]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/wireless/ipw2200.c
0b2c774f5ee787b9110773dbad47bffce58ef05c
[linux-2.6-omap-h63xx.git] / drivers / net / wireless / ipw2200.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   802.11 status code portion of this file from ethereal-0.10.6:
6     Copyright 2000, Axis Communications AB
7     Ethereal - Network traffic analyzer
8     By Gerald Combs <gerald@ethereal.com>
9     Copyright 1998 Gerald Combs
10
11   This program is free software; you can redistribute it and/or modify it
12   under the terms of version 2 of the GNU General Public License as
13   published by the Free Software Foundation.
14
15   This program is distributed in the hope that it will be useful, but WITHOUT
16   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18   more details.
19
20   You should have received a copy of the GNU General Public License along with
21   this program; if not, write to the Free Software Foundation, Inc., 59
22   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
23
24   The full GNU General Public License is included in this distribution in the
25   file called LICENSE.
26
27   Contact Information:
28   James P. Ketrenos <ipw2100-admin@linux.intel.com>
29   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30
31 ******************************************************************************/
32
33 #include "ipw2200.h"
34 #include <linux/version.h>
35
36
37 #ifndef KBUILD_EXTMOD
38 #define VK "k"
39 #else
40 #define VK
41 #endif
42
43 #ifdef CONFIG_IPW2200_DEBUG
44 #define VD "d"
45 #else
46 #define VD
47 #endif
48
49 #ifdef CONFIG_IPW2200_MONITOR
50 #define VM "m"
51 #else
52 #define VM
53 #endif
54
55 #ifdef CONFIG_IPW2200_PROMISCUOUS
56 #define VP "p"
57 #else
58 #define VP
59 #endif
60
61 #ifdef CONFIG_IPW2200_RADIOTAP
62 #define VR "r"
63 #else
64 #define VR
65 #endif
66
67 #ifdef CONFIG_IPW2200_QOS
68 #define VQ "q"
69 #else
70 #define VQ
71 #endif
72
73 #define IPW2200_VERSION "1.1.2" VK VD VM VP VR VQ
74 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
75 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
76 #define DRV_VERSION     IPW2200_VERSION
77
78 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
79
80 MODULE_DESCRIPTION(DRV_DESCRIPTION);
81 MODULE_VERSION(DRV_VERSION);
82 MODULE_AUTHOR(DRV_COPYRIGHT);
83 MODULE_LICENSE("GPL");
84
85 static int cmdlog = 0;
86 #ifdef CONFIG_IPW2200_DEBUG
87 static int debug = 0;
88 #endif
89 static int channel = 0;
90 static int mode = 0;
91
92 static u32 ipw_debug_level;
93 static int associate = 1;
94 static int auto_create = 1;
95 static int led = 0;
96 static int disable = 0;
97 static int bt_coexist = 0;
98 static int hwcrypto = 0;
99 static int roaming = 1;
100 static const char ipw_modes[] = {
101         'a', 'b', 'g', '?'
102 };
103 static int antenna = CFG_SYS_ANTENNA_BOTH;
104
105 #ifdef CONFIG_IPW2200_PROMISCUOUS
106 static int rtap_iface = 0;     /* def: 0 -- do not create rtap interface */
107 #endif
108
109
110 #ifdef CONFIG_IPW2200_QOS
111 static int qos_enable = 0;
112 static int qos_burst_enable = 0;
113 static int qos_no_ack_mask = 0;
114 static int burst_duration_CCK = 0;
115 static int burst_duration_OFDM = 0;
116
117 static struct ieee80211_qos_parameters def_qos_parameters_OFDM = {
118         {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
119          QOS_TX3_CW_MIN_OFDM},
120         {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
121          QOS_TX3_CW_MAX_OFDM},
122         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
123         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
124         {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
125          QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
126 };
127
128 static struct ieee80211_qos_parameters def_qos_parameters_CCK = {
129         {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
130          QOS_TX3_CW_MIN_CCK},
131         {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
132          QOS_TX3_CW_MAX_CCK},
133         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
134         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
135         {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
136          QOS_TX3_TXOP_LIMIT_CCK}
137 };
138
139 static struct ieee80211_qos_parameters def_parameters_OFDM = {
140         {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
141          DEF_TX3_CW_MIN_OFDM},
142         {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
143          DEF_TX3_CW_MAX_OFDM},
144         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
145         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
146         {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
147          DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
148 };
149
150 static struct ieee80211_qos_parameters def_parameters_CCK = {
151         {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
152          DEF_TX3_CW_MIN_CCK},
153         {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
154          DEF_TX3_CW_MAX_CCK},
155         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
156         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
157         {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
158          DEF_TX3_TXOP_LIMIT_CCK}
159 };
160
161 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
162
163 static int from_priority_to_tx_queue[] = {
164         IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
165         IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
166 };
167
168 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
169
170 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
171                                        *qos_param);
172 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
173                                      *qos_param);
174 #endif                          /* CONFIG_IPW2200_QOS */
175
176 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
177 static void ipw_remove_current_network(struct ipw_priv *priv);
178 static void ipw_rx(struct ipw_priv *priv);
179 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
180                                 struct clx2_tx_queue *txq, int qindex);
181 static int ipw_queue_reset(struct ipw_priv *priv);
182
183 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
184                              int len, int sync);
185
186 static void ipw_tx_queue_free(struct ipw_priv *);
187
188 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
189 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
190 static void ipw_rx_queue_replenish(void *);
191 static int ipw_up(struct ipw_priv *);
192 static void ipw_bg_up(void *);
193 static void ipw_down(struct ipw_priv *);
194 static void ipw_bg_down(void *);
195 static int ipw_config(struct ipw_priv *);
196 static int init_supported_rates(struct ipw_priv *priv,
197                                 struct ipw_supported_rates *prates);
198 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
199 static void ipw_send_wep_keys(struct ipw_priv *, int);
200
201 static int snprint_line(char *buf, size_t count,
202                         const u8 * data, u32 len, u32 ofs)
203 {
204         int out, i, j, l;
205         char c;
206
207         out = snprintf(buf, count, "%08X", ofs);
208
209         for (l = 0, i = 0; i < 2; i++) {
210                 out += snprintf(buf + out, count - out, " ");
211                 for (j = 0; j < 8 && l < len; j++, l++)
212                         out += snprintf(buf + out, count - out, "%02X ",
213                                         data[(i * 8 + j)]);
214                 for (; j < 8; j++)
215                         out += snprintf(buf + out, count - out, "   ");
216         }
217
218         out += snprintf(buf + out, count - out, " ");
219         for (l = 0, i = 0; i < 2; i++) {
220                 out += snprintf(buf + out, count - out, " ");
221                 for (j = 0; j < 8 && l < len; j++, l++) {
222                         c = data[(i * 8 + j)];
223                         if (!isascii(c) || !isprint(c))
224                                 c = '.';
225
226                         out += snprintf(buf + out, count - out, "%c", c);
227                 }
228
229                 for (; j < 8; j++)
230                         out += snprintf(buf + out, count - out, " ");
231         }
232
233         return out;
234 }
235
236 static void printk_buf(int level, const u8 * data, u32 len)
237 {
238         char line[81];
239         u32 ofs = 0;
240         if (!(ipw_debug_level & level))
241                 return;
242
243         while (len) {
244                 snprint_line(line, sizeof(line), &data[ofs],
245                              min(len, 16U), ofs);
246                 printk(KERN_DEBUG "%s\n", line);
247                 ofs += 16;
248                 len -= min(len, 16U);
249         }
250 }
251
252 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
253 {
254         size_t out = size;
255         u32 ofs = 0;
256         int total = 0;
257
258         while (size && len) {
259                 out = snprint_line(output, size, &data[ofs],
260                                    min_t(size_t, len, 16U), ofs);
261
262                 ofs += 16;
263                 output += out;
264                 size -= out;
265                 len -= min_t(size_t, len, 16U);
266                 total += out;
267         }
268         return total;
269 }
270
271 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
272 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
273 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
274
275 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
276 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
277 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
278
279 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
280 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
281 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
282 {
283         IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
284                      __LINE__, (u32) (b), (u32) (c));
285         _ipw_write_reg8(a, b, c);
286 }
287
288 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
289 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
290 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
291 {
292         IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
293                      __LINE__, (u32) (b), (u32) (c));
294         _ipw_write_reg16(a, b, c);
295 }
296
297 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
298 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
299 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
300 {
301         IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
302                      __LINE__, (u32) (b), (u32) (c));
303         _ipw_write_reg32(a, b, c);
304 }
305
306 /* 8-bit direct write (low 4K) */
307 #define _ipw_write8(ipw, ofs, val) writeb((val), (ipw)->hw_base + (ofs))
308
309 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
310 #define ipw_write8(ipw, ofs, val) \
311  IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
312  _ipw_write8(ipw, ofs, val)
313
314 /* 16-bit direct write (low 4K) */
315 #define _ipw_write16(ipw, ofs, val) writew((val), (ipw)->hw_base + (ofs))
316
317 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
318 #define ipw_write16(ipw, ofs, val) \
319  IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
320  _ipw_write16(ipw, ofs, val)
321
322 /* 32-bit direct write (low 4K) */
323 #define _ipw_write32(ipw, ofs, val) writel((val), (ipw)->hw_base + (ofs))
324
325 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
326 #define ipw_write32(ipw, ofs, val) \
327  IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
328  _ipw_write32(ipw, ofs, val)
329
330 /* 8-bit direct read (low 4K) */
331 #define _ipw_read8(ipw, ofs) readb((ipw)->hw_base + (ofs))
332
333 /* 8-bit direct read (low 4K), with debug wrapper */
334 static inline u8 __ipw_read8(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
335 {
336         IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", f, l, (u32) (ofs));
337         return _ipw_read8(ipw, ofs);
338 }
339
340 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
341 #define ipw_read8(ipw, ofs) __ipw_read8(__FILE__, __LINE__, ipw, ofs)
342
343 /* 16-bit direct read (low 4K) */
344 #define _ipw_read16(ipw, ofs) readw((ipw)->hw_base + (ofs))
345
346 /* 16-bit direct read (low 4K), with debug wrapper */
347 static inline u16 __ipw_read16(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
348 {
349         IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", f, l, (u32) (ofs));
350         return _ipw_read16(ipw, ofs);
351 }
352
353 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
354 #define ipw_read16(ipw, ofs) __ipw_read16(__FILE__, __LINE__, ipw, ofs)
355
356 /* 32-bit direct read (low 4K) */
357 #define _ipw_read32(ipw, ofs) readl((ipw)->hw_base + (ofs))
358
359 /* 32-bit direct read (low 4K), with debug wrapper */
360 static inline u32 __ipw_read32(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
361 {
362         IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", f, l, (u32) (ofs));
363         return _ipw_read32(ipw, ofs);
364 }
365
366 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
367 #define ipw_read32(ipw, ofs) __ipw_read32(__FILE__, __LINE__, ipw, ofs)
368
369 /* multi-byte read (above 4K), with debug wrapper */
370 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
371 static inline void __ipw_read_indirect(const char *f, int l,
372                                        struct ipw_priv *a, u32 b, u8 * c, int d)
373 {
374         IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %d bytes\n", f, l, (u32) (b),
375                      d);
376         _ipw_read_indirect(a, b, c, d);
377 }
378
379 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
380 #define ipw_read_indirect(a, b, c, d) __ipw_read_indirect(__FILE__, __LINE__, a, b, c, d)
381
382 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
383 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
384                                 int num);
385 #define ipw_write_indirect(a, b, c, d) \
386         IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %d bytes\n", __FILE__, __LINE__, (u32)(b), d); \
387         _ipw_write_indirect(a, b, c, d)
388
389 /* 32-bit indirect write (above 4K) */
390 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
391 {
392         IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
393         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
394         _ipw_write32(priv, IPW_INDIRECT_DATA, value);
395 }
396
397 /* 8-bit indirect write (above 4K) */
398 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
399 {
400         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
401         u32 dif_len = reg - aligned_addr;
402
403         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
404         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
405         _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
406 }
407
408 /* 16-bit indirect write (above 4K) */
409 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
410 {
411         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
412         u32 dif_len = (reg - aligned_addr) & (~0x1ul);
413
414         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
415         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
416         _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
417 }
418
419 /* 8-bit indirect read (above 4K) */
420 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
421 {
422         u32 word;
423         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
424         IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
425         word = _ipw_read32(priv, IPW_INDIRECT_DATA);
426         return (word >> ((reg & 0x3) * 8)) & 0xff;
427 }
428
429 /* 32-bit indirect read (above 4K) */
430 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
431 {
432         u32 value;
433
434         IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
435
436         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
437         value = _ipw_read32(priv, IPW_INDIRECT_DATA);
438         IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
439         return value;
440 }
441
442 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
443 /*    for area above 1st 4K of SRAM/reg space */
444 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
445                                int num)
446 {
447         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
448         u32 dif_len = addr - aligned_addr;
449         u32 i;
450
451         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
452
453         if (num <= 0) {
454                 return;
455         }
456
457         /* Read the first dword (or portion) byte by byte */
458         if (unlikely(dif_len)) {
459                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
460                 /* Start reading at aligned_addr + dif_len */
461                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
462                         *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
463                 aligned_addr += 4;
464         }
465
466         /* Read all of the middle dwords as dwords, with auto-increment */
467         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
468         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
469                 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
470
471         /* Read the last dword (or portion) byte by byte */
472         if (unlikely(num)) {
473                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
474                 for (i = 0; num > 0; i++, num--)
475                         *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
476         }
477 }
478
479 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
480 /*    for area above 1st 4K of SRAM/reg space */
481 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
482                                 int num)
483 {
484         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
485         u32 dif_len = addr - aligned_addr;
486         u32 i;
487
488         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
489
490         if (num <= 0) {
491                 return;
492         }
493
494         /* Write the first dword (or portion) byte by byte */
495         if (unlikely(dif_len)) {
496                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
497                 /* Start writing at aligned_addr + dif_len */
498                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
499                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
500                 aligned_addr += 4;
501         }
502
503         /* Write all of the middle dwords as dwords, with auto-increment */
504         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
505         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
506                 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
507
508         /* Write the last dword (or portion) byte by byte */
509         if (unlikely(num)) {
510                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
511                 for (i = 0; num > 0; i++, num--, buf++)
512                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
513         }
514 }
515
516 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
517 /*    for 1st 4K of SRAM/regs space */
518 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
519                              int num)
520 {
521         memcpy_toio((priv->hw_base + addr), buf, num);
522 }
523
524 /* Set bit(s) in low 4K of SRAM/regs */
525 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
526 {
527         ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
528 }
529
530 /* Clear bit(s) in low 4K of SRAM/regs */
531 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
532 {
533         ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
534 }
535
536 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
537 {
538         if (priv->status & STATUS_INT_ENABLED)
539                 return;
540         priv->status |= STATUS_INT_ENABLED;
541         ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
542 }
543
544 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
545 {
546         if (!(priv->status & STATUS_INT_ENABLED))
547                 return;
548         priv->status &= ~STATUS_INT_ENABLED;
549         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
550 }
551
552 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
553 {
554         unsigned long flags;
555
556         spin_lock_irqsave(&priv->irq_lock, flags);
557         __ipw_enable_interrupts(priv);
558         spin_unlock_irqrestore(&priv->irq_lock, flags);
559 }
560
561 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
562 {
563         unsigned long flags;
564
565         spin_lock_irqsave(&priv->irq_lock, flags);
566         __ipw_disable_interrupts(priv);
567         spin_unlock_irqrestore(&priv->irq_lock, flags);
568 }
569
570 static char *ipw_error_desc(u32 val)
571 {
572         switch (val) {
573         case IPW_FW_ERROR_OK:
574                 return "ERROR_OK";
575         case IPW_FW_ERROR_FAIL:
576                 return "ERROR_FAIL";
577         case IPW_FW_ERROR_MEMORY_UNDERFLOW:
578                 return "MEMORY_UNDERFLOW";
579         case IPW_FW_ERROR_MEMORY_OVERFLOW:
580                 return "MEMORY_OVERFLOW";
581         case IPW_FW_ERROR_BAD_PARAM:
582                 return "BAD_PARAM";
583         case IPW_FW_ERROR_BAD_CHECKSUM:
584                 return "BAD_CHECKSUM";
585         case IPW_FW_ERROR_NMI_INTERRUPT:
586                 return "NMI_INTERRUPT";
587         case IPW_FW_ERROR_BAD_DATABASE:
588                 return "BAD_DATABASE";
589         case IPW_FW_ERROR_ALLOC_FAIL:
590                 return "ALLOC_FAIL";
591         case IPW_FW_ERROR_DMA_UNDERRUN:
592                 return "DMA_UNDERRUN";
593         case IPW_FW_ERROR_DMA_STATUS:
594                 return "DMA_STATUS";
595         case IPW_FW_ERROR_DINO_ERROR:
596                 return "DINO_ERROR";
597         case IPW_FW_ERROR_EEPROM_ERROR:
598                 return "EEPROM_ERROR";
599         case IPW_FW_ERROR_SYSASSERT:
600                 return "SYSASSERT";
601         case IPW_FW_ERROR_FATAL_ERROR:
602                 return "FATAL_ERROR";
603         default:
604                 return "UNKNOWN_ERROR";
605         }
606 }
607
608 static void ipw_dump_error_log(struct ipw_priv *priv,
609                                struct ipw_fw_error *error)
610 {
611         u32 i;
612
613         if (!error) {
614                 IPW_ERROR("Error allocating and capturing error log.  "
615                           "Nothing to dump.\n");
616                 return;
617         }
618
619         IPW_ERROR("Start IPW Error Log Dump:\n");
620         IPW_ERROR("Status: 0x%08X, Config: %08X\n",
621                   error->status, error->config);
622
623         for (i = 0; i < error->elem_len; i++)
624                 IPW_ERROR("%s %i 0x%08x  0x%08x  0x%08x  0x%08x  0x%08x\n",
625                           ipw_error_desc(error->elem[i].desc),
626                           error->elem[i].time,
627                           error->elem[i].blink1,
628                           error->elem[i].blink2,
629                           error->elem[i].link1,
630                           error->elem[i].link2, error->elem[i].data);
631         for (i = 0; i < error->log_len; i++)
632                 IPW_ERROR("%i\t0x%08x\t%i\n",
633                           error->log[i].time,
634                           error->log[i].data, error->log[i].event);
635 }
636
637 static inline int ipw_is_init(struct ipw_priv *priv)
638 {
639         return (priv->status & STATUS_INIT) ? 1 : 0;
640 }
641
642 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
643 {
644         u32 addr, field_info, field_len, field_count, total_len;
645
646         IPW_DEBUG_ORD("ordinal = %i\n", ord);
647
648         if (!priv || !val || !len) {
649                 IPW_DEBUG_ORD("Invalid argument\n");
650                 return -EINVAL;
651         }
652
653         /* verify device ordinal tables have been initialized */
654         if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
655                 IPW_DEBUG_ORD("Access ordinals before initialization\n");
656                 return -EINVAL;
657         }
658
659         switch (IPW_ORD_TABLE_ID_MASK & ord) {
660         case IPW_ORD_TABLE_0_MASK:
661                 /*
662                  * TABLE 0: Direct access to a table of 32 bit values
663                  *
664                  * This is a very simple table with the data directly
665                  * read from the table
666                  */
667
668                 /* remove the table id from the ordinal */
669                 ord &= IPW_ORD_TABLE_VALUE_MASK;
670
671                 /* boundary check */
672                 if (ord > priv->table0_len) {
673                         IPW_DEBUG_ORD("ordinal value (%i) longer then "
674                                       "max (%i)\n", ord, priv->table0_len);
675                         return -EINVAL;
676                 }
677
678                 /* verify we have enough room to store the value */
679                 if (*len < sizeof(u32)) {
680                         IPW_DEBUG_ORD("ordinal buffer length too small, "
681                                       "need %zd\n", sizeof(u32));
682                         return -EINVAL;
683                 }
684
685                 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
686                               ord, priv->table0_addr + (ord << 2));
687
688                 *len = sizeof(u32);
689                 ord <<= 2;
690                 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
691                 break;
692
693         case IPW_ORD_TABLE_1_MASK:
694                 /*
695                  * TABLE 1: Indirect access to a table of 32 bit values
696                  *
697                  * This is a fairly large table of u32 values each
698                  * representing starting addr for the data (which is
699                  * also a u32)
700                  */
701
702                 /* remove the table id from the ordinal */
703                 ord &= IPW_ORD_TABLE_VALUE_MASK;
704
705                 /* boundary check */
706                 if (ord > priv->table1_len) {
707                         IPW_DEBUG_ORD("ordinal value too long\n");
708                         return -EINVAL;
709                 }
710
711                 /* verify we have enough room to store the value */
712                 if (*len < sizeof(u32)) {
713                         IPW_DEBUG_ORD("ordinal buffer length too small, "
714                                       "need %zd\n", sizeof(u32));
715                         return -EINVAL;
716                 }
717
718                 *((u32 *) val) =
719                     ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
720                 *len = sizeof(u32);
721                 break;
722
723         case IPW_ORD_TABLE_2_MASK:
724                 /*
725                  * TABLE 2: Indirect access to a table of variable sized values
726                  *
727                  * This table consist of six values, each containing
728                  *     - dword containing the starting offset of the data
729                  *     - dword containing the lengh in the first 16bits
730                  *       and the count in the second 16bits
731                  */
732
733                 /* remove the table id from the ordinal */
734                 ord &= IPW_ORD_TABLE_VALUE_MASK;
735
736                 /* boundary check */
737                 if (ord > priv->table2_len) {
738                         IPW_DEBUG_ORD("ordinal value too long\n");
739                         return -EINVAL;
740                 }
741
742                 /* get the address of statistic */
743                 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
744
745                 /* get the second DW of statistics ;
746                  * two 16-bit words - first is length, second is count */
747                 field_info =
748                     ipw_read_reg32(priv,
749                                    priv->table2_addr + (ord << 3) +
750                                    sizeof(u32));
751
752                 /* get each entry length */
753                 field_len = *((u16 *) & field_info);
754
755                 /* get number of entries */
756                 field_count = *(((u16 *) & field_info) + 1);
757
758                 /* abort if not enought memory */
759                 total_len = field_len * field_count;
760                 if (total_len > *len) {
761                         *len = total_len;
762                         return -EINVAL;
763                 }
764
765                 *len = total_len;
766                 if (!total_len)
767                         return 0;
768
769                 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
770                               "field_info = 0x%08x\n",
771                               addr, total_len, field_info);
772                 ipw_read_indirect(priv, addr, val, total_len);
773                 break;
774
775         default:
776                 IPW_DEBUG_ORD("Invalid ordinal!\n");
777                 return -EINVAL;
778
779         }
780
781         return 0;
782 }
783
784 static void ipw_init_ordinals(struct ipw_priv *priv)
785 {
786         priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
787         priv->table0_len = ipw_read32(priv, priv->table0_addr);
788
789         IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
790                       priv->table0_addr, priv->table0_len);
791
792         priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
793         priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
794
795         IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
796                       priv->table1_addr, priv->table1_len);
797
798         priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
799         priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
800         priv->table2_len &= 0x0000ffff; /* use first two bytes */
801
802         IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
803                       priv->table2_addr, priv->table2_len);
804
805 }
806
807 static u32 ipw_register_toggle(u32 reg)
808 {
809         reg &= ~IPW_START_STANDBY;
810         if (reg & IPW_GATE_ODMA)
811                 reg &= ~IPW_GATE_ODMA;
812         if (reg & IPW_GATE_IDMA)
813                 reg &= ~IPW_GATE_IDMA;
814         if (reg & IPW_GATE_ADMA)
815                 reg &= ~IPW_GATE_ADMA;
816         return reg;
817 }
818
819 /*
820  * LED behavior:
821  * - On radio ON, turn on any LEDs that require to be on during start
822  * - On initialization, start unassociated blink
823  * - On association, disable unassociated blink
824  * - On disassociation, start unassociated blink
825  * - On radio OFF, turn off any LEDs started during radio on
826  *
827  */
828 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
829 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
830 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
831
832 static void ipw_led_link_on(struct ipw_priv *priv)
833 {
834         unsigned long flags;
835         u32 led;
836
837         /* If configured to not use LEDs, or nic_type is 1,
838          * then we don't toggle a LINK led */
839         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
840                 return;
841
842         spin_lock_irqsave(&priv->lock, flags);
843
844         if (!(priv->status & STATUS_RF_KILL_MASK) &&
845             !(priv->status & STATUS_LED_LINK_ON)) {
846                 IPW_DEBUG_LED("Link LED On\n");
847                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
848                 led |= priv->led_association_on;
849
850                 led = ipw_register_toggle(led);
851
852                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
853                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
854
855                 priv->status |= STATUS_LED_LINK_ON;
856
857                 /* If we aren't associated, schedule turning the LED off */
858                 if (!(priv->status & STATUS_ASSOCIATED))
859                         queue_delayed_work(priv->workqueue,
860                                            &priv->led_link_off,
861                                            LD_TIME_LINK_ON);
862         }
863
864         spin_unlock_irqrestore(&priv->lock, flags);
865 }
866
867 static void ipw_bg_led_link_on(void *data)
868 {
869         struct ipw_priv *priv = data;
870         mutex_lock(&priv->mutex);
871         ipw_led_link_on(data);
872         mutex_unlock(&priv->mutex);
873 }
874
875 static void ipw_led_link_off(struct ipw_priv *priv)
876 {
877         unsigned long flags;
878         u32 led;
879
880         /* If configured not to use LEDs, or nic type is 1,
881          * then we don't goggle the LINK led. */
882         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
883                 return;
884
885         spin_lock_irqsave(&priv->lock, flags);
886
887         if (priv->status & STATUS_LED_LINK_ON) {
888                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
889                 led &= priv->led_association_off;
890                 led = ipw_register_toggle(led);
891
892                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
893                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
894
895                 IPW_DEBUG_LED("Link LED Off\n");
896
897                 priv->status &= ~STATUS_LED_LINK_ON;
898
899                 /* If we aren't associated and the radio is on, schedule
900                  * turning the LED on (blink while unassociated) */
901                 if (!(priv->status & STATUS_RF_KILL_MASK) &&
902                     !(priv->status & STATUS_ASSOCIATED))
903                         queue_delayed_work(priv->workqueue, &priv->led_link_on,
904                                            LD_TIME_LINK_OFF);
905
906         }
907
908         spin_unlock_irqrestore(&priv->lock, flags);
909 }
910
911 static void ipw_bg_led_link_off(void *data)
912 {
913         struct ipw_priv *priv = data;
914         mutex_lock(&priv->mutex);
915         ipw_led_link_off(data);
916         mutex_unlock(&priv->mutex);
917 }
918
919 static void __ipw_led_activity_on(struct ipw_priv *priv)
920 {
921         u32 led;
922
923         if (priv->config & CFG_NO_LED)
924                 return;
925
926         if (priv->status & STATUS_RF_KILL_MASK)
927                 return;
928
929         if (!(priv->status & STATUS_LED_ACT_ON)) {
930                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
931                 led |= priv->led_activity_on;
932
933                 led = ipw_register_toggle(led);
934
935                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
936                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
937
938                 IPW_DEBUG_LED("Activity LED On\n");
939
940                 priv->status |= STATUS_LED_ACT_ON;
941
942                 cancel_delayed_work(&priv->led_act_off);
943                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
944                                    LD_TIME_ACT_ON);
945         } else {
946                 /* Reschedule LED off for full time period */
947                 cancel_delayed_work(&priv->led_act_off);
948                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
949                                    LD_TIME_ACT_ON);
950         }
951 }
952
953 #if 0
954 void ipw_led_activity_on(struct ipw_priv *priv)
955 {
956         unsigned long flags;
957         spin_lock_irqsave(&priv->lock, flags);
958         __ipw_led_activity_on(priv);
959         spin_unlock_irqrestore(&priv->lock, flags);
960 }
961 #endif  /*  0  */
962
963 static void ipw_led_activity_off(struct ipw_priv *priv)
964 {
965         unsigned long flags;
966         u32 led;
967
968         if (priv->config & CFG_NO_LED)
969                 return;
970
971         spin_lock_irqsave(&priv->lock, flags);
972
973         if (priv->status & STATUS_LED_ACT_ON) {
974                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
975                 led &= priv->led_activity_off;
976
977                 led = ipw_register_toggle(led);
978
979                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
980                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
981
982                 IPW_DEBUG_LED("Activity LED Off\n");
983
984                 priv->status &= ~STATUS_LED_ACT_ON;
985         }
986
987         spin_unlock_irqrestore(&priv->lock, flags);
988 }
989
990 static void ipw_bg_led_activity_off(void *data)
991 {
992         struct ipw_priv *priv = data;
993         mutex_lock(&priv->mutex);
994         ipw_led_activity_off(data);
995         mutex_unlock(&priv->mutex);
996 }
997
998 static void ipw_led_band_on(struct ipw_priv *priv)
999 {
1000         unsigned long flags;
1001         u32 led;
1002
1003         /* Only nic type 1 supports mode LEDs */
1004         if (priv->config & CFG_NO_LED ||
1005             priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1006                 return;
1007
1008         spin_lock_irqsave(&priv->lock, flags);
1009
1010         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1011         if (priv->assoc_network->mode == IEEE_A) {
1012                 led |= priv->led_ofdm_on;
1013                 led &= priv->led_association_off;
1014                 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1015         } else if (priv->assoc_network->mode == IEEE_G) {
1016                 led |= priv->led_ofdm_on;
1017                 led |= priv->led_association_on;
1018                 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1019         } else {
1020                 led &= priv->led_ofdm_off;
1021                 led |= priv->led_association_on;
1022                 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1023         }
1024
1025         led = ipw_register_toggle(led);
1026
1027         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1028         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1029
1030         spin_unlock_irqrestore(&priv->lock, flags);
1031 }
1032
1033 static void ipw_led_band_off(struct ipw_priv *priv)
1034 {
1035         unsigned long flags;
1036         u32 led;
1037
1038         /* Only nic type 1 supports mode LEDs */
1039         if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1040                 return;
1041
1042         spin_lock_irqsave(&priv->lock, flags);
1043
1044         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1045         led &= priv->led_ofdm_off;
1046         led &= priv->led_association_off;
1047
1048         led = ipw_register_toggle(led);
1049
1050         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1051         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1052
1053         spin_unlock_irqrestore(&priv->lock, flags);
1054 }
1055
1056 static void ipw_led_radio_on(struct ipw_priv *priv)
1057 {
1058         ipw_led_link_on(priv);
1059 }
1060
1061 static void ipw_led_radio_off(struct ipw_priv *priv)
1062 {
1063         ipw_led_activity_off(priv);
1064         ipw_led_link_off(priv);
1065 }
1066
1067 static void ipw_led_link_up(struct ipw_priv *priv)
1068 {
1069         /* Set the Link Led on for all nic types */
1070         ipw_led_link_on(priv);
1071 }
1072
1073 static void ipw_led_link_down(struct ipw_priv *priv)
1074 {
1075         ipw_led_activity_off(priv);
1076         ipw_led_link_off(priv);
1077
1078         if (priv->status & STATUS_RF_KILL_MASK)
1079                 ipw_led_radio_off(priv);
1080 }
1081
1082 static void ipw_led_init(struct ipw_priv *priv)
1083 {
1084         priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1085
1086         /* Set the default PINs for the link and activity leds */
1087         priv->led_activity_on = IPW_ACTIVITY_LED;
1088         priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1089
1090         priv->led_association_on = IPW_ASSOCIATED_LED;
1091         priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1092
1093         /* Set the default PINs for the OFDM leds */
1094         priv->led_ofdm_on = IPW_OFDM_LED;
1095         priv->led_ofdm_off = ~(IPW_OFDM_LED);
1096
1097         switch (priv->nic_type) {
1098         case EEPROM_NIC_TYPE_1:
1099                 /* In this NIC type, the LEDs are reversed.... */
1100                 priv->led_activity_on = IPW_ASSOCIATED_LED;
1101                 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1102                 priv->led_association_on = IPW_ACTIVITY_LED;
1103                 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1104
1105                 if (!(priv->config & CFG_NO_LED))
1106                         ipw_led_band_on(priv);
1107
1108                 /* And we don't blink link LEDs for this nic, so
1109                  * just return here */
1110                 return;
1111
1112         case EEPROM_NIC_TYPE_3:
1113         case EEPROM_NIC_TYPE_2:
1114         case EEPROM_NIC_TYPE_4:
1115         case EEPROM_NIC_TYPE_0:
1116                 break;
1117
1118         default:
1119                 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1120                                priv->nic_type);
1121                 priv->nic_type = EEPROM_NIC_TYPE_0;
1122                 break;
1123         }
1124
1125         if (!(priv->config & CFG_NO_LED)) {
1126                 if (priv->status & STATUS_ASSOCIATED)
1127                         ipw_led_link_on(priv);
1128                 else
1129                         ipw_led_link_off(priv);
1130         }
1131 }
1132
1133 static void ipw_led_shutdown(struct ipw_priv *priv)
1134 {
1135         ipw_led_activity_off(priv);
1136         ipw_led_link_off(priv);
1137         ipw_led_band_off(priv);
1138         cancel_delayed_work(&priv->led_link_on);
1139         cancel_delayed_work(&priv->led_link_off);
1140         cancel_delayed_work(&priv->led_act_off);
1141 }
1142
1143 /*
1144  * The following adds a new attribute to the sysfs representation
1145  * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1146  * used for controling the debug level.
