]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/wireless/ipw2200.c
a879edba5fac0f772ec8c876d380425ed3456362
[linux-2.6-omap-h63xx.git] / drivers / net / wireless / ipw2200.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   802.11 status code portion of this file from ethereal-0.10.6:
6     Copyright 2000, Axis Communications AB
7     Ethereal - Network traffic analyzer
8     By Gerald Combs <gerald@ethereal.com>
9     Copyright 1998 Gerald Combs
10
11   This program is free software; you can redistribute it and/or modify it
12   under the terms of version 2 of the GNU General Public License as
13   published by the Free Software Foundation.
14
15   This program is distributed in the hope that it will be useful, but WITHOUT
16   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18   more details.
19
20   You should have received a copy of the GNU General Public License along with
21   this program; if not, write to the Free Software Foundation, Inc., 59
22   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
23
24   The full GNU General Public License is included in this distribution in the
25   file called LICENSE.
26
27   Contact Information:
28   James P. Ketrenos <ipw2100-admin@linux.intel.com>
29   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30
31 ******************************************************************************/
32
33 #include "ipw2200.h"
34 #include <linux/version.h>
35
36 #define IPW2200_VERSION "git-1.1.1"
37 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
38 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
39 #define DRV_VERSION     IPW2200_VERSION
40
41 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
42
43 MODULE_DESCRIPTION(DRV_DESCRIPTION);
44 MODULE_VERSION(DRV_VERSION);
45 MODULE_AUTHOR(DRV_COPYRIGHT);
46 MODULE_LICENSE("GPL");
47
48 static int cmdlog = 0;
49 static int debug = 0;
50 static int channel = 0;
51 static int mode = 0;
52
53 static u32 ipw_debug_level;
54 static int associate = 1;
55 static int auto_create = 1;
56 static int led = 0;
57 static int disable = 0;
58 static int bt_coexist = 0;
59 static int hwcrypto = 0;
60 static int roaming = 1;
61 static const char ipw_modes[] = {
62         'a', 'b', 'g', '?'
63 };
64
65 #ifdef CONFIG_IPW_QOS
66 static int qos_enable = 0;
67 static int qos_burst_enable = 0;
68 static int qos_no_ack_mask = 0;
69 static int burst_duration_CCK = 0;
70 static int burst_duration_OFDM = 0;
71
72 static struct ieee80211_qos_parameters def_qos_parameters_OFDM = {
73         {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
74          QOS_TX3_CW_MIN_OFDM},
75         {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
76          QOS_TX3_CW_MAX_OFDM},
77         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
78         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
79         {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
80          QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
81 };
82
83 static struct ieee80211_qos_parameters def_qos_parameters_CCK = {
84         {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
85          QOS_TX3_CW_MIN_CCK},
86         {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
87          QOS_TX3_CW_MAX_CCK},
88         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
89         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
90         {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
91          QOS_TX3_TXOP_LIMIT_CCK}
92 };
93
94 static struct ieee80211_qos_parameters def_parameters_OFDM = {
95         {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
96          DEF_TX3_CW_MIN_OFDM},
97         {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
98          DEF_TX3_CW_MAX_OFDM},
99         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
100         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
101         {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
102          DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
103 };
104
105 static struct ieee80211_qos_parameters def_parameters_CCK = {
106         {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
107          DEF_TX3_CW_MIN_CCK},
108         {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
109          DEF_TX3_CW_MAX_CCK},
110         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
111         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
112         {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
113          DEF_TX3_TXOP_LIMIT_CCK}
114 };
115
116 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
117
118 static int from_priority_to_tx_queue[] = {
119         IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
120         IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
121 };
122
123 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
124
125 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
126                                        *qos_param);
127 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
128                                      *qos_param);
129 #endif                          /* CONFIG_IPW_QOS */
130
131 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
132 static void ipw_remove_current_network(struct ipw_priv *priv);
133 static void ipw_rx(struct ipw_priv *priv);
134 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
135                                 struct clx2_tx_queue *txq, int qindex);
136 static int ipw_queue_reset(struct ipw_priv *priv);
137
138 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
139                              int len, int sync);
140
141 static void ipw_tx_queue_free(struct ipw_priv *);
142
143 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
144 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
145 static void ipw_rx_queue_replenish(void *);
146 static int ipw_up(struct ipw_priv *);
147 static void ipw_bg_up(void *);
148 static void ipw_down(struct ipw_priv *);
149 static void ipw_bg_down(void *);
150 static int ipw_config(struct ipw_priv *);
151 static int init_supported_rates(struct ipw_priv *priv,
152                                 struct ipw_supported_rates *prates);
153 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
154 static void ipw_send_wep_keys(struct ipw_priv *, int);
155
156 static int snprint_line(char *buf, size_t count,
157                         const u8 * data, u32 len, u32 ofs)
158 {
159         int out, i, j, l;
160         char c;
161
162         out = snprintf(buf, count, "%08X", ofs);
163
164         for (l = 0, i = 0; i < 2; i++) {
165                 out += snprintf(buf + out, count - out, " ");
166                 for (j = 0; j < 8 && l < len; j++, l++)
167                         out += snprintf(buf + out, count - out, "%02X ",
168                                         data[(i * 8 + j)]);
169                 for (; j < 8; j++)
170                         out += snprintf(buf + out, count - out, "   ");
171         }
172
173         out += snprintf(buf + out, count - out, " ");
174         for (l = 0, i = 0; i < 2; i++) {
175                 out += snprintf(buf + out, count - out, " ");
176                 for (j = 0; j < 8 && l < len; j++, l++) {
177                         c = data[(i * 8 + j)];
178                         if (!isascii(c) || !isprint(c))
179                                 c = '.';
180
181                         out += snprintf(buf + out, count - out, "%c", c);
182                 }
183
184                 for (; j < 8; j++)
185                         out += snprintf(buf + out, count - out, " ");
186         }
187
188         return out;
189 }
190
191 static void printk_buf(int level, const u8 * data, u32 len)
192 {
193         char line[81];
194         u32 ofs = 0;
195         if (!(ipw_debug_level & level))
196                 return;
197
198         while (len) {
199                 snprint_line(line, sizeof(line), &data[ofs],
200                              min(len, 16U), ofs);
201                 printk(KERN_DEBUG "%s\n", line);
202                 ofs += 16;
203                 len -= min(len, 16U);
204         }
205 }
206
207 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
208 {
209         size_t out = size;
210         u32 ofs = 0;
211         int total = 0;
212
213         while (size && len) {
214                 out = snprint_line(output, size, &data[ofs],
215                                    min_t(size_t, len, 16U), ofs);
216
217                 ofs += 16;
218                 output += out;
219                 size -= out;
220                 len -= min_t(size_t, len, 16U);
221                 total += out;
222         }
223         return total;
224 }
225
226 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
227 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
228 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
229
230 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
231 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
232 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
233
234 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
235 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
236 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
237 {
238         IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
239                      __LINE__, (u32) (b), (u32) (c));
240         _ipw_write_reg8(a, b, c);
241 }
242
243 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
244 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
245 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
246 {
247         IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
248                      __LINE__, (u32) (b), (u32) (c));
249         _ipw_write_reg16(a, b, c);
250 }
251
252 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
253 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
254 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
255 {
256         IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
257                      __LINE__, (u32) (b), (u32) (c));
258         _ipw_write_reg32(a, b, c);
259 }
260
261 /* 8-bit direct write (low 4K) */
262 #define _ipw_write8(ipw, ofs, val) writeb((val), (ipw)->hw_base + (ofs))
263
264 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
265 #define ipw_write8(ipw, ofs, val) \
266  IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
267  _ipw_write8(ipw, ofs, val)
268
269 /* 16-bit direct write (low 4K) */
270 #define _ipw_write16(ipw, ofs, val) writew((val), (ipw)->hw_base + (ofs))
271
272 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
273 #define ipw_write16(ipw, ofs, val) \
274  IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
275  _ipw_write16(ipw, ofs, val)
276
277 /* 32-bit direct write (low 4K) */
278 #define _ipw_write32(ipw, ofs, val) writel((val), (ipw)->hw_base + (ofs))
279
280 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
281 #define ipw_write32(ipw, ofs, val) \
282  IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
283  _ipw_write32(ipw, ofs, val)
284
285 /* 8-bit direct read (low 4K) */
286 #define _ipw_read8(ipw, ofs) readb((ipw)->hw_base + (ofs))
287
288 /* 8-bit direct read (low 4K), with debug wrapper */
289 static inline u8 __ipw_read8(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
290 {
291         IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", f, l, (u32) (ofs));
292         return _ipw_read8(ipw, ofs);
293 }
294
295 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
296 #define ipw_read8(ipw, ofs) __ipw_read8(__FILE__, __LINE__, ipw, ofs)
297
298 /* 16-bit direct read (low 4K) */
299 #define _ipw_read16(ipw, ofs) readw((ipw)->hw_base + (ofs))
300
301 /* 16-bit direct read (low 4K), with debug wrapper */
302 static inline u16 __ipw_read16(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
303 {
304         IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", f, l, (u32) (ofs));
305         return _ipw_read16(ipw, ofs);
306 }
307
308 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
309 #define ipw_read16(ipw, ofs) __ipw_read16(__FILE__, __LINE__, ipw, ofs)
310
311 /* 32-bit direct read (low 4K) */
312 #define _ipw_read32(ipw, ofs) readl((ipw)->hw_base + (ofs))
313
314 /* 32-bit direct read (low 4K), with debug wrapper */
315 static inline u32 __ipw_read32(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
316 {
317         IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", f, l, (u32) (ofs));
318         return _ipw_read32(ipw, ofs);
319 }
320
321 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
322 #define ipw_read32(ipw, ofs) __ipw_read32(__FILE__, __LINE__, ipw, ofs)
323
324 /* multi-byte read (above 4K), with debug wrapper */
325 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
326 static inline void __ipw_read_indirect(const char *f, int l,
327                                        struct ipw_priv *a, u32 b, u8 * c, int d)
328 {
329         IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %d bytes\n", f, l, (u32) (b),
330                      d);
331         _ipw_read_indirect(a, b, c, d);
332 }
333
334 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
335 #define ipw_read_indirect(a, b, c, d) __ipw_read_indirect(__FILE__, __LINE__, a, b, c, d)
336
337 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
338 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
339                                 int num);
340 #define ipw_write_indirect(a, b, c, d) \
341         IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %d bytes\n", __FILE__, __LINE__, (u32)(b), d); \
342         _ipw_write_indirect(a, b, c, d)
343
344 /* 32-bit indirect write (above 4K) */
345 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
346 {
347         IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
348         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
349         _ipw_write32(priv, IPW_INDIRECT_DATA, value);
350 }
351
352 /* 8-bit indirect write (above 4K) */
353 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
354 {
355         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
356         u32 dif_len = reg - aligned_addr;
357
358         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
359         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
360         _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
361 }
362
363 /* 16-bit indirect write (above 4K) */
364 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
365 {
366         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
367         u32 dif_len = (reg - aligned_addr) & (~0x1ul);
368
369         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
370         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
371         _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
372 }
373
374 /* 8-bit indirect read (above 4K) */
375 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
376 {
377         u32 word;
378         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
379         IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
380         word = _ipw_read32(priv, IPW_INDIRECT_DATA);
381         return (word >> ((reg & 0x3) * 8)) & 0xff;
382 }
383
384 /* 32-bit indirect read (above 4K) */
385 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
386 {
387         u32 value;
388
389         IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
390
391         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
392         value = _ipw_read32(priv, IPW_INDIRECT_DATA);
393         IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
394         return value;
395 }
396
397 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
398 /*    for area above 1st 4K of SRAM/reg space */
399 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
400                                int num)
401 {
402         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
403         u32 dif_len = addr - aligned_addr;
404         u32 i;
405
406         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
407
408         if (num <= 0) {
409                 return;
410         }
411
412         /* Read the first dword (or portion) byte by byte */
413         if (unlikely(dif_len)) {
414                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
415                 /* Start reading at aligned_addr + dif_len */
416                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
417                         *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
418                 aligned_addr += 4;
419         }
420
421         /* Read all of the middle dwords as dwords, with auto-increment */
422         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
423         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
424                 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
425
426         /* Read the last dword (or portion) byte by byte */
427         if (unlikely(num)) {
428                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
429                 for (i = 0; num > 0; i++, num--)
430                         *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
431         }
432 }
433
434 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
435 /*    for area above 1st 4K of SRAM/reg space */
436 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
437                                 int num)
438 {
439         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
440         u32 dif_len = addr - aligned_addr;
441         u32 i;
442
443         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
444
445         if (num <= 0) {
446                 return;
447         }
448
449         /* Write the first dword (or portion) byte by byte */
450         if (unlikely(dif_len)) {
451                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
452                 /* Start writing at aligned_addr + dif_len */
453                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
454                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
455                 aligned_addr += 4;
456         }
457
458         /* Write all of the middle dwords as dwords, with auto-increment */
459         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
460         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
461                 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
462
463         /* Write the last dword (or portion) byte by byte */
464         if (unlikely(num)) {
465                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
466                 for (i = 0; num > 0; i++, num--, buf++)
467                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
468         }
469 }
470
471 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
472 /*    for 1st 4K of SRAM/regs space */
473 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
474                              int num)
475 {
476         memcpy_toio((priv->hw_base + addr), buf, num);
477 }
478
479 /* Set bit(s) in low 4K of SRAM/regs */
480 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
481 {
482         ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
483 }
484
485 /* Clear bit(s) in low 4K of SRAM/regs */
486 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
487 {
488         ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
489 }
490
491 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
492 {
493         if (priv->status & STATUS_INT_ENABLED)
494                 return;
495         priv->status |= STATUS_INT_ENABLED;
496         ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
497 }
498
499 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
500 {
501         if (!(priv->status & STATUS_INT_ENABLED))
502                 return;
503         priv->status &= ~STATUS_INT_ENABLED;
504         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
505 }
506
507 #ifdef CONFIG_IPW2200_DEBUG
508 static char *ipw_error_desc(u32 val)
509 {
510         switch (val) {
511         case IPW_FW_ERROR_OK:
512                 return "ERROR_OK";
513         case IPW_FW_ERROR_FAIL:
514                 return "ERROR_FAIL";
515         case IPW_FW_ERROR_MEMORY_UNDERFLOW:
516                 return "MEMORY_UNDERFLOW";
517         case IPW_FW_ERROR_MEMORY_OVERFLOW:
518                 return "MEMORY_OVERFLOW";
519         case IPW_FW_ERROR_BAD_PARAM:
520                 return "BAD_PARAM";
521         case IPW_FW_ERROR_BAD_CHECKSUM:
522                 return "BAD_CHECKSUM";
523         case IPW_FW_ERROR_NMI_INTERRUPT:
524                 return "NMI_INTERRUPT";
525         case IPW_FW_ERROR_BAD_DATABASE:
526                 return "BAD_DATABASE";
527         case IPW_FW_ERROR_ALLOC_FAIL:
528                 return "ALLOC_FAIL";
529         case IPW_FW_ERROR_DMA_UNDERRUN:
530                 return "DMA_UNDERRUN";
531         case IPW_FW_ERROR_DMA_STATUS:
532                 return "DMA_STATUS";
533         case IPW_FW_ERROR_DINO_ERROR:
534                 return "DINO_ERROR";
535         case IPW_FW_ERROR_EEPROM_ERROR:
536                 return "EEPROM_ERROR";
537         case IPW_FW_ERROR_SYSASSERT:
538                 return "SYSASSERT";
539         case IPW_FW_ERROR_FATAL_ERROR:
540                 return "FATAL_ERROR";
541         default:
542                 return "UNKNOWN_ERROR";
543         }
544 }
545
546 static void ipw_dump_error_log(struct ipw_priv *priv,
547                                struct ipw_fw_error *error)
548 {
549         u32 i;
550
551         if (!error) {
552                 IPW_ERROR("Error allocating and capturing error log.  "
553                           "Nothing to dump.\n");
554                 return;
555         }
556
557         IPW_ERROR("Start IPW Error Log Dump:\n");
558         IPW_ERROR("Status: 0x%08X, Config: %08X\n",
559                   error->status, error->config);
560
561         for (i = 0; i < error->elem_len; i++)
562                 IPW_ERROR("%s %i 0x%08x  0x%08x  0x%08x  0x%08x  0x%08x\n",
563                           ipw_error_desc(error->elem[i].desc),
564                           error->elem[i].time,
565                           error->elem[i].blink1,
566                           error->elem[i].blink2,
567                           error->elem[i].link1,
568                           error->elem[i].link2, error->elem[i].data);
569         for (i = 0; i < error->log_len; i++)
570                 IPW_ERROR("%i\t0x%08x\t%i\n",
571                           error->log[i].time,
572                           error->log[i].data, error->log[i].event);
573 }
574 #endif
575
576 static inline int ipw_is_init(struct ipw_priv *priv)
577 {
578         return (priv->status & STATUS_INIT) ? 1 : 0;
579 }
580
581 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
582 {
583         u32 addr, field_info, field_len, field_count, total_len;
584
585         IPW_DEBUG_ORD("ordinal = %i\n", ord);
586
587         if (!priv || !val || !len) {
588                 IPW_DEBUG_ORD("Invalid argument\n");
589                 return -EINVAL;
590         }
591
592         /* verify device ordinal tables have been initialized */
593         if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
594                 IPW_DEBUG_ORD("Access ordinals before initialization\n");
595                 return -EINVAL;
596         }
597
598         switch (IPW_ORD_TABLE_ID_MASK & ord) {
599         case IPW_ORD_TABLE_0_MASK:
600                 /*
601                  * TABLE 0: Direct access to a table of 32 bit values
602                  *
603                  * This is a very simple table with the data directly
604                  * read from the table
605                  */
606
607                 /* remove the table id from the ordinal */
608                 ord &= IPW_ORD_TABLE_VALUE_MASK;
609
610                 /* boundary check */
611                 if (ord > priv->table0_len) {
612                         IPW_DEBUG_ORD("ordinal value (%i) longer then "
613                                       "max (%i)\n", ord, priv->table0_len);
614                         return -EINVAL;
615                 }
616
617                 /* verify we have enough room to store the value */
618                 if (*len < sizeof(u32)) {
619                         IPW_DEBUG_ORD("ordinal buffer length too small, "
620                                       "need %zd\n", sizeof(u32));
621                         return -EINVAL;
622                 }
623
624                 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
625                               ord, priv->table0_addr + (ord << 2));
626
627                 *len = sizeof(u32);
628                 ord <<= 2;
629                 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
630                 break;
631
632         case IPW_ORD_TABLE_1_MASK:
633                 /*
634                  * TABLE 1: Indirect access to a table of 32 bit values
635                  *
636                  * This is a fairly large table of u32 values each
637                  * representing starting addr for the data (which is
638                  * also a u32)
639                  */
640
641                 /* remove the table id from the ordinal */
642                 ord &= IPW_ORD_TABLE_VALUE_MASK;
643
644                 /* boundary check */
645                 if (ord > priv->table1_len) {
646                         IPW_DEBUG_ORD("ordinal value too long\n");
647                         return -EINVAL;
648                 }
649
650                 /* verify we have enough room to store the value */
651                 if (*len < sizeof(u32)) {
652                         IPW_DEBUG_ORD("ordinal buffer length too small, "
653                                       "need %zd\n", sizeof(u32));
654                         return -EINVAL;
655                 }
656
657                 *((u32 *) val) =
658                     ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
659                 *len = sizeof(u32);
660                 break;
661
662         case IPW_ORD_TABLE_2_MASK:
663                 /*
664                  * TABLE 2: Indirect access to a table of variable sized values
665                  *
666                  * This table consist of six values, each containing
667                  *     - dword containing the starting offset of the data
668                  *     - dword containing the lengh in the first 16bits
669                  *       and the count in the second 16bits
670                  */
671
672                 /* remove the table id from the ordinal */
673                 ord &= IPW_ORD_TABLE_VALUE_MASK;
674
675                 /* boundary check */
676                 if (ord > priv->table2_len) {
677                         IPW_DEBUG_ORD("ordinal value too long\n");
678                         return -EINVAL;
679                 }
680
681                 /* get the address of statistic */
682                 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
683
684                 /* get the second DW of statistics ;
685                  * two 16-bit words - first is length, second is count */
686                 field_info =
687                     ipw_read_reg32(priv,
688                                    priv->table2_addr + (ord << 3) +
689                                    sizeof(u32));
690
691                 /* get each entry length */
692                 field_len = *((u16 *) & field_info);
693
694                 /* get number of entries */
695                 field_count = *(((u16 *) & field_info) + 1);
696
697                 /* abort if not enought memory */
698                 total_len = field_len * field_count;
699                 if (total_len > *len) {
700                         *len = total_len;
701                         return -EINVAL;
702                 }
703
704                 *len = total_len;
705                 if (!total_len)
706                         return 0;
707
708                 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
709                               "field_info = 0x%08x\n",
710                               addr, total_len, field_info);
711                 ipw_read_indirect(priv, addr, val, total_len);
712                 break;
713
714         default:
715                 IPW_DEBUG_ORD("Invalid ordinal!\n");
716                 return -EINVAL;
717
718         }
719
720         return 0;
721 }
722
723 static void ipw_init_ordinals(struct ipw_priv *priv)
724 {
725         priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
726         priv->table0_len = ipw_read32(priv, priv->table0_addr);
727
728         IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
729                       priv->table0_addr, priv->table0_len);
730
731         priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
732         priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
733
734         IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
735                       priv->table1_addr, priv->table1_len);
736
737         priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
738         priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
739         priv->table2_len &= 0x0000ffff; /* use first two bytes */
740
741         IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
742                       priv->table2_addr, priv->table2_len);
743
744 }
745
746 static u32 ipw_register_toggle(u32 reg)
747 {
748         reg &= ~IPW_START_STANDBY;
749         if (reg & IPW_GATE_ODMA)
750                 reg &= ~IPW_GATE_ODMA;
751         if (reg & IPW_GATE_IDMA)
752                 reg &= ~IPW_GATE_IDMA;
753         if (reg & IPW_GATE_ADMA)
754                 reg &= ~IPW_GATE_ADMA;
755         return reg;
756 }
757
758 /*
759  * LED behavior:
760  * - On radio ON, turn on any LEDs that require to be on during start
761  * - On initialization, start unassociated blink
762  * - On association, disable unassociated blink
763  * - On disassociation, start unassociated blink
764  * - On radio OFF, turn off any LEDs started during radio on
765  *
766  */
767 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
768 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
769 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
770
771 static void ipw_led_link_on(struct ipw_priv *priv)
772 {
773         unsigned long flags;
774         u32 led;
775
776         /* If configured to not use LEDs, or nic_type is 1,
777          * then we don't toggle a LINK led */
778         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
779                 return;
780
781         spin_lock_irqsave(&priv->lock, flags);
782
783         if (!(priv->status & STATUS_RF_KILL_MASK) &&
784             !(priv->status & STATUS_LED_LINK_ON)) {
785                 IPW_DEBUG_LED("Link LED On\n");
786                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
787                 led |= priv->led_association_on;
788
789                 led = ipw_register_toggle(led);
790
791                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
792                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
793
794                 priv->status |= STATUS_LED_LINK_ON;
795
796                 /* If we aren't associated, schedule turning the LED off */
797                 if (!(priv->status & STATUS_ASSOCIATED))
798                         queue_delayed_work(priv->workqueue,
799                                            &priv->led_link_off,
800                                            LD_TIME_LINK_ON);
801         }
802
803         spin_unlock_irqrestore(&priv->lock, flags);
804 }
805
806 static void ipw_bg_led_link_on(void *data)
807 {
808         struct ipw_priv *priv = data;
809         mutex_lock(&priv->mutex);
810         ipw_led_link_on(data);
811         mutex_unlock(&priv->mutex);
812 }
813
814 static void ipw_led_link_off(struct ipw_priv *priv)
815 {
816         unsigned long flags;
817         u32 led;
818
819         /* If configured not to use LEDs, or nic type is 1,
820          * then we don't goggle the LINK led. */
821         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
822                 return;
823
824         spin_lock_irqsave(&priv->lock, flags);
825
826         if (priv->status & STATUS_LED_LINK_ON) {
827                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
828                 led &= priv->led_association_off;
829                 led = ipw_register_toggle(led);
830
831                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
832                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
833
834                 IPW_DEBUG_LED("Link LED Off\n");
835
836                 priv->status &= ~STATUS_LED_LINK_ON;
837
838                 /* If we aren't associated and the radio is on, schedule
839                  * turning the LED on (blink while unassociated) */
840                 if (!(priv->status & STATUS_RF_KILL_MASK) &&
841                     !(priv->status & STATUS_ASSOCIATED))
842                         queue_delayed_work(priv->workqueue, &priv->led_link_on,
843                                            LD_TIME_LINK_OFF);
844
845         }
846
847         spin_unlock_irqrestore(&priv->lock, flags);
848 }
849
850 static void ipw_bg_led_link_off(void *data)
851 {
852         struct ipw_priv *priv = data;
853         mutex_lock(&priv->mutex);
854         ipw_led_link_off(data);
855         mutex_unlock(&priv->mutex);
856 }
857
858 static void __ipw_led_activity_on(struct ipw_priv *priv)
859 {
860         u32 led;
861
862         if (priv->config & CFG_NO_LED)
863                 return;
864
865         if (priv->status & STATUS_RF_KILL_MASK)
866                 return;
867
868         if (!(priv->status & STATUS_LED_ACT_ON)) {
869                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
870                 led |= priv->led_activity_on;
871
872                 led = ipw_register_toggle(led);
873
874                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
875                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
876
877                 IPW_DEBUG_LED("Activity LED On\n");
878
879                 priv->status |= STATUS_LED_ACT_ON;
880
881                 cancel_delayed_work(&priv->led_act_off);
882                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
883                                    LD_TIME_ACT_ON);
884         } else {
885                 /* Reschedule LED off for full time period */
886                 cancel_delayed_work(&priv->led_act_off);
887                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
888                                    LD_TIME_ACT_ON);
889         }
890 }
891
892 #if 0
893 void ipw_led_activity_on(struct ipw_priv *priv)
894 {
895         unsigned long flags;
896         spin_lock_irqsave(&priv->lock, flags);
897         __ipw_led_activity_on(priv);
898         spin_unlock_irqrestore(&priv->lock, flags);
899 }
900 #endif  /*  0  */
901
902 static void ipw_led_activity_off(struct ipw_priv *priv)
903 {
904         unsigned long flags;
905         u32 led;
906
907         if (priv->config & CFG_NO_LED)
908                 return;
909
910         spin_lock_irqsave(&priv->lock, flags);
911
912         if (priv->status & STATUS_LED_ACT_ON) {
913                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
914                 led &= priv->led_activity_off;
915
916                 led = ipw_register_toggle(led);
917
918                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
919                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
920
921                 IPW_DEBUG_LED("Activity LED Off\n");
922
923                 priv->status &= ~STATUS_LED_ACT_ON;
924         }
925
926         spin_unlock_irqrestore(&priv->lock, flags);
927 }
928
929 static void ipw_bg_led_activity_off(void *data)
930 {
931         struct ipw_priv *priv = data;
932         mutex_lock(&priv->mutex);
933         ipw_led_activity_off(data);
934         mutex_unlock(&priv->mutex);
935 }
936
937 static void ipw_led_band_on(struct ipw_priv *priv)
938 {
939         unsigned long flags;
940         u32 led;
941
942         /* Only nic type 1 supports mode LEDs */
943         if (priv->config & CFG_NO_LED ||
944             priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
945                 return;
946
947         spin_lock_irqsave(&priv->lock, flags);
948
949         led = ipw_read_reg32(priv, IPW_EVENT_REG);
950         if (priv->assoc_network->mode == IEEE_A) {
951                 led |= priv->led_ofdm_on;
952                 led &= priv->led_association_off;
953                 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
954         } else if (priv->assoc_network->mode == IEEE_G) {
955                 led |= priv->led_ofdm_on;
956                 led |= priv->led_association_on;
957                 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
958         } else {
959                 led &= priv->led_ofdm_off;
960                 led |= priv->led_association_on;
961                 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
962         }
963
964         led = ipw_register_toggle(led);
965
966         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
967         ipw_write_reg32(priv, IPW_EVENT_REG, led);
968
969         spin_unlock_irqrestore(&priv->lock, flags);
970 }
971
972 static void ipw_led_band_off(struct ipw_priv *priv)
973 {
974         unsigned long flags;
975         u32 led;
976
977         /* Only nic type 1 supports mode LEDs */
978         if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
979                 return;
980
981         spin_lock_irqsave(&priv->lock, flags);
982
983         led = ipw_read_reg32(priv, IPW_EVENT_REG);
984         led &= priv->led_ofdm_off;
985         led &= priv->led_association_off;
986
987         led = ipw_register_toggle(led);
988
989         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
990         ipw_write_reg32(priv, IPW_EVENT_REG, led);
991
992         spin_unlock_irqrestore(&priv->lock, flags);
993 }
994
995 static void ipw_led_radio_on(struct ipw_priv *priv)
996 {
997         ipw_led_link_on(priv);
998 }
999
1000 static void ipw_led_radio_off(struct ipw_priv *priv)
1001 {
1002         ipw_led_activity_off(priv);
1003         ipw_led_link_off(priv);
1004 }
1005
1006 static void ipw_led_link_up(struct ipw_priv *priv)
1007 {
1008         /* Set the Link Led on for all nic types */
1009         ipw_led_link_on(priv);
1010 }
1011
1012 static void ipw_led_link_down(struct ipw_priv *priv)
1013 {
1014         ipw_led_activity_off(priv);
1015         ipw_led_link_off(priv);
1016
1017         if (priv->status & STATUS_RF_KILL_MASK)
1018                 ipw_led_radio_off(priv);
1019 }
1020
1021 static void ipw_led_init(struct ipw_priv *priv)
1022 {
1023         priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1024
1025         /* Set the default PINs for the link and activity leds */
1026         priv->led_activity_on = IPW_ACTIVITY_LED;
1027         priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1028
1029         priv->led_association_on = IPW_ASSOCIATED_LED;
1030         priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1031
1032         /* Set the default PINs for the OFDM leds */
1033         priv->led_ofdm_on = IPW_OFDM_LED;
1034         priv->led_ofdm_off = ~(IPW_OFDM_LED);
1035
1036         switch (priv->nic_type) {
1037         case EEPROM_NIC_TYPE_1:
1038                 /* In this NIC type, the LEDs are reversed.... */
1039                 priv->led_activity_on = IPW_ASSOCIATED_LED;
1040                 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1041                 priv->led_association_on = IPW_ACTIVITY_LED;
1042                 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1043
1044                 if (!(priv->config & CFG_NO_LED))
1045                         ipw_led_band_on(priv);
1046
1047                 /* And we don't blink link LEDs for this nic, so
1048                  * just return here */
1049                 return;
1050
1051         case EEPROM_NIC_TYPE_3:
1052         case EEPROM_NIC_TYPE_2:
1053         case EEPROM_NIC_TYPE_4:
1054         case EEPROM_NIC_TYPE_0:
1055                 break;
1056
1057         default:
1058                 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1059                                priv->nic_type);
1060                 priv->nic_type = EEPROM_NIC_TYPE_0;
1061                 break;
1062         }
1063
1064         if (!(priv->config & CFG_NO_LED)) {
1065                 if (priv->status & STATUS_ASSOCIATED)
1066                         ipw_led_link_on(priv);
1067                 else
1068                         ipw_led_link_off(priv);
1069         }
1070 }
1071
1072 static void ipw_led_shutdown(struct ipw_priv *priv)
1073 {
1074         ipw_led_activity_off(priv);
1075         ipw_led_link_off(priv);
1076         ipw_led_band_off(priv);
1077         cancel_delayed_work(&priv->led_link_on);
1078         cancel_delayed_work(&priv->led_link_off);
1079         cancel_delayed_work(&priv->led_act_off);
1080 }
1081
1082 /*
1083  * The following adds a new attribute to the sysfs representation
1084  * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1085  * used for controling the debug level.
1086  *
1087  * See the level definitions in ipw for details.
1088  */
1089 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1090 {
1091         return sprintf(buf, "0x%08X\n", ipw_debug_level);
1092 }
1093
1094 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1095                                  size_t count)
1096 {
1097         char *p = (char *)buf;
1098         u32 val;
1099
1100         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1101                 p++;
1102                 if (p[0] == 'x' || p[0] == 'X')
1103                         p++;
1104                 val = simple_strtoul(p, &p, 16);
1105         } else
1106                 val = simple_strtoul(p, &p, 10);
1107         if (p == buf)
1108                 printk(KERN_INFO DRV_NAME
1109                        ": %s is not in hex or decimal form.\n", buf);
1110         else
1111                 ipw_debug_level = val;
1112
1113         return strnlen(buf, count);
1114 }
1115
1116 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1117                    show_debug_level, store_debug_level);
1118
1119 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1120 {
1121         /* length = 1st dword in log */
1122         return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1123 }
1124
1125 static void ipw_capture_event_log(struct ipw_priv *priv,
1126                                   u32 log_len, struct ipw_event *log)
1127 {
1128         u32 base;
1129
1130         if (log_len) {
1131                 base = ipw_read32(priv, IPW_EVENT_LOG);
1132                 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1133                                   (u8 *) log, sizeof(*log) * log_len);
1134         }
1135 }
1136
1137 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1138 {
1139         struct ipw_fw_error *error;
1140         u32 log_len = ipw_get_event_log_len(priv);
1141         u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1142         u32 elem_len = ipw_read_reg32(priv, base);
1143
1144         error = kmalloc(sizeof(*error) +
1145                         sizeof(*error->elem) * elem_len +
1146                         sizeof(*error->log) * log_len, GFP_ATOMIC);
1147         if (!error) {
1148                 IPW_ERROR("Memory allocation for firmware error log "
1149                           "failed.\n");
1150                 return NULL;
1151         }
1152         error->jiffies = jiffies;
1153         error->status = priv->status;
1154         error->config = priv->config;
1155         error->elem_len = elem_len;
1156         error->log_len = log_len;
1157         error->elem = (struct ipw_error_elem *)error->payload;
1158         error->log = (struct ipw_event *)(error->elem + elem_len);
1159
1160         ipw_capture_event_log(priv, log_len, error->log);
1161
1162         if (elem_len)
1163                 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1164                                   sizeof(*error->elem) * elem_len);
1165
1166         return error;
1167 }
1168
1169 static void ipw_free_error_log(struct ipw_fw_error *error)
1170 {
1171         if (error)
1172                 kfree(error);
1173 }
1174
1175 static ssize_t show_event_log(struct device *d,
1176                               struct device_attribute *attr, char *buf)
1177 {
1178         struct ipw_priv *priv = dev_get_drvdata(d);
1179         u32 log_len = ipw_get_event_log_len(priv);
1180         struct ipw_event log[log_len];
1181         u32 len = 0, i;
1182
1183         ipw_capture_event_log(priv, log_len, log);
1184
1185         len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1186         for (i = 0; i < log_len; i++)
1187                 len += snprintf(buf + len, PAGE_SIZE - len,
1188                                 "\n%08X%08X%08X",
1189                                 log[i].time, log[i].event, log[i].data);
1190         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1191         return len;
1192 }
1193
1194 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1195
1196 static ssize_t show_error(struct device *d,
1197                           struct device_attribute *attr, char *buf)
1198 {
1199         struct ipw_priv *priv = dev_get_drvdata(d);
1200         u32 len = 0, i;
1201         if (!priv->error)
1202                 return 0;
1203         len += snprintf(buf + len, PAGE_SIZE - len,
1204                         "%08lX%08X%08X%08X",
1205                         priv->error->jiffies,
1206                         priv->error->status,
1207                         priv->error->config, priv->error->elem_len);
1208         for (i = 0; i < priv->error->elem_len; i++)
1209                 len += snprintf(buf + len, PAGE_SIZE - len,
1210                                 "\n%08X%08X%08X%08X%08X%08X%08X",
1211                                 priv->error->elem[i].time,
1212                                 priv->error->elem[i].desc,
1213                                 priv->error->elem[i].blink1,
1214                                 priv->error->elem[i].blink2,
1215                                 priv->error->elem[i].link1,
1216                                 priv->error->elem[i].link2,
1217                                 priv->error->elem[i].data);
1218
1219         len += snprintf(buf + len, PAGE_SIZE - len,
1220                         "\n%08X", priv->error->log_len);
1221         for (i = 0; i < priv->error->log_len; i++)
1222                 len += snprintf(buf + len, PAGE_SIZE - len,
1223                                 "\n%08X%08X%08X",
1224                                 priv->error->log[i].time,
1225                                 priv->error->log[i].event,
1226                                 priv->error->log[i].data);
1227         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1228         return len;
1229 }
1230
1231 static ssize_t clear_error(struct device *d,
1232                            struct device_attribute *attr,
1233                            const char *buf, size_t count)
1234 {
1235         struct ipw_priv *priv = dev_get_drvdata(d);
1236         if (priv->error) {
1237                 ipw_free_error_log(priv->error);
1238                 priv->error = NULL;
1239         }
1240         return count;
1241 }
1242
1243 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1244
1245 static ssize_t show_cmd_log(struct device *d,
1246                             struct device_attribute *attr, char *buf)
1247 {
1248         struct ipw_priv *priv = dev_get_drvdata(d);
1249         u32 len = 0, i;
1250         if (!priv->cmdlog)
1251                 return 0;
1252         for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1253              (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1254              i = (i + 1) % priv->cmdlog_len) {
1255                 len +=
1256                     snprintf(buf + len, PAGE_SIZE - len,
1257                              "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1258                              priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1259                              priv->cmdlog[i].cmd.len);
1260                 len +=
1261                     snprintk_buf(buf + len, PAGE_SIZE - len,
1262                                  (u8 *) priv->cmdlog[i].cmd.param,
1263                                  priv->cmdlog[i].cmd.len);
1264                 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1265         }
1266         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1267         return len;
1268 }
1269
1270 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1271
1272 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1273                              char *buf)
1274 {
1275         struct ipw_priv *priv = dev_get_drvdata(d);
1276         return sprintf(buf, "%d\n", priv->ieee->scan_age);
1277 }
1278
1279 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1280                               const char *buf, size_t count)
1281 {
1282         struct ipw_priv *priv = dev_get_drvdata(d);
1283 #ifdef CONFIG_IPW2200_DEBUG
1284         struct net_device *dev = priv->net_dev;
1285 #endif
1286         char buffer[] = "00000000";
1287         unsigned long len =
1288             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1289         unsigned long val;
1290         char *p = buffer;
1291
1292         IPW_DEBUG_INFO("enter\n");
1293
1294         strncpy(buffer, buf, len);
1295         buffer[len] = 0;
1296
1297         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1298                 p++;
1299                 if (p[0] == 'x' || p[0] == 'X')
1300                         p++;
1301                 val = simple_strtoul(p, &p, 16);
1302         } else
1303                 val = simple_strtoul(p, &p, 10);
1304         if (p == buffer) {
1305                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1306         } else {
1307                 priv->ieee->scan_age = val;
1308                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1309         }
1310
1311         IPW_DEBUG_INFO("exit\n");
1312         return len;
1313 }
1314
1315 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1316
1317 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1318                         char *buf)
1319 {
1320         struct ipw_priv *priv = dev_get_drvdata(d);
1321         return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1322 }
1323
1324 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1325                          const char *buf, size_t count)
1326 {
1327         struct ipw_priv *priv = dev_get_drvdata(d);
1328
1329         IPW_DEBUG_INFO("enter\n");
1330
1331         if (count == 0)
1332                 return 0;
1333
1334         if (*buf == 0) {
1335                 IPW_DEBUG_LED("Disabling LED control.\n");
1336                 priv->config |= CFG_NO_LED;
1337                 ipw_led_shutdown(priv);
1338         } else {
1339                 IPW_DEBUG_LED("Enabling LED control.\n");
1340                 priv->config &= ~CFG_NO_LED;
1341                 ipw_led_init(priv);
1342         }
1343
1344         IPW_DEBUG_INFO("exit\n");
1345         return count;
1346 }
1347
1348 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1349
1350 static ssize_t show_status(struct device *d,
1351                            struct device_attribute *attr, char *buf)
1352 {
1353         struct ipw_priv *p = d->driver_data;
1354         return sprintf(buf, "0x%08x\n", (int)p->status);
1355 }
1356
1357 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1358
1359 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1360                         char *buf)
1361 {
1362         struct ipw_priv *p = d->driver_data;
1363         return sprintf(buf, "0x%08x\n", (int)p->config);
1364 }
1365
1366 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1367
1368 static ssize_t show_nic_type(struct device *d,
1369                              struct device_attribute *attr, char *buf)
1370 {
1371         struct ipw_priv *priv = d->driver_data;
1372         return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1373 }
1374
1375 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1376
1377 static ssize_t show_ucode_version(struct device *d,
1378                                   struct device_attribute *attr, char *buf)
1379 {
1380         u32 len = sizeof(u32), tmp = 0;
1381         struct ipw_priv *p = d->driver_data;
1382
1383         if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1384                 return 0;
1385
1386         return sprintf(buf, "0x%08x\n", tmp);
1387 }
1388
1389 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1390
1391 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1392                         char *buf)
1393 {
1394         u32 len = sizeof(u32), tmp = 0;
1395         struct ipw_priv *p = d->driver_data;
1396
1397         if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1398                 return 0;
1399
1400         return sprintf(buf, "0x%08x\n", tmp);
1401 }
1402
1403 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1404
1405 /*
1406  * Add a device attribute to view/control the delay between eeprom
1407  * operations.
