates->supported_rates[rates->num_rates++] =
5314                     IEEE80211_OFDM_RATE_48MB;
5315
5316         if (rate_mask & IEEE80211_OFDM_RATE_54MB_MASK)
5317                 rates->supported_rates[rates->num_rates++] =
5318                     IEEE80211_OFDM_RATE_54MB;
5319 }
5320
5321 struct ipw_network_match {
5322         struct ieee80211_network *network;
5323         struct ipw_supported_rates rates;
5324 };
5325
5326 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5327                                   struct ipw_network_match *match,
5328                                   struct ieee80211_network *network,
5329                                   int roaming)
5330 {
5331         struct ipw_supported_rates rates;
5332
5333         /* Verify that this network's capability is compatible with the
5334          * current mode (AdHoc or Infrastructure) */
5335         if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5336              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5337                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded due to "
5338                                 "capability mismatch.\n",
5339                                 escape_essid(network->ssid, network->ssid_len),
5340                                 MAC_ARG(network->bssid));
5341                 return 0;
5342         }
5343
5344         /* If we do not have an ESSID for this AP, we can not associate with
5345          * it */
5346         if (network->flags & NETWORK_EMPTY_ESSID) {
5347                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5348                                 "because of hidden ESSID.\n",
5349                                 escape_essid(network->ssid, network->ssid_len),
5350                                 MAC_ARG(network->bssid));
5351                 return 0;
5352         }
5353
5354         if (unlikely(roaming)) {
5355                 /* If we are roaming, then ensure check if this is a valid
5356                  * network to try and roam to */
5357                 if ((network->ssid_len != match->network->ssid_len) ||
5358                     memcmp(network->ssid, match->network->ssid,
5359                            network->ssid_len)) {
5360                         IPW_DEBUG_MERGE("Netowrk '%s (" MAC_FMT ")' excluded "
5361                                         "because of non-network ESSID.\n",
5362                                         escape_essid(network->ssid,
5363                                                      network->ssid_len),
5364                                         MAC_ARG(network->bssid));
5365                         return 0;
5366                 }
5367         } else {
5368                 /* If an ESSID has been configured then compare the broadcast
5369                  * ESSID to ours */
5370                 if ((priv->config & CFG_STATIC_ESSID) &&
5371                     ((network->ssid_len != priv->essid_len) ||
5372                      memcmp(network->ssid, priv->essid,
5373                             min(network->ssid_len, priv->essid_len)))) {
5374                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5375
5376                         strncpy(escaped,
5377                                 escape_essid(network->ssid, network->ssid_len),
5378                                 sizeof(escaped));
5379                         IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5380                                         "because of ESSID mismatch: '%s'.\n",
5381                                         escaped, MAC_ARG(network->bssid),
5382                                         escape_essid(priv->essid,
5383                                                      priv->essid_len));
5384                         return 0;
5385                 }
5386         }
5387
5388         /* If the old network rate is better than this one, don't bother
5389          * testing everything else. */
5390
5391         if (network->time_stamp[0] < match->network->time_stamp[0]) {
5392                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5393                                 "current network.\n",
5394                                 escape_essid(match->network->ssid,
5395                                              match->network->ssid_len));
5396                 return 0;
5397         } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5398                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5399                                 "current network.\n",
5400                                 escape_essid(match->network->ssid,
5401                                              match->network->ssid_len));
5402                 return 0;
5403         }
5404
5405         /* Now go through and see if the requested network is valid... */
5406         if (priv->ieee->scan_age != 0 &&
5407             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5408                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5409                                 "because of age: %ums.\n",
5410                                 escape_essid(network->ssid, network->ssid_len),
5411                                 MAC_ARG(network->bssid),
5412                                 jiffies_to_msecs(jiffies -
5413                                                  network->last_scanned));
5414                 return 0;
5415         }
5416
5417         if ((priv->config & CFG_STATIC_CHANNEL) &&
5418             (network->channel != priv->channel)) {
5419                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5420                                 "because of channel mismatch: %d != %d.\n",
5421                                 escape_essid(network->ssid, network->ssid_len),
5422                                 MAC_ARG(network->bssid),
5423                                 network->channel, priv->channel);
5424                 return 0;
5425         }
5426
5427         /* Verify privacy compatability */
5428         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5429             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5430                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5431                                 "because of privacy mismatch: %s != %s.\n",
5432                                 escape_essid(network->ssid, network->ssid_len),
5433                                 MAC_ARG(network->bssid),
5434                                 priv->
5435                                 capability & CAP_PRIVACY_ON ? "on" : "off",
5436                                 network->
5437                                 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5438                                 "off");
5439                 return 0;
5440         }
5441
5442         if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5443                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5444                                 "because of the same BSSID match: " MAC_FMT
5445                                 ".\n", escape_essid(network->ssid,
5446                                                     network->ssid_len),
5447                                 MAC_ARG(network->bssid), MAC_ARG(priv->bssid));
5448                 return 0;
5449         }
5450
5451         /* Filter out any incompatible freq / mode combinations */
5452         if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5453                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5454                                 "because of invalid frequency/mode "
5455                                 "combination.\n",
5456                                 escape_essid(network->ssid, network->ssid_len),
5457                                 MAC_ARG(network->bssid));
5458                 return 0;
5459         }
5460
5461         /* Ensure that the rates supported by the driver are compatible with
5462          * this AP, including verification of basic rates (mandatory) */
5463         if (!ipw_compatible_rates(priv, network, &rates)) {
5464                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5465                                 "because configured rate mask excludes "
5466                                 "AP mandatory rate.\n",
5467                                 escape_essid(network->ssid, network->ssid_len),
5468                                 MAC_ARG(network->bssid));
5469                 return 0;
5470         }
5471
5472         if (rates.num_rates == 0) {
5473                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5474                                 "because of no compatible rates.\n",
5475                                 escape_essid(network->ssid, network->ssid_len),
5476                                 MAC_ARG(network->bssid));
5477                 return 0;
5478         }
5479
5480         /* TODO: Perform any further minimal comparititive tests.  We do not
5481          * want to put too much policy logic here; intelligent scan selection
5482          * should occur within a generic IEEE 802.11 user space tool.  */
5483
5484         /* Set up 'new' AP to this network */
5485         ipw_copy_rates(&match->rates, &rates);
5486         match->network = network;
5487         IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' is a viable match.\n",
5488                         escape_essid(network->ssid, network->ssid_len),
5489                         MAC_ARG(network->bssid));
5490
5491         return 1;
5492 }
5493
5494 static void ipw_merge_adhoc_network(void *data)
5495 {
5496         struct ipw_priv *priv = data;
5497         struct ieee80211_network *network = NULL;
5498         struct ipw_network_match match = {
5499                 .network = priv->assoc_network
5500         };
5501
5502         if ((priv->status & STATUS_ASSOCIATED) &&
5503             (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5504                 /* First pass through ROAM process -- look for a better
5505                  * network */
5506                 unsigned long flags;
5507
5508                 spin_lock_irqsave(&priv->ieee->lock, flags);
5509                 list_for_each_entry(network, &priv->ieee->network_list, list) {
5510                         if (network != priv->assoc_network)
5511                                 ipw_find_adhoc_network(priv, &match, network,
5512                                                        1);
5513                 }
5514                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5515
5516                 if (match.network == priv->assoc_network) {
5517                         IPW_DEBUG_MERGE("No better ADHOC in this network to "
5518                                         "merge to.\n");
5519                         return;
5520                 }
5521
5522                 mutex_lock(&priv->mutex);
5523                 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5524                         IPW_DEBUG_MERGE("remove network %s\n",
5525                                         escape_essid(priv->essid,
5526                                                      priv->essid_len));
5527                         ipw_remove_current_network(priv);
5528                 }
5529
5530                 ipw_disassociate(priv);
5531                 priv->assoc_network = match.network;
5532                 mutex_unlock(&priv->mutex);
5533                 return;
5534         }
5535 }
5536
5537 static int ipw_best_network(struct ipw_priv *priv,
5538                             struct ipw_network_match *match,
5539                             struct ieee80211_network *network, int roaming)
5540 {
5541         struct ipw_supported_rates rates;
5542
5543         /* Verify that this network's capability is compatible with the
5544          * current mode (AdHoc or Infrastructure) */
5545         if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5546              !(network->capability & WLAN_CAPABILITY_ESS)) ||
5547             (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5548              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5549                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded due to "
5550                                 "capability mismatch.\n",
5551                                 escape_essid(network->ssid, network->ssid_len),
5552                                 MAC_ARG(network->bssid));
5553                 return 0;
5554         }
5555
5556         /* If we do not have an ESSID for this AP, we can not associate with
5557          * it */
5558         if (network->flags & NETWORK_EMPTY_ESSID) {
5559                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5560                                 "because of hidden ESSID.\n",
5561                                 escape_essid(network->ssid, network->ssid_len),
5562                                 MAC_ARG(network->bssid));
5563                 return 0;
5564         }
5565
5566         if (unlikely(roaming)) {
5567                 /* If we are roaming, then ensure check if this is a valid
5568                  * network to try and roam to */
5569                 if ((network->ssid_len != match->network->ssid_len) ||
5570                     memcmp(network->ssid, match->network->ssid,
5571                            network->ssid_len)) {
5572                         IPW_DEBUG_ASSOC("Netowrk '%s (" MAC_FMT ")' excluded "
5573                                         "because of non-network ESSID.\n",
5574                                         escape_essid(network->ssid,
5575                                                      network->ssid_len),
5576                                         MAC_ARG(network->bssid));
5577                         return 0;
5578                 }
5579         } else {
5580                 /* If an ESSID has been configured then compare the broadcast
5581                  * ESSID to ours */
5582                 if ((priv->config & CFG_STATIC_ESSID) &&
5583                     ((network->ssid_len != priv->essid_len) ||
5584                      memcmp(network->ssid, priv->essid,
5585                             min(network->ssid_len, priv->essid_len)))) {
5586                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5587                         strncpy(escaped,
5588                                 escape_essid(network->ssid, network->ssid_len),
5589                                 sizeof(escaped));
5590                         IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5591                                         "because of ESSID mismatch: '%s'.\n",
5592                                         escaped, MAC_ARG(network->bssid),
5593                                         escape_essid(priv->essid,
5594                                                      priv->essid_len));
5595                         return 0;
5596                 }
5597         }
5598
5599         /* If the old network rate is better than this one, don't bother
5600          * testing everything else. */
5601         if (match->network && match->network->stats.rssi > network->stats.rssi) {
5602                 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5603                 strncpy(escaped,
5604                         escape_essid(network->ssid, network->ssid_len),
5605                         sizeof(escaped));
5606                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded because "
5607                                 "'%s (" MAC_FMT ")' has a stronger signal.\n",
5608                                 escaped, MAC_ARG(network->bssid),
5609                                 escape_essid(match->network->ssid,
5610                                              match->network->ssid_len),
5611                                 MAC_ARG(match->network->bssid));
5612                 return 0;
5613         }
5614
5615         /* If this network has already had an association attempt within the
5616          * last 3 seconds, do not try and associate again... */
5617         if (network->last_associate &&
5618             time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5619                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5620                                 "because of storming (%ums since last "
5621                                 "assoc attempt).\n",
5622                                 escape_essid(network->ssid, network->ssid_len),
5623                                 MAC_ARG(network->bssid),
5624                                 jiffies_to_msecs(jiffies -
5625                                                  network->last_associate));
5626                 return 0;
5627         }
5628
5629         /* Now go through and see if the requested network is valid... */
5630         if (priv->ieee->scan_age != 0 &&
5631             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5632                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5633                                 "because of age: %ums.\n",
5634                                 escape_essid(network->ssid, network->ssid_len),
5635                                 MAC_ARG(network->bssid),
5636                                 jiffies_to_msecs(jiffies -
5637                                                  network->last_scanned));
5638                 return 0;
5639         }
5640
5641         if ((priv->config & CFG_STATIC_CHANNEL) &&
5642             (network->channel != priv->channel)) {
5643                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5644                                 "because of channel mismatch: %d != %d.\n",
5645                                 escape_essid(network->ssid, network->ssid_len),
5646                                 MAC_ARG(network->bssid),
5647                                 network->channel, priv->channel);
5648                 return 0;
5649         }
5650
5651         /* Verify privacy compatability */
5652         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5653             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5654                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5655                                 "because of privacy mismatch: %s != %s.\n",
5656                                 escape_essid(network->ssid, network->ssid_len),
5657                                 MAC_ARG(network->bssid),
5658                                 priv->capability & CAP_PRIVACY_ON ? "on" :
5659                                 "off",
5660                                 network->capability &
5661                                 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5662                 return 0;
5663         }
5664
5665         if ((priv->config & CFG_STATIC_BSSID) &&
5666             memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5667                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5668                                 "because of BSSID mismatch: " MAC_FMT ".\n",
5669                                 escape_essid(network->ssid, network->ssid_len),
5670                                 MAC_ARG(network->bssid), MAC_ARG(priv->bssid));
5671                 return 0;
5672         }
5673
5674         /* Filter out any incompatible freq / mode combinations */
5675         if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5676                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5677                                 "because of invalid frequency/mode "
5678                                 "combination.\n",
5679                                 escape_essid(network->ssid, network->ssid_len),
5680                                 MAC_ARG(network->bssid));
5681                 return 0;
5682         }
5683
5684         /* Filter out invalid channel in current GEO */
5685         if (!ieee80211_is_valid_channel(priv->ieee, network->channel)) {
5686                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5687                                 "because of invalid channel in current GEO\n",
5688                                 escape_essid(network->ssid, network->ssid_len),
5689                                 MAC_ARG(network->bssid));
5690                 return 0;
5691         }
5692
5693         /* Ensure that the rates supported by the driver are compatible with
5694          * this AP, including verification of basic rates (mandatory) */
5695         if (!ipw_compatible_rates(priv, network, &rates)) {
5696                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5697                                 "because configured rate mask excludes "
5698                                 "AP mandatory rate.\n",
5699                                 escape_essid(network->ssid, network->ssid_len),
5700                                 MAC_ARG(network->bssid));
5701                 return 0;
5702         }
5703
5704         if (rates.num_rates == 0) {
5705                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5706                                 "because of no compatible rates.\n",
5707                                 escape_essid(network->ssid, network->ssid_len),
5708                                 MAC_ARG(network->bssid));
5709                 return 0;
5710         }
5711
5712         /* TODO: Perform any further minimal comparititive tests.  We do not
5713          * want to put too much policy logic here; intelligent scan selection
5714          * should occur within a generic IEEE 802.11 user space tool.  */
5715
5716         /* Set up 'new' AP to this network */
5717         ipw_copy_rates(&match->rates, &rates);
5718         match->network = network;
5719
5720         IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' is a viable match.\n",
5721                         escape_essid(network->ssid, network->ssid_len),
5722                         MAC_ARG(network->bssid));
5723
5724         return 1;
5725 }
5726
5727 static void ipw_adhoc_create(struct ipw_priv *priv,
5728                              struct ieee80211_network *network)
5729 {
5730         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
5731         int i;
5732
5733         /*
5734          * For the purposes of scanning, we can set our wireless mode
5735          * to trigger scans across combinations of bands, but when it
5736          * comes to creating a new ad-hoc network, we have tell the FW
5737          * exactly which band to use.
5738          *
5739          * We also have the possibility of an invalid channel for the
5740          * chossen band.  Attempting to create a new ad-hoc network
5741          * with an invalid channel for wireless mode will trigger a
5742          * FW fatal error.
5743          *
5744          */
5745         switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
5746         case IEEE80211_52GHZ_BAND:
5747                 network->mode = IEEE_A;
5748                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5749                 BUG_ON(i == -1);
5750                 if (geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5751                         IPW_WARNING("Overriding invalid channel\n");
5752                         priv->channel = geo->a[0].channel;
5753                 }
5754                 break;
5755
5756         case IEEE80211_24GHZ_BAND:
5757                 if (priv->ieee->mode & IEEE_G)
5758                         network->mode = IEEE_G;
5759                 else
5760                         network->mode = IEEE_B;
5761                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5762                 BUG_ON(i == -1);
5763                 if (geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5764                         IPW_WARNING("Overriding invalid channel\n");
5765                         priv->channel = geo->bg[0].channel;
5766                 }
5767                 break;
5768
5769         default:
5770                 IPW_WARNING("Overriding invalid channel\n");
5771                 if (priv->ieee->mode & IEEE_A) {
5772                         network->mode = IEEE_A;
5773                         priv->channel = geo->a[0].channel;
5774                 } else if (priv->ieee->mode & IEEE_G) {
5775                         network->mode = IEEE_G;
5776                         priv->channel = geo->bg[0].channel;
5777                 } else {
5778                         network->mode = IEEE_B;
5779                         priv->channel = geo->bg[0].channel;
5780                 }
5781                 break;
5782         }
5783
5784         network->channel = priv->channel;
5785         priv->config |= CFG_ADHOC_PERSIST;
5786         ipw_create_bssid(priv, network->bssid);
5787         network->ssid_len = priv->essid_len;
5788         memcpy(network->ssid, priv->essid, priv->essid_len);
5789         memset(&network->stats, 0, sizeof(network->stats));
5790         network->capability = WLAN_CAPABILITY_IBSS;
5791         if (!(priv->config & CFG_PREAMBLE_LONG))
5792                 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5793         if (priv->capability & CAP_PRIVACY_ON)
5794                 network->capability |= WLAN_CAPABILITY_PRIVACY;
5795         network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5796         memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5797         network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5798         memcpy(network->rates_ex,
5799                &priv->rates.supported_rates[network->rates_len],
5800                network->rates_ex_len);
5801         network->last_scanned = 0;
5802         network->flags = 0;
5803         network->last_associate = 0;
5804         network->time_stamp[0] = 0;
5805         network->time_stamp[1] = 0;
5806         network->beacon_interval = 100; /* Default */
5807         network->listen_interval = 10;  /* Default */
5808         network->atim_window = 0;       /* Default */
5809         network->wpa_ie_len = 0;
5810         network->rsn_ie_len = 0;
5811 }
5812
5813 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5814 {
5815         struct ipw_tgi_tx_key key;
5816
5817         if (!(priv->ieee->sec.flags & (1 << index)))
5818                 return;
5819
5820         key.key_id = index;
5821         memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5822         key.security_type = type;
5823         key.station_index = 0;  /* always 0 for BSS */
5824         key.flags = 0;
5825         /* 0 for new key; previous value of counter (after fatal error) */
5826         key.tx_counter[0] = cpu_to_le32(0);
5827         key.tx_counter[1] = cpu_to_le32(0);
5828
5829         ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5830 }
5831
5832 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5833 {
5834         struct ipw_wep_key key;
5835         int i;
5836
5837         key.cmd_id = DINO_CMD_WEP_KEY;
5838         key.seq_num = 0;
5839
5840         /* Note: AES keys cannot be set for multiple times.
5841          * Only set it at the first time. */
5842         for (i = 0; i < 4; i++) {
5843                 key.key_index = i | type;
5844                 if (!(priv->ieee->sec.flags & (1 << i))) {
5845                         key.key_size = 0;
5846                         continue;
5847                 }
5848
5849                 key.key_size = priv->ieee->sec.key_sizes[i];
5850                 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5851
5852                 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5853         }
5854 }
5855
5856 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5857 {
5858         if (priv->ieee->host_encrypt)
5859                 return;
5860
5861         switch (level) {
5862         case SEC_LEVEL_3:
5863                 priv->sys_config.disable_unicast_decryption = 0;
5864                 priv->ieee->host_decrypt = 0;
5865                 break;
5866         case SEC_LEVEL_2:
5867                 priv->sys_config.disable_unicast_decryption = 1;
5868                 priv->ieee->host_decrypt = 1;
5869                 break;
5870         case SEC_LEVEL_1:
5871                 priv->sys_config.disable_unicast_decryption = 0;
5872                 priv->ieee->host_decrypt = 0;
5873                 break;
5874         case SEC_LEVEL_0:
5875                 priv->sys_config.disable_unicast_decryption = 1;
5876                 break;
5877         default:
5878                 break;
5879         }
5880 }
5881
5882 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5883 {
5884         if (priv->ieee->host_encrypt)
5885                 return;
5886
5887         switch (level) {
5888         case SEC_LEVEL_3:
5889                 priv->sys_config.disable_multicast_decryption = 0;
5890                 break;
5891         case SEC_LEVEL_2:
5892                 priv->sys_config.disable_multicast_decryption = 1;
5893                 break;
5894         case SEC_LEVEL_1:
5895                 priv->sys_config.disable_multicast_decryption = 0;
5896                 break;
5897         case SEC_LEVEL_0:
5898                 priv->sys_config.disable_multicast_decryption = 1;
5899                 break;
5900         default:
5901                 break;
5902         }
5903 }
5904
5905 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
5906 {
5907         switch (priv->ieee->sec.level) {
5908         case SEC_LEVEL_3:
5909                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5910                         ipw_send_tgi_tx_key(priv,
5911                                             DCT_FLAG_EXT_SECURITY_CCM,
5912                                             priv->ieee->sec.active_key);
5913
5914                 if (!priv->ieee->host_mc_decrypt)
5915                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
5916                 break;
5917         case SEC_LEVEL_2:
5918                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5919                         ipw_send_tgi_tx_key(priv,
5920                                             DCT_FLAG_EXT_SECURITY_TKIP,
5921                                             priv->ieee->sec.active_key);
5922                 break;
5923         case SEC_LEVEL_1:
5924                 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
5925                 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
5926                 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
5927                 break;
5928         case SEC_LEVEL_0:
5929         default:
5930                 break;
5931         }
5932 }
5933
5934 static void ipw_adhoc_check(void *data)
5935 {
5936         struct ipw_priv *priv = data;
5937
5938         if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
5939             !(priv->config & CFG_ADHOC_PERSIST)) {
5940                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
5941                           IPW_DL_STATE | IPW_DL_ASSOC,
5942                           "Missed beacon: %d - disassociate\n",
5943                           priv->missed_adhoc_beacons);
5944                 ipw_remove_current_network(priv);
5945                 ipw_disassociate(priv);
5946                 return;
5947         }
5948
5949         queue_delayed_work(priv->workqueue, &priv->adhoc_check,
5950                            priv->assoc_request.beacon_interval);
5951 }
5952
5953 static void ipw_bg_adhoc_check(void *data)
5954 {
5955         struct ipw_priv *priv = data;
5956         mutex_lock(&priv->mutex);
5957         ipw_adhoc_check(data);
5958         mutex_unlock(&priv->mutex);
5959 }
5960
5961 static void ipw_debug_config(struct ipw_priv *priv)
5962 {
5963         IPW_DEBUG_INFO("Scan completed, no valid APs matched "
5964                        "[CFG 0x%08X]\n", priv->config);
5965         if (priv->config & CFG_STATIC_CHANNEL)
5966                 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
5967         else
5968                 IPW_DEBUG_INFO("Channel unlocked.\n");
5969         if (priv->config & CFG_STATIC_ESSID)
5970                 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
5971                                escape_essid(priv->essid, priv->essid_len));
5972         else
5973                 IPW_DEBUG_INFO("ESSID unlocked.\n");
5974         if (priv->config & CFG_STATIC_BSSID)
5975                 IPW_DEBUG_INFO("BSSID locked to " MAC_FMT "\n",
5976                                MAC_ARG(priv->bssid));
5977         else
5978                 IPW_DEBUG_INFO("BSSID unlocked.\n");
5979         if (priv->capability & CAP_PRIVACY_ON)
5980                 IPW_DEBUG_INFO("PRIVACY on\n");
5981         else
5982                 IPW_DEBUG_INFO("PRIVACY off\n");
5983         IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
5984 }
5985
5986 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
5987 {
5988         /* TODO: Verify that this works... */
5989         struct ipw_fixed_rate fr = {
5990                 .tx_rates = priv->rates_mask
5991         };
5992         u32 reg;
5993         u16 mask = 0;
5994
5995         /* Identify 'current FW band' and match it with the fixed
5996          * Tx rates */
5997
5998         switch (priv->ieee->freq_band) {
5999         case IEEE80211_52GHZ_BAND:      /* A only */
6000                 /* IEEE_A */
6001                 if (priv->rates_mask & ~IEEE80211_OFDM_RATES_MASK) {
6002                         /* Invalid fixed rate mask */
6003                         IPW_DEBUG_WX
6004                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6005                         fr.tx_rates = 0;
6006                         break;
6007                 }
6008
6009                 fr.tx_rates >>= IEEE80211_OFDM_SHIFT_MASK_A;
6010                 break;
6011
6012         default:                /* 2.4Ghz or Mixed */
6013                 /* IEEE_B */
6014                 if (mode == IEEE_B) {
6015                         if (fr.tx_rates & ~IEEE80211_CCK_RATES_MASK) {
6016                                 /* Invalid fixed rate mask */
6017                                 IPW_DEBUG_WX
6018                                     ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6019                                 fr.tx_rates = 0;
6020                         }
6021                         break;
6022                 }
6023
6024                 /* IEEE_G */
6025                 if (fr.tx_rates & ~(IEEE80211_CCK_RATES_MASK |
6026                                     IEEE80211_OFDM_RATES_MASK)) {
6027                         /* Invalid fixed rate mask */
6028                         IPW_DEBUG_WX
6029                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6030                         fr.tx_rates = 0;
6031                         break;
6032                 }
6033
6034                 if (IEEE80211_OFDM_RATE_6MB_MASK & fr.tx_rates) {
6035                         mask |= (IEEE80211_OFDM_RATE_6MB_MASK >> 1);
6036                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_6MB_MASK;
6037                 }
6038
6039                 if (IEEE80211_OFDM_RATE_9MB_MASK & fr.tx_rates) {
6040                         mask |= (IEEE80211_OFDM_RATE_9MB_MASK >> 1);
6041                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_9MB_MASK;
6042                 }
6043
6044                 if (IEEE80211_OFDM_RATE_12MB_MASK & fr.tx_rates) {
6045                         mask |= (IEEE80211_OFDM_RATE_12MB_MASK >> 1);
6046                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_12MB_MASK;
6047                 }
6048
6049                 fr.tx_rates |= mask;
6050                 break;
6051         }
6052
6053         reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6054         ipw_write_reg32(priv, reg, *(u32 *) & fr);
6055 }
6056
6057 static void ipw_abort_scan(struct ipw_priv *priv)
6058 {
6059         int err;
6060
6061         if (priv->status & STATUS_SCAN_ABORTING) {
6062                 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6063                 return;
6064         }
6065         priv->status |= STATUS_SCAN_ABORTING;
6066
6067         err = ipw_send_scan_abort(priv);
6068         if (err)
6069                 IPW_DEBUG_HC("Request to abort scan failed.\n");
6070 }
6071
6072 static void ipw_add_scan_channels(struct ipw_priv *priv,
6073                                   struct ipw_scan_request_ext *scan,
6074                                   int scan_type)
6075 {
6076         int channel_index = 0;
6077         const struct ieee80211_geo *geo;
6078         int i;
6079
6080         geo = ieee80211_get_geo(priv->ieee);
6081
6082         if (priv->ieee->freq_band & IEEE80211_52GHZ_BAND) {
6083                 int start = channel_index;
6084                 for (i = 0; i < geo->a_channels; i++) {
6085                         if ((priv->status & STATUS_ASSOCIATED) &&
6086                             geo->a[i].channel == priv->channel)
6087                                 continue;
6088                         channel_index++;
6089                         scan->channels_list[channel_index] = geo->a[i].channel;
6090                         ipw_set_scan_type(scan, channel_index,
6091                                           geo->a[i].
6092                                           flags & IEEE80211_CH_PASSIVE_ONLY ?