1147  *
1148  * See the level definitions in ipw for details.
1149  */
1150 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1151 {
1152         return sprintf(buf, "0x%08X\n", ipw_debug_level);
1153 }
1154
1155 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1156                                  size_t count)
1157 {
1158         char *p = (char *)buf;
1159         u32 val;
1160
1161         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1162                 p++;
1163                 if (p[0] == 'x' || p[0] == 'X')
1164                         p++;
1165                 val = simple_strtoul(p, &p, 16);
1166         } else
1167                 val = simple_strtoul(p, &p, 10);
1168         if (p == buf)
1169                 printk(KERN_INFO DRV_NAME
1170                        ": %s is not in hex or decimal form.\n", buf);
1171         else
1172                 ipw_debug_level = val;
1173
1174         return strnlen(buf, count);
1175 }
1176
1177 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1178                    show_debug_level, store_debug_level);
1179
1180 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1181 {
1182         /* length = 1st dword in log */
1183         return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1184 }
1185
1186 static void ipw_capture_event_log(struct ipw_priv *priv,
1187                                   u32 log_len, struct ipw_event *log)
1188 {
1189         u32 base;
1190
1191         if (log_len) {
1192                 base = ipw_read32(priv, IPW_EVENT_LOG);
1193                 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1194                                   (u8 *) log, sizeof(*log) * log_len);
1195         }
1196 }
1197
1198 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1199 {
1200         struct ipw_fw_error *error;
1201         u32 log_len = ipw_get_event_log_len(priv);
1202         u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1203         u32 elem_len = ipw_read_reg32(priv, base);
1204
1205         error = kmalloc(sizeof(*error) +
1206                         sizeof(*error->elem) * elem_len +
1207                         sizeof(*error->log) * log_len, GFP_ATOMIC);
1208         if (!error) {
1209                 IPW_ERROR("Memory allocation for firmware error log "
1210                           "failed.\n");
1211                 return NULL;
1212         }
1213         error->jiffies = jiffies;
1214         error->status = priv->status;
1215         error->config = priv->config;
1216         error->elem_len = elem_len;
1217         error->log_len = log_len;
1218         error->elem = (struct ipw_error_elem *)error->payload;
1219         error->log = (struct ipw_event *)(error->elem + elem_len);
1220
1221         ipw_capture_event_log(priv, log_len, error->log);
1222
1223         if (elem_len)
1224                 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1225                                   sizeof(*error->elem) * elem_len);
1226
1227         return error;
1228 }
1229
1230 static ssize_t show_event_log(struct device *d,
1231                               struct device_attribute *attr, char *buf)
1232 {
1233         struct ipw_priv *priv = dev_get_drvdata(d);
1234         u32 log_len = ipw_get_event_log_len(priv);
1235         struct ipw_event log[log_len];
1236         u32 len = 0, i;
1237
1238         ipw_capture_event_log(priv, log_len, log);
1239
1240         len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1241         for (i = 0; i < log_len; i++)
1242                 len += snprintf(buf + len, PAGE_SIZE - len,
1243                                 "\n%08X%08X%08X",
1244                                 log[i].time, log[i].event, log[i].data);
1245         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1246         return len;
1247 }
1248
1249 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1250
1251 static ssize_t show_error(struct device *d,
1252                           struct device_attribute *attr, char *buf)
1253 {
1254         struct ipw_priv *priv = dev_get_drvdata(d);
1255         u32 len = 0, i;
1256         if (!priv->error)
1257                 return 0;
1258         len += snprintf(buf + len, PAGE_SIZE - len,
1259                         "%08lX%08X%08X%08X",
1260                         priv->error->jiffies,
1261                         priv->error->status,
1262                         priv->error->config, priv->error->elem_len);
1263         for (i = 0; i < priv->error->elem_len; i++)
1264                 len += snprintf(buf + len, PAGE_SIZE - len,
1265                                 "\n%08X%08X%08X%08X%08X%08X%08X",
1266                                 priv->error->elem[i].time,
1267                                 priv->error->elem[i].desc,
1268                                 priv->error->elem[i].blink1,
1269                                 priv->error->elem[i].blink2,
1270                                 priv->error->elem[i].link1,
1271                                 priv->error->elem[i].link2,
1272                                 priv->error->elem[i].data);
1273
1274         len += snprintf(buf + len, PAGE_SIZE - len,
1275                         "\n%08X", priv->error->log_len);
1276         for (i = 0; i < priv->error->log_len; i++)
1277                 len += snprintf(buf + len, PAGE_SIZE - len,
1278                                 "\n%08X%08X%08X",
1279                                 priv->error->log[i].time,
1280                                 priv->error->log[i].event,
1281                                 priv->error->log[i].data);
1282         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1283         return len;
1284 }
1285
1286 static ssize_t clear_error(struct device *d,
1287                            struct device_attribute *attr,
1288                            const char *buf, size_t count)
1289 {
1290         struct ipw_priv *priv = dev_get_drvdata(d);
1291
1292         kfree(priv->error);
1293         priv->error = NULL;
1294         return count;
1295 }
1296
1297 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1298
1299 static ssize_t show_cmd_log(struct device *d,
1300                             struct device_attribute *attr, char *buf)
1301 {
1302         struct ipw_priv *priv = dev_get_drvdata(d);
1303         u32 len = 0, i;
1304         if (!priv->cmdlog)
1305                 return 0;
1306         for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1307              (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1308              i = (i + 1) % priv->cmdlog_len) {
1309                 len +=
1310                     snprintf(buf + len, PAGE_SIZE - len,
1311                              "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1312                              priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1313                              priv->cmdlog[i].cmd.len);
1314                 len +=
1315                     snprintk_buf(buf + len, PAGE_SIZE - len,
1316                                  (u8 *) priv->cmdlog[i].cmd.param,
1317                                  priv->cmdlog[i].cmd.len);
1318                 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1319         }
1320         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1321         return len;
1322 }
1323
1324 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1325
1326 #ifdef CONFIG_IPW2200_PROMISCUOUS
1327 static void ipw_prom_free(struct ipw_priv *priv);
1328 static int ipw_prom_alloc(struct ipw_priv *priv);
1329 static ssize_t store_rtap_iface(struct device *d,
1330                          struct device_attribute *attr,
1331                          const char *buf, size_t count)
1332 {
1333         struct ipw_priv *priv = dev_get_drvdata(d);
1334         int rc = 0;
1335
1336         if (count < 1)
1337                 return -EINVAL;
1338
1339         switch (buf[0]) {
1340         case '0':
1341                 if (!rtap_iface)
1342                         return count;
1343
1344                 if (netif_running(priv->prom_net_dev)) {
1345                         IPW_WARNING("Interface is up.  Cannot unregister.\n");
1346                         return count;
1347                 }
1348
1349                 ipw_prom_free(priv);
1350                 rtap_iface = 0;
1351                 break;
1352
1353         case '1':
1354                 if (rtap_iface)
1355                         return count;
1356
1357                 rc = ipw_prom_alloc(priv);
1358                 if (!rc)
1359                         rtap_iface = 1;
1360                 break;
1361
1362         default:
1363                 return -EINVAL;
1364         }
1365
1366         if (rc) {
1367                 IPW_ERROR("Failed to register promiscuous network "
1368                           "device (error %d).\n", rc);
1369         }
1370
1371         return count;
1372 }
1373
1374 static ssize_t show_rtap_iface(struct device *d,
1375                         struct device_attribute *attr,
1376                         char *buf)
1377 {
1378         struct ipw_priv *priv = dev_get_drvdata(d);
1379         if (rtap_iface)
1380                 return sprintf(buf, "%s", priv->prom_net_dev->name);
1381         else {
1382                 buf[0] = '-';
1383                 buf[1] = '1';
1384                 buf[2] = '\0';
1385                 return 3;
1386         }
1387 }
1388
1389 static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1390                    store_rtap_iface);
1391
1392 static ssize_t store_rtap_filter(struct device *d,
1393                          struct device_attribute *attr,
1394                          const char *buf, size_t count)
1395 {
1396         struct ipw_priv *priv = dev_get_drvdata(d);
1397
1398         if (!priv->prom_priv) {
1399                 IPW_ERROR("Attempting to set filter without "
1400                           "rtap_iface enabled.\n");
1401                 return -EPERM;
1402         }
1403
1404         priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1405
1406         IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1407                        BIT_ARG16(priv->prom_priv->filter));
1408
1409         return count;
1410 }
1411
1412 static ssize_t show_rtap_filter(struct device *d,
1413                         struct device_attribute *attr,
1414                         char *buf)
1415 {
1416         struct ipw_priv *priv = dev_get_drvdata(d);
1417         return sprintf(buf, "0x%04X",
1418                        priv->prom_priv ? priv->prom_priv->filter : 0);
1419 }
1420
1421 static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1422                    store_rtap_filter);
1423 #endif
1424
1425 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1426                              char *buf)
1427 {
1428         struct ipw_priv *priv = dev_get_drvdata(d);
1429         return sprintf(buf, "%d\n", priv->ieee->scan_age);
1430 }
1431
1432 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1433                               const char *buf, size_t count)
1434 {
1435         struct ipw_priv *priv = dev_get_drvdata(d);
1436         struct net_device *dev = priv->net_dev;
1437         char buffer[] = "00000000";
1438         unsigned long len =
1439             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1440         unsigned long val;
1441         char *p = buffer;
1442
1443         IPW_DEBUG_INFO("enter\n");
1444
1445         strncpy(buffer, buf, len);
1446         buffer[len] = 0;
1447
1448         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1449                 p++;
1450                 if (p[0] == 'x' || p[0] == 'X')
1451                         p++;
1452                 val = simple_strtoul(p, &p, 16);
1453         } else
1454                 val = simple_strtoul(p, &p, 10);
1455         if (p == buffer) {
1456                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1457         } else {
1458                 priv->ieee->scan_age = val;
1459                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1460         }
1461
1462         IPW_DEBUG_INFO("exit\n");
1463         return len;
1464 }
1465
1466 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1467
1468 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1469                         char *buf)
1470 {
1471         struct ipw_priv *priv = dev_get_drvdata(d);
1472         return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1473 }
1474
1475 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1476                          const char *buf, size_t count)
1477 {
1478         struct ipw_priv *priv = dev_get_drvdata(d);
1479
1480         IPW_DEBUG_INFO("enter\n");
1481
1482         if (count == 0)
1483                 return 0;
1484
1485         if (*buf == 0) {
1486                 IPW_DEBUG_LED("Disabling LED control.\n");
1487                 priv->config |= CFG_NO_LED;
1488                 ipw_led_shutdown(priv);
1489         } else {
1490                 IPW_DEBUG_LED("Enabling LED control.\n");
1491                 priv->config &= ~CFG_NO_LED;
1492                 ipw_led_init(priv);
1493         }
1494
1495         IPW_DEBUG_INFO("exit\n");
1496         return count;
1497 }
1498
1499 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1500
1501 static ssize_t show_status(struct device *d,
1502                            struct device_attribute *attr, char *buf)
1503 {
1504         struct ipw_priv *p = d->driver_data;
1505         return sprintf(buf, "0x%08x\n", (int)p->status);
1506 }
1507
1508 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1509
1510 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1511                         char *buf)
1512 {
1513         struct ipw_priv *p = d->driver_data;
1514         return sprintf(buf, "0x%08x\n", (int)p->config);
1515 }
1516
1517 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1518
1519 static ssize_t show_nic_type(struct device *d,
1520                              struct device_attribute *attr, char *buf)
1521 {
1522         struct ipw_priv *priv = d->driver_data;
1523         return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1524 }
1525
1526 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1527
1528 static ssize_t show_ucode_version(struct device *d,
1529                                   struct device_attribute *attr, char *buf)
1530 {
1531         u32 len = sizeof(u32), tmp = 0;
1532         struct ipw_priv *p = d->driver_data;
1533
1534         if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1535                 return 0;
1536
1537         return sprintf(buf, "0x%08x\n", tmp);
1538 }
1539
1540 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1541
1542 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1543                         char *buf)
1544 {
1545         u32 len = sizeof(u32), tmp = 0;
1546         struct ipw_priv *p = d->driver_data;
1547
1548         if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1549                 return 0;
1550
1551         return sprintf(buf, "0x%08x\n", tmp);
1552 }
1553
1554 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1555
1556 /*
1557  * Add a device attribute to view/control the delay between eeprom
1558  * operations.