1408  */
1409 static ssize_t show_eeprom_delay(struct device *d,
1410                                  struct device_attribute *attr, char *buf)
1411 {
1412         int n = ((struct ipw_priv *)d->driver_data)->eeprom_delay;
1413         return sprintf(buf, "%i\n", n);
1414 }
1415 static ssize_t store_eeprom_delay(struct device *d,
1416                                   struct device_attribute *attr,
1417                                   const char *buf, size_t count)
1418 {
1419         struct ipw_priv *p = d->driver_data;
1420         sscanf(buf, "%i", &p->eeprom_delay);
1421         return strnlen(buf, count);
1422 }
1423
1424 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1425                    show_eeprom_delay, store_eeprom_delay);
1426
1427 static ssize_t show_command_event_reg(struct device *d,
1428                                       struct device_attribute *attr, char *buf)
1429 {
1430         u32 reg = 0;
1431         struct ipw_priv *p = d->driver_data;
1432
1433         reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1434         return sprintf(buf, "0x%08x\n", reg);
1435 }
1436 static ssize_t store_command_event_reg(struct device *d,
1437                                        struct device_attribute *attr,
1438                                        const char *buf, size_t count)
1439 {
1440         u32 reg;
1441         struct ipw_priv *p = d->driver_data;
1442
1443         sscanf(buf, "%x", &reg);
1444         ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1445         return strnlen(buf, count);
1446 }
1447
1448 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1449                    show_command_event_reg, store_command_event_reg);
1450
1451 static ssize_t show_mem_gpio_reg(struct device *d,
1452                                  struct device_attribute *attr, char *buf)
1453 {
1454         u32 reg = 0;
1455         struct ipw_priv *p = d->driver_data;
1456
1457         reg = ipw_read_reg32(p, 0x301100);
1458         return sprintf(buf, "0x%08x\n", reg);
1459 }
1460 static ssize_t store_mem_gpio_reg(struct device *d,
1461                                   struct device_attribute *attr,
1462                                   const char *buf, size_t count)
1463 {
1464         u32 reg;
1465         struct ipw_priv *p = d->driver_data;
1466
1467         sscanf(buf, "%x", &reg);
1468         ipw_write_reg32(p, 0x301100, reg);
1469         return strnlen(buf, count);
1470 }
1471
1472 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1473                    show_mem_gpio_reg, store_mem_gpio_reg);
1474
1475 static ssize_t show_indirect_dword(struct device *d,
1476                                    struct device_attribute *attr, char *buf)
1477 {
1478         u32 reg = 0;
1479         struct ipw_priv *priv = d->driver_data;
1480
1481         if (priv->status & STATUS_INDIRECT_DWORD)
1482                 reg = ipw_read_reg32(priv, priv->indirect_dword);
1483         else
1484                 reg = 0;
1485
1486         return sprintf(buf, "0x%08x\n", reg);
1487 }
1488 static ssize_t store_indirect_dword(struct device *d,
1489                                     struct device_attribute *attr,
1490                                     const char *buf, size_t count)
1491 {
1492         struct ipw_priv *priv = d->driver_data;
1493
1494         sscanf(buf, "%x", &priv->indirect_dword);
1495         priv->status |= STATUS_INDIRECT_DWORD;
1496         return strnlen(buf, count);
1497 }
1498
1499 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1500                    show_indirect_dword, store_indirect_dword);
1501
1502 static ssize_t show_indirect_byte(struct device *d,
1503                                   struct device_attribute *attr, char *buf)
1504 {
1505         u8 reg = 0;
1506         struct ipw_priv *priv = d->driver_data;
1507
1508         if (priv->status & STATUS_INDIRECT_BYTE)
1509                 reg = ipw_read_reg8(priv, priv->indirect_byte);
1510         else
1511                 reg = 0;
1512
1513         return sprintf(buf, "0x%02x\n", reg);
1514 }
1515 static ssize_t store_indirect_byte(struct device *d,
1516                                    struct device_attribute *attr,
1517                                    const char *buf, size_t count)
1518 {
1519         struct ipw_priv *priv = d->driver_data;
1520
1521         sscanf(buf, "%x", &priv->indirect_byte);
1522         priv->status |= STATUS_INDIRECT_BYTE;
1523         return strnlen(buf, count);
1524 }
1525
1526 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1527                    show_indirect_byte, store_indirect_byte);
1528
1529 static ssize_t show_direct_dword(struct device *d,
1530                                  struct device_attribute *attr, char *buf)
1531 {
1532         u32 reg = 0;
1533         struct ipw_priv *priv = d->driver_data;
1534
1535         if (priv->status & STATUS_DIRECT_DWORD)
1536                 reg = ipw_read32(priv, priv->direct_dword);
1537         else
1538                 reg = 0;
1539
1540         return sprintf(buf, "0x%08x\n", reg);
1541 }
1542 static ssize_t store_direct_dword(struct device *d,
1543                                   struct device_attribute *attr,
1544                                   const char *buf, size_t count)
1545 {
1546         struct ipw_priv *priv = d->driver_data;
1547
1548         sscanf(buf, "%x", &priv->direct_dword);
1549         priv->status |= STATUS_DIRECT_DWORD;
1550         return strnlen(buf, count);
1551 }
1552
1553 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1554                    show_direct_dword, store_direct_dword);
1555
1556 static int rf_kill_active(struct ipw_priv *priv)
1557 {
1558         if (0 == (ipw_read32(priv, 0x30) & 0x10000))
1559                 priv->status |= STATUS_RF_KILL_HW;
1560         else
1561                 priv->status &= ~STATUS_RF_KILL_HW;
1562
1563         return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1564 }
1565
1566 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1567                             char *buf)
1568 {
1569         /* 0 - RF kill not enabled
1570            1 - SW based RF kill active (sysfs)
1571            2 - HW based RF kill active
1572            3 - Both HW and SW baed RF kill active */
1573         struct ipw_priv *priv = d->driver_data;
1574         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1575             (rf_kill_active(priv) ? 0x2 : 0x0);
1576         return sprintf(buf, "%i\n", val);
1577 }
1578
1579 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1580 {
1581         if ((disable_radio ? 1 : 0) ==
1582             ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1583                 return 0;
1584
1585         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
1586                           disable_radio ? "OFF" : "ON");
1587
1588         if (disable_radio) {
1589                 priv->status |= STATUS_RF_KILL_SW;
1590
1591                 if (priv->workqueue)
1592                         cancel_delayed_work(&priv->request_scan);
1593                 queue_work(priv->workqueue, &priv->down);
1594         } else {
1595                 priv->status &= ~STATUS_RF_KILL_SW;
1596                 if (rf_kill_active(priv)) {
1597                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1598                                           "disabled by HW switch\n");
1599                         /* Make sure the RF_KILL check timer is running */
1600                         cancel_delayed_work(&priv->rf_kill);
1601                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
1602                                            2 * HZ);
1603                 } else
1604                         queue_work(priv->workqueue, &priv->up);
1605         }
1606
1607         return 1;
1608 }
1609
1610 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1611                              const char *buf, size_t count)
1612 {
1613         struct ipw_priv *priv = d->driver_data;
1614
1615         ipw_radio_kill_sw(priv, buf[0] == '1');
1616
1617         return count;
1618 }
1619
1620 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1621
1622 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1623                                char *buf)
1624 {
1625         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1626         int pos = 0, len = 0;
1627         if (priv->config & CFG_SPEED_SCAN) {
1628                 while (priv->speed_scan[pos] != 0)
1629                         len += sprintf(&buf[len], "%d ",
1630                                        priv->speed_scan[pos++]);
1631                 return len + sprintf(&buf[len], "\n");
1632         }
1633
1634         return sprintf(buf, "0\n");
1635 }
1636
1637 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1638                                 const char *buf, size_t count)
1639 {
1640         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1641         int channel, pos = 0;
1642         const char *p = buf;
1643
1644         /* list of space separated channels to scan, optionally ending with 0 */
1645         while ((channel = simple_strtol(p, NULL, 0))) {
1646                 if (pos == MAX_SPEED_SCAN - 1) {
1647                         priv->speed_scan[pos] = 0;
1648                         break;
1649                 }
1650
1651                 if (ieee80211_is_valid_channel(priv->ieee, channel))
1652                         priv->speed_scan[pos++] = channel;
1653                 else
1654                         IPW_WARNING("Skipping invalid channel request: %d\n",
1655                                     channel);
1656                 p = strchr(p, ' ');
1657                 if (!p)
1658                         break;
1659                 while (*p == ' ' || *p == '\t')
1660                         p++;
1661         }
1662
1663         if (pos == 0)
1664                 priv->config &= ~CFG_SPEED_SCAN;
1665         else {
1666                 priv->speed_scan_pos = 0;
1667                 priv->config |= CFG_SPEED_SCAN;
1668         }
1669
1670         return count;
1671 }
1672
1673 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1674                    store_speed_scan);
1675
1676 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1677                               char *buf)
1678 {
1679         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1680         return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1681 }
1682
1683 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1684                                const char *buf, size_t count)
1685 {
1686         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1687         if (buf[0] == '1')
1688                 priv->config |= CFG_NET_STATS;
1689         else
1690                 priv->config &= ~CFG_NET_STATS;
1691
1692         return count;
1693 }
1694
1695 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1696                    show_net_stats, store_net_stats);
1697
1698 static void notify_wx_assoc_event(struct ipw_priv *priv)
1699 {
1700         union iwreq_data wrqu;
1701         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1702         if (priv->status & STATUS_ASSOCIATED)
1703                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1704         else
1705                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1706         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1707 }
1708
1709 static void ipw_irq_tasklet(struct ipw_priv *priv)
1710 {
1711         u32 inta, inta_mask, handled = 0;
1712         unsigned long flags;
1713         int rc = 0;
1714
1715         spin_lock_irqsave(&priv->lock, flags);
1716
1717         inta = ipw_read32(priv, IPW_INTA_RW);
1718         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1719         inta &= (IPW_INTA_MASK_ALL & inta_mask);
1720
1721         /* Add any cached INTA values that need to be handled */
1722         inta |= priv->isr_inta;
1723
1724         /* handle all the justifications for the interrupt */
1725         if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1726                 ipw_rx(priv);
1727                 handled |= IPW_INTA_BIT_RX_TRANSFER;
1728         }
1729
1730         if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1731                 IPW_DEBUG_HC("Command completed.\n");
1732                 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1733                 priv->status &= ~STATUS_HCMD_ACTIVE;
1734                 wake_up_interruptible(&priv->wait_command_queue);
1735                 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1736         }
1737
1738         if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1739                 IPW_DEBUG_TX("TX_QUEUE_1\n");
1740                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1741                 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1742         }
1743
1744         if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1745                 IPW_DEBUG_TX("TX_QUEUE_2\n");
1746                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1747                 handled |= IPW_INTA_BIT_TX_QUEUE_2;
1748         }
1749
1750         if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
1751                 IPW_DEBUG_TX("TX_QUEUE_3\n");
1752                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
1753                 handled |= IPW_INTA_BIT_TX_QUEUE_3;
1754         }
1755
1756         if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
1757                 IPW_DEBUG_TX("TX_QUEUE_4\n");
1758                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
1759                 handled |= IPW_INTA_BIT_TX_QUEUE_4;
1760         }
1761
1762         if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
1763                 IPW_WARNING("STATUS_CHANGE\n");
1764                 handled |= IPW_INTA_BIT_STATUS_CHANGE;
1765         }
1766
1767         if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
1768                 IPW_WARNING("TX_PERIOD_EXPIRED\n");
1769                 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
1770         }
1771
1772         if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
1773                 IPW_WARNING("HOST_CMD_DONE\n");
1774                 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
1775         }
1776
1777         if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
1778                 IPW_WARNING("FW_INITIALIZATION_DONE\n");
1779                 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
1780         }
1781
1782         if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
1783                 IPW_WARNING("PHY_OFF_DONE\n");
1784                 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
1785         }
1786
1787         if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
1788                 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
1789                 priv->status |= STATUS_RF_KILL_HW;
1790                 wake_up_interruptible(&priv->wait_command_queue);
1791                 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1792                 cancel_delayed_work(&priv->request_scan);
1793                 schedule_work(&priv->link_down);
1794                 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
1795                 handled |= IPW_INTA_BIT_RF_KILL_DONE;
1796         }
1797
1798         if (inta & IPW_INTA_BIT_FATAL_ERROR) {
1799                 IPW_WARNING("Firmware error detected.  Restarting.\n");
1800                 if (priv->error) {
1801                         IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
1802 #ifdef CONFIG_IPW2200_DEBUG
1803                         if (ipw_debug_level & IPW_DL_FW_ERRORS) {
1804                                 struct ipw_fw_error *error =
1805                                     ipw_alloc_error_log(priv);
1806                                 ipw_dump_error_log(priv, error);
1807                                 if (error)
1808                                         ipw_free_error_log(error);
1809                         }
1810 #endif
1811                 } else {
1812                         priv->error = ipw_alloc_error_log(priv);
1813                         if (priv->error)
1814                                 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
1815                         else
1816                                 IPW_DEBUG_FW("Error allocating sysfs 'error' "
1817                                              "log.\n");
1818 #ifdef CONFIG_IPW2200_DEBUG
1819                         if (ipw_debug_level & IPW_DL_FW_ERRORS)
1820                                 ipw_dump_error_log(priv, priv->error);
1821 #endif
1822                 }
1823
1824                 /* XXX: If hardware encryption is for WPA/WPA2,
1825                  * we have to notify the supplicant. */
1826                 if (priv->ieee->sec.encrypt) {
1827                         priv->status &= ~STATUS_ASSOCIATED;
1828                         notify_wx_assoc_event(priv);
1829                 }
1830
1831                 /* Keep the restart process from trying to send host
1832                  * commands by clearing the INIT status bit */
1833                 priv->status &= ~STATUS_INIT;
1834
1835                 /* Cancel currently queued command. */
1836                 priv->status &= ~STATUS_HCMD_ACTIVE;
1837                 wake_up_interruptible(&priv->wait_command_queue);
1838
1839                 queue_work(priv->workqueue, &priv->adapter_restart);
1840                 handled |= IPW_INTA_BIT_FATAL_ERROR;
1841         }
1842
1843         if (inta & IPW_INTA_BIT_PARITY_ERROR) {
1844                 IPW_ERROR("Parity error\n");
1845                 handled |= IPW_INTA_BIT_PARITY_ERROR;
1846         }
1847
1848         if (handled != inta) {
1849                 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
1850         }
1851
1852         /* enable all interrupts */
1853         ipw_enable_interrupts(priv);
1854
1855         spin_unlock_irqrestore(&priv->lock, flags);
1856 }
1857
1858 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
1859 static char *get_cmd_string(u8 cmd)
1860 {
1861         switch (cmd) {
1862                 IPW_CMD(HOST_COMPLETE);
1863                 IPW_CMD(POWER_DOWN);
1864                 IPW_CMD(SYSTEM_CONFIG);
1865                 IPW_CMD(MULTICAST_ADDRESS);
1866                 IPW_CMD(SSID);
1867                 IPW_CMD(ADAPTER_ADDRESS);
1868                 IPW_CMD(PORT_TYPE);
1869                 IPW_CMD(RTS_THRESHOLD);
1870                 IPW_CMD(FRAG_THRESHOLD);
1871                 IPW_CMD(POWER_MODE);
1872                 IPW_CMD(WEP_KEY);
1873                 IPW_CMD(TGI_TX_KEY);
1874                 IPW_CMD(SCAN_REQUEST);
1875                 IPW_CMD(SCAN_REQUEST_EXT);
1876                 IPW_CMD(ASSOCIATE);
1877                 IPW_CMD(SUPPORTED_RATES);
1878                 IPW_CMD(SCAN_ABORT);
1879                 IPW_CMD(TX_FLUSH);
1880                 IPW_CMD(QOS_PARAMETERS);
1881                 IPW_CMD(DINO_CONFIG);
1882                 IPW_CMD(RSN_CAPABILITIES);
1883                 IPW_CMD(RX_KEY);
1884                 IPW_CMD(CARD_DISABLE);
1885                 IPW_CMD(SEED_NUMBER);
1886                 IPW_CMD(TX_POWER);
1887                 IPW_CMD(COUNTRY_INFO);
1888                 IPW_CMD(AIRONET_INFO);
1889                 IPW_CMD(AP_TX_POWER);
1890                 IPW_CMD(CCKM_INFO);
1891                 IPW_CMD(CCX_VER_INFO);
1892                 IPW_CMD(SET_CALIBRATION);
1893                 IPW_CMD(SENSITIVITY_CALIB);
1894                 IPW_CMD(RETRY_LIMIT);
1895                 IPW_CMD(IPW_PRE_POWER_DOWN);
1896                 IPW_CMD(VAP_BEACON_TEMPLATE);
1897                 IPW_CMD(VAP_DTIM_PERIOD);
1898                 IPW_CMD(EXT_SUPPORTED_RATES);
1899                 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
1900                 IPW_CMD(VAP_QUIET_INTERVALS);
1901                 IPW_CMD(VAP_CHANNEL_SWITCH);
1902                 IPW_CMD(VAP_MANDATORY_CHANNELS);
1903                 IPW_CMD(VAP_CELL_PWR_LIMIT);
1904                 IPW_CMD(VAP_CF_PARAM_SET);
1905                 IPW_CMD(VAP_SET_BEACONING_STATE);
1906                 IPW_CMD(MEASUREMENT);
1907                 IPW_CMD(POWER_CAPABILITY);
1908                 IPW_CMD(SUPPORTED_CHANNELS);
1909                 IPW_CMD(TPC_REPORT);
1910                 IPW_CMD(WME_INFO);
1911                 IPW_CMD(PRODUCTION_COMMAND);
1912         default:
1913                 return "UNKNOWN";
1914         }
1915 }
1916
1917 #define HOST_COMPLETE_TIMEOUT HZ
1918
1919 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
1920 {
1921         int rc = 0;
1922         unsigned long flags;
1923
1924         spin_lock_irqsave(&priv->lock, flags);
1925         if (priv->status & STATUS_HCMD_ACTIVE) {
1926                 IPW_ERROR("Failed to send %s: Already sending a command.\n",
1927                           get_cmd_string(cmd->cmd));
1928                 spin_unlock_irqrestore(&priv->lock, flags);
1929                 return -EAGAIN;
1930         }
1931
1932         priv->status |= STATUS_HCMD_ACTIVE;
1933
1934         if (priv->cmdlog) {
1935                 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
1936                 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
1937                 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
1938                 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
1939                        cmd->len);
1940                 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
1941         }
1942
1943         IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
1944                      get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
1945                      priv->status);
1946
1947 #ifndef DEBUG_CMD_WEP_KEY
1948         if (cmd->cmd == IPW_CMD_WEP_KEY)
1949                 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
1950         else
1951 #endif
1952                 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
1953
1954         rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
1955         if (rc) {
1956                 priv->status &= ~STATUS_HCMD_ACTIVE;
1957                 IPW_ERROR("Failed to send %s: Reason %d\n",
1958                           get_cmd_string(cmd->cmd), rc);
1959                 spin_unlock_irqrestore(&priv->lock, flags);
1960                 goto exit;
1961         }
1962         spin_unlock_irqrestore(&priv->lock, flags);
1963
1964         rc = wait_event_interruptible_timeout(priv->wait_command_queue,
1965                                               !(priv->
1966                                                 status & STATUS_HCMD_ACTIVE),
1967                                               HOST_COMPLETE_TIMEOUT);
1968         if (rc == 0) {
1969                 spin_lock_irqsave(&priv->lock, flags);
1970                 if (priv->status & STATUS_HCMD_ACTIVE) {
1971                         IPW_ERROR("Failed to send %s: Command timed out.\n",
1972                                   get_cmd_string(cmd->cmd));
1973                         priv->status &= ~STATUS_HCMD_ACTIVE;
1974                         spin_unlock_irqrestore(&priv->lock, flags);
1975                         rc = -EIO;
1976                         goto exit;
1977                 }
1978                 spin_unlock_irqrestore(&priv->lock, flags);
1979         } else
1980                 rc = 0;
1981
1982         if (priv->status & STATUS_RF_KILL_HW) {
1983                 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
1984                           get_cmd_string(cmd->cmd));
1985                 rc = -EIO;
1986                 goto exit;
1987         }
1988
1989       exit:
1990         if (priv->cmdlog) {
1991                 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
1992                 priv->cmdlog_pos %= priv->cmdlog_len;
1993         }
1994         return rc;
1995 }
1996
1997 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
1998 {
1999         struct host_cmd cmd = {
2000                 .cmd = command,
2001         };
2002
2003         return __ipw_send_cmd(priv, &cmd);
2004 }
2005
2006 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2007                             void *data)
2008 {
2009         struct host_cmd cmd = {
2010                 .cmd = command,
2011                 .len = len,
2012                 .param = data,
2013         };
2014
2015         return __ipw_send_cmd(priv, &cmd);
2016 }
2017
2018 static int ipw_send_host_complete(struct ipw_priv *priv)
2019 {
2020         if (!priv) {
2021                 IPW_ERROR("Invalid args\n");
2022                 return -1;
2023         }
2024
2025         return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2026 }
2027
2028 static int ipw_send_system_config(struct ipw_priv *priv,
2029                                   struct ipw_sys_config *config)
2030 {
2031         if (!priv || !config) {
2032                 IPW_ERROR("Invalid args\n");
2033                 return -1;
2034         }
2035
2036         return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG, sizeof(*config),
2037                                 config);
2038 }
2039
2040 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2041 {
2042         if (!priv || !ssid) {
2043                 IPW_ERROR("Invalid args\n");
2044                 return -1;
2045         }
2046
2047         return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2048                                 ssid);
2049 }
2050
2051 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2052 {
2053         if (!priv || !mac) {
2054                 IPW_ERROR("Invalid args\n");
2055                 return -1;
2056         }
2057
2058         IPW_DEBUG_INFO("%s: Setting MAC to " MAC_FMT "\n",
2059                        priv->net_dev->name, MAC_ARG(mac));
2060
2061         return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2062 }
2063
2064 /*
2065  * NOTE: This must be executed from our workqueue as it results in udelay
2066  * being called which may corrupt the keyboard if executed on default
2067  * workqueue
2068  */
2069 static void ipw_adapter_restart(void *adapter)
2070 {
2071         struct ipw_priv *priv = adapter;
2072
2073         if (priv->status & STATUS_RF_KILL_MASK)
2074                 return;
2075
2076         ipw_down(priv);
2077
2078         if (priv->assoc_network &&
2079             (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2080                 ipw_remove_current_network(priv);
2081
2082         if (ipw_up(priv)) {
2083                 IPW_ERROR("Failed to up device\n");
2084                 return;
2085         }
2086 }
2087
2088 static void ipw_bg_adapter_restart(void *data)
2089 {
2090         struct ipw_priv *priv = data;
2091         mutex_lock(&priv->mutex);
2092         ipw_adapter_restart(data);
2093         mutex_unlock(&priv->mutex);
2094 }
2095
2096 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2097
2098 static void ipw_scan_check(void *data)
2099 {
2100         struct ipw_priv *priv = data;
2101         if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
2102                 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2103                                "adapter after (%dms).\n",
2104                                jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2105                 queue_work(priv->workqueue, &priv->adapter_restart);
2106         }
2107 }
2108
2109 static void ipw_bg_scan_check(void *data)
2110 {
2111         struct ipw_priv *priv = data;
2112         mutex_lock(&priv->mutex);
2113         ipw_scan_check(data);
2114         mutex_unlock(&priv->mutex);
2115 }
2116
2117 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2118                                      struct ipw_scan_request_ext *request)
2119 {
2120         return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2121                                 sizeof(*request), request);
2122 }
2123
2124 static int ipw_send_scan_abort(struct ipw_priv *priv)
2125 {
2126         if (!priv) {
2127                 IPW_ERROR("Invalid args\n");
2128                 return -1;
2129         }
2130
2131         return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2132 }
2133
2134 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2135 {
2136         struct ipw_sensitivity_calib calib = {
2137                 .beacon_rssi_raw = sens,
2138         };
2139
2140         return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2141                                 &calib);
2142 }
2143
2144 static int ipw_send_associate(struct ipw_priv *priv,
2145                               struct ipw_associate *associate)
2146 {
2147         struct ipw_associate tmp_associate;
2148
2149         if (!priv || !associate) {
2150                 IPW_ERROR("Invalid args\n");
2151                 return -1;
2152         }
2153
2154         memcpy(&tmp_associate, associate, sizeof(*associate));
2155         tmp_associate.policy_support =
2156             cpu_to_le16(tmp_associate.policy_support);
2157         tmp_associate.assoc_tsf_msw = cpu_to_le32(tmp_associate.assoc_tsf_msw);
2158         tmp_associate.assoc_tsf_lsw = cpu_to_le32(tmp_associate.assoc_tsf_lsw);
2159         tmp_associate.capability = cpu_to_le16(tmp_associate.capability);
2160         tmp_associate.listen_interval =
2161             cpu_to_le16(tmp_associate.listen_interval);
2162         tmp_associate.beacon_interval =
2163             cpu_to_le16(tmp_associate.beacon_interval);
2164         tmp_associate.atim_window = cpu_to_le16(tmp_associate.atim_window);
2165
2166         return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(tmp_associate),
2167                                 &tmp_associate);
2168 }
2169
2170 static int ipw_send_supported_rates(struct ipw_priv *priv,
2171                                     struct ipw_supported_rates *rates)
2172 {
2173         if (!priv || !rates) {
2174                 IPW_ERROR("Invalid args\n");
2175                 return -1;
2176         }
2177
2178         return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2179                                 rates);
2180 }
2181
2182 static int ipw_set_random_seed(struct ipw_priv *priv)
2183 {
2184         u32 val;
2185
2186         if (!priv) {
2187                 IPW_ERROR("Invalid args\n");
2188                 return -1;
2189         }
2190
2191         get_random_bytes(&val, sizeof(val));
2192
2193         return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2194 }
2195
2196 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2197 {
2198         if (!priv) {
2199                 IPW_ERROR("Invalid args\n");
2200                 return -1;
2201         }
2202
2203         return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(phy_off),
2204                                 &phy_off);
2205 }
2206
2207 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2208 {
2209         if (!priv || !power) {
2210                 IPW_ERROR("Invalid args\n");
2211                 return -1;
2212         }
2213
2214         return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2215 }
2216
2217 static int ipw_set_tx_power(struct ipw_priv *priv)
2218 {
2219         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
2220         struct ipw_tx_power tx_power;
2221         s8 max_power;
2222         int i;
2223
2224         memset(&tx_power, 0, sizeof(tx_power));
2225
2226         /* configure device for 'G' band */
2227         tx_power.ieee_mode = IPW_G_MODE;
2228         tx_power.num_channels = geo->bg_channels;
2229         for (i = 0; i < geo->bg_channels; i++) {
2230                 max_power = geo->bg[i].max_power;
2231                 tx_power.channels_tx_power[i].channel_number =
2232                     geo->bg[i].channel;
2233                 tx_power.channels_tx_power[i].tx_power = max_power ?
2234                     min(max_power, priv->tx_power) : priv->tx_power;
2235         }
2236         if (ipw_send_tx_power(priv, &tx_power))
2237                 return -EIO;
2238
2239         /* configure device to also handle 'B' band */
2240         tx_power.ieee_mode = IPW_B_MODE;
2241         if (ipw_send_tx_power(priv, &tx_power))
2242                 return -EIO;
2243
2244         /* configure device to also handle 'A' band */
2245         if (priv->ieee->abg_true) {
2246                 tx_power.ieee_mode = IPW_A_MODE;
2247                 tx_power.num_channels = geo->a_channels;
2248                 for (i = 0; i < tx_power.num_channels; i++) {
2249                         max_power = geo->a[i].max_power;
2250                         tx_power.channels_tx_power[i].channel_number =
2251                             geo->a[i].channel;
2252                         tx_power.channels_tx_power[i].tx_power = max_power ?
2253                             min(max_power, priv->tx_power) : priv->tx_power;
2254                 }
2255                 if (ipw_send_tx_power(priv, &tx_power))
2256                         return -EIO;
2257         }
2258         return 0;
2259 }
2260
2261 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2262 {
2263         struct ipw_rts_threshold rts_threshold = {
2264                 .rts_threshold = rts,
2265         };
2266
2267         if (!priv) {
2268                 IPW_ERROR("Invalid args\n");
2269                 return -1;
2270         }
2271
2272         return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2273                                 sizeof(rts_threshold), &rts_threshold);
2274 }
2275
2276 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2277 {
2278         struct ipw_frag_threshold frag_threshold = {
2279                 .frag_threshold = frag,
2280         };
2281
2282         if (!priv) {
2283                 IPW_ERROR("Invalid args\n");
2284                 return -1;
2285         }
2286
2287         return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2288                                 sizeof(frag_threshold), &frag_threshold);
2289 }
2290
2291 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2292 {
2293         u32 param;
2294
2295         if (!priv) {
2296                 IPW_ERROR("Invalid args\n");
2297                 return -1;
2298         }
2299
2300         /* If on battery, set to 3, if AC set to CAM, else user
2301          * level */
2302         switch (mode) {
2303         case IPW_POWER_BATTERY:
2304                 param = IPW_POWER_INDEX_3;
2305                 break;
2306         case IPW_POWER_AC:
2307                 param = IPW_POWER_MODE_CAM;
2308                 break;
2309         default:
2310                 param = mode;
2311                 break;
2312         }
2313
2314         return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2315                                 &param);
2316 }
2317
2318 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2319 {
2320         struct ipw_retry_limit retry_limit = {
2321                 .short_retry_limit = slimit,
2322                 .long_retry_limit = llimit
2323         };
2324
2325         if (!priv) {
2326                 IPW_ERROR("Invalid args\n");
2327                 return -1;
2328         }
2329
2330         return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2331                                 &retry_limit);
2332 }
2333
2334 /*
2335  * The IPW device contains a Microwire compatible EEPROM that stores
2336  * various data like the MAC address.  Usually the firmware has exclusive
2337  * access to the eeprom, but during device initialization (before the
2338  * device driver has sent the HostComplete command to the firmware) the
2339  * device driver has read access to the EEPROM by way of indirect addressing
2340  * through a couple of memory mapped registers.
2341  *
2342  * The following is a simplified implementation for pulling data out of the
2343  * the eeprom, along with some helper functions to find information in
2344  * the per device private data's copy of the eeprom.
2345  *
2346  * NOTE: To better understand how these functions work (i.e what is a chip
2347  *       select and why do have to keep driving the eeprom clock?), read
2348  *       just about any data sheet for a Microwire compatible EEPROM.
2349  */
2350
2351 /* write a 32 bit value into the indirect accessor register */
2352 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2353 {
2354         ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2355
2356         /* the eeprom requires some time to complete the operation */
2357         udelay(p->eeprom_delay);
2358
2359         return;
2360 }
2361
2362 /* perform a chip select operation */
2363 static void eeprom_cs(struct ipw_priv *priv)
2364 {
2365         eeprom_write_reg(priv, 0);
2366         eeprom_write_reg(priv, EEPROM_BIT_CS);
2367         eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2368         eeprom_write_reg(priv, EEPROM_BIT_CS);
2369 }
2370
2371 /* perform a chip select operation */
2372 static void eeprom_disable_cs(struct ipw_priv *priv)
2373 {
2374         eeprom_write_reg(priv, EEPROM_BIT_CS);
2375         eeprom_write_reg(priv, 0);
2376         eeprom_write_reg(priv, EEPROM_BIT_SK);
2377 }
2378
2379 /* push a single bit down to the eeprom */
2380 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2381 {
2382         int d = (bit ? EEPROM_BIT_DI : 0);
2383         eeprom_write_reg(p, EEPROM_BIT_CS | d);
2384         eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2385 }
2386
2387 /* push an opcode followed by an address down to the eeprom */
2388 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2389 {
2390         int i;
2391
2392         eeprom_cs(priv);
2393         eeprom_write_bit(priv, 1);
2394         eeprom_write_bit(priv, op & 2);
2395         eeprom_write_bit(priv, op & 1);
2396         for (i = 7; i >= 0; i--) {
2397                 eeprom_write_bit(priv, addr & (1 << i));
2398         }
2399 }
2400
2401 /* pull 16 bits off the eeprom, one bit at a time */
2402 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2403 {
2404         int i;
2405         u16 r = 0;
2406
2407         /* Send READ Opcode */
2408         eeprom_op(priv, EEPROM_CMD_READ, addr);
2409
2410         /* Send dummy bit */
2411         eeprom_write_reg(priv, EEPROM_BIT_CS);
2412
2413         /* Read the byte off the eeprom one bit at a time */
2414         for (i = 0; i < 16; i++) {
2415                 u32 data = 0;
2416                 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2417                 eeprom_write_reg(priv, EEPROM_BIT_CS);
2418                 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2419                 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2420         }
2421
2422         /* Send another dummy bit */
2423         eeprom_write_reg(priv, 0);
2424         eeprom_disable_cs(priv);
2425
2426         return r;
2427 }
2428
2429 /* helper function for pulling the mac address out of the private */
2430 /* data's copy of the eeprom data                                 */
2431 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2432 {
2433         memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2434 }
2435
2436 /*
2437  * Either the device driver (i.e. the host) or the firmware can
2438  * load eeprom data into the designated region in SRAM.  If neither
2439  * happens then the FW will shutdown with a fatal error.
2440  *
2441  * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2442  * bit needs region of shared SRAM needs to be non-zero.
2443  */
2444 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2445 {
2446         int i;
2447         u16 *eeprom = (u16 *) priv->eeprom;
2448
2449         IPW_DEBUG_TRACE(">>\n");
2450
2451         /* read entire contents of eeprom into private buffer */
2452         for (i = 0; i < 128; i++)
2453                 eeprom[i] = le16_to_cpu(eeprom_read_u16(priv, (u8) i));
2454
2455         /*
2456            If the data looks correct, then copy it to our private
2457            copy.  Otherwise let the firmware know to perform the operation
2458            on its own.
2459          */
2460         if (priv->eeprom[EEPROM_VERSION] != 0) {
2461                 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2462
2463                 /* write the eeprom data to sram */
2464                 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2465                         ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2466
2467                 /* Do not load eeprom data on fatal error or suspend */
2468                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2469         } else {
2470                 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2471
2472                 /* Load eeprom data on fatal error or suspend */
2473                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2474         }
2475
2476         IPW_DEBUG_TRACE("<<\n");
2477 }
2478
2479 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2480 {
2481         count >>= 2;
2482         if (!count)
2483                 return;
2484         _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2485         while (count--)
2486                 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2487 }
2488
2489 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2490 {
2491         ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2492                         CB_NUMBER_OF_ELEMENTS_SMALL *
2493                         sizeof(struct command_block));
2494 }
2495
2496 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2497 {                               /* start dma engine but no transfers yet */
2498
2499         IPW_DEBUG_FW(">> : \n");
2500
2501         /* Start the dma */
2502         ipw_fw_dma_reset_command_blocks(priv);
2503
2504         /* Write CB base address */
2505         ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2506
2507         IPW_DEBUG_FW("<< : \n");
2508         return 0;
2509 }
2510
2511 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2512 {
2513         u32 control = 0;
2514
2515         IPW_DEBUG_FW(">> :\n");
2516
2517         //set the Stop and Abort bit
2518         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2519         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2520         priv->sram_desc.last_cb_index = 0;
2521
2522         IPW_DEBUG_FW("<< \n");
2523 }
2524
2525 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2526                                           struct command_block *cb)
2527 {
2528         u32 address =
2529             IPW_SHARED_SRAM_DMA_CONTROL +
2530             (sizeof(struct command_block) * index);
2531         IPW_DEBUG_FW(">> :\n");
2532
2533         ipw_write_indirect(priv, address, (u8 *) cb,
2534                            (int)sizeof(struct command_block));
2535
2536         IPW_DEBUG_FW("<< :\n");
2537         return 0;
2538
2539 }
2540
2541 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2542 {
2543         u32 control = 0;
2544         u32 index = 0;
2545
2546         IPW_DEBUG_FW(">> :\n");
2547
2548         for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2549                 ipw_fw_dma_write_command_block(priv, index,
2550                                                &priv->sram_desc.cb_list[index]);
2551
2552         /* Enable the DMA in the CSR register */
2553         ipw_clear_bit(priv, IPW_RESET_REG,
2554                       IPW_RESET_REG_MASTER_DISABLED |
2555                       IPW_RESET_REG_STOP_MASTER);
2556
2557         /* Set the Start bit. */
2558         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2559         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2560
2561         IPW_DEBUG_FW("<< :\n");
2562         return 0;
2563 }
2564
2565 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2566 {
2567         u32 address;
2568         u32 register_value = 0;
2569         u32 cb_fields_address = 0;
2570
2571         IPW_DEBUG_FW(">> :\n");
2572         address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2573         IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);
2574
2575         /* Read the DMA Controlor register */
2576         register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2577         IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x \n", register_value);
2578
2579         /* Print the CB values */
2580         cb_fields_address = address;
2581         register_value = ipw_read_reg32(priv, cb_fields_address);
2582         IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);
2583
2584         cb_fields_address += sizeof(u32);
2585         register_value = ipw_read_reg32(priv, cb_fields_address);
2586         IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);
2587
2588         cb_fields_address += sizeof(u32);
2589         register_value = ipw_read_reg32(priv, cb_fields_address);
2590         IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
2591                           register_value);
2592
2593         cb_fields_address += sizeof(u32);
2594         register_value = ipw_read_reg32(priv, cb_fields_address);
2595         IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);
2596
2597         IPW_DEBUG_FW(">> :\n");
2598 }
2599
2600 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2601 {
2602         u32 current_cb_address = 0;
2603         u32 current_cb_index = 0;
2604
2605         IPW_DEBUG_FW("<< :\n");
2606         current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2607
2608         current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2609             sizeof(struct command_block);
2610
2611         IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
2612                           current_cb_index, current_cb_address);
2613
2614         IPW_DEBUG_FW(">> :\n");
2615         return current_cb_index;
2616
2617 }
2618
2619 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2620                                         u32 src_address,
2621                                         u32 dest_address,
2622                                         u32 length,
2623                                         int interrupt_enabled, int is_last)
2624 {
2625
2626         u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2627             CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2628             CB_DEST_SIZE_LONG;
2629         struct command_block *cb;
2630         u32 last_cb_element = 0;
2631
2632         IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2633                           src_address, dest_address, length);
2634
2635         if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2636                 return -1;
2637
2638         last_cb_element = priv->sram_desc.last_cb_index;
2639         cb = &priv->sram_desc.cb_list[last_cb_element];
2640         priv->sram_desc.last_cb_index++;
2641
2642         /* Calculate the new CB control word */
2643         if (interrupt_enabled)
2644                 control |= CB_INT_ENABLED;
2645
2646         if (is_last)
2647                 control |= CB_LAST_VALID;
2648
2649         control |= length;
2650
2651         /* Calculate the CB Element's checksum value */
2652         cb->status = control ^ src_address ^ dest_address;
2653
2654         /* Copy the Source and Destination addresses */
2655         cb->dest_addr = dest_address;
2656         cb->source_addr = src_address;
2657
2658         /* Copy the Control Word last */
2659         cb->control = control;
2660
2661         return 0;
2662 }
2663
2664 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv,
2665                                  u32 src_phys, u32 dest_address, u32 length)
2666 {
2667         u32 bytes_left = length;
2668         u32 src_offset = 0;
2669         u32 dest_offset = 0;
2670         int status = 0;
2671         IPW_DEBUG_FW(">> \n");
2672         IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n",
2673                           src_phys, dest_address, length);
2674         while (bytes_left > CB_MAX_LENGTH) {
2675                 status = ipw_fw_dma_add_command_block(priv,
2676                                                       src_phys + src_offset,
2677                                                       dest_address +
2678                                                       dest_offset,
2679                                                       CB_MAX_LENGTH, 0, 0);
2680                 if (status) {
2681                         IPW_DEBUG_FW_INFO(": Failed\n");
2682                         return -1;
2683                 } else
2684                         IPW_DEBUG_FW_INFO(": Added new cb\n");
2685
2686                 src_offset += CB_MAX_LENGTH;
2687                 dest_offset += CB_MAX_LENGTH;
2688                 bytes_left -= CB_MAX_LENGTH;
2689         }
2690
2691         /* add the buffer tail */
2692         if (bytes_left > 0) {
2693                 status =
2694                     ipw_fw_dma_add_command_block(priv, src_phys + src_offset,
2695                                                  dest_address + dest_offset,
2696                                                  bytes_left, 0, 0);
2697                 if (status) {
2698                         IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n");
2699                         return -1;
2700                 } else
2701                         IPW_DEBUG_FW_INFO
2702                             (": Adding new cb - the buffer tail\n");
2703         }
2704
2705         IPW_DEBUG_FW("<< \n");
2706         return 0;
2707 }
2708
2709 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2710 {
2711         u32 current_index = 0, previous_index;
2712         u32 watchdog = 0;
2713
2714         IPW_DEBUG_FW(">> : \n");
2715
2716         current_index = ipw_fw_dma_command_block_index(priv);
2717         IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2718                           (int)priv->sram_desc.last_cb_index);
2719
2720         while (current_index < priv->sram_desc.last_cb_index) {
2721                 udelay(50);
2722                 previous_index = current_index;
2723                 current_index = ipw_fw_dma_command_block_index(priv);
2724
2725                 if (previous_index < current_index) {
2726                         watchdog = 0;
2727                         continue;
2728                 }
2729                 if (++watchdog > 400) {
2730                         IPW_DEBUG_FW_INFO("Timeout\n");
2731                         ipw_fw_dma_dump_command_block(priv);
2732                         ipw_fw_dma_abort(priv);
2733                         return -1;
2734                 }
2735         }
2736
2737         ipw_fw_dma_abort(priv);
2738
2739         /*Disable the DMA in the CSR register */
2740         ipw_set_bit(priv, IPW_RESET_REG,
2741                     IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2742
2743         IPW_DEBUG_FW("<< dmaWaitSync \n");
2744         return 0;
2745 }
2746
2747 static void ipw_remove_current_network(struct ipw_priv *priv)
2748 {
2749         struct list_head *element, *safe;
2750         struct ieee80211_network *network = NULL;
2751         unsigned long flags;
2752
2753         spin_lock_irqsave(&priv->ieee->lock, flags);
2754         list_for_each_safe(element, safe, &priv->ieee->network_list) {
2755                 network = list_entry(element, struct ieee80211_network, list);
2756                 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
2757                         list_del(element);
2758                         list_add_tail(&network->list,
2759                                       &priv->ieee->network_free_list);
2760                 }
2761         }
2762         spin_unlock_irqrestore(&priv->ieee->lock, flags);
2763 }
2764
2765 /**
2766  * Check that card is still alive.
2767  * Reads debug register from domain0.
2768  * If card is present, pre-defined value should
2769  * be found there.
2770  *
2771  * @param priv
2772  * @return 1 if card is present, 0 otherwise
2773  */
2774 static inline int ipw_alive(struct ipw_priv *priv)
2775 {
2776         return ipw_read32(priv, 0x90) == 0xd55555d5;
2777 }
2778
2779 /* timeout in msec, attempted in 10-msec quanta */
2780 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
2781                                int timeout)
2782 {
2783         int i = 0;
2784
2785         do {
2786                 if ((ipw_read32(priv, addr) & mask) == mask)
2787                         return i;
2788                 mdelay(10);
2789                 i += 10;
2790         } while (i < timeout);
2791
2792         return -ETIME;
2793 }
2794
2795 /* These functions load the firmware and micro code for the operation of
2796  * the ipw hardware.  It assumes the buffer has all the bits for the
2797  * image and the caller is handling the memory allocation and clean up.
2798  */
2799
2800 static int ipw_stop_master(struct ipw_priv *priv)
2801 {
2802         int rc;
2803
2804         IPW_DEBUG_TRACE(">> \n");
2805         /* stop master. typical delay - 0 */
2806         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
2807
2808         /* timeout is in msec, polled in 10-msec quanta */
2809         rc = ipw_poll_bit(priv, IPW_RESET_REG,
2810                           IPW_RESET_REG_MASTER_DISABLED, 100);
2811         if (rc < 0) {
2812                 IPW_ERROR("wait for stop master failed after 100ms\n");
2813                 return -1;
2814         }
2815
2816         IPW_DEBUG_INFO("stop master %dms\n", rc);
2817
2818         return rc;
2819 }
2820
2821 static void ipw_arc_release(struct ipw_priv *priv)
2822 {
2823         IPW_DEBUG_TRACE(">> \n");
2824         mdelay(5);
2825
2826         ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
2827
2828         /* no one knows timing, for safety add some delay */
2829         mdelay(5);
2830 }
2831
2832 struct fw_chunk {
2833         u32 address;
2834         u32 length;
2835 };
2836
2837 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
2838 {
2839         int rc = 0, i, addr;
2840         u8 cr = 0;
2841         u16 *image;
2842
2843         image = (u16 *) data;
2844
2845         IPW_DEBUG_TRACE(">> \n");
2846
2847         rc = ipw_stop_master(priv);
2848
2849         if (rc < 0)
2850                 return rc;
2851
2852 //      spin_lock_irqsave(&priv->lock, flags);
2853
2854         for (addr = IPW_SHARED_LOWER_BOUND;
2855              addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
2856                 ipw_write32(priv, addr, 0);
2857         }
2858
2859         /* no ucode (yet) */
2860         memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
2861         /* destroy DMA queues */
2862         /* reset sequence */
2863
2864         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
2865         ipw_arc_release(priv);
2866         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
2867         mdelay(1);
2868
2869         /* reset PHY */
2870         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
2871         mdelay(1);
2872
2873         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
2874         mdelay(1);
2875
2876         /* enable ucode store */
2877         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
2878         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
2879         mdelay(1);
2880
2881         /* write ucode */
2882         /**
2883          * @bug
2884          * Do NOT set indirect address register once and then
2885          * store data to indirect data register in the loop.
2886          * It seems very reasonable, but in this case DINO do not
2887          * accept ucode. It is essential to set address each time.
2888          */
2889         /* load new ipw uCode */
2890         for (i = 0; i < len / 2; i++)
2891                 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
2892                                 cpu_to_le16(image[i]));
2893
2894         /* enable DINO */
2895         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
2896         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
2897
2898         /* this is where the igx / win driver deveates from the VAP driver. */
2899
2900         /* wait for alive response */
2901         for (i = 0; i < 100; i++) {
2902                 /* poll for incoming data */
2903                 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
2904                 if (cr & DINO_RXFIFO_DATA)
2905                         break;
2906                 mdelay(1);
2907         }
2908
2909         if (cr & DINO_RXFIFO_DATA) {
2910                 /* alive_command_responce size is NOT multiple of 4 */
2911                 u32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
2912
2913                 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
2914                         response_buffer[i] =
2915                             le32_to_cpu(ipw_read_reg32(priv,
2916                                                        IPW_BASEBAND_RX_FIFO_READ));
2917                 memcpy(&priv->dino_alive, response_buffer,
2918                        sizeof(priv->dino_alive));
2919                 if (priv->dino_alive.alive_command == 1
2920                     && priv->dino_alive.ucode_valid == 1) {
2921                         rc = 0;
2922                         IPW_DEBUG_INFO
2923                             ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
2924                              "of %02d/%02d/%02d %02d:%02d\n",
2925                              priv->dino_alive.software_revision,
2926                              priv->dino_alive.software_revision,
2927                              priv->dino_alive.device_identifier,
2928                              priv->dino_alive.device_identifier,
2929                              priv->dino_alive.time_stamp[0],
2930                              priv->dino_alive.time_stamp[1],
2931                              priv->dino_alive.time_stamp[2],
2932                              priv->dino_alive.time_stamp[3],
2933                              priv->dino_alive.time_stamp[4]);
2934                 } else {
2935                         IPW_DEBUG_INFO("Microcode is not alive\n");
2936                         rc = -EINVAL;
2937                 }
2938         } else {
2939                 IPW_DEBUG_INFO("No alive response from DINO\n");
2940                 rc = -ETIME;
2941         }
2942
2943         /* disable DINO, otherwise for some reason
2944            firmware have problem getting alive resp. */
2945         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
2946
2947 //      spin_unlock_irqrestore(&priv->lock, flags);
2948
2949         return rc;
2950 }
2951
2952 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
2953 {
2954         int rc = -1;
2955         int offset = 0;
2956         struct fw_chunk *chunk;
2957         dma_addr_t shared_phys;
2958         u8 *shared_virt;
2959
2960         IPW_DEBUG_TRACE("<< : \n");
2961         shared_virt = pci_alloc_consistent(priv->pci_dev, len, &shared_phys);
2962
2963         if (!shared_virt)
2964                 return -ENOMEM;
2965
2966         memmove(shared_virt, data, len);
2967
2968         /* Start the Dma */
2969         rc = ipw_fw_dma_enable(priv);
2970
2971         if (priv->sram_desc.last_cb_index > 0) {
2972                 /* the DMA is already ready this would be a bug. */
2973                 BUG();
2974                 goto out;
2975         }
2976
2977         do {
2978                 chunk = (struct fw_chunk *)(data + offset);
2979                 offset += sizeof(struct fw_chunk);
2980                 /* build DMA packet and queue up for sending */
2981                 /* dma to chunk->address, the chunk->length bytes from data +
2982                  * offeset*/
2983                 /* Dma loading */
2984                 rc = ipw_fw_dma_add_buffer(priv, shared_phys + offset,
2985                                            le32_to_cpu(chunk->address),
2986                                            le32_to_cpu(chunk->length));
2987                 if (rc) {
2988                         IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
2989                         goto out;
2990                 }
2991
2992                 offset += le32_to_cpu(chunk->length);
2993         } while (offset < len);
2994
2995         /* Run the DMA and wait for the answer */
2996         rc = ipw_fw_dma_kick(priv);
2997         if (rc) {
2998                 IPW_ERROR("dmaKick Failed\n");
2999                 goto out;
3000         }
3001
3002         rc = ipw_fw_dma_wait(priv);
3003         if (rc) {
3004                 IPW_ERROR("dmaWaitSync Failed\n");
3005                 goto out;
3006         }
3007       out:
3008         pci_free_consistent(priv->pci_dev, len, shared_virt, shared_phys);
3009         return rc;
3010 }
3011
3012 /* stop nic */
3013 static int ipw_stop_nic(struct ipw_priv *priv)
3014 {
3015         int rc = 0;
3016
3017         /* stop */
3018         ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3019
3020         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3021                           IPW_RESET_REG_MASTER_DISABLED, 500);
3022         if (rc < 0) {
3023                 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3024                 return rc;
3025         }
3026
3027         ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3028
3029         return rc;
3030 }
3031
3032 static void ipw_start_nic(struct ipw_priv *priv)
3033 {
3034         IPW_DEBUG_TRACE(">>\n");
3035
3036         /* prvHwStartNic  release ARC */
3037         ipw_clear_bit(priv, IPW_RESET_REG,
3038                       IPW_RESET_REG_MASTER_DISABLED |
3039                       IPW_RESET_REG_STOP_MASTER |
3040                       CBD_RESET_REG_PRINCETON_RESET);
3041
3042         /* enable power management */
3043         ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3044                     IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3045
3046         IPW_DEBUG_TRACE("<<\n");
3047 }
3048
3049 static int ipw_init_nic(struct ipw_priv *priv)
3050 {
3051         int rc;
3052
3053         IPW_DEBUG_TRACE(">>\n");
3054         /* reset */
3055         /*prvHwInitNic */
3056         /* set "initialization complete" bit to move adapter to D0 state */
3057         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3058
3059         /* low-level PLL activation */
3060         ipw_write32(priv, IPW_READ_INT_REGISTER,
3061                     IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3062
3063         /* wait for clock stabilization */
3064         rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3065                           IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3066         if (rc < 0)
3067                 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3068
3069         /* assert SW reset */
3070         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3071
3072         udelay(10);
3073
3074         /* set "initialization complete" bit to move adapter to D0 state */
3075         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3076
3077         IPW_DEBUG_TRACE(">>\n");
3078         return 0;
3079 }
3080
3081 /* Call this function from process context, it will sleep in request_firmware.