6093                                           IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6094                                           scan_type);
6095                 }
6096
6097                 if (start != channel_index) {
6098                         scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6099                             (channel_index - start);
6100                         channel_index++;
6101                 }
6102         }
6103
6104         if (priv->ieee->freq_band & IEEE80211_24GHZ_BAND) {
6105                 int start = channel_index;
6106                 if (priv->config & CFG_SPEED_SCAN) {
6107                         int index;
6108                         u8 channels[IEEE80211_24GHZ_CHANNELS] = {
6109                                 /* nop out the list */
6110                                 [0] = 0
6111                         };
6112
6113                         u8 channel;
6114                         while (channel_index < IPW_SCAN_CHANNELS) {
6115                                 channel =
6116                                     priv->speed_scan[priv->speed_scan_pos];
6117                                 if (channel == 0) {
6118                                         priv->speed_scan_pos = 0;
6119                                         channel = priv->speed_scan[0];
6120                                 }
6121                                 if ((priv->status & STATUS_ASSOCIATED) &&
6122                                     channel == priv->channel) {
6123                                         priv->speed_scan_pos++;
6124                                         continue;
6125                                 }
6126
6127                                 /* If this channel has already been
6128                                  * added in scan, break from loop
6129                                  * and this will be the first channel
6130                                  * in the next scan.
6131                                  */
6132                                 if (channels[channel - 1] != 0)
6133                                         break;
6134
6135                                 channels[channel - 1] = 1;
6136                                 priv->speed_scan_pos++;
6137                                 channel_index++;
6138                                 scan->channels_list[channel_index] = channel;
6139                                 index =
6140                                     ieee80211_channel_to_index(priv->ieee, channel);
6141                                 ipw_set_scan_type(scan, channel_index,
6142                                                   geo->bg[index].
6143                                                   flags &
6144                                                   IEEE80211_CH_PASSIVE_ONLY ?
6145                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6146                                                   : scan_type);
6147                         }
6148                 } else {
6149                         for (i = 0; i < geo->bg_channels; i++) {
6150                                 if ((priv->status & STATUS_ASSOCIATED) &&
6151                                     geo->bg[i].channel == priv->channel)
6152                                         continue;
6153                                 channel_index++;
6154                                 scan->channels_list[channel_index] =
6155                                     geo->bg[i].channel;
6156                                 ipw_set_scan_type(scan, channel_index,
6157                                                   geo->bg[i].
6158                                                   flags &
6159                                                   IEEE80211_CH_PASSIVE_ONLY ?
6160                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6161                                                   : scan_type);
6162                         }
6163                 }
6164
6165                 if (start != channel_index) {
6166                         scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6167                             (channel_index - start);
6168                 }
6169         }
6170 }
6171
6172 static int ipw_request_scan_helper(struct ipw_priv *priv, int type)
6173 {
6174         struct ipw_scan_request_ext scan;
6175         int err = 0, scan_type;
6176
6177         if (!(priv->status & STATUS_INIT) ||
6178             (priv->status & STATUS_EXIT_PENDING))
6179                 return 0;
6180
6181         mutex_lock(&priv->mutex);
6182
6183         if (priv->status & STATUS_SCANNING) {
6184                 IPW_DEBUG_HC("Concurrent scan requested.  Ignoring.\n");
6185                 priv->status |= STATUS_SCAN_PENDING;
6186                 goto done;
6187         }
6188
6189         if (!(priv->status & STATUS_SCAN_FORCED) &&
6190             priv->status & STATUS_SCAN_ABORTING) {
6191                 IPW_DEBUG_HC("Scan request while abort pending.  Queuing.\n");
6192                 priv->status |= STATUS_SCAN_PENDING;
6193                 goto done;
6194         }
6195
6196         if (priv->status & STATUS_RF_KILL_MASK) {
6197                 IPW_DEBUG_HC("Aborting scan due to RF Kill activation\n");
6198                 priv->status |= STATUS_SCAN_PENDING;
6199                 goto done;
6200         }
6201
6202         memset(&scan, 0, sizeof(scan));
6203         scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
6204
6205         if (type == IW_SCAN_TYPE_PASSIVE) {
6206                 IPW_DEBUG_WX("use passive scanning\n");
6207                 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6208                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6209                         cpu_to_le16(120);
6210                 ipw_add_scan_channels(priv, &scan, scan_type);
6211                 goto send_request;
6212         }
6213
6214         /* Use active scan by default. */
6215         if (priv->config & CFG_SPEED_SCAN)
6216                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6217                         cpu_to_le16(30);
6218         else
6219                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6220                         cpu_to_le16(20);
6221
6222         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6223                 cpu_to_le16(20);
6224
6225         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
6226
6227 #ifdef CONFIG_IPW2200_MONITOR
6228         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6229                 u8 channel;
6230                 u8 band = 0;
6231
6232                 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
6233                 case IEEE80211_52GHZ_BAND:
6234                         band = (u8) (IPW_A_MODE << 6) | 1;
6235                         channel = priv->channel;
6236                         break;
6237
6238                 case IEEE80211_24GHZ_BAND:
6239                         band = (u8) (IPW_B_MODE << 6) | 1;
6240                         channel = priv->channel;
6241                         break;
6242
6243                 default:
6244                         band = (u8) (IPW_B_MODE << 6) | 1;
6245                         channel = 9;
6246                         break;
6247                 }
6248
6249                 scan.channels_list[0] = band;
6250                 scan.channels_list[1] = channel;
6251                 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6252
6253                 /* NOTE:  The card will sit on this channel for this time
6254                  * period.  Scan aborts are timing sensitive and frequently
6255                  * result in firmware restarts.  As such, it is best to
6256                  * set a small dwell_time here and just keep re-issuing
6257                  * scans.  Otherwise fast channel hopping will not actually
6258                  * hop channels.
6259                  *
6260                  * TODO: Move SPEED SCAN support to all modes and bands */
6261                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6262                         cpu_to_le16(2000);
6263         } else {
6264 #endif                          /* CONFIG_IPW2200_MONITOR */
6265                 /* If we are roaming, then make this a directed scan for the
6266                  * current network.  Otherwise, ensure that every other scan
6267                  * is a fast channel hop scan */
6268                 if ((priv->status & STATUS_ROAMING)
6269                     || (!(priv->status & STATUS_ASSOCIATED)
6270                         && (priv->config & CFG_STATIC_ESSID)
6271                         && (le32_to_cpu(scan.full_scan_index) % 2))) {
6272                         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6273                         if (err) {
6274                                 IPW_DEBUG_HC("Attempt to send SSID command "
6275                                              "failed.\n");
6276                                 goto done;
6277                         }
6278
6279                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6280                 } else
6281                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6282
6283                 ipw_add_scan_channels(priv, &scan, scan_type);
6284 #ifdef CONFIG_IPW2200_MONITOR
6285         }
6286 #endif
6287
6288 send_request:
6289         err = ipw_send_scan_request_ext(priv, &scan);
6290         if (err) {
6291                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6292                 goto done;
6293         }
6294
6295         priv->status |= STATUS_SCANNING;
6296         priv->status &= ~STATUS_SCAN_PENDING;
6297         queue_delayed_work(priv->workqueue, &priv->scan_check,
6298                            IPW_SCAN_CHECK_WATCHDOG);
6299 done:
6300         mutex_unlock(&priv->mutex);
6301         return err;
6302 }
6303
6304 static int ipw_request_passive_scan(struct ipw_priv *priv) {
6305         return ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE);
6306 }
6307
6308 static int ipw_request_scan(struct ipw_priv *priv) {
6309         return ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE);
6310 }
6311
6312 static void ipw_bg_abort_scan(void *data)
6313 {
6314         struct ipw_priv *priv = data;
6315         mutex_lock(&priv->mutex);
6316         ipw_abort_scan(data);
6317         mutex_unlock(&priv->mutex);
6318 }
6319
6320 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6321 {
6322         /* This is called when wpa_supplicant loads and closes the driver
6323          * interface. */
6324         priv->ieee->wpa_enabled = value;
6325         return 0;
6326 }
6327
6328 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6329 {
6330         struct ieee80211_device *ieee = priv->ieee;
6331         struct ieee80211_security sec = {
6332                 .flags = SEC_AUTH_MODE,
6333         };
6334         int ret = 0;
6335
6336         if (value & IW_AUTH_ALG_SHARED_KEY) {
6337                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6338                 ieee->open_wep = 0;
6339         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6340                 sec.auth_mode = WLAN_AUTH_OPEN;
6341                 ieee->open_wep = 1;
6342         } else if (value & IW_AUTH_ALG_LEAP) {
6343                 sec.auth_mode = WLAN_AUTH_LEAP;
6344                 ieee->open_wep = 1;
6345         } else
6346                 return -EINVAL;
6347
6348         if (ieee->set_security)
6349                 ieee->set_security(ieee->dev, &sec);
6350         else
6351                 ret = -EOPNOTSUPP;
6352
6353         return ret;
6354 }
6355
6356 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6357                                 int wpa_ie_len)
6358 {
6359         /* make sure WPA is enabled */
6360         ipw_wpa_enable(priv, 1);
6361 }
6362
6363 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6364                             char *capabilities, int length)
6365 {
6366         IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6367
6368         return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6369                                 capabilities);
6370 }
6371
6372 /*
6373  * WE-18 support
6374  */
6375
6376 /* SIOCSIWGENIE */
6377 static int ipw_wx_set_genie(struct net_device *dev,
6378                             struct iw_request_info *info,
6379                             union iwreq_data *wrqu, char *extra)
6380 {
6381         struct ipw_priv *priv = ieee80211_priv(dev);
6382         struct ieee80211_device *ieee = priv->ieee;
6383         u8 *buf;
6384         int err = 0;
6385
6386         if (wrqu->data.length > MAX_WPA_IE_LEN ||
6387             (wrqu->data.length && extra == NULL))
6388                 return -EINVAL;
6389
6390         if (wrqu->data.length) {
6391                 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
6392                 if (buf == NULL) {
6393                         err = -ENOMEM;
6394                         goto out;
6395                 }
6396
6397                 memcpy(buf, extra, wrqu->data.length);
6398                 kfree(ieee->wpa_ie);
6399                 ieee->wpa_ie = buf;
6400                 ieee->wpa_ie_len = wrqu->data.length;
6401         } else {
6402                 kfree(ieee->wpa_ie);
6403                 ieee->wpa_ie = NULL;
6404                 ieee->wpa_ie_len = 0;
6405         }
6406
6407         ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6408       out:
6409         return err;
6410 }
6411
6412 /* SIOCGIWGENIE */
6413 static int ipw_wx_get_genie(struct net_device *dev,
6414                             struct iw_request_info *info,
6415                             union iwreq_data *wrqu, char *extra)
6416 {
6417         struct ipw_priv *priv = ieee80211_priv(dev);
6418         struct ieee80211_device *ieee = priv->ieee;
6419         int err = 0;
6420
6421         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6422                 wrqu->data.length = 0;
6423                 goto out;
6424         }
6425
6426         if (wrqu->data.length < ieee->wpa_ie_len) {
6427                 err = -E2BIG;
6428                 goto out;
6429         }
6430
6431         wrqu->data.length = ieee->wpa_ie_len;
6432         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6433
6434       out:
6435         return err;
6436 }
6437
6438 static int wext_cipher2level(int cipher)
6439 {
6440         switch (cipher) {
6441         case IW_AUTH_CIPHER_NONE:
6442                 return SEC_LEVEL_0;
6443         case IW_AUTH_CIPHER_WEP40:
6444         case IW_AUTH_CIPHER_WEP104:
6445                 return SEC_LEVEL_1;
6446         case IW_AUTH_CIPHER_TKIP:
6447                 return SEC_LEVEL_2;
6448         case IW_AUTH_CIPHER_CCMP:
6449                 return SEC_LEVEL_3;
6450         default:
6451                 return -1;
6452         }
6453 }
6454
6455 /* SIOCSIWAUTH */
6456 static int ipw_wx_set_auth(struct net_device *dev,
6457                            struct iw_request_info *info,
6458                            union iwreq_data *wrqu, char *extra)
6459 {
6460         struct ipw_priv *priv = ieee80211_priv(dev);
6461         struct ieee80211_device *ieee = priv->ieee;
6462         struct iw_param *param = &wrqu->param;
6463         struct ieee80211_crypt_data *crypt;
6464         unsigned long flags;
6465         int ret = 0;
6466
6467         switch (param->flags & IW_AUTH_INDEX) {
6468         case IW_AUTH_WPA_VERSION:
6469                 break;
6470         case IW_AUTH_CIPHER_PAIRWISE:
6471                 ipw_set_hw_decrypt_unicast(priv,
6472                                            wext_cipher2level(param->value));
6473                 break;
6474         case IW_AUTH_CIPHER_GROUP:
6475                 ipw_set_hw_decrypt_multicast(priv,
6476                                              wext_cipher2level(param->value));
6477                 break;
6478         case IW_AUTH_KEY_MGMT:
6479                 /*
6480                  * ipw2200 does not use these parameters
6481                  */
6482                 break;
6483
6484         case IW_AUTH_TKIP_COUNTERMEASURES:
6485                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6486                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6487                         break;
6488
6489                 flags = crypt->ops->get_flags(crypt->priv);
6490
6491                 if (param->value)
6492                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6493                 else
6494                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6495
6496                 crypt->ops->set_flags(flags, crypt->priv);
6497
6498                 break;
6499
6500         case IW_AUTH_DROP_UNENCRYPTED:{
6501                         /* HACK:
6502                          *
6503                          * wpa_supplicant calls set_wpa_enabled when the driver
6504                          * is loaded and unloaded, regardless of if WPA is being
6505                          * used.  No other calls are made which can be used to
6506                          * determine if encryption will be used or not prior to
6507                          * association being expected.  If encryption is not being
6508                          * used, drop_unencrypted is set to false, else true -- we
6509                          * can use this to determine if the CAP_PRIVACY_ON bit should
6510                          * be set.
6511                          */
6512                         struct ieee80211_security sec = {
6513                                 .flags = SEC_ENABLED,
6514                                 .enabled = param->value,
6515                         };
6516                         priv->ieee->drop_unencrypted = param->value;
6517                         /* We only change SEC_LEVEL for open mode. Others
6518                          * are set by ipw_wpa_set_encryption.
6519                          */
6520                         if (!param->value) {
6521                                 sec.flags |= SEC_LEVEL;
6522                                 sec.level = SEC_LEVEL_0;
6523                         } else {
6524                                 sec.flags |= SEC_LEVEL;
6525                                 sec.level = SEC_LEVEL_1;
6526                         }
6527                         if (priv->ieee->set_security)
6528                                 priv->ieee->set_security(priv->ieee->dev, &sec);
6529                         break;
6530                 }
6531
6532         case IW_AUTH_80211_AUTH_ALG:
6533                 ret = ipw_wpa_set_auth_algs(priv, param->value);
6534                 break;
6535
6536         case IW_AUTH_WPA_ENABLED:
6537                 ret = ipw_wpa_enable(priv, param->value);
6538                 ipw_disassociate(priv);
6539                 break;
6540
6541         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6542                 ieee->ieee802_1x = param->value;
6543                 break;
6544
6545         case IW_AUTH_PRIVACY_INVOKED:
6546                 ieee->privacy_invoked = param->value;
6547                 break;
6548
6549         default:
6550                 return -EOPNOTSUPP;
6551         }
6552         return ret;
6553 }
6554
6555 /* SIOCGIWAUTH */
6556 static int ipw_wx_get_auth(struct net_device *dev,
6557                            struct iw_request_info *info,
6558                            union iwreq_data *wrqu, char *extra)
6559 {
6560         struct ipw_priv *priv = ieee80211_priv(dev);
6561         struct ieee80211_device *ieee = priv->ieee;
6562         struct ieee80211_crypt_data *crypt;
6563         struct iw_param *param = &wrqu->param;
6564         int ret = 0;
6565
6566         switch (param->flags & IW_AUTH_INDEX) {
6567         case IW_AUTH_WPA_VERSION:
6568         case IW_AUTH_CIPHER_PAIRWISE:
6569         case IW_AUTH_CIPHER_GROUP:
6570         case IW_AUTH_KEY_MGMT:
6571                 /*
6572                  * wpa_supplicant will control these internally
6573                  */
6574                 ret = -EOPNOTSUPP;
6575                 break;
6576
6577         case IW_AUTH_TKIP_COUNTERMEASURES:
6578                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6579                 if (!crypt || !crypt->ops->get_flags)
6580                         break;
6581
6582                 param->value = (crypt->ops->get_flags(crypt->priv) &
6583                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6584
6585                 break;
6586
6587         case IW_AUTH_DROP_UNENCRYPTED:
6588                 param->value = ieee->drop_unencrypted;
6589                 break;
6590
6591         case IW_AUTH_80211_AUTH_ALG:
6592                 param->value = ieee->sec.auth_mode;
6593                 break;
6594
6595         case IW_AUTH_WPA_ENABLED:
6596                 param->value = ieee->wpa_enabled;
6597                 break;
6598
6599         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6600                 param->value = ieee->ieee802_1x;
6601                 break;
6602
6603         case IW_AUTH_ROAMING_CONTROL:
6604         case IW_AUTH_PRIVACY_INVOKED:
6605                 param->value = ieee->privacy_invoked;
6606                 break;
6607
6608         default:
6609                 return -EOPNOTSUPP;
6610         }
6611         return 0;
6612 }
6613
6614 /* SIOCSIWENCODEEXT */
6615 static int ipw_wx_set_encodeext(struct net_device *dev,
6616                                 struct iw_request_info *info,
6617                                 union iwreq_data *wrqu, char *extra)
6618 {
6619         struct ipw_priv *priv = ieee80211_priv(dev);
6620         struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6621
6622         if (hwcrypto) {
6623                 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6624                         /* IPW HW can't build TKIP MIC,
6625                            host decryption still needed */
6626                         if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6627                                 priv->ieee->host_mc_decrypt = 1;
6628                         else {
6629                                 priv->ieee->host_encrypt = 0;
6630                                 priv->ieee->host_encrypt_msdu = 1;
6631                                 priv->ieee->host_decrypt = 1;
6632                         }
6633                 } else {
6634                         priv->ieee->host_encrypt = 0;
6635                         priv->ieee->host_encrypt_msdu = 0;
6636                         priv->ieee->host_decrypt = 0;
6637                         priv->ieee->host_mc_decrypt = 0;
6638                 }
6639         }
6640
6641         return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6642 }
6643
6644 /* SIOCGIWENCODEEXT */
6645 static int ipw_wx_get_encodeext(struct net_device *dev,
6646                                 struct iw_request_info *info,
6647                                 union iwreq_data *wrqu, char *extra)
6648 {
6649         struct ipw_priv *priv = ieee80211_priv(dev);
6650         return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6651 }
6652
6653 /* SIOCSIWMLME */
6654 static int ipw_wx_set_mlme(struct net_device *dev,
6655                            struct iw_request_info *info,
6656                            union iwreq_data *wrqu, char *extra)
6657 {
6658         struct ipw_priv *priv = ieee80211_priv(dev);
6659         struct iw_mlme *mlme = (struct iw_mlme *)extra;
6660         u16 reason;
6661
6662         reason = cpu_to_le16(mlme->reason_code);
6663
6664         switch (mlme->cmd) {
6665         case IW_MLME_DEAUTH:
6666                 /* silently ignore */
6667                 break;
6668
6669         case IW_MLME_DISASSOC:
6670                 ipw_disassociate(priv);
6671                 break;
6672
6673         default:
6674                 return -EOPNOTSUPP;
6675         }
6676         return 0;
6677 }
6678
6679 #ifdef CONFIG_IPW2200_QOS
6680
6681 /* QoS */
6682 /*
6683 * get the modulation type of the current network or
6684 * the card current mode
6685 */
6686 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6687 {
6688         u8 mode = 0;
6689
6690         if (priv->status & STATUS_ASSOCIATED) {
6691                 unsigned long flags;
6692
6693                 spin_lock_irqsave(&priv->ieee->lock, flags);
6694                 mode = priv->assoc_network->mode;
6695                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6696         } else {
6697                 mode = priv->ieee->mode;
6698         }
6699         IPW_DEBUG_QOS("QoS network/card mode %d \n", mode);
6700         return mode;
6701 }
6702
6703 /*
6704 * Handle management frame beacon and probe response
6705 */
6706 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6707                                          int active_network,
6708                                          struct ieee80211_network *network)
6709 {
6710         u32 size = sizeof(struct ieee80211_qos_parameters);
6711
6712         if (network->capability & WLAN_CAPABILITY_IBSS)
6713                 network->qos_data.active = network->qos_data.supported;
6714
6715         if (network->flags & NETWORK_HAS_QOS_MASK) {
6716                 if (active_network &&
6717                     (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6718                         network->qos_data.active = network->qos_data.supported;
6719
6720                 if ((network->qos_data.active == 1) && (active_network == 1) &&
6721                     (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6722                     (network->qos_data.old_param_count !=
6723                      network->qos_data.param_count)) {
6724                         network->qos_data.old_param_count =
6725                             network->qos_data.param_count;
6726                         schedule_work(&priv->qos_activate);
6727                         IPW_DEBUG_QOS("QoS parameters change call "
6728                                       "qos_activate\n");
6729                 }
6730         } else {
6731                 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6732                         memcpy(&network->qos_data.parameters,
6733                                &def_parameters_CCK, size);
6734                 else
6735                         memcpy(&network->qos_data.parameters,
6736                                &def_parameters_OFDM, size);
6737
6738                 if ((network->qos_data.active == 1) && (active_network == 1)) {
6739                         IPW_DEBUG_QOS("QoS was disabled call qos_activate \n");
6740                         schedule_work(&priv->qos_activate);
6741                 }
6742
6743                 network->qos_data.active = 0;
6744                 network->qos_data.supported = 0;
6745         }
6746         if ((priv->status & STATUS_ASSOCIATED) &&
6747             (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6748                 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6749                         if ((network->capability & WLAN_CAPABILITY_IBSS) &&
6750                             !(network->flags & NETWORK_EMPTY_ESSID))
6751                                 if ((network->ssid_len ==
6752                                      priv->assoc_network->ssid_len) &&
6753                                     !memcmp(network->ssid,
6754                                             priv->assoc_network->ssid,
6755                                             network->ssid_len)) {
6756                                         queue_work(priv->workqueue,
6757                                                    &priv->merge_networks);
6758                                 }
6759         }
6760
6761         return 0;
6762 }
6763
6764 /*
6765 * This function set up the firmware to support QoS. It sends
6766 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6767 */
6768 static int ipw_qos_activate(struct ipw_priv *priv,
6769                             struct ieee80211_qos_data *qos_network_data)
6770 {
6771         int err;
6772         struct ieee80211_qos_parameters qos_parameters[QOS_QOS_SETS];
6773         struct ieee80211_qos_parameters *active_one = NULL;
6774         u32 size = sizeof(struct ieee80211_qos_parameters);
6775         u32 burst_duration;
6776         int i;
6777         u8 type;
6778
6779         type = ipw_qos_current_mode(priv);
6780
6781         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6782         memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6783         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6784         memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6785
6786         if (qos_network_data == NULL) {
6787                 if (type == IEEE_B) {
6788                         IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6789                         active_one = &def_parameters_CCK;
6790                 } else
6791                         active_one = &def_parameters_OFDM;
6792
6793                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6794                 burst_duration = ipw_qos_get_burst_duration(priv);
6795                 for (i = 0; i < QOS_QUEUE_NUM; i++)
6796                         qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6797                             (u16)burst_duration;
6798         } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6799                 if (type == IEEE_B) {
6800                         IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
6801                                       type);
6802                         if (priv->qos_data.qos_enable == 0)
6803                                 active_one = &def_parameters_CCK;
6804                         else
6805                                 active_one = priv->qos_data.def_qos_parm_CCK;
6806                 } else {
6807                         if (priv->qos_data.qos_enable == 0)
6808                                 active_one = &def_parameters_OFDM;
6809                         else
6810                                 active_one = priv->qos_data.def_qos_parm_OFDM;
6811                 }
6812                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6813         } else {
6814                 unsigned long flags;
6815                 int active;
6816
6817                 spin_lock_irqsave(&priv->ieee->lock, flags);
6818                 active_one = &(qos_network_data->parameters);
6819                 qos_network_data->old_param_count =
6820                     qos_network_data->param_count;
6821                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6822                 active = qos_network_data->supported;
6823                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6824
6825                 if (active == 0) {
6826                         burst_duration = ipw_qos_get_burst_duration(priv);
6827                         for (i = 0; i < QOS_QUEUE_NUM; i++)
6828                                 qos_parameters[QOS_PARAM_SET_ACTIVE].