1559  */
1560 static ssize_t show_eeprom_delay(struct device *d,
1561                                  struct device_attribute *attr, char *buf)
1562 {
1563         int n = ((struct ipw_priv *)d->driver_data)->eeprom_delay;
1564         return sprintf(buf, "%i\n", n);
1565 }
1566 static ssize_t store_eeprom_delay(struct device *d,
1567                                   struct device_attribute *attr,
1568                                   const char *buf, size_t count)
1569 {
1570         struct ipw_priv *p = d->driver_data;
1571         sscanf(buf, "%i", &p->eeprom_delay);
1572         return strnlen(buf, count);
1573 }
1574
1575 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1576                    show_eeprom_delay, store_eeprom_delay);
1577
1578 static ssize_t show_command_event_reg(struct device *d,
1579                                       struct device_attribute *attr, char *buf)
1580 {
1581         u32 reg = 0;
1582         struct ipw_priv *p = d->driver_data;
1583
1584         reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1585         return sprintf(buf, "0x%08x\n", reg);
1586 }
1587 static ssize_t store_command_event_reg(struct device *d,
1588                                        struct device_attribute *attr,
1589                                        const char *buf, size_t count)
1590 {
1591         u32 reg;
1592         struct ipw_priv *p = d->driver_data;
1593
1594         sscanf(buf, "%x", &reg);
1595         ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1596         return strnlen(buf, count);
1597 }
1598
1599 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1600                    show_command_event_reg, store_command_event_reg);
1601
1602 static ssize_t show_mem_gpio_reg(struct device *d,
1603                                  struct device_attribute *attr, char *buf)
1604 {
1605         u32 reg = 0;
1606         struct ipw_priv *p = d->driver_data;
1607
1608         reg = ipw_read_reg32(p, 0x301100);
1609         return sprintf(buf, "0x%08x\n", reg);
1610 }
1611 static ssize_t store_mem_gpio_reg(struct device *d,
1612                                   struct device_attribute *attr,
1613                                   const char *buf, size_t count)
1614 {
1615         u32 reg;
1616         struct ipw_priv *p = d->driver_data;
1617
1618         sscanf(buf, "%x", &reg);
1619         ipw_write_reg32(p, 0x301100, reg);
1620         return strnlen(buf, count);
1621 }
1622
1623 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1624                    show_mem_gpio_reg, store_mem_gpio_reg);
1625
1626 static ssize_t show_indirect_dword(struct device *d,
1627                                    struct device_attribute *attr, char *buf)
1628 {
1629         u32 reg = 0;
1630         struct ipw_priv *priv = d->driver_data;
1631
1632         if (priv->status & STATUS_INDIRECT_DWORD)
1633                 reg = ipw_read_reg32(priv, priv->indirect_dword);
1634         else
1635                 reg = 0;
1636
1637         return sprintf(buf, "0x%08x\n", reg);
1638 }
1639 static ssize_t store_indirect_dword(struct device *d,
1640                                     struct device_attribute *attr,
1641                                     const char *buf, size_t count)
1642 {
1643         struct ipw_priv *priv = d->driver_data;
1644
1645         sscanf(buf, "%x", &priv->indirect_dword);
1646         priv->status |= STATUS_INDIRECT_DWORD;
1647         return strnlen(buf, count);
1648 }
1649
1650 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1651                    show_indirect_dword, store_indirect_dword);
1652
1653 static ssize_t show_indirect_byte(struct device *d,
1654                                   struct device_attribute *attr, char *buf)
1655 {
1656         u8 reg = 0;
1657         struct ipw_priv *priv = d->driver_data;
1658
1659         if (priv->status & STATUS_INDIRECT_BYTE)
1660                 reg = ipw_read_reg8(priv, priv->indirect_byte);
1661         else
1662                 reg = 0;
1663
1664         return sprintf(buf, "0x%02x\n", reg);
1665 }
1666 static ssize_t store_indirect_byte(struct device *d,
1667                                    struct device_attribute *attr,
1668                                    const char *buf, size_t count)
1669 {
1670         struct ipw_priv *priv = d->driver_data;
1671
1672         sscanf(buf, "%x", &priv->indirect_byte);
1673         priv->status |= STATUS_INDIRECT_BYTE;
1674         return strnlen(buf, count);
1675 }
1676
1677 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1678                    show_indirect_byte, store_indirect_byte);
1679
1680 static ssize_t show_direct_dword(struct device *d,
1681                                  struct device_attribute *attr, char *buf)
1682 {
1683         u32 reg = 0;
1684         struct ipw_priv *priv = d->driver_data;
1685
1686         if (priv->status & STATUS_DIRECT_DWORD)
1687                 reg = ipw_read32(priv, priv->direct_dword);
1688         else
1689                 reg = 0;
1690
1691         return sprintf(buf, "0x%08x\n", reg);
1692 }
1693 static ssize_t store_direct_dword(struct device *d,
1694                                   struct device_attribute *attr,
1695                                   const char *buf, size_t count)
1696 {
1697         struct ipw_priv *priv = d->driver_data;
1698
1699         sscanf(buf, "%x", &priv->direct_dword);
1700         priv->status |= STATUS_DIRECT_DWORD;
1701         return strnlen(buf, count);
1702 }
1703
1704 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1705                    show_direct_dword, store_direct_dword);
1706
1707 static int rf_kill_active(struct ipw_priv *priv)
1708 {
1709         if (0 == (ipw_read32(priv, 0x30) & 0x10000))
1710                 priv->status |= STATUS_RF_KILL_HW;
1711         else
1712                 priv->status &= ~STATUS_RF_KILL_HW;
1713
1714         return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1715 }
1716
1717 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1718                             char *buf)
1719 {
1720         /* 0 - RF kill not enabled
1721            1 - SW based RF kill active (sysfs)
1722            2 - HW based RF kill active
1723            3 - Both HW and SW baed RF kill active */
1724         struct ipw_priv *priv = d->driver_data;
1725         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1726             (rf_kill_active(priv) ? 0x2 : 0x0);
1727         return sprintf(buf, "%i\n", val);
1728 }
1729
1730 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1731 {
1732         if ((disable_radio ? 1 : 0) ==
1733             ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1734                 return 0;
1735
1736         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
1737                           disable_radio ? "OFF" : "ON");
1738
1739         if (disable_radio) {
1740                 priv->status |= STATUS_RF_KILL_SW;
1741
1742                 if (priv->workqueue)
1743                         cancel_delayed_work(&priv->request_scan);
1744                 queue_work(priv->workqueue, &priv->down);
1745         } else {
1746                 priv->status &= ~STATUS_RF_KILL_SW;
1747                 if (rf_kill_active(priv)) {
1748                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1749                                           "disabled by HW switch\n");
1750                         /* Make sure the RF_KILL check timer is running */
1751                         cancel_delayed_work(&priv->rf_kill);
1752                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
1753                                            2 * HZ);
1754                 } else
1755                         queue_work(priv->workqueue, &priv->up);
1756         }
1757
1758         return 1;
1759 }
1760
1761 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1762                              const char *buf, size_t count)
1763 {
1764         struct ipw_priv *priv = d->driver_data;
1765
1766         ipw_radio_kill_sw(priv, buf[0] == '1');
1767
1768         return count;
1769 }
1770
1771 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1772
1773 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1774                                char *buf)
1775 {
1776         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1777         int pos = 0, len = 0;
1778         if (priv->config & CFG_SPEED_SCAN) {
1779                 while (priv->speed_scan[pos] != 0)
1780                         len += sprintf(&buf[len], "%d ",
1781                                        priv->speed_scan[pos++]);
1782                 return len + sprintf(&buf[len], "\n");
1783         }
1784
1785         return sprintf(buf, "0\n");
1786 }
1787
1788 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1789                                 const char *buf, size_t count)
1790 {
1791         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1792         int channel, pos = 0;
1793         const char *p = buf;
1794
1795         /* list of space separated channels to scan, optionally ending with 0 */
1796         while ((channel = simple_strtol(p, NULL, 0))) {
1797                 if (pos == MAX_SPEED_SCAN - 1) {
1798                         priv->speed_scan[pos] = 0;
1799                         break;
1800                 }
1801
1802                 if (ieee80211_is_valid_channel(priv->ieee, channel))
1803                         priv->speed_scan[pos++] = channel;
1804                 else
1805                         IPW_WARNING("Skipping invalid channel request: %d\n",
1806                                     channel);
1807                 p = strchr(p, ' ');
1808                 if (!p)
1809                         break;
1810                 while (*p == ' ' || *p == '\t')
1811                         p++;
1812         }
1813
1814         if (pos == 0)
1815                 priv->config &= ~CFG_SPEED_SCAN;
1816         else {
1817                 priv->speed_scan_pos = 0;
1818                 priv->config |= CFG_SPEED_SCAN;
1819         }
1820
1821         return count;
1822 }
1823
1824 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1825                    store_speed_scan);
1826
1827 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1828                               char *buf)
1829 {
1830         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1831         return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1832 }
1833
1834 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1835                                const char *buf, size_t count)
1836 {
1837         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1838         if (buf[0] == '1')
1839                 priv->config |= CFG_NET_STATS;
1840         else
1841                 priv->config &= ~CFG_NET_STATS;
1842
1843         return count;
1844 }
1845
1846 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1847                    show_net_stats, store_net_stats);
1848
1849 static void notify_wx_assoc_event(struct ipw_priv *priv)
1850 {
1851         union iwreq_data wrqu;
1852         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1853         if (priv->status & STATUS_ASSOCIATED)
1854                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1855         else
1856                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1857         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1858 }
1859
1860 static void ipw_irq_tasklet(struct ipw_priv *priv)
1861 {
1862         u32 inta, inta_mask, handled = 0;
1863         unsigned long flags;
1864         int rc = 0;
1865
1866         spin_lock_irqsave(&priv->irq_lock, flags);
1867
1868         inta = ipw_read32(priv, IPW_INTA_RW);
1869         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1870         inta &= (IPW_INTA_MASK_ALL & inta_mask);
1871
1872         /* Add any cached INTA values that need to be handled */
1873         inta |= priv->isr_inta;
1874
1875         spin_unlock_irqrestore(&priv->irq_lock, flags);
1876
1877         spin_lock_irqsave(&priv->lock, flags);
1878
1879         /* handle all the justifications for the interrupt */
1880         if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1881                 ipw_rx(priv);
1882                 handled |= IPW_INTA_BIT_RX_TRANSFER;
1883         }
1884
1885         if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1886                 IPW_DEBUG_HC("Command completed.\n");
1887                 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1888                 priv->status &= ~STATUS_HCMD_ACTIVE;
1889                 wake_up_interruptible(&priv->wait_command_queue);
1890                 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1891         }
1892
1893         if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1894                 IPW_DEBUG_TX("TX_QUEUE_1\n");
1895                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1896                 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1897         }
1898
1899         if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1900                 IPW_DEBUG_TX("TX_QUEUE_2\n");
1901                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1902                 handled |= IPW_INTA_BIT_TX_QUEUE_2;
1903         }
1904
1905         if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
1906                 IPW_DEBUG_TX("TX_QUEUE_3\n");
1907                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
1908                 handled |= IPW_INTA_BIT_TX_QUEUE_3;
1909         }
1910
1911         if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
1912                 IPW_DEBUG_TX("TX_QUEUE_4\n");
1913                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
1914                 handled |= IPW_INTA_BIT_TX_QUEUE_4;
1915         }
1916
1917         if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
1918                 IPW_WARNING("STATUS_CHANGE\n");
1919                 handled |= IPW_INTA_BIT_STATUS_CHANGE;
1920         }
1921
1922         if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
1923                 IPW_WARNING("TX_PERIOD_EXPIRED\n");
1924                 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
1925         }
1926
1927         if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
1928                 IPW_WARNING("HOST_CMD_DONE\n");
1929                 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
1930         }
1931
1932         if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
1933                 IPW_WARNING("FW_INITIALIZATION_DONE\n");
1934                 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
1935         }
1936
1937         if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
1938                 IPW_WARNING("PHY_OFF_DONE\n");
1939                 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
1940         }
1941
1942         if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
1943                 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
1944                 priv->status |= STATUS_RF_KILL_HW;
1945                 wake_up_interruptible(&priv->wait_command_queue);
1946                 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1947                 cancel_delayed_work(&priv->request_scan);
1948                 schedule_work(&priv->link_down);
1949                 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
1950                 handled |= IPW_INTA_BIT_RF_KILL_DONE;
1951         }
1952
1953         if (inta & IPW_INTA_BIT_FATAL_ERROR) {
1954                 IPW_WARNING("Firmware error detected.  Restarting.\n");
1955                 if (priv->error) {
1956                         IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
1957                         if (ipw_debug_level & IPW_DL_FW_ERRORS) {
1958                                 struct ipw_fw_error *error =
1959                                     ipw_alloc_error_log(priv);
1960                                 ipw_dump_error_log(priv, error);
1961                                 kfree(error);
1962                         }
1963                 } else {
1964                         priv->error = ipw_alloc_error_log(priv);
1965                         if (priv->error)
1966                                 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
1967                         else
1968                                 IPW_DEBUG_FW("Error allocating sysfs 'error' "
1969                                              "log.\n");
1970                         if (ipw_debug_level & IPW_DL_FW_ERRORS)
1971                                 ipw_dump_error_log(priv, priv->error);
1972                 }
1973
1974                 /* XXX: If hardware encryption is for WPA/WPA2,
1975                  * we have to notify the supplicant. */
1976                 if (priv->ieee->sec.encrypt) {
1977                         priv->status &= ~STATUS_ASSOCIATED;
1978                         notify_wx_assoc_event(priv);
1979                 }
1980
1981                 /* Keep the restart process from trying to send host
1982                  * commands by clearing the INIT status bit */
1983                 priv->status &= ~STATUS_INIT;
1984
1985                 /* Cancel currently queued command. */
1986                 priv->status &= ~STATUS_HCMD_ACTIVE;
1987                 wake_up_interruptible(&priv->wait_command_queue);
1988
1989                 queue_work(priv->workqueue, &priv->adapter_restart);
1990                 handled |= IPW_INTA_BIT_FATAL_ERROR;
1991         }
1992
1993         if (inta & IPW_INTA_BIT_PARITY_ERROR) {
1994                 IPW_ERROR("Parity error\n");
1995                 handled |= IPW_INTA_BIT_PARITY_ERROR;
1996         }
1997
1998         if (handled != inta) {
1999                 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2000         }
2001
2002         spin_unlock_irqrestore(&priv->lock, flags);
2003
2004         /* enable all interrupts */
2005         ipw_enable_interrupts(priv);
2006 }
2007
2008 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2009 static char *get_cmd_string(u8 cmd)
2010 {
2011         switch (cmd) {
2012                 IPW_CMD(HOST_COMPLETE);
2013                 IPW_CMD(POWER_DOWN);
2014                 IPW_CMD(SYSTEM_CONFIG);
2015                 IPW_CMD(MULTICAST_ADDRESS);
2016                 IPW_CMD(SSID);
2017                 IPW_CMD(ADAPTER_ADDRESS);
2018                 IPW_CMD(PORT_TYPE);
2019                 IPW_CMD(RTS_THRESHOLD);
2020                 IPW_CMD(FRAG_THRESHOLD);
2021                 IPW_CMD(POWER_MODE);
2022                 IPW_CMD(WEP_KEY);
2023                 IPW_CMD(TGI_TX_KEY);
2024                 IPW_CMD(SCAN_REQUEST);
2025                 IPW_CMD(SCAN_REQUEST_EXT);
2026                 IPW_CMD(ASSOCIATE);
2027                 IPW_CMD(SUPPORTED_RATES);
2028                 IPW_CMD(SCAN_ABORT);
2029                 IPW_CMD(TX_FLUSH);
2030                 IPW_CMD(QOS_PARAMETERS);
2031                 IPW_CMD(DINO_CONFIG);
2032                 IPW_CMD(RSN_CAPABILITIES);
2033                 IPW_CMD(RX_KEY);
2034                 IPW_CMD(CARD_DISABLE);
2035                 IPW_CMD(SEED_NUMBER);
2036                 IPW_CMD(TX_POWER);
2037                 IPW_CMD(COUNTRY_INFO);
2038                 IPW_CMD(AIRONET_INFO);
2039                 IPW_CMD(AP_TX_POWER);
2040                 IPW_CMD(CCKM_INFO);
2041                 IPW_CMD(CCX_VER_INFO);
2042                 IPW_CMD(SET_CALIBRATION);
2043                 IPW_CMD(SENSITIVITY_CALIB);
2044                 IPW_CMD(RETRY_LIMIT);
2045                 IPW_CMD(IPW_PRE_POWER_DOWN);
2046                 IPW_CMD(VAP_BEACON_TEMPLATE);
2047                 IPW_CMD(VAP_DTIM_PERIOD);
2048                 IPW_CMD(EXT_SUPPORTED_RATES);
2049                 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2050                 IPW_CMD(VAP_QUIET_INTERVALS);
2051                 IPW_CMD(VAP_CHANNEL_SWITCH);
2052                 IPW_CMD(VAP_MANDATORY_CHANNELS);
2053                 IPW_CMD(VAP_CELL_PWR_LIMIT);
2054                 IPW_CMD(VAP_CF_PARAM_SET);
2055                 IPW_CMD(VAP_SET_BEACONING_STATE);
2056                 IPW_CMD(MEASUREMENT);
2057                 IPW_CMD(POWER_CAPABILITY);
2058                 IPW_CMD(SUPPORTED_CHANNELS);
2059                 IPW_CMD(TPC_REPORT);
2060                 IPW_CMD(WME_INFO);
2061                 IPW_CMD(PRODUCTION_COMMAND);
2062         default:
2063                 return "UNKNOWN";
2064         }
2065 }
2066
2067 #define HOST_COMPLETE_TIMEOUT HZ
2068
2069 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2070 {
2071         int rc = 0;
2072         unsigned long flags;
2073
2074         spin_lock_irqsave(&priv->lock, flags);
2075         if (priv->status & STATUS_HCMD_ACTIVE) {
2076                 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2077                           get_cmd_string(cmd->cmd));
2078                 spin_unlock_irqrestore(&priv->lock, flags);
2079                 return -EAGAIN;
2080         }
2081
2082         priv->status |= STATUS_HCMD_ACTIVE;
2083
2084         if (priv->cmdlog) {
2085                 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2086                 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2087                 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2088                 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2089                        cmd->len);
2090                 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2091         }
2092
2093         IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2094                      get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2095                      priv->status);
2096
2097 #ifndef DEBUG_CMD_WEP_KEY
2098         if (cmd->cmd == IPW_CMD_WEP_KEY)
2099                 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2100         else
2101 #endif
2102                 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2103
2104         rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2105         if (rc) {
2106                 priv->status &= ~STATUS_HCMD_ACTIVE;
2107                 IPW_ERROR("Failed to send %s: Reason %d\n",
2108                           get_cmd_string(cmd->cmd), rc);
2109                 spin_unlock_irqrestore(&priv->lock, flags);
2110                 goto exit;
2111         }
2112         spin_unlock_irqrestore(&priv->lock, flags);
2113
2114         rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2115                                               !(priv->
2116                                                 status & STATUS_HCMD_ACTIVE),
2117                                               HOST_COMPLETE_TIMEOUT);
2118         if (rc == 0) {
2119                 spin_lock_irqsave(&priv->lock, flags);
2120                 if (priv->status & STATUS_HCMD_ACTIVE) {
2121                         IPW_ERROR("Failed to send %s: Command timed out.\n",
2122                                   get_cmd_string(cmd->cmd));
2123                         priv->status &= ~STATUS_HCMD_ACTIVE;
2124                         spin_unlock_irqrestore(&priv->lock, flags);
2125                         rc = -EIO;
2126                         goto exit;
2127                 }
2128                 spin_unlock_irqrestore(&priv->lock, flags);
2129         } else
2130                 rc = 0;
2131
2132         if (priv->status & STATUS_RF_KILL_HW) {
2133                 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2134                           get_cmd_string(cmd->cmd));
2135                 rc = -EIO;
2136                 goto exit;
2137         }
2138
2139       exit:
2140         if (priv->cmdlog) {
2141                 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2142                 priv->cmdlog_pos %= priv->cmdlog_len;
2143         }
2144         return rc;
2145 }
2146
2147 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2148 {
2149         struct host_cmd cmd = {
2150                 .cmd = command,
2151         };
2152
2153         return __ipw_send_cmd(priv, &cmd);
2154 }
2155
2156 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2157                             void *data)
2158 {
2159         struct host_cmd cmd = {
2160                 .cmd = command,
2161                 .len = len,
2162                 .param = data,
2163         };
2164
2165         return __ipw_send_cmd(priv, &cmd);
2166 }
2167
2168 static int ipw_send_host_complete(struct ipw_priv *priv)
2169 {
2170         if (!priv) {
2171                 IPW_ERROR("Invalid args\n");
2172                 return -1;
2173         }
2174
2175         return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2176 }
2177
2178 static int ipw_send_system_config(struct ipw_priv *priv)
2179 {
2180         return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2181                                 sizeof(priv->sys_config),
2182                                 &priv->sys_config);
2183 }
2184
2185 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2186 {
2187         if (!priv || !ssid) {
2188                 IPW_ERROR("Invalid args\n");
2189                 return -1;
2190         }
2191
2192         return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2193                                 ssid);
2194 }
2195
2196 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2197 {
2198         if (!priv || !mac) {
2199                 IPW_ERROR("Invalid args\n");
2200                 return -1;
2201         }
2202
2203         IPW_DEBUG_INFO("%s: Setting MAC to " MAC_FMT "\n",
2204                        priv->net_dev->name, MAC_ARG(mac));
2205
2206         return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2207 }
2208
2209 /*
2210  * NOTE: This must be executed from our workqueue as it results in udelay
2211  * being called which may corrupt the keyboard if executed on default
2212  * workqueue
2213  */
2214 static void ipw_adapter_restart(void *adapter)
2215 {
2216         struct ipw_priv *priv = adapter;
2217
2218         if (priv->status & STATUS_RF_KILL_MASK)
2219                 return;
2220
2221         ipw_down(priv);
2222
2223         if (priv->assoc_network &&
2224             (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2225                 ipw_remove_current_network(priv);
2226
2227         if (ipw_up(priv)) {
2228                 IPW_ERROR("Failed to up device\n");
2229                 return;
2230         }
2231 }
2232
2233 static void ipw_bg_adapter_restart(void *data)
2234 {
2235         struct ipw_priv *priv = data;
2236         mutex_lock(&priv->mutex);
2237         ipw_adapter_restart(data);
2238         mutex_unlock(&priv->mutex);
2239 }
2240
2241 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2242
2243 static void ipw_scan_check(void *data)
2244 {
2245         struct ipw_priv *priv = data;
2246         if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
2247                 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2248                                "adapter after (%dms).\n",
2249                                jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2250                 queue_work(priv->workqueue, &priv->adapter_restart);
2251         }
2252 }
2253
2254 static void ipw_bg_scan_check(void *data)
2255 {
2256         struct ipw_priv *priv = data;
2257         mutex_lock(&priv->mutex);
2258         ipw_scan_check(data);
2259         mutex_unlock(&priv->mutex);
2260 }
2261
2262 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2263                                      struct ipw_scan_request_ext *request)
2264 {
2265         return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2266                                 sizeof(*request), request);
2267 }
2268
2269 static int ipw_send_scan_abort(struct ipw_priv *priv)
2270 {
2271         if (!priv) {
2272                 IPW_ERROR("Invalid args\n");
2273                 return -1;
2274         }
2275
2276         return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2277 }
2278
2279 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2280 {
2281         struct ipw_sensitivity_calib calib = {
2282                 .beacon_rssi_raw = sens,
2283         };
2284
2285         return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2286                                 &calib);
2287 }
2288
2289 static int ipw_send_associate(struct ipw_priv *priv,
2290                               struct ipw_associate *associate)
2291 {
2292         struct ipw_associate tmp_associate;
2293
2294         if (!priv || !associate) {
2295                 IPW_ERROR("Invalid args\n");
2296                 return -1;
2297         }
2298
2299         memcpy(&tmp_associate, associate, sizeof(*associate));
2300         tmp_associate.policy_support =
2301             cpu_to_le16(tmp_associate.policy_support);
2302         tmp_associate.assoc_tsf_msw = cpu_to_le32(tmp_associate.assoc_tsf_msw);
2303         tmp_associate.assoc_tsf_lsw = cpu_to_le32(tmp_associate.assoc_tsf_lsw);
2304         tmp_associate.capability = cpu_to_le16(tmp_associate.capability);
2305         tmp_associate.listen_interval =
2306             cpu_to_le16(tmp_associate.listen_interval);
2307         tmp_associate.beacon_interval =
2308             cpu_to_le16(tmp_associate.beacon_interval);
2309         tmp_associate.atim_window = cpu_to_le16(tmp_associate.atim_window);
2310
2311         return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(tmp_associate),
2312                                 &tmp_associate);
2313 }
2314
2315 static int ipw_send_supported_rates(struct ipw_priv *priv,
2316                                     struct ipw_supported_rates *rates)
2317 {
2318         if (!priv || !rates) {
2319                 IPW_ERROR("Invalid args\n");
2320                 return -1;
2321         }
2322
2323         return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2324                                 rates);
2325 }
2326
2327 static int ipw_set_random_seed(struct ipw_priv *priv)
2328 {
2329         u32 val;
2330
2331         if (!priv) {
2332                 IPW_ERROR("Invalid args\n");
2333                 return -1;
2334         }
2335
2336         get_random_bytes(&val, sizeof(val));
2337
2338         return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2339 }
2340
2341 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2342 {
2343         if (!priv) {
2344                 IPW_ERROR("Invalid args\n");
2345                 return -1;
2346         }
2347
2348         return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(phy_off),
2349                                 &phy_off);
2350 }
2351
2352 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2353 {
2354         if (!priv || !power) {
2355                 IPW_ERROR("Invalid args\n");
2356                 return -1;
2357         }
2358
2359         return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2360 }
2361
2362 static int ipw_set_tx_power(struct ipw_priv *priv)
2363 {
2364         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
2365         struct ipw_tx_power tx_power;
2366         s8 max_power;
2367         int i;
2368
2369         memset(&tx_power, 0, sizeof(tx_power));
2370
2371         /* configure device for 'G' band */
2372         tx_power.ieee_mode = IPW_G_MODE;
2373         tx_power.num_channels = geo->bg_channels;
2374         for (i = 0; i < geo->bg_channels; i++) {
2375                 max_power = geo->bg[i].max_power;
2376                 tx_power.channels_tx_power[i].channel_number =
2377                     geo->bg[i].channel;
2378                 tx_power.channels_tx_power[i].tx_power = max_power ?
2379                     min(max_power, priv->tx_power) : priv->tx_power;
2380         }
2381         if (ipw_send_tx_power(priv, &tx_power))
2382                 return -EIO;
2383
2384         /* configure device to also handle 'B' band */
2385         tx_power.ieee_mode = IPW_B_MODE;
2386         if (ipw_send_tx_power(priv, &tx_power))
2387                 return -EIO;
2388
2389         /* configure device to also handle 'A' band */
2390         if (priv->ieee->abg_true) {
2391                 tx_power.ieee_mode = IPW_A_MODE;
2392                 tx_power.num_channels = geo->a_channels;
2393                 for (i = 0; i < tx_power.num_channels; i++) {
2394                         max_power = geo->a[i].max_power;
2395                         tx_power.channels_tx_power[i].channel_number =
2396                             geo->a[i].channel;
2397                         tx_power.channels_tx_power[i].tx_power = max_power ?
2398                             min(max_power, priv->tx_power) : priv->tx_power;
2399                 }
2400                 if (ipw_send_tx_power(priv, &tx_power))
2401                         return -EIO;
2402         }
2403         return 0;
2404 }
2405
2406 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2407 {
2408         struct ipw_rts_threshold rts_threshold = {
2409                 .rts_threshold = rts,
2410         };
2411
2412         if (!priv) {
2413                 IPW_ERROR("Invalid args\n");
2414                 return -1;
2415         }
2416
2417         return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2418                                 sizeof(rts_threshold), &rts_threshold);
2419 }
2420
2421 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2422 {
2423         struct ipw_frag_threshold frag_threshold = {
2424                 .frag_threshold = frag,
2425         };
2426
2427         if (!priv) {
2428                 IPW_ERROR("Invalid args\n");
2429                 return -1;
2430         }
2431
2432         return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2433                                 sizeof(frag_threshold), &frag_threshold);
2434 }
2435
2436 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2437 {
2438         u32 param;
2439
2440         if (!priv) {
2441                 IPW_ERROR("Invalid args\n");
2442                 return -1;
2443         }
2444
2445         /* If on battery, set to 3, if AC set to CAM, else user
2446          * level */
2447         switch (mode) {
2448         case IPW_POWER_BATTERY:
2449                 param = IPW_POWER_INDEX_3;
2450                 break;
2451         case IPW_POWER_AC:
2452                 param = IPW_POWER_MODE_CAM;
2453                 break;
2454         default:
2455                 param = mode;
2456                 break;
2457         }
2458
2459         return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2460                                 &param);
2461 }
2462
2463 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2464 {
2465         struct ipw_retry_limit retry_limit = {
2466                 .short_retry_limit = slimit,
2467                 .long_retry_limit = llimit
2468         };
2469
2470         if (!priv) {
2471                 IPW_ERROR("Invalid args\n");
2472                 return -1;
2473         }
2474
2475         return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2476                                 &retry_limit);
2477 }
2478
2479 /*
2480  * The IPW device contains a Microwire compatible EEPROM that stores
2481  * various data like the MAC address.  Usually the firmware has exclusive
2482  * access to the eeprom, but during device initialization (before the
2483  * device driver has sent the HostComplete command to the firmware) the
2484  * device driver has read access to the EEPROM by way of indirect addressing
2485  * through a couple of memory mapped registers.
2486  *
2487  * The following is a simplified implementation for pulling data out of the
2488  * the eeprom, along with some helper functions to find information in
2489  * the per device private data's copy of the eeprom.
2490  *
2491  * NOTE: To better understand how these functions work (i.e what is a chip
2492  *       select and why do have to keep driving the eeprom clock?), read
2493  *       just about any data sheet for a Microwire compatible EEPROM.
2494  */
2495
2496 /* write a 32 bit value into the indirect accessor register */
2497 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2498 {
2499         ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2500
2501         /* the eeprom requires some time to complete the operation */
2502         udelay(p->eeprom_delay);
2503
2504         return;
2505 }
2506
2507 /* perform a chip select operation */
2508 static void eeprom_cs(struct ipw_priv *priv)
2509 {
2510         eeprom_write_reg(priv, 0);
2511         eeprom_write_reg(priv, EEPROM_BIT_CS);
2512         eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2513         eeprom_write_reg(priv, EEPROM_BIT_CS);
2514 }
2515
2516 /* perform a chip select operation */
2517 static void eeprom_disable_cs(struct ipw_priv *priv)
2518 {
2519         eeprom_write_reg(priv, EEPROM_BIT_CS);
2520         eeprom_write_reg(priv, 0);
2521         eeprom_write_reg(priv, EEPROM_BIT_SK);
2522 }
2523
2524 /* push a single bit down to the eeprom */
2525 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2526 {
2527         int d = (bit ? EEPROM_BIT_DI : 0);
2528         eeprom_write_reg(p, EEPROM_BIT_CS | d);
2529         eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2530 }
2531
2532 /* push an opcode followed by an address down to the eeprom */
2533 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2534 {
2535         int i;
2536
2537         eeprom_cs(priv);
2538         eeprom_write_bit(priv, 1);
2539         eeprom_write_bit(priv, op & 2);
2540         eeprom_write_bit(priv, op & 1);
2541         for (i = 7; i >= 0; i--) {
2542                 eeprom_write_bit(priv, addr & (1 << i));
2543         }
2544 }
2545
2546 /* pull 16 bits off the eeprom, one bit at a time */
2547 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2548 {
2549         int i;
2550         u16 r = 0;
2551
2552         /* Send READ Opcode */
2553         eeprom_op(priv, EEPROM_CMD_READ, addr);
2554
2555         /* Send dummy bit */
2556         eeprom_write_reg(priv, EEPROM_BIT_CS);
2557
2558         /* Read the byte off the eeprom one bit at a time */
2559         for (i = 0; i < 16; i++) {
2560                 u32 data = 0;
2561                 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2562                 eeprom_write_reg(priv, EEPROM_BIT_CS);
2563                 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2564                 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2565         }
2566
2567         /* Send another dummy bit */
2568         eeprom_write_reg(priv, 0);
2569         eeprom_disable_cs(priv);
2570
2571         return r;
2572 }
2573
2574 /* helper function for pulling the mac address out of the private */
2575 /* data's copy of the eeprom data                                 */
2576 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2577 {
2578         memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2579 }
2580
2581 /*
2582  * Either the device driver (i.e. the host) or the firmware can
2583  * load eeprom data into the designated region in SRAM.  If neither
2584  * happens then the FW will shutdown with a fatal error.