3082  * Probe is an ok place to call this from.
3083  */
3084 static int ipw_reset_nic(struct ipw_priv *priv)
3085 {
3086         int rc = 0;
3087         unsigned long flags;
3088
3089         IPW_DEBUG_TRACE(">>\n");
3090
3091         rc = ipw_init_nic(priv);
3092
3093         spin_lock_irqsave(&priv->lock, flags);
3094         /* Clear the 'host command active' bit... */
3095         priv->status &= ~STATUS_HCMD_ACTIVE;
3096         wake_up_interruptible(&priv->wait_command_queue);
3097         priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3098         wake_up_interruptible(&priv->wait_state);
3099         spin_unlock_irqrestore(&priv->lock, flags);
3100
3101         IPW_DEBUG_TRACE("<<\n");
3102         return rc;
3103 }
3104
3105
3106 struct ipw_fw {
3107         u32 ver;
3108         u32 boot_size;
3109         u32 ucode_size;
3110         u32 fw_size;
3111         u8 data[0];
3112 };
3113
3114 static int ipw_get_fw(struct ipw_priv *priv,
3115                       const struct firmware **raw, const char *name)
3116 {
3117         struct ipw_fw *fw;
3118         int rc;
3119
3120         /* ask firmware_class module to get the boot firmware off disk */
3121         rc = request_firmware(raw, name, &priv->pci_dev->dev);
3122         if (rc < 0) {
3123                 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3124                 return rc;
3125         }
3126
3127         if ((*raw)->size < sizeof(*fw)) {
3128                 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3129                 return -EINVAL;
3130         }
3131
3132         fw = (void *)(*raw)->data;
3133
3134         if ((*raw)->size < sizeof(*fw) +
3135             fw->boot_size + fw->ucode_size + fw->fw_size) {
3136                 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3137                           name, (*raw)->size);
3138                 return -EINVAL;
3139         }
3140
3141         IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3142                        name,
3143                        le32_to_cpu(fw->ver) >> 16,
3144                        le32_to_cpu(fw->ver) & 0xff,
3145                        (*raw)->size - sizeof(*fw));
3146         return 0;
3147 }
3148
3149 #define IPW_RX_BUF_SIZE (3000)
3150
3151 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3152                                       struct ipw_rx_queue *rxq)
3153 {
3154         unsigned long flags;
3155         int i;
3156
3157         spin_lock_irqsave(&rxq->lock, flags);
3158
3159         INIT_LIST_HEAD(&rxq->rx_free);
3160         INIT_LIST_HEAD(&rxq->rx_used);
3161
3162         /* Fill the rx_used queue with _all_ of the Rx buffers */
3163         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3164                 /* In the reset function, these buffers may have been allocated
3165                  * to an SKB, so we need to unmap and free potential storage */
3166                 if (rxq->pool[i].skb != NULL) {
3167                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3168                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3169                         dev_kfree_skb(rxq->pool[i].skb);
3170                         rxq->pool[i].skb = NULL;
3171                 }
3172                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3173         }
3174
3175         /* Set us so that we have processed and used all buffers, but have
3176          * not restocked the Rx queue with fresh buffers */
3177         rxq->read = rxq->write = 0;
3178         rxq->processed = RX_QUEUE_SIZE - 1;
3179         rxq->free_count = 0;
3180         spin_unlock_irqrestore(&rxq->lock, flags);
3181 }
3182
3183 #ifdef CONFIG_PM
3184 static int fw_loaded = 0;
3185 static const struct firmware *raw = NULL;
3186
3187 static void free_firmware(void)
3188 {
3189         if (fw_loaded) {
3190                 release_firmware(raw);
3191                 raw = NULL;
3192                 fw_loaded = 0;
3193         }
3194 }
3195 #else
3196 #define free_firmware() do {} while (0)
3197 #endif
3198
3199 static int ipw_load(struct ipw_priv *priv)
3200 {
3201 #ifndef CONFIG_PM
3202         const struct firmware *raw = NULL;
3203 #endif
3204         struct ipw_fw *fw;
3205         u8 *boot_img, *ucode_img, *fw_img;
3206         u8 *name = NULL;
3207         int rc = 0, retries = 3;
3208
3209         switch (priv->ieee->iw_mode) {
3210         case IW_MODE_ADHOC:
3211                 name = "ipw2200-ibss.fw";
3212                 break;
3213 #ifdef CONFIG_IPW2200_MONITOR
3214         case IW_MODE_MONITOR:
3215                 name = "ipw2200-sniffer.fw";
3216                 break;
3217 #endif
3218         case IW_MODE_INFRA:
3219                 name = "ipw2200-bss.fw";
3220                 break;
3221         }
3222
3223         if (!name) {
3224                 rc = -EINVAL;
3225                 goto error;
3226         }
3227
3228 #ifdef CONFIG_PM
3229         if (!fw_loaded) {
3230 #endif
3231                 rc = ipw_get_fw(priv, &raw, name);
3232                 if (rc < 0)
3233                         goto error;
3234 #ifdef CONFIG_PM
3235         }
3236 #endif
3237
3238         fw = (void *)raw->data;
3239         boot_img = &fw->data[0];
3240         ucode_img = &fw->data[fw->boot_size];
3241         fw_img = &fw->data[fw->boot_size + fw->ucode_size];
3242
3243         if (rc < 0)
3244                 goto error;
3245
3246         if (!priv->rxq)
3247                 priv->rxq = ipw_rx_queue_alloc(priv);
3248         else
3249                 ipw_rx_queue_reset(priv, priv->rxq);
3250         if (!priv->rxq) {
3251                 IPW_ERROR("Unable to initialize Rx queue\n");
3252                 goto error;
3253         }
3254
3255       retry:
3256         /* Ensure interrupts are disabled */
3257         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3258         priv->status &= ~STATUS_INT_ENABLED;
3259
3260         /* ack pending interrupts */
3261         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3262
3263         ipw_stop_nic(priv);
3264
3265         rc = ipw_reset_nic(priv);
3266         if (rc < 0) {
3267                 IPW_ERROR("Unable to reset NIC\n");
3268                 goto error;
3269         }
3270
3271         ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3272                         IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3273
3274         /* DMA the initial boot firmware into the device */
3275         rc = ipw_load_firmware(priv, boot_img, fw->boot_size);
3276         if (rc < 0) {
3277                 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3278                 goto error;
3279         }
3280
3281         /* kick start the device */
3282         ipw_start_nic(priv);
3283
3284         /* wait for the device to finish its initial startup sequence */
3285         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3286                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3287         if (rc < 0) {
3288                 IPW_ERROR("device failed to boot initial fw image\n");
3289                 goto error;
3290         }
3291         IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3292
3293         /* ack fw init done interrupt */
3294         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3295
3296         /* DMA the ucode into the device */
3297         rc = ipw_load_ucode(priv, ucode_img, fw->ucode_size);
3298         if (rc < 0) {
3299                 IPW_ERROR("Unable to load ucode: %d\n", rc);
3300                 goto error;
3301         }
3302
3303         /* stop nic */
3304         ipw_stop_nic(priv);
3305
3306         /* DMA bss firmware into the device */
3307         rc = ipw_load_firmware(priv, fw_img, fw->fw_size);
3308         if (rc < 0) {
3309                 IPW_ERROR("Unable to load firmware: %d\n", rc);
3310                 goto error;
3311         }
3312 #ifdef CONFIG_PM
3313         fw_loaded = 1;
3314 #endif
3315
3316         ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3317
3318         rc = ipw_queue_reset(priv);
3319         if (rc < 0) {
3320                 IPW_ERROR("Unable to initialize queues\n");
3321                 goto error;
3322         }
3323
3324         /* Ensure interrupts are disabled */
3325         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3326         /* ack pending interrupts */
3327         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3328
3329         /* kick start the device */
3330         ipw_start_nic(priv);
3331
3332         if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3333                 if (retries > 0) {
3334                         IPW_WARNING("Parity error.  Retrying init.\n");
3335                         retries--;
3336                         goto retry;
3337                 }
3338
3339                 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3340                 rc = -EIO;
3341                 goto error;
3342         }
3343
3344         /* wait for the device */
3345         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3346                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3347         if (rc < 0) {
3348                 IPW_ERROR("device failed to start within 500ms\n");
3349                 goto error;
3350         }
3351         IPW_DEBUG_INFO("device response after %dms\n", rc);
3352
3353         /* ack fw init done interrupt */
3354         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3355
3356         /* read eeprom data and initialize the eeprom region of sram */
3357         priv->eeprom_delay = 1;
3358         ipw_eeprom_init_sram(priv);
3359
3360         /* enable interrupts */
3361         ipw_enable_interrupts(priv);
3362
3363         /* Ensure our queue has valid packets */
3364         ipw_rx_queue_replenish(priv);
3365
3366         ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3367
3368         /* ack pending interrupts */
3369         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3370
3371 #ifndef CONFIG_PM
3372         release_firmware(raw);
3373 #endif
3374         return 0;
3375
3376       error:
3377         if (priv->rxq) {
3378                 ipw_rx_queue_free(priv, priv->rxq);
3379                 priv->rxq = NULL;
3380         }
3381         ipw_tx_queue_free(priv);
3382         if (raw)
3383                 release_firmware(raw);
3384 #ifdef CONFIG_PM
3385         fw_loaded = 0;
3386         raw = NULL;
3387 #endif
3388
3389         return rc;
3390 }
3391
3392 /**
3393  * DMA services
3394  *
3395  * Theory of operation
3396  *
3397  * A queue is a circular buffers with 'Read' and 'Write' pointers.
3398  * 2 empty entries always kept in the buffer to protect from overflow.
3399  *
3400  * For Tx queue, there are low mark and high mark limits. If, after queuing
3401  * the packet for Tx, free space become < low mark, Tx queue stopped. When
3402  * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3403  * Tx queue resumed.
3404  *
3405  * The IPW operates with six queues, one receive queue in the device's
3406  * sram, one transmit queue for sending commands to the device firmware,
3407  * and four transmit queues for data.
3408  *
3409  * The four transmit queues allow for performing quality of service (qos)
3410  * transmissions as per the 802.11 protocol.  Currently Linux does not
3411  * provide a mechanism to the user for utilizing prioritized queues, so
3412  * we only utilize the first data transmit queue (queue1).
3413  */
3414
3415 /**
3416  * Driver allocates buffers of this size for Rx
3417  */
3418
3419 static inline int ipw_queue_space(const struct clx2_queue *q)
3420 {
3421         int s = q->last_used - q->first_empty;
3422         if (s <= 0)
3423                 s += q->n_bd;
3424         s -= 2;                 /* keep some reserve to not confuse empty and full situations */
3425         if (s < 0)
3426                 s = 0;
3427         return s;
3428 }
3429
3430 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3431 {
3432         return (++index == n_bd) ? 0 : index;
3433 }
3434
3435 /**
3436  * Initialize common DMA queue structure
3437  *
3438  * @param q                queue to init
3439  * @param count            Number of BD's to allocate. Should be power of 2
3440  * @param read_register    Address for 'read' register
3441  *                         (not offset within BAR, full address)
3442  * @param write_register   Address for 'write' register
3443  *                         (not offset within BAR, full address)
3444  * @param base_register    Address for 'base' register
3445  *                         (not offset within BAR, full address)
3446  * @param size             Address for 'size' register
3447  *                         (not offset within BAR, full address)
3448  */
3449 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3450                            int count, u32 read, u32 write, u32 base, u32 size)
3451 {
3452         q->n_bd = count;
3453
3454         q->low_mark = q->n_bd / 4;
3455         if (q->low_mark < 4)
3456                 q->low_mark = 4;
3457
3458         q->high_mark = q->n_bd / 8;
3459         if (q->high_mark < 2)
3460                 q->high_mark = 2;
3461
3462         q->first_empty = q->last_used = 0;
3463         q->reg_r = read;
3464         q->reg_w = write;
3465
3466         ipw_write32(priv, base, q->dma_addr);
3467         ipw_write32(priv, size, count);
3468         ipw_write32(priv, read, 0);
3469         ipw_write32(priv, write, 0);
3470
3471         _ipw_read32(priv, 0x90);
3472 }
3473
3474 static int ipw_queue_tx_init(struct ipw_priv *priv,
3475                              struct clx2_tx_queue *q,
3476                              int count, u32 read, u32 write, u32 base, u32 size)
3477 {
3478         struct pci_dev *dev = priv->pci_dev;
3479
3480         q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3481         if (!q->txb) {
3482                 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3483                 return -ENOMEM;
3484         }
3485
3486         q->bd =
3487             pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3488         if (!q->bd) {
3489                 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3490                           sizeof(q->bd[0]) * count);
3491                 kfree(q->txb);
3492                 q->txb = NULL;
3493                 return -ENOMEM;
3494         }
3495
3496         ipw_queue_init(priv, &q->q, count, read, write, base, size);
3497         return 0;
3498 }
3499
3500 /**
3501  * Free one TFD, those at index [txq->q.last_used].
3502  * Do NOT advance any indexes
3503  *
3504  * @param dev
3505  * @param txq
3506  */
3507 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3508                                   struct clx2_tx_queue *txq)
3509 {
3510         struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3511         struct pci_dev *dev = priv->pci_dev;
3512         int i;
3513
3514         /* classify bd */
3515         if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3516                 /* nothing to cleanup after for host commands */
3517                 return;
3518
3519         /* sanity check */
3520         if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3521                 IPW_ERROR("Too many chunks: %i\n",
3522                           le32_to_cpu(bd->u.data.num_chunks));
3523                 /** @todo issue fatal error, it is quite serious situation */
3524                 return;
3525         }
3526
3527         /* unmap chunks if any */
3528         for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3529                 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3530                                  le16_to_cpu(bd->u.data.chunk_len[i]),
3531                                  PCI_DMA_TODEVICE);
3532                 if (txq->txb[txq->q.last_used]) {
3533                         ieee80211_txb_free(txq->txb[txq->q.last_used]);
3534                         txq->txb[txq->q.last_used] = NULL;
3535                 }
3536         }
3537 }
3538
3539 /**
3540  * Deallocate DMA queue.
3541  *
3542  * Empty queue by removing and destroying all BD's.
3543  * Free all buffers.
3544  *
3545  * @param dev
3546  * @param q
3547  */
3548 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3549 {
3550         struct clx2_queue *q = &txq->q;
3551         struct pci_dev *dev = priv->pci_dev;
3552
3553         if (q->n_bd == 0)
3554                 return;
3555
3556         /* first, empty all BD's */
3557         for (; q->first_empty != q->last_used;
3558              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3559                 ipw_queue_tx_free_tfd(priv, txq);
3560         }
3561
3562         /* free buffers belonging to queue itself */
3563         pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3564                             q->dma_addr);
3565         kfree(txq->txb);
3566
3567         /* 0 fill whole structure */
3568         memset(txq, 0, sizeof(*txq));
3569 }
3570
3571 /**
3572  * Destroy all DMA queues and structures
3573  *
3574  * @param priv
3575  */
3576 static void ipw_tx_queue_free(struct ipw_priv *priv)
3577 {
3578         /* Tx CMD queue */
3579         ipw_queue_tx_free(priv, &priv->txq_cmd);
3580
3581         /* Tx queues */
3582         ipw_queue_tx_free(priv, &priv->txq[0]);
3583         ipw_queue_tx_free(priv, &priv->txq[1]);
3584         ipw_queue_tx_free(priv, &priv->txq[2]);
3585         ipw_queue_tx_free(priv, &priv->txq[3]);
3586 }
3587
3588 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3589 {
3590         /* First 3 bytes are manufacturer */
3591         bssid[0] = priv->mac_addr[0];
3592         bssid[1] = priv->mac_addr[1];
3593         bssid[2] = priv->mac_addr[2];
3594
3595         /* Last bytes are random */
3596         get_random_bytes(&bssid[3], ETH_ALEN - 3);
3597
3598         bssid[0] &= 0xfe;       /* clear multicast bit */
3599         bssid[0] |= 0x02;       /* set local assignment bit (IEEE802) */
3600 }
3601
3602 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3603 {
3604         struct ipw_station_entry entry;
3605         int i;
3606
3607         for (i = 0; i < priv->num_stations; i++) {
3608                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3609                         /* Another node is active in network */
3610                         priv->missed_adhoc_beacons = 0;
3611                         if (!(priv->config & CFG_STATIC_CHANNEL))
3612                                 /* when other nodes drop out, we drop out */
3613                                 priv->config &= ~CFG_ADHOC_PERSIST;
3614
3615                         return i;
3616                 }
3617         }
3618
3619         if (i == MAX_STATIONS)
3620                 return IPW_INVALID_STATION;
3621
3622         IPW_DEBUG_SCAN("Adding AdHoc station: " MAC_FMT "\n", MAC_ARG(bssid));
3623
3624         entry.reserved = 0;
3625         entry.support_mode = 0;
3626         memcpy(entry.mac_addr, bssid, ETH_ALEN);
3627         memcpy(priv->stations[i], bssid, ETH_ALEN);
3628         ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3629                          &entry, sizeof(entry));
3630         priv->num_stations++;
3631
3632         return i;
3633 }
3634
3635 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3636 {
3637         int i;
3638
3639         for (i = 0; i < priv->num_stations; i++)
3640                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3641                         return i;
3642
3643         return IPW_INVALID_STATION;
3644 }
3645
3646 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3647 {
3648         int err;
3649
3650         if (priv->status & STATUS_ASSOCIATING) {
3651                 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3652                 queue_work(priv->workqueue, &priv->disassociate);
3653                 return;
3654         }
3655
3656         if (!(priv->status & STATUS_ASSOCIATED)) {
3657                 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3658                 return;
3659         }
3660
3661         IPW_DEBUG_ASSOC("Disassocation attempt from " MAC_FMT " "
3662                         "on channel %d.\n",
3663                         MAC_ARG(priv->assoc_request.bssid),
3664                         priv->assoc_request.channel);
3665
3666         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3667         priv->status |= STATUS_DISASSOCIATING;
3668
3669         if (quiet)
3670                 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3671         else
3672                 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3673
3674         err = ipw_send_associate(priv, &priv->assoc_request);
3675         if (err) {
3676                 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3677                              "failed.\n");
3678                 return;
3679         }
3680
3681 }
3682
3683 static int ipw_disassociate(void *data)
3684 {
3685         struct ipw_priv *priv = data;
3686         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3687                 return 0;
3688         ipw_send_disassociate(data, 0);
3689         return 1;
3690 }
3691
3692 static void ipw_bg_disassociate(void *data)
3693 {
3694         struct ipw_priv *priv = data;
3695         mutex_lock(&priv->mutex);
3696         ipw_disassociate(data);
3697         mutex_unlock(&priv->mutex);
3698 }
3699
3700 static void ipw_system_config(void *data)
3701 {
3702         struct ipw_priv *priv = data;
3703         ipw_send_system_config(priv, &priv->sys_config);
3704 }
3705
3706 struct ipw_status_code {
3707         u16 status;
3708         const char *reason;
3709 };
3710
3711 static const struct ipw_status_code ipw_status_codes[] = {
3712         {0x00, "Successful"},
3713         {0x01, "Unspecified failure"},
3714         {0x0A, "Cannot support all requested capabilities in the "
3715          "Capability information field"},
3716         {0x0B, "Reassociation denied due to inability to confirm that "
3717          "association exists"},
3718         {0x0C, "Association denied due to reason outside the scope of this "
3719          "standard"},
3720         {0x0D,
3721          "Responding station does not support the specified authentication "
3722          "algorithm"},
3723         {0x0E,
3724          "Received an Authentication frame with authentication sequence "
3725          "transaction sequence number out of expected sequence"},
3726         {0x0F, "Authentication rejected because of challenge failure"},
3727         {0x10, "Authentication rejected due to timeout waiting for next "
3728          "frame in sequence"},
3729         {0x11, "Association denied because AP is unable to handle additional "
3730          "associated stations"},
3731         {0x12,
3732          "Association denied due to requesting station not supporting all "
3733          "of the datarates in the BSSBasicServiceSet Parameter"},
3734         {0x13,
3735          "Association denied due to requesting station not supporting "
3736          "short preamble operation"},
3737         {0x14,
3738          "Association denied due to requesting station not supporting "
3739          "PBCC encoding"},
3740         {0x15,
3741          "Association denied due to requesting station not supporting "
3742          "channel agility"},
3743         {0x19,
3744          "Association denied due to requesting station not supporting "
3745          "short slot operation"},
3746         {0x1A,
3747          "Association denied due to requesting station not supporting "
3748          "DSSS-OFDM operation"},
3749         {0x28, "Invalid Information Element"},
3750         {0x29, "Group Cipher is not valid"},
3751         {0x2A, "Pairwise Cipher is not valid"},
3752         {0x2B, "AKMP is not valid"},
3753         {0x2C, "Unsupported RSN IE version"},
3754         {0x2D, "Invalid RSN IE Capabilities"},
3755         {0x2E, "Cipher suite is rejected per security policy"},
3756 };
3757
3758 #ifdef CONFIG_IPW2200_DEBUG
3759 static const char *ipw_get_status_code(u16 status)
3760 {
3761         int i;
3762         for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
3763                 if (ipw_status_codes[i].status == (status & 0xff))
3764                         return ipw_status_codes[i].reason;
3765         return "Unknown status value.";
3766 }
3767 #endif
3768
3769 static void inline average_init(struct average *avg)
3770 {
3771         memset(avg, 0, sizeof(*avg));
3772 }
3773
3774 #define DEPTH_RSSI 8
3775 #define DEPTH_NOISE 16
3776 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
3777 {
3778         return ((depth-1)*prev_avg +  val)/depth;
3779 }
3780
3781 static void average_add(struct average *avg, s16 val)
3782 {
3783         avg->sum -= avg->entries[avg->pos];
3784         avg->sum += val;
3785         avg->entries[avg->pos++] = val;
3786         if (unlikely(avg->pos == AVG_ENTRIES)) {
3787                 avg->init = 1;
3788                 avg->pos = 0;
3789         }
3790 }
3791
3792 static s16 average_value(struct average *avg)
3793 {
3794         if (!unlikely(avg->init)) {
3795                 if (avg->pos)
3796                         return avg->sum / avg->pos;
3797                 return 0;
3798         }
3799
3800         return avg->sum / AVG_ENTRIES;
3801 }
3802
3803 static void ipw_reset_stats(struct ipw_priv *priv)
3804 {
3805         u32 len = sizeof(u32);
3806
3807         priv->quality = 0;
3808
3809         average_init(&priv->average_missed_beacons);
3810         priv->exp_avg_rssi = -60;
3811         priv->exp_avg_noise = -85 + 0x100;
3812
3813         priv->last_rate = 0;
3814         priv->last_missed_beacons = 0;
3815         priv->last_rx_packets = 0;
3816         priv->last_tx_packets = 0;
3817         priv->last_tx_failures = 0;
3818
3819         /* Firmware managed, reset only when NIC is restarted, so we have to
3820          * normalize on the current value */
3821         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
3822                         &priv->last_rx_err, &len);
3823         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
3824                         &priv->last_tx_failures, &len);
3825
3826         /* Driver managed, reset with each association */
3827         priv->missed_adhoc_beacons = 0;
3828         priv->missed_beacons = 0;
3829         priv->tx_packets = 0;
3830         priv->rx_packets = 0;
3831
3832 }
3833
3834 static u32 ipw_get_max_rate(struct ipw_priv *priv)
3835 {
3836         u32 i = 0x80000000;
3837         u32 mask = priv->rates_mask;
3838         /* If currently associated in B mode, restrict the maximum
3839          * rate match to B rates */
3840         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
3841                 mask &= IEEE80211_CCK_RATES_MASK;
3842
3843         /* TODO: Verify that the rate is supported by the current rates
3844          * list. */
3845
3846         while (i && !(mask & i))
3847                 i >>= 1;
3848         switch (i) {
3849         case IEEE80211_CCK_RATE_1MB_MASK:
3850                 return 1000000;
3851         case IEEE80211_CCK_RATE_2MB_MASK:
3852                 return 2000000;
3853         case IEEE80211_CCK_RATE_5MB_MASK:
3854                 return 5500000;
3855         case IEEE80211_OFDM_RATE_6MB_MASK:
3856                 return 6000000;
3857         case IEEE80211_OFDM_RATE_9MB_MASK:
3858                 return 9000000;
3859         case IEEE80211_CCK_RATE_11MB_MASK:
3860                 return 11000000;
3861         case IEEE80211_OFDM_RATE_12MB_MASK:
3862                 return 12000000;
3863         case IEEE80211_OFDM_RATE_18MB_MASK:
3864                 return 18000000;
3865         case IEEE80211_OFDM_RATE_24MB_MASK:
3866                 return 24000000;
3867         case IEEE80211_OFDM_RATE_36MB_MASK:
3868                 return 36000000;
3869         case IEEE80211_OFDM_RATE_48MB_MASK:
3870                 return 48000000;
3871         case IEEE80211_OFDM_RATE_54MB_MASK:
3872                 return 54000000;
3873         }
3874
3875         if (priv->ieee->mode == IEEE_B)
3876                 return 11000000;
3877         else
3878                 return 54000000;
3879 }
3880
3881 static u32 ipw_get_current_rate(struct ipw_priv *priv)
3882 {
3883         u32 rate, len = sizeof(rate);
3884         int err;
3885
3886         if (!(priv->status & STATUS_ASSOCIATED))
3887                 return 0;
3888
3889         if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
3890                 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
3891                                       &len);
3892                 if (err) {
3893                         IPW_DEBUG_INFO("failed querying ordinals.\n");
3894                         return 0;
3895                 }
3896         } else
3897                 return ipw_get_max_rate(priv);
3898
3899         switch (rate) {
3900         case IPW_TX_RATE_1MB:
3901                 return 1000000;
3902         case IPW_TX_RATE_2MB:
3903                 return 2000000;
3904         case IPW_TX_RATE_5MB:
3905                 return 5500000;
3906         case IPW_TX_RATE_6MB:
3907                 return 6000000;
3908         case IPW_TX_RATE_9MB:
3909                 return 9000000;
3910         case IPW_TX_RATE_11MB:
3911                 return 11000000;
3912         case IPW_TX_RATE_12MB:
3913                 return 12000000;
3914         case IPW_TX_RATE_18MB:
3915                 return 18000000;
3916         case IPW_TX_RATE_24MB:
3917                 return 24000000;
3918         case IPW_TX_RATE_36MB:
3919                 return 36000000;
3920         case IPW_TX_RATE_48MB:
3921                 return 48000000;
3922         case IPW_TX_RATE_54MB:
3923                 return 54000000;
3924         }
3925
3926         return 0;
3927 }
3928
3929 #define IPW_STATS_INTERVAL (2 * HZ)
3930 static void ipw_gather_stats(struct ipw_priv *priv)
3931 {
3932         u32 rx_err, rx_err_delta, rx_packets_delta;
3933         u32 tx_failures, tx_failures_delta, tx_packets_delta;
3934         u32 missed_beacons_percent, missed_beacons_delta;
3935         u32 quality = 0;
3936         u32 len = sizeof(u32);
3937         s16 rssi;
3938         u32 beacon_quality, signal_quality, tx_quality, rx_quality,
3939             rate_quality;
3940         u32 max_rate;
3941
3942         if (!(priv->status & STATUS_ASSOCIATED)) {
3943                 priv->quality = 0;
3944                 return;
3945         }
3946
3947         /* Update the statistics */
3948         ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
3949                         &priv->missed_beacons, &len);
3950         missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
3951         priv->last_missed_beacons = priv->missed_beacons;
3952         if (priv->assoc_request.beacon_interval) {
3953                 missed_beacons_percent = missed_beacons_delta *
3954                     (HZ * priv->assoc_request.beacon_interval) /
3955                     (IPW_STATS_INTERVAL * 10);
3956         } else {
3957                 missed_beacons_percent = 0;
3958         }
3959         average_add(&priv->average_missed_beacons, missed_beacons_percent);
3960
3961         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
3962         rx_err_delta = rx_err - priv->last_rx_err;
3963         priv->last_rx_err = rx_err;
3964
3965         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
3966         tx_failures_delta = tx_failures - priv->last_tx_failures;
3967         priv->last_tx_failures = tx_failures;
3968
3969         rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
3970         priv->last_rx_packets = priv->rx_packets;
3971
3972         tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
3973         priv->last_tx_packets = priv->tx_packets;
3974
3975         /* Calculate quality based on the following:
3976          *
3977          * Missed beacon: 100% = 0, 0% = 70% missed
3978          * Rate: 60% = 1Mbs, 100% = Max
3979          * Rx and Tx errors represent a straight % of total Rx/Tx
3980          * RSSI: 100% = > -50,  0% = < -80
3981          * Rx errors: 100% = 0, 0% = 50% missed
3982          *
3983          * The lowest computed quality is used.
3984          *
3985          */
3986 #define BEACON_THRESHOLD 5
3987         beacon_quality = 100 - missed_beacons_percent;
3988         if (beacon_quality < BEACON_THRESHOLD)
3989                 beacon_quality = 0;
3990         else
3991                 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
3992                     (100 - BEACON_THRESHOLD);
3993         IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
3994                         beacon_quality, missed_beacons_percent);
3995
3996         priv->last_rate = ipw_get_current_rate(priv);
3997         max_rate = ipw_get_max_rate(priv);
3998         rate_quality = priv->last_rate * 40 / max_rate + 60;
3999         IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4000                         rate_quality, priv->last_rate / 1000000);
4001
4002         if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4003                 rx_quality = 100 - (rx_err_delta * 100) /
4004                     (rx_packets_delta + rx_err_delta);
4005         else
4006                 rx_quality = 100;
4007         IPW_DEBUG_STATS("Rx quality   : %3d%% (%u errors, %u packets)\n",
4008                         rx_quality, rx_err_delta, rx_packets_delta);
4009
4010         if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4011                 tx_quality = 100 - (tx_failures_delta * 100) /
4012                     (tx_packets_delta + tx_failures_delta);
4013         else
4014                 tx_quality = 100;
4015         IPW_DEBUG_STATS("Tx quality   : %3d%% (%u errors, %u packets)\n",
4016                         tx_quality, tx_failures_delta, tx_packets_delta);
4017
4018         rssi = priv->exp_avg_rssi;
4019         signal_quality =
4020             (100 *
4021              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4022              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4023              (priv->ieee->perfect_rssi - rssi) *
4024              (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4025               62 * (priv->ieee->perfect_rssi - rssi))) /
4026             ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4027              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4028         if (signal_quality > 100)
4029                 signal_quality = 100;
4030         else if (signal_quality < 1)
4031                 signal_quality = 0;
4032
4033         IPW_ERROR("Signal level : %3d%% (%d dBm)\n",
4034                         signal_quality, rssi);
4035
4036         quality = min(beacon_quality,
4037                       min(rate_quality,
4038                           min(tx_quality, min(rx_quality, signal_quality))));
4039         if (quality == beacon_quality)
4040                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4041                                 quality);
4042         if (quality == rate_quality)
4043                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4044                                 quality);
4045         if (quality == tx_quality)
4046                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4047                                 quality);
4048         if (quality == rx_quality)
4049                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4050                                 quality);
4051         if (quality == signal_quality)
4052                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4053                                 quality);
4054
4055         priv->quality = quality;
4056
4057         queue_delayed_work(priv->workqueue, &priv->gather_stats,
4058                            IPW_STATS_INTERVAL);
4059 }
4060
4061 static void ipw_bg_gather_stats(void *data)
4062 {
4063         struct ipw_priv *priv = data;
4064         mutex_lock(&priv->mutex);
4065         ipw_gather_stats(data);
4066         mutex_unlock(&priv->mutex);
4067 }
4068
4069 /* Missed beacon behavior:
4070  * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4071  * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4072  * Above disassociate threshold, give up and stop scanning.
4073  * Roaming is disabled if disassociate_threshold <= roaming_threshold  */
4074 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4075                                             int missed_count)
4076 {
4077         priv->notif_missed_beacons = missed_count;
4078
4079         if (missed_count > priv->disassociate_threshold &&
4080             priv->status & STATUS_ASSOCIATED) {
4081                 /* If associated and we've hit the missed
4082                  * beacon threshold, disassociate, turn
4083                  * off roaming, and abort any active scans */
4084                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4085                           IPW_DL_STATE | IPW_DL_ASSOC,
4086                           "Missed beacon: %d - disassociate\n", missed_count);
4087                 priv->status &= ~STATUS_ROAMING;
4088                 if (priv->status & STATUS_SCANNING) {
4089                         IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4090                                   IPW_DL_STATE,
4091                                   "Aborting scan with missed beacon.\n");
4092                         queue_work(priv->workqueue, &priv->abort_scan);
4093                 }
4094
4095                 queue_work(priv->workqueue, &priv->disassociate);
4096                 return;
4097         }
4098
4099         if (priv->status & STATUS_ROAMING) {
4100                 /* If we are currently roaming, then just
4101                  * print a debug statement... */
4102                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4103                           "Missed beacon: %d - roam in progress\n",
4104                           missed_count);
4105                 return;
4106         }
4107
4108         if (roaming &&
4109             (missed_count > priv->roaming_threshold &&
4110              missed_count <= priv->disassociate_threshold)) {
4111                 /* If we are not already roaming, set the ROAM
4112                  * bit in the status and kick off a scan.
4113                  * This can happen several times before we reach
4114                  * disassociate_threshold. */
4115                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4116                           "Missed beacon: %d - initiate "
4117                           "roaming\n", missed_count);
4118                 if (!(priv->status & STATUS_ROAMING)) {
4119                         priv->status |= STATUS_ROAMING;
4120                         if (!(priv->status & STATUS_SCANNING))
4121                                 queue_work(priv->workqueue,
4122                                            &priv->request_scan);
4123                 }
4124                 return;
4125         }
4126
4127         if (priv->status & STATUS_SCANNING) {
4128                 /* Stop scan to keep fw from getting
4129                  * stuck (only if we aren't roaming --
4130                  * otherwise we'll never scan more than 2 or 3
4131                  * channels..) */
4132                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4133                           "Aborting scan with missed beacon.\n");
4134                 queue_work(priv->workqueue, &priv->abort_scan);
4135         }
4136
4137         IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4138 }
4139
4140 /**
4141  * Handle host notification packet.
4142  * Called from interrupt routine
4143  */
4144 static void ipw_rx_notification(struct ipw_priv *priv,
4145                                        struct ipw_rx_notification *notif)
4146 {
4147         notif->size = le16_to_cpu(notif->size);
4148
4149         IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, notif->size);
4150
4151         switch (notif->subtype) {
4152         case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4153                         struct notif_association *assoc = &notif->u.assoc;
4154
4155                         switch (assoc->state) {
4156                         case CMAS_ASSOCIATED:{
4157                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4158                                                   IPW_DL_ASSOC,
4159                                                   "associated: '%s' " MAC_FMT
4160                                                   " \n",
4161                                                   escape_essid(priv->essid,
4162                                                                priv->essid_len),
4163                                                   MAC_ARG(priv->bssid));
4164
4165                                         switch (priv->ieee->iw_mode) {
4166                                         case IW_MODE_INFRA:
4167                                                 memcpy(priv->ieee->bssid,
4168                                                        priv->bssid, ETH_ALEN);
4169                                                 break;
4170
4171                                         case IW_MODE_ADHOC:
4172                                                 memcpy(priv->ieee->bssid,
4173                                                        priv->bssid, ETH_ALEN);
4174
4175                                                 /* clear out the station table */
4176                                                 priv->num_stations = 0;
4177
4178                                                 IPW_DEBUG_ASSOC
4179                                                     ("queueing adhoc check\n");
4180                                                 queue_delayed_work(priv->
4181                                                                    workqueue,
4182                                                                    &priv->
4183                                                                    adhoc_check,
4184                                                                    priv->
4185                                                                    assoc_request.
4186                                                                    beacon_interval);
4187                                                 break;
4188                                         }
4189
4190                                         priv->status &= ~STATUS_ASSOCIATING;
4191                                         priv->status |= STATUS_ASSOCIATED;
4192                                         queue_work(priv->workqueue,
4193                                                    &priv->system_config);
4194
4195 #ifdef CONFIG_IPW_QOS
4196 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4197                          le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_ctl))
4198                                         if ((priv->status & STATUS_AUTH) &&
4199                                             (IPW_GET_PACKET_STYPE(&notif->u.raw)
4200                                              == IEEE80211_STYPE_ASSOC_RESP)) {
4201                                                 if ((sizeof
4202                                                      (struct
4203                                                       ieee80211_assoc_response)
4204                                                      <= notif->size)
4205                                                     && (notif->size <= 2314)) {
4206                                                         struct
4207                                                         ieee80211_rx_stats
4208                                                             stats = {
4209                                                                 .len =
4210                                                                     notif->
4211                                                                     size - 1,
4212                                                         };
4213
4214                                                         IPW_DEBUG_QOS
4215                                                             ("QoS Associate "
4216                                                              "size %d\n",
4217                                                              notif->size);
4218                                                         ieee80211_rx_mgt(priv->
4219                                                                          ieee,
4220                                                                          (struct
4221                                                                           ieee80211_hdr_4addr
4222                                                                           *)
4223                                                                          &notif->u.raw, &stats);
4224                                                 }
4225                                         }
4226 #endif
4227
4228                                         schedule_work(&priv->link_up);
4229
4230                                         break;
4231                                 }
4232
4233                         case CMAS_AUTHENTICATED:{
4234                                         if (priv->
4235                                             status & (STATUS_ASSOCIATED |
4236                                                       STATUS_AUTH)) {
4237 #ifdef CONFIG_IPW2200_DEBUG
4238                                                 struct notif_authenticate *auth
4239                                                     = &notif->u.auth;
4240                                                 IPW_DEBUG(IPW_DL_NOTIF |
4241                                                           IPW_DL_STATE |
4242                                                           IPW_DL_ASSOC,
4243                                                           "deauthenticated: '%s' "
4244                                                           MAC_FMT
4245                                                           ": (0x%04X) - %s \n",
4246                                                           escape_essid(priv->
4247                                                                        essid,
4248                                                                        priv->
4249                                                                        essid_len),
4250                                                           MAC_ARG(priv->bssid),
4251                                                           ntohs(auth->status),
4252                                                           ipw_get_status_code
4253                                                           (ntohs
4254                                                            (auth->status)));
4255 #endif
4256
4257                                                 priv->status &=
4258                                                     ~(STATUS_ASSOCIATING |
4259                                                       STATUS_AUTH |
4260                                                       STATUS_ASSOCIATED);
4261
4262                                                 schedule_work(&priv->link_down);
4263                                                 break;
4264                                         }
4265
4266                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4267                                                   IPW_DL_ASSOC,
4268                                                   "authenticated: '%s' " MAC_FMT
4269                                                   "\n",
4270                                                   escape_essid(priv->essid,
4271                                                                priv->essid_len),
4272                                                   MAC_ARG(priv->bssid));
4273                                         break;
4274                                 }
4275
4276                         case CMAS_INIT:{
4277                                         if (priv->status & STATUS_AUTH) {
4278                                                 struct
4279                                                     ieee80211_assoc_response
4280                                                 *resp;
4281                                                 resp =
4282                                                     (struct
4283                                                      ieee80211_assoc_response
4284                                                      *)&notif->u.raw;
4285                                                 IPW_DEBUG(IPW_DL_NOTIF |
4286                                                           IPW_DL_STATE |
4287                                                           IPW_DL_ASSOC,
4288                                                           "association failed (0x%04X): %s\n",
4289                                                           ntohs(resp->status),
4290                                                           ipw_get_status_code
4291                                                           (ntohs
4292                                                            (resp->status)));
4293                                         }
4294
4295                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4296                                                   IPW_DL_ASSOC,
4297                                                   "disassociated: '%s' " MAC_FMT
4298                                                   " \n",
4299                                                   escape_essid(priv->essid,
4300                                                                priv->essid_len),
4301                                                   MAC_ARG(priv->bssid));
4302
4303                                         priv->status &=
4304                                             ~(STATUS_DISASSOCIATING |
4305                                               STATUS_ASSOCIATING |
4306                                               STATUS_ASSOCIATED | STATUS_AUTH);
4307                                         if (priv->assoc_network
4308                                             && (priv->assoc_network->
4309                                                 capability &
4310                                                 WLAN_CAPABILITY_IBSS))
4311                                                 ipw_remove_current_network
4312                                                     (priv);
4313
4314                                         schedule_work(&priv->link_down);
4315
4316                                         break;
4317                                 }
4318
4319                         case CMAS_RX_ASSOC_RESP:
4320                                 break;
4321
4322                         default:
4323                                 IPW_ERROR("assoc: unknown (%d)\n",
4324                                           assoc->state);
4325                                 break;
4326                         }
4327
4328                         break;
4329                 }
4330
4331         case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4332                         struct notif_authenticate *auth = &notif->u.auth;
4333                         switch (auth->state) {
4334                         case CMAS_AUTHENTICATED:
4335                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4336                                           "authenticated: '%s' " MAC_FMT " \n",
4337                                           escape_essid(priv->essid,
4338                                                        priv->essid_len),
4339                                           MAC_ARG(priv->bssid));
4340                                 priv->status |= STATUS_AUTH;
4341                                 break;
4342
4343                         case CMAS_INIT:
4344                                 if (priv->status & STATUS_AUTH) {
4345                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4346                                                   IPW_DL_ASSOC,
4347                                                   "authentication failed (0x%04X): %s\n",
4348                                                   ntohs(auth->status),
4349                                                   ipw_get_status_code(ntohs
4350                                                                       (auth->
4351                                                                        status)));
4352                                 }
4353                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4354                                           IPW_DL_ASSOC,
4355                                           "deauthenticated: '%s' " MAC_FMT "\n",
4356                                           escape_essid(priv->essid,
4357                                                        priv->essid_len),
4358                                           MAC_ARG(priv->bssid));
4359
4360                                 priv->status &= ~(STATUS_ASSOCIATING |
4361                                                   STATUS_AUTH |
4362                                                   STATUS_ASSOCIATED);
4363
4364                                 schedule_work(&priv->link_down);
4365                                 break;
4366
4367                         case CMAS_TX_AUTH_SEQ_1:
4368                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4369                                           IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4370                                 break;
4371                         case CMAS_RX_AUTH_SEQ_2:
4372                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4373                                           IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4374                                 break;
4375                         case CMAS_AUTH_SEQ_1_PASS:
4376                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4377                                           IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4378                                 break;
4379                         case CMAS_AUTH_SEQ_1_FAIL:
4380                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4381                                           IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4382                                 break;
4383                         case CMAS_TX_AUTH_SEQ_3:
4384                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4385                                           IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4386                                 break;
4387                         case CMAS_RX_AUTH_SEQ_4:
4388                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4389                                           IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4390                                 break;
4391                         case CMAS_AUTH_SEQ_2_PASS:
4392                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4393                                           IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4394                                 break;
4395                         case CMAS_AUTH_SEQ_2_FAIL:
4396                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4397                                           IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4398                                 break;
4399                         case CMAS_TX_ASSOC:
4400                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4401                                           IPW_DL_ASSOC, "TX_ASSOC\n");
4402                                 break;
4403                         case CMAS_RX_ASSOC_RESP:
4404                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4405                                           IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4406
4407                                 break;
4408                         case CMAS_ASSOCIATED:
4409                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4410                                           IPW_DL_ASSOC, "ASSOCIATED\n");
4411                                 break;
4412                         default:
4413                                 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4414                                                 auth->state);
4415                                 break;
4416                         }
4417                         break;
4418                 }
4419
4420         case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4421                         struct notif_channel_result *x =
4422                             &notif->u.channel_result;
4423
4424                         if (notif->size == sizeof(*x)) {
4425                                 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4426                                                x->channel_num);
4427                         } else {
4428                                 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4429                                                "(should be %zd)\n",
4430                                                notif->size, sizeof(*x));
4431                         }
4432                         break;
4433                 }
4434
4435         case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4436                         struct notif_scan_complete *x = &notif->u.scan_complete;
4437                         if (notif->size == sizeof(*x)) {
4438                                 IPW_DEBUG_SCAN
4439                                     ("Scan completed: type %d, %d channels, "
4440                                      "%d status\n", x->scan_type,
4441                                      x->num_channels, x->status);
4442                         } else {
4443                                 IPW_ERROR("Scan completed of wrong size %d "
4444                                           "(should be %zd)\n",
4445                                           notif->size, sizeof(*x));
4446                         }
4447
4448                         priv->status &=
4449                             ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4450
4451                         wake_up_interruptible(&priv->wait_state);
4452                         cancel_delayed_work(&priv->scan_check);
4453
4454                         if (priv->status & STATUS_EXIT_PENDING)
4455                                 break;
4456
4457                         priv->ieee->scans++;
4458
4459 #ifdef CONFIG_IPW2200_MONITOR
4460                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4461                                 priv->status |= STATUS_SCAN_FORCED;
4462                                 queue_work(priv->workqueue,
4463                                            &priv->request_scan);
4464                                 break;
4465                         }
4466                         priv->status &= ~STATUS_SCAN_FORCED;
4467 #endif                          /* CONFIG_IPW2200_MONITOR */
4468
4469                         if (!(priv->status & (STATUS_ASSOCIATED |
4470                                               STATUS_ASSOCIATING |
4471                                               STATUS_ROAMING |
4472                                               STATUS_DISASSOCIATING)))
4473                                 queue_work(priv->workqueue, &priv->associate);
4474                         else if (priv->status & STATUS_ROAMING) {
4475                                 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4476                                         /* If a scan completed and we are in roam mode, then
4477                                          * the scan that completed was the one requested as a
4478                                          * result of entering roam... so, schedule the
4479                                          * roam work */
4480                                         queue_work(priv->workqueue,
4481                                                    &priv->roam);
4482                                 else
4483                                         /* Don't schedule if we aborted the scan */
4484                                         priv->status &= ~STATUS_ROAMING;
4485                         } else if (priv->status & STATUS_SCAN_PENDING)
4486                                 queue_work(priv->workqueue,
4487                                            &priv->request_scan);
4488                         else if (priv->config & CFG_BACKGROUND_SCAN
4489                                  && priv->status & STATUS_ASSOCIATED)
4490                                 queue_delayed_work(priv->workqueue,
4491                                                    &priv->request_scan, HZ);
4492                         break;
4493                 }
4494
4495         case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4496                         struct notif_frag_length *x = &notif->u.frag_len;
4497
4498                         if (notif->size == sizeof(*x))
4499                                 IPW_ERROR("Frag length: %d\n",
4500                                           le16_to_cpu(x->frag_length));
4501                         else
4502                                 IPW_ERROR("Frag length of wrong size %d "
4503                                           "(should be %zd)\n",
4504                                           notif->size, sizeof(*x));
4505                         break;
4506                 }
4507
4508         case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4509                         struct notif_link_deterioration *x =
4510                             &notif->u.link_deterioration;
4511
4512                         if (notif->size == sizeof(*x)) {
4513                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4514                                         "link deterioration: type %d, cnt %d\n",
4515                                         x->silence_notification_type,
4516                                         x->silence_count);
4517                                 memcpy(&priv->last_link_deterioration, x,
4518                                        sizeof(*x));
4519                         } else {
4520                                 IPW_ERROR("Link Deterioration of wrong size %d "
4521                                           "(should be %zd)\n",
4522                                           notif->size, sizeof(*x));
4523                         }
4524                         break;
4525                 }
4526
4527         case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4528                         IPW_ERROR("Dino config\n");
4529                         if (priv->hcmd
4530                             && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4531                                 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4532
4533                         break;
4534                 }
4535
4536         case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4537                         struct notif_beacon_state *x = &notif->u.beacon_state;
4538                         if (notif->size != sizeof(*x)) {
4539                                 IPW_ERROR
4540                                     ("Beacon state of wrong size %d (should "
4541                                      "be %zd)\n", notif->size, sizeof(*x));
4542                                 break;
4543                         }
4544
4545                         if (le32_to_cpu(x->state) ==
4546                             HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4547                                 ipw_handle_missed_beacon(priv,
4548                                                          le32_to_cpu(x->
4549                                                                      number));
4550
4551                         break;
4552                 }
4553
4554         case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4555                         struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4556                         if (notif->size == sizeof(*x)) {
4557                                 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4558                                           "0x%02x station %d\n",
4559                                           x->key_state, x->security_type,
4560                                           x->station_index);
4561                                 break;
4562                         }
4563
4564                         IPW_ERROR
4565                             ("TGi Tx Key of wrong size %d (should be %zd)\n",
4566                              notif->size, sizeof(*x));
4567                         break;
4568                 }
4569
4570         case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4571                         struct notif_calibration *x = &notif->u.calibration;
4572
4573                         if (notif->size == sizeof(*x)) {
4574                                 memcpy(&priv->calib, x, sizeof(*x));
4575                                 IPW_DEBUG_INFO("TODO: Calibration\n");
4576                                 break;
4577                         }
4578
4579                         IPW_ERROR
4580                             ("Calibration of wrong size %d (should be %zd)\n",
4581                              notif->size, sizeof(*x));
4582                         break;
4583                 }
4584
4585         case HOST_NOTIFICATION_NOISE_STATS:{
4586                         if (notif->size == sizeof(u32)) {
4587                                 priv->exp_avg_noise =
4588                                     exponential_average(priv->exp_avg_noise,
4589                                     (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4590                                     DEPTH_NOISE);
4591                                 break;
4592                         }
4593
4594                         IPW_ERROR
4595                             ("Noise stat is wrong size %d (should be %zd)\n",
4596                              notif->size, sizeof(u32));
4597                         break;
4598                 }
4599
4600         default:
4601                 IPW_DEBUG_NOTIF("Unknown notification: "
4602                                 "subtype=%d,flags=0x%2x,size=%d\n",
4603                                 notif->subtype, notif->flags, notif->size);
4604         }
4605 }
4606
4607 /**
4608  * Destroys all DMA structures and initialise them again
4609  *
4610  * @param priv
4611  * @return error code
4612  */
4613 static int ipw_queue_reset(struct ipw_priv *priv)
4614 {
4615         int rc = 0;
4616         /** @todo customize queue sizes */
4617         int nTx = 64, nTxCmd = 8;
4618         ipw_tx_queue_free(priv);
4619         /* Tx CMD queue */
4620         rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4621                                IPW_TX_CMD_QUEUE_READ_INDEX,
4622                                IPW_TX_CMD_QUEUE_WRITE_INDEX,
4623                                IPW_TX_CMD_QUEUE_BD_BASE,
4624                                IPW_TX_CMD_QUEUE_BD_SIZE);
4625         if (rc) {
4626                 IPW_ERROR("Tx Cmd queue init failed\n");
4627                 goto error;
4628         }
4629         /* Tx queue(s) */
4630         rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4631                                IPW_TX_QUEUE_0_READ_INDEX,
4632                                IPW_TX_QUEUE_0_WRITE_INDEX,
4633                                IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4634         if (rc) {
4635                 IPW_ERROR("Tx 0 queue init failed\n");
4636                 goto error;
4637         }
4638         rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4639                                IPW_TX_QUEUE_1_READ_INDEX,
4640                                IPW_TX_QUEUE_1_WRITE_INDEX,
4641                                IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4642         if (rc) {
4643                 IPW_ERROR("Tx 1 queue init failed\n");
4644                 goto error;
4645         }
4646         rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4647                                IPW_TX_QUEUE_2_READ_INDEX,
4648                                IPW_TX_QUEUE_2_WRITE_INDEX,
4649                                IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4650         if (rc) {
4651                 IPW_ERROR("Tx 2 queue init failed\n");
4652                 goto error;
4653         }
4654         rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4655                                IPW_TX_QUEUE_3_READ_INDEX,
4656                                IPW_TX_QUEUE_3_WRITE_INDEX,
4657                                IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4658         if (rc) {
4659                 IPW_ERROR("Tx 3 queue init failed\n");
4660                 goto error;
4661         }
4662         /* statistics */
4663         priv->rx_bufs_min = 0;
4664         priv->rx_pend_max = 0;
4665         return rc;
4666
4667       error:
4668         ipw_tx_queue_free(priv);
4669         return rc;
4670 }
4671
4672 /**
4673  * Reclaim Tx queue entries no more used by NIC.