6829                                     tx_op_limit[i] = (u16)burst_duration;
6830                 }
6831         }
6832
6833         IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6834         for (i = 0; i < 3; i++) {
6835                 int j;
6836                 for (j = 0; j < QOS_QUEUE_NUM; j++) {
6837                         qos_parameters[i].cw_min[j] = cpu_to_le16(qos_parameters[i].cw_min[j]);
6838                         qos_parameters[i].cw_max[j] = cpu_to_le16(qos_parameters[i].cw_max[j]);
6839                         qos_parameters[i].tx_op_limit[j] = cpu_to_le16(qos_parameters[i].tx_op_limit[j]);
6840                 }
6841         }
6842
6843         err = ipw_send_qos_params_command(priv,
6844                                           (struct ieee80211_qos_parameters *)
6845                                           &(qos_parameters[0]));
6846         if (err)
6847                 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6848
6849         return err;
6850 }
6851
6852 /*
6853 * send IPW_CMD_WME_INFO to the firmware
6854 */
6855 static int ipw_qos_set_info_element(struct ipw_priv *priv)
6856 {
6857         int ret = 0;
6858         struct ieee80211_qos_information_element qos_info;
6859
6860         if (priv == NULL)
6861                 return -1;
6862
6863         qos_info.elementID = QOS_ELEMENT_ID;
6864         qos_info.length = sizeof(struct ieee80211_qos_information_element) - 2;
6865
6866         qos_info.version = QOS_VERSION_1;
6867         qos_info.ac_info = 0;
6868
6869         memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
6870         qos_info.qui_type = QOS_OUI_TYPE;
6871         qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
6872
6873         ret = ipw_send_qos_info_command(priv, &qos_info);
6874         if (ret != 0) {
6875                 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
6876         }
6877         return ret;
6878 }
6879
6880 /*
6881 * Set the QoS parameter with the association request structure
6882 */
6883 static int ipw_qos_association(struct ipw_priv *priv,
6884                                struct ieee80211_network *network)
6885 {
6886         int err = 0;
6887         struct ieee80211_qos_data *qos_data = NULL;
6888         struct ieee80211_qos_data ibss_data = {
6889                 .supported = 1,
6890                 .active = 1,
6891         };
6892
6893         switch (priv->ieee->iw_mode) {
6894         case IW_MODE_ADHOC:
6895                 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
6896
6897                 qos_data = &ibss_data;
6898                 break;
6899
6900         case IW_MODE_INFRA:
6901                 qos_data = &network->qos_data;
6902                 break;
6903
6904         default:
6905                 BUG();
6906                 break;
6907         }
6908
6909         err = ipw_qos_activate(priv, qos_data);
6910         if (err) {
6911                 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
6912                 return err;
6913         }
6914
6915         if (priv->qos_data.qos_enable && qos_data->supported) {
6916                 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
6917                 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
6918                 return ipw_qos_set_info_element(priv);
6919         }
6920
6921         return 0;
6922 }
6923
6924 /*
6925 * handling the beaconing responces. if we get different QoS setting
6926 * of the network from the the associated setting adjust the QoS
6927 * setting
6928 */
6929 static int ipw_qos_association_resp(struct ipw_priv *priv,
6930                                     struct ieee80211_network *network)
6931 {
6932         int ret = 0;
6933         unsigned long flags;
6934         u32 size = sizeof(struct ieee80211_qos_parameters);
6935         int set_qos_param = 0;
6936
6937         if ((priv == NULL) || (network == NULL) ||
6938             (priv->assoc_network == NULL))
6939                 return ret;
6940
6941         if (!(priv->status & STATUS_ASSOCIATED))
6942                 return ret;
6943
6944         if ((priv->ieee->iw_mode != IW_MODE_INFRA))
6945                 return ret;
6946
6947         spin_lock_irqsave(&priv->ieee->lock, flags);
6948         if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
6949                 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
6950                        sizeof(struct ieee80211_qos_data));
6951                 priv->assoc_network->qos_data.active = 1;
6952                 if ((network->qos_data.old_param_count !=
6953                      network->qos_data.param_count)) {
6954                         set_qos_param = 1;
6955                         network->qos_data.old_param_count =
6956                             network->qos_data.param_count;
6957                 }
6958
6959         } else {
6960                 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
6961                         memcpy(&priv->assoc_network->qos_data.parameters,
6962                                &def_parameters_CCK, size);
6963                 else
6964                         memcpy(&priv->assoc_network->qos_data.parameters,
6965                                &def_parameters_OFDM, size);
6966                 priv->assoc_network->qos_data.active = 0;
6967                 priv->assoc_network->qos_data.supported = 0;
6968                 set_qos_param = 1;
6969         }
6970
6971         spin_unlock_irqrestore(&priv->ieee->lock, flags);
6972
6973         if (set_qos_param == 1)
6974                 schedule_work(&priv->qos_activate);
6975
6976         return ret;
6977 }
6978
6979 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
6980 {
6981         u32 ret = 0;
6982
6983         if ((priv == NULL))
6984                 return 0;
6985
6986         if (!(priv->ieee->modulation & IEEE80211_OFDM_MODULATION))
6987                 ret = priv->qos_data.burst_duration_CCK;
6988         else
6989                 ret = priv->qos_data.burst_duration_OFDM;
6990
6991         return ret;
6992 }
6993
6994 /*
6995 * Initialize the setting of QoS global
6996 */
6997 static void ipw_qos_init(struct ipw_priv *priv, int enable,
6998                          int burst_enable, u32 burst_duration_CCK,
6999                          u32 burst_duration_OFDM)
7000 {
7001         priv->qos_data.qos_enable = enable;
7002
7003         if (priv->qos_data.qos_enable) {
7004                 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7005                 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7006                 IPW_DEBUG_QOS("QoS is enabled\n");
7007         } else {
7008                 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7009                 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7010                 IPW_DEBUG_QOS("QoS is not enabled\n");
7011         }
7012
7013         priv->qos_data.burst_enable = burst_enable;
7014
7015         if (burst_enable) {
7016                 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7017                 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7018         } else {
7019                 priv->qos_data.burst_duration_CCK = 0;
7020                 priv->qos_data.burst_duration_OFDM = 0;
7021         }
7022 }
7023
7024 /*
7025 * map the packet priority to the right TX Queue
7026 */
7027 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7028 {
7029         if (priority > 7 || !priv->qos_data.qos_enable)
7030                 priority = 0;
7031
7032         return from_priority_to_tx_queue[priority] - 1;
7033 }
7034
7035 static int ipw_is_qos_active(struct net_device *dev,
7036                              struct sk_buff *skb)
7037 {
7038         struct ipw_priv *priv = ieee80211_priv(dev);
7039         struct ieee80211_qos_data *qos_data = NULL;
7040         int active, supported;
7041         u8 *daddr = skb->data + ETH_ALEN;
7042         int unicast = !is_multicast_ether_addr(daddr);
7043
7044         if (!(priv->status & STATUS_ASSOCIATED))
7045                 return 0;
7046
7047         qos_data = &priv->assoc_network->qos_data;
7048
7049         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7050                 if (unicast == 0)
7051                         qos_data->active = 0;
7052                 else
7053                         qos_data->active = qos_data->supported;
7054         }
7055         active = qos_data->active;
7056         supported = qos_data->supported;
7057         IPW_DEBUG_QOS("QoS  %d network is QoS active %d  supported %d  "
7058                       "unicast %d\n",
7059                       priv->qos_data.qos_enable, active, supported, unicast);
7060         if (active && priv->qos_data.qos_enable)
7061                 return 1;
7062
7063         return 0;
7064
7065 }
7066 /*
7067 * add QoS parameter to the TX command
7068 */
7069 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7070                                         u16 priority,
7071                                         struct tfd_data *tfd)
7072 {
7073         int tx_queue_id = 0;
7074
7075
7076         tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7077         tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7078
7079         if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7080                 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7081                 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7082         }
7083         return 0;
7084 }
7085
7086 /*
7087 * background support to run QoS activate functionality
7088 */
7089 static void ipw_bg_qos_activate(void *data)
7090 {
7091         struct ipw_priv *priv = data;
7092
7093         if (priv == NULL)
7094                 return;
7095
7096         mutex_lock(&priv->mutex);
7097
7098         if (priv->status & STATUS_ASSOCIATED)
7099                 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7100
7101         mutex_unlock(&priv->mutex);
7102 }
7103
7104 static int ipw_handle_probe_response(struct net_device *dev,
7105                                      struct ieee80211_probe_response *resp,
7106                                      struct ieee80211_network *network)
7107 {
7108         struct ipw_priv *priv = ieee80211_priv(dev);
7109         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7110                               (network == priv->assoc_network));
7111
7112         ipw_qos_handle_probe_response(priv, active_network, network);
7113
7114         return 0;
7115 }
7116
7117 static int ipw_handle_beacon(struct net_device *dev,
7118                              struct ieee80211_beacon *resp,
7119                              struct ieee80211_network *network)
7120 {
7121         struct ipw_priv *priv = ieee80211_priv(dev);
7122         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7123                               (network == priv->assoc_network));
7124
7125         ipw_qos_handle_probe_response(priv, active_network, network);
7126
7127         return 0;
7128 }
7129
7130 static int ipw_handle_assoc_response(struct net_device *dev,
7131                                      struct ieee80211_assoc_response *resp,
7132                                      struct ieee80211_network *network)
7133 {
7134         struct ipw_priv *priv = ieee80211_priv(dev);
7135         ipw_qos_association_resp(priv, network);
7136         return 0;
7137 }
7138
7139 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
7140                                        *qos_param)
7141 {
7142         return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7143                                 sizeof(*qos_param) * 3, qos_param);
7144 }
7145
7146 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
7147                                      *qos_param)
7148 {
7149         return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7150                                 qos_param);
7151 }
7152
7153 #endif                          /* CONFIG_IPW2200_QOS */
7154
7155 static int ipw_associate_network(struct ipw_priv *priv,
7156                                  struct ieee80211_network *network,
7157                                  struct ipw_supported_rates *rates, int roaming)
7158 {
7159         int err;
7160
7161         if (priv->config & CFG_FIXED_RATE)
7162                 ipw_set_fixed_rate(priv, network->mode);
7163
7164         if (!(priv->config & CFG_STATIC_ESSID)) {
7165                 priv->essid_len = min(network->ssid_len,
7166                                       (u8) IW_ESSID_MAX_SIZE);
7167                 memcpy(priv->essid, network->ssid, priv->essid_len);
7168         }
7169
7170         network->last_associate = jiffies;
7171
7172         memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7173         priv->assoc_request.channel = network->channel;
7174         priv->assoc_request.auth_key = 0;
7175
7176         if ((priv->capability & CAP_PRIVACY_ON) &&
7177             (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7178                 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7179                 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7180
7181                 if (priv->ieee->sec.level == SEC_LEVEL_1)
7182                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7183
7184         } else if ((priv->capability & CAP_PRIVACY_ON) &&
7185                    (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7186                 priv->assoc_request.auth_type = AUTH_LEAP;
7187         else
7188                 priv->assoc_request.auth_type = AUTH_OPEN;
7189
7190         if (priv->ieee->wpa_ie_len) {
7191                 priv->assoc_request.policy_support = 0x02;      /* RSN active */
7192                 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7193                                  priv->ieee->wpa_ie_len);
7194         }
7195
7196         /*
7197          * It is valid for our ieee device to support multiple modes, but
7198          * when it comes to associating to a given network we have to choose
7199          * just one mode.
7200          */
7201         if (network->mode & priv->ieee->mode & IEEE_A)
7202                 priv->assoc_request.ieee_mode = IPW_A_MODE;
7203         else if (network->mode & priv->ieee->mode & IEEE_G)
7204                 priv->assoc_request.ieee_mode = IPW_G_MODE;
7205         else if (network->mode & priv->ieee->mode & IEEE_B)
7206                 priv->assoc_request.ieee_mode = IPW_B_MODE;
7207
7208         priv->assoc_request.capability = network->capability;
7209         if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7210             && !(priv->config & CFG_PREAMBLE_LONG)) {
7211                 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7212         } else {
7213                 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7214
7215                 /* Clear the short preamble if we won't be supporting it */
7216                 priv->assoc_request.capability &=
7217                     ~WLAN_CAPABILITY_SHORT_PREAMBLE;
7218         }
7219
7220         /* Clear capability bits that aren't used in Ad Hoc */
7221         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7222                 priv->assoc_request.capability &=
7223                     ~WLAN_CAPABILITY_SHORT_SLOT_TIME;
7224
7225         IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7226                         "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7227                         roaming ? "Rea" : "A",
7228                         escape_essid(priv->essid, priv->essid_len),
7229                         network->channel,
7230                         ipw_modes[priv->assoc_request.ieee_mode],
7231                         rates->num_rates,
7232                         (priv->assoc_request.preamble_length ==
7233                          DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7234                         network->capability &
7235                         WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7236                         priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7237                         priv->capability & CAP_PRIVACY_ON ?
7238                         (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7239                          "(open)") : "",
7240                         priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7241                         priv->capability & CAP_PRIVACY_ON ?
7242                         '1' + priv->ieee->sec.active_key : '.',
7243                         priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7244
7245         priv->assoc_request.beacon_interval = network->beacon_interval;
7246         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7247             (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7248                 priv->assoc_request.assoc_type = HC_IBSS_START;
7249                 priv->assoc_request.assoc_tsf_msw = 0;
7250                 priv->assoc_request.assoc_tsf_lsw = 0;
7251         } else {
7252                 if (unlikely(roaming))
7253                         priv->assoc_request.assoc_type = HC_REASSOCIATE;
7254                 else
7255                         priv->assoc_request.assoc_type = HC_ASSOCIATE;
7256                 priv->assoc_request.assoc_tsf_msw = network->time_stamp[1];
7257                 priv->assoc_request.assoc_tsf_lsw = network->time_stamp[0];
7258         }
7259
7260         memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7261
7262         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7263                 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7264                 priv->assoc_request.atim_window = network->atim_window;
7265         } else {
7266                 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7267                 priv->assoc_request.atim_window = 0;
7268         }
7269
7270         priv->assoc_request.listen_interval = network->listen_interval;
7271
7272         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7273         if (err) {
7274                 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7275                 return err;
7276         }
7277
7278         rates->ieee_mode = priv->assoc_request.ieee_mode;
7279         rates->purpose = IPW_RATE_CONNECT;
7280         ipw_send_supported_rates(priv, rates);
7281
7282         if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7283                 priv->sys_config.dot11g_auto_detection = 1;
7284         else
7285                 priv->sys_config.dot11g_auto_detection = 0;
7286
7287         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7288                 priv->sys_config.answer_broadcast_ssid_probe = 1;
7289         else
7290                 priv->sys_config.answer_broadcast_ssid_probe = 0;
7291
7292         err = ipw_send_system_config(priv);
7293         if (err) {
7294                 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7295                 return err;
7296         }
7297
7298         IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7299         err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7300         if (err) {
7301                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7302                 return err;
7303         }
7304
7305         /*
7306          * If preemption is enabled, it is possible for the association
7307          * to complete before we return from ipw_send_associate.  Therefore
7308          * we have to be sure and update our priviate data first.
7309          */
7310         priv->channel = network->channel;
7311         memcpy(priv->bssid, network->bssid, ETH_ALEN);
7312         priv->status |= STATUS_ASSOCIATING;
7313         priv->status &= ~STATUS_SECURITY_UPDATED;
7314
7315         priv->assoc_network = network;
7316
7317 #ifdef CONFIG_IPW2200_QOS
7318         ipw_qos_association(priv, network);
7319 #endif
7320
7321         err = ipw_send_associate(priv, &priv->assoc_request);
7322         if (err) {
7323                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7324                 return err;
7325         }
7326
7327         IPW_DEBUG(IPW_DL_STATE, "associating: '%s' " MAC_FMT " \n",
7328                   escape_essid(priv->essid, priv->essid_len),
7329                   MAC_ARG(priv->bssid));
7330
7331         return 0;
7332 }
7333
7334 static void ipw_roam(void *data)
7335 {
7336         struct ipw_priv *priv = data;
7337         struct ieee80211_network *network = NULL;
7338         struct ipw_network_match match = {
7339                 .network = priv->assoc_network
7340         };
7341
7342         /* The roaming process is as follows:
7343          *
7344          * 1.  Missed beacon threshold triggers the roaming process by
7345          *     setting the status ROAM bit and requesting a scan.
7346          * 2.  When the scan completes, it schedules the ROAM work
7347          * 3.  The ROAM work looks at all of the known networks for one that
7348          *     is a better network than the currently associated.  If none
7349          *     found, the ROAM process is over (ROAM bit cleared)
7350          * 4.  If a better network is found, a disassociation request is
7351          *     sent.
7352          * 5.  When the disassociation completes, the roam work is again
7353          *     scheduled.  The second time through, the driver is no longer
7354          *     associated, and the newly selected network is sent an
7355          *     association request.
7356          * 6.  At this point ,the roaming process is complete and the ROAM
7357          *     status bit is cleared.
7358          */
7359
7360         /* If we are no longer associated, and the roaming bit is no longer
7361          * set, then we are not actively roaming, so just return */
7362         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7363                 return;
7364
7365         if (priv->status & STATUS_ASSOCIATED) {
7366                 /* First pass through ROAM process -- look for a better
7367                  * network */
7368                 unsigned long flags;
7369                 u8 rssi = priv->assoc_network->stats.rssi;
7370                 priv->assoc_network->stats.rssi = -128;
7371                 spin_lock_irqsave(&priv->ieee->lock, flags);
7372                 list_for_each_entry(network, &priv->ieee->network_list, list) {
7373                         if (network != priv->assoc_network)
7374                                 ipw_best_network(priv, &match, network, 1);
7375                 }
7376                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7377                 priv->assoc_network->stats.rssi = rssi;
7378
7379                 if (match.network == priv->assoc_network) {
7380                         IPW_DEBUG_ASSOC("No better APs in this network to "
7381                                         "roam to.\n");
7382                         priv->status &= ~STATUS_ROAMING;
7383                         ipw_debug_config(priv);
7384                         return;
7385                 }
7386
7387                 ipw_send_disassociate(priv, 1);
7388                 priv->assoc_network = match.network;
7389
7390                 return;
7391         }
7392
7393         /* Second pass through ROAM process -- request association */
7394         ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7395         ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7396         priv->status &= ~STATUS_ROAMING;
7397 }
7398
7399 static void ipw_bg_roam(void *data)
7400 {
7401         struct ipw_priv *priv = data;
7402         mutex_lock(&priv->mutex);
7403         ipw_roam(data);
7404         mutex_unlock(&priv->mutex);
7405 }
7406
7407 static int ipw_associate(void *data)
7408 {
7409         struct ipw_priv *priv = data;
7410
7411         struct ieee80211_network *network = NULL;
7412         struct ipw_network_match match = {
7413                 .network = NULL
7414         };
7415         struct ipw_supported_rates *rates;
7416         struct list_head *element;
7417         unsigned long flags;
7418
7419         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7420                 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7421                 return 0;
7422         }
7423
7424         if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7425                 IPW_DEBUG_ASSOC("Not attempting association (already in "
7426                                 "progress)\n");
7427                 return 0;
7428         }
7429
7430         if (priv->status & STATUS_DISASSOCIATING) {
7431                 IPW_DEBUG_ASSOC("Not attempting association (in "
7432                                 "disassociating)\n ");
7433                 queue_work(priv->workqueue, &priv->associate);
7434                 return 0;
7435         }
7436
7437         if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7438                 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7439                                 "initialized)\n");
7440                 return 0;
7441         }
7442
7443         if (!(priv->config & CFG_ASSOCIATE) &&
7444             !(priv->config & (CFG_STATIC_ESSID |
7445                               CFG_STATIC_CHANNEL | CFG_STATIC_BSSID))) {
7446                 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7447                 return 0;
7448         }
7449
7450         /* Protect our use of the network_list */
7451         spin_lock_irqsave(&priv->ieee->lock, flags);
7452         list_for_each_entry(network, &priv->ieee->network_list, list)
7453             ipw_best_network(priv, &match, network, 0);
7454
7455         network = match.network;
7456         rates = &match.rates;
7457
7458         if (network == NULL &&
7459             priv->ieee->iw_mode == IW_MODE_ADHOC &&
7460             priv->config & CFG_ADHOC_CREATE &&
7461             priv->config & CFG_STATIC_ESSID &&
7462             priv->config & CFG_STATIC_CHANNEL &&
7463             !list_empty(&priv->ieee->network_free_list)) {
7464                 element = priv->ieee->network_free_list.next;
7465                 network = list_entry(element, struct ieee80211_network, list);
7466                 ipw_adhoc_create(priv, network);
7467                 rates = &priv->rates;
7468                 list_del(element);
7469                 list_add_tail(&network->list, &priv->ieee->network_list);
7470         }
7471         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7472
7473         /* If we reached the end of the list, then we don't have any valid
7474          * matching APs */
7475         if (!network) {
7476                 ipw_debug_config(priv);
7477
7478                 if (!(priv->status & STATUS_SCANNING)) {
7479                         if (!(priv->config & CFG_SPEED_SCAN))
7480                                 queue_delayed_work(priv->workqueue,
7481                                                    &priv->request_scan,
7482                                                    SCAN_INTERVAL);
7483                         else
7484                                 queue_work(priv->workqueue,
7485                                            &priv->request_scan);
7486                 }
7487
7488                 return 0;
7489         }
7490
7491         ipw_associate_network(priv, network, rates, 0);
7492
7493         return 1;
7494 }
7495
7496 static void ipw_bg_associate(void *data)
7497 {
7498         struct ipw_priv *priv = data;
7499         mutex_lock(&priv->mutex);
7500         ipw_associate(data);
7501         mutex_unlock(&priv->mutex);
7502 }
7503
7504 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7505                                       struct sk_buff *skb)
7506 {
7507         struct ieee80211_hdr *hdr;
7508         u16 fc;
7509
7510         hdr = (struct ieee80211_hdr *)skb->data;
7511         fc = le16_to_cpu(hdr->frame_ctl);
7512         if (!(fc & IEEE80211_FCTL_PROTECTED))
7513                 return;
7514
7515         fc &= ~IEEE80211_FCTL_PROTECTED;
7516         hdr->frame_ctl = cpu_to_le16(fc);
7517         switch (priv->ieee->sec.level) {
7518         case SEC_LEVEL_3:
7519                 /* Remove CCMP HDR */
7520                 memmove(skb->data + IEEE80211_3ADDR_LEN,
7521                         skb->data + IEEE80211_3ADDR_LEN + 8,
7522                         skb->len - IEEE80211_3ADDR_LEN - 8);
7523                 skb_trim(skb, skb->len - 16);   /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7524                 break;
7525         case SEC_LEVEL_2:
7526                 break;
7527         case SEC_LEVEL_1:
7528                 /* Remove IV */
7529                 memmove(skb->data + IEEE80211_3ADDR_LEN,
7530                         skb->data + IEEE80211_3ADDR_LEN + 4,
7531                         skb->len - IEEE80211_3ADDR_LEN - 4);
7532                 skb_trim(skb, skb->len - 8);    /* IV + ICV */
7533                 break;
7534         case SEC_LEVEL_0:
7535                 break;
7536         default:
7537                 printk(KERN_ERR "Unknow security level %d\n",
7538                        priv->ieee->sec.level);
7539                 break;
7540         }
7541 }
7542
7543 static void ipw_handle_data_packet(struct ipw_priv *priv,
7544                                    struct ipw_rx_mem_buffer *rxb,
7545                                    struct ieee80211_rx_stats *stats)
7546 {
7547         struct ieee80211_hdr_4addr *hdr;
7548         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7549
7550         /* We received data from the HW, so stop the watchdog */
7551         priv->net_dev->trans_start = jiffies;
7552
7553         /* We only process data packets if the
7554          * interface is open */
7555         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7556                      skb_tailroom(rxb->skb))) {
7557                 priv->ieee->stats.rx_errors++;
7558                 priv->wstats.discard.misc++;
7559                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7560                 return;
7561         } else if (unlikely(!netif_running(priv->net_dev))) {
7562                 priv->ieee->stats.rx_dropped++;
7563                 priv->wstats.discard.misc++;
7564                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7565                 return;
7566         }
7567
7568         /* Advance skb->data to the start of the actual payload */
7569         skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7570
7571         /* Set the size of the skb to the size of the frame */
7572         skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7573
7574         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7575
7576         /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7577         hdr = (struct ieee80211_hdr_4addr *)rxb->skb->data;
7578         if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7579             (is_multicast_ether_addr(hdr->addr1) ?
7580              !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7581                 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7582
7583         if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7584                 priv->ieee->stats.rx_errors++;
7585         else {                  /* ieee80211_rx succeeded, so it now owns the SKB */
7586                 rxb->skb = NULL;
7587                 __ipw_led_activity_on(priv);
7588         }
7589 }
7590
7591 #ifdef CONFIG_IPW2200_RADIOTAP
7592 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7593                                            struct ipw_rx_mem_buffer *rxb,
7594                                            struct ieee80211_rx_stats *stats)
7595 {
7596         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7597         struct ipw_rx_frame *frame = &pkt->u.frame;
7598
7599         /* initial pull of some data */
7600         u16 received_channel = frame->received_channel;
7601         u8 antennaAndPhy = frame->antennaAndPhy;
7602         s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM;       /* call it signed anyhow */
7603         u16 pktrate = frame->rate;
7604
7605         /* Magic struct that slots into the radiotap header -- no reason
7606          * to build this manually element by element, we can write it much
7607          * more efficiently than we can parse it. ORDER MATTERS HERE */
7608         struct ipw_rt_hdr *ipw_rt;
7609
7610         short len = le16_to_cpu(pkt->u.frame.length);
7611
7612         /* We received data from the HW, so stop the watchdog */
7613         priv->net_dev->trans_start = jiffies;
7614
7615         /* We only process data packets if the
7616          * interface is open */
7617         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7618                      skb_tailroom(rxb->skb))) {
7619                 priv->ieee->stats.rx_errors++;
7620                 priv->wstats.discard.misc++;
7621                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7622                 return;
7623         } else if (unlikely(!netif_running(priv->net_dev))) {
7624                 priv->ieee->stats.rx_dropped++;
7625                 priv->wstats.discard.misc++;
7626                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7627                 return;
7628         }
7629
7630         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7631          * that now */
7632         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7633                 /* FIXME: Should alloc bigger skb instead */
7634                 priv->ieee->stats.rx_dropped++;
7635                 priv->wstats.discard.misc++;
7636                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7637                 return;
7638         }
7639
7640         /* copy the frame itself */
7641         memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7642                 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7643
7644         /* Zero the radiotap static buffer  ...  We only need to zero the bytes NOT
7645          * part of our real header, saves a little time.
7646          *
7647          * No longer necessary since we fill in all our data.  Purge before merging
7648          * patch officially.
7649          * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7650          *        IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7651          */
7652
7653         ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7654
7655         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7656         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
7657         ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr);      /* total header+data */
7658
7659         /* Big bitfield of all the fields we provide in radiotap */
7660         ipw_rt->rt_hdr.it_present =
7661             ((1 << IEEE80211_RADIOTAP_FLAGS) |
7662              (1 << IEEE80211_RADIOTAP_RATE) |
7663              (1 << IEEE80211_RADIOTAP_CHANNEL) |
7664              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7665              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7666              (1 << IEEE80211_RADIOTAP_ANTENNA));
7667
7668         /* Zero the flags, we'll add to them as we go */
7669         ipw_rt->rt_flags = 0;
7670         ipw_rt->rt_tsf = 0ULL;
7671
7672         /* Convert signal to DBM */
7673         ipw_rt->rt_dbmsignal = antsignal;
7674
7675         /* Convert the channel data and set the flags */
7676         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7677         if (received_channel > 14) {    /* 802.11a */
7678                 ipw_rt->rt_chbitmask =
7679                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7680         } else if (antennaAndPhy & 32) {        /* 802.11b */
7681                 ipw_rt->rt_chbitmask =
7682                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7683         } else {                /* 802.11g */
7684                 ipw_rt->rt_chbitmask =
7685                     (IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7686         }
7687
7688         /* set the rate in multiples of 500k/s */
7689         switch (pktrate) {
7690         case IPW_TX_RATE_1MB:
7691                 ipw_rt->rt_rate = 2;
7692                 break;
7693         case IPW_TX_RATE_2MB:
7694                 ipw_rt->rt_rate = 4;
7695                 break;
7696         case IPW_TX_RATE_5MB:
7697                 ipw_rt->rt_rate = 10;
7698                 break;
7699         case IPW_TX_RATE_6MB:
7700                 ipw_rt->rt_rate = 12;
7701                 break;
7702         case IPW_TX_RATE_9MB:
7703                 ipw_rt->rt_rate = 18;
7704                 break;
7705         case IPW_TX_RATE_11MB:
7706                 ipw_rt->rt_rate = 22;
7707                 break;
7708         case IPW_TX_RATE_12MB:
7709                 ipw_rt->rt_rate = 24;
7710                 break;
7711         case IPW_TX_RATE_18MB:
7712                 ipw_rt->rt_rate = 36;
7713                 break;
7714         case IPW_TX_RATE_24MB:
7715                 ipw_rt->rt_rate = 48;
7716                 break;
7717         case IPW_TX_RATE_36MB:
7718                 ipw_rt->rt_rate = 72;
7719                 break;
7720         case IPW_TX_RATE_48MB:
7721                 ipw_rt->rt_rate = 96;
7722                 break;
7723         case IPW_TX_RATE_54MB:
7724                 ipw_rt->rt_rate = 108;
7725                 break;
7726         default:
7727                 ipw_rt->rt_rate = 0;
7728                 break;
7729         }
7730
7731         /* antenna number */
7732         ipw_rt->rt_antenna = (antennaAndPhy & 3);       /* Is this right? */
7733
7734         /* set the preamble flag if we have it */
7735         if ((antennaAndPhy & 64))
7736                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7737
7738         /* Set the size of the skb to the size of the frame */
7739         skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7740
7741         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7742
7743         if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7744                 priv->ieee->stats.rx_errors++;
7745         else {                  /* ieee80211_rx succeeded, so it now owns the SKB */
7746                 rxb->skb = NULL;
7747                 /* no LED during capture */
7748         }
7749 }
7750 #endif
7751
7752 #ifdef CONFIG_IPW2200_PROMISCUOUS
7753 #define ieee80211_is_probe_response(fc) \
7754    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7755     (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7756
7757 #define ieee80211_is_management(fc) \
7758    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7759
7760 #define ieee80211_is_control(fc) \
7761    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7762
7763 #define ieee80211_is_data(fc) \
7764    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7765
7766 #define ieee80211_is_assoc_request(fc) \
7767    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7768
7769 #define ieee80211_is_reassoc_request(fc) \
7770    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7771
7772 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7773                                       struct ipw_rx_mem_buffer *rxb,
7774                                       struct ieee80211_rx_stats *stats)
7775 {
7776         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7777         struct ipw_rx_frame *frame = &pkt->u.frame;
7778         struct ipw_rt_hdr *ipw_rt;
7779
7780         /* First cache any information we need before we overwrite
7781          * the information provided in the skb from the hardware */
7782         struct ieee80211_hdr *hdr;
7783         u16 channel = frame->received_channel;
7784         u8 phy_flags = frame->antennaAndPhy;
7785         s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7786         s8 noise = frame->noise;
7787         u8 rate = frame->rate;
7788         short len = le16_to_cpu(pkt->u.frame.length);
7789         struct sk_buff *skb;
7790         int hdr_only = 0;
7791         u16 filter = priv->prom_priv->filter;
7792
7793         /* If the filter is set to not include Rx frames then return */
7794         if (filter & IPW_PROM_NO_RX)
7795                 return;
7796
7797         /* We received data from the HW, so stop the watchdog */
7798         priv->prom_net_dev->trans_start = jiffies;
7799
7800         if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7801                 priv->prom_priv->ieee->stats.rx_errors++;
7802                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7803                 return;
7804         }
7805
7806         /* We only process data packets if the interface is open */
7807         if (unlikely(!netif_running(priv->prom_net_dev))) {
7808                 priv->prom_priv->ieee->stats.rx_dropped++;
7809                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7810                 return;
7811         }
7812
7813         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7814          * that now */
7815         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7816                 /* FIXME: Should alloc bigger skb instead */
7817                 priv->prom_priv->ieee->stats.rx_dropped++;
7818                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7819                 return;
7820         }
7821
7822         hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
7823         if (ieee80211_is_management(le16_to_cpu(hdr->frame_ctl))) {
7824                 if (filter & IPW_PROM_NO_MGMT)
7825                         return;
7826                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
7827                         hdr_only = 1;
7828         } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_ctl))) {
7829                 if (filter & IPW_PROM_NO_CTL)
7830                         return;
7831                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
7832                         hdr_only = 1;
7833         } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_ctl))) {
7834                 if (filter & IPW_PROM_NO_DATA)
7835                         return;
7836                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
7837                         hdr_only = 1;
7838         }
7839
7840         /* Copy the SKB since this is for the promiscuous side */
7841         skb = skb_copy(rxb->skb, GFP_ATOMIC);
7842         if (skb == NULL) {
7843                 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
7844                 return;
7845         }
7846
7847         /* copy the frame data to write after where the radiotap header goes */
7848         ipw_rt = (void *)skb->data;
7849
7850         if (hdr_only)
7851                 len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
7852
7853         memcpy(ipw_rt->payload, hdr, len);
7854
7855         /* Zero the radiotap static buffer  ...  We only need to zero the bytes
7856          * NOT part of our real header, saves a little time.