2585  *
2586  * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2587  * bit needs region of shared SRAM needs to be non-zero.
2588  */
2589 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2590 {
2591         int i;
2592         u16 *eeprom = (u16 *) priv->eeprom;
2593
2594         IPW_DEBUG_TRACE(">>\n");
2595
2596         /* read entire contents of eeprom into private buffer */
2597         for (i = 0; i < 128; i++)
2598                 eeprom[i] = le16_to_cpu(eeprom_read_u16(priv, (u8) i));
2599
2600         /*
2601            If the data looks correct, then copy it to our private
2602            copy.  Otherwise let the firmware know to perform the operation
2603            on its own.
2604          */
2605         if (priv->eeprom[EEPROM_VERSION] != 0) {
2606                 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2607
2608                 /* write the eeprom data to sram */
2609                 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2610                         ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2611
2612                 /* Do not load eeprom data on fatal error or suspend */
2613                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2614         } else {
2615                 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2616
2617                 /* Load eeprom data on fatal error or suspend */
2618                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2619         }
2620
2621         IPW_DEBUG_TRACE("<<\n");
2622 }
2623
2624 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2625 {
2626         count >>= 2;
2627         if (!count)
2628                 return;
2629         _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2630         while (count--)
2631                 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2632 }
2633
2634 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2635 {
2636         ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2637                         CB_NUMBER_OF_ELEMENTS_SMALL *
2638                         sizeof(struct command_block));
2639 }
2640
2641 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2642 {                               /* start dma engine but no transfers yet */
2643
2644         IPW_DEBUG_FW(">> : \n");
2645
2646         /* Start the dma */
2647         ipw_fw_dma_reset_command_blocks(priv);
2648
2649         /* Write CB base address */
2650         ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2651
2652         IPW_DEBUG_FW("<< : \n");
2653         return 0;
2654 }
2655
2656 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2657 {
2658         u32 control = 0;
2659
2660         IPW_DEBUG_FW(">> :\n");
2661
2662         /* set the Stop and Abort bit */
2663         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2664         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2665         priv->sram_desc.last_cb_index = 0;
2666
2667         IPW_DEBUG_FW("<< \n");
2668 }
2669
2670 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2671                                           struct command_block *cb)
2672 {
2673         u32 address =
2674             IPW_SHARED_SRAM_DMA_CONTROL +
2675             (sizeof(struct command_block) * index);
2676         IPW_DEBUG_FW(">> :\n");
2677
2678         ipw_write_indirect(priv, address, (u8 *) cb,
2679                            (int)sizeof(struct command_block));
2680
2681         IPW_DEBUG_FW("<< :\n");
2682         return 0;
2683
2684 }
2685
2686 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2687 {
2688         u32 control = 0;
2689         u32 index = 0;
2690
2691         IPW_DEBUG_FW(">> :\n");
2692
2693         for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2694                 ipw_fw_dma_write_command_block(priv, index,
2695                                                &priv->sram_desc.cb_list[index]);
2696
2697         /* Enable the DMA in the CSR register */
2698         ipw_clear_bit(priv, IPW_RESET_REG,
2699                       IPW_RESET_REG_MASTER_DISABLED |
2700                       IPW_RESET_REG_STOP_MASTER);
2701
2702         /* Set the Start bit. */
2703         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2704         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2705
2706         IPW_DEBUG_FW("<< :\n");
2707         return 0;
2708 }
2709
2710 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2711 {
2712         u32 address;
2713         u32 register_value = 0;
2714         u32 cb_fields_address = 0;
2715
2716         IPW_DEBUG_FW(">> :\n");
2717         address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2718         IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);
2719
2720         /* Read the DMA Controlor register */
2721         register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2722         IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x \n", register_value);
2723
2724         /* Print the CB values */
2725         cb_fields_address = address;
2726         register_value = ipw_read_reg32(priv, cb_fields_address);
2727         IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);
2728
2729         cb_fields_address += sizeof(u32);
2730         register_value = ipw_read_reg32(priv, cb_fields_address);
2731         IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);
2732
2733         cb_fields_address += sizeof(u32);
2734         register_value = ipw_read_reg32(priv, cb_fields_address);
2735         IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
2736                           register_value);
2737
2738         cb_fields_address += sizeof(u32);
2739         register_value = ipw_read_reg32(priv, cb_fields_address);
2740         IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);
2741
2742         IPW_DEBUG_FW(">> :\n");
2743 }
2744
2745 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2746 {
2747         u32 current_cb_address = 0;
2748         u32 current_cb_index = 0;
2749
2750         IPW_DEBUG_FW("<< :\n");
2751         current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2752
2753         current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2754             sizeof(struct command_block);
2755
2756         IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
2757                           current_cb_index, current_cb_address);
2758
2759         IPW_DEBUG_FW(">> :\n");
2760         return current_cb_index;
2761
2762 }
2763
2764 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2765                                         u32 src_address,
2766                                         u32 dest_address,
2767                                         u32 length,
2768                                         int interrupt_enabled, int is_last)
2769 {
2770
2771         u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2772             CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2773             CB_DEST_SIZE_LONG;
2774         struct command_block *cb;
2775         u32 last_cb_element = 0;
2776
2777         IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2778                           src_address, dest_address, length);
2779
2780         if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2781                 return -1;
2782
2783         last_cb_element = priv->sram_desc.last_cb_index;
2784         cb = &priv->sram_desc.cb_list[last_cb_element];
2785         priv->sram_desc.last_cb_index++;
2786
2787         /* Calculate the new CB control word */
2788         if (interrupt_enabled)
2789                 control |= CB_INT_ENABLED;
2790
2791         if (is_last)
2792                 control |= CB_LAST_VALID;
2793
2794         control |= length;
2795
2796         /* Calculate the CB Element's checksum value */
2797         cb->status = control ^ src_address ^ dest_address;
2798
2799         /* Copy the Source and Destination addresses */
2800         cb->dest_addr = dest_address;
2801         cb->source_addr = src_address;
2802
2803         /* Copy the Control Word last */
2804         cb->control = control;
2805
2806         return 0;
2807 }
2808
2809 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv,
2810                                  u32 src_phys, u32 dest_address, u32 length)
2811 {
2812         u32 bytes_left = length;
2813         u32 src_offset = 0;
2814         u32 dest_offset = 0;
2815         int status = 0;
2816         IPW_DEBUG_FW(">> \n");
2817         IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n",
2818                           src_phys, dest_address, length);
2819         while (bytes_left > CB_MAX_LENGTH) {
2820                 status = ipw_fw_dma_add_command_block(priv,
2821                                                       src_phys + src_offset,
2822                                                       dest_address +
2823                                                       dest_offset,
2824                                                       CB_MAX_LENGTH, 0, 0);
2825                 if (status) {
2826                         IPW_DEBUG_FW_INFO(": Failed\n");
2827                         return -1;
2828                 } else
2829                         IPW_DEBUG_FW_INFO(": Added new cb\n");
2830
2831                 src_offset += CB_MAX_LENGTH;
2832                 dest_offset += CB_MAX_LENGTH;
2833                 bytes_left -= CB_MAX_LENGTH;
2834         }
2835
2836         /* add the buffer tail */
2837         if (bytes_left > 0) {
2838                 status =
2839                     ipw_fw_dma_add_command_block(priv, src_phys + src_offset,
2840                                                  dest_address + dest_offset,
2841                                                  bytes_left, 0, 0);
2842                 if (status) {
2843                         IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n");
2844                         return -1;
2845                 } else
2846                         IPW_DEBUG_FW_INFO
2847                             (": Adding new cb - the buffer tail\n");
2848         }
2849
2850         IPW_DEBUG_FW("<< \n");
2851         return 0;
2852 }
2853
2854 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2855 {
2856         u32 current_index = 0, previous_index;
2857         u32 watchdog = 0;
2858
2859         IPW_DEBUG_FW(">> : \n");
2860
2861         current_index = ipw_fw_dma_command_block_index(priv);
2862         IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2863                           (int)priv->sram_desc.last_cb_index);
2864
2865         while (current_index < priv->sram_desc.last_cb_index) {
2866                 udelay(50);
2867                 previous_index = current_index;
2868                 current_index = ipw_fw_dma_command_block_index(priv);
2869
2870                 if (previous_index < current_index) {
2871                         watchdog = 0;
2872                         continue;
2873                 }
2874                 if (++watchdog > 400) {
2875                         IPW_DEBUG_FW_INFO("Timeout\n");
2876                         ipw_fw_dma_dump_command_block(priv);
2877                         ipw_fw_dma_abort(priv);
2878                         return -1;
2879                 }
2880         }
2881
2882         ipw_fw_dma_abort(priv);
2883
2884         /*Disable the DMA in the CSR register */
2885         ipw_set_bit(priv, IPW_RESET_REG,
2886                     IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2887
2888         IPW_DEBUG_FW("<< dmaWaitSync \n");
2889         return 0;
2890 }
2891
2892 static void ipw_remove_current_network(struct ipw_priv *priv)
2893 {
2894         struct list_head *element, *safe;
2895         struct ieee80211_network *network = NULL;
2896         unsigned long flags;
2897
2898         spin_lock_irqsave(&priv->ieee->lock, flags);
2899         list_for_each_safe(element, safe, &priv->ieee->network_list) {
2900                 network = list_entry(element, struct ieee80211_network, list);
2901                 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
2902                         list_del(element);
2903                         list_add_tail(&network->list,
2904                                       &priv->ieee->network_free_list);
2905                 }
2906         }
2907         spin_unlock_irqrestore(&priv->ieee->lock, flags);
2908 }
2909
2910 /**
2911  * Check that card is still alive.
2912  * Reads debug register from domain0.
2913  * If card is present, pre-defined value should
2914  * be found there.
2915  *
2916  * @param priv
2917  * @return 1 if card is present, 0 otherwise
2918  */
2919 static inline int ipw_alive(struct ipw_priv *priv)
2920 {
2921         return ipw_read32(priv, 0x90) == 0xd55555d5;
2922 }
2923
2924 /* timeout in msec, attempted in 10-msec quanta */
2925 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
2926                                int timeout)
2927 {
2928         int i = 0;
2929
2930         do {
2931                 if ((ipw_read32(priv, addr) & mask) == mask)
2932                         return i;
2933                 mdelay(10);
2934                 i += 10;
2935         } while (i < timeout);
2936
2937         return -ETIME;
2938 }
2939
2940 /* These functions load the firmware and micro code for the operation of
2941  * the ipw hardware.  It assumes the buffer has all the bits for the
2942  * image and the caller is handling the memory allocation and clean up.
2943  */
2944
2945 static int ipw_stop_master(struct ipw_priv *priv)
2946 {
2947         int rc;
2948
2949         IPW_DEBUG_TRACE(">> \n");
2950         /* stop master. typical delay - 0 */
2951         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
2952
2953         /* timeout is in msec, polled in 10-msec quanta */
2954         rc = ipw_poll_bit(priv, IPW_RESET_REG,
2955                           IPW_RESET_REG_MASTER_DISABLED, 100);
2956         if (rc < 0) {
2957                 IPW_ERROR("wait for stop master failed after 100ms\n");
2958                 return -1;
2959         }
2960
2961         IPW_DEBUG_INFO("stop master %dms\n", rc);
2962
2963         return rc;
2964 }
2965
2966 static void ipw_arc_release(struct ipw_priv *priv)
2967 {
2968         IPW_DEBUG_TRACE(">> \n");
2969         mdelay(5);
2970
2971         ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
2972
2973         /* no one knows timing, for safety add some delay */
2974         mdelay(5);
2975 }
2976
2977 struct fw_chunk {
2978         u32 address;
2979         u32 length;
2980 };
2981
2982 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
2983 {
2984         int rc = 0, i, addr;
2985         u8 cr = 0;
2986         u16 *image;
2987
2988         image = (u16 *) data;
2989
2990         IPW_DEBUG_TRACE(">> \n");
2991
2992         rc = ipw_stop_master(priv);
2993
2994         if (rc < 0)
2995                 return rc;
2996
2997         for (addr = IPW_SHARED_LOWER_BOUND;
2998              addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
2999                 ipw_write32(priv, addr, 0);
3000         }
3001
3002         /* no ucode (yet) */
3003         memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3004         /* destroy DMA queues */
3005         /* reset sequence */
3006
3007         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3008         ipw_arc_release(priv);
3009         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3010         mdelay(1);
3011
3012         /* reset PHY */
3013         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3014         mdelay(1);
3015
3016         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3017         mdelay(1);
3018
3019         /* enable ucode store */
3020         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3021         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3022         mdelay(1);
3023
3024         /* write ucode */
3025         /**
3026          * @bug
3027          * Do NOT set indirect address register once and then
3028          * store data to indirect data register in the loop.
3029          * It seems very reasonable, but in this case DINO do not
3030          * accept ucode. It is essential to set address each time.
3031          */
3032         /* load new ipw uCode */
3033         for (i = 0; i < len / 2; i++)
3034                 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3035                                 cpu_to_le16(image[i]));
3036
3037         /* enable DINO */
3038         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3039         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3040
3041         /* this is where the igx / win driver deveates from the VAP driver. */
3042
3043         /* wait for alive response */
3044         for (i = 0; i < 100; i++) {
3045                 /* poll for incoming data */
3046                 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3047                 if (cr & DINO_RXFIFO_DATA)
3048                         break;
3049                 mdelay(1);
3050         }
3051
3052         if (cr & DINO_RXFIFO_DATA) {
3053                 /* alive_command_responce size is NOT multiple of 4 */
3054                 u32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3055
3056                 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3057                         response_buffer[i] =
3058                             le32_to_cpu(ipw_read_reg32(priv,
3059                                                        IPW_BASEBAND_RX_FIFO_READ));
3060                 memcpy(&priv->dino_alive, response_buffer,
3061                        sizeof(priv->dino_alive));
3062                 if (priv->dino_alive.alive_command == 1
3063                     && priv->dino_alive.ucode_valid == 1) {
3064                         rc = 0;
3065                         IPW_DEBUG_INFO
3066                             ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3067                              "of %02d/%02d/%02d %02d:%02d\n",
3068                              priv->dino_alive.software_revision,
3069                              priv->dino_alive.software_revision,
3070                              priv->dino_alive.device_identifier,
3071                              priv->dino_alive.device_identifier,
3072                              priv->dino_alive.time_stamp[0],
3073                              priv->dino_alive.time_stamp[1],
3074                              priv->dino_alive.time_stamp[2],
3075                              priv->dino_alive.time_stamp[3],
3076                              priv->dino_alive.time_stamp[4]);
3077                 } else {
3078                         IPW_DEBUG_INFO("Microcode is not alive\n");
3079                         rc = -EINVAL;
3080                 }
3081         } else {
3082                 IPW_DEBUG_INFO("No alive response from DINO\n");
3083                 rc = -ETIME;
3084         }
3085
3086         /* disable DINO, otherwise for some reason
3087            firmware have problem getting alive resp. */
3088         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3089
3090         return rc;
3091 }
3092
3093 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3094 {
3095         int rc = -1;
3096         int offset = 0;
3097         struct fw_chunk *chunk;
3098         dma_addr_t shared_phys;
3099         u8 *shared_virt;
3100
3101         IPW_DEBUG_TRACE("<< : \n");
3102         shared_virt = pci_alloc_consistent(priv->pci_dev, len, &shared_phys);
3103
3104         if (!shared_virt)
3105                 return -ENOMEM;
3106
3107         memmove(shared_virt, data, len);
3108
3109         /* Start the Dma */
3110         rc = ipw_fw_dma_enable(priv);
3111
3112         if (priv->sram_desc.last_cb_index > 0) {
3113                 /* the DMA is already ready this would be a bug. */
3114                 BUG();
3115                 goto out;
3116         }
3117
3118         do {
3119                 chunk = (struct fw_chunk *)(data + offset);
3120                 offset += sizeof(struct fw_chunk);
3121                 /* build DMA packet and queue up for sending */
3122                 /* dma to chunk->address, the chunk->length bytes from data +
3123                  * offeset*/
3124                 /* Dma loading */
3125                 rc = ipw_fw_dma_add_buffer(priv, shared_phys + offset,
3126                                            le32_to_cpu(chunk->address),
3127                                            le32_to_cpu(chunk->length));
3128                 if (rc) {
3129                         IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3130                         goto out;
3131                 }
3132
3133                 offset += le32_to_cpu(chunk->length);
3134         } while (offset < len);
3135
3136         /* Run the DMA and wait for the answer */
3137         rc = ipw_fw_dma_kick(priv);
3138         if (rc) {
3139                 IPW_ERROR("dmaKick Failed\n");
3140                 goto out;
3141         }
3142
3143         rc = ipw_fw_dma_wait(priv);
3144         if (rc) {
3145                 IPW_ERROR("dmaWaitSync Failed\n");
3146                 goto out;
3147         }
3148       out:
3149         pci_free_consistent(priv->pci_dev, len, shared_virt, shared_phys);
3150         return rc;
3151 }
3152
3153 /* stop nic */
3154 static int ipw_stop_nic(struct ipw_priv *priv)
3155 {
3156         int rc = 0;
3157
3158         /* stop */
3159         ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3160
3161         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3162                           IPW_RESET_REG_MASTER_DISABLED, 500);
3163         if (rc < 0) {
3164                 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3165                 return rc;
3166         }
3167
3168         ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3169
3170         return rc;
3171 }
3172
3173 static void ipw_start_nic(struct ipw_priv *priv)
3174 {
3175         IPW_DEBUG_TRACE(">>\n");
3176
3177         /* prvHwStartNic  release ARC */
3178         ipw_clear_bit(priv, IPW_RESET_REG,
3179                       IPW_RESET_REG_MASTER_DISABLED |
3180                       IPW_RESET_REG_STOP_MASTER |
3181                       CBD_RESET_REG_PRINCETON_RESET);
3182
3183         /* enable power management */
3184         ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3185                     IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3186
3187         IPW_DEBUG_TRACE("<<\n");
3188 }
3189
3190 static int ipw_init_nic(struct ipw_priv *priv)
3191 {
3192         int rc;
3193
3194         IPW_DEBUG_TRACE(">>\n");
3195         /* reset */
3196         /*prvHwInitNic */
3197         /* set "initialization complete" bit to move adapter to D0 state */
3198         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3199
3200         /* low-level PLL activation */
3201         ipw_write32(priv, IPW_READ_INT_REGISTER,
3202                     IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3203
3204         /* wait for clock stabilization */
3205         rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3206                           IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3207         if (rc < 0)
3208                 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3209
3210         /* assert SW reset */
3211         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3212
3213         udelay(10);
3214
3215         /* set "initialization complete" bit to move adapter to D0 state */
3216         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3217
3218         IPW_DEBUG_TRACE(">>\n");
3219         return 0;
3220 }
3221
3222 /* Call this function from process context, it will sleep in request_firmware.
3223  * Probe is an ok place to call this from.
3224  */
3225 static int ipw_reset_nic(struct ipw_priv *priv)
3226 {
3227         int rc = 0;
3228         unsigned long flags;
3229
3230         IPW_DEBUG_TRACE(">>\n");
3231
3232         rc = ipw_init_nic(priv);
3233
3234         spin_lock_irqsave(&priv->lock, flags);
3235         /* Clear the 'host command active' bit... */
3236         priv->status &= ~STATUS_HCMD_ACTIVE;
3237         wake_up_interruptible(&priv->wait_command_queue);
3238         priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3239         wake_up_interruptible(&priv->wait_state);
3240         spin_unlock_irqrestore(&priv->lock, flags);
3241
3242         IPW_DEBUG_TRACE("<<\n");
3243         return rc;
3244 }
3245
3246
3247 struct ipw_fw {
3248         __le32 ver;
3249         __le32 boot_size;
3250         __le32 ucode_size;
3251         __le32 fw_size;
3252         u8 data[0];
3253 };
3254
3255 static int ipw_get_fw(struct ipw_priv *priv,
3256                       const struct firmware **raw, const char *name)
3257 {
3258         struct ipw_fw *fw;
3259         int rc;
3260
3261         /* ask firmware_class module to get the boot firmware off disk */
3262         rc = request_firmware(raw, name, &priv->pci_dev->dev);
3263         if (rc < 0) {
3264                 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3265                 return rc;
3266         }
3267
3268         if ((*raw)->size < sizeof(*fw)) {
3269                 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3270                 return -EINVAL;
3271         }
3272
3273         fw = (void *)(*raw)->data;
3274
3275         if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3276             le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3277                 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3278                           name, (*raw)->size);
3279                 return -EINVAL;
3280         }
3281
3282         IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3283                        name,
3284                        le32_to_cpu(fw->ver) >> 16,
3285                        le32_to_cpu(fw->ver) & 0xff,
3286                        (*raw)->size - sizeof(*fw));
3287         return 0;
3288 }
3289
3290 #define IPW_RX_BUF_SIZE (3000)
3291
3292 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3293                                       struct ipw_rx_queue *rxq)
3294 {
3295         unsigned long flags;
3296         int i;
3297
3298         spin_lock_irqsave(&rxq->lock, flags);
3299
3300         INIT_LIST_HEAD(&rxq->rx_free);
3301         INIT_LIST_HEAD(&rxq->rx_used);
3302
3303         /* Fill the rx_used queue with _all_ of the Rx buffers */
3304         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3305                 /* In the reset function, these buffers may have been allocated
3306                  * to an SKB, so we need to unmap and free potential storage */
3307                 if (rxq->pool[i].skb != NULL) {
3308                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3309                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3310                         dev_kfree_skb(rxq->pool[i].skb);
3311                         rxq->pool[i].skb = NULL;
3312                 }
3313                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3314         }
3315
3316         /* Set us so that we have processed and used all buffers, but have
3317          * not restocked the Rx queue with fresh buffers */
3318         rxq->read = rxq->write = 0;
3319         rxq->processed = RX_QUEUE_SIZE - 1;
3320         rxq->free_count = 0;
3321         spin_unlock_irqrestore(&rxq->lock, flags);
3322 }
3323
3324 #ifdef CONFIG_PM
3325 static int fw_loaded = 0;
3326 static const struct firmware *raw = NULL;
3327
3328 static void free_firmware(void)
3329 {
3330         if (fw_loaded) {
3331                 release_firmware(raw);
3332                 raw = NULL;
3333                 fw_loaded = 0;
3334         }
3335 }
3336 #else
3337 #define free_firmware() do {} while (0)
3338 #endif
3339
3340 static int ipw_load(struct ipw_priv *priv)
3341 {
3342 #ifndef CONFIG_PM
3343         const struct firmware *raw = NULL;
3344 #endif
3345         struct ipw_fw *fw;
3346         u8 *boot_img, *ucode_img, *fw_img;
3347         u8 *name = NULL;
3348         int rc = 0, retries = 3;
3349
3350         switch (priv->ieee->iw_mode) {
3351         case IW_MODE_ADHOC:
3352                 name = "ipw2200-ibss.fw";
3353                 break;
3354 #ifdef CONFIG_IPW2200_MONITOR
3355         case IW_MODE_MONITOR:
3356                 name = "ipw2200-sniffer.fw";
3357                 break;
3358 #endif
3359         case IW_MODE_INFRA:
3360                 name = "ipw2200-bss.fw";
3361                 break;
3362         }
3363
3364         if (!name) {
3365                 rc = -EINVAL;
3366                 goto error;
3367         }
3368
3369 #ifdef CONFIG_PM
3370         if (!fw_loaded) {
3371 #endif
3372                 rc = ipw_get_fw(priv, &raw, name);
3373                 if (rc < 0)
3374                         goto error;
3375 #ifdef CONFIG_PM
3376         }
3377 #endif
3378
3379         fw = (void *)raw->data;
3380         boot_img = &fw->data[0];
3381         ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3382         fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3383                            le32_to_cpu(fw->ucode_size)];
3384
3385         if (rc < 0)
3386                 goto error;
3387
3388         if (!priv->rxq)
3389                 priv->rxq = ipw_rx_queue_alloc(priv);
3390         else
3391                 ipw_rx_queue_reset(priv, priv->rxq);
3392         if (!priv->rxq) {
3393                 IPW_ERROR("Unable to initialize Rx queue\n");
3394                 goto error;
3395         }
3396
3397       retry:
3398         /* Ensure interrupts are disabled */
3399         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3400         priv->status &= ~STATUS_INT_ENABLED;
3401
3402         /* ack pending interrupts */
3403         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3404
3405         ipw_stop_nic(priv);
3406
3407         rc = ipw_reset_nic(priv);
3408         if (rc < 0) {
3409                 IPW_ERROR("Unable to reset NIC\n");
3410                 goto error;
3411         }
3412
3413         ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3414                         IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3415
3416         /* DMA the initial boot firmware into the device */
3417         rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3418         if (rc < 0) {
3419                 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3420                 goto error;
3421         }
3422
3423         /* kick start the device */
3424         ipw_start_nic(priv);
3425
3426         /* wait for the device to finish its initial startup sequence */
3427         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3428                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3429         if (rc < 0) {
3430                 IPW_ERROR("device failed to boot initial fw image\n");
3431                 goto error;
3432         }
3433         IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3434
3435         /* ack fw init done interrupt */
3436         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3437
3438         /* DMA the ucode into the device */
3439         rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3440         if (rc < 0) {
3441                 IPW_ERROR("Unable to load ucode: %d\n", rc);
3442                 goto error;
3443         }
3444
3445         /* stop nic */
3446         ipw_stop_nic(priv);
3447
3448         /* DMA bss firmware into the device */
3449         rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3450         if (rc < 0) {
3451                 IPW_ERROR("Unable to load firmware: %d\n", rc);
3452                 goto error;
3453         }
3454 #ifdef CONFIG_PM
3455         fw_loaded = 1;
3456 #endif
3457
3458         ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3459
3460         rc = ipw_queue_reset(priv);
3461         if (rc < 0) {
3462                 IPW_ERROR("Unable to initialize queues\n");
3463                 goto error;
3464         }
3465
3466         /* Ensure interrupts are disabled */
3467         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3468         /* ack pending interrupts */
3469         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3470
3471         /* kick start the device */
3472         ipw_start_nic(priv);
3473
3474         if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3475                 if (retries > 0) {
3476                         IPW_WARNING("Parity error.  Retrying init.\n");
3477                         retries--;
3478                         goto retry;
3479                 }
3480
3481                 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3482                 rc = -EIO;
3483                 goto error;
3484         }
3485
3486         /* wait for the device */
3487         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3488                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3489         if (rc < 0) {
3490                 IPW_ERROR("device failed to start within 500ms\n");
3491                 goto error;
3492         }
3493         IPW_DEBUG_INFO("device response after %dms\n", rc);
3494
3495         /* ack fw init done interrupt */
3496         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3497
3498         /* read eeprom data and initialize the eeprom region of sram */
3499         priv->eeprom_delay = 1;
3500         ipw_eeprom_init_sram(priv);
3501
3502         /* enable interrupts */
3503         ipw_enable_interrupts(priv);
3504
3505         /* Ensure our queue has valid packets */
3506         ipw_rx_queue_replenish(priv);
3507
3508         ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3509
3510         /* ack pending interrupts */
3511         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3512
3513 #ifndef CONFIG_PM
3514         release_firmware(raw);
3515 #endif
3516         return 0;
3517
3518       error:
3519         if (priv->rxq) {
3520                 ipw_rx_queue_free(priv, priv->rxq);
3521                 priv->rxq = NULL;
3522         }
3523         ipw_tx_queue_free(priv);
3524         if (raw)
3525                 release_firmware(raw);
3526 #ifdef CONFIG_PM
3527         fw_loaded = 0;
3528         raw = NULL;
3529 #endif
3530
3531         return rc;
3532 }
3533
3534 /**
3535  * DMA services
3536  *
3537  * Theory of operation
3538  *
3539  * A queue is a circular buffers with 'Read' and 'Write' pointers.