4674  *
4675  * When FW adwances 'R' index, all entries between old and
4676  * new 'R' index need to be reclaimed. As result, some free space
4677  * forms. If there is enough free space (> low mark), wake Tx queue.
4678  *
4679  * @note Need to protect against garbage in 'R' index
4680  * @param priv
4681  * @param txq
4682  * @param qindex
4683  * @return Number of used entries remains in the queue
4684  */
4685 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
4686                                 struct clx2_tx_queue *txq, int qindex)
4687 {
4688         u32 hw_tail;
4689         int used;
4690         struct clx2_queue *q = &txq->q;
4691
4692         hw_tail = ipw_read32(priv, q->reg_r);
4693         if (hw_tail >= q->n_bd) {
4694                 IPW_ERROR
4695                     ("Read index for DMA queue (%d) is out of range [0-%d)\n",
4696                      hw_tail, q->n_bd);
4697                 goto done;
4698         }
4699         for (; q->last_used != hw_tail;
4700              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
4701                 ipw_queue_tx_free_tfd(priv, txq);
4702                 priv->tx_packets++;
4703         }
4704       done:
4705         if ((ipw_queue_space(q) > q->low_mark) &&
4706             (qindex >= 0) &&
4707             (priv->status & STATUS_ASSOCIATED) && netif_running(priv->net_dev))
4708                 netif_wake_queue(priv->net_dev);
4709         used = q->first_empty - q->last_used;
4710         if (used < 0)
4711                 used += q->n_bd;
4712
4713         return used;
4714 }
4715
4716 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
4717                              int len, int sync)
4718 {
4719         struct clx2_tx_queue *txq = &priv->txq_cmd;
4720         struct clx2_queue *q = &txq->q;
4721         struct tfd_frame *tfd;
4722
4723         if (ipw_queue_space(q) < (sync ? 1 : 2)) {
4724                 IPW_ERROR("No space for Tx\n");
4725                 return -EBUSY;
4726         }
4727
4728         tfd = &txq->bd[q->first_empty];
4729         txq->txb[q->first_empty] = NULL;
4730
4731         memset(tfd, 0, sizeof(*tfd));
4732         tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
4733         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
4734         priv->hcmd_seq++;
4735         tfd->u.cmd.index = hcmd;
4736         tfd->u.cmd.length = len;
4737         memcpy(tfd->u.cmd.payload, buf, len);
4738         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
4739         ipw_write32(priv, q->reg_w, q->first_empty);
4740         _ipw_read32(priv, 0x90);
4741
4742         return 0;
4743 }
4744
4745 /*
4746  * Rx theory of operation
4747  *
4748  * The host allocates 32 DMA target addresses and passes the host address
4749  * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
4750  * 0 to 31
4751  *
4752  * Rx Queue Indexes
4753  * The host/firmware share two index registers for managing the Rx buffers.
4754  *
4755  * The READ index maps to the first position that the firmware may be writing
4756  * to -- the driver can read up to (but not including) this position and get
4757  * good data.
4758  * The READ index is managed by the firmware once the card is enabled.
4759  *
4760  * The WRITE index maps to the last position the driver has read from -- the
4761  * position preceding WRITE is the last slot the firmware can place a packet.
4762  *
4763  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
4764  * WRITE = READ.
4765  *
4766  * During initialization the host sets up the READ queue position to the first
4767  * INDEX position, and WRITE to the last (READ - 1 wrapped)
4768  *
4769  * When the firmware places a packet in a buffer it will advance the READ index
4770  * and fire the RX interrupt.  The driver can then query the READ index and
4771  * process as many packets as possible, moving the WRITE index forward as it
4772  * resets the Rx queue buffers with new memory.
4773  *
4774  * The management in the driver is as follows:
4775  * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free.  When
4776  *   ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
4777  *   to replensish the ipw->rxq->rx_free.
4778  * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
4779  *   ipw->rxq is replenished and the READ INDEX is updated (updating the
4780  *   'processed' and 'read' driver indexes as well)
4781  * + A received packet is processed and handed to the kernel network stack,
4782  *   detached from the ipw->rxq.  The driver 'processed' index is updated.
4783  * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
4784  *   list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
4785  *   INDEX is not incremented and ipw->status(RX_STALLED) is set.  If there
4786  *   were enough free buffers and RX_STALLED is set it is cleared.
4787  *
4788  *
4789  * Driver sequence:
4790  *
4791  * ipw_rx_queue_alloc()       Allocates rx_free
4792  * ipw_rx_queue_replenish()   Replenishes rx_free list from rx_used, and calls
4793  *                            ipw_rx_queue_restock
4794  * ipw_rx_queue_restock()     Moves available buffers from rx_free into Rx
4795  *                            queue, updates firmware pointers, and updates
4796  *                            the WRITE index.  If insufficient rx_free buffers
4797  *                            are available, schedules ipw_rx_queue_replenish
4798  *
4799  * -- enable interrupts --
4800  * ISR - ipw_rx()             Detach ipw_rx_mem_buffers from pool up to the
4801  *                            READ INDEX, detaching the SKB from the pool.
4802  *                            Moves the packet buffer from queue to rx_used.
4803  *                            Calls ipw_rx_queue_restock to refill any empty
4804  *                            slots.
4805  * ...
4806  *
4807  */
4808
4809 /*
4810  * If there are slots in the RX queue that  need to be restocked,
4811  * and we have free pre-allocated buffers, fill the ranks as much
4812  * as we can pulling from rx_free.
4813  *
4814  * This moves the 'write' index forward to catch up with 'processed', and
4815  * also updates the memory address in the firmware to reference the new
4816  * target buffer.
4817  */
4818 static void ipw_rx_queue_restock(struct ipw_priv *priv)
4819 {
4820         struct ipw_rx_queue *rxq = priv->rxq;
4821         struct list_head *element;
4822         struct ipw_rx_mem_buffer *rxb;
4823         unsigned long flags;
4824         int write;
4825
4826         spin_lock_irqsave(&rxq->lock, flags);
4827         write = rxq->write;
4828         while ((rxq->write != rxq->processed) && (rxq->free_count)) {
4829                 element = rxq->rx_free.next;
4830                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
4831                 list_del(element);
4832
4833                 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
4834                             rxb->dma_addr);
4835                 rxq->queue[rxq->write] = rxb;
4836                 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
4837                 rxq->free_count--;
4838         }
4839         spin_unlock_irqrestore(&rxq->lock, flags);
4840
4841         /* If the pre-allocated buffer pool is dropping low, schedule to
4842          * refill it */
4843         if (rxq->free_count <= RX_LOW_WATERMARK)
4844                 queue_work(priv->workqueue, &priv->rx_replenish);
4845
4846         /* If we've added more space for the firmware to place data, tell it */
4847         if (write != rxq->write)
4848                 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
4849 }
4850
4851 /*
4852  * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
4853  * Also restock the Rx queue via ipw_rx_queue_restock.
4854  *
4855  * This is called as a scheduled work item (except for during intialization)
4856  */
4857 static void ipw_rx_queue_replenish(void *data)
4858 {
4859         struct ipw_priv *priv = data;
4860         struct ipw_rx_queue *rxq = priv->rxq;
4861         struct list_head *element;
4862         struct ipw_rx_mem_buffer *rxb;
4863         unsigned long flags;
4864
4865         spin_lock_irqsave(&rxq->lock, flags);
4866         while (!list_empty(&rxq->rx_used)) {
4867                 element = rxq->rx_used.next;
4868                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
4869                 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
4870                 if (!rxb->skb) {
4871                         printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
4872                                priv->net_dev->name);
4873                         /* We don't reschedule replenish work here -- we will
4874                          * call the restock method and if it still needs
4875                          * more buffers it will schedule replenish */
4876                         break;
4877                 }
4878                 list_del(element);
4879
4880                 rxb->rxb = (struct ipw_rx_buffer *)rxb->skb->data;
4881                 rxb->dma_addr =
4882                     pci_map_single(priv->pci_dev, rxb->skb->data,
4883                                    IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
4884
4885                 list_add_tail(&rxb->list, &rxq->rx_free);
4886                 rxq->free_count++;
4887         }
4888         spin_unlock_irqrestore(&rxq->lock, flags);
4889
4890         ipw_rx_queue_restock(priv);
4891 }
4892
4893 static void ipw_bg_rx_queue_replenish(void *data)
4894 {
4895         struct ipw_priv *priv = data;
4896         mutex_lock(&priv->mutex);
4897         ipw_rx_queue_replenish(data);
4898         mutex_unlock(&priv->mutex);
4899 }
4900
4901 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
4902  * If an SKB has been detached, the POOL needs to have its SKB set to NULL
4903  * This free routine walks the list of POOL entries and if SKB is set to
4904  * non NULL it is unmapped and freed
4905  */
4906 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
4907 {
4908         int i;
4909
4910         if (!rxq)
4911                 return;
4912
4913         for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
4914                 if (rxq->pool[i].skb != NULL) {
4915                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
4916                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
4917                         dev_kfree_skb(rxq->pool[i].skb);
4918                 }
4919         }
4920
4921         kfree(rxq);
4922 }
4923
4924 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
4925 {
4926         struct ipw_rx_queue *rxq;
4927         int i;
4928
4929         rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
4930         if (unlikely(!rxq)) {
4931                 IPW_ERROR("memory allocation failed\n");
4932                 return NULL;
4933         }
4934         spin_lock_init(&rxq->lock);
4935         INIT_LIST_HEAD(&rxq->rx_free);
4936         INIT_LIST_HEAD(&rxq->rx_used);
4937
4938         /* Fill the rx_used queue with _all_ of the Rx buffers */
4939         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
4940                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
4941
4942         /* Set us so that we have processed and used all buffers, but have
4943          * not restocked the Rx queue with fresh buffers */
4944         rxq->read = rxq->write = 0;
4945         rxq->processed = RX_QUEUE_SIZE - 1;
4946         rxq->free_count = 0;
4947
4948         return rxq;
4949 }
4950
4951 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
4952 {
4953         rate &= ~IEEE80211_BASIC_RATE_MASK;
4954         if (ieee_mode == IEEE_A) {
4955                 switch (rate) {
4956                 case IEEE80211_OFDM_RATE_6MB:
4957                         return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ?
4958                             1 : 0;
4959                 case IEEE80211_OFDM_RATE_9MB:
4960                         return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ?
4961                             1 : 0;
4962                 case IEEE80211_OFDM_RATE_12MB:
4963                         return priv->
4964                             rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
4965                 case IEEE80211_OFDM_RATE_18MB:
4966                         return priv->
4967                             rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
4968                 case IEEE80211_OFDM_RATE_24MB:
4969                         return priv->
4970                             rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
4971                 case IEEE80211_OFDM_RATE_36MB:
4972                         return priv->
4973                             rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
4974                 case IEEE80211_OFDM_RATE_48MB:
4975                         return priv->
4976                             rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
4977                 case IEEE80211_OFDM_RATE_54MB:
4978                         return priv->
4979                             rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
4980                 default:
4981                         return 0;
4982                 }
4983         }
4984
4985         /* B and G mixed */
4986         switch (rate) {
4987         case IEEE80211_CCK_RATE_1MB:
4988                 return priv->rates_mask & IEEE80211_CCK_RATE_1MB_MASK ? 1 : 0;
4989         case IEEE80211_CCK_RATE_2MB:
4990                 return priv->rates_mask & IEEE80211_CCK_RATE_2MB_MASK ? 1 : 0;
4991         case IEEE80211_CCK_RATE_5MB:
4992                 return priv->rates_mask & IEEE80211_CCK_RATE_5MB_MASK ? 1 : 0;
4993         case IEEE80211_CCK_RATE_11MB:
4994                 return priv->rates_mask & IEEE80211_CCK_RATE_11MB_MASK ? 1 : 0;
4995         }
4996
4997         /* If we are limited to B modulations, bail at this point */
4998         if (ieee_mode == IEEE_B)
4999                 return 0;
5000
5001         /* G */
5002         switch (rate) {
5003         case IEEE80211_OFDM_RATE_6MB:
5004                 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0;
5005         case IEEE80211_OFDM_RATE_9MB:
5006                 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0;
5007         case IEEE80211_OFDM_RATE_12MB:
5008                 return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5009         case IEEE80211_OFDM_RATE_18MB:
5010                 return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5011         case IEEE80211_OFDM_RATE_24MB:
5012                 return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5013         case IEEE80211_OFDM_RATE_36MB:
5014                 return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5015         case IEEE80211_OFDM_RATE_48MB:
5016                 return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5017         case IEEE80211_OFDM_RATE_54MB:
5018                 return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5019         }
5020
5021         return 0;
5022 }
5023
5024 static int ipw_compatible_rates(struct ipw_priv *priv,
5025                                 const struct ieee80211_network *network,
5026                                 struct ipw_supported_rates *rates)
5027 {
5028         int num_rates, i;
5029
5030         memset(rates, 0, sizeof(*rates));
5031         num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5032         rates->num_rates = 0;
5033         for (i = 0; i < num_rates; i++) {
5034                 if (!ipw_is_rate_in_mask(priv, network->mode,
5035                                          network->rates[i])) {
5036
5037                         if (network->rates[i] & IEEE80211_BASIC_RATE_MASK) {
5038                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5039                                                "rate %02X\n",
5040                                                network->rates[i]);
5041                                 rates->supported_rates[rates->num_rates++] =
5042                                     network->rates[i];
5043                                 continue;
5044                         }
5045
5046                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5047                                        network->rates[i], priv->rates_mask);
5048                         continue;
5049                 }
5050
5051                 rates->supported_rates[rates->num_rates++] = network->rates[i];
5052         }
5053
5054         num_rates = min(network->rates_ex_len,
5055                         (u8) (IPW_MAX_RATES - num_rates));
5056         for (i = 0; i < num_rates; i++) {
5057                 if (!ipw_is_rate_in_mask(priv, network->mode,
5058                                          network->rates_ex[i])) {
5059                         if (network->rates_ex[i] & IEEE80211_BASIC_RATE_MASK) {
5060                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5061                                                "rate %02X\n",
5062                                                network->rates_ex[i]);
5063                                 rates->supported_rates[rates->num_rates++] =
5064                                     network->rates[i];
5065                                 continue;
5066                         }
5067
5068                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5069                                        network->rates_ex[i], priv->rates_mask);
5070                         continue;
5071                 }
5072
5073                 rates->supported_rates[rates->num_rates++] =
5074                     network->rates_ex[i];
5075         }
5076
5077         return 1;
5078 }
5079
5080 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5081                                   const struct ipw_supported_rates *src)
5082 {
5083         u8 i;
5084         for (i = 0; i < src->num_rates; i++)
5085                 dest->supported_rates[i] = src->supported_rates[i];
5086         dest->num_rates = src->num_rates;
5087 }
5088
5089 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5090  * mask should ever be used -- right now all callers to add the scan rates are
5091  * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5092 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5093                                    u8 modulation, u32 rate_mask)
5094 {
5095         u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5096             IEEE80211_BASIC_RATE_MASK : 0;
5097
5098         if (rate_mask & IEEE80211_CCK_RATE_1MB_MASK)
5099                 rates->supported_rates[rates->num_rates++] =
5100                     IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_1MB;
5101
5102         if (rate_mask & IEEE80211_CCK_RATE_2MB_MASK)
5103                 rates->supported_rates[rates->num_rates++] =
5104                     IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_2MB;
5105
5106         if (rate_mask & IEEE80211_CCK_RATE_5MB_MASK)
5107                 rates->supported_rates[rates->num_rates++] = basic_mask |
5108                     IEEE80211_CCK_RATE_5MB;
5109
5110         if (rate_mask & IEEE80211_CCK_RATE_11MB_MASK)
5111                 rates->supported_rates[rates->num_rates++] = basic_mask |
5112                     IEEE80211_CCK_RATE_11MB;
5113 }
5114
5115 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5116                                     u8 modulation, u32 rate_mask)
5117 {
5118         u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5119             IEEE80211_BASIC_RATE_MASK : 0;
5120
5121         if (rate_mask & IEEE80211_OFDM_RATE_6MB_MASK)
5122                 rates->supported_rates[rates->num_rates++] = basic_mask |
5123                     IEEE80211_OFDM_RATE_6MB;
5124
5125         if (rate_mask & IEEE80211_OFDM_RATE_9MB_MASK)
5126                 rates->supported_rates[rates->num_rates++] =
5127                     IEEE80211_OFDM_RATE_9MB;
5128
5129         if (rate_mask & IEEE80211_OFDM_RATE_12MB_MASK)
5130                 rates->supported_rates[rates->num_rates++] = basic_mask |
5131                     IEEE80211_OFDM_RATE_12MB;
5132
5133         if (rate_mask & IEEE80211_OFDM_RATE_18MB_MASK)
5134                 rates->supported_rates[rates->num_rates++] =
5135                     IEEE80211_OFDM_RATE_18MB;
5136
5137         if (rate_mask & IEEE80211_OFDM_RATE_24MB_MASK)
5138                 rates->supported_rates[rates->num_rates++] = basic_mask |
5139                     IEEE80211_OFDM_RATE_24MB;
5140
5141         if (rate_mask & IEEE80211_OFDM_RATE_36MB_MASK)
5142                 rates->supported_rates[rates->num_rates++] =
5143                     IEEE80211_OFDM_RATE_36MB;
5144
5145         if (rate_mask & IEEE80211_OFDM_RATE_48MB_MASK)
5146                 rates->supported_rates[rates->num_rates++] =
5147                     IEEE80211_OFDM_RATE_48MB;
5148
5149         if (rate_mask & IEEE80211_OFDM_RATE_54MB_MASK)
5150                 rates->supported_rates[rates->num_rates++] =
5151                     IEEE80211_OFDM_RATE_54MB;
5152 }
5153
5154 struct ipw_network_match {
5155         struct ieee80211_network *network;
5156         struct ipw_supported_rates rates;
5157 };
5158
5159 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5160                                   struct ipw_network_match *match,
5161                                   struct ieee80211_network *network,
5162                                   int roaming)
5163 {
5164         struct ipw_supported_rates rates;
5165
5166         /* Verify that this network's capability is compatible with the
5167          * current mode (AdHoc or Infrastructure) */
5168         if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5169              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5170                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded due to "
5171                                 "capability mismatch.\n",
5172                                 escape_essid(network->ssid, network->ssid_len),
5173                                 MAC_ARG(network->bssid));
5174                 return 0;
5175         }
5176
5177         /* If we do not have an ESSID for this AP, we can not associate with
5178          * it */
5179         if (network->flags & NETWORK_EMPTY_ESSID) {
5180                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5181                                 "because of hidden ESSID.\n",
5182                                 escape_essid(network->ssid, network->ssid_len),
5183                                 MAC_ARG(network->bssid));
5184                 return 0;
5185         }
5186
5187         if (unlikely(roaming)) {
5188                 /* If we are roaming, then ensure check if this is a valid
5189                  * network to try and roam to */
5190                 if ((network->ssid_len != match->network->ssid_len) ||
5191                     memcmp(network->ssid, match->network->ssid,
5192                            network->ssid_len)) {
5193                         IPW_DEBUG_MERGE("Netowrk '%s (" MAC_FMT ")' excluded "
5194                                         "because of non-network ESSID.\n",
5195                                         escape_essid(network->ssid,
5196                                                      network->ssid_len),
5197                                         MAC_ARG(network->bssid));
5198                         return 0;
5199                 }
5200         } else {
5201                 /* If an ESSID has been configured then compare the broadcast
5202                  * ESSID to ours */
5203                 if ((priv->config & CFG_STATIC_ESSID) &&
5204                     ((network->ssid_len != priv->essid_len) ||
5205                      memcmp(network->ssid, priv->essid,
5206                             min(network->ssid_len, priv->essid_len)))) {
5207                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5208
5209                         strncpy(escaped,
5210                                 escape_essid(network->ssid, network->ssid_len),
5211                                 sizeof(escaped));
5212                         IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5213                                         "because of ESSID mismatch: '%s'.\n",
5214                                         escaped, MAC_ARG(network->bssid),
5215                                         escape_essid(priv->essid,
5216                                                      priv->essid_len));
5217                         return 0;
5218                 }
5219         }
5220
5221         /* If the old network rate is better than this one, don't bother
5222          * testing everything else. */
5223
5224         if (network->time_stamp[0] < match->network->time_stamp[0]) {
5225                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5226                                 "current network.\n",
5227                                 escape_essid(match->network->ssid,
5228                                              match->network->ssid_len));
5229                 return 0;
5230         } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5231                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5232                                 "current network.\n",
5233                                 escape_essid(match->network->ssid,
5234                                              match->network->ssid_len));
5235                 return 0;
5236         }
5237
5238         /* Now go through and see if the requested network is valid... */
5239         if (priv->ieee->scan_age != 0 &&
5240             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5241                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5242                                 "because of age: %ums.\n",
5243                                 escape_essid(network->ssid, network->ssid_len),
5244                                 MAC_ARG(network->bssid),
5245                                 jiffies_to_msecs(jiffies -
5246                                                  network->last_scanned));
5247                 return 0;
5248         }
5249
5250         if ((priv->config & CFG_STATIC_CHANNEL) &&
5251             (network->channel != priv->channel)) {
5252                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5253                                 "because of channel mismatch: %d != %d.\n",
5254                                 escape_essid(network->ssid, network->ssid_len),
5255                                 MAC_ARG(network->bssid),
5256                                 network->channel, priv->channel);
5257                 return 0;
5258         }
5259
5260         /* Verify privacy compatability */
5261         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5262             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5263                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5264                                 "because of privacy mismatch: %s != %s.\n",
5265                                 escape_essid(network->ssid, network->ssid_len),
5266                                 MAC_ARG(network->bssid),
5267                                 priv->
5268                                 capability & CAP_PRIVACY_ON ? "on" : "off",
5269                                 network->
5270                                 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5271                                 "off");
5272                 return 0;
5273         }
5274
5275         if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5276                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5277                                 "because of the same BSSID match: " MAC_FMT
5278                                 ".\n", escape_essid(network->ssid,
5279                                                     network->ssid_len),
5280                                 MAC_ARG(network->bssid), MAC_ARG(priv->bssid));
5281                 return 0;
5282         }
5283
5284         /* Filter out any incompatible freq / mode combinations */
5285         if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5286                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5287                                 "because of invalid frequency/mode "
5288                                 "combination.\n",
5289                                 escape_essid(network->ssid, network->ssid_len),
5290                                 MAC_ARG(network->bssid));
5291                 return 0;
5292         }
5293
5294         /* Ensure that the rates supported by the driver are compatible with
5295          * this AP, including verification of basic rates (mandatory) */
5296         if (!ipw_compatible_rates(priv, network, &rates)) {
5297                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5298                                 "because configured rate mask excludes "
5299                                 "AP mandatory rate.\n",
5300                                 escape_essid(network->ssid, network->ssid_len),
5301                                 MAC_ARG(network->bssid));
5302                 return 0;
5303         }
5304
5305         if (rates.num_rates == 0) {
5306                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5307                                 "because of no compatible rates.\n",
5308                                 escape_essid(network->ssid, network->ssid_len),
5309                                 MAC_ARG(network->bssid));
5310                 return 0;
5311         }
5312
5313         /* TODO: Perform any further minimal comparititive tests.  We do not
5314          * want to put too much policy logic here; intelligent scan selection
5315          * should occur within a generic IEEE 802.11 user space tool.  */
5316
5317         /* Set up 'new' AP to this network */
5318         ipw_copy_rates(&match->rates, &rates);
5319         match->network = network;
5320         IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' is a viable match.\n",
5321                         escape_essid(network->ssid, network->ssid_len),
5322                         MAC_ARG(network->bssid));
5323
5324         return 1;
5325 }
5326
5327 static void ipw_merge_adhoc_network(void *data)
5328 {
5329         struct ipw_priv *priv = data;
5330         struct ieee80211_network *network = NULL;
5331         struct ipw_network_match match = {
5332                 .network = priv->assoc_network
5333         };
5334
5335         if ((priv->status & STATUS_ASSOCIATED) &&
5336             (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5337                 /* First pass through ROAM process -- look for a better
5338                  * network */
5339                 unsigned long flags;
5340
5341                 spin_lock_irqsave(&priv->ieee->lock, flags);
5342                 list_for_each_entry(network, &priv->ieee->network_list, list) {
5343                         if (network != priv->assoc_network)
5344                                 ipw_find_adhoc_network(priv, &match, network,
5345                                                        1);
5346                 }
5347                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5348
5349                 if (match.network == priv->assoc_network) {
5350                         IPW_DEBUG_MERGE("No better ADHOC in this network to "
5351                                         "merge to.\n");
5352                         return;
5353                 }
5354
5355                 mutex_lock(&priv->mutex);
5356                 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5357                         IPW_DEBUG_MERGE("remove network %s\n",
5358                                         escape_essid(priv->essid,
5359                                                      priv->essid_len));
5360                         ipw_remove_current_network(priv);
5361                 }
5362
5363                 ipw_disassociate(priv);
5364                 priv->assoc_network = match.network;
5365                 mutex_unlock(&priv->mutex);
5366                 return;
5367         }
5368 }
5369
5370 static int ipw_best_network(struct ipw_priv *priv,
5371                             struct ipw_network_match *match,
5372                             struct ieee80211_network *network, int roaming)
5373 {
5374         struct ipw_supported_rates rates;
5375
5376         /* Verify that this network's capability is compatible with the
5377          * current mode (AdHoc or Infrastructure) */
5378         if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5379              !(network->capability & WLAN_CAPABILITY_ESS)) ||
5380             (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5381              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5382                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded due to "
5383                                 "capability mismatch.\n",
5384                                 escape_essid(network->ssid, network->ssid_len),
5385                                 MAC_ARG(network->bssid));
5386                 return 0;
5387         }
5388
5389         /* If we do not have an ESSID for this AP, we can not associate with
5390          * it */
5391         if (network->flags & NETWORK_EMPTY_ESSID) {
5392                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5393                                 "because of hidden ESSID.\n",
5394                                 escape_essid(network->ssid, network->ssid_len),
5395                                 MAC_ARG(network->bssid));
5396                 return 0;
5397         }
5398
5399         if (unlikely(roaming)) {
5400                 /* If we are roaming, then ensure check if this is a valid
5401                  * network to try and roam to */
5402                 if ((network->ssid_len != match->network->ssid_len) ||
5403                     memcmp(network->ssid, match->network->ssid,
5404                            network->ssid_len)) {
5405                         IPW_DEBUG_ASSOC("Netowrk '%s (" MAC_FMT ")' excluded "
5406                                         "because of non-network ESSID.\n",
5407                                         escape_essid(network->ssid,
5408                                                      network->ssid_len),
5409                                         MAC_ARG(network->bssid));
5410                         return 0;
5411                 }
5412         } else {
5413                 /* If an ESSID has been configured then compare the broadcast
5414                  * ESSID to ours */
5415                 if ((priv->config & CFG_STATIC_ESSID) &&
5416                     ((network->ssid_len != priv->essid_len) ||
5417                      memcmp(network->ssid, priv->essid,
5418                             min(network->ssid_len, priv->essid_len)))) {
5419                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5420                         strncpy(escaped,
5421                                 escape_essid(network->ssid, network->ssid_len),
5422                                 sizeof(escaped));
5423                         IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5424                                         "because of ESSID mismatch: '%s'.\n",
5425                                         escaped, MAC_ARG(network->bssid),
5426                                         escape_essid(priv->essid,
5427                                                      priv->essid_len));
5428                         return 0;
5429                 }
5430         }
5431
5432         /* If the old network rate is better than this one, don't bother
5433          * testing everything else. */
5434         if (match->network && match->network->stats.rssi > network->stats.rssi) {
5435                 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5436                 strncpy(escaped,
5437                         escape_essid(network->ssid, network->ssid_len),
5438                         sizeof(escaped));
5439                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded because "
5440                                 "'%s (" MAC_FMT ")' has a stronger signal.\n",
5441                                 escaped, MAC_ARG(network->bssid),
5442                                 escape_essid(match->network->ssid,
5443                                              match->network->ssid_len),
5444                                 MAC_ARG(match->network->bssid));
5445                 return 0;
5446         }
5447
5448         /* If this network has already had an association attempt within the
5449          * last 3 seconds, do not try and associate again... */
5450         if (network->last_associate &&
5451             time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5452                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5453                                 "because of storming (%ums since last "
5454                                 "assoc attempt).\n",
5455                                 escape_essid(network->ssid, network->ssid_len),
5456                                 MAC_ARG(network->bssid),
5457                                 jiffies_to_msecs(jiffies -
5458                                                  network->last_associate));
5459                 return 0;
5460         }
5461
5462         /* Now go through and see if the requested network is valid... */
5463         if (priv->ieee->scan_age != 0 &&
5464             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5465                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5466                                 "because of age: %ums.\n",
5467                                 escape_essid(network->ssid, network->ssid_len),
5468                                 MAC_ARG(network->bssid),
5469                                 jiffies_to_msecs(jiffies -
5470                                                  network->last_scanned));
5471                 return 0;
5472         }
5473
5474         if ((priv->config & CFG_STATIC_CHANNEL) &&
5475             (network->channel != priv->channel)) {
5476                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5477                                 "because of channel mismatch: %d != %d.\n",
5478                                 escape_essid(network->ssid, network->ssid_len),
5479                                 MAC_ARG(network->bssid),
5480                                 network->channel, priv->channel);
5481                 return 0;
5482         }
5483
5484         /* Verify privacy compatability */
5485         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5486             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5487                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5488                                 "because of privacy mismatch: %s != %s.\n",
5489                                 escape_essid(network->ssid, network->ssid_len),
5490                                 MAC_ARG(network->bssid),
5491                                 priv->capability & CAP_PRIVACY_ON ? "on" :
5492                                 "off",
5493                                 network->capability &
5494                                 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5495                 return 0;
5496         }
5497
5498         if ((priv->config & CFG_STATIC_BSSID) &&
5499             memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5500                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5501                                 "because of BSSID mismatch: " MAC_FMT ".\n",
5502                                 escape_essid(network->ssid, network->ssid_len),
5503                                 MAC_ARG(network->bssid), MAC_ARG(priv->bssid));
5504                 return 0;
5505         }
5506
5507         /* Filter out any incompatible freq / mode combinations */
5508         if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5509                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5510                                 "because of invalid frequency/mode "
5511                                 "combination.\n",
5512                                 escape_essid(network->ssid, network->ssid_len),
5513                                 MAC_ARG(network->bssid));
5514                 return 0;
5515         }
5516
5517         /* Filter out invalid channel in current GEO */
5518         if (!ieee80211_is_valid_channel(priv->ieee, network->channel)) {
5519                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5520                                 "because of invalid channel in current GEO\n",
5521                                 escape_essid(network->ssid, network->ssid_len),
5522                                 MAC_ARG(network->bssid));
5523                 return 0;
5524         }
5525
5526         /* Ensure that the rates supported by the driver are compatible with
5527          * this AP, including verification of basic rates (mandatory) */
5528         if (!ipw_compatible_rates(priv, network, &rates)) {
5529                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5530                                 "because configured rate mask excludes "
5531                                 "AP mandatory rate.\n",
5532                                 escape_essid(network->ssid, network->ssid_len),
5533                                 MAC_ARG(network->bssid));
5534                 return 0;
5535         }
5536
5537         if (rates.num_rates == 0) {
5538                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5539                                 "because of no compatible rates.\n",
5540                                 escape_essid(network->ssid, network->ssid_len),
5541                                 MAC_ARG(network->bssid));
5542                 return 0;
5543         }
5544
5545         /* TODO: Perform any further minimal comparititive tests.  We do not
5546          * want to put too much policy logic here; intelligent scan selection
5547          * should occur within a generic IEEE 802.11 user space tool.  */
5548
5549         /* Set up 'new' AP to this network */
5550         ipw_copy_rates(&match->rates, &rates);
5551         match->network = network;
5552
5553         IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' is a viable match.\n",
5554                         escape_essid(network->ssid, network->ssid_len),
5555                         MAC_ARG(network->bssid));
5556
5557         return 1;
5558 }
5559
5560 static void ipw_adhoc_create(struct ipw_priv *priv,
5561                              struct ieee80211_network *network)
5562 {
5563         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
5564         int i;
5565
5566         /*
5567          * For the purposes of scanning, we can set our wireless mode
5568          * to trigger scans across combinations of bands, but when it
5569          * comes to creating a new ad-hoc network, we have tell the FW
5570          * exactly which band to use.
5571          *
5572          * We also have the possibility of an invalid channel for the
5573          * chossen band.  Attempting to create a new ad-hoc network
5574          * with an invalid channel for wireless mode will trigger a
5575          * FW fatal error.
5576          *
5577          */
5578         switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
5579         case IEEE80211_52GHZ_BAND:
5580                 network->mode = IEEE_A;
5581                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5582                 BUG_ON(i == -1);
5583                 if (geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5584                         IPW_WARNING("Overriding invalid channel\n");
5585                         priv->channel = geo->a[0].channel;
5586                 }
5587                 break;
5588
5589         case IEEE80211_24GHZ_BAND:
5590                 if (priv->ieee->mode & IEEE_G)
5591                         network->mode = IEEE_G;
5592                 else
5593                         network->mode = IEEE_B;
5594                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5595                 BUG_ON(i == -1);
5596                 if (geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5597                         IPW_WARNING("Overriding invalid channel\n");
5598                         priv->channel = geo->bg[0].channel;
5599                 }
5600                 break;
5601
5602         default:
5603                 IPW_WARNING("Overriding invalid channel\n");
5604                 if (priv->ieee->mode & IEEE_A) {
5605                         network->mode = IEEE_A;
5606                         priv->channel = geo->a[0].channel;
5607                 } else if (priv->ieee->mode & IEEE_G) {
5608                         network->mode = IEEE_G;
5609                         priv->channel = geo->bg[0].channel;
5610                 } else {
5611                         network->mode = IEEE_B;
5612                         priv->channel = geo->bg[0].channel;
5613                 }
5614                 break;
5615         }
5616
5617         network->channel = priv->channel;
5618         priv->config |= CFG_ADHOC_PERSIST;
5619         ipw_create_bssid(priv, network->bssid);
5620         network->ssid_len = priv->essid_len;
5621         memcpy(network->ssid, priv->essid, priv->essid_len);
5622         memset(&network->stats, 0, sizeof(network->stats));
5623         network->capability = WLAN_CAPABILITY_IBSS;
5624         if (!(priv->config & CFG_PREAMBLE_LONG))
5625                 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5626         if (priv->capability & CAP_PRIVACY_ON)
5627                 network->capability |= WLAN_CAPABILITY_PRIVACY;
5628         network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5629         memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5630         network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5631         memcpy(network->rates_ex,
5632                &priv->rates.supported_rates[network->rates_len],
5633                network->rates_ex_len);
5634         network->last_scanned = 0;
5635         network->flags = 0;
5636         network->last_associate = 0;
5637         network->time_stamp[0] = 0;
5638         network->time_stamp[1] = 0;
5639         network->beacon_interval = 100; /* Default */
5640         network->listen_interval = 10;  /* Default */
5641         network->atim_window = 0;       /* Default */
5642         network->wpa_ie_len = 0;
5643         network->rsn_ie_len = 0;
5644 }
5645
5646 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5647 {
5648         struct ipw_tgi_tx_key key;
5649
5650         if (!(priv->ieee->sec.flags & (1 << index)))
5651                 return;
5652
5653         key.key_id = index;
5654         memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5655         key.security_type = type;
5656         key.station_index = 0;  /* always 0 for BSS */
5657         key.flags = 0;
5658         /* 0 for new key; previous value of counter (after fatal error) */
5659         key.tx_counter[0] = 0;
5660         key.tx_counter[1] = 0;
5661
5662         ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5663 }
5664
5665 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5666 {
5667         struct ipw_wep_key key;
5668         int i;
5669
5670         key.cmd_id = DINO_CMD_WEP_KEY;
5671         key.seq_num = 0;
5672
5673         /* Note: AES keys cannot be set for multiple times.