7857          *
7858          * No longer necessary since we fill in all our data.  Purge before
7859          * merging patch officially.
7860          * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7861          *        IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7862          */
7863
7864         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7865         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
7866         ipw_rt->rt_hdr.it_len = sizeof(*ipw_rt);        /* total header+data */
7867
7868         /* Set the size of the skb to the size of the frame */
7869         skb_put(skb, ipw_rt->rt_hdr.it_len + len);
7870
7871         /* Big bitfield of all the fields we provide in radiotap */
7872         ipw_rt->rt_hdr.it_present =
7873             ((1 << IEEE80211_RADIOTAP_FLAGS) |
7874              (1 << IEEE80211_RADIOTAP_RATE) |
7875              (1 << IEEE80211_RADIOTAP_CHANNEL) |
7876              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7877              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7878              (1 << IEEE80211_RADIOTAP_ANTENNA));
7879
7880         /* Zero the flags, we'll add to them as we go */
7881         ipw_rt->rt_flags = 0;
7882         ipw_rt->rt_tsf = 0ULL;
7883
7884         /* Convert to DBM */
7885         ipw_rt->rt_dbmsignal = signal;
7886         ipw_rt->rt_dbmnoise = noise;
7887
7888         /* Convert the channel data and set the flags */
7889         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
7890         if (channel > 14) {     /* 802.11a */
7891                 ipw_rt->rt_chbitmask =
7892                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7893         } else if (phy_flags & (1 << 5)) {      /* 802.11b */
7894                 ipw_rt->rt_chbitmask =
7895                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7896         } else {                /* 802.11g */
7897                 ipw_rt->rt_chbitmask =
7898                     (IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7899         }
7900
7901         /* set the rate in multiples of 500k/s */
7902         switch (rate) {
7903         case IPW_TX_RATE_1MB:
7904                 ipw_rt->rt_rate = 2;
7905                 break;
7906         case IPW_TX_RATE_2MB:
7907                 ipw_rt->rt_rate = 4;
7908                 break;
7909         case IPW_TX_RATE_5MB:
7910                 ipw_rt->rt_rate = 10;
7911                 break;
7912         case IPW_TX_RATE_6MB:
7913                 ipw_rt->rt_rate = 12;
7914                 break;
7915         case IPW_TX_RATE_9MB:
7916                 ipw_rt->rt_rate = 18;
7917                 break;
7918         case IPW_TX_RATE_11MB:
7919                 ipw_rt->rt_rate = 22;
7920                 break;
7921         case IPW_TX_RATE_12MB:
7922                 ipw_rt->rt_rate = 24;
7923                 break;
7924         case IPW_TX_RATE_18MB:
7925                 ipw_rt->rt_rate = 36;
7926                 break;
7927         case IPW_TX_RATE_24MB:
7928                 ipw_rt->rt_rate = 48;
7929                 break;
7930         case IPW_TX_RATE_36MB:
7931                 ipw_rt->rt_rate = 72;
7932                 break;
7933         case IPW_TX_RATE_48MB:
7934                 ipw_rt->rt_rate = 96;
7935                 break;
7936         case IPW_TX_RATE_54MB:
7937                 ipw_rt->rt_rate = 108;
7938                 break;
7939         default:
7940                 ipw_rt->rt_rate = 0;
7941                 break;
7942         }
7943
7944         /* antenna number */
7945         ipw_rt->rt_antenna = (phy_flags & 3);
7946
7947         /* set the preamble flag if we have it */
7948         if (phy_flags & (1 << 6))
7949                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7950
7951         IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
7952
7953         if (!ieee80211_rx(priv->prom_priv->ieee, skb, stats)) {
7954                 priv->prom_priv->ieee->stats.rx_errors++;
7955                 dev_kfree_skb_any(skb);
7956         }
7957 }
7958 #endif
7959
7960 static int is_network_packet(struct ipw_priv *priv,
7961                                     struct ieee80211_hdr_4addr *header)
7962 {
7963         /* Filter incoming packets to determine if they are targetted toward
7964          * this network, discarding packets coming from ourselves */
7965         switch (priv->ieee->iw_mode) {
7966         case IW_MODE_ADHOC:     /* Header: Dest. | Source    | BSSID */
7967                 /* packets from our adapter are dropped (echo) */
7968                 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
7969                         return 0;
7970
7971                 /* {broad,multi}cast packets to our BSSID go through */
7972                 if (is_multicast_ether_addr(header->addr1))
7973                         return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
7974
7975                 /* packets to our adapter go through */
7976                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
7977                                ETH_ALEN);
7978
7979         case IW_MODE_INFRA:     /* Header: Dest. | BSSID | Source */
7980                 /* packets from our adapter are dropped (echo) */
7981                 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
7982                         return 0;
7983
7984                 /* {broad,multi}cast packets to our BSS go through */
7985                 if (is_multicast_ether_addr(header->addr1))
7986                         return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
7987
7988                 /* packets to our adapter go through */
7989                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
7990                                ETH_ALEN);
7991         }
7992
7993         return 1;
7994 }
7995
7996 #define IPW_PACKET_RETRY_TIME HZ
7997
7998 static  int is_duplicate_packet(struct ipw_priv *priv,
7999                                       struct ieee80211_hdr_4addr *header)
8000 {
8001         u16 sc = le16_to_cpu(header->seq_ctl);
8002         u16 seq = WLAN_GET_SEQ_SEQ(sc);
8003         u16 frag = WLAN_GET_SEQ_FRAG(sc);
8004         u16 *last_seq, *last_frag;
8005         unsigned long *last_time;
8006
8007         switch (priv->ieee->iw_mode) {
8008         case IW_MODE_ADHOC:
8009                 {
8010                         struct list_head *p;
8011                         struct ipw_ibss_seq *entry = NULL;
8012                         u8 *mac = header->addr2;
8013                         int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8014
8015                         __list_for_each(p, &priv->ibss_mac_hash[index]) {
8016                                 entry =
8017                                     list_entry(p, struct ipw_ibss_seq, list);
8018                                 if (!memcmp(entry->mac, mac, ETH_ALEN))
8019                                         break;
8020                         }
8021                         if (p == &priv->ibss_mac_hash[index]) {
8022                                 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8023                                 if (!entry) {
8024                                         IPW_ERROR
8025                                             ("Cannot malloc new mac entry\n");
8026                                         return 0;
8027                                 }
8028                                 memcpy(entry->mac, mac, ETH_ALEN);
8029                                 entry->seq_num = seq;
8030                                 entry->frag_num = frag;
8031                                 entry->packet_time = jiffies;
8032                                 list_add(&entry->list,
8033                                          &priv->ibss_mac_hash[index]);
8034                                 return 0;
8035                         }
8036                         last_seq = &entry->seq_num;
8037                         last_frag = &entry->frag_num;
8038                         last_time = &entry->packet_time;
8039                         break;
8040                 }
8041         case IW_MODE_INFRA:
8042                 last_seq = &priv->last_seq_num;
8043                 last_frag = &priv->last_frag_num;
8044                 last_time = &priv->last_packet_time;
8045                 break;
8046         default:
8047                 return 0;
8048         }
8049         if ((*last_seq == seq) &&
8050             time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8051                 if (*last_frag == frag)
8052                         goto drop;
8053                 if (*last_frag + 1 != frag)
8054                         /* out-of-order fragment */
8055                         goto drop;
8056         } else
8057                 *last_seq = seq;
8058
8059         *last_frag = frag;
8060         *last_time = jiffies;
8061         return 0;
8062
8063       drop:
8064         /* Comment this line now since we observed the card receives
8065          * duplicate packets but the FCTL_RETRY bit is not set in the
8066          * IBSS mode with fragmentation enabled.
8067          BUG_ON(!(le16_to_cpu(header->frame_ctl) & IEEE80211_FCTL_RETRY)); */
8068         return 1;
8069 }
8070
8071 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8072                                    struct ipw_rx_mem_buffer *rxb,
8073                                    struct ieee80211_rx_stats *stats)
8074 {
8075         struct sk_buff *skb = rxb->skb;
8076         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8077         struct ieee80211_hdr_4addr *header = (struct ieee80211_hdr_4addr *)
8078             (skb->data + IPW_RX_FRAME_SIZE);
8079
8080         ieee80211_rx_mgt(priv->ieee, header, stats);
8081
8082         if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8083             ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8084               IEEE80211_STYPE_PROBE_RESP) ||
8085              (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8086               IEEE80211_STYPE_BEACON))) {
8087                 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
8088                         ipw_add_station(priv, header->addr2);
8089         }
8090
8091         if (priv->config & CFG_NET_STATS) {
8092                 IPW_DEBUG_HC("sending stat packet\n");
8093
8094                 /* Set the size of the skb to the size of the full
8095                  * ipw header and 802.11 frame */
8096                 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8097                         IPW_RX_FRAME_SIZE);
8098
8099                 /* Advance past the ipw packet header to the 802.11 frame */
8100                 skb_pull(skb, IPW_RX_FRAME_SIZE);
8101
8102                 /* Push the ieee80211_rx_stats before the 802.11 frame */
8103                 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8104
8105                 skb->dev = priv->ieee->dev;
8106
8107                 /* Point raw at the ieee80211_stats */
8108                 skb->mac.raw = skb->data;
8109
8110                 skb->pkt_type = PACKET_OTHERHOST;
8111                 skb->protocol = __constant_htons(ETH_P_80211_STATS);
8112                 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8113                 netif_rx(skb);
8114                 rxb->skb = NULL;
8115         }
8116 }
8117
8118 /*
8119  * Main entry function for recieving a packet with 80211 headers.  This
8120  * should be called when ever the FW has notified us that there is a new
8121  * skb in the recieve queue.
8122  */
8123 static void ipw_rx(struct ipw_priv *priv)
8124 {
8125         struct ipw_rx_mem_buffer *rxb;
8126         struct ipw_rx_packet *pkt;
8127         struct ieee80211_hdr_4addr *header;
8128         u32 r, w, i;
8129         u8 network_packet;
8130
8131         r = ipw_read32(priv, IPW_RX_READ_INDEX);
8132         w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8133         i = (priv->rxq->processed + 1) % RX_QUEUE_SIZE;
8134
8135         while (i != r) {
8136                 rxb = priv->rxq->queue[i];
8137                 if (unlikely(rxb == NULL)) {
8138                         printk(KERN_CRIT "Queue not allocated!\n");
8139                         break;
8140                 }
8141                 priv->rxq->queue[i] = NULL;
8142
8143                 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8144                                             IPW_RX_BUF_SIZE,
8145                                             PCI_DMA_FROMDEVICE);
8146
8147                 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8148                 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8149                              pkt->header.message_type,
8150                              pkt->header.rx_seq_num, pkt->header.control_bits);
8151
8152                 switch (pkt->header.message_type) {
8153                 case RX_FRAME_TYPE:     /* 802.11 frame */  {
8154                                 struct ieee80211_rx_stats stats = {
8155                                         .rssi = pkt->u.frame.rssi_dbm -
8156                                             IPW_RSSI_TO_DBM,
8157                                         .signal =
8158                                             le16_to_cpu(pkt->u.frame.rssi_dbm) -
8159                                             IPW_RSSI_TO_DBM + 0x100,
8160                                         .noise =
8161                                             le16_to_cpu(pkt->u.frame.noise),
8162                                         .rate = pkt->u.frame.rate,
8163                                         .mac_time = jiffies,
8164                                         .received_channel =
8165                                             pkt->u.frame.received_channel,
8166                                         .freq =
8167                                             (pkt->u.frame.
8168                                              control & (1 << 0)) ?
8169                                             IEEE80211_24GHZ_BAND :
8170                                             IEEE80211_52GHZ_BAND,
8171                                         .len = le16_to_cpu(pkt->u.frame.length),
8172                                 };
8173
8174                                 if (stats.rssi != 0)
8175                                         stats.mask |= IEEE80211_STATMASK_RSSI;
8176                                 if (stats.signal != 0)
8177                                         stats.mask |= IEEE80211_STATMASK_SIGNAL;
8178                                 if (stats.noise != 0)
8179                                         stats.mask |= IEEE80211_STATMASK_NOISE;
8180                                 if (stats.rate != 0)
8181                                         stats.mask |= IEEE80211_STATMASK_RATE;
8182
8183                                 priv->rx_packets++;
8184
8185 #ifdef CONFIG_IPW2200_PROMISCUOUS
8186         if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8187                 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8188 #endif
8189
8190 #ifdef CONFIG_IPW2200_MONITOR
8191                                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8192 #ifdef CONFIG_IPW2200_RADIOTAP
8193
8194                 ipw_handle_data_packet_monitor(priv,
8195                                                rxb,
8196                                                &stats);
8197 #else
8198                 ipw_handle_data_packet(priv, rxb,
8199                                        &stats);
8200 #endif
8201                                         break;
8202                                 }
8203 #endif
8204
8205                                 header =
8206                                     (struct ieee80211_hdr_4addr *)(rxb->skb->
8207                                                                    data +
8208                                                                    IPW_RX_FRAME_SIZE);
8209                                 /* TODO: Check Ad-Hoc dest/source and make sure
8210                                  * that we are actually parsing these packets
8211                                  * correctly -- we should probably use the
8212                                  * frame control of the packet and disregard
8213                                  * the current iw_mode */
8214
8215                                 network_packet =
8216                                     is_network_packet(priv, header);
8217                                 if (network_packet && priv->assoc_network) {
8218                                         priv->assoc_network->stats.rssi =
8219                                             stats.rssi;
8220                                         priv->exp_avg_rssi =
8221                                             exponential_average(priv->exp_avg_rssi,
8222                                             stats.rssi, DEPTH_RSSI);
8223                                 }
8224
8225                                 IPW_DEBUG_RX("Frame: len=%u\n",
8226                                              le16_to_cpu(pkt->u.frame.length));
8227
8228                                 if (le16_to_cpu(pkt->u.frame.length) <
8229                                     ieee80211_get_hdrlen(le16_to_cpu(
8230                                                     header->frame_ctl))) {
8231                                         IPW_DEBUG_DROP
8232                                             ("Received packet is too small. "
8233                                              "Dropping.\n");
8234                                         priv->ieee->stats.rx_errors++;
8235                                         priv->wstats.discard.misc++;
8236                                         break;
8237                                 }
8238
8239                                 switch (WLAN_FC_GET_TYPE
8240                                         (le16_to_cpu(header->frame_ctl))) {
8241
8242                                 case IEEE80211_FTYPE_MGMT:
8243                                         ipw_handle_mgmt_packet(priv, rxb,
8244                                                                &stats);
8245                                         break;
8246
8247                                 case IEEE80211_FTYPE_CTL:
8248                                         break;
8249
8250                                 case IEEE80211_FTYPE_DATA:
8251                                         if (unlikely(!network_packet ||
8252                                                      is_duplicate_packet(priv,
8253                                                                          header)))
8254                                         {
8255                                                 IPW_DEBUG_DROP("Dropping: "
8256                                                                MAC_FMT ", "
8257                                                                MAC_FMT ", "
8258                                                                MAC_FMT "\n",
8259                                                                MAC_ARG(header->
8260                                                                        addr1),
8261                                                                MAC_ARG(header->
8262                                                                        addr2),
8263                                                                MAC_ARG(header->
8264                                                                        addr3));
8265                                                 break;
8266                                         }
8267
8268                                         ipw_handle_data_packet(priv, rxb,
8269                                                                &stats);
8270
8271                                         break;
8272                                 }
8273                                 break;
8274                         }
8275
8276                 case RX_HOST_NOTIFICATION_TYPE:{
8277                                 IPW_DEBUG_RX
8278                                     ("Notification: subtype=%02X flags=%02X size=%d\n",
8279                                      pkt->u.notification.subtype,
8280                                      pkt->u.notification.flags,
8281                                      pkt->u.notification.size);
8282                                 ipw_rx_notification(priv, &pkt->u.notification);
8283                                 break;
8284                         }
8285
8286                 default:
8287                         IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8288                                      pkt->header.message_type);
8289                         break;
8290                 }
8291
8292                 /* For now we just don't re-use anything.  We can tweak this
8293                  * later to try and re-use notification packets and SKBs that
8294                  * fail to Rx correctly */
8295                 if (rxb->skb != NULL) {
8296                         dev_kfree_skb_any(rxb->skb);
8297                         rxb->skb = NULL;
8298                 }
8299
8300                 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8301                                  IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8302                 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8303
8304                 i = (i + 1) % RX_QUEUE_SIZE;
8305         }
8306
8307         /* Backtrack one entry */
8308         priv->rxq->processed = (i ? i : RX_QUEUE_SIZE) - 1;
8309
8310         ipw_rx_queue_restock(priv);
8311 }
8312
8313 #define DEFAULT_RTS_THRESHOLD     2304U
8314 #define MIN_RTS_THRESHOLD         1U
8315 #define MAX_RTS_THRESHOLD         2304U
8316 #define DEFAULT_BEACON_INTERVAL   100U
8317 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8318 #define DEFAULT_LONG_RETRY_LIMIT  4U
8319
8320 /**
8321  * ipw_sw_reset
8322  * @option: options to control different reset behaviour
8323  *          0 = reset everything except the 'disable' module_param
8324  *          1 = reset everything and print out driver info (for probe only)
8325  *          2 = reset everything
8326  */
8327 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8328 {
8329         int band, modulation;
8330         int old_mode = priv->ieee->iw_mode;
8331
8332         /* Initialize module parameter values here */
8333         priv->config = 0;
8334
8335         /* We default to disabling the LED code as right now it causes
8336          * too many systems to lock up... */
8337         if (!led)
8338                 priv->config |= CFG_NO_LED;
8339
8340         if (associate)
8341                 priv->config |= CFG_ASSOCIATE;
8342         else
8343                 IPW_DEBUG_INFO("Auto associate disabled.\n");
8344
8345         if (auto_create)
8346                 priv->config |= CFG_ADHOC_CREATE;
8347         else
8348                 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8349
8350         priv->config &= ~CFG_STATIC_ESSID;
8351         priv->essid_len = 0;
8352         memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8353
8354         if (disable && option) {
8355                 priv->status |= STATUS_RF_KILL_SW;
8356                 IPW_DEBUG_INFO("Radio disabled.\n");
8357         }
8358
8359         if (channel != 0) {
8360                 priv->config |= CFG_STATIC_CHANNEL;
8361                 priv->channel = channel;
8362                 IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
8363                 /* TODO: Validate that provided channel is in range */
8364         }
8365 #ifdef CONFIG_IPW2200_QOS
8366         ipw_qos_init(priv, qos_enable, qos_burst_enable,
8367                      burst_duration_CCK, burst_duration_OFDM);
8368 #endif                          /* CONFIG_IPW2200_QOS */
8369
8370         switch (mode) {
8371         case 1:
8372                 priv->ieee->iw_mode = IW_MODE_ADHOC;
8373                 priv->net_dev->type = ARPHRD_ETHER;
8374
8375                 break;
8376 #ifdef CONFIG_IPW2200_MONITOR
8377         case 2:
8378                 priv->ieee->iw_mode = IW_MODE_MONITOR;
8379 #ifdef CONFIG_IPW2200_RADIOTAP
8380                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8381 #else
8382                 priv->net_dev->type = ARPHRD_IEEE80211;
8383 #endif
8384                 break;
8385 #endif
8386         default:
8387         case 0:
8388                 priv->net_dev->type = ARPHRD_ETHER;
8389                 priv->ieee->iw_mode = IW_MODE_INFRA;
8390                 break;
8391         }
8392
8393         if (hwcrypto) {
8394                 priv->ieee->host_encrypt = 0;
8395                 priv->ieee->host_encrypt_msdu = 0;
8396                 priv->ieee->host_decrypt = 0;
8397                 priv->ieee->host_mc_decrypt = 0;
8398         }
8399         IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8400
8401         /* IPW2200/2915 is abled to do hardware fragmentation. */
8402         priv->ieee->host_open_frag = 0;
8403
8404         if ((priv->pci_dev->device == 0x4223) ||
8405             (priv->pci_dev->device == 0x4224)) {
8406                 if (option == 1)
8407                         printk(KERN_INFO DRV_NAME
8408                                ": Detected Intel PRO/Wireless 2915ABG Network "
8409                                "Connection\n");
8410                 priv->ieee->abg_true = 1;
8411                 band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND;
8412                 modulation = IEEE80211_OFDM_MODULATION |
8413                     IEEE80211_CCK_MODULATION;
8414                 priv->adapter = IPW_2915ABG;
8415                 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8416         } else {
8417                 if (option == 1)
8418                         printk(KERN_INFO DRV_NAME
8419                                ": Detected Intel PRO/Wireless 2200BG Network "
8420                                "Connection\n");
8421
8422                 priv->ieee->abg_true = 0;
8423                 band = IEEE80211_24GHZ_BAND;
8424                 modulation = IEEE80211_OFDM_MODULATION |
8425                     IEEE80211_CCK_MODULATION;
8426                 priv->adapter = IPW_2200BG;
8427                 priv->ieee->mode = IEEE_G | IEEE_B;
8428         }
8429
8430         priv->ieee->freq_band = band;
8431         priv->ieee->modulation = modulation;
8432
8433         priv->rates_mask = IEEE80211_DEFAULT_RATES_MASK;
8434
8435         priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8436         priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8437
8438         priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8439         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8440         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8441
8442         /* If power management is turned on, default to AC mode */
8443         priv->power_mode = IPW_POWER_AC;
8444         priv->tx_power = IPW_TX_POWER_DEFAULT;
8445
8446         return old_mode == priv->ieee->iw_mode;
8447 }
8448
8449 /*
8450  * This file defines the Wireless Extension handlers.  It does not
8451  * define any methods of hardware manipulation and relies on the
8452  * functions defined in ipw_main to provide the HW interaction.
8453  *
8454  * The exception to this is the use of the ipw_get_ordinal()
8455  * function used to poll the hardware vs. making unecessary calls.
8456  *
8457  */
8458
8459 static int ipw_wx_get_name(struct net_device *dev,
8460                            struct iw_request_info *info,
8461                            union iwreq_data *wrqu, char *extra)
8462 {
8463         struct ipw_priv *priv = ieee80211_priv(dev);
8464         mutex_lock(&priv->mutex);
8465         if (priv->status & STATUS_RF_KILL_MASK)
8466                 strcpy(wrqu->name, "radio off");
8467         else if (!(priv->status & STATUS_ASSOCIATED))
8468                 strcpy(wrqu->name, "unassociated");
8469         else
8470                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11%c",
8471                          ipw_modes[priv->assoc_request.ieee_mode]);
8472         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
8473         mutex_unlock(&priv->mutex);
8474         return 0;
8475 }
8476
8477 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8478 {
8479         if (channel == 0) {
8480                 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8481                 priv->config &= ~CFG_STATIC_CHANNEL;
8482                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8483                                 "parameters.\n");
8484                 ipw_associate(priv);
8485                 return 0;
8486         }
8487
8488         priv->config |= CFG_STATIC_CHANNEL;
8489
8490         if (priv->channel == channel) {
8491                 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8492                                channel);
8493                 return 0;
8494         }
8495
8496         IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8497         priv->channel = channel;
8498
8499 #ifdef CONFIG_IPW2200_MONITOR
8500         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8501                 int i;
8502                 if (priv->status & STATUS_SCANNING) {
8503                         IPW_DEBUG_SCAN("Scan abort triggered due to "
8504                                        "channel change.\n");
8505                         ipw_abort_scan(priv);
8506                 }
8507
8508                 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8509                         udelay(10);
8510
8511                 if (priv->status & STATUS_SCANNING)
8512                         IPW_DEBUG_SCAN("Still scanning...\n");
8513                 else
8514                         IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8515                                        1000 - i);
8516
8517                 return 0;
8518         }
8519 #endif                          /* CONFIG_IPW2200_MONITOR */
8520
8521         /* Network configuration changed -- force [re]association */
8522         IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8523         if (!ipw_disassociate(priv))
8524                 ipw_associate(priv);
8525
8526         return 0;
8527 }
8528
8529 static int ipw_wx_set_freq(struct net_device *dev,
8530                            struct iw_request_info *info,
8531                            union iwreq_data *wrqu, char *extra)
8532 {
8533         struct ipw_priv *priv = ieee80211_priv(dev);
8534         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8535         struct iw_freq *fwrq = &wrqu->freq;
8536         int ret = 0, i;
8537         u8 channel, flags;
8538         int band;
8539
8540         if (fwrq->m == 0) {
8541                 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8542                 mutex_lock(&priv->mutex);
8543                 ret = ipw_set_channel(priv, 0);
8544                 mutex_unlock(&priv->mutex);
8545                 return ret;
8546         }
8547         /* if setting by freq convert to channel */
8548         if (fwrq->e == 1) {
8549                 channel = ieee80211_freq_to_channel(priv->ieee, fwrq->m);
8550                 if (channel == 0)
8551                         return -EINVAL;
8552         } else
8553                 channel = fwrq->m;
8554
8555         if (!(band = ieee80211_is_valid_channel(priv->ieee, channel)))
8556                 return -EINVAL;
8557
8558         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8559                 i = ieee80211_channel_to_index(priv->ieee, channel);
8560                 if (i == -1)
8561                         return -EINVAL;
8562
8563                 flags = (band == IEEE80211_24GHZ_BAND) ?