3540  * 2 empty entries always kept in the buffer to protect from overflow.
3541  *
3542  * For Tx queue, there are low mark and high mark limits. If, after queuing
3543  * the packet for Tx, free space become < low mark, Tx queue stopped. When
3544  * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3545  * Tx queue resumed.
3546  *
3547  * The IPW operates with six queues, one receive queue in the device's
3548  * sram, one transmit queue for sending commands to the device firmware,
3549  * and four transmit queues for data.
3550  *
3551  * The four transmit queues allow for performing quality of service (qos)
3552  * transmissions as per the 802.11 protocol.  Currently Linux does not
3553  * provide a mechanism to the user for utilizing prioritized queues, so
3554  * we only utilize the first data transmit queue (queue1).
3555  */
3556
3557 /**
3558  * Driver allocates buffers of this size for Rx
3559  */
3560
3561 static inline int ipw_queue_space(const struct clx2_queue *q)
3562 {
3563         int s = q->last_used - q->first_empty;
3564         if (s <= 0)
3565                 s += q->n_bd;
3566         s -= 2;                 /* keep some reserve to not confuse empty and full situations */
3567         if (s < 0)
3568                 s = 0;
3569         return s;
3570 }
3571
3572 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3573 {
3574         return (++index == n_bd) ? 0 : index;
3575 }
3576
3577 /**
3578  * Initialize common DMA queue structure
3579  *
3580  * @param q                queue to init
3581  * @param count            Number of BD's to allocate. Should be power of 2
3582  * @param read_register    Address for 'read' register
3583  *                         (not offset within BAR, full address)
3584  * @param write_register   Address for 'write' register
3585  *                         (not offset within BAR, full address)
3586  * @param base_register    Address for 'base' register
3587  *                         (not offset within BAR, full address)
3588  * @param size             Address for 'size' register
3589  *                         (not offset within BAR, full address)
3590  */
3591 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3592                            int count, u32 read, u32 write, u32 base, u32 size)
3593 {
3594         q->n_bd = count;
3595
3596         q->low_mark = q->n_bd / 4;
3597         if (q->low_mark < 4)
3598                 q->low_mark = 4;
3599
3600         q->high_mark = q->n_bd / 8;
3601         if (q->high_mark < 2)
3602                 q->high_mark = 2;
3603
3604         q->first_empty = q->last_used = 0;
3605         q->reg_r = read;
3606         q->reg_w = write;
3607
3608         ipw_write32(priv, base, q->dma_addr);
3609         ipw_write32(priv, size, count);
3610         ipw_write32(priv, read, 0);
3611         ipw_write32(priv, write, 0);
3612
3613         _ipw_read32(priv, 0x90);
3614 }
3615
3616 static int ipw_queue_tx_init(struct ipw_priv *priv,
3617                              struct clx2_tx_queue *q,
3618                              int count, u32 read, u32 write, u32 base, u32 size)
3619 {
3620         struct pci_dev *dev = priv->pci_dev;
3621
3622         q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3623         if (!q->txb) {
3624                 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3625                 return -ENOMEM;
3626         }
3627
3628         q->bd =
3629             pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3630         if (!q->bd) {
3631                 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3632                           sizeof(q->bd[0]) * count);
3633                 kfree(q->txb);
3634                 q->txb = NULL;
3635                 return -ENOMEM;
3636         }
3637
3638         ipw_queue_init(priv, &q->q, count, read, write, base, size);
3639         return 0;
3640 }
3641
3642 /**
3643  * Free one TFD, those at index [txq->q.last_used].
3644  * Do NOT advance any indexes
3645  *
3646  * @param dev
3647  * @param txq
3648  */
3649 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3650                                   struct clx2_tx_queue *txq)
3651 {
3652         struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3653         struct pci_dev *dev = priv->pci_dev;
3654         int i;
3655
3656         /* classify bd */
3657         if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3658                 /* nothing to cleanup after for host commands */
3659                 return;
3660
3661         /* sanity check */
3662         if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3663                 IPW_ERROR("Too many chunks: %i\n",
3664                           le32_to_cpu(bd->u.data.num_chunks));
3665                 /** @todo issue fatal error, it is quite serious situation */
3666                 return;
3667         }
3668
3669         /* unmap chunks if any */
3670         for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3671                 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3672                                  le16_to_cpu(bd->u.data.chunk_len[i]),
3673                                  PCI_DMA_TODEVICE);
3674                 if (txq->txb[txq->q.last_used]) {
3675                         ieee80211_txb_free(txq->txb[txq->q.last_used]);
3676                         txq->txb[txq->q.last_used] = NULL;
3677                 }
3678         }
3679 }
3680
3681 /**
3682  * Deallocate DMA queue.
3683  *
3684  * Empty queue by removing and destroying all BD's.
3685  * Free all buffers.
3686  *
3687  * @param dev
3688  * @param q
3689  */
3690 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3691 {
3692         struct clx2_queue *q = &txq->q;
3693         struct pci_dev *dev = priv->pci_dev;
3694
3695         if (q->n_bd == 0)
3696                 return;
3697
3698         /* first, empty all BD's */
3699         for (; q->first_empty != q->last_used;
3700              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3701                 ipw_queue_tx_free_tfd(priv, txq);
3702         }
3703
3704         /* free buffers belonging to queue itself */
3705         pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3706                             q->dma_addr);
3707         kfree(txq->txb);
3708
3709         /* 0 fill whole structure */
3710         memset(txq, 0, sizeof(*txq));
3711 }
3712
3713 /**
3714  * Destroy all DMA queues and structures
3715  *
3716  * @param priv
3717  */
3718 static void ipw_tx_queue_free(struct ipw_priv *priv)
3719 {
3720         /* Tx CMD queue */
3721         ipw_queue_tx_free(priv, &priv->txq_cmd);
3722
3723         /* Tx queues */
3724         ipw_queue_tx_free(priv, &priv->txq[0]);
3725         ipw_queue_tx_free(priv, &priv->txq[1]);
3726         ipw_queue_tx_free(priv, &priv->txq[2]);
3727         ipw_queue_tx_free(priv, &priv->txq[3]);
3728 }
3729
3730 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3731 {
3732         /* First 3 bytes are manufacturer */
3733         bssid[0] = priv->mac_addr[0];
3734         bssid[1] = priv->mac_addr[1];
3735         bssid[2] = priv->mac_addr[2];
3736
3737         /* Last bytes are random */
3738         get_random_bytes(&bssid[3], ETH_ALEN - 3);
3739
3740         bssid[0] &= 0xfe;       /* clear multicast bit */
3741         bssid[0] |= 0x02;       /* set local assignment bit (IEEE802) */
3742 }
3743
3744 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3745 {
3746         struct ipw_station_entry entry;
3747         int i;
3748
3749         for (i = 0; i < priv->num_stations; i++) {
3750                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3751                         /* Another node is active in network */
3752                         priv->missed_adhoc_beacons = 0;
3753                         if (!(priv->config & CFG_STATIC_CHANNEL))
3754                                 /* when other nodes drop out, we drop out */
3755                                 priv->config &= ~CFG_ADHOC_PERSIST;
3756
3757                         return i;
3758                 }
3759         }
3760
3761         if (i == MAX_STATIONS)
3762                 return IPW_INVALID_STATION;
3763
3764         IPW_DEBUG_SCAN("Adding AdHoc station: " MAC_FMT "\n", MAC_ARG(bssid));
3765
3766         entry.reserved = 0;
3767         entry.support_mode = 0;
3768         memcpy(entry.mac_addr, bssid, ETH_ALEN);
3769         memcpy(priv->stations[i], bssid, ETH_ALEN);
3770         ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3771                          &entry, sizeof(entry));
3772         priv->num_stations++;
3773
3774         return i;
3775 }
3776
3777 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3778 {
3779         int i;
3780
3781         for (i = 0; i < priv->num_stations; i++)
3782                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3783                         return i;
3784
3785         return IPW_INVALID_STATION;
3786 }
3787
3788 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3789 {
3790         int err;
3791
3792         if (priv->status & STATUS_ASSOCIATING) {
3793                 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3794                 queue_work(priv->workqueue, &priv->disassociate);
3795                 return;
3796         }
3797
3798         if (!(priv->status & STATUS_ASSOCIATED)) {
3799                 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3800                 return;
3801         }
3802
3803         IPW_DEBUG_ASSOC("Disassocation attempt from " MAC_FMT " "
3804                         "on channel %d.\n",
3805                         MAC_ARG(priv->assoc_request.bssid),
3806                         priv->assoc_request.channel);
3807
3808         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3809         priv->status |= STATUS_DISASSOCIATING;
3810
3811         if (quiet)
3812                 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3813         else
3814                 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3815
3816         err = ipw_send_associate(priv, &priv->assoc_request);
3817         if (err) {
3818                 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3819                              "failed.\n");
3820                 return;
3821         }
3822
3823 }
3824
3825 static int ipw_disassociate(void *data)
3826 {
3827         struct ipw_priv *priv = data;
3828         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3829                 return 0;
3830         ipw_send_disassociate(data, 0);
3831         return 1;
3832 }
3833
3834 static void ipw_bg_disassociate(void *data)
3835 {
3836         struct ipw_priv *priv = data;
3837         mutex_lock(&priv->mutex);
3838         ipw_disassociate(data);
3839         mutex_unlock(&priv->mutex);
3840 }
3841
3842 static void ipw_system_config(void *data)
3843 {
3844         struct ipw_priv *priv = data;
3845
3846 #ifdef CONFIG_IPW2200_PROMISCUOUS
3847         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
3848                 priv->sys_config.accept_all_data_frames = 1;
3849                 priv->sys_config.accept_non_directed_frames = 1;
3850                 priv->sys_config.accept_all_mgmt_bcpr = 1;
3851                 priv->sys_config.accept_all_mgmt_frames = 1;
3852         }
3853 #endif
3854
3855         ipw_send_system_config(priv);
3856 }
3857
3858 struct ipw_status_code {
3859         u16 status;
3860         const char *reason;
3861 };
3862
3863 static const struct ipw_status_code ipw_status_codes[] = {
3864         {0x00, "Successful"},
3865         {0x01, "Unspecified failure"},
3866         {0x0A, "Cannot support all requested capabilities in the "
3867          "Capability information field"},
3868         {0x0B, "Reassociation denied due to inability to confirm that "
3869          "association exists"},
3870         {0x0C, "Association denied due to reason outside the scope of this "
3871          "standard"},
3872         {0x0D,
3873          "Responding station does not support the specified authentication "
3874          "algorithm"},
3875         {0x0E,
3876          "Received an Authentication frame with authentication sequence "
3877          "transaction sequence number out of expected sequence"},
3878         {0x0F, "Authentication rejected because of challenge failure"},
3879         {0x10, "Authentication rejected due to timeout waiting for next "
3880          "frame in sequence"},
3881         {0x11, "Association denied because AP is unable to handle additional "
3882          "associated stations"},
3883         {0x12,
3884          "Association denied due to requesting station not supporting all "
3885          "of the datarates in the BSSBasicServiceSet Parameter"},
3886         {0x13,
3887          "Association denied due to requesting station not supporting "
3888          "short preamble operation"},
3889         {0x14,
3890          "Association denied due to requesting station not supporting "
3891          "PBCC encoding"},
3892         {0x15,
3893          "Association denied due to requesting station not supporting "
3894          "channel agility"},
3895         {0x19,
3896          "Association denied due to requesting station not supporting "
3897          "short slot operation"},
3898         {0x1A,
3899          "Association denied due to requesting station not supporting "
3900          "DSSS-OFDM operation"},
3901         {0x28, "Invalid Information Element"},
3902         {0x29, "Group Cipher is not valid"},
3903         {0x2A, "Pairwise Cipher is not valid"},
3904         {0x2B, "AKMP is not valid"},
3905         {0x2C, "Unsupported RSN IE version"},
3906         {0x2D, "Invalid RSN IE Capabilities"},
3907         {0x2E, "Cipher suite is rejected per security policy"},
3908 };
3909
3910 static const char *ipw_get_status_code(u16 status)
3911 {
3912         int i;
3913         for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
3914                 if (ipw_status_codes[i].status == (status & 0xff))
3915                         return ipw_status_codes[i].reason;
3916         return "Unknown status value.";
3917 }
3918
3919 static void inline average_init(struct average *avg)
3920 {
3921         memset(avg, 0, sizeof(*avg));
3922 }
3923
3924 #define DEPTH_RSSI 8
3925 #define DEPTH_NOISE 16
3926 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
3927 {
3928         return ((depth-1)*prev_avg +  val)/depth;
3929 }
3930
3931 static void average_add(struct average *avg, s16 val)
3932 {
3933         avg->sum -= avg->entries[avg->pos];
3934         avg->sum += val;
3935         avg->entries[avg->pos++] = val;
3936         if (unlikely(avg->pos == AVG_ENTRIES)) {
3937                 avg->init = 1;
3938                 avg->pos = 0;
3939         }
3940 }
3941
3942 static s16 average_value(struct average *avg)
3943 {
3944         if (!unlikely(avg->init)) {
3945                 if (avg->pos)
3946                         return avg->sum / avg->pos;
3947                 return 0;
3948         }
3949
3950         return avg->sum / AVG_ENTRIES;
3951 }
3952
3953 static void ipw_reset_stats(struct ipw_priv *priv)
3954 {
3955         u32 len = sizeof(u32);
3956
3957         priv->quality = 0;
3958
3959         average_init(&priv->average_missed_beacons);
3960         priv->exp_avg_rssi = -60;
3961         priv->exp_avg_noise = -85 + 0x100;
3962
3963         priv->last_rate = 0;
3964         priv->last_missed_beacons = 0;
3965         priv->last_rx_packets = 0;
3966         priv->last_tx_packets = 0;
3967         priv->last_tx_failures = 0;
3968
3969         /* Firmware managed, reset only when NIC is restarted, so we have to
3970          * normalize on the current value */
3971         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
3972                         &priv->last_rx_err, &len);
3973         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
3974                         &priv->last_tx_failures, &len);
3975
3976         /* Driver managed, reset with each association */
3977         priv->missed_adhoc_beacons = 0;
3978         priv->missed_beacons = 0;
3979         priv->tx_packets = 0;
3980         priv->rx_packets = 0;
3981
3982 }
3983
3984 static u32 ipw_get_max_rate(struct ipw_priv *priv)
3985 {
3986         u32 i = 0x80000000;
3987         u32 mask = priv->rates_mask;
3988         /* If currently associated in B mode, restrict the maximum
3989          * rate match to B rates */
3990         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
3991                 mask &= IEEE80211_CCK_RATES_MASK;
3992
3993         /* TODO: Verify that the rate is supported by the current rates
3994          * list. */
3995
3996         while (i && !(mask & i))
3997                 i >>= 1;
3998         switch (i) {
3999         case IEEE80211_CCK_RATE_1MB_MASK:
4000                 return 1000000;
4001         case IEEE80211_CCK_RATE_2MB_MASK:
4002                 return 2000000;
4003         case IEEE80211_CCK_RATE_5MB_MASK:
4004                 return 5500000;
4005         case IEEE80211_OFDM_RATE_6MB_MASK:
4006                 return 6000000;
4007         case IEEE80211_OFDM_RATE_9MB_MASK:
4008                 return 9000000;
4009         case IEEE80211_CCK_RATE_11MB_MASK:
4010                 return 11000000;
4011         case IEEE80211_OFDM_RATE_12MB_MASK:
4012                 return 12000000;
4013         case IEEE80211_OFDM_RATE_18MB_MASK:
4014                 return 18000000;
4015         case IEEE80211_OFDM_RATE_24MB_MASK:
4016                 return 24000000;
4017         case IEEE80211_OFDM_RATE_36MB_MASK:
4018                 return 36000000;
4019         case IEEE80211_OFDM_RATE_48MB_MASK:
4020                 return 48000000;
4021         case IEEE80211_OFDM_RATE_54MB_MASK:
4022                 return 54000000;
4023         }
4024
4025         if (priv->ieee->mode == IEEE_B)
4026                 return 11000000;
4027         else
4028                 return 54000000;
4029 }
4030
4031 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4032 {
4033         u32 rate, len = sizeof(rate);
4034         int err;
4035
4036         if (!(priv->status & STATUS_ASSOCIATED))
4037                 return 0;
4038
4039         if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4040                 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4041                                       &len);
4042                 if (err) {
4043                         IPW_DEBUG_INFO("failed querying ordinals.\n");
4044                         return 0;
4045                 }
4046         } else
4047                 return ipw_get_max_rate(priv);
4048
4049         switch (rate) {
4050         case IPW_TX_RATE_1MB:
4051                 return 1000000;
4052         case IPW_TX_RATE_2MB:
4053                 return 2000000;
4054         case IPW_TX_RATE_5MB:
4055                 return 5500000;
4056         case IPW_TX_RATE_6MB:
4057                 return 6000000;
4058         case IPW_TX_RATE_9MB:
4059                 return 9000000;
4060         case IPW_TX_RATE_11MB:
4061                 return 11000000;
4062         case IPW_TX_RATE_12MB:
4063                 return 12000000;
4064         case IPW_TX_RATE_18MB:
4065                 return 18000000;
4066         case IPW_TX_RATE_24MB:
4067                 return 24000000;
4068         case IPW_TX_RATE_36MB:
4069                 return 36000000;
4070         case IPW_TX_RATE_48MB:
4071                 return 48000000;
4072         case IPW_TX_RATE_54MB:
4073                 return 54000000;
4074         }
4075
4076         return 0;
4077 }
4078
4079 #define IPW_STATS_INTERVAL (2 * HZ)
4080 static void ipw_gather_stats(struct ipw_priv *priv)
4081 {
4082         u32 rx_err, rx_err_delta, rx_packets_delta;
4083         u32 tx_failures, tx_failures_delta, tx_packets_delta;
4084         u32 missed_beacons_percent, missed_beacons_delta;
4085         u32 quality = 0;
4086         u32 len = sizeof(u32);
4087         s16 rssi;
4088         u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4089             rate_quality;
4090         u32 max_rate;
4091
4092         if (!(priv->status & STATUS_ASSOCIATED)) {
4093                 priv->quality = 0;
4094                 return;
4095         }
4096
4097         /* Update the statistics */
4098         ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4099                         &priv->missed_beacons, &len);
4100         missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4101         priv->last_missed_beacons = priv->missed_beacons;
4102         if (priv->assoc_request.beacon_interval) {
4103                 missed_beacons_percent = missed_beacons_delta *
4104                     (HZ * priv->assoc_request.beacon_interval) /
4105                     (IPW_STATS_INTERVAL * 10);
4106         } else {
4107                 missed_beacons_percent = 0;
4108         }
4109         average_add(&priv->average_missed_beacons, missed_beacons_percent);
4110
4111         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4112         rx_err_delta = rx_err - priv->last_rx_err;
4113         priv->last_rx_err = rx_err;
4114
4115         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4116         tx_failures_delta = tx_failures - priv->last_tx_failures;
4117         priv->last_tx_failures = tx_failures;
4118
4119         rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4120         priv->last_rx_packets = priv->rx_packets;
4121
4122         tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4123         priv->last_tx_packets = priv->tx_packets;
4124
4125         /* Calculate quality based on the following:
4126          *
4127          * Missed beacon: 100% = 0, 0% = 70% missed
4128          * Rate: 60% = 1Mbs, 100% = Max
4129          * Rx and Tx errors represent a straight % of total Rx/Tx
4130          * RSSI: 100% = > -50,  0% = < -80
4131          * Rx errors: 100% = 0, 0% = 50% missed
4132          *
4133          * The lowest computed quality is used.
4134          *
4135          */
4136 #define BEACON_THRESHOLD 5
4137         beacon_quality = 100 - missed_beacons_percent;
4138         if (beacon_quality < BEACON_THRESHOLD)
4139                 beacon_quality = 0;
4140         else
4141                 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4142                     (100 - BEACON_THRESHOLD);
4143         IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4144                         beacon_quality, missed_beacons_percent);
4145
4146         priv->last_rate = ipw_get_current_rate(priv);
4147         max_rate = ipw_get_max_rate(priv);
4148         rate_quality = priv->last_rate * 40 / max_rate + 60;
4149         IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4150                         rate_quality, priv->last_rate / 1000000);
4151
4152         if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4153                 rx_quality = 100 - (rx_err_delta * 100) /
4154                     (rx_packets_delta + rx_err_delta);
4155         else
4156                 rx_quality = 100;
4157         IPW_DEBUG_STATS("Rx quality   : %3d%% (%u errors, %u packets)\n",
4158                         rx_quality, rx_err_delta, rx_packets_delta);
4159
4160         if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4161                 tx_quality = 100 - (tx_failures_delta * 100) /
4162                     (tx_packets_delta + tx_failures_delta);
4163         else
4164                 tx_quality = 100;
4165         IPW_DEBUG_STATS("Tx quality   : %3d%% (%u errors, %u packets)\n",
4166                         tx_quality, tx_failures_delta, tx_packets_delta);
4167
4168         rssi = priv->exp_avg_rssi;
4169         signal_quality =
4170             (100 *
4171              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4172              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4173              (priv->ieee->perfect_rssi - rssi) *
4174              (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4175               62 * (priv->ieee->perfect_rssi - rssi))) /
4176             ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4177              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4178         if (signal_quality > 100)
4179                 signal_quality = 100;
4180         else if (signal_quality < 1)
4181                 signal_quality = 0;
4182
4183         IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4184                         signal_quality, rssi);
4185
4186         quality = min(beacon_quality,
4187                       min(rate_quality,
4188                           min(tx_quality, min(rx_quality, signal_quality))));
4189         if (quality == beacon_quality)
4190                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4191                                 quality);
4192         if (quality == rate_quality)
4193                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4194                                 quality);
4195         if (quality == tx_quality)
4196                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4197                                 quality);
4198         if (quality == rx_quality)
4199                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4200                                 quality);
4201         if (quality == signal_quality)
4202                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4203                                 quality);
4204
4205         priv->quality = quality;
4206
4207         queue_delayed_work(priv->workqueue, &priv->gather_stats,
4208                            IPW_STATS_INTERVAL);
4209 }
4210
4211 static void ipw_bg_gather_stats(void *data)
4212 {
4213         struct ipw_priv *priv = data;
4214         mutex_lock(&priv->mutex);
4215         ipw_gather_stats(data);
4216         mutex_unlock(&priv->mutex);
4217 }
4218
4219 /* Missed beacon behavior:
4220  * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4221  * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4222  * Above disassociate threshold, give up and stop scanning.