5674          * Only set it at the first time. */
5675         for (i = 0; i < 4; i++) {
5676                 key.key_index = i | type;
5677                 if (!(priv->ieee->sec.flags & (1 << i))) {
5678                         key.key_size = 0;
5679                         continue;
5680                 }
5681
5682                 key.key_size = priv->ieee->sec.key_sizes[i];
5683                 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5684
5685                 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5686         }
5687 }
5688
5689 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5690 {
5691         if (priv->ieee->host_encrypt)
5692                 return;
5693
5694         switch (level) {
5695         case SEC_LEVEL_3:
5696                 priv->sys_config.disable_unicast_decryption = 0;
5697                 priv->ieee->host_decrypt = 0;
5698                 break;
5699         case SEC_LEVEL_2:
5700                 priv->sys_config.disable_unicast_decryption = 1;
5701                 priv->ieee->host_decrypt = 1;
5702                 break;
5703         case SEC_LEVEL_1:
5704                 priv->sys_config.disable_unicast_decryption = 0;
5705                 priv->ieee->host_decrypt = 0;
5706                 break;
5707         case SEC_LEVEL_0:
5708                 priv->sys_config.disable_unicast_decryption = 1;
5709                 break;
5710         default:
5711                 break;
5712         }
5713 }
5714
5715 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5716 {
5717         if (priv->ieee->host_encrypt)
5718                 return;
5719
5720         switch (level) {
5721         case SEC_LEVEL_3:
5722                 priv->sys_config.disable_multicast_decryption = 0;
5723                 break;
5724         case SEC_LEVEL_2:
5725                 priv->sys_config.disable_multicast_decryption = 1;
5726                 break;
5727         case SEC_LEVEL_1:
5728                 priv->sys_config.disable_multicast_decryption = 0;
5729                 break;
5730         case SEC_LEVEL_0:
5731                 priv->sys_config.disable_multicast_decryption = 1;
5732                 break;
5733         default:
5734                 break;
5735         }
5736 }
5737
5738 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
5739 {
5740         switch (priv->ieee->sec.level) {
5741         case SEC_LEVEL_3:
5742                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5743                         ipw_send_tgi_tx_key(priv,
5744                                             DCT_FLAG_EXT_SECURITY_CCM,
5745                                             priv->ieee->sec.active_key);
5746
5747                 if (!priv->ieee->host_mc_decrypt)
5748                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
5749                 break;
5750         case SEC_LEVEL_2:
5751                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5752                         ipw_send_tgi_tx_key(priv,
5753                                             DCT_FLAG_EXT_SECURITY_TKIP,
5754                                             priv->ieee->sec.active_key);
5755                 break;
5756         case SEC_LEVEL_1:
5757                 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
5758                 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
5759                 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
5760                 break;
5761         case SEC_LEVEL_0:
5762         default:
5763                 break;
5764         }
5765 }
5766
5767 static void ipw_adhoc_check(void *data)
5768 {
5769         struct ipw_priv *priv = data;
5770
5771         if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
5772             !(priv->config & CFG_ADHOC_PERSIST)) {
5773                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
5774                           IPW_DL_STATE | IPW_DL_ASSOC,
5775                           "Missed beacon: %d - disassociate\n",
5776                           priv->missed_adhoc_beacons);
5777                 ipw_remove_current_network(priv);
5778                 ipw_disassociate(priv);
5779                 return;
5780         }
5781
5782         queue_delayed_work(priv->workqueue, &priv->adhoc_check,
5783                            priv->assoc_request.beacon_interval);
5784 }
5785
5786 static void ipw_bg_adhoc_check(void *data)
5787 {
5788         struct ipw_priv *priv = data;
5789         mutex_lock(&priv->mutex);
5790         ipw_adhoc_check(data);
5791         mutex_unlock(&priv->mutex);
5792 }
5793
5794 #ifdef CONFIG_IPW2200_DEBUG
5795 static void ipw_debug_config(struct ipw_priv *priv)
5796 {
5797         IPW_DEBUG_INFO("Scan completed, no valid APs matched "
5798                        "[CFG 0x%08X]\n", priv->config);
5799         if (priv->config & CFG_STATIC_CHANNEL)
5800                 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
5801         else
5802                 IPW_DEBUG_INFO("Channel unlocked.\n");
5803         if (priv->config & CFG_STATIC_ESSID)
5804                 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
5805                                escape_essid(priv->essid, priv->essid_len));
5806         else
5807                 IPW_DEBUG_INFO("ESSID unlocked.\n");
5808         if (priv->config & CFG_STATIC_BSSID)
5809                 IPW_DEBUG_INFO("BSSID locked to " MAC_FMT "\n",
5810                                MAC_ARG(priv->bssid));
5811         else
5812                 IPW_DEBUG_INFO("BSSID unlocked.\n");
5813         if (priv->capability & CAP_PRIVACY_ON)
5814                 IPW_DEBUG_INFO("PRIVACY on\n");
5815         else
5816                 IPW_DEBUG_INFO("PRIVACY off\n");
5817         IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
5818 }
5819 #else
5820 #define ipw_debug_config(x) do {} while (0)
5821 #endif
5822
5823 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
5824 {
5825         /* TODO: Verify that this works... */
5826         struct ipw_fixed_rate fr = {
5827                 .tx_rates = priv->rates_mask
5828         };
5829         u32 reg;
5830         u16 mask = 0;
5831
5832         /* Identify 'current FW band' and match it with the fixed
5833          * Tx rates */
5834
5835         switch (priv->ieee->freq_band) {
5836         case IEEE80211_52GHZ_BAND:      /* A only */
5837                 /* IEEE_A */
5838                 if (priv->rates_mask & ~IEEE80211_OFDM_RATES_MASK) {
5839                         /* Invalid fixed rate mask */
5840                         IPW_DEBUG_WX
5841                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
5842                         fr.tx_rates = 0;
5843                         break;
5844                 }
5845
5846                 fr.tx_rates >>= IEEE80211_OFDM_SHIFT_MASK_A;
5847                 break;
5848
5849         default:                /* 2.4Ghz or Mixed */
5850                 /* IEEE_B */
5851                 if (mode == IEEE_B) {
5852                         if (fr.tx_rates & ~IEEE80211_CCK_RATES_MASK) {
5853                                 /* Invalid fixed rate mask */
5854                                 IPW_DEBUG_WX
5855                                     ("invalid fixed rate mask in ipw_set_fixed_rate\n");
5856                                 fr.tx_rates = 0;
5857                         }
5858                         break;
5859                 }
5860
5861                 /* IEEE_G */
5862                 if (fr.tx_rates & ~(IEEE80211_CCK_RATES_MASK |
5863                                     IEEE80211_OFDM_RATES_MASK)) {
5864                         /* Invalid fixed rate mask */
5865                         IPW_DEBUG_WX
5866                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
5867                         fr.tx_rates = 0;
5868                         break;
5869                 }
5870
5871                 if (IEEE80211_OFDM_RATE_6MB_MASK & fr.tx_rates) {
5872                         mask |= (IEEE80211_OFDM_RATE_6MB_MASK >> 1);
5873                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_6MB_MASK;
5874                 }
5875
5876                 if (IEEE80211_OFDM_RATE_9MB_MASK & fr.tx_rates) {
5877                         mask |= (IEEE80211_OFDM_RATE_9MB_MASK >> 1);
5878                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_9MB_MASK;
5879                 }
5880
5881                 if (IEEE80211_OFDM_RATE_12MB_MASK & fr.tx_rates) {
5882                         mask |= (IEEE80211_OFDM_RATE_12MB_MASK >> 1);
5883                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_12MB_MASK;
5884                 }
5885
5886                 fr.tx_rates |= mask;
5887                 break;
5888         }
5889
5890         reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
5891         ipw_write_reg32(priv, reg, *(u32 *) & fr);
5892 }
5893
5894 static void ipw_abort_scan(struct ipw_priv *priv)
5895 {
5896         int err;
5897
5898         if (priv->status & STATUS_SCAN_ABORTING) {
5899                 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
5900                 return;
5901         }
5902         priv->status |= STATUS_SCAN_ABORTING;
5903
5904         err = ipw_send_scan_abort(priv);
5905         if (err)
5906                 IPW_DEBUG_HC("Request to abort scan failed.\n");
5907 }
5908
5909 static void ipw_add_scan_channels(struct ipw_priv *priv,
5910                                   struct ipw_scan_request_ext *scan,
5911                                   int scan_type)
5912 {
5913         int channel_index = 0;
5914         const struct ieee80211_geo *geo;
5915         int i;
5916
5917         geo = ieee80211_get_geo(priv->ieee);
5918
5919         if (priv->ieee->freq_band & IEEE80211_52GHZ_BAND) {
5920                 int start = channel_index;
5921                 for (i = 0; i < geo->a_channels; i++) {
5922                         if ((priv->status & STATUS_ASSOCIATED) &&
5923                             geo->a[i].channel == priv->channel)
5924                                 continue;
5925                         channel_index++;
5926                         scan->channels_list[channel_index] = geo->a[i].channel;
5927                         ipw_set_scan_type(scan, channel_index,
5928                                           geo->a[i].
5929                                           flags & IEEE80211_CH_PASSIVE_ONLY ?
5930                                           IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
5931                                           scan_type);
5932                 }
5933
5934                 if (start != channel_index) {
5935                         scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
5936                             (channel_index - start);
5937                         channel_index++;
5938                 }
5939         }
5940
5941         if (priv->ieee->freq_band & IEEE80211_24GHZ_BAND) {
5942                 int start = channel_index;
5943                 if (priv->config & CFG_SPEED_SCAN) {
5944                         int index;
5945                         u8 channels[IEEE80211_24GHZ_CHANNELS] = {
5946                                 /* nop out the list */
5947                                 [0] = 0
5948                         };
5949
5950                         u8 channel;
5951                         while (channel_index < IPW_SCAN_CHANNELS) {
5952                                 channel =
5953                                     priv->speed_scan[priv->speed_scan_pos];
5954                                 if (channel == 0) {
5955                                         priv->speed_scan_pos = 0;
5956                                         channel = priv->speed_scan[0];
5957                                 }
5958                                 if ((priv->status & STATUS_ASSOCIATED) &&
5959                                     channel == priv->channel) {
5960                                         priv->speed_scan_pos++;
5961                                         continue;
5962                                 }
5963
5964                                 /* If this channel has already been
5965                                  * added in scan, break from loop
5966                                  * and this will be the first channel
5967                                  * in the next scan.
5968                                  */
5969                                 if (channels[channel - 1] != 0)
5970                                         break;
5971
5972                                 channels[channel - 1] = 1;
5973                                 priv->speed_scan_pos++;
5974                                 channel_index++;
5975                                 scan->channels_list[channel_index] = channel;
5976                                 index =
5977                                     ieee80211_channel_to_index(priv->ieee, channel);
5978                                 ipw_set_scan_type(scan, channel_index,
5979                                                   geo->bg[index].
5980                                                   flags &
5981                                                   IEEE80211_CH_PASSIVE_ONLY ?
5982                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
5983                                                   : scan_type);
5984                         }
5985                 } else {
5986                         for (i = 0; i < geo->bg_channels; i++) {
5987                                 if ((priv->status & STATUS_ASSOCIATED) &&
5988                                     geo->bg[i].channel == priv->channel)
5989                                         continue;
5990                                 channel_index++;
5991                                 scan->channels_list[channel_index] =
5992                                     geo->bg[i].channel;
5993                                 ipw_set_scan_type(scan, channel_index,
5994                                                   geo->bg[i].
5995                                                   flags &
5996                                                   IEEE80211_CH_PASSIVE_ONLY ?
5997                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
5998                                                   : scan_type);
5999                         }
6000                 }
6001
6002                 if (start != channel_index) {
6003                         scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6004                             (channel_index - start);
6005                 }
6006         }
6007 }
6008
6009 static int ipw_request_scan(struct ipw_priv *priv)
6010 {
6011         struct ipw_scan_request_ext scan;
6012         int err = 0, scan_type;
6013
6014         if (!(priv->status & STATUS_INIT) ||
6015             (priv->status & STATUS_EXIT_PENDING))
6016                 return 0;
6017
6018         mutex_lock(&priv->mutex);
6019
6020         if (priv->status & STATUS_SCANNING) {
6021                 IPW_DEBUG_HC("Concurrent scan requested.  Ignoring.\n");
6022                 priv->status |= STATUS_SCAN_PENDING;
6023                 goto done;
6024         }
6025
6026         if (!(priv->status & STATUS_SCAN_FORCED) &&
6027             priv->status & STATUS_SCAN_ABORTING) {
6028                 IPW_DEBUG_HC("Scan request while abort pending.  Queuing.\n");
6029                 priv->status |= STATUS_SCAN_PENDING;
6030                 goto done;
6031         }
6032
6033         if (priv->status & STATUS_RF_KILL_MASK) {
6034                 IPW_DEBUG_HC("Aborting scan due to RF Kill activation\n");
6035                 priv->status |= STATUS_SCAN_PENDING;
6036                 goto done;
6037         }
6038
6039         memset(&scan, 0, sizeof(scan));
6040
6041         if (priv->config & CFG_SPEED_SCAN)
6042                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6043                     cpu_to_le16(30);
6044         else
6045                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6046                     cpu_to_le16(20);
6047
6048         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6049             cpu_to_le16(20);
6050         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
6051
6052         scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
6053
6054 #ifdef CONFIG_IPW2200_MONITOR
6055         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6056                 u8 channel;
6057                 u8 band = 0;
6058
6059                 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
6060                 case IEEE80211_52GHZ_BAND:
6061                         band = (u8) (IPW_A_MODE << 6) | 1;
6062                         channel = priv->channel;
6063                         break;
6064
6065                 case IEEE80211_24GHZ_BAND:
6066                         band = (u8) (IPW_B_MODE << 6) | 1;
6067                         channel = priv->channel;
6068                         break;
6069
6070                 default:
6071                         band = (u8) (IPW_B_MODE << 6) | 1;
6072                         channel = 9;
6073                         break;
6074                 }
6075
6076                 scan.channels_list[0] = band;
6077                 scan.channels_list[1] = channel;
6078                 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6079
6080                 /* NOTE:  The card will sit on this channel for this time
6081                  * period.  Scan aborts are timing sensitive and frequently
6082                  * result in firmware restarts.  As such, it is best to
6083                  * set a small dwell_time here and just keep re-issuing
6084                  * scans.  Otherwise fast channel hopping will not actually
6085                  * hop channels.
6086                  *
6087                  * TODO: Move SPEED SCAN support to all modes and bands */
6088                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6089                     cpu_to_le16(2000);
6090         } else {
6091 #endif                          /* CONFIG_IPW2200_MONITOR */
6092                 /* If we are roaming, then make this a directed scan for the
6093                  * current network.  Otherwise, ensure that every other scan
6094                  * is a fast channel hop scan */
6095                 if ((priv->status & STATUS_ROAMING)
6096                     || (!(priv->status & STATUS_ASSOCIATED)
6097                         && (priv->config & CFG_STATIC_ESSID)
6098                         && (le32_to_cpu(scan.full_scan_index) % 2))) {
6099                         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6100                         if (err) {
6101                                 IPW_DEBUG_HC("Attempt to send SSID command "
6102                                              "failed.\n");
6103                                 goto done;
6104                         }
6105
6106                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6107                 } else
6108                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6109
6110                 ipw_add_scan_channels(priv, &scan, scan_type);
6111 #ifdef CONFIG_IPW2200_MONITOR
6112         }
6113 #endif
6114
6115         err = ipw_send_scan_request_ext(priv, &scan);
6116         if (err) {
6117                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6118                 goto done;
6119         }
6120
6121         priv->status |= STATUS_SCANNING;
6122         priv->status &= ~STATUS_SCAN_PENDING;
6123         queue_delayed_work(priv->workqueue, &priv->scan_check,
6124                            IPW_SCAN_CHECK_WATCHDOG);
6125       done:
6126         mutex_unlock(&priv->mutex);
6127         return err;
6128 }
6129
6130 static void ipw_bg_abort_scan(void *data)
6131 {
6132         struct ipw_priv *priv = data;
6133         mutex_lock(&priv->mutex);
6134         ipw_abort_scan(data);
6135         mutex_unlock(&priv->mutex);
6136 }
6137
6138 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6139 {
6140         /* This is called when wpa_supplicant loads and closes the driver
6141          * interface. */
6142         priv->ieee->wpa_enabled = value;
6143         return 0;
6144 }
6145
6146 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6147 {
6148         struct ieee80211_device *ieee = priv->ieee;
6149         struct ieee80211_security sec = {
6150                 .flags = SEC_AUTH_MODE,
6151         };
6152         int ret = 0;
6153
6154         if (value & IW_AUTH_ALG_SHARED_KEY) {
6155                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6156                 ieee->open_wep = 0;
6157         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6158                 sec.auth_mode = WLAN_AUTH_OPEN;
6159                 ieee->open_wep = 1;
6160         } else if (value & IW_AUTH_ALG_LEAP) {
6161                 sec.auth_mode = WLAN_AUTH_LEAP;
6162                 ieee->open_wep = 1;
6163         } else
6164                 return -EINVAL;
6165
6166         if (ieee->set_security)
6167                 ieee->set_security(ieee->dev, &sec);
6168         else
6169                 ret = -EOPNOTSUPP;
6170
6171         return ret;
6172 }
6173
6174 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6175                                 int wpa_ie_len)
6176 {
6177         /* make sure WPA is enabled */
6178         ipw_wpa_enable(priv, 1);
6179
6180         ipw_disassociate(priv);
6181 }
6182
6183 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6184                             char *capabilities, int length)
6185 {
6186         IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6187
6188         return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6189                                 capabilities);
6190 }
6191
6192 /*
6193  * WE-18 support
6194  */
6195
6196 /* SIOCSIWGENIE */
6197 static int ipw_wx_set_genie(struct net_device *dev,
6198                             struct iw_request_info *info,
6199                             union iwreq_data *wrqu, char *extra)
6200 {
6201         struct ipw_priv *priv = ieee80211_priv(dev);
6202         struct ieee80211_device *ieee = priv->ieee;
6203         u8 *buf;
6204         int err = 0;
6205
6206         if (wrqu->data.length > MAX_WPA_IE_LEN ||
6207             (wrqu->data.length && extra == NULL))
6208                 return -EINVAL;
6209
6210         //mutex_lock(&priv->mutex);
6211
6212         //if (!ieee->wpa_enabled) {
6213         //      err = -EOPNOTSUPP;
6214         //      goto out;
6215         //}
6216
6217         if (wrqu->data.length) {
6218                 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
6219                 if (buf == NULL) {
6220                         err = -ENOMEM;
6221                         goto out;
6222                 }
6223
6224                 memcpy(buf, extra, wrqu->data.length);
6225                 kfree(ieee->wpa_ie);
6226                 ieee->wpa_ie = buf;
6227                 ieee->wpa_ie_len = wrqu->data.length;
6228         } else {
6229                 kfree(ieee->wpa_ie);
6230                 ieee->wpa_ie = NULL;
6231                 ieee->wpa_ie_len = 0;
6232         }
6233
6234         ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6235       out:
6236         //mutex_unlock(&priv->mutex);
6237         return err;
6238 }
6239
6240 /* SIOCGIWGENIE */
6241 static int ipw_wx_get_genie(struct net_device *dev,
6242                             struct iw_request_info *info,
6243                             union iwreq_data *wrqu, char *extra)
6244 {
6245         struct ipw_priv *priv = ieee80211_priv(dev);
6246         struct ieee80211_device *ieee = priv->ieee;
6247         int err = 0;
6248
6249         //mutex_lock(&priv->mutex);
6250
6251         //if (!ieee->wpa_enabled) {
6252         //      err = -EOPNOTSUPP;
6253         //      goto out;
6254         //}
6255
6256         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6257                 wrqu->data.length = 0;
6258                 goto out;
6259         }
6260
6261         if (wrqu->data.length < ieee->wpa_ie_len) {
6262                 err = -E2BIG;
6263                 goto out;
6264         }
6265
6266         wrqu->data.length = ieee->wpa_ie_len;
6267         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6268
6269       out:
6270         //mutex_unlock(&priv->mutex);
6271         return err;
6272 }
6273
6274 static int wext_cipher2level(int cipher)
6275 {
6276         switch (cipher) {
6277         case IW_AUTH_CIPHER_NONE:
6278                 return SEC_LEVEL_0;
6279         case IW_AUTH_CIPHER_WEP40:
6280         case IW_AUTH_CIPHER_WEP104:
6281                 return SEC_LEVEL_1;
6282         case IW_AUTH_CIPHER_TKIP:
6283                 return SEC_LEVEL_2;
6284         case IW_AUTH_CIPHER_CCMP:
6285                 return SEC_LEVEL_3;
6286         default:
6287                 return -1;
6288         }
6289 }
6290
6291 /* SIOCSIWAUTH */
6292 static int ipw_wx_set_auth(struct net_device *dev,
6293                            struct iw_request_info *info,
6294                            union iwreq_data *wrqu, char *extra)
6295 {
6296         struct ipw_priv *priv = ieee80211_priv(dev);
6297         struct ieee80211_device *ieee = priv->ieee;
6298         struct iw_param *param = &wrqu->param;
6299         struct ieee80211_crypt_data *crypt;
6300         unsigned long flags;
6301         int ret = 0;
6302
6303         switch (param->flags & IW_AUTH_INDEX) {
6304         case IW_AUTH_WPA_VERSION:
6305                 break;
6306         case IW_AUTH_CIPHER_PAIRWISE:
6307                 ipw_set_hw_decrypt_unicast(priv,
6308                                            wext_cipher2level(param->value));
6309                 break;
6310         case IW_AUTH_CIPHER_GROUP:
6311                 ipw_set_hw_decrypt_multicast(priv,
6312                                              wext_cipher2level(param->value));
6313                 break;
6314         case IW_AUTH_KEY_MGMT:
6315                 /*
6316                  * ipw2200 does not use these parameters
6317                  */
6318                 break;
6319
6320         case IW_AUTH_TKIP_COUNTERMEASURES:
6321                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6322                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6323                         break;
6324
6325                 flags = crypt->ops->get_flags(crypt->priv);
6326
6327                 if (param->value)
6328                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6329                 else
6330                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6331
6332                 crypt->ops->set_flags(flags, crypt->priv);
6333
6334                 break;
6335
6336         case IW_AUTH_DROP_UNENCRYPTED:{
6337                         /* HACK:
6338                          *
6339                          * wpa_supplicant calls set_wpa_enabled when the driver
6340                          * is loaded and unloaded, regardless of if WPA is being
6341                          * used.  No other calls are made which can be used to
6342                          * determine if encryption will be used or not prior to
6343                          * association being expected.  If encryption is not being
6344                          * used, drop_unencrypted is set to false, else true -- we
6345                          * can use this to determine if the CAP_PRIVACY_ON bit should
6346                          * be set.
6347                          */
6348                         struct ieee80211_security sec = {
6349                                 .flags = SEC_ENABLED,
6350                                 .enabled = param->value,
6351                         };
6352                         priv->ieee->drop_unencrypted = param->value;
6353                         /* We only change SEC_LEVEL for open mode. Others
6354                          * are set by ipw_wpa_set_encryption.
6355                          */
6356                         if (!param->value) {
6357                                 sec.flags |= SEC_LEVEL;
6358                                 sec.level = SEC_LEVEL_0;
6359                         } else {
6360                                 sec.flags |= SEC_LEVEL;
6361                                 sec.level = SEC_LEVEL_1;
6362                         }
6363                         if (priv->ieee->set_security)
6364                                 priv->ieee->set_security(priv->ieee->dev, &sec);
6365                         break;
6366                 }
6367
6368         case IW_AUTH_80211_AUTH_ALG:
6369                 ret = ipw_wpa_set_auth_algs(priv, param->value);
6370                 break;
6371
6372         case IW_AUTH_WPA_ENABLED:
6373                 ret = ipw_wpa_enable(priv, param->value);
6374                 break;
6375
6376         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6377                 ieee->ieee802_1x = param->value;
6378                 break;
6379
6380                 //case IW_AUTH_ROAMING_CONTROL:
6381         case IW_AUTH_PRIVACY_INVOKED:
6382                 ieee->privacy_invoked = param->value;
6383                 break;
6384
6385         default:
6386                 return -EOPNOTSUPP;
6387         }
6388         return ret;
6389 }
6390
6391 /* SIOCGIWAUTH */
6392 static int ipw_wx_get_auth(struct net_device *dev,
6393                            struct iw_request_info *info,
6394                            union iwreq_data *wrqu, char *extra)
6395 {
6396         struct ipw_priv *priv = ieee80211_priv(dev);
6397         struct ieee80211_device *ieee = priv->ieee;
6398         struct ieee80211_crypt_data *crypt;
6399         struct iw_param *param = &wrqu->param;
6400         int ret = 0;
6401
6402         switch (param->flags & IW_AUTH_INDEX) {
6403         case IW_AUTH_WPA_VERSION:
6404         case IW_AUTH_CIPHER_PAIRWISE:
6405         case IW_AUTH_CIPHER_GROUP:
6406         case IW_AUTH_KEY_MGMT:
6407                 /*
6408                  * wpa_supplicant will control these internally
6409                  */
6410                 ret = -EOPNOTSUPP;
6411                 break;
6412
6413         case IW_AUTH_TKIP_COUNTERMEASURES:
6414                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6415                 if (!crypt || !crypt->ops->get_flags)
6416                         break;
6417
6418                 param->value = (crypt->ops->get_flags(crypt->priv) &
6419                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6420
6421                 break;
6422
6423         case IW_AUTH_DROP_UNENCRYPTED:
6424                 param->value = ieee->drop_unencrypted;
6425                 break;
6426
6427         case IW_AUTH_80211_AUTH_ALG:
6428                 param->value = ieee->sec.auth_mode;
6429                 break;
6430
6431         case IW_AUTH_WPA_ENABLED:
6432                 param->value = ieee->wpa_enabled;
6433                 break;
6434
6435         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6436                 param->value = ieee->ieee802_1x;
6437                 break;
6438
6439         case IW_AUTH_ROAMING_CONTROL:
6440         case IW_AUTH_PRIVACY_INVOKED:
6441                 param->value = ieee->privacy_invoked;
6442                 break;
6443
6444         default:
6445                 return -EOPNOTSUPP;
6446         }
6447         return 0;
6448 }
6449
6450 /* SIOCSIWENCODEEXT */
6451 static int ipw_wx_set_encodeext(struct net_device *dev,
6452                                 struct iw_request_info *info,
6453                                 union iwreq_data *wrqu, char *extra)
6454 {
6455         struct ipw_priv *priv = ieee80211_priv(dev);
6456         struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6457
6458         if (hwcrypto) {
6459                 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6460                         /* IPW HW can't build TKIP MIC,
6461                            host decryption still needed */
6462                         if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6463                                 priv->ieee->host_mc_decrypt = 1;
6464                         else {
6465                                 priv->ieee->host_encrypt = 0;
6466                                 priv->ieee->host_encrypt_msdu = 1;
6467                                 priv->ieee->host_decrypt = 1;
6468                         }
6469                 } else {
6470                         priv->ieee->host_encrypt = 0;
6471                         priv->ieee->host_encrypt_msdu = 0;
6472                         priv->ieee->host_decrypt = 0;
6473                         priv->ieee->host_mc_decrypt = 0;
6474                 }
6475         }
6476
6477         return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6478 }
6479
6480 /* SIOCGIWENCODEEXT */
6481 static int ipw_wx_get_encodeext(struct net_device *dev,
6482                                 struct iw_request_info *info,
6483                                 union iwreq_data *wrqu, char *extra)
6484 {
6485         struct ipw_priv *priv = ieee80211_priv(dev);
6486         return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6487 }
6488
6489 /* SIOCSIWMLME */
6490 static int ipw_wx_set_mlme(struct net_device *dev,
6491                            struct iw_request_info *info,
6492                            union iwreq_data *wrqu, char *extra)
6493 {
6494         struct ipw_priv *priv = ieee80211_priv(dev);
6495         struct iw_mlme *mlme = (struct iw_mlme *)extra;
6496         u16 reason;
6497
6498         reason = cpu_to_le16(mlme->reason_code);
6499
6500         switch (mlme->cmd) {
6501         case IW_MLME_DEAUTH:
6502                 // silently ignore
6503                 break;
6504
6505         case IW_MLME_DISASSOC:
6506                 ipw_disassociate(priv);
6507                 break;
6508
6509         default:
6510                 return -EOPNOTSUPP;
6511         }
6512         return 0;
6513 }
6514
6515 #ifdef CONFIG_IPW_QOS
6516
6517 /* QoS */
6518 /*
6519 * get the modulation type of the current network or
6520 * the card current mode
6521 */
6522 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6523 {
6524         u8 mode = 0;
6525
6526         if (priv->status & STATUS_ASSOCIATED) {
6527                 unsigned long flags;
6528
6529                 spin_lock_irqsave(&priv->ieee->lock, flags);
6530                 mode = priv->assoc_network->mode;
6531                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6532         } else {
6533                 mode = priv->ieee->mode;
6534         }
6535         IPW_DEBUG_QOS("QoS network/card mode %d \n", mode);
6536         return mode;
6537 }
6538
6539 /*
6540 * Handle management frame beacon and probe response
6541 */
6542 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6543                                          int active_network,
6544                                          struct ieee80211_network *network)
6545 {
6546         u32 size = sizeof(struct ieee80211_qos_parameters);
6547
6548         if (network->capability & WLAN_CAPABILITY_IBSS)
6549                 network->qos_data.active = network->qos_data.supported;
6550
6551         if (network->flags & NETWORK_HAS_QOS_MASK) {
6552                 if (active_network &&
6553                     (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6554                         network->qos_data.active = network->qos_data.supported;
6555
6556                 if ((network->qos_data.active == 1) && (active_network == 1) &&
6557                     (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6558                     (network->qos_data.old_param_count !=
6559                      network->qos_data.param_count)) {
6560                         network->qos_data.old_param_count =
6561                             network->qos_data.param_count;
6562                         schedule_work(&priv->qos_activate);
6563                         IPW_DEBUG_QOS("QoS parameters change call "
6564                                       "qos_activate\n");
6565                 }
6566         } else {
6567                 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6568                         memcpy(&network->qos_data.parameters,
6569                                &def_parameters_CCK, size);
6570                 else
6571                         memcpy(&network->qos_data.parameters,
6572                                &def_parameters_OFDM, size);
6573
6574                 if ((network->qos_data.active == 1) && (active_network == 1)) {
6575                         IPW_DEBUG_QOS("QoS was disabled call qos_activate \n");
6576                         schedule_work(&priv->qos_activate);
6577                 }
6578
6579                 network->qos_data.active = 0;
6580                 network->qos_data.supported = 0;
6581         }
6582         if ((priv->status & STATUS_ASSOCIATED) &&
6583             (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6584                 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6585                         if ((network->capability & WLAN_CAPABILITY_IBSS) &&
6586                             !(network->flags & NETWORK_EMPTY_ESSID))
6587                                 if ((network->ssid_len ==
6588                                      priv->assoc_network->ssid_len) &&
6589                                     !memcmp(network->ssid,
6590                                             priv->assoc_network->ssid,
6591                                             network->ssid_len)) {
6592                                         queue_work(priv->workqueue,
6593                                                    &priv->merge_networks);
6594                                 }
6595         }
6596
6597         return 0;
6598 }
6599
6600 /*
6601 * This function set up the firmware to support QoS. It sends
6602 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6603 */
6604 static int ipw_qos_activate(struct ipw_priv *priv,
6605                             struct ieee80211_qos_data *qos_network_data)
6606 {
6607         int err;
6608         struct ieee80211_qos_parameters qos_parameters[QOS_QOS_SETS];
6609         struct ieee80211_qos_parameters *active_one = NULL;
6610         u32 size = sizeof(struct ieee80211_qos_parameters);
6611         u32 burst_duration;
6612         int i;
6613         u8 type;
6614
6615         type = ipw_qos_current_mode(priv);
6616
6617         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6618         memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6619         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6620         memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6621
6622         if (qos_network_data == NULL) {
6623                 if (type == IEEE_B) {
6624                         IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6625                         active_one = &def_parameters_CCK;
6626                 } else
6627                         active_one = &def_parameters_OFDM;
6628
6629                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6630                 burst_duration = ipw_qos_get_burst_duration(priv);
6631                 for (i = 0; i < QOS_QUEUE_NUM; i++)
6632                         qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6633                             (u16) burst_duration;
6634         } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6635                 if (type == IEEE_B) {
6636                         IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
6637                                       type);
6638                         if (priv->qos_data.qos_enable == 0)
6639                                 active_one = &def_parameters_CCK;
6640                         else
6641                                 active_one = priv->qos_data.def_qos_parm_CCK;
6642                 } else {
6643                         if (priv->qos_data.qos_enable == 0)
6644                                 active_one = &def_parameters_OFDM;
6645                         else
6646                                 active_one = priv->qos_data.def_qos_parm_OFDM;
6647                 }
6648                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6649         } else {
6650                 unsigned long flags;
6651                 int active;
6652
6653                 spin_lock_irqsave(&priv->ieee->lock, flags);
6654                 active_one = &(qos_network_data->parameters);
6655                 qos_network_data->old_param_count =
6656                     qos_network_data->param_count;
6657                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6658                 active = qos_network_data->supported;
6659                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6660
6661                 if (active == 0) {
6662                         burst_duration = ipw_qos_get_burst_duration(priv);
6663                         for (i = 0; i < QOS_QUEUE_NUM; i++)
6664                                 qos_parameters[QOS_PARAM_SET_ACTIVE].
6665                                     tx_op_limit[i] = (u16) burst_duration;
6666                 }
6667         }
6668
6669         IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6670         err = ipw_send_qos_params_command(priv,
6671                                           (struct ieee80211_qos_parameters *)
6672                                           &(qos_parameters[0]));
6673         if (err)
6674                 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6675
6676         return err;
6677 }
6678
6679 /*
6680 * send IPW_CMD_WME_INFO to the firmware
6681 */
6682 static int ipw_qos_set_info_element(struct ipw_priv *priv)
6683 {
6684         int ret = 0;
6685         struct ieee80211_qos_information_element qos_info;
6686
6687         if (priv == NULL)
6688                 return -1;
6689
6690         qos_info.elementID = QOS_ELEMENT_ID;
6691         qos_info.length = sizeof(struct ieee80211_qos_information_element) - 2;
6692
6693         qos_info.version = QOS_VERSION_1;
6694         qos_info.ac_info = 0;
6695
6696         memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
6697         qos_info.qui_type = QOS_OUI_TYPE;
6698         qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
6699
6700         ret = ipw_send_qos_info_command(priv, &qos_info);
6701         if (ret != 0) {
6702                 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
6703         }
6704         return ret;
6705 }
6706
6707 /*
6708 * Set the QoS parameter with the association request structure
6709 */
6710 static int ipw_qos_association(struct ipw_priv *priv,
6711                                struct ieee80211_network *network)
6712 {
6713         int err = 0;
6714         struct ieee80211_qos_data *qos_data = NULL;
6715         struct ieee80211_qos_data ibss_data = {
6716                 .supported = 1,
6717                 .active = 1,
6718         };
6719
6720         switch (priv->ieee->iw_mode) {
6721         case IW_MODE_ADHOC:
6722                 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
6723
6724                 qos_data = &ibss_data;
6725                 break;
6726
6727         case IW_MODE_INFRA:
6728                 qos_data = &network->qos_data;
6729                 break;
6730
6731         default:
6732                 BUG();
6733                 break;
6734         }
6735
6736         err = ipw_qos_activate(priv, qos_data);
6737         if (err) {
6738                 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
6739                 return err;
6740         }
6741
6742         if (priv->qos_data.qos_enable && qos_data->supported) {
6743                 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
6744                 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
6745                 return ipw_qos_set_info_element(priv);
6746         }
6747
6748         return 0;
6749 }
6750
6751 /*
6752 * handling the beaconing responces. if we get different QoS setting
6753 * of the network from the the associated setting adjust the QoS
6754 * setting
6755 */
6756 static int ipw_qos_association_resp(struct ipw_priv *priv,
6757                                     struct ieee80211_network *network)
6758 {
6759         int ret = 0;
6760         unsigned long flags;
6761         u32 size = sizeof(struct ieee80211_qos_parameters);
6762         int set_qos_param = 0;
6763
6764         if ((priv == NULL) || (network == NULL) ||
6765             (priv->assoc_network == NULL))
6766                 return ret;
6767
6768         if (!(priv->status & STATUS_ASSOCIATED))
6769                 return ret;
6770
6771         if ((priv->ieee->iw_mode != IW_MODE_INFRA))
6772                 return ret;
6773
6774         spin_lock_irqsave(&priv->ieee->lock, flags);
6775         if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
6776                 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
6777                        sizeof(struct ieee80211_qos_data));
6778                 priv->assoc_network->qos_data.active = 1;
6779                 if ((network->qos_data.old_param_count !=
6780                      network->qos_data.param_count)) {
6781                         set_qos_param = 1;
6782                         network->qos_data.old_param_count =
6783                             network->qos_data.param_count;
6784                 }
6785
6786         } else {
6787                 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
6788                         memcpy(&priv->assoc_network->qos_data.parameters,
6789                                &def_parameters_CCK, size);
6790                 else
6791                         memcpy(&priv->assoc_network->qos_data.parameters,
6792                                &def_parameters_OFDM, size);
6793                 priv->assoc_network->qos_data.active = 0;
6794                 priv->assoc_network->qos_data.supported = 0;
6795                 set_qos_param = 1;
6796         }
6797
6798         spin_unlock_irqrestore(&priv->ieee->lock, flags);
6799
6800         if (set_qos_param == 1)
6801                 schedule_work(&priv->qos_activate);
6802
6803         return ret;
6804 }
6805
6806 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
6807 {
6808         u32 ret = 0;
6809
6810         if ((priv == NULL))
6811                 return 0;
6812
6813         if (!(priv->ieee->modulation & IEEE80211_OFDM_MODULATION))
6814                 ret = priv->qos_data.burst_duration_CCK;
6815         else
6816                 ret = priv->qos_data.burst_duration_OFDM;
6817
6818         return ret;
6819 }
6820
6821 /*
6822 * Initialize the setting of QoS global
6823 */
6824 static void ipw_qos_init(struct ipw_priv *priv, int enable,
6825                          int burst_enable, u32 burst_duration_CCK,
6826                          u32 burst_duration_OFDM)
6827 {
6828         priv->qos_data.qos_enable = enable;
6829
6830         if (priv->qos_data.qos_enable) {
6831                 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
6832                 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
6833                 IPW_DEBUG_QOS("QoS is enabled\n");
6834         } else {
6835                 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
6836                 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
6837                 IPW_DEBUG_QOS("QoS is not enabled\n");
6838         }
6839
6840         priv->qos_data.burst_enable = burst_enable;
6841
6842         if (burst_enable) {
6843                 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
6844                 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
6845         } else {
6846                 priv->qos_data.burst_duration_CCK = 0;
6847                 priv->qos_data.burst_duration_OFDM = 0;
6848         }
6849 }
6850
6851 /*
6852 * map the packet priority to the right TX Queue
6853 */
6854 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
6855 {
6856         if (priority > 7 || !priv->qos_data.qos_enable)
6857                 priority = 0;
6858
6859         return from_priority_to_tx_queue[priority] - 1;
6860 }
6861
6862 /*
6863 * add QoS parameter to the TX command
6864 */
6865 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
6866                                         u16 priority,
6867                                         struct tfd_data *tfd, u8 unicast)
6868 {
6869         int ret = 0;
6870         int tx_queue_id = 0;
6871         struct ieee80211_qos_data *qos_data = NULL;
6872         int active, supported;
6873         unsigned long flags;
6874
6875         if (!(priv->status & STATUS_ASSOCIATED))
6876                 return 0;
6877
6878         qos_data = &priv->assoc_network->qos_data;
6879
6880         spin_lock_irqsave(&priv->ieee->lock, flags);
6881
6882         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6883                 if (unicast == 0)
6884                         qos_data->active = 0;
6885                 else
6886                         qos_data->active = qos_data->supported;
6887         }
6888
6889         active = qos_data->active;
6890         supported = qos_data->supported;
6891
6892         spin_unlock_irqrestore(&priv->ieee->lock, flags);
6893
6894         IPW_DEBUG_QOS("QoS  %d network is QoS active %d  supported %d  "
6895                       "unicast %d\n",
6896                       priv->qos_data.qos_enable, active, supported, unicast);
6897         if (active && priv->qos_data.qos_enable) {
6898                 ret = from_priority_to_tx_queue[priority];
6899                 tx_queue_id = ret - 1;
6900                 IPW_DEBUG_QOS("QoS packet priority is %d \n", priority);
6901                 if (priority <= 7) {
6902                         tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
6903                         tfd->tfd.tfd_26.mchdr.qos_ctrl = priority;
6904                         tfd->tfd.tfd_26.mchdr.frame_ctl |=
6905                             IEEE80211_STYPE_QOS_DATA;
6906
6907                         if (priv->qos_data.qos_no_ack_mask &
6908                             (1UL << tx_queue_id)) {
6909                                 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
6910                                 tfd->tfd.tfd_26.mchdr.qos_ctrl |=
6911                                     CTRL_QOS_NO_ACK;
6912                         }
6913                 }
6914         }
6915
6916         return ret;
6917 }
6918
6919 /*
6920 * background support to run QoS activate functionality
6921 */
6922 static void ipw_bg_qos_activate(void *data)
6923 {
6924         struct ipw_priv *priv = data;
6925
6926         if (priv == NULL)
6927                 return;
6928
6929         mutex_lock(&priv->mutex);
6930
6931         if (priv->status & STATUS_ASSOCIATED)
6932                 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
6933
6934         mutex_unlock(&priv->mutex);
6935 }
6936
6937 static int ipw_handle_probe_response(struct net_device *dev,
6938                                      struct ieee80211_probe_response *resp,
6939                                      struct ieee80211_network *network)
6940 {
6941         struct ipw_priv *priv = ieee80211_priv(dev);
6942         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
6943                               (network == priv->assoc_network));
6944
6945         ipw_qos_handle_probe_response(priv, active_network, network);
6946
6947         return 0;
6948 }
6949
6950 static int ipw_handle_beacon(struct net_device *dev,
6951                              struct ieee80211_beacon *resp,
6952                              struct ieee80211_network *network)
6953 {
6954         struct ipw_priv *priv = ieee80211_priv(dev);
6955         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
6956                               (network == priv->assoc_network));
6957
6958         ipw_qos_handle_probe_response(priv, active_network, network);
6959
6960         return 0;
6961 }
6962
6963 static int ipw_handle_assoc_response(struct net_device *dev,
6964                                      struct ieee80211_assoc_response *resp,
6965                                      struct ieee80211_network *network)
6966 {
6967         struct ipw_priv *priv = ieee80211_priv(dev);
6968         ipw_qos_association_resp(priv, network);
6969         return 0;
6970 }
6971
6972 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
6973                                        *qos_param)
6974 {
6975         return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
6976                                 sizeof(*qos_param) * 3, qos_param);
6977 }
6978
6979 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
6980                                      *qos_param)
6981 {
6982         return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
6983                                 qos_param);
6984 }
6985
6986 #endif                          /* CONFIG_IPW_QOS */
6987
6988 static int ipw_associate_network(struct ipw_priv *priv,
6989                                  struct ieee80211_network *network,
6990                                  struct ipw_supported_rates *rates, int roaming)
6991 {
6992         int err;
6993
6994         if (priv->config & CFG_FIXED_RATE)
6995                 ipw_set_fixed_rate(priv, network->mode);
6996
6997         if (!(priv->config & CFG_STATIC_ESSID)) {
6998                 priv->essid_len = min(network->ssid_len,
6999                                       (u8) IW_ESSID_MAX_SIZE);
7000                 memcpy(priv->essid, network->ssid, priv->essid_len);
7001         }
7002
7003         network->last_associate = jiffies;
7004
7005         memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7006         priv->assoc_request.channel = network->channel;
7007         priv->assoc_request.auth_key = 0;
7008
7009         if ((priv->capability & CAP_PRIVACY_ON) &&
7010             (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7011                 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7012                 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7013
7014                 if (priv->ieee->sec.level == SEC_LEVEL_1)
7015                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7016
7017         } else if ((priv->capability & CAP_PRIVACY_ON) &&
7018                    (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7019                 priv->assoc_request.auth_type = AUTH_LEAP;
7020         else
7021                 priv->assoc_request.auth_type = AUTH_OPEN;
7022
7023         if (priv->ieee->wpa_ie_len) {
7024                 priv->assoc_request.policy_support = 0x02;      /* RSN active */
7025                 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7026                                  priv->ieee->wpa_ie_len);
7027         }
7028
7029         /*
7030          * It is valid for our ieee device to support multiple modes, but
7031          * when it comes to associating to a given network we have to choose
7032          * just one mode.
7033          */
7034         if (network->mode & priv->ieee->mode & IEEE_A)
7035                 priv->assoc_request.ieee_mode = IPW_A_MODE;
7036         else if (network->mode & priv->ieee->mode & IEEE_G)
7037                 priv->assoc_request.ieee_mode = IPW_G_MODE;
7038         else if (network->mode & priv->ieee->mode & IEEE_B)
7039                 priv->assoc_request.ieee_mode = IPW_B_MODE;
7040
7041         priv->assoc_request.capability = network->capability;
7042         if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7043             && !(priv->config & CFG_PREAMBLE_LONG)) {
7044                 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7045         } else {
7046                 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7047
7048                 /* Clear the short preamble if we won't be supporting it */
7049                 priv->assoc_request.capability &=
7050                     ~WLAN_CAPABILITY_SHORT_PREAMBLE;
7051         }
7052
7053         /* Clear capability bits that aren't used in Ad Hoc */
7054         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7055                 priv->assoc_request.capability &=
7056                     ~WLAN_CAPABILITY_SHORT_SLOT_TIME;
7057
7058         IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7059                         "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7060                         roaming ? "Rea" : "A",
7061                         escape_essid(priv->essid, priv->essid_len),
7062                         network->channel,
7063                         ipw_modes[priv->assoc_request.ieee_mode],
7064                         rates->num_rates,
7065                         (priv->assoc_request.preamble_length ==
7066                          DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7067                         network->capability &
7068                         WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7069                         priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7070                         priv->capability & CAP_PRIVACY_ON ?
7071                         (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7072                          "(open)") : "",
7073                         priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7074                         priv->capability & CAP_PRIVACY_ON ?
7075                         '1' + priv->ieee->sec.active_key : '.',
7076                         priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7077
7078         priv->assoc_request.beacon_interval = network->beacon_interval;
7079         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7080             (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7081                 priv->assoc_request.assoc_type = HC_IBSS_START;
7082                 priv->assoc_request.assoc_tsf_msw = 0;
7083                 priv->assoc_request.assoc_tsf_lsw = 0;
7084         } else {
7085                 if (unlikely(roaming))
7086                         priv->assoc_request.assoc_type = HC_REASSOCIATE;
7087                 else
7088                         priv->assoc_request.assoc_type = HC_ASSOCIATE;
7089                 priv->assoc_request.assoc_tsf_msw = network->time_stamp[1];
7090                 priv->assoc_request.assoc_tsf_lsw = network->time_stamp[0];
7091         }
7092
7093         memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7094
7095         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7096                 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7097                 priv->assoc_request.atim_window = network->atim_window;
7098         } else {
7099                 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7100                 priv->assoc_request.atim_window = 0;
7101         }
7102
7103         priv->assoc_request.listen_interval = network->listen_interval;
7104
7105         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7106         if (err) {
7107                 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7108                 return err;
7109         }
7110
7111         rates->ieee_mode = priv->assoc_request.ieee_mode;
7112         rates->purpose = IPW_RATE_CONNECT;
7113         ipw_send_supported_rates(priv, rates);
7114
7115         if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7116                 priv->sys_config.dot11g_auto_detection = 1;
7117         else
7118                 priv->sys_config.dot11g_auto_detection = 0;
7119
7120         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7121                 priv->sys_config.answer_broadcast_ssid_probe = 1;
7122         else
7123                 priv->sys_config.answer_broadcast_ssid_probe = 0;
7124
7125         err = ipw_send_system_config(priv, &priv->sys_config);
7126         if (err) {
7127                 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7128                 return err;
7129         }
7130
7131         IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7132         err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7133         if (err) {
7134                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7135                 return err;
7136         }
7137
7138         /*
7139          * If preemption is enabled, it is possible for the association
7140          * to complete before we return from ipw_send_associate.  Therefore
7141          * we have to be sure and update our priviate data first.
7142          */
7143         priv->channel = network->channel;
7144         memcpy(priv->bssid, network->bssid, ETH_ALEN);
7145         priv->status |= STATUS_ASSOCIATING;
7146         priv->status &= ~STATUS_SECURITY_UPDATED;
7147
7148         priv->assoc_network = network;
7149
7150 #ifdef CONFIG_IPW_QOS
7151         ipw_qos_association(priv, network);
7152 #endif
7153
7154         err = ipw_send_associate(priv, &priv->assoc_request);
7155         if (err) {
7156                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7157                 return err;
7158         }
7159
7160         IPW_DEBUG(IPW_DL_STATE, "associating: '%s' " MAC_FMT " \n",
7161                   escape_essid(priv->essid, priv->essid_len),
7162                   MAC_ARG(priv->bssid));
7163
7164         return 0;
7165 }
7166
7167 static void ipw_roam(void *data)
7168 {
7169         struct ipw_priv *priv = data;
7170         struct ieee80211_network *network = NULL;
7171         struct ipw_network_match match = {
7172                 .network = priv->assoc_network
7173         };
7174
7175         /* The roaming process is as follows:
7176          *
7177          * 1.  Missed beacon threshold triggers the roaming process by
7178          *     setting the status ROAM bit and requesting a scan.
7179          * 2.  When the scan completes, it schedules the ROAM work
7180          * 3.  The ROAM work looks at all of the known networks for one that
7181          *     is a better network than the currently associated.  If none
7182          *     found, the ROAM process is over (ROAM bit cleared)
7183          * 4.  If a better network is found, a disassociation request is
7184          *     sent.
7185          * 5.  When the disassociation completes, the roam work is again
7186          *     scheduled.  The second time through, the driver is no longer
7187          *     associated, and the newly selected network is sent an
7188          *     association request.
7189          * 6.  At this point ,the roaming process is complete and the ROAM
7190          *     status bit is cleared.