8564                     geo->bg[i].flags : geo->a[i].flags;
8565                 if (flags & IEEE80211_CH_PASSIVE_ONLY) {
8566                         IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8567                         return -EINVAL;
8568                 }
8569         }
8570
8571         IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
8572         mutex_lock(&priv->mutex);
8573         ret = ipw_set_channel(priv, channel);
8574         mutex_unlock(&priv->mutex);
8575         return ret;
8576 }
8577
8578 static int ipw_wx_get_freq(struct net_device *dev,
8579                            struct iw_request_info *info,
8580                            union iwreq_data *wrqu, char *extra)
8581 {
8582         struct ipw_priv *priv = ieee80211_priv(dev);
8583
8584         wrqu->freq.e = 0;
8585
8586         /* If we are associated, trying to associate, or have a statically
8587          * configured CHANNEL then return that; otherwise return ANY */
8588         mutex_lock(&priv->mutex);
8589         if (priv->config & CFG_STATIC_CHANNEL ||
8590             priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8591                 int i;
8592
8593                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
8594                 BUG_ON(i == -1);
8595                 wrqu->freq.e = 1;
8596
8597                 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
8598                 case IEEE80211_52GHZ_BAND:
8599                         wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8600                         break;
8601
8602                 case IEEE80211_24GHZ_BAND:
8603                         wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8604                         break;
8605
8606                 default:
8607                         BUG();
8608                 }
8609         } else
8610                 wrqu->freq.m = 0;
8611
8612         mutex_unlock(&priv->mutex);
8613         IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
8614         return 0;
8615 }
8616
8617 static int ipw_wx_set_mode(struct net_device *dev,
8618                            struct iw_request_info *info,
8619                            union iwreq_data *wrqu, char *extra)
8620 {
8621         struct ipw_priv *priv = ieee80211_priv(dev);
8622         int err = 0;
8623
8624         IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8625
8626         switch (wrqu->mode) {
8627 #ifdef CONFIG_IPW2200_MONITOR
8628         case IW_MODE_MONITOR:
8629 #endif
8630         case IW_MODE_ADHOC:
8631         case IW_MODE_INFRA:
8632                 break;
8633         case IW_MODE_AUTO:
8634                 wrqu->mode = IW_MODE_INFRA;
8635                 break;
8636         default:
8637                 return -EINVAL;
8638         }
8639         if (wrqu->mode == priv->ieee->iw_mode)
8640                 return 0;
8641
8642         mutex_lock(&priv->mutex);
8643
8644         ipw_sw_reset(priv, 0);
8645
8646 #ifdef CONFIG_IPW2200_MONITOR
8647         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8648                 priv->net_dev->type = ARPHRD_ETHER;
8649
8650         if (wrqu->mode == IW_MODE_MONITOR)
8651 #ifdef CONFIG_IPW2200_RADIOTAP
8652                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8653 #else
8654                 priv->net_dev->type = ARPHRD_IEEE80211;
8655 #endif
8656 #endif                          /* CONFIG_IPW2200_MONITOR */
8657
8658         /* Free the existing firmware and reset the fw_loaded
8659          * flag so ipw_load() will bring in the new firmawre */
8660         free_firmware();
8661
8662         priv->ieee->iw_mode = wrqu->mode;
8663
8664         queue_work(priv->workqueue, &priv->adapter_restart);
8665         mutex_unlock(&priv->mutex);
8666         return err;
8667 }
8668
8669 static int ipw_wx_get_mode(struct net_device *dev,
8670                            struct iw_request_info *info,
8671                            union iwreq_data *wrqu, char *extra)
8672 {
8673         struct ipw_priv *priv = ieee80211_priv(dev);
8674         mutex_lock(&priv->mutex);
8675         wrqu->mode = priv->ieee->iw_mode;
8676         IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8677         mutex_unlock(&priv->mutex);
8678         return 0;
8679 }
8680
8681 /* Values are in microsecond */
8682 static const s32 timeout_duration[] = {
8683         350000,
8684         250000,
8685         75000,
8686         37000,
8687         25000,
8688 };
8689
8690 static const s32 period_duration[] = {
8691         400000,
8692         700000,
8693         1000000,
8694         1000000,
8695         1000000
8696 };
8697
8698 static int ipw_wx_get_range(struct net_device *dev,
8699                             struct iw_request_info *info,
8700                             union iwreq_data *wrqu, char *extra)
8701 {
8702         struct ipw_priv *priv = ieee80211_priv(dev);
8703         struct iw_range *range = (struct iw_range *)extra;
8704         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8705         int i = 0, j;
8706
8707         wrqu->data.length = sizeof(*range);
8708         memset(range, 0, sizeof(*range));
8709
8710         /* 54Mbs == ~27 Mb/s real (802.11g) */
8711         range->throughput = 27 * 1000 * 1000;
8712
8713         range->max_qual.qual = 100;
8714         /* TODO: Find real max RSSI and stick here */
8715         range->max_qual.level = 0;
8716         range->max_qual.noise = 0;
8717         range->max_qual.updated = 7;    /* Updated all three */
8718
8719         range->avg_qual.qual = 70;
8720         /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
8721         range->avg_qual.level = 0;      /* FIXME to real average level */
8722         range->avg_qual.noise = 0;
8723         range->avg_qual.updated = 7;    /* Updated all three */
8724         mutex_lock(&priv->mutex);
8725         range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8726
8727         for (i = 0; i < range->num_bitrates; i++)
8728                 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8729                     500000;
8730
8731         range->max_rts = DEFAULT_RTS_THRESHOLD;
8732         range->min_frag = MIN_FRAG_THRESHOLD;
8733         range->max_frag = MAX_FRAG_THRESHOLD;
8734
8735         range->encoding_size[0] = 5;
8736         range->encoding_size[1] = 13;
8737         range->num_encoding_sizes = 2;
8738         range->max_encoding_tokens = WEP_KEYS;
8739
8740         /* Set the Wireless Extension versions */
8741         range->we_version_compiled = WIRELESS_EXT;
8742         range->we_version_source = 18;
8743
8744         i = 0;
8745         if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8746                 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8747                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8748                             (geo->bg[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8749                                 continue;
8750
8751                         range->freq[i].i = geo->bg[j].channel;
8752                         range->freq[i].m = geo->bg[j].freq * 100000;
8753                         range->freq[i].e = 1;
8754                         i++;
8755                 }
8756         }
8757
8758         if (priv->ieee->mode & IEEE_A) {
8759                 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8760                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8761                             (geo->a[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8762                                 continue;
8763
8764                         range->freq[i].i = geo->a[j].channel;
8765                         range->freq[i].m = geo->a[j].freq * 100000;
8766                         range->freq[i].e = 1;
8767                         i++;
8768                 }
8769         }
8770
8771         range->num_channels = i;
8772         range->num_frequency = i;
8773
8774         mutex_unlock(&priv->mutex);
8775
8776         /* Event capability (kernel + driver) */
8777         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8778                                 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8779                                 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8780                                 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8781         range->event_capa[1] = IW_EVENT_CAPA_K_1;
8782
8783         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8784                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8785
8786         IPW_DEBUG_WX("GET Range\n");
8787         return 0;
8788 }
8789
8790 static int ipw_wx_set_wap(struct net_device *dev,
8791                           struct iw_request_info *info,
8792                           union iwreq_data *wrqu, char *extra)
8793 {
8794         struct ipw_priv *priv = ieee80211_priv(dev);
8795
8796         static const unsigned char any[] = {
8797                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
8798         };
8799         static const unsigned char off[] = {
8800                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
8801         };
8802
8803         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8804                 return -EINVAL;
8805         mutex_lock(&priv->mutex);
8806         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
8807             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8808                 /* we disable mandatory BSSID association */
8809                 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8810                 priv->config &= ~CFG_STATIC_BSSID;
8811                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8812                                 "parameters.\n");
8813                 ipw_associate(priv);
8814                 mutex_unlock(&priv->mutex);
8815                 return 0;
8816         }
8817
8818         priv->config |= CFG_STATIC_BSSID;
8819         if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8820                 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8821                 mutex_unlock(&priv->mutex);
8822                 return 0;
8823         }
8824
8825         IPW_DEBUG_WX("Setting mandatory BSSID to " MAC_FMT "\n",
8826                      MAC_ARG(wrqu->ap_addr.sa_data));
8827
8828         memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
8829
8830         /* Network configuration changed -- force [re]association */
8831         IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
8832         if (!ipw_disassociate(priv))
8833                 ipw_associate(priv);
8834
8835         mutex_unlock(&priv->mutex);
8836         return 0;
8837 }
8838
8839 static int ipw_wx_get_wap(struct net_device *dev,
8840                           struct iw_request_info *info,
8841                           union iwreq_data *wrqu, char *extra)
8842 {
8843         struct ipw_priv *priv = ieee80211_priv(dev);
8844         /* If we are associated, trying to associate, or have a statically
8845          * configured BSSID then return that; otherwise return ANY */
8846         mutex_lock(&priv->mutex);
8847         if (priv->config & CFG_STATIC_BSSID ||
8848             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8849                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
8850                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
8851         } else
8852                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
8853
8854         IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
8855                      MAC_ARG(wrqu->ap_addr.sa_data));
8856         mutex_unlock(&priv->mutex);
8857         return 0;
8858 }
8859
8860 static int ipw_wx_set_essid(struct net_device *dev,
8861                             struct iw_request_info *info,
8862                             union iwreq_data *wrqu, char *extra)
8863 {
8864         struct ipw_priv *priv = ieee80211_priv(dev);
8865         int length;
8866
8867         mutex_lock(&priv->mutex);
8868
8869         if (!wrqu->essid.flags)
8870         {
8871                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
8872                 ipw_disassociate(priv);
8873                 priv->config &= ~CFG_STATIC_ESSID;
8874                 ipw_associate(priv);
8875                 mutex_unlock(&priv->mutex);
8876                 return 0;
8877         }
8878
8879         length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
8880         if (!extra[length - 1])
8881                 length--;
8882
8883         priv->config |= CFG_STATIC_ESSID;
8884
8885         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
8886             && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
8887                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
8888                 mutex_unlock(&priv->mutex);
8889                 return 0;
8890         }
8891
8892         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(extra, length),
8893                      length);
8894
8895         priv->essid_len = length;
8896         memcpy(priv->essid, extra, priv->essid_len);
8897
8898         /* Network configuration changed -- force [re]association */
8899         IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
8900         if (!ipw_disassociate(priv))
8901                 ipw_associate(priv);
8902
8903         mutex_unlock(&priv->mutex);
8904         return 0;
8905 }
8906
8907 static int ipw_wx_get_essid(struct net_device *dev,
8908                             struct iw_request_info *info,
8909                             union iwreq_data *wrqu, char *extra)
8910 {
8911         struct ipw_priv *priv = ieee80211_priv(dev);
8912
8913         /* If we are associated, trying to associate, or have a statically
8914          * configured ESSID then return that; otherwise return ANY */
8915         mutex_lock(&priv->mutex);
8916         if (priv->config & CFG_STATIC_ESSID ||
8917             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8918                 IPW_DEBUG_WX("Getting essid: '%s'\n",
8919                              escape_essid(priv->essid, priv->essid_len));
8920                 memcpy(extra, priv->essid, priv->essid_len);
8921                 wrqu->essid.length = priv->essid_len;
8922                 wrqu->essid.flags = 1;  /* active */
8923         } else {
8924                 IPW_DEBUG_WX("Getting essid: ANY\n");
8925                 wrqu->essid.length = 0;
8926                 wrqu->essid.flags = 0;  /* active */
8927         }
8928         mutex_unlock(&priv->mutex);
8929         return 0;
8930 }
8931
8932 static int ipw_wx_set_nick(struct net_device *dev,
8933                            struct iw_request_info *info,
8934                            union iwreq_data *wrqu, char *extra)
8935 {
8936         struct ipw_priv *priv = ieee80211_priv(dev);
8937
8938         IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
8939         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
8940                 return -E2BIG;
8941         mutex_lock(&priv->mutex);
8942         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
8943         memset(priv->nick, 0, sizeof(priv->nick));
8944         memcpy(priv->nick, extra, wrqu->data.length);
8945         IPW_DEBUG_TRACE("<<\n");
8946         mutex_unlock(&priv->mutex);
8947         return 0;
8948
8949 }
8950
8951 static int ipw_wx_get_nick(struct net_device *dev,
8952                            struct iw_request_info *info,
8953                            union iwreq_data *wrqu, char *extra)
8954 {
8955         struct ipw_priv *priv = ieee80211_priv(dev);
8956         IPW_DEBUG_WX("Getting nick\n");
8957         mutex_lock(&priv->mutex);
8958         wrqu->data.length = strlen(priv->nick) + 1;
8959         memcpy(extra, priv->nick, wrqu->data.length);
8960         wrqu->data.flags = 1;   /* active */
8961         mutex_unlock(&priv->mutex);
8962         return 0;
8963 }
8964
8965 static int ipw_wx_set_sens(struct net_device *dev,
8966                             struct iw_request_info *info,
8967                             union iwreq_data *wrqu, char *extra)
8968 {
8969         struct ipw_priv *priv = ieee80211_priv(dev);
8970         int err = 0;
8971
8972         IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
8973         IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
8974         mutex_lock(&priv->mutex);
8975
8976         if (wrqu->sens.fixed == 0)
8977         {
8978                 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8979                 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8980                 goto out;
8981         }
8982         if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
8983             (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
8984                 err = -EINVAL;
8985                 goto out;
8986         }
8987
8988         priv->roaming_threshold = wrqu->sens.value;
8989         priv->disassociate_threshold = 3*wrqu->sens.value;
8990       out:
8991         mutex_unlock(&priv->mutex);
8992         return err;
8993 }
8994
8995 static int ipw_wx_get_sens(struct net_device *dev,
8996                             struct iw_request_info *info,
8997                             union iwreq_data *wrqu, char *extra)
8998 {
8999         struct ipw_priv *priv = ieee80211_priv(dev);
9000         mutex_lock(&priv->mutex);
9001         wrqu->sens.fixed = 1;
9002         wrqu->sens.value = priv->roaming_threshold;
9003         mutex_unlock(&priv->mutex);
9004
9005         IPW_DEBUG_WX("GET roaming threshold -> %s %d \n",
9006                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9007
9008         return 0;
9009 }
9010
9011 static int ipw_wx_set_rate(struct net_device *dev,
9012                            struct iw_request_info *info,
9013                            union iwreq_data *wrqu, char *extra)
9014 {
9015         /* TODO: We should use semaphores or locks for access to priv */
9016         struct ipw_priv *priv = ieee80211_priv(dev);
9017         u32 target_rate = wrqu->bitrate.value;
9018         u32 fixed, mask;
9019
9020         /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9021         /* value = X, fixed = 1 means only rate X */
9022         /* value = X, fixed = 0 means all rates lower equal X */
9023
9024         if (target_rate == -1) {
9025                 fixed = 0;
9026                 mask = IEEE80211_DEFAULT_RATES_MASK;
9027                 /* Now we should reassociate */
9028                 goto apply;
9029         }
9030
9031         mask = 0;
9032         fixed = wrqu->bitrate.fixed;
9033
9034         if (target_rate == 1000000 || !fixed)
9035                 mask |= IEEE80211_CCK_RATE_1MB_MASK;
9036         if (target_rate == 1000000)
9037                 goto apply;
9038
9039         if (target_rate == 2000000 || !fixed)
9040                 mask |= IEEE80211_CCK_RATE_2MB_MASK;
9041         if (target_rate == 2000000)
9042                 goto apply;
9043
9044         if (target_rate == 5500000 || !fixed)
9045                 mask |= IEEE80211_CCK_RATE_5MB_MASK;
9046         if (target_rate == 5500000)
9047                 goto apply;
9048
9049         if (target_rate == 6000000 || !fixed)
9050                 mask |= IEEE80211_OFDM_RATE_6MB_MASK;
9051         if (target_rate == 6000000)
9052                 goto apply;
9053
9054         if (target_rate == 9000000 || !fixed)
9055                 mask |= IEEE80211_OFDM_RATE_9MB_MASK;
9056         if (target_rate == 9000000)
9057                 goto apply;
9058
9059         if (target_rate == 11000000 || !fixed)
9060                 mask |= IEEE80211_CCK_RATE_11MB_MASK;
9061         if (target_rate == 11000000)
9062                 goto apply;
9063
9064         if (target_rate == 12000000 || !fixed)
9065                 mask |= IEEE80211_OFDM_RATE_12MB_MASK;
9066         if (target_rate == 12000000)
9067                 goto apply;
9068
9069         if (target_rate == 18000000 || !fixed)
9070                 mask |= IEEE80211_OFDM_RATE_18MB_MASK;
9071         if (target_rate == 18000000)
9072                 goto apply;
9073
9074         if (target_rate == 24000000 || !fixed)
9075                 mask |= IEEE80211_OFDM_RATE_24MB_MASK;
9076         if (target_rate == 24000000)
9077                 goto apply;
9078
9079         if (target_rate == 36000000 || !fixed)
9080                 mask |= IEEE80211_OFDM_RATE_36MB_MASK;
9081         if (target_rate == 36000000)
9082                 goto apply;
9083
9084         if (target_rate == 48000000 || !fixed)
9085                 mask |= IEEE80211_OFDM_RATE_48MB_MASK;
9086         if (target_rate == 48000000)
9087                 goto apply;
9088
9089         if (target_rate == 54000000 || !fixed)
9090                 mask |= IEEE80211_OFDM_RATE_54MB_MASK;
9091         if (target_rate == 54000000)
9092                 goto apply;
9093
9094         IPW_DEBUG_WX("invalid rate specified, returning error\n");
9095         return -EINVAL;
9096
9097       apply:
9098         IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9099                      mask, fixed ? "fixed" : "sub-rates");
9100         mutex_lock(&priv->mutex);
9101         if (mask == IEEE80211_DEFAULT_RATES_MASK) {
9102                 priv->config &= ~CFG_FIXED_RATE;
9103                 ipw_set_fixed_rate(priv, priv->ieee->mode);
9104         } else
9105                 priv->config |= CFG_FIXED_RATE;
9106
9107         if (priv->rates_mask == mask) {
9108                 IPW_DEBUG_WX("Mask set to current mask.\n");
9109                 mutex_unlock(&priv->mutex);
9110                 return 0;
9111         }
9112
9113         priv->rates_mask = mask;
9114
9115         /* Network configuration changed -- force [re]association */
9116         IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9117         if (!ipw_disassociate(priv))
9118                 ipw_associate(priv);
9119
9120         mutex_unlock(&priv->mutex);
9121         return 0;
9122 }
9123
9124 static int ipw_wx_get_rate(struct net_device *dev,
9125                            struct iw_request_info *info,
9126                            union iwreq_data *wrqu, char *extra)
9127 {
9128         struct ipw_priv *priv = ieee80211_priv(dev);
9129         mutex_lock(&priv->mutex);
9130         wrqu->bitrate.value = priv->last_rate;
9131         wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9132         mutex_unlock(&priv->mutex);
9133         IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
9134         return 0;
9135 }
9136
9137 static int ipw_wx_set_rts(struct net_device *dev,
9138                           struct iw_request_info *info,
9139                           union iwreq_data *wrqu, char *extra)
9140 {
9141         struct ipw_priv *priv = ieee80211_priv(dev);
9142         mutex_lock(&priv->mutex);
9143         if (wrqu->rts.disabled)
9144                 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9145         else {
9146                 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9147                     wrqu->rts.value > MAX_RTS_THRESHOLD) {
9148                         mutex_unlock(&priv->mutex);
9149                         return -EINVAL;
9150                 }
9151                 priv->rts_threshold = wrqu->rts.value;
9152         }
9153
9154         ipw_send_rts_threshold(priv, priv->rts_threshold);
9155         mutex_unlock(&priv->mutex);
9156         IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
9157         return 0;
9158 }
9159
9160 static int ipw_wx_get_rts(struct net_device *dev,
9161                           struct iw_request_info *info,
9162                           union iwreq_data *wrqu, char *extra)
9163 {
9164         struct ipw_priv *priv = ieee80211_priv(dev);
9165         mutex_lock(&priv->mutex);
9166         wrqu->rts.value = priv->rts_threshold;
9167         wrqu->rts.fixed = 0;    /* no auto select */
9168         wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9169         mutex_unlock(&priv->mutex);
9170         IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
9171         return 0;
9172 }
9173
9174 static int ipw_wx_set_txpow(struct net_device *dev,
9175                             struct iw_request_info *info,
9176                             union iwreq_data *wrqu, char *extra)
9177 {
9178         struct ipw_priv *priv = ieee80211_priv(dev);
9179         int err = 0;
9180
9181         mutex_lock(&priv->mutex);
9182         if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9183                 err = -EINPROGRESS;
9184                 goto out;
9185         }
9186
9187         if (!wrqu->power.fixed)
9188                 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9189
9190         if (wrqu->power.flags != IW_TXPOW_DBM) {
9191                 err = -EINVAL;
9192                 goto out;
9193         }
9194
9195         if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9196             (wrqu->power.value < IPW_TX_POWER_MIN)) {
9197                 err = -EINVAL;
9198                 goto out;
9199         }
9200
9201         priv->tx_power = wrqu->power.value;
9202         err = ipw_set_tx_power(priv);
9203       out:
9204         mutex_unlock(&priv->mutex);
9205         return err;
9206 }
9207
9208 static int ipw_wx_get_txpow(struct net_device *dev,
9209                             struct iw_request_info *info,
9210                             union iwreq_data *wrqu, char *extra)
9211 {
9212         struct ipw_priv *priv = ieee80211_priv(dev);
9213         mutex_lock(&priv->mutex);
9214         wrqu->power.value = priv->tx_power;
9215         wrqu->power.fixed = 1;
9216         wrqu->power.flags = IW_TXPOW_DBM;
9217         wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9218         mutex_unlock(&priv->mutex);
9219
9220         IPW_DEBUG_WX("GET TX Power -> %s %d \n",
9221                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9222
9223         return 0;
9224 }
9225
9226 static int ipw_wx_set_frag(struct net_device *dev,
9227                            struct iw_request_info *info,
9228                            union iwreq_data *wrqu, char *extra)
9229 {
9230         struct ipw_priv *priv = ieee80211_priv(dev);
9231         mutex_lock(&priv->mutex);
9232         if (wrqu->frag.disabled)
9233                 priv->ieee->fts = DEFAULT_FTS;
9234         else {
9235                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9236                     wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9237                         mutex_unlock(&priv->mutex);
9238                         return -EINVAL;
9239                 }
9240
9241                 priv->ieee->fts = wrqu->frag.value & ~0x1;
9242         }
9243
9244         ipw_send_frag_threshold(priv, wrqu->frag.value);
9245         mutex_unlock(&priv->mutex);
9246         IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
9247         return 0;
9248 }
9249
9250 static int ipw_wx_get_frag(struct net_device *dev,
9251                            struct iw_request_info *info,
9252                            union iwreq_data *wrqu, char *extra)
9253 {
9254         struct ipw_priv *priv = ieee80211_priv(dev);
9255         mutex_lock(&priv->mutex);
9256         wrqu->frag.value = priv->ieee->fts;
9257         wrqu->frag.fixed = 0;   /* no auto select */
9258         wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9259         mutex_unlock(&priv->mutex);
9260         IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
9261
9262         return 0;
9263 }
9264
9265 static int ipw_wx_set_retry(struct net_device *dev,
9266                             struct iw_request_info *info,
9267                             union iwreq_data *wrqu, char *extra)
9268 {
9269         struct ipw_priv *priv = ieee80211_priv(dev);
9270
9271         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9272                 return -EINVAL;
9273
9274         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9275                 return 0;
9276
9277         if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9278                 return -EINVAL;
9279
9280         mutex_lock(&priv->mutex);
9281         if (wrqu->retry.flags & IW_RETRY_MIN)
9282                 priv->short_retry_limit = (u8) wrqu->retry.value;
9283         else if (wrqu->retry.flags & IW_RETRY_MAX)
9284                 priv->long_retry_limit = (u8) wrqu->retry.value;
9285         else {
9286                 priv->short_retry_limit = (u8) wrqu->retry.value;
9287                 priv->long_retry_limit = (u8) wrqu->retry.value;
9288         }
9289
9290         ipw_send_retry_limit(priv, priv->short_retry_limit,
9291                              priv->long_retry_limit);
9292         mutex_unlock(&priv->mutex);
9293         IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9294                      priv->short_retry_limit, priv->long_retry_limit);
9295         return 0;
9296 }
9297
9298 static int ipw_wx_get_retry(struct net_device *dev,
9299                             struct iw_request_info *info,
9300                             union iwreq_data *wrqu, char *extra)
9301 {
9302         struct ipw_priv *priv = ieee80211_priv(dev);
9303
9304         mutex_lock(&priv->mutex);
9305         wrqu->retry.disabled = 0;
9306
9307         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9308                 mutex_unlock(&priv->mutex);
9309                 return -EINVAL;
9310         }
9311
9312         if (wrqu->retry.flags & IW_RETRY_MAX) {
9313                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_MAX;
9314                 wrqu->retry.value = priv->long_retry_limit;
9315         } else if (wrqu->retry.flags & IW_RETRY_MIN) {
9316                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_MIN;
9317                 wrqu->retry.value = priv->short_retry_limit;
9318         } else {
9319                 wrqu->retry.flags = IW_RETRY_LIMIT;
9320                 wrqu->retry.value = priv->short_retry_limit;
9321         }
9322         mutex_unlock(&priv->mutex);
9323
9324         IPW_DEBUG_WX("GET retry -> %d \n", wrqu->retry.value);
9325
9326         return 0;
9327 }
9328
9329 static int ipw_request_direct_scan(struct ipw_priv *priv, char *essid,
9330                                    int essid_len)
9331 {
9332         struct ipw_scan_request_ext scan;
9333         int err = 0, scan_type;
9334
9335         if (!(priv->status & STATUS_INIT) ||
9336             (priv->status & STATUS_EXIT_PENDING))
9337                 return 0;
9338
9339         mutex_lock(&priv->mutex);
9340
9341         if (priv->status & STATUS_RF_KILL_MASK) {
9342                 IPW_DEBUG_HC("Aborting scan due to RF kill activation\n");
9343                 priv->status |= STATUS_SCAN_PENDING;
9344                 goto done;
9345         }
9346
9347         IPW_DEBUG_HC("starting request direct scan!\n");
9348
9349         if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
9350                 /* We should not sleep here; otherwise we will block most
9351                  * of the system (for instance, we hold rtnl_lock when we
9352                  * get here).