4223  * Roaming is disabled if disassociate_threshold <= roaming_threshold  */
4224 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4225                                             int missed_count)
4226 {
4227         priv->notif_missed_beacons = missed_count;
4228
4229         if (missed_count > priv->disassociate_threshold &&
4230             priv->status & STATUS_ASSOCIATED) {
4231                 /* If associated and we've hit the missed
4232                  * beacon threshold, disassociate, turn
4233                  * off roaming, and abort any active scans */
4234                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4235                           IPW_DL_STATE | IPW_DL_ASSOC,
4236                           "Missed beacon: %d - disassociate\n", missed_count);
4237                 priv->status &= ~STATUS_ROAMING;
4238                 if (priv->status & STATUS_SCANNING) {
4239                         IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4240                                   IPW_DL_STATE,
4241                                   "Aborting scan with missed beacon.\n");
4242                         queue_work(priv->workqueue, &priv->abort_scan);
4243                 }
4244
4245                 queue_work(priv->workqueue, &priv->disassociate);
4246                 return;
4247         }
4248
4249         if (priv->status & STATUS_ROAMING) {
4250                 /* If we are currently roaming, then just
4251                  * print a debug statement... */
4252                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4253                           "Missed beacon: %d - roam in progress\n",
4254                           missed_count);
4255                 return;
4256         }
4257
4258         if (roaming &&
4259             (missed_count > priv->roaming_threshold &&
4260              missed_count <= priv->disassociate_threshold)) {
4261                 /* If we are not already roaming, set the ROAM
4262                  * bit in the status and kick off a scan.
4263                  * This can happen several times before we reach
4264                  * disassociate_threshold. */
4265                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4266                           "Missed beacon: %d - initiate "
4267                           "roaming\n", missed_count);
4268                 if (!(priv->status & STATUS_ROAMING)) {
4269                         priv->status |= STATUS_ROAMING;
4270                         if (!(priv->status & STATUS_SCANNING))
4271                                 queue_work(priv->workqueue,
4272                                            &priv->request_scan);
4273                 }
4274                 return;
4275         }
4276
4277         if (priv->status & STATUS_SCANNING) {
4278                 /* Stop scan to keep fw from getting
4279                  * stuck (only if we aren't roaming --
4280                  * otherwise we'll never scan more than 2 or 3
4281                  * channels..) */
4282                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4283                           "Aborting scan with missed beacon.\n");
4284                 queue_work(priv->workqueue, &priv->abort_scan);
4285         }
4286
4287         IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4288 }
4289
4290 /**
4291  * Handle host notification packet.
4292  * Called from interrupt routine
4293  */
4294 static void ipw_rx_notification(struct ipw_priv *priv,
4295                                        struct ipw_rx_notification *notif)
4296 {
4297         notif->size = le16_to_cpu(notif->size);
4298
4299         IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, notif->size);
4300
4301         switch (notif->subtype) {
4302         case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4303                         struct notif_association *assoc = &notif->u.assoc;
4304
4305                         switch (assoc->state) {
4306                         case CMAS_ASSOCIATED:{
4307                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4308                                                   IPW_DL_ASSOC,
4309                                                   "associated: '%s' " MAC_FMT
4310                                                   " \n",
4311                                                   escape_essid(priv->essid,
4312                                                                priv->essid_len),
4313                                                   MAC_ARG(priv->bssid));
4314
4315                                         switch (priv->ieee->iw_mode) {
4316                                         case IW_MODE_INFRA:
4317                                                 memcpy(priv->ieee->bssid,
4318                                                        priv->bssid, ETH_ALEN);
4319                                                 break;
4320
4321                                         case IW_MODE_ADHOC:
4322                                                 memcpy(priv->ieee->bssid,
4323                                                        priv->bssid, ETH_ALEN);
4324
4325                                                 /* clear out the station table */
4326                                                 priv->num_stations = 0;
4327
4328                                                 IPW_DEBUG_ASSOC
4329                                                     ("queueing adhoc check\n");
4330                                                 queue_delayed_work(priv->
4331                                                                    workqueue,
4332                                                                    &priv->
4333                                                                    adhoc_check,
4334                                                                    priv->
4335                                                                    assoc_request.
4336                                                                    beacon_interval);
4337                                                 break;
4338                                         }
4339
4340                                         priv->status &= ~STATUS_ASSOCIATING;
4341                                         priv->status |= STATUS_ASSOCIATED;
4342                                         queue_work(priv->workqueue,
4343                                                    &priv->system_config);
4344
4345 #ifdef CONFIG_IPW2200_QOS
4346 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4347                          le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_ctl))
4348                                         if ((priv->status & STATUS_AUTH) &&
4349                                             (IPW_GET_PACKET_STYPE(&notif->u.raw)
4350                                              == IEEE80211_STYPE_ASSOC_RESP)) {
4351                                                 if ((sizeof
4352                                                      (struct
4353                                                       ieee80211_assoc_response)
4354                                                      <= notif->size)
4355                                                     && (notif->size <= 2314)) {
4356                                                         struct
4357                                                         ieee80211_rx_stats
4358                                                             stats = {
4359                                                                 .len =
4360                                                                     notif->
4361                                                                     size - 1,
4362                                                         };
4363
4364                                                         IPW_DEBUG_QOS
4365                                                             ("QoS Associate "
4366                                                              "size %d\n",
4367                                                              notif->size);
4368                                                         ieee80211_rx_mgt(priv->
4369                                                                          ieee,
4370                                                                          (struct
4371                                                                           ieee80211_hdr_4addr
4372                                                                           *)
4373                                                                          &notif->u.raw, &stats);
4374                                                 }
4375                                         }
4376 #endif
4377
4378                                         schedule_work(&priv->link_up);
4379
4380                                         break;
4381                                 }
4382
4383                         case CMAS_AUTHENTICATED:{
4384                                         if (priv->
4385                                             status & (STATUS_ASSOCIATED |
4386                                                       STATUS_AUTH)) {
4387                                                 struct notif_authenticate *auth
4388                                                     = &notif->u.auth;
4389                                                 IPW_DEBUG(IPW_DL_NOTIF |
4390                                                           IPW_DL_STATE |
4391                                                           IPW_DL_ASSOC,
4392                                                           "deauthenticated: '%s' "
4393                                                           MAC_FMT
4394                                                           ": (0x%04X) - %s \n",
4395                                                           escape_essid(priv->
4396                                                                        essid,
4397                                                                        priv->
4398                                                                        essid_len),
4399                                                           MAC_ARG(priv->bssid),
4400                                                           ntohs(auth->status),
4401                                                           ipw_get_status_code
4402                                                           (ntohs
4403                                                            (auth->status)));
4404
4405                                                 priv->status &=
4406                                                     ~(STATUS_ASSOCIATING |
4407                                                       STATUS_AUTH |
4408                                                       STATUS_ASSOCIATED);
4409
4410                                                 schedule_work(&priv->link_down);
4411                                                 break;
4412                                         }
4413
4414                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4415                                                   IPW_DL_ASSOC,
4416                                                   "authenticated: '%s' " MAC_FMT
4417                                                   "\n",
4418                                                   escape_essid(priv->essid,
4419                                                                priv->essid_len),
4420                                                   MAC_ARG(priv->bssid));
4421                                         break;
4422                                 }
4423
4424                         case CMAS_INIT:{
4425                                         if (priv->status & STATUS_AUTH) {
4426                                                 struct
4427                                                     ieee80211_assoc_response
4428                                                 *resp;
4429                                                 resp =
4430                                                     (struct
4431                                                      ieee80211_assoc_response
4432                                                      *)&notif->u.raw;
4433                                                 IPW_DEBUG(IPW_DL_NOTIF |
4434                                                           IPW_DL_STATE |
4435                                                           IPW_DL_ASSOC,
4436                                                           "association failed (0x%04X): %s\n",
4437                                                           ntohs(resp->status),
4438                                                           ipw_get_status_code
4439                                                           (ntohs
4440                                                            (resp->status)));
4441                                         }
4442
4443                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4444                                                   IPW_DL_ASSOC,
4445                                                   "disassociated: '%s' " MAC_FMT
4446                                                   " \n",
4447                                                   escape_essid(priv->essid,
4448                                                                priv->essid_len),
4449                                                   MAC_ARG(priv->bssid));
4450
4451                                         priv->status &=
4452                                             ~(STATUS_DISASSOCIATING |
4453                                               STATUS_ASSOCIATING |
4454                                               STATUS_ASSOCIATED | STATUS_AUTH);
4455                                         if (priv->assoc_network
4456                                             && (priv->assoc_network->
4457                                                 capability &
4458                                                 WLAN_CAPABILITY_IBSS))
4459                                                 ipw_remove_current_network
4460                                                     (priv);
4461
4462                                         schedule_work(&priv->link_down);
4463
4464                                         break;
4465                                 }
4466
4467                         case CMAS_RX_ASSOC_RESP:
4468                                 break;
4469
4470                         default:
4471                                 IPW_ERROR("assoc: unknown (%d)\n",
4472                                           assoc->state);
4473                                 break;
4474                         }
4475
4476                         break;
4477                 }
4478
4479         case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4480                         struct notif_authenticate *auth = &notif->u.auth;
4481                         switch (auth->state) {
4482                         case CMAS_AUTHENTICATED:
4483                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4484                                           "authenticated: '%s' " MAC_FMT " \n",
4485                                           escape_essid(priv->essid,
4486                                                        priv->essid_len),
4487                                           MAC_ARG(priv->bssid));
4488                                 priv->status |= STATUS_AUTH;
4489                                 break;
4490
4491                         case CMAS_INIT:
4492                                 if (priv->status & STATUS_AUTH) {
4493                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4494                                                   IPW_DL_ASSOC,
4495                                                   "authentication failed (0x%04X): %s\n",
4496                                                   ntohs(auth->status),
4497                                                   ipw_get_status_code(ntohs
4498                                                                       (auth->
4499                                                                        status)));
4500                                 }
4501                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4502                                           IPW_DL_ASSOC,
4503                                           "deauthenticated: '%s' " MAC_FMT "\n",
4504                                           escape_essid(priv->essid,
4505                                                        priv->essid_len),
4506                                           MAC_ARG(priv->bssid));
4507
4508                                 priv->status &= ~(STATUS_ASSOCIATING |
4509                                                   STATUS_AUTH |
4510                                                   STATUS_ASSOCIATED);
4511
4512                                 schedule_work(&priv->link_down);
4513                                 break;
4514
4515                         case CMAS_TX_AUTH_SEQ_1:
4516                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4517                                           IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4518                                 break;
4519                         case CMAS_RX_AUTH_SEQ_2:
4520                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4521                                           IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4522                                 break;
4523                         case CMAS_AUTH_SEQ_1_PASS:
4524                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4525                                           IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4526                                 break;
4527                         case CMAS_AUTH_SEQ_1_FAIL:
4528                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4529                                           IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4530                                 break;
4531                         case CMAS_TX_AUTH_SEQ_3:
4532                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4533                                           IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4534                                 break;
4535                         case CMAS_RX_AUTH_SEQ_4:
4536                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4537                                           IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4538                                 break;
4539                         case CMAS_AUTH_SEQ_2_PASS:
4540                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4541                                           IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4542                                 break;
4543                         case CMAS_AUTH_SEQ_2_FAIL:
4544                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4545                                           IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4546                                 break;
4547                         case CMAS_TX_ASSOC:
4548                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4549                                           IPW_DL_ASSOC, "TX_ASSOC\n");
4550                                 break;
4551                         case CMAS_RX_ASSOC_RESP:
4552                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4553                                           IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4554
4555                                 break;
4556                         case CMAS_ASSOCIATED:
4557                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4558                                           IPW_DL_ASSOC, "ASSOCIATED\n");
4559                                 break;
4560                         default:
4561                                 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4562                                                 auth->state);
4563                                 break;
4564                         }
4565                         break;
4566                 }
4567
4568         case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4569                         struct notif_channel_result *x =
4570                             &notif->u.channel_result;
4571
4572                         if (notif->size == sizeof(*x)) {
4573                                 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4574                                                x->channel_num);
4575                         } else {
4576                                 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4577                                                "(should be %zd)\n",
4578                                                notif->size, sizeof(*x));
4579                         }
4580                         break;
4581                 }
4582
4583         case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4584                         struct notif_scan_complete *x = &notif->u.scan_complete;
4585                         if (notif->size == sizeof(*x)) {
4586                                 IPW_DEBUG_SCAN
4587                                     ("Scan completed: type %d, %d channels, "
4588                                      "%d status\n", x->scan_type,
4589                                      x->num_channels, x->status);
4590                         } else {
4591                                 IPW_ERROR("Scan completed of wrong size %d "
4592                                           "(should be %zd)\n",
4593                                           notif->size, sizeof(*x));
4594                         }
4595
4596                         priv->status &=
4597                             ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4598
4599                         wake_up_interruptible(&priv->wait_state);
4600                         cancel_delayed_work(&priv->scan_check);
4601
4602                         if (priv->status & STATUS_EXIT_PENDING)
4603                                 break;
4604
4605                         priv->ieee->scans++;
4606
4607 #ifdef CONFIG_IPW2200_MONITOR
4608                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4609                                 priv->status |= STATUS_SCAN_FORCED;
4610                                 queue_work(priv->workqueue,
4611                                            &priv->request_scan);
4612                                 break;
4613                         }
4614                         priv->status &= ~STATUS_SCAN_FORCED;
4615 #endif                          /* CONFIG_IPW2200_MONITOR */
4616
4617                         if (!(priv->status & (STATUS_ASSOCIATED |
4618                                               STATUS_ASSOCIATING |
4619                                               STATUS_ROAMING |
4620                                               STATUS_DISASSOCIATING)))
4621                                 queue_work(priv->workqueue, &priv->associate);
4622                         else if (priv->status & STATUS_ROAMING) {
4623                                 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4624                                         /* If a scan completed and we are in roam mode, then
4625                                          * the scan that completed was the one requested as a
4626                                          * result of entering roam... so, schedule the
4627                                          * roam work */
4628                                         queue_work(priv->workqueue,
4629                                                    &priv->roam);
4630                                 else
4631                                         /* Don't schedule if we aborted the scan */
4632                                         priv->status &= ~STATUS_ROAMING;
4633                         } else if (priv->status & STATUS_SCAN_PENDING)
4634                                 queue_work(priv->workqueue,
4635                                            &priv->request_scan);
4636                         else if (priv->config & CFG_BACKGROUND_SCAN
4637                                  && priv->status & STATUS_ASSOCIATED)
4638                                 queue_delayed_work(priv->workqueue,
4639                                                    &priv->request_scan, HZ);
4640
4641                         /* Send an empty event to user space.
4642                          * We don't send the received data on the event because
4643                          * it would require us to do complex transcoding, and
4644                          * we want to minimise the work done in the irq handler
4645                          * Use a request to extract the data.
4646                          * Also, we generate this even for any scan, regardless
4647                          * on how the scan was initiated. User space can just
4648                          * sync on periodic scan to get fresh data...
4649                          * Jean II */
4650                         if (x->status == SCAN_COMPLETED_STATUS_COMPLETE) {
4651                                 union iwreq_data wrqu;
4652
4653                                 wrqu.data.length = 0;
4654                                 wrqu.data.flags = 0;
4655                                 wireless_send_event(priv->net_dev, SIOCGIWSCAN,
4656                                                     &wrqu, NULL);
4657                         }
4658                         break;
4659                 }
4660
4661         case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4662                         struct notif_frag_length *x = &notif->u.frag_len;
4663
4664                         if (notif->size == sizeof(*x))
4665                                 IPW_ERROR("Frag length: %d\n",
4666                                           le16_to_cpu(x->frag_length));
4667                         else
4668                                 IPW_ERROR("Frag length of wrong size %d "
4669                                           "(should be %zd)\n",
4670                                           notif->size, sizeof(*x));
4671                         break;
4672                 }
4673
4674         case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4675                         struct notif_link_deterioration *x =
4676                             &notif->u.link_deterioration;
4677
4678                         if (notif->size == sizeof(*x)) {
4679                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4680                                         "link deterioration: type %d, cnt %d\n",
4681                                         x->silence_notification_type,
4682                                         x->silence_count);
4683                                 memcpy(&priv->last_link_deterioration, x,
4684                                        sizeof(*x));
4685                         } else {
4686                                 IPW_ERROR("Link Deterioration of wrong size %d "
4687                                           "(should be %zd)\n",
4688                                           notif->size, sizeof(*x));
4689                         }
4690                         break;
4691                 }
4692
4693         case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4694                         IPW_ERROR("Dino config\n");
4695                         if (priv->hcmd
4696                             && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4697                                 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4698
4699                         break;
4700                 }
4701
4702         case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4703                         struct notif_beacon_state *x = &notif->u.beacon_state;
4704                         if (notif->size != sizeof(*x)) {
4705                                 IPW_ERROR
4706                                     ("Beacon state of wrong size %d (should "
4707                                      "be %zd)\n", notif->size, sizeof(*x));
4708                                 break;
4709                         }
4710
4711                         if (le32_to_cpu(x->state) ==
4712                             HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4713                                 ipw_handle_missed_beacon(priv,
4714                                                          le32_to_cpu(x->
4715                                                                      number));
4716
4717                         break;
4718                 }
4719
4720         case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4721                         struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4722                         if (notif->size == sizeof(*x)) {
4723                                 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4724                                           "0x%02x station %d\n",
4725                                           x->key_state, x->security_type,
4726                                           x->station_index);
4727                                 break;
4728                         }
4729
4730                         IPW_ERROR
4731                             ("TGi Tx Key of wrong size %d (should be %zd)\n",
4732                              notif->size, sizeof(*x));
4733                         break;
4734                 }
4735
4736         case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4737                         struct notif_calibration *x = &notif->u.calibration;
4738
4739                         if (notif->size == sizeof(*x)) {
4740                                 memcpy(&priv->calib, x, sizeof(*x));
4741                                 IPW_DEBUG_INFO("TODO: Calibration\n");
4742                                 break;
4743                         }
4744
4745                         IPW_ERROR
4746                             ("Calibration of wrong size %d (should be %zd)\n",
4747                              notif->size, sizeof(*x));
4748                         break;
4749                 }
4750
4751         case HOST_NOTIFICATION_NOISE_STATS:{
4752                         if (notif->size == sizeof(u32)) {
4753                                 priv->exp_avg_noise =
4754                                     exponential_average(priv->exp_avg_noise,
4755                                     (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4756                                     DEPTH_NOISE);
4757                                 break;
4758                         }
4759
4760                         IPW_ERROR
4761                             ("Noise stat is wrong size %d (should be %zd)\n",
4762                              notif->size, sizeof(u32));
4763                         break;
4764                 }
4765
4766         default:
4767                 IPW_DEBUG_NOTIF("Unknown notification: "
4768                                 "subtype=%d,flags=0x%2x,size=%d\n",
4769                                 notif->subtype, notif->flags, notif->size);
4770         }
4771 }
4772
4773 /**
4774  * Destroys all DMA structures and initialise them again
4775  *
4776  * @param priv
4777  * @return error code
4778  */
4779 static int ipw_queue_reset(struct ipw_priv *priv)
4780 {
4781         int rc = 0;
4782         /** @todo customize queue sizes */
4783         int nTx = 64, nTxCmd = 8;
4784         ipw_tx_queue_free(priv);
4785         /* Tx CMD queue */
4786         rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4787                                IPW_TX_CMD_QUEUE_READ_INDEX,
4788                                IPW_TX_CMD_QUEUE_WRITE_INDEX,
4789                                IPW_TX_CMD_QUEUE_BD_BASE,
4790                                IPW_TX_CMD_QUEUE_BD_SIZE);
4791         if (rc) {
4792                 IPW_ERROR("Tx Cmd queue init failed\n");
4793                 goto error;
4794         }
4795         /* Tx queue(s) */
4796         rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4797                                IPW_TX_QUEUE_0_READ_INDEX,
4798                                IPW_TX_QUEUE_0_WRITE_INDEX,
4799                                IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4800         if (rc) {
4801                 IPW_ERROR("Tx 0 queue init failed\n");
4802                 goto error;
4803         }
4804         rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4805                                IPW_TX_QUEUE_1_READ_INDEX,
4806                                IPW_TX_QUEUE_1_WRITE_INDEX,
4807                                IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4808         if (rc) {
4809                 IPW_ERROR("Tx 1 queue init failed\n");
4810                 goto error;
4811         }
4812         rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4813                                IPW_TX_QUEUE_2_READ_INDEX,
4814                                IPW_TX_QUEUE_2_WRITE_INDEX,
4815                                IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4816         if (rc) {
4817                 IPW_ERROR("Tx 2 queue init failed\n");
4818                 goto error;
4819         }
4820         rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4821                                IPW_TX_QUEUE_3_READ_INDEX,
4822                                IPW_TX_QUEUE_3_WRITE_INDEX,
4823                                IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4824         if (rc) {
4825                 IPW_ERROR("Tx 3 queue init failed\n");
4826                 goto error;
4827         }
4828         /* statistics */
4829         priv->rx_bufs_min = 0;
4830         priv->rx_pend_max = 0;
4831         return rc;
4832
4833       error:
4834         ipw_tx_queue_free(priv);
4835         return rc;
4836 }
4837
4838 /**
4839  * Reclaim Tx queue entries no more used by NIC.
4840  *
4841  * When FW adwances 'R' index, all entries between old and
4842  * new 'R' index need to be reclaimed. As result, some free space
4843  * forms. If there is enough free space (> low mark), wake Tx queue.
4844  *
4845  * @note Need to protect against garbage in 'R' index
4846  * @param priv
4847  * @param txq
4848  * @param qindex
4849  * @return Number of used entries remains in the queue
4850  */
4851 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
4852                                 struct clx2_tx_queue *txq, int qindex)
4853 {
4854         u32 hw_tail;
4855         int used;
4856         struct clx2_queue *q = &txq->q;
4857
4858         hw_tail = ipw_read32(priv, q->reg_r);
4859         if (hw_tail >= q->n_bd) {
4860                 IPW_ERROR
4861                     ("Read index for DMA queue (%d) is out of range [0-%d)\n",
4862                      hw_tail, q->n_bd);
4863                 goto done;
4864         }
4865         for (; q->last_used != hw_tail;
4866              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
4867                 ipw_queue_tx_free_tfd(priv, txq);
4868                 priv->tx_packets++;
4869         }
4870       done:
4871         if ((ipw_queue_space(q) > q->low_mark) &&
4872             (qindex >= 0) &&
4873             (priv->status & STATUS_ASSOCIATED) && netif_running(priv->net_dev))
4874                 netif_wake_queue(priv->net_dev);
4875         used = q->first_empty - q->last_used;
4876         if (used < 0)
4877                 used += q->n_bd;
4878
4879         return used;
4880 }
4881
4882 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
4883                              int len, int sync)
4884 {
4885         struct clx2_tx_queue *txq = &priv->txq_cmd;
4886         struct clx2_queue *q = &txq->q;
4887         struct tfd_frame *tfd;
4888
4889         if (ipw_queue_space(q) < (sync ? 1 : 2)) {
4890                 IPW_ERROR("No space for Tx\n");
4891                 return -EBUSY;
4892         }
4893
4894         tfd = &txq->bd[q->first_empty];
4895         txq->txb[q->first_empty] = NULL;
4896
4897         memset(tfd, 0, sizeof(*tfd));
4898         tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
4899         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
4900         priv->hcmd_seq++;
4901         tfd->u.cmd.index = hcmd;
4902         tfd->u.cmd.length = len;
4903         memcpy(tfd->u.cmd.payload, buf, len);
4904         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
4905         ipw_write32(priv, q->reg_w, q->first_empty);
4906         _ipw_read32(priv, 0x90);
4907
4908         return 0;
4909 }
4910
4911 /*
4912  * Rx theory of operation
4913  *
4914  * The host allocates 32 DMA target addresses and passes the host address
4915  * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
4916  * 0 to 31
4917  *
4918  * Rx Queue Indexes
4919  * The host/firmware share two index registers for managing the Rx buffers.
4920  *
4921  * The READ index maps to the first position that the firmware may be writing
4922  * to -- the driver can read up to (but not including) this position and get
4923  * good data.
4924  * The READ index is managed by the firmware once the card is enabled.
4925  *
4926  * The WRITE index maps to the last position the driver has read from -- the
4927  * position preceding WRITE is the last slot the firmware can place a packet.
4928  *
4929  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
4930  * WRITE = READ.
4931  *
4932  * During initialization the host sets up the READ queue position to the first
4933  * INDEX position, and WRITE to the last (READ - 1 wrapped)
4934  *
4935  * When the firmware places a packet in a buffer it will advance the READ index
4936  * and fire the RX interrupt.  The driver can then query the READ index and
4937  * process as many packets as possible, moving the WRITE index forward as it
4938  * resets the Rx queue buffers with new memory.
4939  *
4940  * The management in the driver is as follows:
4941  * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free.  When
4942  *   ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
4943  *   to replensish the ipw->rxq->rx_free.
4944  * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
4945  *   ipw->rxq is replenished and the READ INDEX is updated (updating the
4946  *   'processed' and 'read' driver indexes as well)
4947  * + A received packet is processed and handed to the kernel network stack,
4948  *   detached from the ipw->rxq.  The driver 'processed' index is updated.
4949  * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
4950  *   list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
4951  *   INDEX is not incremented and ipw->status(RX_STALLED) is set.  If there
4952  *   were enough free buffers and RX_STALLED is set it is cleared.
4953  *
4954  *
4955  * Driver sequence:
4956  *
4957  * ipw_rx_queue_alloc()       Allocates rx_free
4958  * ipw_rx_queue_replenish()   Replenishes rx_free list from rx_used, and calls
4959  *                            ipw_rx_queue_restock
4960  * ipw_rx_queue_restock()     Moves available buffers from rx_free into Rx
4961  *                            queue, updates firmware pointers, and updates
4962  *                            the WRITE index.  If insufficient rx_free buffers
4963  *                            are available, schedules ipw_rx_queue_replenish
4964  *
4965  * -- enable interrupts --
4966  * ISR - ipw_rx()             Detach ipw_rx_mem_buffers from pool up to the
4967  *                            READ INDEX, detaching the SKB from the pool.