7191          */
7192
7193         /* If we are no longer associated, and the roaming bit is no longer
7194          * set, then we are not actively roaming, so just return */
7195         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7196                 return;
7197
7198         if (priv->status & STATUS_ASSOCIATED) {
7199                 /* First pass through ROAM process -- look for a better
7200                  * network */
7201                 unsigned long flags;
7202                 u8 rssi = priv->assoc_network->stats.rssi;
7203                 priv->assoc_network->stats.rssi = -128;
7204                 spin_lock_irqsave(&priv->ieee->lock, flags);
7205                 list_for_each_entry(network, &priv->ieee->network_list, list) {
7206                         if (network != priv->assoc_network)
7207                                 ipw_best_network(priv, &match, network, 1);
7208                 }
7209                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7210                 priv->assoc_network->stats.rssi = rssi;
7211
7212                 if (match.network == priv->assoc_network) {
7213                         IPW_DEBUG_ASSOC("No better APs in this network to "
7214                                         "roam to.\n");
7215                         priv->status &= ~STATUS_ROAMING;
7216                         ipw_debug_config(priv);
7217                         return;
7218                 }
7219
7220                 ipw_send_disassociate(priv, 1);
7221                 priv->assoc_network = match.network;
7222
7223                 return;
7224         }
7225
7226         /* Second pass through ROAM process -- request association */
7227         ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7228         ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7229         priv->status &= ~STATUS_ROAMING;
7230 }
7231
7232 static void ipw_bg_roam(void *data)
7233 {
7234         struct ipw_priv *priv = data;
7235         mutex_lock(&priv->mutex);
7236         ipw_roam(data);
7237         mutex_unlock(&priv->mutex);
7238 }
7239
7240 static int ipw_associate(void *data)
7241 {
7242         struct ipw_priv *priv = data;
7243
7244         struct ieee80211_network *network = NULL;
7245         struct ipw_network_match match = {
7246                 .network = NULL
7247         };
7248         struct ipw_supported_rates *rates;
7249         struct list_head *element;
7250         unsigned long flags;
7251
7252         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7253                 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7254                 return 0;
7255         }
7256
7257         if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7258                 IPW_DEBUG_ASSOC("Not attempting association (already in "
7259                                 "progress)\n");
7260                 return 0;
7261         }
7262
7263         if (priv->status & STATUS_DISASSOCIATING) {
7264                 IPW_DEBUG_ASSOC("Not attempting association (in "
7265                                 "disassociating)\n ");
7266                 queue_work(priv->workqueue, &priv->associate);
7267                 return 0;
7268         }
7269
7270         if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7271                 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7272                                 "initialized)\n");
7273                 return 0;
7274         }
7275
7276         if (!(priv->config & CFG_ASSOCIATE) &&
7277             !(priv->config & (CFG_STATIC_ESSID |
7278                               CFG_STATIC_CHANNEL | CFG_STATIC_BSSID))) {
7279                 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7280                 return 0;
7281         }
7282
7283         /* Protect our use of the network_list */
7284         spin_lock_irqsave(&priv->ieee->lock, flags);
7285         list_for_each_entry(network, &priv->ieee->network_list, list)
7286             ipw_best_network(priv, &match, network, 0);
7287
7288         network = match.network;
7289         rates = &match.rates;
7290
7291         if (network == NULL &&
7292             priv->ieee->iw_mode == IW_MODE_ADHOC &&
7293             priv->config & CFG_ADHOC_CREATE &&
7294             priv->config & CFG_STATIC_ESSID &&
7295             priv->config & CFG_STATIC_CHANNEL &&
7296             !list_empty(&priv->ieee->network_free_list)) {
7297                 element = priv->ieee->network_free_list.next;
7298                 network = list_entry(element, struct ieee80211_network, list);
7299                 ipw_adhoc_create(priv, network);
7300                 rates = &priv->rates;
7301                 list_del(element);
7302                 list_add_tail(&network->list, &priv->ieee->network_list);
7303         }
7304         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7305
7306         /* If we reached the end of the list, then we don't have any valid
7307          * matching APs */
7308         if (!network) {
7309                 ipw_debug_config(priv);
7310
7311                 if (!(priv->status & STATUS_SCANNING)) {
7312                         if (!(priv->config & CFG_SPEED_SCAN))
7313                                 queue_delayed_work(priv->workqueue,
7314                                                    &priv->request_scan,
7315                                                    SCAN_INTERVAL);
7316                         else
7317                                 queue_work(priv->workqueue,
7318                                            &priv->request_scan);
7319                 }
7320
7321                 return 0;
7322         }
7323
7324         ipw_associate_network(priv, network, rates, 0);
7325
7326         return 1;
7327 }
7328
7329 static void ipw_bg_associate(void *data)
7330 {
7331         struct ipw_priv *priv = data;
7332         mutex_lock(&priv->mutex);
7333         ipw_associate(data);
7334         mutex_unlock(&priv->mutex);
7335 }
7336
7337 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7338                                       struct sk_buff *skb)
7339 {
7340         struct ieee80211_hdr *hdr;
7341         u16 fc;
7342
7343         hdr = (struct ieee80211_hdr *)skb->data;
7344         fc = le16_to_cpu(hdr->frame_ctl);
7345         if (!(fc & IEEE80211_FCTL_PROTECTED))
7346                 return;
7347
7348         fc &= ~IEEE80211_FCTL_PROTECTED;
7349         hdr->frame_ctl = cpu_to_le16(fc);
7350         switch (priv->ieee->sec.level) {
7351         case SEC_LEVEL_3:
7352                 /* Remove CCMP HDR */
7353                 memmove(skb->data + IEEE80211_3ADDR_LEN,
7354                         skb->data + IEEE80211_3ADDR_LEN + 8,
7355                         skb->len - IEEE80211_3ADDR_LEN - 8);
7356                 skb_trim(skb, skb->len - 16);   /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7357                 break;
7358         case SEC_LEVEL_2:
7359                 break;
7360         case SEC_LEVEL_1:
7361                 /* Remove IV */
7362                 memmove(skb->data + IEEE80211_3ADDR_LEN,
7363                         skb->data + IEEE80211_3ADDR_LEN + 4,
7364                         skb->len - IEEE80211_3ADDR_LEN - 4);
7365                 skb_trim(skb, skb->len - 8);    /* IV + ICV */
7366                 break;
7367         case SEC_LEVEL_0:
7368                 break;
7369         default:
7370                 printk(KERN_ERR "Unknow security level %d\n",
7371                        priv->ieee->sec.level);
7372                 break;
7373         }
7374 }
7375
7376 static void ipw_handle_data_packet(struct ipw_priv *priv,
7377                                    struct ipw_rx_mem_buffer *rxb,
7378                                    struct ieee80211_rx_stats *stats)
7379 {
7380         struct ieee80211_hdr_4addr *hdr;
7381         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7382
7383         /* We received data from the HW, so stop the watchdog */
7384         priv->net_dev->trans_start = jiffies;
7385
7386         /* We only process data packets if the
7387          * interface is open */
7388         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7389                      skb_tailroom(rxb->skb))) {
7390                 priv->ieee->stats.rx_errors++;
7391                 priv->wstats.discard.misc++;
7392                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7393                 return;
7394         } else if (unlikely(!netif_running(priv->net_dev))) {
7395                 priv->ieee->stats.rx_dropped++;
7396                 priv->wstats.discard.misc++;
7397                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7398                 return;
7399         }
7400
7401         /* Advance skb->data to the start of the actual payload */
7402         skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7403
7404         /* Set the size of the skb to the size of the frame */
7405         skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7406
7407         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7408
7409         /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7410         hdr = (struct ieee80211_hdr_4addr *)rxb->skb->data;
7411         if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7412             (is_multicast_ether_addr(hdr->addr1) ?
7413              !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7414                 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7415
7416         if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7417                 priv->ieee->stats.rx_errors++;
7418         else {                  /* ieee80211_rx succeeded, so it now owns the SKB */
7419                 rxb->skb = NULL;
7420                 __ipw_led_activity_on(priv);
7421         }
7422 }
7423
7424 #ifdef CONFIG_IEEE80211_RADIOTAP
7425 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7426                                            struct ipw_rx_mem_buffer *rxb,
7427                                            struct ieee80211_rx_stats *stats)
7428 {
7429         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7430         struct ipw_rx_frame *frame = &pkt->u.frame;
7431
7432         /* initial pull of some data */
7433         u16 received_channel = frame->received_channel;
7434         u8 antennaAndPhy = frame->antennaAndPhy;
7435         s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM;       /* call it signed anyhow */
7436         u16 pktrate = frame->rate;
7437
7438         /* Magic struct that slots into the radiotap header -- no reason
7439          * to build this manually element by element, we can write it much
7440          * more efficiently than we can parse it. ORDER MATTERS HERE */
7441         struct ipw_rt_hdr {
7442                 struct ieee80211_radiotap_header rt_hdr;
7443                 u8 rt_flags;    /* radiotap packet flags */
7444                 u8 rt_rate;     /* rate in 500kb/s */
7445                 u16 rt_channel; /* channel in mhz */
7446                 u16 rt_chbitmask;       /* channel bitfield */
7447                 s8 rt_dbmsignal;        /* signal in dbM, kluged to signed */
7448                 u8 rt_antenna;  /* antenna number */
7449         } *ipw_rt;
7450
7451         short len = le16_to_cpu(pkt->u.frame.length);
7452
7453         /* We received data from the HW, so stop the watchdog */
7454         priv->net_dev->trans_start = jiffies;
7455
7456         /* We only process data packets if the
7457          * interface is open */
7458         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7459                      skb_tailroom(rxb->skb))) {
7460                 priv->ieee->stats.rx_errors++;
7461                 priv->wstats.discard.misc++;
7462                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7463                 return;
7464         } else if (unlikely(!netif_running(priv->net_dev))) {
7465                 priv->ieee->stats.rx_dropped++;
7466                 priv->wstats.discard.misc++;
7467                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7468                 return;
7469         }
7470
7471         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7472          * that now */
7473         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7474                 /* FIXME: Should alloc bigger skb instead */
7475                 priv->ieee->stats.rx_dropped++;
7476                 priv->wstats.discard.misc++;
7477                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7478                 return;
7479         }
7480
7481         /* copy the frame itself */
7482         memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7483                 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7484
7485         /* Zero the radiotap static buffer  ...  We only need to zero the bytes NOT
7486          * part of our real header, saves a little time.
7487          *
7488          * No longer necessary since we fill in all our data.  Purge before merging
7489          * patch officially.
7490          * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7491          *        IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7492          */
7493
7494         ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7495
7496         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7497         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
7498         ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr);      /* total header+data */
7499
7500         /* Big bitfield of all the fields we provide in radiotap */
7501         ipw_rt->rt_hdr.it_present =
7502             ((1 << IEEE80211_RADIOTAP_FLAGS) |
7503              (1 << IEEE80211_RADIOTAP_RATE) |
7504              (1 << IEEE80211_RADIOTAP_CHANNEL) |
7505              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7506              (1 << IEEE80211_RADIOTAP_ANTENNA));
7507
7508         /* Zero the flags, we'll add to them as we go */
7509         ipw_rt->rt_flags = 0;
7510
7511         /* Convert signal to DBM */
7512         ipw_rt->rt_dbmsignal = antsignal;
7513
7514         /* Convert the channel data and set the flags */
7515         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7516         if (received_channel > 14) {    /* 802.11a */
7517                 ipw_rt->rt_chbitmask =
7518                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7519         } else if (antennaAndPhy & 32) {        /* 802.11b */
7520                 ipw_rt->rt_chbitmask =
7521                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7522         } else {                /* 802.11g */
7523                 ipw_rt->rt_chbitmask =
7524                     (IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7525         }
7526
7527         /* set the rate in multiples of 500k/s */
7528         switch (pktrate) {
7529         case IPW_TX_RATE_1MB:
7530                 ipw_rt->rt_rate = 2;
7531                 break;
7532         case IPW_TX_RATE_2MB:
7533                 ipw_rt->rt_rate = 4;
7534                 break;
7535         case IPW_TX_RATE_5MB:
7536                 ipw_rt->rt_rate = 10;
7537                 break;
7538         case IPW_TX_RATE_6MB:
7539                 ipw_rt->rt_rate = 12;
7540                 break;
7541         case IPW_TX_RATE_9MB:
7542                 ipw_rt->rt_rate = 18;
7543                 break;
7544         case IPW_TX_RATE_11MB:
7545                 ipw_rt->rt_rate = 22;
7546                 break;
7547         case IPW_TX_RATE_12MB:
7548                 ipw_rt->rt_rate = 24;
7549                 break;
7550         case IPW_TX_RATE_18MB:
7551                 ipw_rt->rt_rate = 36;
7552                 break;
7553         case IPW_TX_RATE_24MB:
7554                 ipw_rt->rt_rate = 48;
7555                 break;
7556         case IPW_TX_RATE_36MB:
7557                 ipw_rt->rt_rate = 72;
7558                 break;
7559         case IPW_TX_RATE_48MB:
7560                 ipw_rt->rt_rate = 96;
7561                 break;
7562         case IPW_TX_RATE_54MB:
7563                 ipw_rt->rt_rate = 108;
7564                 break;
7565         default:
7566                 ipw_rt->rt_rate = 0;
7567                 break;
7568         }
7569
7570         /* antenna number */
7571         ipw_rt->rt_antenna = (antennaAndPhy & 3);       /* Is this right? */
7572
7573         /* set the preamble flag if we have it */
7574         if ((antennaAndPhy & 64))
7575                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7576
7577         /* Set the size of the skb to the size of the frame */
7578         skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7579
7580         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7581
7582         if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7583                 priv->ieee->stats.rx_errors++;
7584         else {                  /* ieee80211_rx succeeded, so it now owns the SKB */
7585                 rxb->skb = NULL;
7586                 /* no LED during capture */
7587         }
7588 }
7589 #endif
7590
7591 static int is_network_packet(struct ipw_priv *priv,
7592                                     struct ieee80211_hdr_4addr *header)
7593 {
7594         /* Filter incoming packets to determine if they are targetted toward
7595          * this network, discarding packets coming from ourselves */
7596         switch (priv->ieee->iw_mode) {
7597         case IW_MODE_ADHOC:     /* Header: Dest. | Source    | BSSID */
7598                 /* packets from our adapter are dropped (echo) */
7599                 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
7600                         return 0;
7601
7602                 /* {broad,multi}cast packets to our BSSID go through */
7603                 if (is_multicast_ether_addr(header->addr1))
7604                         return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
7605
7606                 /* packets to our adapter go through */
7607                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
7608                                ETH_ALEN);
7609
7610         case IW_MODE_INFRA:     /* Header: Dest. | BSSID | Source */
7611                 /* packets from our adapter are dropped (echo) */
7612                 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
7613                         return 0;
7614
7615                 /* {broad,multi}cast packets to our BSS go through */
7616                 if (is_multicast_ether_addr(header->addr1))
7617                         return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
7618
7619                 /* packets to our adapter go through */
7620                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
7621                                ETH_ALEN);
7622         }
7623
7624         return 1;
7625 }
7626
7627 #define IPW_PACKET_RETRY_TIME HZ
7628
7629 static  int is_duplicate_packet(struct ipw_priv *priv,
7630                                       struct ieee80211_hdr_4addr *header)
7631 {
7632         u16 sc = le16_to_cpu(header->seq_ctl);
7633         u16 seq = WLAN_GET_SEQ_SEQ(sc);
7634         u16 frag = WLAN_GET_SEQ_FRAG(sc);
7635         u16 *last_seq, *last_frag;
7636         unsigned long *last_time;
7637
7638         switch (priv->ieee->iw_mode) {
7639         case IW_MODE_ADHOC:
7640                 {
7641                         struct list_head *p;
7642                         struct ipw_ibss_seq *entry = NULL;
7643                         u8 *mac = header->addr2;
7644                         int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
7645
7646                         __list_for_each(p, &priv->ibss_mac_hash[index]) {
7647                                 entry =
7648                                     list_entry(p, struct ipw_ibss_seq, list);
7649                                 if (!memcmp(entry->mac, mac, ETH_ALEN))
7650                                         break;
7651                         }
7652                         if (p == &priv->ibss_mac_hash[index]) {
7653                                 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
7654                                 if (!entry) {
7655                                         IPW_ERROR
7656                                             ("Cannot malloc new mac entry\n");
7657                                         return 0;
7658                                 }
7659                                 memcpy(entry->mac, mac, ETH_ALEN);
7660                                 entry->seq_num = seq;
7661                                 entry->frag_num = frag;
7662                                 entry->packet_time = jiffies;
7663                                 list_add(&entry->list,
7664                                          &priv->ibss_mac_hash[index]);
7665                                 return 0;
7666                         }
7667                         last_seq = &entry->seq_num;
7668                         last_frag = &entry->frag_num;
7669                         last_time = &entry->packet_time;
7670                         break;
7671                 }
7672         case IW_MODE_INFRA:
7673                 last_seq = &priv->last_seq_num;
7674                 last_frag = &priv->last_frag_num;
7675                 last_time = &priv->last_packet_time;
7676                 break;
7677         default:
7678                 return 0;
7679         }
7680         if ((*last_seq == seq) &&
7681             time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
7682                 if (*last_frag == frag)
7683                         goto drop;
7684                 if (*last_frag + 1 != frag)
7685                         /* out-of-order fragment */
7686                         goto drop;
7687         } else
7688                 *last_seq = seq;
7689
7690         *last_frag = frag;
7691         *last_time = jiffies;
7692         return 0;
7693
7694       drop:
7695         /* Comment this line now since we observed the card receives
7696          * duplicate packets but the FCTL_RETRY bit is not set in the
7697          * IBSS mode with fragmentation enabled.
7698          BUG_ON(!(le16_to_cpu(header->frame_ctl) & IEEE80211_FCTL_RETRY)); */
7699         return 1;
7700 }
7701
7702 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
7703                                    struct ipw_rx_mem_buffer *rxb,
7704                                    struct ieee80211_rx_stats *stats)
7705 {
7706         struct sk_buff *skb = rxb->skb;
7707         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
7708         struct ieee80211_hdr_4addr *header = (struct ieee80211_hdr_4addr *)
7709             (skb->data + IPW_RX_FRAME_SIZE);
7710
7711         ieee80211_rx_mgt(priv->ieee, header, stats);
7712
7713         if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
7714             ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
7715               IEEE80211_STYPE_PROBE_RESP) ||
7716              (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
7717               IEEE80211_STYPE_BEACON))) {
7718                 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
7719                         ipw_add_station(priv, header->addr2);
7720         }
7721
7722         if (priv->config & CFG_NET_STATS) {
7723                 IPW_DEBUG_HC("sending stat packet\n");
7724
7725                 /* Set the size of the skb to the size of the full
7726                  * ipw header and 802.11 frame */
7727                 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
7728                         IPW_RX_FRAME_SIZE);
7729
7730                 /* Advance past the ipw packet header to the 802.11 frame */
7731                 skb_pull(skb, IPW_RX_FRAME_SIZE);
7732
7733                 /* Push the ieee80211_rx_stats before the 802.11 frame */
7734                 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
7735
7736                 skb->dev = priv->ieee->dev;
7737
7738                 /* Point raw at the ieee80211_stats */
7739                 skb->mac.raw = skb->data;
7740
7741                 skb->pkt_type = PACKET_OTHERHOST;
7742                 skb->protocol = __constant_htons(ETH_P_80211_STATS);
7743                 memset(skb->cb, 0, sizeof(rxb->skb->cb));
7744                 netif_rx(skb);
7745                 rxb->skb = NULL;
7746         }
7747 }
7748
7749 /*
7750  * Main entry function for recieving a packet with 80211 headers.  This
7751  * should be called when ever the FW has notified us that there is a new
7752  * skb in the recieve queue.
7753  */
7754 static void ipw_rx(struct ipw_priv *priv)
7755 {
7756         struct ipw_rx_mem_buffer *rxb;
7757         struct ipw_rx_packet *pkt;
7758         struct ieee80211_hdr_4addr *header;
7759         u32 r, w, i;
7760         u8 network_packet;
7761
7762         r = ipw_read32(priv, IPW_RX_READ_INDEX);
7763         w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
7764         i = (priv->rxq->processed + 1) % RX_QUEUE_SIZE;
7765
7766         while (i != r) {
7767                 rxb = priv->rxq->queue[i];
7768                 if (unlikely(rxb == NULL)) {
7769                         printk(KERN_CRIT "Queue not allocated!\n");
7770                         break;
7771                 }
7772                 priv->rxq->queue[i] = NULL;
7773
7774                 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
7775                                             IPW_RX_BUF_SIZE,
7776                                             PCI_DMA_FROMDEVICE);
7777
7778                 pkt = (struct ipw_rx_packet *)rxb->skb->data;
7779                 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
7780                              pkt->header.message_type,
7781                              pkt->header.rx_seq_num, pkt->header.control_bits);
7782
7783                 switch (pkt->header.message_type) {
7784                 case RX_FRAME_TYPE:     /* 802.11 frame */  {
7785                                 struct ieee80211_rx_stats stats = {
7786                                         .rssi =
7787                                             le16_to_cpu(pkt->u.frame.rssi_dbm) -
7788                                             IPW_RSSI_TO_DBM,
7789                                         .signal =
7790                                             le16_to_cpu(pkt->u.frame.rssi_dbm) -
7791                                             IPW_RSSI_TO_DBM + 0x100,
7792                                         .noise =
7793                                             le16_to_cpu(pkt->u.frame.noise),
7794                                         .rate = pkt->u.frame.rate,
7795                                         .mac_time = jiffies,
7796                                         .received_channel =
7797                                             pkt->u.frame.received_channel,
7798                                         .freq =
7799                                             (pkt->u.frame.
7800                                              control & (1 << 0)) ?
7801                                             IEEE80211_24GHZ_BAND :
7802                                             IEEE80211_52GHZ_BAND,
7803                                         .len = le16_to_cpu(pkt->u.frame.length),
7804                                 };
7805
7806                                 if (stats.rssi != 0)
7807                                         stats.mask |= IEEE80211_STATMASK_RSSI;
7808                                 if (stats.signal != 0)
7809                                         stats.mask |= IEEE80211_STATMASK_SIGNAL;
7810                                 if (stats.noise != 0)
7811                                         stats.mask |= IEEE80211_STATMASK_NOISE;
7812                                 if (stats.rate != 0)
7813                                         stats.mask |= IEEE80211_STATMASK_RATE;
7814
7815                                 priv->rx_packets++;
7816
7817 #ifdef CONFIG_IPW2200_MONITOR
7818                                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7819 #ifdef CONFIG_IEEE80211_RADIOTAP
7820                                         ipw_handle_data_packet_monitor(priv,
7821                                                                        rxb,
7822                                                                        &stats);
7823 #else
7824                                         ipw_handle_data_packet(priv, rxb,
7825                                                                &stats);
7826 #endif
7827                                         break;
7828                                 }
7829 #endif
7830
7831                                 header =
7832                                     (struct ieee80211_hdr_4addr *)(rxb->skb->
7833                                                                    data +
7834                                                                    IPW_RX_FRAME_SIZE);
7835                                 /* TODO: Check Ad-Hoc dest/source and make sure
7836                                  * that we are actually parsing these packets
7837                                  * correctly -- we should probably use the
7838                                  * frame control of the packet and disregard
7839                                  * the current iw_mode */
7840
7841                                 network_packet =
7842                                     is_network_packet(priv, header);
7843                                 if (network_packet && priv->assoc_network) {
7844                                         priv->assoc_network->stats.rssi =
7845                                             stats.rssi;
7846                                         priv->exp_avg_rssi =
7847                                             exponential_average(priv->exp_avg_rssi,
7848                                             stats.rssi, DEPTH_RSSI);
7849                                 }
7850
7851                                 IPW_DEBUG_RX("Frame: len=%u\n",
7852                                              le16_to_cpu(pkt->u.frame.length));
7853
7854                                 if (le16_to_cpu(pkt->u.frame.length) <
7855                                     ieee80211_get_hdrlen(le16_to_cpu(
7856                                                     header->frame_ctl))) {
7857                                         IPW_DEBUG_DROP
7858                                             ("Received packet is too small. "
7859                                              "Dropping.\n");
7860                                         priv->ieee->stats.rx_errors++;
7861                                         priv->wstats.discard.misc++;
7862                                         break;
7863                                 }
7864
7865                                 switch (WLAN_FC_GET_TYPE
7866                                         (le16_to_cpu(header->frame_ctl))) {
7867
7868                                 case IEEE80211_FTYPE_MGMT:
7869                                         ipw_handle_mgmt_packet(priv, rxb,
7870                                                                &stats);
7871                                         break;
7872
7873                                 case IEEE80211_FTYPE_CTL:
7874                                         break;
7875
7876                                 case IEEE80211_FTYPE_DATA:
7877                                         if (unlikely(!network_packet ||
7878                                                      is_duplicate_packet(priv,
7879                                                                          header)))
7880                                         {
7881                                                 IPW_DEBUG_DROP("Dropping: "
7882                                                                MAC_FMT ", "
7883                                                                MAC_FMT ", "
7884                                                                MAC_FMT "\n",
7885                                                                MAC_ARG(header->
7886                                                                        addr1),
7887                                                                MAC_ARG(header->
7888                                                                        addr2),
7889                                                                MAC_ARG(header->
7890                                                                        addr3));
7891                                                 break;
7892                                         }
7893
7894                                         ipw_handle_data_packet(priv, rxb,
7895                                                                &stats);
7896
7897                                         break;
7898                                 }
7899                                 break;
7900                         }
7901
7902                 case RX_HOST_NOTIFICATION_TYPE:{
7903                                 IPW_DEBUG_RX
7904                                     ("Notification: subtype=%02X flags=%02X size=%d\n",
7905                                      pkt->u.notification.subtype,
7906                                      pkt->u.notification.flags,
7907                                      pkt->u.notification.size);
7908                                 ipw_rx_notification(priv, &pkt->u.notification);
7909                                 break;
7910                         }
7911
7912                 default:
7913                         IPW_DEBUG_RX("Bad Rx packet of type %d\n",
7914                                      pkt->header.message_type);
7915                         break;
7916                 }
7917
7918                 /* For now we just don't re-use anything.  We can tweak this
7919                  * later to try and re-use notification packets and SKBs that
7920                  * fail to Rx correctly */
7921                 if (rxb->skb != NULL) {
7922                         dev_kfree_skb_any(rxb->skb);
7923                         rxb->skb = NULL;
7924                 }
7925
7926                 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
7927                                  IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
7928                 list_add_tail(&rxb->list, &priv->rxq->rx_used);
7929
7930                 i = (i + 1) % RX_QUEUE_SIZE;
7931         }
7932
7933         /* Backtrack one entry */
7934         priv->rxq->processed = (i ? i : RX_QUEUE_SIZE) - 1;
7935
7936         ipw_rx_queue_restock(priv);
7937 }
7938
7939 #define DEFAULT_RTS_THRESHOLD     2304U
7940 #define MIN_RTS_THRESHOLD         1U
7941 #define MAX_RTS_THRESHOLD         2304U
7942 #define DEFAULT_BEACON_INTERVAL   100U
7943 #define DEFAULT_SHORT_RETRY_LIMIT 7U
7944 #define DEFAULT_LONG_RETRY_LIMIT  4U
7945
7946 /**
7947  * ipw_sw_reset
7948  * @option: options to control different reset behaviour
7949  *          0 = reset everything except the 'disable' module_param
7950  *          1 = reset everything and print out driver info (for probe only)
7951  *          2 = reset everything
7952  */
7953 static int ipw_sw_reset(struct ipw_priv *priv, int option)
7954 {
7955         int band, modulation;
7956         int old_mode = priv->ieee->iw_mode;
7957
7958         /* Initialize module parameter values here */
7959         priv->config = 0;
7960
7961         /* We default to disabling the LED code as right now it causes
7962          * too many systems to lock up... */
7963         if (!led)
7964                 priv->config |= CFG_NO_LED;
7965
7966         if (associate)
7967                 priv->config |= CFG_ASSOCIATE;
7968         else
7969                 IPW_DEBUG_INFO("Auto associate disabled.\n");
7970
7971         if (auto_create)
7972                 priv->config |= CFG_ADHOC_CREATE;
7973         else
7974                 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
7975
7976         priv->config &= ~CFG_STATIC_ESSID;
7977         priv->essid_len = 0;
7978         memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
7979
7980         if (disable && option) {
7981                 priv->status |= STATUS_RF_KILL_SW;
7982                 IPW_DEBUG_INFO("Radio disabled.\n");
7983         }
7984
7985         if (channel != 0) {
7986                 priv->config |= CFG_STATIC_CHANNEL;
7987                 priv->channel = channel;
7988                 IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
7989                 /* TODO: Validate that provided channel is in range */
7990         }
7991 #ifdef CONFIG_IPW_QOS
7992         ipw_qos_init(priv, qos_enable, qos_burst_enable,
7993                      burst_duration_CCK, burst_duration_OFDM);
7994 #endif                          /* CONFIG_IPW_QOS */
7995
7996         switch (mode) {
7997         case 1:
7998                 priv->ieee->iw_mode = IW_MODE_ADHOC;
7999                 priv->net_dev->type = ARPHRD_ETHER;
8000
8001                 break;
8002 #ifdef CONFIG_IPW2200_MONITOR
8003         case 2:
8004                 priv->ieee->iw_mode = IW_MODE_MONITOR;
8005 #ifdef CONFIG_IEEE80211_RADIOTAP
8006                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8007 #else
8008                 priv->net_dev->type = ARPHRD_IEEE80211;
8009 #endif
8010                 break;
8011 #endif
8012         default:
8013         case 0:
8014                 priv->net_dev->type = ARPHRD_ETHER;
8015                 priv->ieee->iw_mode = IW_MODE_INFRA;
8016                 break;
8017         }
8018
8019         if (hwcrypto) {
8020                 priv->ieee->host_encrypt = 0;
8021                 priv->ieee->host_encrypt_msdu = 0;
8022                 priv->ieee->host_decrypt = 0;
8023                 priv->ieee->host_mc_decrypt = 0;
8024         }
8025         IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8026
8027         /* IPW2200/2915 is abled to do hardware fragmentation. */
8028         priv->ieee->host_open_frag = 0;
8029
8030         if ((priv->pci_dev->device == 0x4223) ||
8031             (priv->pci_dev->device == 0x4224)) {
8032                 if (option == 1)
8033                         printk(KERN_INFO DRV_NAME
8034                                ": Detected Intel PRO/Wireless 2915ABG Network "
8035                                "Connection\n");
8036                 priv->ieee->abg_true = 1;
8037                 band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND;
8038                 modulation = IEEE80211_OFDM_MODULATION |
8039                     IEEE80211_CCK_MODULATION;
8040                 priv->adapter = IPW_2915ABG;
8041                 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8042         } else {
8043                 if (option == 1)
8044                         printk(KERN_INFO DRV_NAME
8045                                ": Detected Intel PRO/Wireless 2200BG Network "
8046                                "Connection\n");
8047
8048                 priv->ieee->abg_true = 0;
8049                 band = IEEE80211_24GHZ_BAND;
8050                 modulation = IEEE80211_OFDM_MODULATION |
8051                     IEEE80211_CCK_MODULATION;
8052                 priv->adapter = IPW_2200BG;
8053                 priv->ieee->mode = IEEE_G | IEEE_B;
8054         }
8055
8056         priv->ieee->freq_band = band;
8057         priv->ieee->modulation = modulation;
8058
8059         priv->rates_mask = IEEE80211_DEFAULT_RATES_MASK;
8060
8061         priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8062         priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8063
8064         priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8065         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8066         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8067
8068         /* If power management is turned on, default to AC mode */
8069         priv->power_mode = IPW_POWER_AC;
8070         priv->tx_power = IPW_TX_POWER_DEFAULT;
8071
8072         return old_mode == priv->ieee->iw_mode;
8073 }
8074
8075 /*
8076  * This file defines the Wireless Extension handlers.  It does not
8077  * define any methods of hardware manipulation and relies on the
8078  * functions defined in ipw_main to provide the HW interaction.
8079  *
8080  * The exception to this is the use of the ipw_get_ordinal()
8081  * function used to poll the hardware vs. making unecessary calls.
8082  *
8083  */
8084
8085 static int ipw_wx_get_name(struct net_device *dev,
8086                            struct iw_request_info *info,
8087                            union iwreq_data *wrqu, char *extra)
8088 {
8089         struct ipw_priv *priv = ieee80211_priv(dev);
8090         mutex_lock(&priv->mutex);
8091         if (priv->status & STATUS_RF_KILL_MASK)
8092                 strcpy(wrqu->name, "radio off");
8093         else if (!(priv->status & STATUS_ASSOCIATED))
8094                 strcpy(wrqu->name, "unassociated");
8095         else
8096                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11%c",
8097                          ipw_modes[priv->assoc_request.ieee_mode]);
8098         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
8099         mutex_unlock(&priv->mutex);
8100         return 0;
8101 }
8102
8103 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8104 {
8105         if (channel == 0) {
8106                 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8107                 priv->config &= ~CFG_STATIC_CHANNEL;
8108                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8109                                 "parameters.\n");
8110                 ipw_associate(priv);
8111                 return 0;
8112         }
8113
8114         priv->config |= CFG_STATIC_CHANNEL;
8115
8116         if (priv->channel == channel) {
8117                 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8118                                channel);
8119                 return 0;
8120         }
8121
8122         IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8123         priv->channel = channel;
8124
8125 #ifdef CONFIG_IPW2200_MONITOR
8126         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8127                 int i;
8128                 if (priv->status & STATUS_SCANNING) {
8129                         IPW_DEBUG_SCAN("Scan abort triggered due to "
8130                                        "channel change.\n");
8131                         ipw_abort_scan(priv);
8132                 }
8133
8134                 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8135                         udelay(10);
8136
8137                 if (priv->status & STATUS_SCANNING)
8138                         IPW_DEBUG_SCAN("Still scanning...\n");
8139                 else
8140                         IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8141                                        1000 - i);
8142
8143                 return 0;
8144         }
8145 #endif                          /* CONFIG_IPW2200_MONITOR */
8146
8147         /* Network configuration changed -- force [re]association */
8148         IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8149         if (!ipw_disassociate(priv))
8150                 ipw_associate(priv);
8151
8152         return 0;
8153 }
8154
8155 static int ipw_wx_set_freq(struct net_device *dev,
8156                            struct iw_request_info *info,
8157                            union iwreq_data *wrqu, char *extra)
8158 {
8159         struct ipw_priv *priv = ieee80211_priv(dev);
8160         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8161         struct iw_freq *fwrq = &wrqu->freq;
8162         int ret = 0, i;
8163         u8 channel, flags;
8164         int band;
8165
8166         if (fwrq->m == 0) {
8167                 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8168                 mutex_lock(&priv->mutex);
8169                 ret = ipw_set_channel(priv, 0);
8170                 mutex_unlock(&priv->mutex);
8171                 return ret;
8172         }
8173         /* if setting by freq convert to channel */
8174         if (fwrq->e == 1) {
8175                 channel = ieee80211_freq_to_channel(priv->ieee, fwrq->m);
8176                 if (channel == 0)
8177                         return -EINVAL;
8178         } else
8179                 channel = fwrq->m;
8180
8181         if (!(band = ieee80211_is_valid_channel(priv->ieee, channel)))
8182                 return -EINVAL;
8183
8184         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8185                 i = ieee80211_channel_to_index(priv->ieee, channel);
8186                 if (i == -1)
8187                         return -EINVAL;
8188
8189                 flags = (band == IEEE80211_24GHZ_BAND) ?