9353                  */
9354                 err = -EAGAIN;
9355                 goto done;
9356         }
9357         memset(&scan, 0, sizeof(scan));
9358
9359         if (priv->config & CFG_SPEED_SCAN)
9360                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
9361                     cpu_to_le16(30);
9362         else
9363                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
9364                     cpu_to_le16(20);
9365
9366         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
9367             cpu_to_le16(20);
9368         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
9369         scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
9370
9371         scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
9372
9373         err = ipw_send_ssid(priv, essid, essid_len);
9374         if (err) {
9375                 IPW_DEBUG_HC("Attempt to send SSID command failed\n");
9376                 goto done;
9377         }
9378         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
9379
9380         ipw_add_scan_channels(priv, &scan, scan_type);
9381
9382         err = ipw_send_scan_request_ext(priv, &scan);
9383         if (err) {
9384                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
9385                 goto done;
9386         }
9387
9388         priv->status |= STATUS_SCANNING;
9389
9390       done:
9391         mutex_unlock(&priv->mutex);
9392         return err;
9393 }
9394
9395 static int ipw_wx_set_scan(struct net_device *dev,
9396                            struct iw_request_info *info,
9397                            union iwreq_data *wrqu, char *extra)
9398 {
9399         struct ipw_priv *priv = ieee80211_priv(dev);
9400         struct iw_scan_req *req = (struct iw_scan_req *)extra;
9401
9402         if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9403                 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9404                         ipw_request_direct_scan(priv, req->essid,
9405                                                 req->essid_len);
9406                         return 0;
9407                 }
9408                 if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9409                         queue_work(priv->workqueue,
9410                                    &priv->request_passive_scan);
9411                         return 0;
9412                 }
9413         }
9414
9415         IPW_DEBUG_WX("Start scan\n");
9416
9417         queue_work(priv->workqueue, &priv->request_scan);
9418
9419         return 0;
9420 }
9421
9422 static int ipw_wx_get_scan(struct net_device *dev,
9423                            struct iw_request_info *info,
9424                            union iwreq_data *wrqu, char *extra)
9425 {
9426         struct ipw_priv *priv = ieee80211_priv(dev);
9427         return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
9428 }
9429
9430 static int ipw_wx_set_encode(struct net_device *dev,
9431                              struct iw_request_info *info,
9432                              union iwreq_data *wrqu, char *key)
9433 {
9434         struct ipw_priv *priv = ieee80211_priv(dev);
9435         int ret;
9436         u32 cap = priv->capability;
9437
9438         mutex_lock(&priv->mutex);
9439         ret = ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
9440
9441         /* In IBSS mode, we need to notify the firmware to update
9442          * the beacon info after we changed the capability. */
9443         if (cap != priv->capability &&
9444             priv->ieee->iw_mode == IW_MODE_ADHOC &&
9445             priv->status & STATUS_ASSOCIATED)
9446                 ipw_disassociate(priv);
9447
9448         mutex_unlock(&priv->mutex);
9449         return ret;
9450 }
9451
9452 static int ipw_wx_get_encode(struct net_device *dev,
9453                              struct iw_request_info *info,
9454                              union iwreq_data *wrqu, char *key)
9455 {
9456         struct ipw_priv *priv = ieee80211_priv(dev);
9457         return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
9458 }
9459
9460 static int ipw_wx_set_power(struct net_device *dev,
9461                             struct iw_request_info *info,
9462                             union iwreq_data *wrqu, char *extra)
9463 {
9464         struct ipw_priv *priv = ieee80211_priv(dev);
9465         int err;
9466         mutex_lock(&priv->mutex);
9467         if (wrqu->power.disabled) {
9468                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9469                 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9470                 if (err) {
9471                         IPW_DEBUG_WX("failed setting power mode.\n");
9472                         mutex_unlock(&priv->mutex);
9473                         return err;
9474                 }
9475                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9476                 mutex_unlock(&priv->mutex);
9477                 return 0;
9478         }
9479
9480         switch (wrqu->power.flags & IW_POWER_MODE) {
9481         case IW_POWER_ON:       /* If not specified */
9482         case IW_POWER_MODE:     /* If set all mask */
9483         case IW_POWER_ALL_R:    /* If explicitely state all */
9484                 break;
9485         default:                /* Otherwise we don't support it */
9486                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9487                              wrqu->power.flags);
9488                 mutex_unlock(&priv->mutex);
9489                 return -EOPNOTSUPP;
9490         }
9491
9492         /* If the user hasn't specified a power management mode yet, default
9493          * to BATTERY */
9494         if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9495                 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9496         else
9497                 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9498         err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9499         if (err) {
9500                 IPW_DEBUG_WX("failed setting power mode.\n");
9501                 mutex_unlock(&priv->mutex);
9502                 return err;
9503         }
9504
9505         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9506         mutex_unlock(&priv->mutex);
9507         return 0;
9508 }
9509
9510 static int ipw_wx_get_power(struct net_device *dev,
9511                             struct iw_request_info *info,
9512                             union iwreq_data *wrqu, char *extra)
9513 {
9514         struct ipw_priv *priv = ieee80211_priv(dev);
9515         mutex_lock(&priv->mutex);
9516         if (!(priv->power_mode & IPW_POWER_ENABLED))
9517                 wrqu->power.disabled = 1;
9518         else
9519                 wrqu->power.disabled = 0;
9520
9521         mutex_unlock(&priv->mutex);
9522         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9523
9524         return 0;
9525 }
9526
9527 static int ipw_wx_set_powermode(struct net_device *dev,
9528                                 struct iw_request_info *info,
9529                                 union iwreq_data *wrqu, char *extra)
9530 {
9531         struct ipw_priv *priv = ieee80211_priv(dev);
9532         int mode = *(int *)extra;
9533         int err;
9534         mutex_lock(&priv->mutex);
9535         if ((mode < 1) || (mode > IPW_POWER_LIMIT)) {
9536                 mode = IPW_POWER_AC;
9537                 priv->power_mode = mode;
9538         } else {
9539                 priv->power_mode = IPW_POWER_ENABLED | mode;
9540         }
9541
9542         if (priv->power_mode != mode) {
9543                 err = ipw_send_power_mode(priv, mode);
9544
9545                 if (err) {
9546                         IPW_DEBUG_WX("failed setting power mode.\n");
9547                         mutex_unlock(&priv->mutex);
9548                         return err;
9549                 }
9550         }
9551         mutex_unlock(&priv->mutex);
9552         return 0;
9553 }
9554
9555 #define MAX_WX_STRING 80
9556 static int ipw_wx_get_powermode(struct net_device *dev,
9557                                 struct iw_request_info *info,
9558                                 union iwreq_data *wrqu, char *extra)
9559 {
9560         struct ipw_priv *priv = ieee80211_priv(dev);
9561         int level = IPW_POWER_LEVEL(priv->power_mode);
9562         char *p = extra;
9563
9564         p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9565
9566         switch (level) {
9567         case IPW_POWER_AC:
9568                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9569                 break;
9570         case IPW_POWER_BATTERY:
9571                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9572                 break;
9573         default:
9574                 p += snprintf(p, MAX_WX_STRING - (p - extra),
9575                               "(Timeout %dms, Period %dms)",
9576                               timeout_duration[level - 1] / 1000,
9577                               period_duration[level - 1] / 1000);
9578         }
9579
9580         if (!(priv->power_mode & IPW_POWER_ENABLED))
9581                 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9582
9583         wrqu->data.length = p - extra + 1;
9584
9585         return 0;
9586 }
9587
9588 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9589                                     struct iw_request_info *info,
9590                                     union iwreq_data *wrqu, char *extra)
9591 {
9592         struct ipw_priv *priv = ieee80211_priv(dev);
9593         int mode = *(int *)extra;
9594         u8 band = 0, modulation = 0;
9595
9596         if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9597                 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9598                 return -EINVAL;
9599         }
9600         mutex_lock(&priv->mutex);
9601         if (priv->adapter == IPW_2915ABG) {
9602                 priv->ieee->abg_true = 1;
9603                 if (mode & IEEE_A) {
9604                         band |= IEEE80211_52GHZ_BAND;
9605                         modulation |= IEEE80211_OFDM_MODULATION;
9606                 } else
9607                         priv->ieee->abg_true = 0;
9608         } else {
9609                 if (mode & IEEE_A) {
9610                         IPW_WARNING("Attempt to set 2200BG into "
9611                                     "802.11a mode\n");
9612                         mutex_unlock(&priv->mutex);
9613                         return -EINVAL;
9614                 }
9615
9616                 priv->ieee->abg_true = 0;
9617         }
9618
9619         if (mode & IEEE_B) {
9620                 band |= IEEE80211_24GHZ_BAND;
9621                 modulation |= IEEE80211_CCK_MODULATION;
9622         } else
9623                 priv->ieee->abg_true = 0;
9624
9625         if (mode & IEEE_G) {
9626                 band |= IEEE80211_24GHZ_BAND;
9627                 modulation |= IEEE80211_OFDM_MODULATION;
9628         } else
9629                 priv->ieee->abg_true = 0;
9630
9631         priv->ieee->mode = mode;
9632         priv->ieee->freq_band = band;
9633         priv->ieee->modulation = modulation;
9634         init_supported_rates(priv, &priv->rates);
9635
9636         /* Network configuration changed -- force [re]association */
9637         IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9638         if (!ipw_disassociate(priv)) {
9639                 ipw_send_supported_rates(priv, &priv->rates);
9640                 ipw_associate(priv);
9641         }
9642
9643         /* Update the band LEDs */
9644         ipw_led_band_on(priv);
9645
9646         IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9647                      mode & IEEE_A ? 'a' : '.',
9648                      mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9649         mutex_unlock(&priv->mutex);
9650         return 0;
9651 }
9652
9653 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9654                                     struct iw_request_info *info,
9655                                     union iwreq_data *wrqu, char *extra)
9656 {
9657         struct ipw_priv *priv = ieee80211_priv(dev);
9658         mutex_lock(&priv->mutex);
9659         switch (priv->ieee->mode) {
9660         case IEEE_A:
9661                 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9662                 break;
9663         case IEEE_B:
9664                 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9665                 break;
9666         case IEEE_A | IEEE_B:
9667                 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9668                 break;
9669         case IEEE_G:
9670                 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9671                 break;
9672         case IEEE_A | IEEE_G:
9673                 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9674                 break;
9675         case IEEE_B | IEEE_G:
9676                 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9677                 break;
9678         case IEEE_A | IEEE_B | IEEE_G:
9679                 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9680                 break;
9681         default:
9682                 strncpy(extra, "unknown", MAX_WX_STRING);
9683                 break;
9684         }
9685
9686         IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9687
9688         wrqu->data.length = strlen(extra) + 1;
9689         mutex_unlock(&priv->mutex);
9690
9691         return 0;
9692 }
9693
9694 static int ipw_wx_set_preamble(struct net_device *dev,
9695                                struct iw_request_info *info,
9696                                union iwreq_data *wrqu, char *extra)
9697 {
9698         struct ipw_priv *priv = ieee80211_priv(dev);
9699         int mode = *(int *)extra;
9700         mutex_lock(&priv->mutex);
9701         /* Switching from SHORT -> LONG requires a disassociation */
9702         if (mode == 1) {
9703                 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9704                         priv->config |= CFG_PREAMBLE_LONG;
9705
9706                         /* Network configuration changed -- force [re]association */
9707                         IPW_DEBUG_ASSOC
9708                             ("[re]association triggered due to preamble change.\n");
9709                         if (!ipw_disassociate(priv))
9710                                 ipw_associate(priv);
9711                 }
9712                 goto done;
9713         }
9714
9715         if (mode == 0) {
9716                 priv->config &= ~CFG_PREAMBLE_LONG;
9717                 goto done;
9718         }
9719         mutex_unlock(&priv->mutex);
9720         return -EINVAL;
9721
9722       done:
9723         mutex_unlock(&priv->mutex);
9724         return 0;
9725 }
9726
9727 static int ipw_wx_get_preamble(struct net_device *dev,
9728                                struct iw_request_info *info,
9729                                union iwreq_data *wrqu, char *extra)
9730 {
9731         struct ipw_priv *priv = ieee80211_priv(dev);
9732         mutex_lock(&priv->mutex);
9733         if (priv->config & CFG_PREAMBLE_LONG)
9734                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9735         else
9736                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9737         mutex_unlock(&priv->mutex);
9738         return 0;
9739 }
9740
9741 #ifdef CONFIG_IPW2200_MONITOR
9742 static int ipw_wx_set_monitor(struct net_device *dev,
9743                               struct iw_request_info *info,
9744                               union iwreq_data *wrqu, char *extra)
9745 {
9746         struct ipw_priv *priv = ieee80211_priv(dev);
9747         int *parms = (int *)extra;
9748         int enable = (parms[0] > 0);
9749         mutex_lock(&priv->mutex);
9750         IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9751         if (enable) {
9752                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9753 #ifdef CONFIG_IPW2200_RADIOTAP
9754                         priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9755 #else
9756                         priv->net_dev->type = ARPHRD_IEEE80211;
9757 #endif
9758                         queue_work(priv->workqueue, &priv->adapter_restart);
9759                 }
9760
9761                 ipw_set_channel(priv, parms[1]);
9762         } else {
9763                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9764                         mutex_unlock(&priv->mutex);
9765                         return 0;
9766                 }
9767                 priv->net_dev->type = ARPHRD_ETHER;
9768                 queue_work(priv->workqueue, &priv->adapter_restart);
9769         }
9770         mutex_unlock(&priv->mutex);
9771         return 0;
9772 }
9773
9774 #endif                          /* CONFIG_IPW2200_MONITOR */
9775
9776 static int ipw_wx_reset(struct net_device *dev,
9777                         struct iw_request_info *info,
9778                         union iwreq_data *wrqu, char *extra)
9779 {
9780         struct ipw_priv *priv = ieee80211_priv(dev);
9781         IPW_DEBUG_WX("RESET\n");
9782         queue_work(priv->workqueue, &priv->adapter_restart);
9783         return 0;
9784 }
9785
9786 static int ipw_wx_sw_reset(struct net_device *dev,
9787                            struct iw_request_info *info,
9788                            union iwreq_data *wrqu, char *extra)
9789 {
9790         struct ipw_priv *priv = ieee80211_priv(dev);
9791         union iwreq_data wrqu_sec = {
9792                 .encoding = {
9793                              .flags = IW_ENCODE_DISABLED,
9794                              },
9795         };
9796         int ret;
9797
9798         IPW_DEBUG_WX("SW_RESET\n");
9799
9800         mutex_lock(&priv->mutex);
9801
9802         ret = ipw_sw_reset(priv, 2);
9803         if (!ret) {
9804                 free_firmware();
9805                 ipw_adapter_restart(priv);
9806         }
9807
9808         /* The SW reset bit might have been toggled on by the 'disable'
9809          * module parameter, so take appropriate action */
9810         ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9811
9812         mutex_unlock(&priv->mutex);
9813         ieee80211_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9814         mutex_lock(&priv->mutex);
9815
9816         if (!(priv->status & STATUS_RF_KILL_MASK)) {
9817                 /* Configuration likely changed -- force [re]association */
9818                 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9819                                 "reset.\n");
9820                 if (!ipw_disassociate(priv))
9821                         ipw_associate(priv);
9822         }
9823
9824         mutex_unlock(&priv->mutex);
9825
9826         return 0;
9827 }
9828
9829 /* Rebase the WE IOCTLs to zero for the handler array */
9830 #define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
9831 static iw_handler ipw_wx_handlers[] = {
9832         IW_IOCTL(SIOCGIWNAME) = ipw_wx_get_name,
9833         IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq,
9834         IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq,
9835         IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode,
9836         IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode,
9837         IW_IOCTL(SIOCSIWSENS) = ipw_wx_set_sens,
9838         IW_IOCTL(SIOCGIWSENS) = ipw_wx_get_sens,
9839         IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range,
9840         IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap,
9841         IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap,
9842         IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan,
9843         IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan,
9844         IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid,
9845         IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid,
9846         IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick,
9847         IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick,
9848         IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate,
9849         IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate,
9850         IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts,
9851         IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts,
9852         IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag,
9853         IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag,
9854         IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow,
9855         IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow,
9856         IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry,
9857         IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry,
9858         IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode,
9859         IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode,
9860         IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power,
9861         IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power,
9862         IW_IOCTL(SIOCSIWSPY) = iw_handler_set_spy,
9863         IW_IOCTL(SIOCGIWSPY) = iw_handler_get_spy,
9864         IW_IOCTL(SIOCSIWTHRSPY) = iw_handler_set_thrspy,
9865         IW_IOCTL(SIOCGIWTHRSPY) = iw_handler_get_thrspy,
9866         IW_IOCTL(SIOCSIWGENIE) = ipw_wx_set_genie,
9867         IW_IOCTL(SIOCGIWGENIE) = ipw_wx_get_genie,
9868         IW_IOCTL(SIOCSIWMLME) = ipw_wx_set_mlme,
9869         IW_IOCTL(SIOCSIWAUTH) = ipw_wx_set_auth,
9870         IW_IOCTL(SIOCGIWAUTH) = ipw_wx_get_auth,
9871         IW_IOCTL(SIOCSIWENCODEEXT) = ipw_wx_set_encodeext,
9872         IW_IOCTL(SIOCGIWENCODEEXT) = ipw_wx_get_encodeext,
9873 };
9874
9875 enum {
9876         IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
9877         IPW_PRIV_GET_POWER,
9878         IPW_PRIV_SET_MODE,
9879         IPW_PRIV_GET_MODE,
9880         IPW_PRIV_SET_PREAMBLE,
9881         IPW_PRIV_GET_PREAMBLE,
9882         IPW_PRIV_RESET,
9883         IPW_PRIV_SW_RESET,
9884 #ifdef CONFIG_IPW2200_MONITOR
9885         IPW_PRIV_SET_MONITOR,
9886 #endif
9887 };
9888
9889 static struct iw_priv_args ipw_priv_args[] = {
9890         {
9891          .cmd = IPW_PRIV_SET_POWER,
9892          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9893          .name = "set_power"},
9894         {
9895          .cmd = IPW_PRIV_GET_POWER,
9896          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9897          .name = "get_power"},
9898         {
9899          .cmd = IPW_PRIV_SET_MODE,
9900          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9901          .name = "set_mode"},
9902         {
9903          .cmd = IPW_PRIV_GET_MODE,
9904          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9905          .name = "get_mode"},
9906         {
9907          .cmd = IPW_PRIV_SET_PREAMBLE,
9908          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9909          .name = "set_preamble"},
9910         {
9911          .cmd = IPW_PRIV_GET_PREAMBLE,
9912          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
9913          .name = "get_preamble"},
9914         {
9915          IPW_PRIV_RESET,
9916          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
9917         {
9918          IPW_PRIV_SW_RESET,
9919          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
9920 #ifdef CONFIG_IPW2200_MONITOR
9921         {
9922          IPW_PRIV_SET_MONITOR,
9923          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
9924 #endif                          /* CONFIG_IPW2200_MONITOR */
9925 };
9926
9927 static iw_handler ipw_priv_handler[] = {
9928         ipw_wx_set_powermode,
9929         ipw_wx_get_powermode,
9930         ipw_wx_set_wireless_mode,
9931         ipw_wx_get_wireless_mode,
9932         ipw_wx_set_preamble,
9933         ipw_wx_get_preamble,
9934         ipw_wx_reset,
9935         ipw_wx_sw_reset,
9936 #ifdef CONFIG_IPW2200_MONITOR
9937         ipw_wx_set_monitor,
9938 #endif
9939 };
9940
9941 static struct iw_handler_def ipw_wx_handler_def = {
9942         .standard = ipw_wx_handlers,
9943         .num_standard = ARRAY_SIZE(ipw_wx_handlers),
9944         .num_private = ARRAY_SIZE(ipw_priv_handler),
9945         .num_private_args = ARRAY_SIZE(ipw_priv_args),
9946         .private = ipw_priv_handler,
9947         .private_args = ipw_priv_args,
9948         .get_wireless_stats = ipw_get_wireless_stats,
9949 };
9950
9951 /*
9952  * Get wireless statistics.
9953  * Called by /proc/net/wireless
9954  * Also called by SIOCGIWSTATS
9955  */
9956 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
9957 {
9958         struct ipw_priv *priv = ieee80211_priv(dev);
9959         struct iw_statistics *wstats;
9960
9961         wstats = &priv->wstats;
9962
9963         /* if hw is disabled, then ipw_get_ordinal() can't be called.
9964          * netdev->get_wireless_stats seems to be called before fw is
9965          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
9966          * and associated; if not associcated, the values are all meaningless
9967          * anyway, so set them all to NULL and INVALID */
9968         if (!(priv->status & STATUS_ASSOCIATED)) {
9969                 wstats->miss.beacon = 0;
9970                 wstats->discard.retries = 0;
9971                 wstats->qual.qual = 0;
9972                 wstats->qual.level = 0;
9973                 wstats->qual.noise = 0;
9974                 wstats->qual.updated = 7;
9975                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
9976                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
9977                 return wstats;
9978         }
9979
9980         wstats->qual.qual = priv->quality;
9981         wstats->qual.level = priv->exp_avg_rssi;
9982         wstats->qual.noise = priv->exp_avg_noise;
9983         wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
9984             IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
9985
9986         wstats->miss.beacon = average_value(&priv->average_missed_beacons);
9987         wstats->discard.retries = priv->last_tx_failures;
9988         wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
9989
9990 /*      if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
9991         goto fail_get_ordinal;
9992         wstats->discard.retries += tx_retry; */
9993
9994         return wstats;
9995 }
9996
9997 /* net device stuff */
9998
9999 static  void init_sys_config(struct ipw_sys_config *sys_config)
10000 {
10001         memset(sys_config, 0, sizeof(struct ipw_sys_config));
10002         sys_config->bt_coexistence = 0;
10003         sys_config->answer_broadcast_ssid_probe = 0;
10004         sys_config->accept_all_data_frames = 0;
10005         sys_config->accept_non_directed_frames = 1;
10006         sys_config->exclude_unicast_unencrypted = 0;
10007         sys_config->disable_unicast_decryption = 1;
10008         sys_config->exclude_multicast_unencrypted = 0;
10009         sys_config->disable_multicast_decryption = 1;
10010         if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10011                 antenna = CFG_SYS_ANTENNA_BOTH;
10012         sys_config->antenna_diversity = antenna;
10013         sys_config->pass_crc_to_host = 0;       /* TODO: See if 1 gives us FCS */
10014         sys_config->dot11g_auto_detection = 0;
10015         sys_config->enable_cts_to_self = 0;
10016         sys_config->bt_coexist_collision_thr = 0;
10017         sys_config->pass_noise_stats_to_host = 1;       /* 1 -- fix for 256 */
10018         sys_config->silence_threshold = 0x1e;
10019 }
10020
10021 static int ipw_net_open(struct net_device *dev)
10022 {
10023         struct ipw_priv *priv = ieee80211_priv(dev);
10024         IPW_DEBUG_INFO("dev->open\n");
10025         /* we should be verifying the device is ready to be opened */
10026         mutex_lock(&priv->mutex);
10027         if (!(priv->status & STATUS_RF_KILL_MASK) &&
10028             (priv->status & STATUS_ASSOCIATED))
10029                 netif_start_queue(dev);
10030         mutex_unlock(&priv->mutex);
10031         return 0;
10032 }
10033
10034 static int ipw_net_stop(struct net_device *dev)
10035 {
10036         IPW_DEBUG_INFO("dev->close\n");
10037         netif_stop_queue(dev);
10038         return 0;
10039 }
10040
10041 /*
10042 todo:
10043
10044 modify to send one tfd per fragment instead of using chunking.  otherwise
10045 we need to heavily modify the ieee80211_skb_to_txb.