4968  *                            Moves the packet buffer from queue to rx_used.
4969  *                            Calls ipw_rx_queue_restock to refill any empty
4970  *                            slots.
4971  * ...
4972  *
4973  */
4974
4975 /*
4976  * If there are slots in the RX queue that  need to be restocked,
4977  * and we have free pre-allocated buffers, fill the ranks as much
4978  * as we can pulling from rx_free.
4979  *
4980  * This moves the 'write' index forward to catch up with 'processed', and
4981  * also updates the memory address in the firmware to reference the new
4982  * target buffer.
4983  */
4984 static void ipw_rx_queue_restock(struct ipw_priv *priv)
4985 {
4986         struct ipw_rx_queue *rxq = priv->rxq;
4987         struct list_head *element;
4988         struct ipw_rx_mem_buffer *rxb;
4989         unsigned long flags;
4990         int write;
4991
4992         spin_lock_irqsave(&rxq->lock, flags);
4993         write = rxq->write;
4994         while ((rxq->write != rxq->processed) && (rxq->free_count)) {
4995                 element = rxq->rx_free.next;
4996                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
4997                 list_del(element);
4998
4999                 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5000                             rxb->dma_addr);
5001                 rxq->queue[rxq->write] = rxb;
5002                 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5003                 rxq->free_count--;
5004         }
5005         spin_unlock_irqrestore(&rxq->lock, flags);
5006
5007         /* If the pre-allocated buffer pool is dropping low, schedule to
5008          * refill it */
5009         if (rxq->free_count <= RX_LOW_WATERMARK)
5010                 queue_work(priv->workqueue, &priv->rx_replenish);
5011
5012         /* If we've added more space for the firmware to place data, tell it */
5013         if (write != rxq->write)
5014                 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5015 }
5016
5017 /*
5018  * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5019  * Also restock the Rx queue via ipw_rx_queue_restock.
5020  *
5021  * This is called as a scheduled work item (except for during intialization)
5022  */
5023 static void ipw_rx_queue_replenish(void *data)
5024 {
5025         struct ipw_priv *priv = data;
5026         struct ipw_rx_queue *rxq = priv->rxq;
5027         struct list_head *element;
5028         struct ipw_rx_mem_buffer *rxb;
5029         unsigned long flags;
5030
5031         spin_lock_irqsave(&rxq->lock, flags);
5032         while (!list_empty(&rxq->rx_used)) {
5033                 element = rxq->rx_used.next;
5034                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5035                 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5036                 if (!rxb->skb) {
5037                         printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5038                                priv->net_dev->name);
5039                         /* We don't reschedule replenish work here -- we will
5040                          * call the restock method and if it still needs
5041                          * more buffers it will schedule replenish */
5042                         break;
5043                 }
5044                 list_del(element);
5045
5046                 rxb->rxb = (struct ipw_rx_buffer *)rxb->skb->data;
5047                 rxb->dma_addr =
5048                     pci_map_single(priv->pci_dev, rxb->skb->data,
5049                                    IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5050
5051                 list_add_tail(&rxb->list, &rxq->rx_free);
5052                 rxq->free_count++;
5053         }
5054         spin_unlock_irqrestore(&rxq->lock, flags);
5055
5056         ipw_rx_queue_restock(priv);
5057 }
5058
5059 static void ipw_bg_rx_queue_replenish(void *data)
5060 {
5061         struct ipw_priv *priv = data;
5062         mutex_lock(&priv->mutex);
5063         ipw_rx_queue_replenish(data);
5064         mutex_unlock(&priv->mutex);
5065 }
5066
5067 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5068  * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5069  * This free routine walks the list of POOL entries and if SKB is set to
5070  * non NULL it is unmapped and freed
5071  */
5072 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5073 {
5074         int i;
5075
5076         if (!rxq)
5077                 return;
5078
5079         for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5080                 if (rxq->pool[i].skb != NULL) {
5081                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5082                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5083                         dev_kfree_skb(rxq->pool[i].skb);
5084                 }
5085         }
5086
5087         kfree(rxq);
5088 }
5089
5090 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5091 {
5092         struct ipw_rx_queue *rxq;
5093         int i;
5094
5095         rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5096         if (unlikely(!rxq)) {
5097                 IPW_ERROR("memory allocation failed\n");
5098                 return NULL;
5099         }
5100         spin_lock_init(&rxq->lock);
5101         INIT_LIST_HEAD(&rxq->rx_free);
5102         INIT_LIST_HEAD(&rxq->rx_used);
5103
5104         /* Fill the rx_used queue with _all_ of the Rx buffers */
5105         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5106                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5107
5108         /* Set us so that we have processed and used all buffers, but have
5109          * not restocked the Rx queue with fresh buffers */
5110         rxq->read = rxq->write = 0;
5111         rxq->processed = RX_QUEUE_SIZE - 1;
5112         rxq->free_count = 0;
5113
5114         return rxq;
5115 }
5116
5117 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5118 {
5119         rate &= ~IEEE80211_BASIC_RATE_MASK;
5120         if (ieee_mode == IEEE_A) {
5121                 switch (rate) {
5122                 case IEEE80211_OFDM_RATE_6MB:
5123                         return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ?
5124                             1 : 0;
5125                 case IEEE80211_OFDM_RATE_9MB:
5126                         return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ?
5127                             1 : 0;
5128                 case IEEE80211_OFDM_RATE_12MB:
5129                         return priv->
5130                             rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5131                 case IEEE80211_OFDM_RATE_18MB:
5132                         return priv->
5133                             rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5134                 case IEEE80211_OFDM_RATE_24MB:
5135                         return priv->
5136                             rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5137                 case IEEE80211_OFDM_RATE_36MB:
5138                         return priv->
5139                             rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5140                 case IEEE80211_OFDM_RATE_48MB:
5141                         return priv->
5142                             rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5143                 case IEEE80211_OFDM_RATE_54MB:
5144                         return priv->
5145                             rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5146                 default:
5147                         return 0;
5148                 }
5149         }
5150
5151         /* B and G mixed */
5152         switch (rate) {
5153         case IEEE80211_CCK_RATE_1MB:
5154                 return priv->rates_mask & IEEE80211_CCK_RATE_1MB_MASK ? 1 : 0;
5155         case IEEE80211_CCK_RATE_2MB:
5156                 return priv->rates_mask & IEEE80211_CCK_RATE_2MB_MASK ? 1 : 0;
5157         case IEEE80211_CCK_RATE_5MB:
5158                 return priv->rates_mask & IEEE80211_CCK_RATE_5MB_MASK ? 1 : 0;
5159         case IEEE80211_CCK_RATE_11MB:
5160                 return priv->rates_mask & IEEE80211_CCK_RATE_11MB_MASK ? 1 : 0;
5161         }
5162
5163         /* If we are limited to B modulations, bail at this point */
5164         if (ieee_mode == IEEE_B)
5165                 return 0;
5166
5167         /* G */
5168         switch (rate) {
5169         case IEEE80211_OFDM_RATE_6MB:
5170                 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0;
5171         case IEEE80211_OFDM_RATE_9MB:
5172                 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0;
5173         case IEEE80211_OFDM_RATE_12MB:
5174                 return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5175         case IEEE80211_OFDM_RATE_18MB:
5176                 return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5177         case IEEE80211_OFDM_RATE_24MB:
5178                 return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5179         case IEEE80211_OFDM_RATE_36MB:
5180                 return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5181         case IEEE80211_OFDM_RATE_48MB:
5182                 return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5183         case IEEE80211_OFDM_RATE_54MB:
5184                 return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5185         }
5186
5187         return 0;
5188 }
5189
5190 static int ipw_compatible_rates(struct ipw_priv *priv,
5191                                 const struct ieee80211_network *network,
5192                                 struct ipw_supported_rates *rates)
5193 {
5194         int num_rates, i;
5195
5196         memset(rates, 0, sizeof(*rates));
5197         num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5198         rates->num_rates = 0;
5199         for (i = 0; i < num_rates; i++) {
5200                 if (!ipw_is_rate_in_mask(priv, network->mode,
5201                                          network->rates[i])) {
5202
5203                         if (network->rates[i] & IEEE80211_BASIC_RATE_MASK) {
5204                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5205                                                "rate %02X\n",
5206                                                network->rates[i]);
5207                                 rates->supported_rates[rates->num_rates++] =
5208                                     network->rates[i];
5209                                 continue;
5210                         }
5211
5212                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5213                                        network->rates[i], priv->rates_mask);
5214                         continue;
5215                 }
5216
5217                 rates->supported_rates[rates->num_rates++] = network->rates[i];
5218         }
5219
5220         num_rates = min(network->rates_ex_len,
5221                         (u8) (IPW_MAX_RATES - num_rates));
5222         for (i = 0; i < num_rates; i++) {
5223                 if (!ipw_is_rate_in_mask(priv, network->mode,
5224                                          network->rates_ex[i])) {
5225                         if (network->rates_ex[i] & IEEE80211_BASIC_RATE_MASK) {
5226                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5227                                                "rate %02X\n",
5228                                                network->rates_ex[i]);
5229                                 rates->supported_rates[rates->num_rates++] =
5230                                     network->rates[i];
5231                                 continue;
5232                         }
5233
5234                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5235                                        network->rates_ex[i], priv->rates_mask);
5236                         continue;
5237                 }
5238
5239                 rates->supported_rates[rates->num_rates++] =
5240                     network->rates_ex[i];
5241         }
5242
5243         return 1;
5244 }
5245
5246 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5247                                   const struct ipw_supported_rates *src)
5248 {
5249         u8 i;
5250         for (i = 0; i < src->num_rates; i++)
5251                 dest->supported_rates[i] = src->supported_rates[i];
5252         dest->num_rates = src->num_rates;
5253 }
5254
5255 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5256  * mask should ever be used -- right now all callers to add the scan rates are
5257  * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5258 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5259                                    u8 modulation, u32 rate_mask)
5260 {
5261         u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5262             IEEE80211_BASIC_RATE_MASK : 0;
5263
5264         if (rate_mask & IEEE80211_CCK_RATE_1MB_MASK)
5265                 rates->supported_rates[rates->num_rates++] =
5266                     IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_1MB;
5267
5268         if (rate_mask & IEEE80211_CCK_RATE_2MB_MASK)
5269                 rates->supported_rates[rates->num_rates++] =
5270                     IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_2MB;
5271
5272         if (rate_mask & IEEE80211_CCK_RATE_5MB_MASK)
5273                 rates->supported_rates[rates->num_rates++] = basic_mask |
5274                     IEEE80211_CCK_RATE_5MB;
5275
5276         if (rate_mask & IEEE80211_CCK_RATE_11MB_MASK)
5277                 rates->supported_rates[rates->num_rates++] = basic_mask |
5278                     IEEE80211_CCK_RATE_11MB;
5279 }
5280
5281 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5282                                     u8 modulation, u32 rate_mask)
5283 {
5284         u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5285             IEEE80211_BASIC_RATE_MASK : 0;
5286
5287         if (rate_mask & IEEE80211_OFDM_RATE_6MB_MASK)
5288                 rates->supported_rates[rates->num_rates++] = basic_mask |
5289                     IEEE80211_OFDM_RATE_6MB;
5290
5291         if (rate_mask & IEEE80211_OFDM_RATE_9MB_MASK)
5292                 rates->supported_rates[rates->num_rates++] =
5293                     IEEE80211_OFDM_RATE_9MB;
5294
5295         if (rate_mask & IEEE80211_OFDM_RATE_12MB_MASK)
5296                 rates->supported_rates[rates->num_rates++] = basic_mask |
5297                     IEEE80211_OFDM_RATE_12MB;
5298
5299         if (rate_mask & IEEE80211_OFDM_RATE_18MB_MASK)
5300                 rates->supported_rates[rates->num_rates++] =
5301                     IEEE80211_OFDM_RATE_18MB;
5302
5303         if (rate_mask & IEEE80211_OFDM_RATE_24MB_MASK)
5304                 rates->supported_rates[rates->num_rates++] = basic_mask |
5305                     IEEE80211_OFDM_RATE_24MB;
5306
5307         if (rate_mask & IEEE80211_OFDM_RATE_36MB_MASK)
5308                 rates->supported_rates[rates->num_rates++] =
5309                     IEEE80211_OFDM_RATE_36MB;
5310
5311         if (rate_mask & IEEE80211_OFDM_RATE_48MB_MASK)
5312                 rates->supported_rates[rates->num_rates++] =
5313                     IEEE80211_OFDM_RATE_48MB;
5314
5315         if (rate_mask & IEEE80211_OFDM_RATE_54MB_MASK)
5316                 rates->supported_rates[rates->num_rates++] =
5317                     IEEE80211_OFDM_RATE_54MB;
5318 }
5319
5320 struct ipw_network_match {
5321         struct ieee80211_network *network;
5322         struct ipw_supported_rates rates;
5323 };
5324
5325 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5326                                   struct ipw_network_match *match,
5327                                   struct ieee80211_network *network,
5328                                   int roaming)
5329 {
5330         struct ipw_supported_rates rates;
5331
5332         /* Verify that this network's capability is compatible with the
5333          * current mode (AdHoc or Infrastructure) */
5334         if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5335              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5336                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded due to "
5337                                 "capability mismatch.\n",
5338                                 escape_essid(network->ssid, network->ssid_len),
5339                                 MAC_ARG(network->bssid));
5340                 return 0;
5341         }
5342
5343         /* If we do not have an ESSID for this AP, we can not associate with
5344          * it */
5345         if (network->flags & NETWORK_EMPTY_ESSID) {
5346                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5347                                 "because of hidden ESSID.\n",
5348                                 escape_essid(network->ssid, network->ssid_len),
5349                                 MAC_ARG(network->bssid));
5350                 return 0;
5351         }
5352
5353         if (unlikely(roaming)) {
5354                 /* If we are roaming, then ensure check if this is a valid
5355                  * network to try and roam to */
5356                 if ((network->ssid_len != match->network->ssid_len) ||
5357                     memcmp(network->ssid, match->network->ssid,
5358                            network->ssid_len)) {
5359                         IPW_DEBUG_MERGE("Netowrk '%s (" MAC_FMT ")' excluded "
5360                                         "because of non-network ESSID.\n",
5361                                         escape_essid(network->ssid,
5362                                                      network->ssid_len),
5363                                         MAC_ARG(network->bssid));
5364                         return 0;
5365                 }
5366         } else {
5367                 /* If an ESSID has been configured then compare the broadcast
5368                  * ESSID to ours */
5369                 if ((priv->config & CFG_STATIC_ESSID) &&
5370                     ((network->ssid_len != priv->essid_len) ||
5371                      memcmp(network->ssid, priv->essid,
5372                             min(network->ssid_len, priv->essid_len)))) {
5373                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5374
5375                         strncpy(escaped,
5376                                 escape_essid(network->ssid, network->ssid_len),
5377                                 sizeof(escaped));
5378                         IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5379                                         "because of ESSID mismatch: '%s'.\n",
5380                                         escaped, MAC_ARG(network->bssid),
5381                                         escape_essid(priv->essid,
5382                                                      priv->essid_len));
5383                         return 0;
5384                 }
5385         }
5386
5387         /* If the old network rate is better than this one, don't bother
5388          * testing everything else. */
5389
5390         if (network->time_stamp[0] < match->network->time_stamp[0]) {
5391                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5392                                 "current network.\n",
5393                                 escape_essid(match->network->ssid,
5394                                              match->network->ssid_len));
5395                 return 0;
5396         } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5397                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5398                                 "current network.\n",
5399                                 escape_essid(match->network->ssid,
5400                                              match->network->ssid_len));
5401                 return 0;
5402         }
5403
5404         /* Now go through and see if the requested network is valid... */
5405         if (priv->ieee->scan_age != 0 &&
5406             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5407                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5408                                 "because of age: %ums.\n",
5409                                 escape_essid(network->ssid, network->ssid_len),
5410                                 MAC_ARG(network->bssid),
5411                                 jiffies_to_msecs(jiffies -
5412                                                  network->last_scanned));
5413                 return 0;
5414         }
5415
5416         if ((priv->config & CFG_STATIC_CHANNEL) &&
5417             (network->channel != priv->channel)) {
5418                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5419                                 "because of channel mismatch: %d != %d.\n",
5420                                 escape_essid(network->ssid, network->ssid_len),
5421                                 MAC_ARG(network->bssid),
5422                                 network->channel, priv->channel);
5423                 return 0;
5424         }
5425
5426         /* Verify privacy compatability */
5427         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5428             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5429                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5430                                 "because of privacy mismatch: %s != %s.\n",
5431                                 escape_essid(network->ssid, network->ssid_len),
5432                                 MAC_ARG(network->bssid),
5433                                 priv->
5434                                 capability & CAP_PRIVACY_ON ? "on" : "off",
5435                                 network->
5436                                 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5437                                 "off");
5438                 return 0;
5439         }
5440
5441         if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5442                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5443                                 "because of the same BSSID match: " MAC_FMT
5444                                 ".\n", escape_essid(network->ssid,
5445                                                     network->ssid_len),
5446                                 MAC_ARG(network->bssid), MAC_ARG(priv->bssid));
5447                 return 0;
5448         }
5449
5450         /* Filter out any incompatible freq / mode combinations */
5451         if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5452                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5453                                 "because of invalid frequency/mode "
5454                                 "combination.\n",
5455                                 escape_essid(network->ssid, network->ssid_len),
5456                                 MAC_ARG(network->bssid));
5457                 return 0;
5458         }
5459
5460         /* Ensure that the rates supported by the driver are compatible with
5461          * this AP, including verification of basic rates (mandatory) */
5462         if (!ipw_compatible_rates(priv, network, &rates)) {
5463                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5464                                 "because configured rate mask excludes "
5465                                 "AP mandatory rate.\n",
5466                                 escape_essid(network->ssid, network->ssid_len),
5467                                 MAC_ARG(network->bssid));
5468                 return 0;
5469         }
5470
5471         if (rates.num_rates == 0) {
5472                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5473                                 "because of no compatible rates.\n",
5474                                 escape_essid(network->ssid, network->ssid_len),
5475                                 MAC_ARG(network->bssid));
5476                 return 0;
5477         }
5478
5479         /* TODO: Perform any further minimal comparititive tests.  We do not
5480          * want to put too much policy logic here; intelligent scan selection
5481          * should occur within a generic IEEE 802.11 user space tool.  */
5482
5483         /* Set up 'new' AP to this network */
5484         ipw_copy_rates(&match->rates, &rates);
5485         match->network = network;
5486         IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' is a viable match.\n",
5487                         escape_essid(network->ssid, network->ssid_len),
5488                         MAC_ARG(network->bssid));
5489
5490         return 1;
5491 }
5492
5493 static void ipw_merge_adhoc_network(void *data)
5494 {
5495         struct ipw_priv *priv = data;
5496         struct ieee80211_network *network = NULL;
5497         struct ipw_network_match match = {
5498                 .network = priv->assoc_network
5499         };
5500
5501         if ((priv->status & STATUS_ASSOCIATED) &&
5502             (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5503                 /* First pass through ROAM process -- look for a better
5504                  * network */
5505                 unsigned long flags;
5506
5507                 spin_lock_irqsave(&priv->ieee->lock, flags);
5508                 list_for_each_entry(network, &priv->ieee->network_list, list) {
5509                         if (network != priv->assoc_network)
5510                                 ipw_find_adhoc_network(priv, &match, network,
5511                                                        1);
5512                 }
5513                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5514
5515                 if (match.network == priv->assoc_network) {
5516                         IPW_DEBUG_MERGE("No better ADHOC in this network to "
5517                                         "merge to.\n");
5518                         return;
5519                 }
5520
5521                 mutex_lock(&priv->mutex);
5522                 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5523                         IPW_DEBUG_MERGE("remove network %s\n",
5524                                         escape_essid(priv->essid,
5525                                                      priv->essid_len));
5526                         ipw_remove_current_network(priv);
5527                 }
5528
5529                 ipw_disassociate(priv);
5530                 priv->assoc_network = match.network;
5531                 mutex_unlock(&priv->mutex);
5532                 return;
5533         }
5534 }
5535
5536 static int ipw_best_network(struct ipw_priv *priv,
5537                             struct ipw_network_match *match,
5538                             struct ieee80211_network *network, int roaming)
5539 {
5540         struct ipw_supported_rates rates;
5541
5542         /* Verify that this network's capability is compatible with the
5543          * current mode (AdHoc or Infrastructure) */
5544         if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5545              !(network->capability & WLAN_CAPABILITY_ESS)) ||
5546             (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5547              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5548                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded due to "
5549                                 "capability mismatch.\n",
5550                                 escape_essid(network->ssid, network->ssid_len),
5551                                 MAC_ARG(network->bssid));
5552                 return 0;
5553         }
5554
5555         /* If we do not have an ESSID for this AP, we can not associate with
5556          * it */
5557         if (network->flags & NETWORK_EMPTY_ESSID) {
5558                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5559                                 "because of hidden ESSID.\n",
5560                                 escape_essid(network->ssid, network->ssid_len),
5561                                 MAC_ARG(network->bssid));
5562                 return 0;
5563         }
5564
5565         if (unlikely(roaming)) {
5566                 /* If we are roaming, then ensure check if this is a valid
5567                  * network to try and roam to */
5568                 if ((network->ssid_len != match->network->ssid_len) ||
5569                     memcmp(network->ssid, match->network->ssid,
5570                            network->ssid_len)) {
5571                         IPW_DEBUG_ASSOC("Netowrk '%s (" MAC_FMT ")' excluded "
5572                                         "because of non-network ESSID.\n",
5573                                         escape_essid(network->ssid,
5574                                                      network->ssid_len),
5575                                         MAC_ARG(network->bssid));
5576                         return 0;
5577                 }
5578         } else {
5579                 /* If an ESSID has been configured then compare the broadcast
5580                  * ESSID to ours */
5581                 if ((priv->config & CFG_STATIC_ESSID) &&
5582                     ((network->ssid_len != priv->essid_len) ||
5583                      memcmp(network->ssid, priv->essid,
5584                             min(network->ssid_len, priv->essid_len)))) {
5585                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5586                         strncpy(escaped,
5587                                 escape_essid(network->ssid, network->ssid_len),
5588                                 sizeof(escaped));
5589                         IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5590                                         "because of ESSID mismatch: '%s'.\n",
5591                                         escaped, MAC_ARG(network->bssid),
5592                                         escape_essid(priv->essid,
5593                                                      priv->essid_len));
5594                         return 0;
5595                 }
5596         }
5597
5598         /* If the old network rate is better than this one, don't bother
5599          * testing everything else. */
5600         if (match->network && match->network->stats.rssi > network->stats.rssi) {
5601                 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5602                 strncpy(escaped,
5603                         escape_essid(network->ssid, network->ssid_len),
5604                         sizeof(escaped));
5605                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded because "
5606                                 "'%s (" MAC_FMT ")' has a stronger signal.\n",
5607                                 escaped, MAC_ARG(network->bssid),
5608                                 escape_essid(match->network->ssid,
5609                                              match->network->ssid_len),
5610                                 MAC_ARG(match->network->bssid));
5611                 return 0;
5612         }
5613
5614         /* If this network has already had an association attempt within the
5615          * last 3 seconds, do not try and associate again... */
5616         if (network->last_associate &&
5617             time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5618                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5619                                 "because of storming (%ums since last "
5620                                 "assoc attempt).\n",
5621                                 escape_essid(network->ssid, network->ssid_len),
5622                                 MAC_ARG(network->bssid),
5623                                 jiffies_to_msecs(jiffies -
5624                                                  network->last_associate));
5625                 return 0;
5626         }
5627
5628         /* Now go through and see if the requested network is valid... */
5629         if (priv->ieee->scan_age != 0 &&
5630             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5631                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5632                                 "because of age: %ums.\n",
5633                                 escape_essid(network->ssid, network->ssid_len),
5634                                 MAC_ARG(network->bssid),
5635                                 jiffies_to_msecs(jiffies -
5636                                                  network->last_scanned));
5637                 return 0;
5638         }
5639
5640         if ((priv->config & CFG_STATIC_CHANNEL) &&
5641             (network->channel != priv->channel)) {
5642                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5643                                 "because of channel mismatch: %d != %d.\n",
5644                                 escape_essid(network->ssid, network->ssid_len),
5645                                 MAC_ARG(network->bssid),
5646                                 network->channel, priv->channel);
5647                 return 0;
5648         }
5649
5650         /* Verify privacy compatability */
5651         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5652             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5653                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5654                                 "because of privacy mismatch: %s != %s.\n",
5655                                 escape_essid(network->ssid, network->ssid_len),
5656                                 MAC_ARG(network->bssid),
5657                                 priv->capability & CAP_PRIVACY_ON ? "on" :
5658                                 "off",
5659                                 network->capability &
5660                                 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5661                 return 0;
5662         }
5663
5664         if ((priv->config & CFG_STATIC_BSSID) &&
5665             memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5666                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5667                                 "because of BSSID mismatch: " MAC_FMT ".\n",
5668                                 escape_essid(network->ssid, network->ssid_len),
5669                                 MAC_ARG(network->bssid), MAC_ARG(priv->bssid));
5670                 return 0;
5671         }
5672
5673         /* Filter out any incompatible freq / mode combinations */
5674         if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5675                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5676                                 "because of invalid frequency/mode "
5677                                 "combination.\n",
5678                                 escape_essid(network->ssid, network->ssid_len),
5679                                 MAC_ARG(network->bssid));
5680                 return 0;
5681         }
5682
5683         /* Filter out invalid channel in current GEO */
5684         if (!ieee80211_is_valid_channel(priv->ieee, network->channel)) {
5685                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5686                                 "because of invalid channel in current GEO\n",
5687                                 escape_essid(network->ssid, network->ssid_len),
5688                                 MAC_ARG(network->bssid));
5689                 return 0;
5690         }
5691
5692         /* Ensure that the rates supported by the driver are compatible with
5693          * this AP, including verification of basic rates (mandatory) */
5694         if (!ipw_compatible_rates(priv, network, &rates)) {
5695                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5696                                 "because configured rate mask excludes "
5697                                 "AP mandatory rate.\n",
5698                                 escape_essid(network->ssid, network->ssid_len),
5699                                 MAC_ARG(network->bssid));
5700                 return 0;
5701         }
5702
5703         if (rates.num_rates == 0) {
5704                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5705                                 "because of no compatible rates.\n",
5706                                 escape_essid(network->ssid, network->ssid_len),
5707                                 MAC_ARG(network->bssid));
5708                 return 0;
5709         }
5710
5711         /* TODO: Perform any further minimal comparititive tests.  We do not
5712          * want to put too much policy logic here; intelligent scan selection
5713          * should occur within a generic IEEE 802.11 user space tool.  */
5714
5715         /* Set up 'new' AP to this network */
5716         ipw_copy_rates(&match->rates, &rates);
5717         match->network = network;
5718
5719         IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' is a viable match.\n",
5720                         escape_essid(network->ssid, network->ssid_len),
5721                         MAC_ARG(network->bssid));
5722
5723         return 1;
5724 }
5725
5726 static void ipw_adhoc_create(struct ipw_priv *priv,
5727                              struct ieee80211_network *network)
5728 {
5729         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
5730         int i;
5731
5732         /*
5733          * For the purposes of scanning, we can set our wireless mode
5734          * to trigger scans across combinations of bands, but when it
5735          * comes to creating a new ad-hoc network, we have tell the FW
5736          * exactly which band to use.