8190                     geo->bg[i].flags : geo->a[i].flags;
8191                 if (flags & IEEE80211_CH_PASSIVE_ONLY) {
8192                         IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8193                         return -EINVAL;
8194                 }
8195         }
8196
8197         IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
8198         mutex_lock(&priv->mutex);
8199         ret = ipw_set_channel(priv, channel);
8200         mutex_unlock(&priv->mutex);
8201         return ret;
8202 }
8203
8204 static int ipw_wx_get_freq(struct net_device *dev,
8205                            struct iw_request_info *info,
8206                            union iwreq_data *wrqu, char *extra)
8207 {
8208         struct ipw_priv *priv = ieee80211_priv(dev);
8209
8210         wrqu->freq.e = 0;
8211
8212         /* If we are associated, trying to associate, or have a statically
8213          * configured CHANNEL then return that; otherwise return ANY */
8214         mutex_lock(&priv->mutex);
8215         if (priv->config & CFG_STATIC_CHANNEL ||
8216             priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED))
8217                 wrqu->freq.m = priv->channel;
8218         else
8219                 wrqu->freq.m = 0;
8220
8221         mutex_unlock(&priv->mutex);
8222         IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
8223         return 0;
8224 }
8225
8226 static int ipw_wx_set_mode(struct net_device *dev,
8227                            struct iw_request_info *info,
8228                            union iwreq_data *wrqu, char *extra)
8229 {
8230         struct ipw_priv *priv = ieee80211_priv(dev);
8231         int err = 0;
8232
8233         IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8234
8235         switch (wrqu->mode) {
8236 #ifdef CONFIG_IPW2200_MONITOR
8237         case IW_MODE_MONITOR:
8238 #endif
8239         case IW_MODE_ADHOC:
8240         case IW_MODE_INFRA:
8241                 break;
8242         case IW_MODE_AUTO:
8243                 wrqu->mode = IW_MODE_INFRA;
8244                 break;
8245         default:
8246                 return -EINVAL;
8247         }
8248         if (wrqu->mode == priv->ieee->iw_mode)
8249                 return 0;
8250
8251         mutex_lock(&priv->mutex);
8252
8253         ipw_sw_reset(priv, 0);
8254
8255 #ifdef CONFIG_IPW2200_MONITOR
8256         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8257                 priv->net_dev->type = ARPHRD_ETHER;
8258
8259         if (wrqu->mode == IW_MODE_MONITOR)
8260 #ifdef CONFIG_IEEE80211_RADIOTAP
8261                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8262 #else
8263                 priv->net_dev->type = ARPHRD_IEEE80211;
8264 #endif
8265 #endif                          /* CONFIG_IPW2200_MONITOR */
8266
8267         /* Free the existing firmware and reset the fw_loaded
8268          * flag so ipw_load() will bring in the new firmawre */
8269         free_firmware();
8270
8271         priv->ieee->iw_mode = wrqu->mode;
8272
8273         queue_work(priv->workqueue, &priv->adapter_restart);
8274         mutex_unlock(&priv->mutex);
8275         return err;
8276 }
8277
8278 static int ipw_wx_get_mode(struct net_device *dev,
8279                            struct iw_request_info *info,
8280                            union iwreq_data *wrqu, char *extra)
8281 {
8282         struct ipw_priv *priv = ieee80211_priv(dev);
8283         mutex_lock(&priv->mutex);
8284         wrqu->mode = priv->ieee->iw_mode;
8285         IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8286         mutex_unlock(&priv->mutex);
8287         return 0;
8288 }
8289
8290 /* Values are in microsecond */
8291 static const s32 timeout_duration[] = {
8292         350000,
8293         250000,
8294         75000,
8295         37000,
8296         25000,
8297 };
8298
8299 static const s32 period_duration[] = {
8300         400000,
8301         700000,
8302         1000000,
8303         1000000,
8304         1000000
8305 };
8306
8307 static int ipw_wx_get_range(struct net_device *dev,
8308                             struct iw_request_info *info,
8309                             union iwreq_data *wrqu, char *extra)
8310 {
8311         struct ipw_priv *priv = ieee80211_priv(dev);
8312         struct iw_range *range = (struct iw_range *)extra;
8313         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8314         int i = 0, j;
8315
8316         wrqu->data.length = sizeof(*range);
8317         memset(range, 0, sizeof(*range));
8318
8319         /* 54Mbs == ~27 Mb/s real (802.11g) */
8320         range->throughput = 27 * 1000 * 1000;
8321
8322         range->max_qual.qual = 100;
8323         /* TODO: Find real max RSSI and stick here */
8324         range->max_qual.level = 0;
8325         range->max_qual.noise = 0;
8326         range->max_qual.updated = 7;    /* Updated all three */
8327
8328         range->avg_qual.qual = 70;
8329         /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
8330         range->avg_qual.level = 0;      /* FIXME to real average level */
8331         range->avg_qual.noise = 0;
8332         range->avg_qual.updated = 7;    /* Updated all three */
8333         mutex_lock(&priv->mutex);
8334         range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8335
8336         for (i = 0; i < range->num_bitrates; i++)
8337                 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8338                     500000;
8339
8340         range->max_rts = DEFAULT_RTS_THRESHOLD;
8341         range->min_frag = MIN_FRAG_THRESHOLD;
8342         range->max_frag = MAX_FRAG_THRESHOLD;
8343
8344         range->encoding_size[0] = 5;
8345         range->encoding_size[1] = 13;
8346         range->num_encoding_sizes = 2;
8347         range->max_encoding_tokens = WEP_KEYS;
8348
8349         /* Set the Wireless Extension versions */
8350         range->we_version_compiled = WIRELESS_EXT;
8351         range->we_version_source = 18;
8352
8353         i = 0;
8354         if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8355                 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8356                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8357                             (geo->bg[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8358                                 continue;
8359
8360                         range->freq[i].i = geo->bg[j].channel;
8361                         range->freq[i].m = geo->bg[j].freq * 100000;
8362                         range->freq[i].e = 1;
8363                         i++;
8364                 }
8365         }
8366
8367         if (priv->ieee->mode & IEEE_A) {
8368                 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8369                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8370                             (geo->a[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8371                                 continue;
8372
8373                         range->freq[i].i = geo->a[j].channel;
8374                         range->freq[i].m = geo->a[j].freq * 100000;
8375                         range->freq[i].e = 1;
8376                         i++;
8377                 }
8378         }
8379
8380         range->num_channels = i;
8381         range->num_frequency = i;
8382
8383         mutex_unlock(&priv->mutex);
8384
8385         /* Event capability (kernel + driver) */
8386         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8387                                 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8388                                 IW_EVENT_CAPA_MASK(SIOCGIWAP));
8389         range->event_capa[1] = IW_EVENT_CAPA_K_1;
8390
8391         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8392                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8393
8394         IPW_DEBUG_WX("GET Range\n");
8395         return 0;
8396 }
8397
8398 static int ipw_wx_set_wap(struct net_device *dev,
8399                           struct iw_request_info *info,
8400                           union iwreq_data *wrqu, char *extra)
8401 {
8402         struct ipw_priv *priv = ieee80211_priv(dev);
8403
8404         static const unsigned char any[] = {
8405                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
8406         };
8407         static const unsigned char off[] = {
8408                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
8409         };
8410
8411         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8412                 return -EINVAL;
8413         mutex_lock(&priv->mutex);
8414         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
8415             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8416                 /* we disable mandatory BSSID association */
8417                 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8418                 priv->config &= ~CFG_STATIC_BSSID;
8419                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8420                                 "parameters.\n");
8421                 ipw_associate(priv);
8422                 mutex_unlock(&priv->mutex);
8423                 return 0;
8424         }
8425
8426         priv->config |= CFG_STATIC_BSSID;
8427         if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8428                 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8429                 mutex_unlock(&priv->mutex);
8430                 return 0;
8431         }
8432
8433         IPW_DEBUG_WX("Setting mandatory BSSID to " MAC_FMT "\n",
8434                      MAC_ARG(wrqu->ap_addr.sa_data));
8435
8436         memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
8437
8438         /* Network configuration changed -- force [re]association */
8439         IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
8440         if (!ipw_disassociate(priv))
8441                 ipw_associate(priv);
8442
8443         mutex_unlock(&priv->mutex);
8444         return 0;
8445 }
8446
8447 static int ipw_wx_get_wap(struct net_device *dev,
8448                           struct iw_request_info *info,
8449                           union iwreq_data *wrqu, char *extra)
8450 {
8451         struct ipw_priv *priv = ieee80211_priv(dev);
8452         /* If we are associated, trying to associate, or have a statically
8453          * configured BSSID then return that; otherwise return ANY */
8454         mutex_lock(&priv->mutex);
8455         if (priv->config & CFG_STATIC_BSSID ||
8456             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8457                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
8458                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
8459         } else
8460                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
8461
8462         IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
8463                      MAC_ARG(wrqu->ap_addr.sa_data));
8464         mutex_unlock(&priv->mutex);
8465         return 0;
8466 }
8467
8468 static int ipw_wx_set_essid(struct net_device *dev,
8469                             struct iw_request_info *info,
8470                             union iwreq_data *wrqu, char *extra)
8471 {
8472         struct ipw_priv *priv = ieee80211_priv(dev);
8473         char *essid = "";       /* ANY */
8474         int length = 0;
8475         mutex_lock(&priv->mutex);
8476         if (wrqu->essid.flags && wrqu->essid.length) {
8477                 length = wrqu->essid.length - 1;
8478                 essid = extra;
8479         }
8480         if (length == 0) {
8481                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
8482                 if ((priv->config & CFG_STATIC_ESSID) &&
8483                     !(priv->status & (STATUS_ASSOCIATED |
8484                                       STATUS_ASSOCIATING))) {
8485                         IPW_DEBUG_ASSOC("Attempting to associate with new "
8486                                         "parameters.\n");
8487                         priv->config &= ~CFG_STATIC_ESSID;
8488                         ipw_associate(priv);
8489                 }
8490                 mutex_unlock(&priv->mutex);
8491                 return 0;
8492         }
8493
8494         length = min(length, IW_ESSID_MAX_SIZE);
8495
8496         priv->config |= CFG_STATIC_ESSID;
8497
8498         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
8499                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
8500                 mutex_unlock(&priv->mutex);
8501                 return 0;
8502         }
8503
8504         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
8505                      length);
8506
8507         priv->essid_len = length;
8508         memcpy(priv->essid, essid, priv->essid_len);
8509
8510         /* Network configuration changed -- force [re]association */
8511         IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
8512         if (!ipw_disassociate(priv))
8513                 ipw_associate(priv);
8514
8515         mutex_unlock(&priv->mutex);
8516         return 0;
8517 }
8518
8519 static int ipw_wx_get_essid(struct net_device *dev,
8520                             struct iw_request_info *info,
8521                             union iwreq_data *wrqu, char *extra)
8522 {
8523         struct ipw_priv *priv = ieee80211_priv(dev);
8524
8525         /* If we are associated, trying to associate, or have a statically
8526          * configured ESSID then return that; otherwise return ANY */
8527         mutex_lock(&priv->mutex);
8528         if (priv->config & CFG_STATIC_ESSID ||
8529             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8530                 IPW_DEBUG_WX("Getting essid: '%s'\n",
8531                              escape_essid(priv->essid, priv->essid_len));
8532                 memcpy(extra, priv->essid, priv->essid_len);
8533                 wrqu->essid.length = priv->essid_len;
8534                 wrqu->essid.flags = 1;  /* active */
8535         } else {
8536                 IPW_DEBUG_WX("Getting essid: ANY\n");
8537                 wrqu->essid.length = 0;
8538                 wrqu->essid.flags = 0;  /* active */
8539         }
8540         mutex_unlock(&priv->mutex);
8541         return 0;
8542 }
8543
8544 static int ipw_wx_set_nick(struct net_device *dev,
8545                            struct iw_request_info *info,
8546                            union iwreq_data *wrqu, char *extra)
8547 {
8548         struct ipw_priv *priv = ieee80211_priv(dev);
8549
8550         IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
8551         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
8552                 return -E2BIG;
8553         mutex_lock(&priv->mutex);
8554         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
8555         memset(priv->nick, 0, sizeof(priv->nick));
8556         memcpy(priv->nick, extra, wrqu->data.length);
8557         IPW_DEBUG_TRACE("<<\n");
8558         mutex_unlock(&priv->mutex);
8559         return 0;
8560
8561 }
8562
8563 static int ipw_wx_get_nick(struct net_device *dev,
8564                            struct iw_request_info *info,
8565                            union iwreq_data *wrqu, char *extra)
8566 {
8567         struct ipw_priv *priv = ieee80211_priv(dev);
8568         IPW_DEBUG_WX("Getting nick\n");
8569         mutex_lock(&priv->mutex);
8570         wrqu->data.length = strlen(priv->nick) + 1;
8571         memcpy(extra, priv->nick, wrqu->data.length);
8572         wrqu->data.flags = 1;   /* active */
8573         mutex_unlock(&priv->mutex);
8574         return 0;
8575 }
8576
8577 static int ipw_wx_set_sens(struct net_device *dev,
8578                             struct iw_request_info *info,
8579                             union iwreq_data *wrqu, char *extra)
8580 {
8581         struct ipw_priv *priv = ieee80211_priv(dev);
8582         int err = 0;
8583
8584         IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
8585         IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
8586         mutex_lock(&priv->mutex);
8587
8588         if (wrqu->sens.fixed == 0)
8589         {
8590                 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8591                 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8592                 goto out;
8593         }
8594         if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
8595             (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
8596                 err = -EINVAL;
8597                 goto out;
8598         }
8599
8600         priv->roaming_threshold = wrqu->sens.value;
8601         priv->disassociate_threshold = 3*wrqu->sens.value;
8602       out:
8603         mutex_unlock(&priv->mutex);
8604         return err;
8605 }
8606
8607 static int ipw_wx_get_sens(struct net_device *dev,
8608                             struct iw_request_info *info,
8609                             union iwreq_data *wrqu, char *extra)
8610 {
8611         struct ipw_priv *priv = ieee80211_priv(dev);
8612         mutex_lock(&priv->mutex);
8613         wrqu->sens.fixed = 1;
8614         wrqu->sens.value = priv->roaming_threshold;
8615         mutex_unlock(&priv->mutex);
8616
8617         IPW_DEBUG_WX("GET roaming threshold -> %s %d \n",
8618                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
8619
8620         return 0;
8621 }
8622
8623 static int ipw_wx_set_rate(struct net_device *dev,
8624                            struct iw_request_info *info,
8625                            union iwreq_data *wrqu, char *extra)
8626 {
8627         /* TODO: We should use semaphores or locks for access to priv */
8628         struct ipw_priv *priv = ieee80211_priv(dev);
8629         u32 target_rate = wrqu->bitrate.value;
8630         u32 fixed, mask;
8631
8632         /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
8633         /* value = X, fixed = 1 means only rate X */
8634         /* value = X, fixed = 0 means all rates lower equal X */
8635
8636         if (target_rate == -1) {
8637                 fixed = 0;
8638                 mask = IEEE80211_DEFAULT_RATES_MASK;
8639                 /* Now we should reassociate */
8640                 goto apply;
8641         }
8642
8643         mask = 0;
8644         fixed = wrqu->bitrate.fixed;
8645
8646         if (target_rate == 1000000 || !fixed)
8647                 mask |= IEEE80211_CCK_RATE_1MB_MASK;
8648         if (target_rate == 1000000)
8649                 goto apply;
8650
8651         if (target_rate == 2000000 || !fixed)
8652                 mask |= IEEE80211_CCK_RATE_2MB_MASK;
8653         if (target_rate == 2000000)
8654                 goto apply;
8655
8656         if (target_rate == 5500000 || !fixed)
8657                 mask |= IEEE80211_CCK_RATE_5MB_MASK;
8658         if (target_rate == 5500000)
8659                 goto apply;
8660
8661         if (target_rate == 6000000 || !fixed)
8662                 mask |= IEEE80211_OFDM_RATE_6MB_MASK;
8663         if (target_rate == 6000000)
8664                 goto apply;
8665
8666         if (target_rate == 9000000 || !fixed)
8667                 mask |= IEEE80211_OFDM_RATE_9MB_MASK;
8668         if (target_rate == 9000000)
8669                 goto apply;
8670
8671         if (target_rate == 11000000 || !fixed)
8672                 mask |= IEEE80211_CCK_RATE_11MB_MASK;
8673         if (target_rate == 11000000)
8674                 goto apply;
8675
8676         if (target_rate == 12000000 || !fixed)
8677                 mask |= IEEE80211_OFDM_RATE_12MB_MASK;
8678         if (target_rate == 12000000)
8679                 goto apply;
8680
8681         if (target_rate == 18000000 || !fixed)
8682                 mask |= IEEE80211_OFDM_RATE_18MB_MASK;
8683         if (target_rate == 18000000)
8684                 goto apply;
8685
8686         if (target_rate == 24000000 || !fixed)
8687                 mask |= IEEE80211_OFDM_RATE_24MB_MASK;
8688         if (target_rate == 24000000)
8689                 goto apply;
8690
8691         if (target_rate == 36000000 || !fixed)
8692                 mask |= IEEE80211_OFDM_RATE_36MB_MASK;
8693         if (target_rate == 36000000)
8694                 goto apply;
8695
8696         if (target_rate == 48000000 || !fixed)
8697                 mask |= IEEE80211_OFDM_RATE_48MB_MASK;
8698         if (target_rate == 48000000)
8699                 goto apply;
8700
8701         if (target_rate == 54000000 || !fixed)
8702                 mask |= IEEE80211_OFDM_RATE_54MB_MASK;
8703         if (target_rate == 54000000)
8704                 goto apply;
8705
8706         IPW_DEBUG_WX("invalid rate specified, returning error\n");
8707         return -EINVAL;
8708
8709       apply:
8710         IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
8711                      mask, fixed ? "fixed" : "sub-rates");
8712         mutex_lock(&priv->mutex);
8713         if (mask == IEEE80211_DEFAULT_RATES_MASK) {
8714                 priv->config &= ~CFG_FIXED_RATE;
8715                 ipw_set_fixed_rate(priv, priv->ieee->mode);
8716         } else
8717                 priv->config |= CFG_FIXED_RATE;
8718
8719         if (priv->rates_mask == mask) {
8720                 IPW_DEBUG_WX("Mask set to current mask.\n");
8721                 mutex_unlock(&priv->mutex);
8722                 return 0;
8723         }
8724
8725         priv->rates_mask = mask;
8726
8727         /* Network configuration changed -- force [re]association */
8728         IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
8729         if (!ipw_disassociate(priv))
8730                 ipw_associate(priv);
8731
8732         mutex_unlock(&priv->mutex);
8733         return 0;
8734 }
8735
8736 static int ipw_wx_get_rate(struct net_device *dev,
8737                            struct iw_request_info *info,
8738                            union iwreq_data *wrqu, char *extra)
8739 {
8740         struct ipw_priv *priv = ieee80211_priv(dev);
8741         mutex_lock(&priv->mutex);
8742         wrqu->bitrate.value = priv->last_rate;
8743         mutex_unlock(&priv->mutex);
8744         IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
8745         return 0;
8746 }
8747
8748 static int ipw_wx_set_rts(struct net_device *dev,
8749                           struct iw_request_info *info,
8750                           union iwreq_data *wrqu, char *extra)
8751 {
8752         struct ipw_priv *priv = ieee80211_priv(dev);
8753         mutex_lock(&priv->mutex);
8754         if (wrqu->rts.disabled)
8755                 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8756         else {
8757                 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
8758                     wrqu->rts.value > MAX_RTS_THRESHOLD) {
8759                         mutex_unlock(&priv->mutex);
8760                         return -EINVAL;
8761                 }
8762                 priv->rts_threshold = wrqu->rts.value;
8763         }
8764
8765         ipw_send_rts_threshold(priv, priv->rts_threshold);
8766         mutex_unlock(&priv->mutex);
8767         IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
8768         return 0;
8769 }
8770
8771 static int ipw_wx_get_rts(struct net_device *dev,
8772                           struct iw_request_info *info,
8773                           union iwreq_data *wrqu, char *extra)
8774 {
8775         struct ipw_priv *priv = ieee80211_priv(dev);
8776         mutex_lock(&priv->mutex);
8777         wrqu->rts.value = priv->rts_threshold;
8778         wrqu->rts.fixed = 0;    /* no auto select */
8779         wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
8780         mutex_unlock(&priv->mutex);
8781         IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
8782         return 0;
8783 }
8784
8785 static int ipw_wx_set_txpow(struct net_device *dev,
8786                             struct iw_request_info *info,
8787                             union iwreq_data *wrqu, char *extra)
8788 {
8789         struct ipw_priv *priv = ieee80211_priv(dev);
8790         int err = 0;
8791
8792         mutex_lock(&priv->mutex);
8793         if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
8794                 err = -EINPROGRESS;
8795                 goto out;
8796         }
8797
8798         if (!wrqu->power.fixed)
8799                 wrqu->power.value = IPW_TX_POWER_DEFAULT;
8800
8801         if (wrqu->power.flags != IW_TXPOW_DBM) {
8802                 err = -EINVAL;
8803                 goto out;
8804         }
8805
8806         if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
8807             (wrqu->power.value < IPW_TX_POWER_MIN)) {
8808                 err = -EINVAL;
8809                 goto out;
8810         }
8811
8812         priv->tx_power = wrqu->power.value;
8813         err = ipw_set_tx_power(priv);
8814       out:
8815         mutex_unlock(&priv->mutex);
8816         return err;
8817 }
8818
8819 static int ipw_wx_get_txpow(struct net_device *dev,
8820                             struct iw_request_info *info,
8821                             union iwreq_data *wrqu, char *extra)
8822 {
8823         struct ipw_priv *priv = ieee80211_priv(dev);
8824         mutex_lock(&priv->mutex);
8825         wrqu->power.value = priv->tx_power;
8826         wrqu->power.fixed = 1;
8827         wrqu->power.flags = IW_TXPOW_DBM;
8828         wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
8829         mutex_unlock(&priv->mutex);
8830
8831         IPW_DEBUG_WX("GET TX Power -> %s %d \n",
8832                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
8833
8834         return 0;
8835 }
8836
8837 static int ipw_wx_set_frag(struct net_device *dev,
8838                            struct iw_request_info *info,
8839                            union iwreq_data *wrqu, char *extra)
8840 {
8841         struct ipw_priv *priv = ieee80211_priv(dev);
8842         mutex_lock(&priv->mutex);
8843         if (wrqu->frag.disabled)
8844                 priv->ieee->fts = DEFAULT_FTS;
8845         else {
8846                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
8847                     wrqu->frag.value > MAX_FRAG_THRESHOLD) {
8848                         mutex_unlock(&priv->mutex);
8849                         return -EINVAL;
8850                 }
8851
8852                 priv->ieee->fts = wrqu->frag.value & ~0x1;
8853         }
8854
8855         ipw_send_frag_threshold(priv, wrqu->frag.value);
8856         mutex_unlock(&priv->mutex);
8857         IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
8858         return 0;
8859 }
8860
8861 static int ipw_wx_get_frag(struct net_device *dev,
8862                            struct iw_request_info *info,
8863                            union iwreq_data *wrqu, char *extra)
8864 {
8865         struct ipw_priv *priv = ieee80211_priv(dev);
8866         mutex_lock(&priv->mutex);
8867         wrqu->frag.value = priv->ieee->fts;
8868         wrqu->frag.fixed = 0;   /* no auto select */
8869         wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
8870         mutex_unlock(&priv->mutex);
8871         IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
8872
8873         return 0;
8874 }
8875
8876 static int ipw_wx_set_retry(struct net_device *dev,
8877                             struct iw_request_info *info,
8878                             union iwreq_data *wrqu, char *extra)
8879 {
8880         struct ipw_priv *priv = ieee80211_priv(dev);
8881
8882         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
8883                 return -EINVAL;
8884
8885         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
8886                 return 0;
8887
8888         if (wrqu->retry.value < 0 || wrqu->retry.value > 255)
8889                 return -EINVAL;
8890
8891         mutex_lock(&priv->mutex);
8892         if (wrqu->retry.flags & IW_RETRY_MIN)
8893                 priv->short_retry_limit = (u8) wrqu->retry.value;
8894         else if (wrqu->retry.flags & IW_RETRY_MAX)
8895                 priv->long_retry_limit = (u8) wrqu->retry.value;
8896         else {
8897                 priv->short_retry_limit = (u8) wrqu->retry.value;
8898                 priv->long_retry_limit = (u8) wrqu->retry.value;
8899         }
8900
8901         ipw_send_retry_limit(priv, priv->short_retry_limit,
8902                              priv->long_retry_limit);
8903         mutex_unlock(&priv->mutex);
8904         IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
8905                      priv->short_retry_limit, priv->long_retry_limit);
8906         return 0;
8907 }
8908
8909 static int ipw_wx_get_retry(struct net_device *dev,
8910                             struct iw_request_info *info,
8911                             union iwreq_data *wrqu, char *extra)
8912 {
8913         struct ipw_priv *priv = ieee80211_priv(dev);
8914
8915         mutex_lock(&priv->mutex);
8916         wrqu->retry.disabled = 0;
8917
8918         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
8919                 mutex_unlock(&priv->mutex);
8920                 return -EINVAL;
8921         }
8922
8923         if (wrqu->retry.flags & IW_RETRY_MAX) {
8924                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_MAX;
8925                 wrqu->retry.value = priv->long_retry_limit;
8926         } else if (wrqu->retry.flags & IW_RETRY_MIN) {
8927                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_MIN;
8928                 wrqu->retry.value = priv->short_retry_limit;
8929         } else {
8930                 wrqu->retry.flags = IW_RETRY_LIMIT;
8931                 wrqu->retry.value = priv->short_retry_limit;
8932         }
8933         mutex_unlock(&priv->mutex);
8934
8935         IPW_DEBUG_WX("GET retry -> %d \n", wrqu->retry.value);
8936
8937         return 0;
8938 }
8939
8940 static int ipw_request_direct_scan(struct ipw_priv *priv, char *essid,
8941                                    int essid_len)
8942 {
8943         struct ipw_scan_request_ext scan;
8944         int err = 0, scan_type;
8945
8946         if (!(priv->status & STATUS_INIT) ||
8947             (priv->status & STATUS_EXIT_PENDING))
8948                 return 0;
8949
8950         mutex_lock(&priv->mutex);
8951
8952         if (priv->status & STATUS_RF_KILL_MASK) {
8953                 IPW_DEBUG_HC("Aborting scan due to RF kill activation\n");
8954                 priv->status |= STATUS_SCAN_PENDING;
8955                 goto done;
8956         }
8957
8958         IPW_DEBUG_HC("starting request direct scan!\n");
8959
8960         if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
8961                 /* We should not sleep here; otherwise we will block most
8962                  * of the system (for instance, we hold rtnl_lock when we
8963                  * get here).
8964                  */
8965                 err = -EAGAIN;
8966                 goto done;
8967         }
8968         memset(&scan, 0, sizeof(scan));
8969
8970         if (priv->config & CFG_SPEED_SCAN)
8971                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
8972                     cpu_to_le16(30);
8973         else
8974                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
8975                     cpu_to_le16(20);
8976
8977         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
8978             cpu_to_le16(20);
8979         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
8980         scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
8981
8982         scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
8983
8984         err = ipw_send_ssid(priv, essid, essid_len);
8985         if (err) {
8986                 IPW_DEBUG_HC("Attempt to send SSID command failed\n");
8987                 goto done;
8988         }
8989         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
8990
8991         ipw_add_scan_channels(priv, &scan, scan_type);
8992
8993         err = ipw_send_scan_request_ext(priv, &scan);
8994         if (err) {
8995                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
8996                 goto done;
8997         }
8998
8999         priv->status |= STATUS_SCANNING;
9000
9001       done:
9002         mutex_unlock(&priv->mutex);
9003         return err;
9004 }
9005
9006 static int ipw_wx_set_scan(struct net_device *dev,
9007                            struct iw_request_info *info,
9008                            union iwreq_data *wrqu, char *extra)
9009 {
9010         struct ipw_priv *priv = ieee80211_priv(dev);
9011         struct iw_scan_req *req = NULL;
9012         if (wrqu->data.length
9013             && wrqu->data.length == sizeof(struct iw_scan_req)) {
9014                 req = (struct iw_scan_req *)extra;
9015                 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9016                         ipw_request_direct_scan(priv, req->essid,
9017                                                 req->essid_len);
9018                         return 0;
9019                 }
9020         }
9021
9022         IPW_DEBUG_WX("Start scan\n");
9023
9024         queue_work(priv->workqueue, &priv->request_scan);
9025
9026         return 0;
9027 }
9028
9029 static int ipw_wx_get_scan(struct net_device *dev,
9030                            struct iw_request_info *info,
9031                            union iwreq_data *wrqu, char *extra)
9032 {
9033         struct ipw_priv *priv = ieee80211_priv(dev);
9034         return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
9035 }
9036
9037 static int ipw_wx_set_encode(struct net_device *dev,
9038                              struct iw_request_info *info,
9039                              union iwreq_data *wrqu, char *key)
9040 {
9041         struct ipw_priv *priv = ieee80211_priv(dev);
9042         int ret;
9043         u32 cap = priv->capability;
9044
9045         mutex_lock(&priv->mutex);
9046         ret = ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
9047
9048         /* In IBSS mode, we need to notify the firmware to update
9049          * the beacon info after we changed the capability. */
9050         if (cap != priv->capability &&
9051             priv->ieee->iw_mode == IW_MODE_ADHOC &&
9052             priv->status & STATUS_ASSOCIATED)
9053                 ipw_disassociate(priv);
9054
9055         mutex_unlock(&priv->mutex);
9056         return ret;
9057 }
9058
9059 static int ipw_wx_get_encode(struct net_device *dev,
9060                              struct iw_request_info *info,
9061                              union iwreq_data *wrqu, char *key)
9062 {
9063         struct ipw_priv *priv = ieee80211_priv(dev);
9064         return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
9065 }
9066
9067 static int ipw_wx_set_power(struct net_device *dev,
9068                             struct iw_request_info *info,
9069                             union iwreq_data *wrqu, char *extra)
9070 {
9071         struct ipw_priv *priv = ieee80211_priv(dev);
9072         int err;
9073         mutex_lock(&priv->mutex);
9074         if (wrqu->power.disabled) {
9075                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9076                 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9077                 if (err) {
9078                         IPW_DEBUG_WX("failed setting power mode.\n");
9079                         mutex_unlock(&priv->mutex);
9080                         return err;
9081                 }
9082                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9083                 mutex_unlock(&priv->mutex);
9084                 return 0;
9085         }
9086
9087         switch (wrqu->power.flags & IW_POWER_MODE) {
9088         case IW_POWER_ON:       /* If not specified */
9089         case IW_POWER_MODE:     /* If set all mask */
9090         case IW_POWER_ALL_R:    /* If explicitely state all */
9091                 break;
9092         default:                /* Otherwise we don't support it */
9093                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9094                              wrqu->power.flags);
9095                 mutex_unlock(&priv->mutex);
9096                 return -EOPNOTSUPP;
9097         }
9098
9099         /* If the user hasn't specified a power management mode yet, default
9100          * to BATTERY */
9101         if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9102                 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9103         else
9104                 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9105         err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9106         if (err) {
9107                 IPW_DEBUG_WX("failed setting power mode.\n");
9108                 mutex_unlock(&priv->mutex);
9109                 return err;
9110         }
9111
9112         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9113         mutex_unlock(&priv->mutex);
9114         return 0;
9115 }
9116
9117 static int ipw_wx_get_power(struct net_device *dev,
9118                             struct iw_request_info *info,
9119                             union iwreq_data *wrqu, char *extra)
9120 {
9121         struct ipw_priv *priv = ieee80211_priv(dev);
9122         mutex_lock(&priv->mutex);
9123         if (!(priv->power_mode & IPW_POWER_ENABLED))
9124                 wrqu->power.disabled = 1;
9125         else
9126                 wrqu->power.disabled = 0;
9127
9128         mutex_unlock(&priv->mutex);
9129         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9130
9131         return 0;
9132 }
9133
9134 static int ipw_wx_set_powermode(struct net_device *dev,
9135                                 struct iw_request_info *info,
9136                                 union iwreq_data *wrqu, char *extra)
9137 {
9138         struct ipw_priv *priv = ieee80211_priv(dev);
9139         int mode = *(int *)extra;
9140         int err;
9141         mutex_lock(&priv->mutex);
9142         if ((mode < 1) || (mode > IPW_POWER_LIMIT)) {
9143                 mode = IPW_POWER_AC;
9144                 priv->power_mode = mode;
9145         } else {
9146                 priv->power_mode = IPW_POWER_ENABLED | mode;
9147         }
9148
9149         if (priv->power_mode != mode) {
9150                 err = ipw_send_power_mode(priv, mode);
9151
9152                 if (err) {
9153                         IPW_DEBUG_WX("failed setting power mode.\n");
9154                         mutex_unlock(&priv->mutex);
9155                         return err;
9156                 }
9157         }
9158         mutex_unlock(&priv->mutex);
9159         return 0;
9160 }
9161
9162 #define MAX_WX_STRING 80
9163 static int ipw_wx_get_powermode(struct net_device *dev,
9164                                 struct iw_request_info *info,
9165                                 union iwreq_data *wrqu, char *extra)
9166 {
9167         struct ipw_priv *priv = ieee80211_priv(dev);
9168         int level = IPW_POWER_LEVEL(priv->power_mode);
9169         char *p = extra;
9170
9171         p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9172
9173         switch (level) {
9174         case IPW_POWER_AC:
9175                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9176                 break;
9177         case IPW_POWER_BATTERY:
9178                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9179                 break;
9180         default:
9181                 p += snprintf(p, MAX_WX_STRING - (p - extra),
9182                               "(Timeout %dms, Period %dms)",
9183                               timeout_duration[level - 1] / 1000,
9184                               period_duration[level - 1] / 1000);
9185         }
9186
9187         if (!(priv->power_mode & IPW_POWER_ENABLED))
9188                 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9189
9190         wrqu->data.length = p - extra + 1;
9191
9192         return 0;
9193 }
9194
9195 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9196                                     struct iw_request_info *info,
9197                                     union iwreq_data *wrqu, char *extra)
9198 {
9199         struct ipw_priv *priv = ieee80211_priv(dev);
9200         int mode = *(int *)extra;
9201         u8 band = 0, modulation = 0;
9202
9203         if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9204                 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9205                 return -EINVAL;
9206         }
9207         mutex_lock(&priv->mutex);
9208         if (priv->adapter == IPW_2915ABG) {
9209                 priv->ieee->abg_true = 1;
9210                 if (mode & IEEE_A) {
9211                         band |= IEEE80211_52GHZ_BAND;
9212                         modulation |= IEEE80211_OFDM_MODULATION;
9213                 } else
9214                         priv->ieee->abg_true = 0;
9215         } else {
9216                 if (mode & IEEE_A) {
9217                         IPW_WARNING("Attempt to set 2200BG into "
9218                                     "802.11a mode\n");
9219                         mutex_unlock(&priv->mutex);
9220                         return -EINVAL;
9221                 }
9222
9223                 priv->ieee->abg_true = 0;
9224         }
9225
9226         if (mode & IEEE_B) {
9227                 band |= IEEE80211_24GHZ_BAND;
9228                 modulation |= IEEE80211_CCK_MODULATION;
9229         } else
9230                 priv->ieee->abg_true = 0;
9231
9232         if (mode & IEEE_G) {
9233                 band |= IEEE80211_24GHZ_BAND;
9234                 modulation |= IEEE80211_OFDM_MODULATION;
9235         } else
9236                 priv->ieee->abg_true = 0;
9237
9238         priv->ieee->mode = mode;
9239         priv->ieee->freq_band = band;
9240         priv->ieee->modulation = modulation;
9241         init_supported_rates(priv, &priv->rates);
9242
9243         /* Network configuration changed -- force [re]association */
9244         IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9245         if (!ipw_disassociate(priv)) {
9246                 ipw_send_supported_rates(priv, &priv->rates);
9247                 ipw_associate(priv);
9248         }
9249
9250         /* Update the band LEDs */
9251         ipw_led_band_on(priv);
9252
9253         IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9254                      mode & IEEE_A ? 'a' : '.',
9255                      mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9256         mutex_unlock(&priv->mutex);
9257         return 0;
9258 }
9259
9260 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9261                                     struct iw_request_info *info,
9262                                     union iwreq_data *wrqu, char *extra)
9263 {
9264         struct ipw_priv *priv = ieee80211_priv(dev);
9265         mutex_lock(&priv->mutex);
9266         switch (priv->ieee->mode) {
9267         case IEEE_A:
9268                 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9269                 break;
9270         case IEEE_B:
9271                 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9272                 break;
9273         case IEEE_A | IEEE_B:
9274                 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9275                 break;
9276         case IEEE_G:
9277                 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9278                 break;
9279         case IEEE_A | IEEE_G:
9280                 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9281                 break;
9282         case IEEE_B | IEEE_G:
9283                 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9284                 break;
9285         case IEEE_A | IEEE_B | IEEE_G:
9286                 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9287                 break;
9288         default:
9289                 strncpy(extra, "unknown", MAX_WX_STRING);
9290                 break;
9291         }
9292
9293         IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9294
9295         wrqu->data.length = strlen(extra) + 1;
9296         mutex_unlock(&priv->mutex);
9297
9298         return 0;
9299 }
9300
9301 static int ipw_wx_set_preamble(struct net_device *dev,
9302                                struct iw_request_info *info,
9303                                union iwreq_data *wrqu, char *extra)
9304 {
9305         struct ipw_priv *priv = ieee80211_priv(dev);
9306         int mode = *(int *)extra;
9307         mutex_lock(&priv->mutex);
9308         /* Switching from SHORT -> LONG requires a disassociation */
9309         if (mode == 1) {
9310                 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9311                         priv->config |= CFG_PREAMBLE_LONG;
9312
9313                         /* Network configuration changed -- force [re]association */
9314                         IPW_DEBUG_ASSOC
9315                             ("[re]association triggered due to preamble change.\n");
9316                         if (!ipw_disassociate(priv))
9317                                 ipw_associate(priv);
9318                 }
9319                 goto done;
9320         }
9321
9322         if (mode == 0) {
9323                 priv->config &= ~CFG_PREAMBLE_LONG;
9324                 goto done;
9325         }
9326         mutex_unlock(&priv->mutex);
9327         return -EINVAL;
9328
9329       done:
9330         mutex_unlock(&priv->mutex);
9331         return 0;
9332 }
9333
9334 static int ipw_wx_get_preamble(struct net_device *dev,
9335                                struct iw_request_info *info,
9336                                union iwreq_data *wrqu, char *extra)
9337 {
9338         struct ipw_priv *priv = ieee80211_priv(dev);
9339         mutex_lock(&priv->mutex);
9340         if (priv->config & CFG_PREAMBLE_LONG)
9341                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9342         else
9343                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9344         mutex_unlock(&priv->mutex);
9345         return 0;
9346 }
9347
9348 #ifdef CONFIG_IPW2200_MONITOR
9349 static int ipw_wx_set_monitor(struct net_device *dev,
9350                               struct iw_request_info *info,
9351                               union iwreq_data *wrqu, char *extra)
9352 {
9353         struct ipw_priv *priv = ieee80211_priv(dev);
9354         int *parms = (int *)extra;
9355         int enable = (parms[0] > 0);
9356         mutex_lock(&priv->mutex);
9357         IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9358         if (enable) {
9359                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9360 #ifdef CONFIG_IEEE80211_RADIOTAP
9361                         priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9362 #else
9363                         priv->net_dev->type = ARPHRD_IEEE80211;
9364 #endif
9365                         queue_work(priv->workqueue, &priv->adapter_restart);
9366                 }
9367
9368                 ipw_set_channel(priv, parms[1]);
9369         } else {
9370                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9371                         mutex_unlock(&priv->mutex);
9372                         return 0;
9373                 }
9374                 priv->net_dev->type = ARPHRD_ETHER;
9375                 queue_work(priv->workqueue, &priv->adapter_restart);
9376         }
9377         mutex_unlock(&priv->mutex);
9378         return 0;
9379 }
9380
9381 #endif                          // CONFIG_IPW2200_MONITOR
9382
9383 static int ipw_wx_reset(struct net_device *dev,
9384                         struct iw_request_info *info,
9385                         union iwreq_data *wrqu, char *extra)
9386 {
9387         struct ipw_priv *priv = ieee80211_priv(dev);
9388         IPW_DEBUG_WX("RESET\n");
9389         queue_work(priv->workqueue, &priv->adapter_restart);
9390         return 0;
9391 }
9392
9393 static int ipw_wx_sw_reset(struct net_device *dev,
9394                            struct iw_request_info *info,
9395                            union iwreq_data *wrqu, char *extra)
9396 {
9397         struct ipw_priv *priv = ieee80211_priv(dev);
9398         union iwreq_data wrqu_sec = {
9399                 .encoding = {
9400                              .flags = IW_ENCODE_DISABLED,
9401                              },
9402         };
9403         int ret;
9404
9405         IPW_DEBUG_WX("SW_RESET\n");
9406
9407         mutex_lock(&priv->mutex);
9408
9409         ret = ipw_sw_reset(priv, 2);
9410         if (!ret) {
9411                 free_firmware();
9412                 ipw_adapter_restart(priv);
9413         }
9414
9415         /* The SW reset bit might have been toggled on by the 'disable'
9416          * module parameter, so take appropriate action */
9417         ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9418
9419         mutex_unlock(&priv->mutex);
9420         ieee80211_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9421         mutex_lock(&priv->mutex);
9422
9423         if (!(priv->status & STATUS_RF_KILL_MASK)) {
9424                 /* Configuration likely changed -- force [re]association */
9425                 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9426                                 "reset.\n");
9427                 if (!ipw_disassociate(priv))
9428                         ipw_associate(priv);
9429         }
9430
9431         mutex_unlock(&priv->mutex);
9432
9433         return 0;
9434 }
9435
9436 /* Rebase the WE IOCTLs to zero for the handler array */
9437 #define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
9438 static iw_handler ipw_wx_handlers[] = {
9439         IW_IOCTL(SIOCGIWNAME) = ipw_wx_get_name,
9440         IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq,
9441         IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq,
9442         IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode,
9443         IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode,
9444         IW_IOCTL(SIOCSIWSENS) = ipw_wx_set_sens,
9445         IW_IOCTL(SIOCGIWSENS) = ipw_wx_get_sens,
9446         IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range,
9447         IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap,
9448         IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap,
9449         IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan,
9450         IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan,
9451         IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid,
9452         IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid,
9453         IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick,
9454         IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick,
9455         IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate,
9456         IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate,
9457         IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts,
9458         IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts,
9459         IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag,
9460         IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag,
9461         IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow,
9462         IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow,
9463         IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry,
9464         IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry,
9465         IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode,
9466         IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode,
9467         IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power,
9468         IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power,
9469         IW_IOCTL(SIOCSIWSPY) = iw_handler_set_spy,
9470         IW_IOCTL(SIOCGIWSPY) = iw_handler_get_spy,
9471         IW_IOCTL(SIOCSIWTHRSPY) = iw_handler_set_thrspy,
9472         IW_IOCTL(SIOCGIWTHRSPY) = iw_handler_get_thrspy,
9473         IW_IOCTL(SIOCSIWGENIE) = ipw_wx_set_genie,
9474         IW_IOCTL(SIOCGIWGENIE) = ipw_wx_get_genie,
9475         IW_IOCTL(SIOCSIWMLME) = ipw_wx_set_mlme,
9476         IW_IOCTL(SIOCSIWAUTH) = ipw_wx_set_auth,
9477         IW_IOCTL(SIOCGIWAUTH) = ipw_wx_get_auth,
9478         IW_IOCTL(SIOCSIWENCODEEXT) = ipw_wx_set_encodeext,
9479         IW_IOCTL(SIOCGIWENCODEEXT) = ipw_wx_get_encodeext,
9480 };
9481
9482 enum {
9483         IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
9484         IPW_PRIV_GET_POWER,
9485         IPW_PRIV_SET_MODE,
9486         IPW_PRIV_GET_MODE,
9487         IPW_PRIV_SET_PREAMBLE,
9488         IPW_PRIV_GET_PREAMBLE,
9489         IPW_PRIV_RESET,
9490         IPW_PRIV_SW_RESET,
9491 #ifdef CONFIG_IPW2200_MONITOR
9492         IPW_PRIV_SET_MONITOR,
9493 #endif
9494 };
9495
9496 static struct iw_priv_args ipw_priv_args[] = {
9497         {
9498          .cmd = IPW_PRIV_SET_POWER,
9499          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9500          .name = "set_power"},
9501         {
9502          .cmd = IPW_PRIV_GET_POWER,
9503          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9504          .name = "get_power"},
9505         {
9506          .cmd = IPW_PRIV_SET_MODE,
9507          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9508          .name = "set_mode"},
9509         {
9510          .cmd = IPW_PRIV_GET_MODE,
9511          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9512          .name = "get_mode"},
9513         {
9514          .cmd = IPW_PRIV_SET_PREAMBLE,
9515          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9516          .name = "set_preamble"},
9517         {
9518          .cmd = IPW_PRIV_GET_PREAMBLE,
9519          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
9520          .name = "get_preamble"},
9521         {
9522          IPW_PRIV_RESET,
9523          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
9524         {
9525          IPW_PRIV_SW_RESET,
9526          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
9527 #ifdef CONFIG_IPW2200_MONITOR
9528         {
9529          IPW_PRIV_SET_MONITOR,
9530          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
9531 #endif                          /* CONFIG_IPW2200_MONITOR */
9532 };
9533
9534 static iw_handler ipw_priv_handler[] = {
9535         ipw_wx_set_powermode,
9536         ipw_wx_get_powermode,
9537         ipw_wx_set_wireless_mode,
9538         ipw_wx_get_wireless_mode,
9539         ipw_wx_set_preamble,
9540         ipw_wx_get_preamble,
9541         ipw_wx_reset,
9542         ipw_wx_sw_reset,
9543 #ifdef CONFIG_IPW2200_MONITOR
9544         ipw_wx_set_monitor,
9545 #endif
9546 };
9547
9548 static struct iw_handler_def ipw_wx_handler_def = {
9549         .standard = ipw_wx_handlers,
9550         .num_standard = ARRAY_SIZE(ipw_wx_handlers),
9551         .num_private = ARRAY_SIZE(ipw_priv_handler),
9552         .num_private_args = ARRAY_SIZE(ipw_priv_args),
9553         .private = ipw_priv_handler,
9554         .private_args = ipw_priv_args,
9555         .get_wireless_stats = ipw_get_wireless_stats,
9556 };
9557
9558 /*
9559  * Get wireless statistics.
9560  * Called by /proc/net/wireless
9561  * Also called by SIOCGIWSTATS
9562  */
9563 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
9564 {
9565         struct ipw_priv *priv = ieee80211_priv(dev);
9566         struct iw_statistics *wstats;
9567
9568         wstats = &priv->wstats;
9569
9570         /* if hw is disabled, then ipw_get_ordinal() can't be called.
9571          * netdev->get_wireless_stats seems to be called before fw is
9572          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
9573          * and associated; if not associcated, the values are all meaningless
9574          * anyway, so set them all to NULL and INVALID */
9575         if (!(priv->status & STATUS_ASSOCIATED)) {
9576                 wstats->miss.beacon = 0;
9577                 wstats->discard.retries = 0;
9578                 wstats->qual.qual = 0;
9579                 wstats->qual.level = 0;
9580                 wstats->qual.noise = 0;
9581                 wstats->qual.updated = 7;
9582                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
9583                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
9584                 return wstats;
9585         }
9586
9587         wstats->qual.qual = priv->quality;
9588         wstats->qual.level = priv->exp_avg_rssi;
9589         wstats->qual.noise = priv->exp_avg_noise;
9590         wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
9591             IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
9592
9593         wstats->miss.beacon = average_value(&priv->average_missed_beacons);
9594         wstats->discard.retries = priv->last_tx_failures;
9595         wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
9596
9597 /*      if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
9598         goto fail_get_ordinal;
9599         wstats->discard.retries += tx_retry; */
9600
9601         return wstats;
9602 }
9603
9604 /* net device stuff */
9605
9606 static  void init_sys_config(struct ipw_sys_config *sys_config)
9607 {
9608         memset(sys_config, 0, sizeof(struct ipw_sys_config));
9609         sys_config->bt_coexistence = 0;
9610         sys_config->answer_broadcast_ssid_probe = 0;
9611         sys_config->accept_all_data_frames = 0;
9612         sys_config->accept_non_directed_frames = 1;
9613         sys_config->exclude_unicast_unencrypted = 0;
9614         sys_config->disable_unicast_decryption = 1;
9615         sys_config->exclude_multicast_unencrypted = 0;
9616         sys_config->disable_multicast_decryption = 1;
9617         sys_config->antenna_diversity = CFG_SYS_ANTENNA_SLOW_DIV;
9618         sys_config->pass_crc_to_host = 0;       /* TODO: See if 1 gives us FCS */
9619         sys_config->dot11g_auto_detection = 0;
9620         sys_config->enable_cts_to_self = 0;
9621         sys_config->bt_coexist_collision_thr = 0;
9622         sys_config->pass_noise_stats_to_host = 1;       //1 -- fix for 256
9623         sys_config->silence_threshold = 0x1e;
9624 }
9625
9626 static int ipw_net_open(struct net_device *dev)
9627 {
9628         struct ipw_priv *priv = ieee80211_priv(dev);
9629         IPW_DEBUG_INFO("dev->open\n");
9630         /* we should be verifying the device is ready to be opened */
9631         mutex_lock(&priv->mutex);
9632         if (!(priv->status & STATUS_RF_KILL_MASK) &&
9633             (priv->status & STATUS_ASSOCIATED))
9634                 netif_start_queue(dev);
9635         mutex_unlock(&priv->mutex);
9636         return 0;
9637 }
9638
9639 static int ipw_net_stop(struct net_device *dev)
9640 {
9641         IPW_DEBUG_INFO("dev->close\n");
9642         netif_stop_queue(dev);
9643         return 0;
9644 }
9645
9646 /*
9647 todo:
9648
9649 modify to send one tfd per fragment instead of using chunking.  otherwise
9650 we need to heavily modify the ieee80211_skb_to_txb.