10046 */
10047
10048 static int ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb,
10049                              int pri)
10050 {
10051         struct ieee80211_hdr_3addrqos *hdr = (struct ieee80211_hdr_3addrqos *)
10052             txb->fragments[0]->data;
10053         int i = 0;
10054         struct tfd_frame *tfd;
10055 #ifdef CONFIG_IPW2200_QOS
10056         int tx_id = ipw_get_tx_queue_number(priv, pri);
10057         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10058 #else
10059         struct clx2_tx_queue *txq = &priv->txq[0];
10060 #endif
10061         struct clx2_queue *q = &txq->q;
10062         u8 id, hdr_len, unicast;
10063         u16 remaining_bytes;
10064         int fc;
10065
10066         hdr_len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10067         switch (priv->ieee->iw_mode) {
10068         case IW_MODE_ADHOC:
10069                 unicast = !is_multicast_ether_addr(hdr->addr1);
10070                 id = ipw_find_station(priv, hdr->addr1);
10071                 if (id == IPW_INVALID_STATION) {
10072                         id = ipw_add_station(priv, hdr->addr1);
10073                         if (id == IPW_INVALID_STATION) {
10074                                 IPW_WARNING("Attempt to send data to "
10075                                             "invalid cell: " MAC_FMT "\n",
10076                                             MAC_ARG(hdr->addr1));
10077                                 goto drop;
10078                         }
10079                 }
10080                 break;
10081
10082         case IW_MODE_INFRA:
10083         default:
10084                 unicast = !is_multicast_ether_addr(hdr->addr3);
10085                 id = 0;
10086                 break;
10087         }
10088
10089         tfd = &txq->bd[q->first_empty];
10090         txq->txb[q->first_empty] = txb;
10091         memset(tfd, 0, sizeof(*tfd));
10092         tfd->u.data.station_number = id;
10093
10094         tfd->control_flags.message_type = TX_FRAME_TYPE;
10095         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10096
10097         tfd->u.data.cmd_id = DINO_CMD_TX;
10098         tfd->u.data.len = cpu_to_le16(txb->payload_size);
10099         remaining_bytes = txb->payload_size;
10100
10101         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10102                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10103         else
10104                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10105
10106         if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10107                 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10108
10109         fc = le16_to_cpu(hdr->frame_ctl);
10110         hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10111
10112         memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10113
10114         if (likely(unicast))
10115                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10116
10117         if (txb->encrypted && !priv->ieee->host_encrypt) {
10118                 switch (priv->ieee->sec.level) {
10119                 case SEC_LEVEL_3:
10120                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10121                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10122                         /* XXX: ACK flag must be set for CCMP even if it
10123                          * is a multicast/broadcast packet, because CCMP
10124                          * group communication encrypted by GTK is
10125                          * actually done by the AP. */
10126                         if (!unicast)
10127                                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10128
10129                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10130                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10131                         tfd->u.data.key_index = 0;
10132                         tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10133                         break;
10134                 case SEC_LEVEL_2:
10135                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10136                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10137                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10138                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10139                         tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10140                         break;
10141                 case SEC_LEVEL_1:
10142                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10143                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10144                         tfd->u.data.key_index = priv->ieee->tx_keyidx;
10145                         if (priv->ieee->sec.key_sizes[priv->ieee->tx_keyidx] <=
10146                             40)
10147                                 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10148                         else
10149                                 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10150                         break;
10151                 case SEC_LEVEL_0:
10152                         break;
10153                 default:
10154                         printk(KERN_ERR "Unknow security level %d\n",
10155                                priv->ieee->sec.level);
10156                         break;
10157                 }
10158         } else
10159                 /* No hardware encryption */
10160                 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10161
10162 #ifdef CONFIG_IPW2200_QOS
10163         if (fc & IEEE80211_STYPE_QOS_DATA)
10164                 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10165 #endif                          /* CONFIG_IPW2200_QOS */
10166
10167         /* payload */
10168         tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10169                                                  txb->nr_frags));
10170         IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10171                        txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10172         for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10173                 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10174                                i, le32_to_cpu(tfd->u.data.num_chunks),
10175                                txb->fragments[i]->len - hdr_len);
10176                 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10177                              i, tfd->u.data.num_chunks,
10178                              txb->fragments[i]->len - hdr_len);
10179                 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10180                            txb->fragments[i]->len - hdr_len);
10181
10182                 tfd->u.data.chunk_ptr[i] =
10183                     cpu_to_le32(pci_map_single
10184                                 (priv->pci_dev,
10185                                  txb->fragments[i]->data + hdr_len,
10186                                  txb->fragments[i]->len - hdr_len,
10187                                  PCI_DMA_TODEVICE));
10188                 tfd->u.data.chunk_len[i] =
10189                     cpu_to_le16(txb->fragments[i]->len - hdr_len);
10190         }
10191
10192         if (i != txb->nr_frags) {
10193                 struct sk_buff *skb;
10194                 u16 remaining_bytes = 0;
10195                 int j;
10196
10197                 for (j = i; j < txb->nr_frags; j++)
10198                         remaining_bytes += txb->fragments[j]->len - hdr_len;
10199
10200                 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10201                        remaining_bytes);
10202                 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10203                 if (skb != NULL) {
10204                         tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10205                         for (j = i; j < txb->nr_frags; j++) {
10206                                 int size = txb->fragments[j]->len - hdr_len;
10207
10208                                 printk(KERN_INFO "Adding frag %d %d...\n",
10209                                        j, size);
10210                                 memcpy(skb_put(skb, size),
10211                                        txb->fragments[j]->data + hdr_len, size);
10212                         }
10213                         dev_kfree_skb_any(txb->fragments[i]);
10214                         txb->fragments[i] = skb;
10215                         tfd->u.data.chunk_ptr[i] =
10216                             cpu_to_le32(pci_map_single
10217                                         (priv->pci_dev, skb->data,
10218                                          tfd->u.data.chunk_len[i],
10219                                          PCI_DMA_TODEVICE));
10220
10221                         tfd->u.data.num_chunks =
10222                             cpu_to_le32(le32_to_cpu(tfd->u.data.num_chunks) +
10223                                         1);
10224                 }
10225         }
10226
10227         /* kick DMA */
10228         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10229         ipw_write32(priv, q->reg_w, q->first_empty);
10230
10231         if (ipw_queue_space(q) < q->high_mark)
10232                 netif_stop_queue(priv->net_dev);
10233
10234         return NETDEV_TX_OK;
10235
10236       drop:
10237         IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10238         ieee80211_txb_free(txb);
10239         return NETDEV_TX_OK;
10240 }
10241
10242 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10243 {
10244         struct ipw_priv *priv = ieee80211_priv(dev);
10245 #ifdef CONFIG_IPW2200_QOS
10246         int tx_id = ipw_get_tx_queue_number(priv, pri);
10247         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10248 #else
10249         struct clx2_tx_queue *txq = &priv->txq[0];
10250 #endif                          /* CONFIG_IPW2200_QOS */
10251
10252         if (ipw_queue_space(&txq->q) < txq->q.high_mark)
10253                 return 1;
10254
10255         return 0;
10256 }
10257
10258 #ifdef CONFIG_IPW2200_PROMISCUOUS
10259 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10260                                       struct ieee80211_txb *txb)
10261 {
10262         struct ieee80211_rx_stats dummystats;
10263         struct ieee80211_hdr *hdr;
10264         u8 n;
10265         u16 filter = priv->prom_priv->filter;
10266         int hdr_only = 0;
10267
10268         if (filter & IPW_PROM_NO_TX)
10269                 return;
10270
10271         memset(&dummystats, 0, sizeof(dummystats));
10272
10273         /* Filtering of fragment chains is done agains the first fragment */
10274         hdr = (void *)txb->fragments[0]->data;
10275         if (ieee80211_is_management(le16_to_cpu(hdr->frame_ctl))) {
10276                 if (filter & IPW_PROM_NO_MGMT)
10277                         return;
10278                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10279                         hdr_only = 1;
10280         } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_ctl))) {
10281                 if (filter & IPW_PROM_NO_CTL)
10282                         return;
10283                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10284                         hdr_only = 1;
10285         } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_ctl))) {
10286                 if (filter & IPW_PROM_NO_DATA)
10287                         return;
10288                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10289                         hdr_only = 1;
10290         }
10291
10292         for(n=0; n<txb->nr_frags; ++n) {
10293                 struct sk_buff *src = txb->fragments[n];
10294                 struct sk_buff *dst;
10295                 struct ieee80211_radiotap_header *rt_hdr;
10296                 int len;
10297
10298                 if (hdr_only) {
10299                         hdr = (void *)src->data;
10300                         len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10301                 } else
10302                         len = src->len;
10303
10304                 dst = alloc_skb(
10305                         len + IEEE80211_RADIOTAP_HDRLEN, GFP_ATOMIC);
10306                 if (!dst) continue;
10307
10308                 rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));
10309
10310                 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10311                 rt_hdr->it_pad = 0;
10312                 rt_hdr->it_present = 0; /* after all, it's just an idea */
10313                 rt_hdr->it_present |=  (1 << IEEE80211_RADIOTAP_CHANNEL);
10314
10315                 *(u16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10316                         ieee80211chan2mhz(priv->channel));
10317                 if (priv->channel > 14)         /* 802.11a */
10318                         *(u16*)skb_put(dst, sizeof(u16)) =
10319                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10320                                              IEEE80211_CHAN_5GHZ);
10321                 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10322                         *(u16*)skb_put(dst, sizeof(u16)) =
10323                                 cpu_to_le16(IEEE80211_CHAN_CCK |
10324                                              IEEE80211_CHAN_2GHZ);
10325                 else            /* 802.11g */
10326                         *(u16*)skb_put(dst, sizeof(u16)) =
10327                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10328                                  IEEE80211_CHAN_2GHZ);
10329
10330                 rt_hdr->it_len = dst->len;
10331
10332                 memcpy(skb_put(dst, len), src->data, len);
10333
10334                 if (!ieee80211_rx(priv->prom_priv->ieee, dst, &dummystats))
10335                         dev_kfree_skb_any(dst);
10336         }
10337 }
10338 #endif
10339
10340 static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb,
10341                                    struct net_device *dev, int pri)
10342 {
10343         struct ipw_priv *priv = ieee80211_priv(dev);
10344         unsigned long flags;
10345         int ret;
10346
10347         IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10348         spin_lock_irqsave(&priv->lock, flags);
10349
10350         if (!(priv->status & STATUS_ASSOCIATED)) {
10351                 IPW_DEBUG_INFO("Tx attempt while not associated.\n");
10352                 priv->ieee->stats.tx_carrier_errors++;
10353                 netif_stop_queue(dev);
10354                 goto fail_unlock;
10355         }
10356
10357 #ifdef CONFIG_IPW2200_PROMISCUOUS
10358         if (rtap_iface && netif_running(priv->prom_net_dev))
10359                 ipw_handle_promiscuous_tx(priv, txb);
10360 #endif
10361
10362         ret = ipw_tx_skb(priv, txb, pri);
10363         if (ret == NETDEV_TX_OK)
10364                 __ipw_led_activity_on(priv);
10365         spin_unlock_irqrestore(&priv->lock, flags);
10366
10367         return ret;
10368
10369       fail_unlock:
10370         spin_unlock_irqrestore(&priv->lock, flags);
10371         return 1;
10372 }
10373
10374 static struct net_device_stats *ipw_net_get_stats(struct net_device *dev)
10375 {
10376         struct ipw_priv *priv = ieee80211_priv(dev);
10377
10378         priv->ieee->stats.tx_packets = priv->tx_packets;
10379         priv->ieee->stats.rx_packets = priv->rx_packets;
10380         return &priv->ieee->stats;
10381 }
10382
10383 static void ipw_net_set_multicast_list(struct net_device *dev)
10384 {
10385
10386 }
10387
10388 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10389 {
10390         struct ipw_priv *priv = ieee80211_priv(dev);
10391         struct sockaddr *addr = p;
10392         if (!is_valid_ether_addr(addr->sa_data))
10393                 return -EADDRNOTAVAIL;
10394         mutex_lock(&priv->mutex);
10395         priv->config |= CFG_CUSTOM_MAC;
10396         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10397         printk(KERN_INFO "%s: Setting MAC to " MAC_FMT "\n",
10398                priv->net_dev->name, MAC_ARG(priv->mac_addr));
10399         queue_work(priv->workqueue, &priv->adapter_restart);
10400         mutex_unlock(&priv->mutex);
10401         return 0;
10402 }
10403
10404 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10405                                     struct ethtool_drvinfo *info)
10406 {
10407         struct ipw_priv *p = ieee80211_priv(dev);
10408         char vers[64];
10409         char date[32];
10410         u32 len;
10411
10412         strcpy(info->driver, DRV_NAME);
10413         strcpy(info->version, DRV_VERSION);
10414
10415         len = sizeof(vers);
10416         ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10417         len = sizeof(date);
10418         ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10419
10420         snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10421                  vers, date);
10422         strcpy(info->bus_info, pci_name(p->pci_dev));
10423         info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
10424 }
10425
10426 static u32 ipw_ethtool_get_link(struct net_device *dev)
10427 {
10428         struct ipw_priv *priv = ieee80211_priv(dev);
10429         return (priv->status & STATUS_ASSOCIATED) != 0;
10430 }
10431
10432 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10433 {
10434         return IPW_EEPROM_IMAGE_SIZE;
10435 }
10436
10437 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10438                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10439 {
10440         struct ipw_priv *p = ieee80211_priv(dev);
10441
10442         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10443                 return -EINVAL;
10444         mutex_lock(&p->mutex);
10445         memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10446         mutex_unlock(&p->mutex);
10447         return 0;
10448 }
10449
10450 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10451                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10452 {
10453         struct ipw_priv *p = ieee80211_priv(dev);
10454         int i;
10455
10456         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10457                 return -EINVAL;
10458         mutex_lock(&p->mutex);
10459         memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10460         for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10461                 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10462         mutex_unlock(&p->mutex);
10463         return 0;
10464 }
10465
10466 static struct ethtool_ops ipw_ethtool_ops = {
10467         .get_link = ipw_ethtool_get_link,
10468         .get_drvinfo = ipw_ethtool_get_drvinfo,
10469         .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10470         .get_eeprom = ipw_ethtool_get_eeprom,
10471         .set_eeprom = ipw_ethtool_set_eeprom,
10472 };
10473
10474 static irqreturn_t ipw_isr(int irq, void *data, struct pt_regs *regs)
10475 {
10476         struct ipw_priv *priv = data;
10477         u32 inta, inta_mask;
10478
10479         if (!priv)
10480                 return IRQ_NONE;
10481
10482         spin_lock(&priv->irq_lock);
10483
10484         if (!(priv->status & STATUS_INT_ENABLED)) {
10485                 /* Shared IRQ */
10486                 goto none;
10487         }
10488
10489         inta = ipw_read32(priv, IPW_INTA_RW);
10490         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10491
10492         if (inta == 0xFFFFFFFF) {
10493                 /* Hardware disappeared */
10494                 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10495                 goto none;
10496         }
10497
10498         if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10499                 /* Shared interrupt */
10500                 goto none;
10501         }
10502
10503         /* tell the device to stop sending interrupts */
10504         __ipw_disable_interrupts(priv);
10505
10506         /* ack current interrupts */
10507         inta &= (IPW_INTA_MASK_ALL & inta_mask);
10508         ipw_write32(priv, IPW_INTA_RW, inta);
10509
10510         /* Cache INTA value for our tasklet */
10511         priv->isr_inta = inta;
10512
10513         tasklet_schedule(&priv->irq_tasklet);
10514
10515         spin_unlock(&priv->irq_lock);
10516
10517         return IRQ_HANDLED;
10518       none:
10519         spin_unlock(&priv->irq_lock);
10520         return IRQ_NONE;
10521 }
10522
10523 static void ipw_rf_kill(void *adapter)
10524 {
10525         struct ipw_priv *priv = adapter;
10526         unsigned long flags;
10527
10528         spin_lock_irqsave(&priv->lock, flags);
10529
10530         if (rf_kill_active(priv)) {
10531                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10532                 if (priv->workqueue)
10533                         queue_delayed_work(priv->workqueue,
10534                                            &priv->rf_kill, 2 * HZ);
10535                 goto exit_unlock;
10536         }
10537
10538         /* RF Kill is now disabled, so bring the device back up */
10539
10540         if (!(priv->status & STATUS_RF_KILL_MASK)) {
10541                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10542                                   "device\n");
10543
10544                 /* we can not do an adapter restart while inside an irq lock */
10545                 queue_work(priv->workqueue, &priv->adapter_restart);
10546         } else
10547                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
10548                                   "enabled\n");
10549
10550       exit_unlock:
10551         spin_unlock_irqrestore(&priv->lock, flags);
10552 }
10553
10554 static void ipw_bg_rf_kill(void *data)
10555 {
10556         struct ipw_priv *priv = data;
10557         mutex_lock(&priv->mutex);
10558         ipw_rf_kill(data);
10559         mutex_unlock(&priv->mutex);
10560 }
10561
10562 static void ipw_link_up(struct ipw_priv *priv)
10563 {
10564         priv->last_seq_num = -1;
10565         priv->last_frag_num = -1;
10566         priv->last_packet_time = 0;
10567
10568         netif_carrier_on(priv->net_dev);
10569         if (netif_queue_stopped(priv->net_dev)) {
10570                 IPW_DEBUG_NOTIF("waking queue\n");
10571                 netif_wake_queue(priv->net_dev);
10572         } else {
10573                 IPW_DEBUG_NOTIF("starting queue\n");
10574                 netif_start_queue(priv->net_dev);
10575         }
10576
10577         cancel_delayed_work(&priv->request_scan);
10578         ipw_reset_stats(priv);
10579         /* Ensure the rate is updated immediately */
10580         priv->last_rate = ipw_get_current_rate(priv);
10581         ipw_gather_stats(priv);
10582         ipw_led_link_up(priv);
10583         notify_wx_assoc_event(priv);
10584
10585         if (priv->config & CFG_BACKGROUND_SCAN)
10586                 queue_delayed_work(priv->workqueue, &priv->request_scan, HZ);
10587 }
10588
10589 static void ipw_bg_link_up(void *data)
10590 {
10591         struct ipw_priv *priv = data;
10592         mutex_lock(&priv->mutex);
10593         ipw_link_up(data);
10594         mutex_unlock(&priv->mutex);
10595 }
10596
10597 static void ipw_link_down(struct ipw_priv *priv)
10598 {
10599         ipw_led_link_down(priv);
10600         netif_carrier_off(priv->net_dev);
10601         netif_stop_queue(priv->net_dev);
10602         notify_wx_assoc_event(priv);
10603
10604         /* Cancel any queued work ... */
10605         cancel_delayed_work(&priv->request_scan);
10606         cancel_delayed_work(&priv->adhoc_check);
10607         cancel_delayed_work(&priv->gather_stats);
10608
10609         ipw_reset_stats(priv);
10610
10611         if (!(priv->status & STATUS_EXIT_PENDING)) {
10612                 /* Queue up another scan... */
10613                 queue_work(priv->workqueue, &priv->request_scan);
10614         }
10615 }
10616
10617 static void ipw_bg_link_down(void *data)
10618 {
10619         struct ipw_priv *priv = data;
10620         mutex_lock(&priv->mutex);
10621         ipw_link_down(data);
10622         mutex_unlock(&priv->mutex);
10623 }
10624
10625 static int ipw_setup_deferred_work(struct ipw_priv *priv)
10626 {
10627         int ret = 0;
10628
10629         priv->workqueue = create_workqueue(DRV_NAME);
10630         init_waitqueue_head(&priv->wait_command_queue);
10631         init_waitqueue_head(&priv->wait_state);
10632
10633         INIT_WORK(&priv->adhoc_check, ipw_bg_adhoc_check, priv);
10634         INIT_WORK(&priv->associate, ipw_bg_associate, priv);
10635         INIT_WORK(&priv->disassociate, ipw_bg_disassociate, priv);
10636         INIT_WORK(&priv->system_config, ipw_system_config, priv);
10637         INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish, priv);
10638         INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart, priv);
10639         INIT_WORK(&priv->rf_kill, ipw_bg_rf_kill, priv);
10640         INIT_WORK(&priv->up, (void (*)(void *))ipw_bg_up, priv);
10641         INIT_WORK(&priv->down, (void (*)(void *))ipw_bg_down, priv);
10642         INIT_WORK(&priv->request_scan,
10643                   (void (*)(void *))ipw_request_scan, priv);
10644         INIT_WORK(&priv->request_passive_scan,
10645                   (void (*)(void *))ipw_request_passive_scan, priv);
10646         INIT_WORK(&priv->gather_stats,
10647                   (void (*)(void *))ipw_bg_gather_stats, priv);
10648         INIT_WORK(&priv->abort_scan, (void (*)(void *))ipw_bg_abort_scan, priv);
10649         INIT_WORK(&priv->roam, ipw_bg_roam, priv);
10650         INIT_WORK(&priv->scan_check, ipw_bg_scan_check, priv);
10651         INIT_WORK(&priv->link_up, (void (*)(void *))ipw_bg_link_up, priv);
10652         INIT_WORK(&priv->link_down, (void (*)(void *))ipw_bg_link_down, priv);
10653         INIT_WORK(&priv->led_link_on, (void (*)(void *))ipw_bg_led_link_on,
10654                   priv);
10655         INIT_WORK(&priv->led_link_off, (void (*)(void *))ipw_bg_led_link_off,
10656                   priv);
10657         INIT_WORK(&priv->led_act_off, (void (*)(void *))ipw_bg_led_activity_off,
10658                   priv);
10659         INIT_WORK(&priv->merge_networks,
10660                   (void (*)(void *))ipw_merge_adhoc_network, priv);
10661
10662 #ifdef CONFIG_IPW2200_QOS
10663         INIT_WORK(&priv->qos_activate, (void (*)(void *))ipw_bg_qos_activate,
10664                   priv);
10665 #endif                          /* CONFIG_IPW2200_QOS */
10666
10667         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10668                      ipw_irq_tasklet, (unsigned long)priv);
10669
10670         return ret;
10671 }
10672
10673 static void shim__set_security(struct net_device *dev,
10674                                struct ieee80211_security *sec)
10675 {
10676         struct ipw_priv *priv = ieee80211_priv(dev);
10677         int i;
10678         for (i = 0; i < 4; i++) {
10679                 if (sec->flags & (1 << i)) {
10680                         priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10681                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10682                         if (sec->key_sizes[i] == 0)
10683                                 priv->ieee->sec.flags &= ~(1 << i);
10684                         else {
10685                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10686                                        sec->key_sizes[i]);
10687                                 priv->ieee->sec.flags |= (1 << i);
10688                         }
10689                         priv->status |= STATUS_SECURITY_UPDATED;
10690                 } else if (sec->level != SEC_LEVEL_1)
10691                         priv->ieee->sec.flags &= ~(1 << i);
10692         }
10693
10694         if (sec->flags & SEC_ACTIVE_KEY) {
10695                 if (sec->active_key <= 3) {
10696                         priv->ieee->sec.active_key = sec->active_key;
10697                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10698                 } else
10699                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10700                 priv->status |= STATUS_SECURITY_UPDATED;
10701         } else
10702                 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10703
10704         if ((sec->flags & SEC_AUTH_MODE) &&
10705             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10706                 priv->ieee->sec.auth_mode = sec->auth_mode;
10707                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10708                 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10709                         priv->capability |= CAP_SHARED_KEY;
10710                 else
10711                         priv->capability &= ~CAP_SHARED_KEY;
10712                 priv->status |= STATUS_SECURITY_UPDATED;
10713         }
10714
10715         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10716                 priv->ieee->sec.flags |= SEC_ENABLED;
10717                 priv->ieee->sec.enabled = sec->enabled;
10718                 priv->status |= STATUS_SECURITY_UPDATED;
10719                 if (sec->enabled)
10720                         priv->capability |= CAP_PRIVACY_ON;
10721                 else
10722                         priv->capability &= ~CAP_PRIVACY_ON;
10723         }
10724
10725         if (sec->flags & SEC_ENCRYPT)
10726                 priv->ieee->sec.encrypt = sec->encrypt;
10727
10728         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10729                 priv->ieee->sec.level = sec->level;
10730                 priv->ieee->sec.flags |= SEC_LEVEL;
10731                 priv->status |= STATUS_SECURITY_UPDATED;
10732         }
10733
10734         if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10735                 ipw_set_hwcrypto_keys(priv);
10736
10737         /* To match current functionality of ipw2100 (which works well w/
10738          * various supplicants, we don't force a disassociate if the
10739          * privacy capability changes ... */
10740 #if 0
10741         if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10742             (((priv->assoc_request.capability &
10743                WLAN_CAPABILITY_PRIVACY) && !sec->enabled) ||
10744              (!(priv->assoc_request.capability &
10745                 WLAN_CAPABILITY_PRIVACY) && sec->enabled))) {
10746                 IPW_DEBUG_ASSOC("Disassociating due to capability "
10747                                 "change.\n");
10748                 ipw_disassociate(priv);
10749         }
10750 #endif
10751 }
10752
10753 static int init_supported_rates(struct ipw_priv *priv,
10754                                 struct ipw_supported_rates *rates)
10755 {
10756         /* TODO: Mask out rates based on priv->rates_mask */
10757
10758         memset(rates, 0, sizeof(*rates));
10759         /* configure supported rates */
10760         switch (priv->ieee->freq_band) {
10761         case IEEE80211_52GHZ_BAND:
10762                 rates->ieee_mode = IPW_A_MODE;
10763                 rates->purpose = IPW_RATE_CAPABILITIES;
10764                 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10765                                         IEEE80211_OFDM_DEFAULT_RATES_MASK);
10766                 break;
10767
10768         default:                /* Mixed or 2.4Ghz */
10769                 rates->ieee_mode = IPW_G_MODE;
10770                 rates->purpose = IPW_RATE_CAPABILITIES;
10771                 ipw_add_cck_scan_rates(rates, IEEE80211_CCK_MODULATION,
10772                                        IEEE80211_CCK_DEFAULT_RATES_MASK);
10773                 if (priv->ieee->modulation & IEEE80211_OFDM_MODULATION) {
10774                         ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10775                                                 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10776                 }
10777                 break;
10778         }
10779
10780         return 0;
10781 }
10782
10783 static int ipw_config(struct ipw_priv *priv)
10784 {
10785         /* This is only called from ipw_up, which resets/reloads the firmware
10786            so, we don't need to first disable the card before we configure
10787            it */
10788         if (ipw_set_tx_power(priv))
10789                 goto error;
10790
10791         /* initialize adapter address */
10792         if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10793                 goto error;
10794
10795         /* set basic system config settings */
10796         init_sys_config(&priv->sys_config);
10797
10798         /* Support Bluetooth if we have BT h/w on board, and user wants to.
10799          * Does not support BT priority yet (don't abort or defer our Tx) */
10800         if (bt_coexist) {
10801                 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10802
10803                 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10804                         priv->sys_config.bt_coexistence
10805                             |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10806                 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10807                         priv->sys_config.bt_coexistence
10808                             |= CFG_BT_COEXISTENCE_OOB;
10809         }
10810
10811 #ifdef CONFIG_IPW2200_PROMISCUOUS
10812         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10813                 priv->sys_config.accept_all_data_frames = 1;
10814                 priv->sys_config.accept_non_directed_frames = 1;
10815                 priv->sys_config.accept_all_mgmt_bcpr = 1;
10816                 priv->sys_config.accept_all_mgmt_frames = 1;
10817         }
10818 #endif
10819
10820         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10821                 priv->sys_config.answer_broadcast_ssid_probe = 1;
10822         else
10823                 priv->sys_config.answer_broadcast_ssid_probe = 0;
10824
10825         if (ipw_send_system_config(priv))
10826                 goto error;
10827
10828         init_supported_rates(priv, &priv->rates);
10829         if (ipw_send_supported_rates(priv, &priv->rates))
10830                 goto error;
10831
10832         /* Set request-to-send threshold */
10833         if (priv->rts_threshold) {
10834                 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10835                         goto error;
10836         }
10837 #ifdef CONFIG_IPW2200_QOS
10838         IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10839         ipw_qos_activate(priv, NULL);
10840 #endif                          /* CONFIG_IPW2200_QOS */
10841
10842         if (ipw_set_random_seed(priv))
10843                 goto error;
10844
10845         /* final state transition to the RUN state */
10846         if (ipw_send_host_complete(priv))
10847                 goto error;
10848
10849         priv->status |= STATUS_INIT;
10850
10851         ipw_led_init(priv);
10852         ipw_led_radio_on(priv);
10853         priv->notif_missed_beacons = 0;
10854
10855         /* Set hardware WEP key if it is configured. */
10856         if ((priv->capability & CAP_PRIVACY_ON) &&
10857             (priv->ieee->sec.level == SEC_LEVEL_1) &&
10858             !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10859                 ipw_set_hwcrypto_keys(priv);
10860
10861         return 0;
10862
10863       error:
10864         return -EIO;
10865 }
10866
10867 /*
10868  * NOTE:
10869  *
10870  * These tables have been tested in conjunction with the
10871  * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10872  *
10873  * Altering this values, using it on other hardware, or in geographies
10874  * not intended for resale of the above mentioned Intel adapters has
10875  * not been tested.
10876  *
10877  * Remember to update the table in README.ipw2200 when changing this
10878  * table.