9651 */
9652
9653 static int ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb,
9654                              int pri)
9655 {
9656         struct ieee80211_hdr_3addr *hdr = (struct ieee80211_hdr_3addr *)
9657             txb->fragments[0]->data;
9658         int i = 0;
9659         struct tfd_frame *tfd;
9660 #ifdef CONFIG_IPW_QOS
9661         int tx_id = ipw_get_tx_queue_number(priv, pri);
9662         struct clx2_tx_queue *txq = &priv->txq[tx_id];
9663 #else
9664         struct clx2_tx_queue *txq = &priv->txq[0];
9665 #endif
9666         struct clx2_queue *q = &txq->q;
9667         u8 id, hdr_len, unicast;
9668         u16 remaining_bytes;
9669         int fc;
9670
9671         switch (priv->ieee->iw_mode) {
9672         case IW_MODE_ADHOC:
9673                 hdr_len = IEEE80211_3ADDR_LEN;
9674                 unicast = !is_multicast_ether_addr(hdr->addr1);
9675                 id = ipw_find_station(priv, hdr->addr1);
9676                 if (id == IPW_INVALID_STATION) {
9677                         id = ipw_add_station(priv, hdr->addr1);
9678                         if (id == IPW_INVALID_STATION) {
9679                                 IPW_WARNING("Attempt to send data to "
9680                                             "invalid cell: " MAC_FMT "\n",
9681                                             MAC_ARG(hdr->addr1));
9682                                 goto drop;
9683                         }
9684                 }
9685                 break;
9686
9687         case IW_MODE_INFRA:
9688         default:
9689                 unicast = !is_multicast_ether_addr(hdr->addr3);
9690                 hdr_len = IEEE80211_3ADDR_LEN;
9691                 id = 0;
9692                 break;
9693         }
9694
9695         tfd = &txq->bd[q->first_empty];
9696         txq->txb[q->first_empty] = txb;
9697         memset(tfd, 0, sizeof(*tfd));
9698         tfd->u.data.station_number = id;
9699
9700         tfd->control_flags.message_type = TX_FRAME_TYPE;
9701         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
9702
9703         tfd->u.data.cmd_id = DINO_CMD_TX;
9704         tfd->u.data.len = cpu_to_le16(txb->payload_size);
9705         remaining_bytes = txb->payload_size;
9706
9707         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
9708                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
9709         else
9710                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
9711
9712         if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
9713                 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
9714
9715         fc = le16_to_cpu(hdr->frame_ctl);
9716         hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
9717
9718         memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
9719
9720         if (likely(unicast))
9721                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
9722
9723         if (txb->encrypted && !priv->ieee->host_encrypt) {
9724                 switch (priv->ieee->sec.level) {
9725                 case SEC_LEVEL_3:
9726                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
9727                             IEEE80211_FCTL_PROTECTED;
9728                         /* XXX: ACK flag must be set for CCMP even if it
9729                          * is a multicast/broadcast packet, because CCMP
9730                          * group communication encrypted by GTK is
9731                          * actually done by the AP. */
9732                         if (!unicast)
9733                                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
9734
9735                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
9736                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
9737                         tfd->u.data.key_index = 0;
9738                         tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
9739                         break;
9740                 case SEC_LEVEL_2:
9741                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
9742                             IEEE80211_FCTL_PROTECTED;
9743                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
9744                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
9745                         tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
9746                         break;
9747                 case SEC_LEVEL_1:
9748                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
9749                             IEEE80211_FCTL_PROTECTED;
9750                         tfd->u.data.key_index = priv->ieee->tx_keyidx;
9751                         if (priv->ieee->sec.key_sizes[priv->ieee->tx_keyidx] <=
9752                             40)
9753                                 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
9754                         else
9755                                 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
9756                         break;
9757                 case SEC_LEVEL_0:
9758                         break;
9759                 default:
9760                         printk(KERN_ERR "Unknow security level %d\n",
9761                                priv->ieee->sec.level);
9762                         break;
9763                 }
9764         } else
9765                 /* No hardware encryption */
9766                 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
9767
9768 #ifdef CONFIG_IPW_QOS
9769         ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data), unicast);
9770 #endif                          /* CONFIG_IPW_QOS */
9771
9772         /* payload */
9773         tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
9774                                                  txb->nr_frags));
9775         IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
9776                        txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
9777         for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
9778                 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
9779                                i, le32_to_cpu(tfd->u.data.num_chunks),
9780                                txb->fragments[i]->len - hdr_len);
9781                 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
9782                              i, tfd->u.data.num_chunks,
9783                              txb->fragments[i]->len - hdr_len);
9784                 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
9785                            txb->fragments[i]->len - hdr_len);
9786
9787                 tfd->u.data.chunk_ptr[i] =
9788                     cpu_to_le32(pci_map_single
9789                                 (priv->pci_dev,
9790                                  txb->fragments[i]->data + hdr_len,
9791                                  txb->fragments[i]->len - hdr_len,
9792                                  PCI_DMA_TODEVICE));
9793                 tfd->u.data.chunk_len[i] =
9794                     cpu_to_le16(txb->fragments[i]->len - hdr_len);
9795         }
9796
9797         if (i != txb->nr_frags) {
9798                 struct sk_buff *skb;
9799                 u16 remaining_bytes = 0;
9800                 int j;
9801
9802                 for (j = i; j < txb->nr_frags; j++)
9803                         remaining_bytes += txb->fragments[j]->len - hdr_len;
9804
9805                 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
9806                        remaining_bytes);
9807                 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
9808                 if (skb != NULL) {
9809                         tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
9810                         for (j = i; j < txb->nr_frags; j++) {
9811                                 int size = txb->fragments[j]->len - hdr_len;
9812
9813                                 printk(KERN_INFO "Adding frag %d %d...\n",
9814                                        j, size);
9815                                 memcpy(skb_put(skb, size),
9816                                        txb->fragments[j]->data + hdr_len, size);
9817                         }
9818                         dev_kfree_skb_any(txb->fragments[i]);
9819                         txb->fragments[i] = skb;
9820                         tfd->u.data.chunk_ptr[i] =
9821                             cpu_to_le32(pci_map_single
9822                                         (priv->pci_dev, skb->data,
9823                                          tfd->u.data.chunk_len[i],
9824                                          PCI_DMA_TODEVICE));
9825
9826                         tfd->u.data.num_chunks =
9827                             cpu_to_le32(le32_to_cpu(tfd->u.data.num_chunks) +
9828                                         1);
9829                 }
9830         }
9831
9832         /* kick DMA */
9833         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
9834         ipw_write32(priv, q->reg_w, q->first_empty);
9835
9836         if (ipw_queue_space(q) < q->high_mark)
9837                 netif_stop_queue(priv->net_dev);
9838
9839         return NETDEV_TX_OK;
9840
9841       drop:
9842         IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
9843         ieee80211_txb_free(txb);
9844         return NETDEV_TX_OK;
9845 }
9846
9847 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
9848 {
9849         struct ipw_priv *priv = ieee80211_priv(dev);
9850 #ifdef CONFIG_IPW_QOS
9851         int tx_id = ipw_get_tx_queue_number(priv, pri);
9852         struct clx2_tx_queue *txq = &priv->txq[tx_id];
9853 #else
9854         struct clx2_tx_queue *txq = &priv->txq[0];
9855 #endif                          /* CONFIG_IPW_QOS */
9856
9857         if (ipw_queue_space(&txq->q) < txq->q.high_mark)
9858                 return 1;
9859
9860         return 0;
9861 }
9862
9863 static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb,
9864                                    struct net_device *dev, int pri)
9865 {
9866         struct ipw_priv *priv = ieee80211_priv(dev);
9867         unsigned long flags;
9868         int ret;
9869
9870         IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
9871         spin_lock_irqsave(&priv->lock, flags);
9872
9873         if (!(priv->status & STATUS_ASSOCIATED)) {
9874                 IPW_DEBUG_INFO("Tx attempt while not associated.\n");
9875                 priv->ieee->stats.tx_carrier_errors++;
9876                 netif_stop_queue(dev);
9877                 goto fail_unlock;
9878         }
9879
9880         ret = ipw_tx_skb(priv, txb, pri);
9881         if (ret == NETDEV_TX_OK)
9882                 __ipw_led_activity_on(priv);
9883         spin_unlock_irqrestore(&priv->lock, flags);
9884
9885         return ret;
9886
9887       fail_unlock:
9888         spin_unlock_irqrestore(&priv->lock, flags);
9889         return 1;
9890 }
9891
9892 static struct net_device_stats *ipw_net_get_stats(struct net_device *dev)
9893 {
9894         struct ipw_priv *priv = ieee80211_priv(dev);
9895
9896         priv->ieee->stats.tx_packets = priv->tx_packets;
9897         priv->ieee->stats.rx_packets = priv->rx_packets;
9898         return &priv->ieee->stats;
9899 }
9900
9901 static void ipw_net_set_multicast_list(struct net_device *dev)
9902 {
9903
9904 }
9905
9906 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
9907 {
9908         struct ipw_priv *priv = ieee80211_priv(dev);
9909         struct sockaddr *addr = p;
9910         if (!is_valid_ether_addr(addr->sa_data))
9911                 return -EADDRNOTAVAIL;
9912         mutex_lock(&priv->mutex);
9913         priv->config |= CFG_CUSTOM_MAC;
9914         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
9915         printk(KERN_INFO "%s: Setting MAC to " MAC_FMT "\n",
9916                priv->net_dev->name, MAC_ARG(priv->mac_addr));
9917         queue_work(priv->workqueue, &priv->adapter_restart);
9918         mutex_unlock(&priv->mutex);
9919         return 0;
9920 }
9921
9922 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
9923                                     struct ethtool_drvinfo *info)
9924 {
9925         struct ipw_priv *p = ieee80211_priv(dev);
9926         char vers[64];
9927         char date[32];
9928         u32 len;
9929
9930         strcpy(info->driver, DRV_NAME);
9931         strcpy(info->version, DRV_VERSION);
9932
9933         len = sizeof(vers);
9934         ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
9935         len = sizeof(date);
9936         ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
9937
9938         snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
9939                  vers, date);
9940         strcpy(info->bus_info, pci_name(p->pci_dev));
9941         info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
9942 }
9943
9944 static u32 ipw_ethtool_get_link(struct net_device *dev)
9945 {
9946         struct ipw_priv *priv = ieee80211_priv(dev);
9947         return (priv->status & STATUS_ASSOCIATED) != 0;
9948 }
9949
9950 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
9951 {
9952         return IPW_EEPROM_IMAGE_SIZE;
9953 }
9954
9955 static int ipw_ethtool_get_eeprom(struct net_device *dev,
9956                                   struct ethtool_eeprom *eeprom, u8 * bytes)
9957 {
9958         struct ipw_priv *p = ieee80211_priv(dev);
9959
9960         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
9961                 return -EINVAL;
9962         mutex_lock(&p->mutex);
9963         memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
9964         mutex_unlock(&p->mutex);
9965         return 0;
9966 }
9967
9968 static int ipw_ethtool_set_eeprom(struct net_device *dev,
9969                                   struct ethtool_eeprom *eeprom, u8 * bytes)
9970 {
9971         struct ipw_priv *p = ieee80211_priv(dev);
9972         int i;
9973
9974         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
9975                 return -EINVAL;
9976         mutex_lock(&p->mutex);
9977         memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
9978         for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
9979                 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
9980         mutex_unlock(&p->mutex);
9981         return 0;
9982 }
9983
9984 static struct ethtool_ops ipw_ethtool_ops = {
9985         .get_link = ipw_ethtool_get_link,
9986         .get_drvinfo = ipw_ethtool_get_drvinfo,
9987         .get_eeprom_len = ipw_ethtool_get_eeprom_len,
9988         .get_eeprom = ipw_ethtool_get_eeprom,
9989         .set_eeprom = ipw_ethtool_set_eeprom,
9990 };
9991
9992 static irqreturn_t ipw_isr(int irq, void *data, struct pt_regs *regs)
9993 {
9994         struct ipw_priv *priv = data;
9995         u32 inta, inta_mask;
9996
9997         if (!priv)
9998                 return IRQ_NONE;
9999
10000         spin_lock(&priv->lock);
10001
10002         if (!(priv->status & STATUS_INT_ENABLED)) {
10003                 /* Shared IRQ */
10004                 goto none;
10005         }
10006
10007         inta = ipw_read32(priv, IPW_INTA_RW);
10008         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10009
10010         if (inta == 0xFFFFFFFF) {
10011                 /* Hardware disappeared */
10012                 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10013                 goto none;
10014         }
10015
10016         if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10017                 /* Shared interrupt */
10018                 goto none;
10019         }
10020
10021         /* tell the device to stop sending interrupts */
10022         ipw_disable_interrupts(priv);
10023
10024         /* ack current interrupts */
10025         inta &= (IPW_INTA_MASK_ALL & inta_mask);
10026         ipw_write32(priv, IPW_INTA_RW, inta);
10027
10028         /* Cache INTA value for our tasklet */
10029         priv->isr_inta = inta;
10030
10031         tasklet_schedule(&priv->irq_tasklet);
10032
10033         spin_unlock(&priv->lock);
10034
10035         return IRQ_HANDLED;
10036       none:
10037         spin_unlock(&priv->lock);
10038         return IRQ_NONE;
10039 }
10040
10041 static void ipw_rf_kill(void *adapter)
10042 {
10043         struct ipw_priv *priv = adapter;
10044         unsigned long flags;
10045
10046         spin_lock_irqsave(&priv->lock, flags);
10047
10048         if (rf_kill_active(priv)) {
10049                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10050                 if (priv->workqueue)
10051                         queue_delayed_work(priv->workqueue,
10052                                            &priv->rf_kill, 2 * HZ);
10053                 goto exit_unlock;
10054         }
10055
10056         /* RF Kill is now disabled, so bring the device back up */
10057
10058         if (!(priv->status & STATUS_RF_KILL_MASK)) {
10059                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10060                                   "device\n");
10061
10062                 /* we can not do an adapter restart while inside an irq lock */
10063                 queue_work(priv->workqueue, &priv->adapter_restart);
10064         } else
10065                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
10066                                   "enabled\n");
10067
10068       exit_unlock:
10069         spin_unlock_irqrestore(&priv->lock, flags);
10070 }
10071
10072 static void ipw_bg_rf_kill(void *data)
10073 {
10074         struct ipw_priv *priv = data;
10075         mutex_lock(&priv->mutex);
10076         ipw_rf_kill(data);
10077         mutex_unlock(&priv->mutex);
10078 }
10079
10080 static void ipw_link_up(struct ipw_priv *priv)
10081 {
10082         priv->last_seq_num = -1;
10083         priv->last_frag_num = -1;
10084         priv->last_packet_time = 0;
10085
10086         netif_carrier_on(priv->net_dev);
10087         if (netif_queue_stopped(priv->net_dev)) {
10088                 IPW_DEBUG_NOTIF("waking queue\n");
10089                 netif_wake_queue(priv->net_dev);
10090         } else {
10091                 IPW_DEBUG_NOTIF("starting queue\n");
10092                 netif_start_queue(priv->net_dev);
10093         }
10094
10095         cancel_delayed_work(&priv->request_scan);
10096         ipw_reset_stats(priv);
10097         /* Ensure the rate is updated immediately */
10098         priv->last_rate = ipw_get_current_rate(priv);
10099         ipw_gather_stats(priv);
10100         ipw_led_link_up(priv);
10101         notify_wx_assoc_event(priv);
10102
10103         if (priv->config & CFG_BACKGROUND_SCAN)
10104                 queue_delayed_work(priv->workqueue, &priv->request_scan, HZ);
10105 }
10106
10107 static void ipw_bg_link_up(void *data)
10108 {
10109         struct ipw_priv *priv = data;
10110         mutex_lock(&priv->mutex);
10111         ipw_link_up(data);
10112         mutex_unlock(&priv->mutex);
10113 }
10114
10115 static void ipw_link_down(struct ipw_priv *priv)
10116 {
10117         ipw_led_link_down(priv);
10118         netif_carrier_off(priv->net_dev);
10119         netif_stop_queue(priv->net_dev);
10120         notify_wx_assoc_event(priv);
10121
10122         /* Cancel any queued work ... */
10123         cancel_delayed_work(&priv->request_scan);
10124         cancel_delayed_work(&priv->adhoc_check);
10125         cancel_delayed_work(&priv->gather_stats);
10126
10127         ipw_reset_stats(priv);
10128
10129         if (!(priv->status & STATUS_EXIT_PENDING)) {
10130                 /* Queue up another scan... */
10131                 queue_work(priv->workqueue, &priv->request_scan);
10132         }
10133 }
10134
10135 static void ipw_bg_link_down(void *data)
10136 {
10137         struct ipw_priv *priv = data;
10138         mutex_lock(&priv->mutex);
10139         ipw_link_down(data);
10140         mutex_unlock(&priv->mutex);
10141 }
10142
10143 static int ipw_setup_deferred_work(struct ipw_priv *priv)
10144 {
10145         int ret = 0;
10146
10147         priv->workqueue = create_workqueue(DRV_NAME);
10148         init_waitqueue_head(&priv->wait_command_queue);
10149         init_waitqueue_head(&priv->wait_state);
10150
10151         INIT_WORK(&priv->adhoc_check, ipw_bg_adhoc_check, priv);
10152         INIT_WORK(&priv->associate, ipw_bg_associate, priv);
10153         INIT_WORK(&priv->disassociate, ipw_bg_disassociate, priv);
10154         INIT_WORK(&priv->system_config, ipw_system_config, priv);
10155         INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish, priv);
10156         INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart, priv);
10157         INIT_WORK(&priv->rf_kill, ipw_bg_rf_kill, priv);
10158         INIT_WORK(&priv->up, (void (*)(void *))ipw_bg_up, priv);
10159         INIT_WORK(&priv->down, (void (*)(void *))ipw_bg_down, priv);
10160         INIT_WORK(&priv->request_scan,
10161                   (void (*)(void *))ipw_request_scan, priv);
10162         INIT_WORK(&priv->gather_stats,
10163                   (void (*)(void *))ipw_bg_gather_stats, priv);
10164         INIT_WORK(&priv->abort_scan, (void (*)(void *))ipw_bg_abort_scan, priv);
10165         INIT_WORK(&priv->roam, ipw_bg_roam, priv);
10166         INIT_WORK(&priv->scan_check, ipw_bg_scan_check, priv);
10167         INIT_WORK(&priv->link_up, (void (*)(void *))ipw_bg_link_up, priv);
10168         INIT_WORK(&priv->link_down, (void (*)(void *))ipw_bg_link_down, priv);
10169         INIT_WORK(&priv->led_link_on, (void (*)(void *))ipw_bg_led_link_on,
10170                   priv);
10171         INIT_WORK(&priv->led_link_off, (void (*)(void *))ipw_bg_led_link_off,
10172                   priv);
10173         INIT_WORK(&priv->led_act_off, (void (*)(void *))ipw_bg_led_activity_off,
10174                   priv);
10175         INIT_WORK(&priv->merge_networks,
10176                   (void (*)(void *))ipw_merge_adhoc_network, priv);
10177
10178 #ifdef CONFIG_IPW_QOS
10179         INIT_WORK(&priv->qos_activate, (void (*)(void *))ipw_bg_qos_activate,
10180                   priv);
10181 #endif                          /* CONFIG_IPW_QOS */
10182
10183         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10184                      ipw_irq_tasklet, (unsigned long)priv);
10185
10186         return ret;
10187 }
10188
10189 static void shim__set_security(struct net_device *dev,
10190                                struct ieee80211_security *sec)
10191 {
10192         struct ipw_priv *priv = ieee80211_priv(dev);
10193         int i;
10194         for (i = 0; i < 4; i++) {
10195                 if (sec->flags & (1 << i)) {
10196                         priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10197                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10198                         if (sec->key_sizes[i] == 0)
10199                                 priv->ieee->sec.flags &= ~(1 << i);
10200                         else {
10201                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10202                                        sec->key_sizes[i]);
10203                                 priv->ieee->sec.flags |= (1 << i);
10204                         }
10205                         priv->status |= STATUS_SECURITY_UPDATED;
10206                 } else if (sec->level != SEC_LEVEL_1)
10207                         priv->ieee->sec.flags &= ~(1 << i);
10208         }
10209
10210         if (sec->flags & SEC_ACTIVE_KEY) {
10211                 if (sec->active_key <= 3) {
10212                         priv->ieee->sec.active_key = sec->active_key;
10213                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10214                 } else
10215                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10216                 priv->status |= STATUS_SECURITY_UPDATED;
10217         } else
10218                 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10219
10220         if ((sec->flags & SEC_AUTH_MODE) &&
10221             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10222                 priv->ieee->sec.auth_mode = sec->auth_mode;
10223                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10224                 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10225                         priv->capability |= CAP_SHARED_KEY;
10226                 else
10227                         priv->capability &= ~CAP_SHARED_KEY;
10228                 priv->status |= STATUS_SECURITY_UPDATED;
10229         }
10230
10231         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10232                 priv->ieee->sec.flags |= SEC_ENABLED;
10233                 priv->ieee->sec.enabled = sec->enabled;
10234                 priv->status |= STATUS_SECURITY_UPDATED;
10235                 if (sec->enabled)
10236                         priv->capability |= CAP_PRIVACY_ON;
10237                 else
10238                         priv->capability &= ~CAP_PRIVACY_ON;
10239         }
10240
10241         if (sec->flags & SEC_ENCRYPT)
10242                 priv->ieee->sec.encrypt = sec->encrypt;
10243
10244         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10245                 priv->ieee->sec.level = sec->level;
10246                 priv->ieee->sec.flags |= SEC_LEVEL;
10247                 priv->status |= STATUS_SECURITY_UPDATED;
10248         }
10249
10250         if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10251                 ipw_set_hwcrypto_keys(priv);
10252
10253         /* To match current functionality of ipw2100 (which works well w/
10254          * various supplicants, we don't force a disassociate if the
10255          * privacy capability changes ... */
10256 #if 0
10257         if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10258             (((priv->assoc_request.capability &
10259                WLAN_CAPABILITY_PRIVACY) && !sec->enabled) ||
10260              (!(priv->assoc_request.capability &
10261                 WLAN_CAPABILITY_PRIVACY) && sec->enabled))) {
10262                 IPW_DEBUG_ASSOC("Disassociating due to capability "
10263                                 "change.\n");
10264                 ipw_disassociate(priv);
10265         }
10266 #endif
10267 }
10268
10269 static int init_supported_rates(struct ipw_priv *priv,
10270                                 struct ipw_supported_rates *rates)
10271 {
10272         /* TODO: Mask out rates based on priv->rates_mask */
10273
10274         memset(rates, 0, sizeof(*rates));
10275         /* configure supported rates */
10276         switch (priv->ieee->freq_band) {
10277         case IEEE80211_52GHZ_BAND:
10278                 rates->ieee_mode = IPW_A_MODE;
10279                 rates->purpose = IPW_RATE_CAPABILITIES;
10280                 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10281                                         IEEE80211_OFDM_DEFAULT_RATES_MASK);
10282                 break;
10283
10284         default:                /* Mixed or 2.4Ghz */
10285                 rates->ieee_mode = IPW_G_MODE;
10286                 rates->purpose = IPW_RATE_CAPABILITIES;
10287                 ipw_add_cck_scan_rates(rates, IEEE80211_CCK_MODULATION,
10288                                        IEEE80211_CCK_DEFAULT_RATES_MASK);
10289                 if (priv->ieee->modulation & IEEE80211_OFDM_MODULATION) {
10290                         ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10291                                                 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10292                 }
10293                 break;
10294         }
10295
10296         return 0;
10297 }
10298
10299 static int ipw_config(struct ipw_priv *priv)
10300 {
10301         /* This is only called from ipw_up, which resets/reloads the firmware
10302            so, we don't need to first disable the card before we configure
10303            it */
10304         if (ipw_set_tx_power(priv))
10305                 goto error;
10306
10307         /* initialize adapter address */
10308         if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10309                 goto error;
10310
10311         /* set basic system config settings */
10312         init_sys_config(&priv->sys_config);
10313
10314         /* Support Bluetooth if we have BT h/w on board, and user wants to.
10315          * Does not support BT priority yet (don't abort or defer our Tx) */
10316         if (bt_coexist) {
10317                 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10318
10319                 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10320                         priv->sys_config.bt_coexistence
10321                             |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10322                 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10323                         priv->sys_config.bt_coexistence
10324                             |= CFG_BT_COEXISTENCE_OOB;
10325         }
10326
10327         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10328                 priv->sys_config.answer_broadcast_ssid_probe = 1;
10329         else
10330                 priv->sys_config.answer_broadcast_ssid_probe = 0;
10331
10332         if (ipw_send_system_config(priv, &priv->sys_config))
10333                 goto error;
10334
10335         init_supported_rates(priv, &priv->rates);
10336         if (ipw_send_supported_rates(priv, &priv->rates))
10337                 goto error;
10338
10339         /* Set request-to-send threshold */
10340         if (priv->rts_threshold) {
10341                 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10342                         goto error;
10343         }
10344 #ifdef CONFIG_IPW_QOS
10345         IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10346         ipw_qos_activate(priv, NULL);
10347 #endif                          /* CONFIG_IPW_QOS */
10348
10349         if (ipw_set_random_seed(priv))
10350                 goto error;
10351
10352         /* final state transition to the RUN state */
10353         if (ipw_send_host_complete(priv))
10354                 goto error;
10355
10356         priv->status |= STATUS_INIT;
10357
10358         ipw_led_init(priv);
10359         ipw_led_radio_on(priv);
10360         priv->notif_missed_beacons = 0;
10361
10362         /* Set hardware WEP key if it is configured. */
10363         if ((priv->capability & CAP_PRIVACY_ON) &&
10364             (priv->ieee->sec.level == SEC_LEVEL_1) &&
10365             !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10366                 ipw_set_hwcrypto_keys(priv);
10367
10368         return 0;
10369
10370       error:
10371         return -EIO;
10372 }
10373
10374 /*
10375  * NOTE:
10376  *
10377  * These tables have been tested in conjunction with the
10378  * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10379  *
10380  * Altering this values, using it on other hardware, or in geographies
10381  * not intended for resale of the above mentioned Intel adapters has
10382  * not been tested.
10383  *
10384  * Remember to update the table in README.ipw2200 when changing this
10385  * table.
10386  *
10387  */
10388 static const struct ieee80211_geo ipw_geos[] = {
10389         {                       /* Restricted */
10390          "---",
10391          .bg_channels = 11,
10392          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10393                 {2427, 4}, {2432, 5}, {2437, 6},
10394                 {2442, 7}, {2447, 8}, {2452, 9},
10395                 {2457, 10}, {2462, 11}},
10396          },
10397
10398         {                       /* Custom US/Canada */
10399          "ZZF",
10400          .bg_channels = 11,
10401          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10402                 {2427, 4}, {2432, 5}, {2437, 6},
10403                 {2442, 7}, {2447, 8}, {2452, 9},
10404                 {2457, 10}, {2462, 11}},
10405          .a_channels = 8,
10406          .a = {{5180, 36},
10407                {5200, 40},
10408                {5220, 44},
10409                {5240, 48},
10410                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10411                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10412                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10413                {5320, 64, IEEE80211_CH_PASSIVE_ONLY}},
10414          },
10415
10416         {                       /* Rest of World */
10417          "ZZD",
10418          .bg_channels = 13,
10419          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10420                 {2427, 4}, {2432, 5}, {2437, 6},
10421                 {2442, 7}, {2447, 8}, {2452, 9},
10422                 {2457, 10}, {2462, 11}, {2467, 12},
10423                 {2472, 13}},
10424          },
10425
10426         {                       /* Custom USA & Europe & High */
10427          "ZZA",
10428          .bg_channels = 11,
10429          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10430                 {2427, 4}, {2432, 5}, {2437, 6},
10431                 {2442, 7}, {2447, 8}, {2452, 9},
10432                 {2457, 10}, {2462, 11}},
10433          .a_channels = 13,
10434          .a = {{5180, 36},
10435                {5200, 40},
10436                {5220, 44},
10437                {5240, 48},
10438                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10439                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10440                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10441                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10442                {5745, 149},
10443                {5765, 153},
10444                {5785, 157},
10445                {5805, 161},
10446                {5825, 165}},
10447          },
10448
10449         {                       /* Custom NA & Europe */
10450          "ZZB",
10451          .bg_channels = 11,
10452          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10453                 {2427, 4}, {2432, 5}, {2437, 6},
10454                 {2442, 7}, {2447, 8}, {2452, 9},
10455                 {2457, 10}, {2462, 11}},
10456          .a_channels = 13,
10457          .a = {{5180, 36},
10458                {5200, 40},
10459                {5220, 44},
10460                {5240, 48},
10461                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10462                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10463                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10464                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10465                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
10466                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
10467                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
10468                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
10469                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
10470          },
10471
10472         {                       /* Custom Japan */
10473          "ZZC",
10474          .bg_channels = 11,
10475          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10476                 {2427, 4}, {2432, 5}, {2437, 6},
10477                 {2442, 7}, {2447, 8}, {2452, 9},
10478                 {2457, 10}, {2462, 11}},
10479          .a_channels = 4,
10480          .a = {{5170, 34}, {5190, 38},
10481                {5210, 42}, {5230, 46}},
10482          },
10483
10484         {                       /* Custom */
10485          "ZZM",
10486          .bg_channels = 11,
10487          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10488                 {2427, 4}, {2432, 5}, {2437, 6},
10489                 {2442, 7}, {2447, 8}, {2452, 9},
10490                 {2457, 10}, {2462, 11}},
10491          },
10492
10493         {                       /* Europe */
10494          "ZZE",
10495          .bg_channels = 13,
10496          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10497                 {2427, 4}, {2432, 5}, {2437, 6},
10498                 {2442, 7}, {2447, 8}, {2452, 9},
10499                 {2457, 10}, {2462, 11}, {2467, 12},
10500                 {2472, 13}},
10501          .a_channels = 19,
10502          .a = {{5180, 36},
10503                {5200, 40},
10504                {5220, 44},
10505                {5240, 48},
10506                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10507                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10508                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10509                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10510                {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
10511                {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
10512                {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
10513                {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
10514                {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
10515                {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
10516                {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
10517                {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
10518                {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
10519                {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
10520                {5700, 140, IEEE80211_CH_PASSIVE_ONLY}},
10521          },
10522
10523         {                       /* Custom Japan */
10524          "ZZJ",
10525          .bg_channels = 14,
10526          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10527                 {2427, 4}, {2432, 5}, {2437, 6},
10528                 {2442, 7}, {2447, 8}, {2452, 9},
10529                 {2457, 10}, {2462, 11}, {2467, 12},
10530                 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY}},
10531          .a_channels = 4,
10532          .a = {{5170, 34}, {5190, 38},
10533                {5210, 42}, {5230, 46}},
10534          },
10535
10536         {                       /* Rest of World */
10537          "ZZR",
10538          .bg_channels = 14,
10539          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10540                 {2427, 4}, {2432, 5}, {2437, 6},
10541                 {2442, 7}, {2447, 8}, {2452, 9},
10542                 {2457, 10}, {2462, 11}, {2467, 12},
10543                 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY |
10544                              IEEE80211_CH_PASSIVE_ONLY}},
10545          },
10546
10547         {                       /* High Band */
10548          "ZZH",
10549          .bg_channels = 13,
10550          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10551                 {2427, 4}, {2432, 5}, {2437, 6},
10552                 {2442, 7}, {2447, 8}, {2452, 9},
10553                 {2457, 10}, {2462, 11},
10554                 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
10555                 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
10556          .a_channels = 4,
10557          .a = {{5745, 149}, {5765, 153},
10558                {5785, 157}, {5805, 161}},
10559          },
10560
10561         {                       /* Custom Europe */
10562          "ZZG",
10563          .bg_channels = 13,
10564          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10565                 {2427, 4}, {2432, 5}, {2437, 6},
10566                 {2442, 7}, {2447, 8}, {2452, 9},
10567                 {2457, 10}, {2462, 11},
10568                 {2467, 12}, {2472, 13}},
10569          .a_channels = 4,
10570          .a = {{5180, 36}, {5200, 40},
10571                {5220, 44}, {5240, 48}},
10572          },
10573
10574         {                       /* Europe */
10575          "ZZK",
10576          .bg_channels = 13,
10577          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10578                 {2427, 4}, {2432, 5}, {2437, 6},
10579                 {2442, 7}, {2447, 8}, {2452, 9},
10580                 {2457, 10}, {2462, 11},
10581                 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
10582                 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
10583          .a_channels = 24,
10584          .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
10585                {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
10586                {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
10587                {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
10588                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10589                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10590                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10591                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10592                {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
10593                {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
10594                {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
10595                {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
10596                {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
10597                {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
10598                {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
10599                {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
10600                {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
10601                {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
10602                {5700, 140, IEEE80211_CH_PASSIVE_ONLY},
10603                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
10604                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
10605                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
10606                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
10607                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
10608          },
10609
10610         {                       /* Europe */
10611          "ZZL",
10612          .bg_channels = 11,
10613          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10614                 {2427, 4}, {2432, 5}, {2437, 6},
10615                 {2442, 7}, {2447, 8}, {2452, 9},
10616                 {2457, 10}, {2462, 11}},
10617          .a_channels = 13,
10618          .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
10619                {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
10620                {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
10621                {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
10622                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10623                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10624                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10625                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10626                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
10627                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
10628                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
10629                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
10630                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
10631          }
10632 };
10633
10634 #define MAX_HW_RESTARTS 5
10635 static int ipw_up(struct ipw_priv *priv)
10636 {
10637         int rc, i, j;
10638
10639         if (priv->status & STATUS_EXIT_PENDING)
10640                 return -EIO;
10641
10642         if (cmdlog && !priv->cmdlog) {
10643                 priv->cmdlog = kmalloc(sizeof(*priv->cmdlog) * cmdlog,
10644                                        GFP_KERNEL);
10645                 if (priv->cmdlog == NULL) {
10646                         IPW_ERROR("Error allocating %d command log entries.\n",
10647                                   cmdlog);
10648                 } else {
10649                         memset(priv->cmdlog, 0, sizeof(*priv->cmdlog) * cmdlog);
10650                         priv->cmdlog_len = cmdlog;
10651                 }
10652         }
10653
10654         for (i = 0; i < MAX_HW_RESTARTS; i++) {
10655                 /* Load the microcode, firmware, and eeprom.
10656                  * Also start the clocks. */
10657                 rc = ipw_load(priv);
10658                 if (rc) {
10659                         IPW_ERROR("Unable to load firmware: %d\n", rc);
10660                         return rc;
10661                 }
10662
10663                 ipw_init_ordinals(priv);
10664                 if (!(priv->config & CFG_CUSTOM_MAC))
10665                         eeprom_parse_mac(priv, priv->mac_addr);
10666                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
10667
10668                 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
10669                         if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
10670                                     ipw_geos[j].name, 3))
10671                                 break;
10672                 }
10673                 if (j == ARRAY_SIZE(ipw_geos)) {
10674                         IPW_WARNING("SKU [%c%c%c] not recognized.\n",
10675                                     priv->eeprom[EEPROM_COUNTRY_CODE + 0],
10676                                     priv->eeprom[EEPROM_COUNTRY_CODE + 1],
10677                                     priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
10678                         j = 0;
10679                 }
10680                 if (ieee80211_set_geo(priv->ieee, &ipw_geos[j])) {
10681                         IPW_WARNING("Could not set geography.");
10682                         return 0;
10683                 }
10684
10685                 if (priv->status & STATUS_RF_KILL_SW) {
10686                         IPW_WARNING("Radio disabled by module parameter.\n");
10687                         return 0;
10688                 } else if (rf_kill_active(priv)) {
10689                         IPW_WARNING("Radio Frequency Kill Switch is On:\n"
10690                                     "Kill switch must be turned off for "
10691                                     "wireless networking to work.\n");
10692                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
10693                                            2 * HZ);
10694                         return 0;
10695                 }
10696
10697                 rc = ipw_config(priv);
10698                 if (!rc) {
10699                         IPW_DEBUG_INFO("Configured device on count %i\n", i);
10700
10701                         /* If configure to try and auto-associate, kick
10702                          * off a scan. */
10703                         queue_work(priv->workqueue, &priv->request_scan);
10704
10705                         return 0;
10706                 }
10707
10708                 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
10709                 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
10710                                i, MAX_HW_RESTARTS);
10711
10712                 /* We had an error bringing up the hardware, so take it
10713                  * all the way back down so we can try again */
10714                 ipw_down(priv);
10715         }
10716
10717         /* tried to restart and config the device for as long as our
10718          * patience could withstand */
10719         IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
10720
10721         return -EIO;
10722 }
10723
10724 static void ipw_bg_up(void *data)
10725 {
10726         struct ipw_priv *priv = data;
10727         mutex_lock(&priv->mutex);
10728         ipw_up(data);
10729         mutex_unlock(&priv->mutex);
10730 }
10731
10732 static void ipw_deinit(struct ipw_priv *priv)
10733 {
10734         int i;
10735
10736         if (priv->status & STATUS_SCANNING) {
10737                 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
10738                 ipw_abort_scan(priv);
10739         }
10740
10741         if (priv->status & STATUS_ASSOCIATED) {
10742                 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
10743                 ipw_disassociate(priv);
10744         }
10745
10746         ipw_led_shutdown(priv);
10747
10748         /* Wait up to 1s for status to change to not scanning and not
10749          * associated (disassociation can take a while for a ful 802.11
10750          * exchange */
10751         for (i = 1000; i && (priv->status &
10752                              (STATUS_DISASSOCIATING |
10753                               STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
10754                 udelay(10);
10755
10756         if (priv->status & (STATUS_DISASSOCIATING |
10757                             STATUS_ASSOCIATED | STATUS_SCANNING))
10758                 IPW_DEBUG_INFO("Still associated or scanning...\n");
10759         else
10760                 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
10761
10762         /* Attempt to disable the card */
10763         ipw_send_card_disable(priv, 0);
10764
10765         priv->status &= ~STATUS_INIT;
10766 }
10767
10768 static void ipw_down(struct ipw_priv *priv)
10769 {
10770         int exit_pending = priv->status & STATUS_EXIT_PENDING;
10771
10772         priv->status |= STATUS_EXIT_PENDING;
10773
10774         if (ipw_is_init(priv))
10775                 ipw_deinit(priv);
10776
10777         /* Wipe out the EXIT_PENDING status bit if we are not actually
10778          * exiting the module */
10779         if (!exit_pending)
10780                 priv->status &= ~STATUS_EXIT_PENDING;
10781
10782         /* tell the device to stop sending interrupts */
10783         ipw_disable_interrupts(priv);
10784
10785         /* Clear all bits but the RF Kill */
10786         priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
10787         netif_carrier_off(priv->net_dev);
10788         netif_stop_queue(priv->net_dev);
10789
10790         ipw_stop_nic(priv);
10791
10792         ipw_led_radio_off(priv);
10793 }
10794
10795 static void ipw_bg_down(void *data)
10796 {
10797         struct ipw_priv *priv = data;
10798         mutex_lock(&priv->mutex);
10799         ipw_down(data);
10800         mutex_unlock(&priv->mutex);
10801 }
10802
10803 /* Called by register_netdev() */
10804 static int ipw_net_init(struct net_device *dev)
10805 {
10806         struct ipw_priv *priv = ieee80211_priv(dev);
10807         mutex_lock(&priv->mutex);
10808
10809         if (ipw_up(priv)) {
10810                 mutex_unlock(&priv->mutex);
10811                 return -EIO;
10812         }
10813
10814         mutex_unlock(&priv->mutex);
10815         return 0;
10816 }
10817
10818 /* PCI driver stuff */
10819 static struct pci_device_id card_ids[] = {
10820         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
10821         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
10822         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
10823         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
10824         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
10825         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
10826         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
10827         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
10828         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
10829         {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
10830         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
10831         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
10832         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
10833         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
10834         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
10835         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
10836         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
10837         {PCI_VENDOR_ID_INTEL, 0x104f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
10838         {PCI_VENDOR_ID_INTEL, 0x4220, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
10839         {PCI_VENDOR_ID_INTEL, 0x4221, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
10840         {PCI_VENDOR_ID_INTEL, 0x4223, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
10841         {PCI_VENDOR_ID_INTEL, 0x4224, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
10842
10843         /* required last entry */
10844         {0,}
10845 };
10846
10847 MODULE_DEVICE_TABLE(pci, card_ids);
10848
10849 static struct attribute *ipw_sysfs_entries[] = {
10850         &dev_attr_rf_kill.attr,
10851         &dev_attr_direct_dword.attr,
10852         &dev_attr_indirect_byte.attr,
10853         &dev_attr_indirect_dword.attr,
10854         &dev_attr_mem_gpio_reg.attr,
10855         &dev_attr_command_event_reg.attr,
10856         &dev_attr_nic_type.attr,
10857         &dev_attr_status.attr,
10858         &dev_attr_cfg.attr,
10859         &dev_attr_error.attr,
10860         &dev_attr_event_log.attr,
10861         &dev_attr_cmd_log.attr,
10862         &dev_attr_eeprom_delay.attr,
10863         &dev_attr_ucode_version.attr,
10864         &dev_attr_rtc.attr,
10865         &dev_attr_scan_age.attr,
10866         &dev_attr_led.attr,
10867         &dev_attr_speed_scan.attr,
10868         &dev_attr_net_stats.attr,
10869         NULL
10870 };
10871
10872 static struct attribute_group ipw_attribute_group = {
10873         .name = NULL,           /* put in device directory */
10874         .attrs = ipw_sysfs_entries,
10875 };
10876
10877 static int ipw_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
10878 {
10879         int err = 0;
10880         struct net_device *net_dev;
10881         void __iomem *base;
10882         u32 length, val;
10883         struct ipw_priv *priv;
10884         int i;
10885
10886         net_dev = alloc_ieee80211(sizeof(struct ipw_priv));
10887         if (net_dev == NULL) {
10888                 err = -ENOMEM;
10889                 goto out;
10890         }
10891
10892         priv = ieee80211_priv(net_dev);
10893         priv->ieee = netdev_priv(net_dev);
10894
10895         priv->net_dev = net_dev;
10896         priv->pci_dev = pdev;
10897 #ifdef CONFIG_IPW2200_DEBUG
10898         ipw_debug_level = debug;
10899 #endif
10900         spin_lock_init(&priv->lock);
10901         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
10902                 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
10903
10904         mutex_init(&priv->mutex);
10905         if (pci_enable_device(pdev)) {
10906                 err = -ENODEV;
10907                 goto out_free_ieee80211;
10908         }
10909
10910         pci_set_master(pdev);
10911
10912         err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
10913         if (!err)
10914                 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
10915         if (err) {
10916                 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
10917                 goto out_pci_disable_device;
10918         }
10919
10920         pci_set_drvdata(pdev, priv);
10921
10922         err = pci_request_regions(pdev, DRV_NAME);
10923         if (err)
10924                 goto out_pci_disable_device;
10925
10926         /* We disable the RETRY_TIMEOUT register (0x41) to keep
10927          * PCI Tx retries from interfering with C3 CPU state */
10928         pci_read_config_dword(pdev, 0x40, &val);
10929         if ((val & 0x0000ff00) != 0)
10930                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
10931
10932         length = pci_resource_len(pdev, 0);
10933         priv->hw_len = length;
10934
10935         base = ioremap_nocache(pci_resource_start(pdev, 0), length);
10936         if (!base) {
10937                 err = -ENODEV;
10938                 goto out_pci_release_regions;
10939         }
10940
10941         priv->hw_base = base;
10942         IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
10943         IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
10944
10945         err = ipw_setup_deferred_work(priv);
10946         if (err) {
10947                 IPW_ERROR("Unable to setup deferred work\n");
10948                 goto out_iounmap;
10949         }
10950
10951         ipw_sw_reset(priv, 1);
10952
10953         err = request_irq(pdev->irq, ipw_isr, SA_SHIRQ, DRV_NAME, priv);
10954         if (err) {
10955                 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
10956                 goto out_destroy_workqueue;
10957         }
10958
10959         SET_MODULE_OWNER(net_dev);
10960         SET_NETDEV_DEV(net_dev, &pdev->dev);
10961
10962         mutex_lock(&priv->mutex);
10963
10964         priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
10965         priv->ieee->set_security = shim__set_security;
10966         priv->ieee->is_queue_full = ipw_net_is_queue_full;
10967
10968 #ifdef CONFIG_IPW_QOS
10969         priv->ieee->handle_probe_response = ipw_handle_beacon;
10970         priv->ieee->handle_beacon = ipw_handle_probe_response;
10971         priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
10972 #endif                          /* CONFIG_IPW_QOS */
10973
10974         priv->ieee->perfect_rssi = -20;
10975         priv->ieee->worst_rssi = -85;
10976
10977         net_dev->open = ipw_net_open;
10978         net_dev->stop = ipw_net_stop;
10979         net_dev->init = ipw_net_init;
10980         net_dev->get_stats = ipw_net_get_stats;
10981         net_dev->set_multicast_list = ipw_net_set_multicast_list;
10982         net_dev->set_mac_address = ipw_net_set_mac_address;
10983         priv->wireless_data.spy_data = &priv->ieee->spy_data;
10984         net_dev->wireless_data = &priv->wireless_data;
10985         net_dev->wireless_handlers = &ipw_wx_handler_def;
10986         net_dev->ethtool_ops = &ipw_ethtool_ops;
10987         net_dev->irq = pdev->irq;
10988         net_dev->base_addr = (unsigned long)priv->hw_base;
10989         net_dev->mem_start = pci_resource_start(pdev, 0);
10990         net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
10991
10992         err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
10993         if (err) {
10994                 IPW_ERROR("failed to create sysfs device attributes\n");
10995                 mutex_unlock(&priv->mutex);
10996                 goto out_release_irq;
10997         }
10998
10999         mutex_unlock(&priv->mutex);
11000         err = register_netdev(net_dev);
11001         if (err) {
11002                 IPW_ERROR("failed to register network device\n");
11003                 goto out_remove_sysfs;
11004         }
11005
11006         printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11007                "channels, %d 802.11a channels)\n",
11008                priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11009                priv->ieee->geo.a_channels);
11010
11011         return 0;
11012
11013       out_remove_sysfs:
11014         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11015       out_release_irq:
11016         free_irq(pdev->irq, priv);
11017       out_destroy_workqueue:
11018         destroy_workqueue(priv->workqueue);
11019         priv->workqueue = NULL;
11020       out_iounmap:
11021         iounmap(priv->hw_base);
11022       out_pci_release_regions:
11023         pci_release_regions(pdev);
11024       out_pci_disable_device:
11025         pci_disable_device(pdev);
11026         pci_set_drvdata(pdev, NULL);
11027       out_free_ieee80211:
11028         free_ieee80211(priv->net_dev);
11029       out:
11030         return err;
11031 }
11032
11033 static void ipw_pci_remove(struct pci_dev *pdev)
11034 {
11035         struct ipw_priv *priv = pci_get_drvdata(pdev);
11036         struct list_head *p, *q;
11037         int i;
11038
11039         if (!priv)
11040                 return;
11041
11042         mutex_lock(&priv->mutex);
11043
11044         priv->status |= STATUS_EXIT_PENDING;
11045         ipw_down(priv);
11046         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11047
11048         mutex_unlock(&priv->mutex);
11049
11050         unregister_netdev(priv->net_dev);
11051
11052         if (priv->rxq) {
11053                 ipw_rx_queue_free(priv, priv->rxq);
11054                 priv->rxq = NULL;
11055         }
11056         ipw_tx_queue_free(priv);
11057
11058         if (priv->cmdlog) {
11059                 kfree(priv->cmdlog);
11060                 priv->cmdlog = NULL;
11061         }
11062         /* ipw_down will ensure that there is no more pending work
11063          * in the workqueue's, so we can safely remove them now. */
11064         cancel_delayed_work(&priv->adhoc_check);
11065         cancel_delayed_work(&priv->gather_stats);
11066         cancel_delayed_work(&priv->request_scan);
11067         cancel_delayed_work(&priv->rf_kill);
11068         cancel_delayed_work(&priv->scan_check);
11069         destroy_workqueue(priv->workqueue);
11070         priv->workqueue = NULL;
11071
11072         /* Free MAC hash list for ADHOC */
11073         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11074                 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11075                         list_del(p);
11076                         kfree(list_entry(p, struct ipw_ibss_seq, list));
11077                 }
11078         }
11079
11080         if (priv->error) {
11081                 ipw_free_error_log(priv->error);
11082                 priv->error = NULL;
11083         }
11084
11085         free_irq(pdev->irq, priv);
11086         iounmap(priv->hw_base);
11087         pci_release_regions(pdev);
11088         pci_disable_device(pdev);
11089         pci_set_drvdata(pdev, NULL);
11090         free_ieee80211(priv->net_dev);
11091         free_firmware();
11092 }
11093
11094 #ifdef CONFIG_PM
11095 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11096 {
11097         struct ipw_priv *priv = pci_get_drvdata(pdev);
11098         struct net_device *dev = priv->net_dev;
11099
11100         printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11101
11102         /* Take down the device; powers it off, etc. */
11103         ipw_down(priv);
11104
11105         /* Remove the PRESENT state of the device */
11106         netif_device_detach(dev);
11107
11108         pci_save_state(pdev);
11109         pci_disable_device(pdev);
11110         pci_set_power_state(pdev, pci_choose_state(pdev, state));
11111
11112         return 0;
11113 }
11114
11115 static int ipw_pci_resume(struct pci_dev *pdev)
11116 {
11117         struct ipw_priv *priv = pci_get_drvdata(pdev);
11118         struct net_device *dev = priv->net_dev;
11119         u32 val;
11120
11121         printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11122
11123         pci_set_power_state(pdev, PCI_D0);
11124         pci_enable_device(pdev);
11125         pci_restore_state(pdev);
11126
11127         /*
11128          * Suspend/Resume resets the PCI configuration space, so we have to
11129          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11130          * from interfering with C3 CPU state. pci_restore_state won't help
11131          * here since it only restores the first 64 bytes pci config header.
11132          */
11133         pci_read_config_dword(pdev, 0x40, &val);
11134         if ((val & 0x0000ff00) != 0)
11135                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11136
11137         /* Set the device back into the PRESENT state; this will also wake
11138          * the queue of needed */
11139         netif_device_attach(dev);
11140
11141         /* Bring the device back up */
11142         queue_work(priv->workqueue, &priv->up);
11143
11144         return 0;
11145 }
11146 #endif
11147
11148 /* driver initialization stuff */
11149 static struct pci_driver ipw_driver = {
11150         .name = DRV_NAME,
11151         .id_table = card_ids,
11152         .probe = ipw_pci_probe,
11153         .remove = __devexit_p(ipw_pci_remove),
11154 #ifdef CONFIG_PM
11155         .suspend = ipw_pci_suspend,
11156         .resume = ipw_pci_resume,
11157 #endif
11158 };
11159
11160 static int __init ipw_init(void)
11161 {
11162         int ret;
11163
11164         printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11165         printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11166
11167         ret = pci_module_init(&ipw_driver);
11168         if (ret) {
11169                 IPW_ERROR("Unable to initialize PCI module\n");
11170                 return ret;
11171         }
11172
11173         ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11174         if (ret) {
11175                 IPW_ERROR("Unable to create driver sysfs file\n");
11176                 pci_unregister_driver(&ipw_driver);
11177                 return ret;
11178         }
11179
11180         return ret;
11181 }
11182
11183 static void __exit ipw_exit(void)
11184 {
11185         driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11186         pci_unregister_driver(&ipw_driver);
11187 }
11188
11189 module_param(disable, int, 0444);
11190 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11191
11192 module_param(associate, int, 0444);
11193 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
11194
11195 module_param(auto_create, int, 0444);
11196 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11197
11198 module_param(led, int, 0444);
11199 MODULE_PARM_DESC(led, "enable led control on some systems (default 0 off)\n");
11200
11201 #ifdef CONFIG_IPW2200_DEBUG
11202 module_param(debug, int, 0444);
11203 MODULE_PARM_DESC(debug, "debug output mask");
11204 #endif
11205
11206 module_param(channel, int, 0444);
11207 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11208
11209 #ifdef CONFIG_IPW_QOS
11210 module_param(qos_enable, int, 0444);
11211 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
11212
11213 module_param(qos_burst_enable, int, 0444);
11214 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11215
11216 module_param(qos_no_ack_mask, int, 0444);
11217 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
11218
11219 module_param(burst_duration_CCK, int, 0444);
11220 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11221
11222 module_param(burst_duration_OFDM, int, 0444);
11223 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11224 #endif                          /* CONFIG_IPW_QOS */
11225
11226 #ifdef CONFIG_IPW2200_MONITOR
11227 module_param(mode, int, 0444);
11228 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
11229 #else
11230 module_param(mode, int, 0444);
11231 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
11232 #endif
11233
11234 module_param(bt_coexist, int, 0444);
11235 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
11236
11237 module_param(hwcrypto, int, 0444);
11238 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
11239
11240 module_param(cmdlog, int, 0444);
11241 MODULE_PARM_DESC(cmdlog,
11242                  "allocate a ring buffer for logging firmware commands");
11243
11244 module_param(roaming, int, 0444);
11245 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
11246
11247 module_exit(ipw_exit);
11248 module_init(ipw_init);