10879  *
10880  */
10881 static const struct ieee80211_geo ipw_geos[] = {
10882         {                       /* Restricted */
10883          "---",
10884          .bg_channels = 11,
10885          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10886                 {2427, 4}, {2432, 5}, {2437, 6},
10887                 {2442, 7}, {2447, 8}, {2452, 9},
10888                 {2457, 10}, {2462, 11}},
10889          },
10890
10891         {                       /* Custom US/Canada */
10892          "ZZF",
10893          .bg_channels = 11,
10894          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10895                 {2427, 4}, {2432, 5}, {2437, 6},
10896                 {2442, 7}, {2447, 8}, {2452, 9},
10897                 {2457, 10}, {2462, 11}},
10898          .a_channels = 8,
10899          .a = {{5180, 36},
10900                {5200, 40},
10901                {5220, 44},
10902                {5240, 48},
10903                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10904                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10905                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10906                {5320, 64, IEEE80211_CH_PASSIVE_ONLY}},
10907          },
10908
10909         {                       /* Rest of World */
10910          "ZZD",
10911          .bg_channels = 13,
10912          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10913                 {2427, 4}, {2432, 5}, {2437, 6},
10914                 {2442, 7}, {2447, 8}, {2452, 9},
10915                 {2457, 10}, {2462, 11}, {2467, 12},
10916                 {2472, 13}},
10917          },
10918
10919         {                       /* Custom USA & Europe & High */
10920          "ZZA",
10921          .bg_channels = 11,
10922          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10923                 {2427, 4}, {2432, 5}, {2437, 6},
10924                 {2442, 7}, {2447, 8}, {2452, 9},
10925                 {2457, 10}, {2462, 11}},
10926          .a_channels = 13,
10927          .a = {{5180, 36},
10928                {5200, 40},
10929                {5220, 44},
10930                {5240, 48},
10931                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10932                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10933                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10934                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10935                {5745, 149},
10936                {5765, 153},
10937                {5785, 157},
10938                {5805, 161},
10939                {5825, 165}},
10940          },
10941
10942         {                       /* Custom NA & Europe */
10943          "ZZB",
10944          .bg_channels = 11,
10945          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10946                 {2427, 4}, {2432, 5}, {2437, 6},
10947                 {2442, 7}, {2447, 8}, {2452, 9},
10948                 {2457, 10}, {2462, 11}},
10949          .a_channels = 13,
10950          .a = {{5180, 36},
10951                {5200, 40},
10952                {5220, 44},
10953                {5240, 48},
10954                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10955                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10956                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10957                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10958                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
10959                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
10960                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
10961                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
10962                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
10963          },
10964
10965         {                       /* Custom Japan */
10966          "ZZC",
10967          .bg_channels = 11,
10968          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10969                 {2427, 4}, {2432, 5}, {2437, 6},
10970                 {2442, 7}, {2447, 8}, {2452, 9},
10971                 {2457, 10}, {2462, 11}},
10972          .a_channels = 4,
10973          .a = {{5170, 34}, {5190, 38},
10974                {5210, 42}, {5230, 46}},
10975          },
10976
10977         {                       /* Custom */
10978          "ZZM",
10979          .bg_channels = 11,
10980          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10981                 {2427, 4}, {2432, 5}, {2437, 6},
10982                 {2442, 7}, {2447, 8}, {2452, 9},
10983                 {2457, 10}, {2462, 11}},
10984          },
10985
10986         {                       /* Europe */
10987          "ZZE",
10988          .bg_channels = 13,
10989          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10990                 {2427, 4}, {2432, 5}, {2437, 6},
10991                 {2442, 7}, {2447, 8}, {2452, 9},
10992                 {2457, 10}, {2462, 11}, {2467, 12},
10993                 {2472, 13}},
10994          .a_channels = 19,
10995          .a = {{5180, 36},
10996                {5200, 40},
10997                {5220, 44},
10998                {5240, 48},
10999                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11000                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11001                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11002                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11003                {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11004                {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11005                {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11006                {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11007                {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11008                {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11009                {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11010                {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11011                {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11012                {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11013                {5700, 140, IEEE80211_CH_PASSIVE_ONLY}},
11014          },
11015
11016         {                       /* Custom Japan */
11017          "ZZJ",
11018          .bg_channels = 14,
11019          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11020                 {2427, 4}, {2432, 5}, {2437, 6},
11021                 {2442, 7}, {2447, 8}, {2452, 9},
11022                 {2457, 10}, {2462, 11}, {2467, 12},
11023                 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY}},
11024          .a_channels = 4,
11025          .a = {{5170, 34}, {5190, 38},
11026                {5210, 42}, {5230, 46}},
11027          },
11028
11029         {                       /* Rest of World */
11030          "ZZR",
11031          .bg_channels = 14,
11032          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11033                 {2427, 4}, {2432, 5}, {2437, 6},
11034                 {2442, 7}, {2447, 8}, {2452, 9},
11035                 {2457, 10}, {2462, 11}, {2467, 12},
11036                 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY |
11037                              IEEE80211_CH_PASSIVE_ONLY}},
11038          },
11039
11040         {                       /* High Band */
11041          "ZZH",
11042          .bg_channels = 13,
11043          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11044                 {2427, 4}, {2432, 5}, {2437, 6},
11045                 {2442, 7}, {2447, 8}, {2452, 9},
11046                 {2457, 10}, {2462, 11},
11047                 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11048                 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11049          .a_channels = 4,
11050          .a = {{5745, 149}, {5765, 153},
11051                {5785, 157}, {5805, 161}},
11052          },
11053
11054         {                       /* Custom Europe */
11055          "ZZG",
11056          .bg_channels = 13,
11057          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11058                 {2427, 4}, {2432, 5}, {2437, 6},
11059                 {2442, 7}, {2447, 8}, {2452, 9},
11060                 {2457, 10}, {2462, 11},
11061                 {2467, 12}, {2472, 13}},
11062          .a_channels = 4,
11063          .a = {{5180, 36}, {5200, 40},
11064                {5220, 44}, {5240, 48}},
11065          },
11066
11067         {                       /* Europe */
11068          "ZZK",
11069          .bg_channels = 13,
11070          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11071                 {2427, 4}, {2432, 5}, {2437, 6},
11072                 {2442, 7}, {2447, 8}, {2452, 9},
11073                 {2457, 10}, {2462, 11},
11074                 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11075                 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11076          .a_channels = 24,
11077          .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11078                {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11079                {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11080                {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11081                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11082                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11083                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11084                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11085                {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11086                {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11087                {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11088                {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11089                {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11090                {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11091                {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11092                {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11093                {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11094                {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11095                {5700, 140, IEEE80211_CH_PASSIVE_ONLY},
11096                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11097                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11098                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11099                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11100                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11101          },
11102
11103         {                       /* Europe */
11104          "ZZL",
11105          .bg_channels = 11,
11106          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11107                 {2427, 4}, {2432, 5}, {2437, 6},
11108                 {2442, 7}, {2447, 8}, {2452, 9},
11109                 {2457, 10}, {2462, 11}},
11110          .a_channels = 13,
11111          .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11112                {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11113                {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11114                {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11115                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11116                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11117                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11118                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11119                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11120                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11121                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11122                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11123                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11124          }
11125 };
11126
11127 #define MAX_HW_RESTARTS 5
11128 static int ipw_up(struct ipw_priv *priv)
11129 {
11130         int rc, i, j;
11131
11132         if (priv->status & STATUS_EXIT_PENDING)
11133                 return -EIO;
11134
11135         if (cmdlog && !priv->cmdlog) {
11136                 priv->cmdlog = kmalloc(sizeof(*priv->cmdlog) * cmdlog,
11137                                        GFP_KERNEL);
11138                 if (priv->cmdlog == NULL) {
11139                         IPW_ERROR("Error allocating %d command log entries.\n",
11140                                   cmdlog);
11141                         return -ENOMEM;
11142                 } else {
11143                         memset(priv->cmdlog, 0, sizeof(*priv->cmdlog) * cmdlog);
11144                         priv->cmdlog_len = cmdlog;
11145                 }
11146         }
11147
11148         for (i = 0; i < MAX_HW_RESTARTS; i++) {
11149                 /* Load the microcode, firmware, and eeprom.
11150                  * Also start the clocks. */
11151                 rc = ipw_load(priv);
11152                 if (rc) {
11153                         IPW_ERROR("Unable to load firmware: %d\n", rc);
11154                         return rc;
11155                 }
11156
11157                 ipw_init_ordinals(priv);
11158                 if (!(priv->config & CFG_CUSTOM_MAC))
11159                         eeprom_parse_mac(priv, priv->mac_addr);
11160                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11161
11162                 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11163                         if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11164                                     ipw_geos[j].name, 3))
11165                                 break;
11166                 }
11167                 if (j == ARRAY_SIZE(ipw_geos)) {
11168                         IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11169                                     priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11170                                     priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11171                                     priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11172                         j = 0;
11173                 }
11174                 if (ieee80211_set_geo(priv->ieee, &ipw_geos[j])) {
11175                         IPW_WARNING("Could not set geography.");
11176                         return 0;
11177                 }
11178
11179                 if (priv->status & STATUS_RF_KILL_SW) {
11180                         IPW_WARNING("Radio disabled by module parameter.\n");
11181                         return 0;
11182                 } else if (rf_kill_active(priv)) {
11183                         IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11184                                     "Kill switch must be turned off for "
11185                                     "wireless networking to work.\n");
11186                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
11187                                            2 * HZ);
11188                         return 0;
11189                 }
11190
11191                 rc = ipw_config(priv);
11192                 if (!rc) {
11193                         IPW_DEBUG_INFO("Configured device on count %i\n", i);
11194
11195                         /* If configure to try and auto-associate, kick
11196                          * off a scan. */
11197                         queue_work(priv->workqueue, &priv->request_scan);
11198
11199                         return 0;
11200                 }
11201
11202                 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11203                 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11204                                i, MAX_HW_RESTARTS);
11205
11206                 /* We had an error bringing up the hardware, so take it
11207                  * all the way back down so we can try again */
11208                 ipw_down(priv);
11209         }
11210
11211         /* tried to restart and config the device for as long as our
11212          * patience could withstand */
11213         IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11214
11215         return -EIO;
11216 }
11217
11218 static void ipw_bg_up(void *data)
11219 {
11220         struct ipw_priv *priv = data;
11221         mutex_lock(&priv->mutex);
11222         ipw_up(data);
11223         mutex_unlock(&priv->mutex);
11224 }
11225
11226 static void ipw_deinit(struct ipw_priv *priv)
11227 {
11228         int i;
11229
11230         if (priv->status & STATUS_SCANNING) {
11231                 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11232                 ipw_abort_scan(priv);
11233         }
11234
11235         if (priv->status & STATUS_ASSOCIATED) {
11236                 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11237                 ipw_disassociate(priv);
11238         }
11239
11240         ipw_led_shutdown(priv);
11241
11242         /* Wait up to 1s for status to change to not scanning and not
11243          * associated (disassociation can take a while for a ful 802.11
11244          * exchange */
11245         for (i = 1000; i && (priv->status &
11246                              (STATUS_DISASSOCIATING |
11247                               STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11248                 udelay(10);
11249
11250         if (priv->status & (STATUS_DISASSOCIATING |
11251                             STATUS_ASSOCIATED | STATUS_SCANNING))
11252                 IPW_DEBUG_INFO("Still associated or scanning...\n");
11253         else
11254                 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11255
11256         /* Attempt to disable the card */
11257         ipw_send_card_disable(priv, 0);
11258
11259         priv->status &= ~STATUS_INIT;
11260 }
11261
11262 static void ipw_down(struct ipw_priv *priv)
11263 {
11264         int exit_pending = priv->status & STATUS_EXIT_PENDING;
11265
11266         priv->status |= STATUS_EXIT_PENDING;
11267
11268         if (ipw_is_init(priv))
11269                 ipw_deinit(priv);
11270
11271         /* Wipe out the EXIT_PENDING status bit if we are not actually
11272          * exiting the module */
11273         if (!exit_pending)
11274                 priv->status &= ~STATUS_EXIT_PENDING;
11275
11276         /* tell the device to stop sending interrupts */
11277         ipw_disable_interrupts(priv);
11278
11279         /* Clear all bits but the RF Kill */
11280         priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11281         netif_carrier_off(priv->net_dev);
11282         netif_stop_queue(priv->net_dev);
11283
11284         ipw_stop_nic(priv);
11285
11286         ipw_led_radio_off(priv);
11287 }
11288
11289 static void ipw_bg_down(void *data)
11290 {
11291         struct ipw_priv *priv = data;
11292         mutex_lock(&priv->mutex);
11293         ipw_down(data);
11294         mutex_unlock(&priv->mutex);
11295 }
11296
11297 /* Called by register_netdev() */
11298 static int ipw_net_init(struct net_device *dev)
11299 {
11300         struct ipw_priv *priv = ieee80211_priv(dev);
11301         mutex_lock(&priv->mutex);
11302
11303         if (ipw_up(priv)) {
11304                 mutex_unlock(&priv->mutex);
11305                 return -EIO;
11306         }
11307
11308         mutex_unlock(&priv->mutex);
11309         return 0;
11310 }
11311
11312 /* PCI driver stuff */
11313 static struct pci_device_id card_ids[] = {
11314         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11315         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11316         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11317         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11318         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11319         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11320         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11321         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11322         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11323         {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11324         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11325         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11326         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11327         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11328         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11329         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11330         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11331         {PCI_VENDOR_ID_INTEL, 0x104f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11332         {PCI_VENDOR_ID_INTEL, 0x4220, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11333         {PCI_VENDOR_ID_INTEL, 0x4221, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11334         {PCI_VENDOR_ID_INTEL, 0x4223, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11335         {PCI_VENDOR_ID_INTEL, 0x4224, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11336
11337         /* required last entry */
11338         {0,}
11339 };
11340
11341 MODULE_DEVICE_TABLE(pci, card_ids);
11342
11343 static struct attribute *ipw_sysfs_entries[] = {
11344         &dev_attr_rf_kill.attr,
11345         &dev_attr_direct_dword.attr,
11346         &dev_attr_indirect_byte.attr,
11347         &dev_attr_indirect_dword.attr,
11348         &dev_attr_mem_gpio_reg.attr,
11349         &dev_attr_command_event_reg.attr,
11350         &dev_attr_nic_type.attr,
11351         &dev_attr_status.attr,
11352         &dev_attr_cfg.attr,
11353         &dev_attr_error.attr,
11354         &dev_attr_event_log.attr,
11355         &dev_attr_cmd_log.attr,
11356         &dev_attr_eeprom_delay.attr,
11357         &dev_attr_ucode_version.attr,
11358         &dev_attr_rtc.attr,
11359         &dev_attr_scan_age.attr,
11360         &dev_attr_led.attr,
11361         &dev_attr_speed_scan.attr,
11362         &dev_attr_net_stats.attr,
11363 #ifdef CONFIG_IPW2200_PROMISCUOUS
11364         &dev_attr_rtap_iface.attr,
11365         &dev_attr_rtap_filter.attr,
11366 #endif
11367         NULL
11368 };
11369
11370 static struct attribute_group ipw_attribute_group = {
11371         .name = NULL,           /* put in device directory */
11372         .attrs = ipw_sysfs_entries,
11373 };
11374
11375 #ifdef CONFIG_IPW2200_PROMISCUOUS
11376 static int ipw_prom_open(struct net_device *dev)
11377 {
11378         struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11379         struct ipw_priv *priv = prom_priv->priv;
11380
11381         IPW_DEBUG_INFO("prom dev->open\n");
11382         netif_carrier_off(dev);
11383         netif_stop_queue(dev);
11384
11385         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11386                 priv->sys_config.accept_all_data_frames = 1;
11387                 priv->sys_config.accept_non_directed_frames = 1;
11388                 priv->sys_config.accept_all_mgmt_bcpr = 1;
11389                 priv->sys_config.accept_all_mgmt_frames = 1;
11390
11391                 ipw_send_system_config(priv);
11392         }
11393
11394         return 0;
11395 }
11396
11397 static int ipw_prom_stop(struct net_device *dev)
11398 {
11399         struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11400         struct ipw_priv *priv = prom_priv->priv;
11401
11402         IPW_DEBUG_INFO("prom dev->stop\n");
11403
11404         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11405                 priv->sys_config.accept_all_data_frames = 0;
11406                 priv->sys_config.accept_non_directed_frames = 0;
11407                 priv->sys_config.accept_all_mgmt_bcpr = 0;
11408                 priv->sys_config.accept_all_mgmt_frames = 0;
11409
11410                 ipw_send_system_config(priv);
11411         }
11412
11413         return 0;
11414 }
11415
11416 static int ipw_prom_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
11417 {
11418         IPW_DEBUG_INFO("prom dev->xmit\n");
11419         netif_stop_queue(dev);
11420         return -EOPNOTSUPP;
11421 }
11422
11423 static struct net_device_stats *ipw_prom_get_stats(struct net_device *dev)
11424 {
11425         struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11426         return &prom_priv->ieee->stats;
11427 }
11428
11429 static int ipw_prom_alloc(struct ipw_priv *priv)
11430 {
11431         int rc = 0;
11432
11433         if (priv->prom_net_dev)
11434                 return -EPERM;
11435
11436         priv->prom_net_dev = alloc_ieee80211(sizeof(struct ipw_prom_priv));
11437         if (priv->prom_net_dev == NULL)
11438                 return -ENOMEM;
11439
11440         priv->prom_priv = ieee80211_priv(priv->prom_net_dev);
11441         priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11442         priv->prom_priv->priv = priv;
11443
11444         strcpy(priv->prom_net_dev->name, "rtap%d");
11445
11446         priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11447         priv->prom_net_dev->open = ipw_prom_open;
11448         priv->prom_net_dev->stop = ipw_prom_stop;
11449         priv->prom_net_dev->get_stats = ipw_prom_get_stats;
11450         priv->prom_net_dev->hard_start_xmit = ipw_prom_hard_start_xmit;
11451
11452         priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11453
11454         rc = register_netdev(priv->prom_net_dev);
11455         if (rc) {
11456                 free_ieee80211(priv->prom_net_dev);
11457                 priv->prom_net_dev = NULL;
11458                 return rc;
11459         }
11460
11461         return 0;
11462 }
11463
11464 static void ipw_prom_free(struct ipw_priv *priv)
11465 {
11466         if (!priv->prom_net_dev)
11467                 return;
11468
11469         unregister_netdev(priv->prom_net_dev);
11470         free_ieee80211(priv->prom_net_dev);
11471
11472         priv->prom_net_dev = NULL;
11473 }
11474
11475 #endif
11476
11477
11478 static int ipw_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
11479 {
11480         int err = 0;
11481         struct net_device *net_dev;
11482         void __iomem *base;
11483         u32 length, val;
11484         struct ipw_priv *priv;
11485         int i;
11486
11487         net_dev = alloc_ieee80211(sizeof(struct ipw_priv));
11488         if (net_dev == NULL) {
11489                 err = -ENOMEM;
11490                 goto out;
11491         }
11492
11493         priv = ieee80211_priv(net_dev);
11494         priv->ieee = netdev_priv(net_dev);
11495
11496         priv->net_dev = net_dev;
11497         priv->pci_dev = pdev;
11498         ipw_debug_level = debug;
11499         spin_lock_init(&priv->irq_lock);
11500         spin_lock_init(&priv->lock);
11501         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11502                 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11503
11504         mutex_init(&priv->mutex);
11505         if (pci_enable_device(pdev)) {
11506                 err = -ENODEV;
11507                 goto out_free_ieee80211;
11508         }
11509
11510         pci_set_master(pdev);
11511
11512         err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
11513         if (!err)
11514                 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
11515         if (err) {
11516                 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11517                 goto out_pci_disable_device;
11518         }
11519
11520         pci_set_drvdata(pdev, priv);
11521
11522         err = pci_request_regions(pdev, DRV_NAME);
11523         if (err)
11524                 goto out_pci_disable_device;
11525
11526         /* We disable the RETRY_TIMEOUT register (0x41) to keep
11527          * PCI Tx retries from interfering with C3 CPU state */
11528         pci_read_config_dword(pdev, 0x40, &val);
11529         if ((val & 0x0000ff00) != 0)
11530                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11531
11532         length = pci_resource_len(pdev, 0);
11533         priv->hw_len = length;
11534
11535         base = ioremap_nocache(pci_resource_start(pdev, 0), length);
11536         if (!base) {
11537                 err = -ENODEV;
11538                 goto out_pci_release_regions;
11539         }
11540
11541         priv->hw_base = base;
11542         IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11543         IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11544
11545         err = ipw_setup_deferred_work(priv);
11546         if (err) {
11547                 IPW_ERROR("Unable to setup deferred work\n");
11548                 goto out_iounmap;
11549         }
11550
11551         ipw_sw_reset(priv, 1);
11552
11553         err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11554         if (err) {
11555                 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11556                 goto out_destroy_workqueue;
11557         }
11558
11559         SET_MODULE_OWNER(net_dev);
11560         SET_NETDEV_DEV(net_dev, &pdev->dev);
11561
11562         mutex_lock(&priv->mutex);
11563
11564         priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11565         priv->ieee->set_security = shim__set_security;
11566         priv->ieee->is_queue_full = ipw_net_is_queue_full;
11567
11568 #ifdef CONFIG_IPW2200_QOS
11569         priv->ieee->is_qos_active = ipw_is_qos_active;
11570         priv->ieee->handle_probe_response = ipw_handle_beacon;
11571         priv->ieee->handle_beacon = ipw_handle_probe_response;
11572         priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11573 #endif                          /* CONFIG_IPW2200_QOS */
11574
11575         priv->ieee->perfect_rssi = -20;
11576         priv->ieee->worst_rssi = -85;
11577
11578         net_dev->open = ipw_net_open;
11579         net_dev->stop = ipw_net_stop;
11580         net_dev->init = ipw_net_init;
11581         net_dev->get_stats = ipw_net_get_stats;
11582         net_dev->set_multicast_list = ipw_net_set_multicast_list;
11583         net_dev->set_mac_address = ipw_net_set_mac_address;
11584         priv->wireless_data.spy_data = &priv->ieee->spy_data;
11585         net_dev->wireless_data = &priv->wireless_data;
11586         net_dev->wireless_handlers = &ipw_wx_handler_def;
11587         net_dev->ethtool_ops = &ipw_ethtool_ops;
11588         net_dev->irq = pdev->irq;
11589         net_dev->base_addr = (unsigned long)priv->hw_base;
11590         net_dev->mem_start = pci_resource_start(pdev, 0);
11591         net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
11592
11593         err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11594         if (err) {
11595                 IPW_ERROR("failed to create sysfs device attributes\n");
11596                 mutex_unlock(&priv->mutex);
11597                 goto out_release_irq;
11598         }
11599
11600         mutex_unlock(&priv->mutex);
11601         err = register_netdev(net_dev);
11602         if (err) {
11603                 IPW_ERROR("failed to register network device\n");
11604                 goto out_remove_sysfs;
11605         }
11606
11607 #ifdef CONFIG_IPW2200_PROMISCUOUS
11608         if (rtap_iface) {
11609                 err = ipw_prom_alloc(priv);
11610                 if (err) {
11611                         IPW_ERROR("Failed to register promiscuous network "
11612                                   "device (error %d).\n", err);
11613                         unregister_netdev(priv->net_dev);
11614                         goto out_remove_sysfs;
11615                 }
11616         }
11617 #endif
11618
11619         printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11620                "channels, %d 802.11a channels)\n",
11621                priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11622                priv->ieee->geo.a_channels);
11623
11624         return 0;
11625
11626       out_remove_sysfs:
11627         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11628       out_release_irq:
11629         free_irq(pdev->irq, priv);
11630       out_destroy_workqueue:
11631         destroy_workqueue(priv->workqueue);
11632         priv->workqueue = NULL;
11633       out_iounmap:
11634         iounmap(priv->hw_base);
11635       out_pci_release_regions:
11636         pci_release_regions(pdev);
11637       out_pci_disable_device:
11638         pci_disable_device(pdev);
11639         pci_set_drvdata(pdev, NULL);
11640       out_free_ieee80211:
11641         free_ieee80211(priv->net_dev);
11642       out:
11643         return err;
11644 }
11645
11646 static void ipw_pci_remove(struct pci_dev *pdev)
11647 {
11648         struct ipw_priv *priv = pci_get_drvdata(pdev);
11649         struct list_head *p, *q;
11650         int i;
11651
11652         if (!priv)
11653                 return;
11654
11655         mutex_lock(&priv->mutex);
11656
11657         priv->status |= STATUS_EXIT_PENDING;
11658         ipw_down(priv);
11659         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11660
11661         mutex_unlock(&priv->mutex);
11662
11663         unregister_netdev(priv->net_dev);
11664
11665         if (priv->rxq) {
11666                 ipw_rx_queue_free(priv, priv->rxq);
11667                 priv->rxq = NULL;
11668         }
11669         ipw_tx_queue_free(priv);
11670
11671         if (priv->cmdlog) {
11672                 kfree(priv->cmdlog);
11673                 priv->cmdlog = NULL;
11674         }
11675         /* ipw_down will ensure that there is no more pending work
11676          * in the workqueue's, so we can safely remove them now. */
11677         cancel_delayed_work(&priv->adhoc_check);
11678         cancel_delayed_work(&priv->gather_stats);
11679         cancel_delayed_work(&priv->request_scan);
11680         cancel_delayed_work(&priv->rf_kill);
11681         cancel_delayed_work(&priv->scan_check);
11682         destroy_workqueue(priv->workqueue);
11683         priv->workqueue = NULL;
11684
11685         /* Free MAC hash list for ADHOC */
11686         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11687                 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11688                         list_del(p);
11689                         kfree(list_entry(p, struct ipw_ibss_seq, list));
11690                 }
11691         }
11692
11693         kfree(priv->error);
11694         priv->error = NULL;
11695
11696 #ifdef CONFIG_IPW2200_PROMISCUOUS
11697         ipw_prom_free(priv);
11698 #endif
11699
11700         free_irq(pdev->irq, priv);
11701         iounmap(priv->hw_base);
11702         pci_release_regions(pdev);
11703         pci_disable_device(pdev);
11704         pci_set_drvdata(pdev, NULL);
11705         free_ieee80211(priv->net_dev);
11706         free_firmware();
11707 }
11708
11709 #ifdef CONFIG_PM
11710 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11711 {
11712         struct ipw_priv *priv = pci_get_drvdata(pdev);
11713         struct net_device *dev = priv->net_dev;
11714
11715         printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11716
11717         /* Take down the device; powers it off, etc. */
11718         ipw_down(priv);
11719
11720         /* Remove the PRESENT state of the device */
11721         netif_device_detach(dev);
11722
11723         pci_save_state(pdev);
11724         pci_disable_device(pdev);
11725         pci_set_power_state(pdev, pci_choose_state(pdev, state));
11726
11727         return 0;
11728 }
11729
11730 static int ipw_pci_resume(struct pci_dev *pdev)
11731 {
11732         struct ipw_priv *priv = pci_get_drvdata(pdev);
11733         struct net_device *dev = priv->net_dev;
11734         u32 val;
11735
11736         printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11737
11738         pci_set_power_state(pdev, PCI_D0);
11739         pci_enable_device(pdev);
11740         pci_restore_state(pdev);
11741
11742         /*
11743          * Suspend/Resume resets the PCI configuration space, so we have to
11744          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11745          * from interfering with C3 CPU state. pci_restore_state won't help
11746          * here since it only restores the first 64 bytes pci config header.
11747          */
11748         pci_read_config_dword(pdev, 0x40, &val);
11749         if ((val & 0x0000ff00) != 0)
11750                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11751
11752         /* Set the device back into the PRESENT state; this will also wake
11753          * the queue of needed */
11754         netif_device_attach(dev);
11755
11756         /* Bring the device back up */
11757         queue_work(priv->workqueue, &priv->up);
11758
11759         return 0;
11760 }
11761 #endif
11762
11763 static void ipw_pci_shutdown(struct pci_dev *pdev)
11764 {
11765         struct ipw_priv *priv = pci_get_drvdata(pdev);
11766
11767         /* Take down the device; powers it off, etc. */
11768         ipw_down(priv);
11769
11770         pci_disable_device(pdev);
11771 }
11772
11773 /* driver initialization stuff */
11774 static struct pci_driver ipw_driver = {
11775         .name = DRV_NAME,
11776         .id_table = card_ids,
11777         .probe = ipw_pci_probe,
11778         .remove = __devexit_p(ipw_pci_remove),
11779 #ifdef CONFIG_PM
11780         .suspend = ipw_pci_suspend,
11781         .resume = ipw_pci_resume,
11782 #endif
11783         .shutdown = ipw_pci_shutdown,
11784 };
11785
11786 static int __init ipw_init(void)
11787 {
11788         int ret;
11789
11790         printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11791         printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11792
11793         ret = pci_module_init(&ipw_driver);
11794         if (ret) {
11795                 IPW_ERROR("Unable to initialize PCI module\n");
11796                 return ret;
11797         }
11798
11799         ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11800         if (ret) {
11801                 IPW_ERROR("Unable to create driver sysfs file\n");
11802                 pci_unregister_driver(&ipw_driver);
11803                 return ret;
11804         }
11805
11806         return ret;
11807 }
11808
11809 static void __exit ipw_exit(void)
11810 {
11811         driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11812         pci_unregister_driver(&ipw_driver);
11813 }
11814
11815 module_param(disable, int, 0444);
11816 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11817
11818 module_param(associate, int, 0444);
11819 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
11820
11821 module_param(auto_create, int, 0444);
11822 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11823
11824 module_param(led, int, 0444);
11825 MODULE_PARM_DESC(led, "enable led control on some systems (default 0 off)\n");
11826
11827 #ifdef CONFIG_IPW2200_DEBUG
11828 module_param(debug, int, 0444);
11829 MODULE_PARM_DESC(debug, "debug output mask");
11830 #endif
11831
11832 module_param(channel, int, 0444);
11833 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11834
11835 #ifdef CONFIG_IPW2200_PROMISCUOUS
11836 module_param(rtap_iface, int, 0444);
11837 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
11838 #endif
11839
11840 #ifdef CONFIG_IPW2200_QOS
11841 module_param(qos_enable, int, 0444);
11842 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
11843
11844 module_param(qos_burst_enable, int, 0444);
11845 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11846
11847 module_param(qos_no_ack_mask, int, 0444);
11848 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
11849
11850 module_param(burst_duration_CCK, int, 0444);
11851 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11852
11853 module_param(burst_duration_OFDM, int, 0444);
11854 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11855 #endif                          /* CONFIG_IPW2200_QOS */
11856
11857 #ifdef CONFIG_IPW2200_MONITOR
11858 module_param(mode, int, 0444);
11859 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
11860 #else
11861 module_param(mode, int, 0444);
11862 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
11863 #endif
11864
11865 module_param(bt_coexist, int, 0444);
11866 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
11867
11868 module_param(hwcrypto, int, 0444);
11869 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
11870
11871 module_param(cmdlog, int, 0444);
11872 MODULE_PARM_DESC(cmdlog,
11873                  "allocate a ring buffer for logging firmware commands");
11874
11875 module_param(roaming, int, 0444);
11876 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
11877
11878 module_param(antenna, int, 0444);
11879 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
11880
11881 module_exit(ipw_exit);
11882 module_init(ipw_init);