5737          *
5738          * We also have the possibility of an invalid channel for the
5739          * chossen band.  Attempting to create a new ad-hoc network
5740          * with an invalid channel for wireless mode will trigger a
5741          * FW fatal error.
5742          *
5743          */
5744         switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
5745         case IEEE80211_52GHZ_BAND:
5746                 network->mode = IEEE_A;
5747                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5748                 BUG_ON(i == -1);
5749                 if (geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5750                         IPW_WARNING("Overriding invalid channel\n");
5751                         priv->channel = geo->a[0].channel;
5752                 }
5753                 break;
5754
5755         case IEEE80211_24GHZ_BAND:
5756                 if (priv->ieee->mode & IEEE_G)
5757                         network->mode = IEEE_G;
5758                 else
5759                         network->mode = IEEE_B;
5760                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5761                 BUG_ON(i == -1);
5762                 if (geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5763                         IPW_WARNING("Overriding invalid channel\n");
5764                         priv->channel = geo->bg[0].channel;
5765                 }
5766                 break;
5767
5768         default:
5769                 IPW_WARNING("Overriding invalid channel\n");
5770                 if (priv->ieee->mode & IEEE_A) {
5771                         network->mode = IEEE_A;
5772                         priv->channel = geo->a[0].channel;
5773                 } else if (priv->ieee->mode & IEEE_G) {
5774                         network->mode = IEEE_G;
5775                         priv->channel = geo->bg[0].channel;
5776                 } else {
5777                         network->mode = IEEE_B;
5778                         priv->channel = geo->bg[0].channel;
5779                 }
5780                 break;
5781         }
5782
5783         network->channel = priv->channel;
5784         priv->config |= CFG_ADHOC_PERSIST;
5785         ipw_create_bssid(priv, network->bssid);
5786         network->ssid_len = priv->essid_len;
5787         memcpy(network->ssid, priv->essid, priv->essid_len);
5788         memset(&network->stats, 0, sizeof(network->stats));
5789         network->capability = WLAN_CAPABILITY_IBSS;
5790         if (!(priv->config & CFG_PREAMBLE_LONG))
5791                 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5792         if (priv->capability & CAP_PRIVACY_ON)
5793                 network->capability |= WLAN_CAPABILITY_PRIVACY;
5794         network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5795         memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5796         network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5797         memcpy(network->rates_ex,
5798                &priv->rates.supported_rates[network->rates_len],
5799                network->rates_ex_len);
5800         network->last_scanned = 0;
5801         network->flags = 0;
5802         network->last_associate = 0;
5803         network->time_stamp[0] = 0;
5804         network->time_stamp[1] = 0;
5805         network->beacon_interval = 100; /* Default */
5806         network->listen_interval = 10;  /* Default */
5807         network->atim_window = 0;       /* Default */
5808         network->wpa_ie_len = 0;
5809         network->rsn_ie_len = 0;
5810 }
5811
5812 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5813 {
5814         struct ipw_tgi_tx_key key;
5815
5816         if (!(priv->ieee->sec.flags & (1 << index)))
5817                 return;
5818
5819         key.key_id = index;
5820         memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5821         key.security_type = type;
5822         key.station_index = 0;  /* always 0 for BSS */
5823         key.flags = 0;
5824         /* 0 for new key; previous value of counter (after fatal error) */
5825         key.tx_counter[0] = 0;
5826         key.tx_counter[1] = 0;
5827
5828         ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5829 }
5830
5831 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5832 {
5833         struct ipw_wep_key key;
5834         int i;
5835
5836         key.cmd_id = DINO_CMD_WEP_KEY;
5837         key.seq_num = 0;
5838
5839         /* Note: AES keys cannot be set for multiple times.
5840          * Only set it at the first time. */
5841         for (i = 0; i < 4; i++) {
5842                 key.key_index = i | type;
5843                 if (!(priv->ieee->sec.flags & (1 << i))) {
5844                         key.key_size = 0;
5845                         continue;
5846                 }
5847
5848                 key.key_size = priv->ieee->sec.key_sizes[i];
5849                 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5850
5851                 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5852         }
5853 }
5854
5855 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5856 {
5857         if (priv->ieee->host_encrypt)
5858                 return;
5859
5860         switch (level) {
5861         case SEC_LEVEL_3:
5862                 priv->sys_config.disable_unicast_decryption = 0;
5863                 priv->ieee->host_decrypt = 0;
5864                 break;
5865         case SEC_LEVEL_2:
5866                 priv->sys_config.disable_unicast_decryption = 1;
5867                 priv->ieee->host_decrypt = 1;
5868                 break;
5869         case SEC_LEVEL_1:
5870                 priv->sys_config.disable_unicast_decryption = 0;
5871                 priv->ieee->host_decrypt = 0;
5872                 break;
5873         case SEC_LEVEL_0:
5874                 priv->sys_config.disable_unicast_decryption = 1;
5875                 break;
5876         default:
5877                 break;
5878         }
5879 }
5880
5881 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5882 {
5883         if (priv->ieee->host_encrypt)
5884                 return;
5885
5886         switch (level) {
5887         case SEC_LEVEL_3:
5888                 priv->sys_config.disable_multicast_decryption = 0;
5889                 break;
5890         case SEC_LEVEL_2:
5891                 priv->sys_config.disable_multicast_decryption = 1;
5892                 break;
5893         case SEC_LEVEL_1:
5894                 priv->sys_config.disable_multicast_decryption = 0;
5895                 break;
5896         case SEC_LEVEL_0:
5897                 priv->sys_config.disable_multicast_decryption = 1;
5898                 break;
5899         default:
5900                 break;
5901         }
5902 }
5903
5904 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
5905 {
5906         switch (priv->ieee->sec.level) {
5907         case SEC_LEVEL_3:
5908                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5909                         ipw_send_tgi_tx_key(priv,
5910                                             DCT_FLAG_EXT_SECURITY_CCM,
5911                                             priv->ieee->sec.active_key);
5912
5913                 if (!priv->ieee->host_mc_decrypt)
5914                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
5915                 break;
5916         case SEC_LEVEL_2:
5917                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5918                         ipw_send_tgi_tx_key(priv,
5919                                             DCT_FLAG_EXT_SECURITY_TKIP,
5920                                             priv->ieee->sec.active_key);
5921                 break;
5922         case SEC_LEVEL_1:
5923                 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
5924                 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
5925                 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
5926                 break;
5927         case SEC_LEVEL_0:
5928         default:
5929                 break;
5930         }
5931 }
5932
5933 static void ipw_adhoc_check(void *data)
5934 {
5935         struct ipw_priv *priv = data;
5936
5937         if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
5938             !(priv->config & CFG_ADHOC_PERSIST)) {
5939                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
5940                           IPW_DL_STATE | IPW_DL_ASSOC,
5941                           "Missed beacon: %d - disassociate\n",
5942                           priv->missed_adhoc_beacons);
5943                 ipw_remove_current_network(priv);
5944                 ipw_disassociate(priv);
5945                 return;
5946         }
5947
5948         queue_delayed_work(priv->workqueue, &priv->adhoc_check,
5949                            priv->assoc_request.beacon_interval);
5950 }
5951
5952 static void ipw_bg_adhoc_check(void *data)
5953 {
5954         struct ipw_priv *priv = data;
5955         mutex_lock(&priv->mutex);
5956         ipw_adhoc_check(data);
5957         mutex_unlock(&priv->mutex);
5958 }
5959
5960 static void ipw_debug_config(struct ipw_priv *priv)
5961 {
5962         IPW_DEBUG_INFO("Scan completed, no valid APs matched "
5963                        "[CFG 0x%08X]\n", priv->config);
5964         if (priv->config & CFG_STATIC_CHANNEL)
5965                 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
5966         else
5967                 IPW_DEBUG_INFO("Channel unlocked.\n");
5968         if (priv->config & CFG_STATIC_ESSID)
5969                 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
5970                                escape_essid(priv->essid, priv->essid_len));
5971         else
5972                 IPW_DEBUG_INFO("ESSID unlocked.\n");
5973         if (priv->config & CFG_STATIC_BSSID)
5974                 IPW_DEBUG_INFO("BSSID locked to " MAC_FMT "\n",
5975                                MAC_ARG(priv->bssid));
5976         else
5977                 IPW_DEBUG_INFO("BSSID unlocked.\n");
5978         if (priv->capability & CAP_PRIVACY_ON)
5979                 IPW_DEBUG_INFO("PRIVACY on\n");
5980         else
5981                 IPW_DEBUG_INFO("PRIVACY off\n");
5982         IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
5983 }
5984
5985 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
5986 {
5987         /* TODO: Verify that this works... */
5988         struct ipw_fixed_rate fr = {
5989                 .tx_rates = priv->rates_mask
5990         };
5991         u32 reg;
5992         u16 mask = 0;
5993
5994         /* Identify 'current FW band' and match it with the fixed
5995          * Tx rates */
5996
5997         switch (priv->ieee->freq_band) {
5998         case IEEE80211_52GHZ_BAND:      /* A only */
5999                 /* IEEE_A */
6000                 if (priv->rates_mask & ~IEEE80211_OFDM_RATES_MASK) {
6001                         /* Invalid fixed rate mask */
6002                         IPW_DEBUG_WX
6003                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6004                         fr.tx_rates = 0;
6005                         break;
6006                 }
6007
6008                 fr.tx_rates >>= IEEE80211_OFDM_SHIFT_MASK_A;
6009                 break;
6010
6011         default:                /* 2.4Ghz or Mixed */
6012                 /* IEEE_B */
6013                 if (mode == IEEE_B) {
6014                         if (fr.tx_rates & ~IEEE80211_CCK_RATES_MASK) {
6015                                 /* Invalid fixed rate mask */
6016                                 IPW_DEBUG_WX
6017                                     ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6018                                 fr.tx_rates = 0;
6019                         }
6020                         break;
6021                 }
6022
6023                 /* IEEE_G */
6024                 if (fr.tx_rates & ~(IEEE80211_CCK_RATES_MASK |
6025                                     IEEE80211_OFDM_RATES_MASK)) {
6026                         /* Invalid fixed rate mask */
6027                         IPW_DEBUG_WX
6028                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6029                         fr.tx_rates = 0;
6030                         break;
6031                 }
6032
6033                 if (IEEE80211_OFDM_RATE_6MB_MASK & fr.tx_rates) {
6034                         mask |= (IEEE80211_OFDM_RATE_6MB_MASK >> 1);
6035                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_6MB_MASK;
6036                 }
6037
6038                 if (IEEE80211_OFDM_RATE_9MB_MASK & fr.tx_rates) {
6039                         mask |= (IEEE80211_OFDM_RATE_9MB_MASK >> 1);
6040                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_9MB_MASK;
6041                 }
6042
6043                 if (IEEE80211_OFDM_RATE_12MB_MASK & fr.tx_rates) {
6044                         mask |= (IEEE80211_OFDM_RATE_12MB_MASK >> 1);
6045                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_12MB_MASK;
6046                 }
6047
6048                 fr.tx_rates |= mask;
6049                 break;
6050         }
6051
6052         reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6053         ipw_write_reg32(priv, reg, *(u32 *) & fr);
6054 }
6055
6056 static void ipw_abort_scan(struct ipw_priv *priv)
6057 {
6058         int err;
6059
6060         if (priv->status & STATUS_SCAN_ABORTING) {
6061                 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6062                 return;
6063         }
6064         priv->status |= STATUS_SCAN_ABORTING;
6065
6066         err = ipw_send_scan_abort(priv);
6067         if (err)
6068                 IPW_DEBUG_HC("Request to abort scan failed.\n");
6069 }
6070
6071 static void ipw_add_scan_channels(struct ipw_priv *priv,
6072                                   struct ipw_scan_request_ext *scan,
6073                                   int scan_type)
6074 {
6075         int channel_index = 0;
6076         const struct ieee80211_geo *geo;
6077         int i;
6078
6079         geo = ieee80211_get_geo(priv->ieee);
6080
6081         if (priv->ieee->freq_band & IEEE80211_52GHZ_BAND) {
6082                 int start = channel_index;
6083                 for (i = 0; i < geo->a_channels; i++) {
6084                         if ((priv->status & STATUS_ASSOCIATED) &&
6085                             geo->a[i].channel == priv->channel)
6086                                 continue;
6087                         channel_index++;
6088                         scan->channels_list[channel_index] = geo->a[i].channel;
6089                         ipw_set_scan_type(scan, channel_index,
6090                                           geo->a[i].
6091                                           flags & IEEE80211_CH_PASSIVE_ONLY ?
6092                                           IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6093                                           scan_type);
6094                 }
6095
6096                 if (start != channel_index) {
6097                         scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6098                             (channel_index - start);
6099                         channel_index++;
6100                 }
6101         }
6102
6103         if (priv->ieee->freq_band & IEEE80211_24GHZ_BAND) {
6104                 int start = channel_index;
6105                 if (priv->config & CFG_SPEED_SCAN) {
6106                         int index;
6107                         u8 channels[IEEE80211_24GHZ_CHANNELS] = {
6108                                 /* nop out the list */
6109                                 [0] = 0
6110                         };
6111
6112                         u8 channel;
6113                         while (channel_index < IPW_SCAN_CHANNELS) {
6114                                 channel =
6115                                     priv->speed_scan[priv->speed_scan_pos];
6116                                 if (channel == 0) {
6117                                         priv->speed_scan_pos = 0;
6118                                         channel = priv->speed_scan[0];
6119                                 }
6120                                 if ((priv->status & STATUS_ASSOCIATED) &&
6121                                     channel == priv->channel) {
6122                                         priv->speed_scan_pos++;
6123                                         continue;
6124                                 }
6125
6126                                 /* If this channel has already been
6127                                  * added in scan, break from loop
6128                                  * and this will be the first channel
6129                                  * in the next scan.
6130                                  */
6131                                 if (channels[channel - 1] != 0)
6132                                         break;
6133
6134                                 channels[channel - 1] = 1;
6135                                 priv->speed_scan_pos++;
6136                                 channel_index++;
6137                                 scan->channels_list[channel_index] = channel;
6138                                 index =
6139                                     ieee80211_channel_to_index(priv->ieee, channel);
6140                                 ipw_set_scan_type(scan, channel_index,
6141                                                   geo->bg[index].
6142                                                   flags &
6143                                                   IEEE80211_CH_PASSIVE_ONLY ?
6144                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6145                                                   : scan_type);
6146                         }
6147                 } else {
6148                         for (i = 0; i < geo->bg_channels; i++) {
6149                                 if ((priv->status & STATUS_ASSOCIATED) &&
6150                                     geo->bg[i].channel == priv->channel)
6151                                         continue;
6152                                 channel_index++;
6153                                 scan->channels_list[channel_index] =
6154                                     geo->bg[i].channel;
6155                                 ipw_set_scan_type(scan, channel_index,
6156                                                   geo->bg[i].
6157                                                   flags &
6158                                                   IEEE80211_CH_PASSIVE_ONLY ?
6159                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6160                                                   : scan_type);
6161                         }
6162                 }
6163
6164                 if (start != channel_index) {
6165                         scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6166                             (channel_index - start);
6167                 }
6168         }
6169 }
6170
6171 static int ipw_request_scan(struct ipw_priv *priv)
6172 {
6173         struct ipw_scan_request_ext scan;
6174         int err = 0, scan_type;
6175
6176         if (!(priv->status & STATUS_INIT) ||
6177             (priv->status & STATUS_EXIT_PENDING))
6178                 return 0;
6179
6180         mutex_lock(&priv->mutex);
6181
6182         if (priv->status & STATUS_SCANNING) {
6183                 IPW_DEBUG_HC("Concurrent scan requested.  Ignoring.\n");
6184                 priv->status |= STATUS_SCAN_PENDING;
6185                 goto done;
6186         }
6187
6188         if (!(priv->status & STATUS_SCAN_FORCED) &&
6189             priv->status & STATUS_SCAN_ABORTING) {
6190                 IPW_DEBUG_HC("Scan request while abort pending.  Queuing.\n");
6191                 priv->status |= STATUS_SCAN_PENDING;
6192                 goto done;
6193         }
6194
6195         if (priv->status & STATUS_RF_KILL_MASK) {
6196                 IPW_DEBUG_HC("Aborting scan due to RF Kill activation\n");
6197                 priv->status |= STATUS_SCAN_PENDING;
6198                 goto done;
6199         }
6200
6201         memset(&scan, 0, sizeof(scan));
6202
6203         if (priv->config & CFG_SPEED_SCAN)
6204                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6205                     cpu_to_le16(30);
6206         else
6207                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6208                     cpu_to_le16(20);
6209
6210         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6211             cpu_to_le16(20);
6212         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
6213
6214         scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
6215
6216 #ifdef CONFIG_IPW2200_MONITOR
6217         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6218                 u8 channel;
6219                 u8 band = 0;
6220
6221                 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
6222                 case IEEE80211_52GHZ_BAND:
6223                         band = (u8) (IPW_A_MODE << 6) | 1;
6224                         channel = priv->channel;
6225                         break;
6226
6227                 case IEEE80211_24GHZ_BAND:
6228                         band = (u8) (IPW_B_MODE << 6) | 1;
6229                         channel = priv->channel;
6230                         break;
6231
6232                 default:
6233                         band = (u8) (IPW_B_MODE << 6) | 1;
6234                         channel = 9;
6235                         break;
6236                 }
6237
6238                 scan.channels_list[0] = band;
6239                 scan.channels_list[1] = channel;
6240                 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6241
6242                 /* NOTE:  The card will sit on this channel for this time
6243                  * period.  Scan aborts are timing sensitive and frequently
6244                  * result in firmware restarts.  As such, it is best to
6245                  * set a small dwell_time here and just keep re-issuing
6246                  * scans.  Otherwise fast channel hopping will not actually
6247                  * hop channels.
6248                  *
6249                  * TODO: Move SPEED SCAN support to all modes and bands */
6250                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6251                     cpu_to_le16(2000);
6252         } else {
6253 #endif                          /* CONFIG_IPW2200_MONITOR */
6254                 /* If we are roaming, then make this a directed scan for the
6255                  * current network.  Otherwise, ensure that every other scan
6256                  * is a fast channel hop scan */
6257                 if ((priv->status & STATUS_ROAMING)
6258                     || (!(priv->status & STATUS_ASSOCIATED)
6259                         && (priv->config & CFG_STATIC_ESSID)
6260                         && (le32_to_cpu(scan.full_scan_index) % 2))) {
6261                         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6262                         if (err) {
6263                                 IPW_DEBUG_HC("Attempt to send SSID command "
6264                                              "failed.\n");
6265                                 goto done;
6266                         }
6267
6268                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6269                 } else
6270                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6271
6272                 ipw_add_scan_channels(priv, &scan, scan_type);
6273 #ifdef CONFIG_IPW2200_MONITOR
6274         }
6275 #endif
6276
6277         err = ipw_send_scan_request_ext(priv, &scan);
6278         if (err) {
6279                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6280                 goto done;
6281         }
6282
6283         priv->status |= STATUS_SCANNING;
6284         priv->status &= ~STATUS_SCAN_PENDING;
6285         queue_delayed_work(priv->workqueue, &priv->scan_check,
6286                            IPW_SCAN_CHECK_WATCHDOG);
6287       done:
6288         mutex_unlock(&priv->mutex);
6289         return err;
6290 }
6291
6292 static void ipw_bg_abort_scan(void *data)
6293 {
6294         struct ipw_priv *priv = data;
6295         mutex_lock(&priv->mutex);
6296         ipw_abort_scan(data);
6297         mutex_unlock(&priv->mutex);
6298 }
6299
6300 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6301 {
6302         /* This is called when wpa_supplicant loads and closes the driver
6303          * interface. */
6304         priv->ieee->wpa_enabled = value;
6305         return 0;
6306 }
6307
6308 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6309 {
6310         struct ieee80211_device *ieee = priv->ieee;
6311         struct ieee80211_security sec = {
6312                 .flags = SEC_AUTH_MODE,
6313         };
6314         int ret = 0;
6315
6316         if (value & IW_AUTH_ALG_SHARED_KEY) {
6317                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6318                 ieee->open_wep = 0;
6319         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6320                 sec.auth_mode = WLAN_AUTH_OPEN;
6321                 ieee->open_wep = 1;
6322         } else if (value & IW_AUTH_ALG_LEAP) {
6323                 sec.auth_mode = WLAN_AUTH_LEAP;
6324                 ieee->open_wep = 1;
6325         } else
6326                 return -EINVAL;
6327
6328         if (ieee->set_security)
6329                 ieee->set_security(ieee->dev, &sec);
6330         else
6331                 ret = -EOPNOTSUPP;
6332
6333         return ret;
6334 }
6335
6336 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6337                                 int wpa_ie_len)
6338 {
6339         /* make sure WPA is enabled */
6340         ipw_wpa_enable(priv, 1);
6341 }
6342
6343 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6344                             char *capabilities, int length)
6345 {
6346         IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6347
6348         return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6349                                 capabilities);
6350 }
6351
6352 /*
6353  * WE-18 support
6354  */
6355
6356 /* SIOCSIWGENIE */
6357 static int ipw_wx_set_genie(struct net_device *dev,
6358                             struct iw_request_info *info,
6359                             union iwreq_data *wrqu, char *extra)
6360 {
6361         struct ipw_priv *priv = ieee80211_priv(dev);
6362         struct ieee80211_device *ieee = priv->ieee;
6363         u8 *buf;
6364         int err = 0;
6365
6366         if (wrqu->data.length > MAX_WPA_IE_LEN ||
6367             (wrqu->data.length && extra == NULL))
6368                 return -EINVAL;
6369
6370         if (wrqu->data.length) {
6371                 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
6372                 if (buf == NULL) {
6373                         err = -ENOMEM;
6374                         goto out;
6375                 }
6376
6377                 memcpy(buf, extra, wrqu->data.length);
6378                 kfree(ieee->wpa_ie);
6379                 ieee->wpa_ie = buf;
6380                 ieee->wpa_ie_len = wrqu->data.length;
6381         } else {
6382                 kfree(ieee->wpa_ie);
6383                 ieee->wpa_ie = NULL;
6384                 ieee->wpa_ie_len = 0;
6385         }
6386
6387         ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6388       out:
6389         return err;
6390 }
6391
6392 /* SIOCGIWGENIE */
6393 static int ipw_wx_get_genie(struct net_device *dev,
6394                             struct iw_request_info *info,
6395                             union iwreq_data *wrqu, char *extra)
6396 {
6397         struct ipw_priv *priv = ieee80211_priv(dev);
6398         struct ieee80211_device *ieee = priv->ieee;
6399         int err = 0;
6400
6401         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6402                 wrqu->data.length = 0;
6403                 goto out;
6404         }
6405
6406         if (wrqu->data.length < ieee->wpa_ie_len) {
6407                 err = -E2BIG;
6408                 goto out;
6409         }
6410
6411         wrqu->data.length = ieee->wpa_ie_len;
6412         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6413
6414       out:
6415         return err;
6416 }
6417
6418 static int wext_cipher2level(int cipher)
6419 {
6420         switch (cipher) {
6421         case IW_AUTH_CIPHER_NONE:
6422                 return SEC_LEVEL_0;
6423         case IW_AUTH_CIPHER_WEP40:
6424         case IW_AUTH_CIPHER_WEP104:
6425                 return SEC_LEVEL_1;
6426         case IW_AUTH_CIPHER_TKIP:
6427                 return SEC_LEVEL_2;
6428         case IW_AUTH_CIPHER_CCMP:
6429                 return SEC_LEVEL_3;
6430         default:
6431                 return -1;
6432         }
6433 }
6434
6435 /* SIOCSIWAUTH */
6436 static int ipw_wx_set_auth(struct net_device *dev,
6437                            struct iw_request_info *info,
6438                            union iwreq_data *wrqu, char *extra)
6439 {
6440         struct ipw_priv *priv = ieee80211_priv(dev);
6441         struct ieee80211_device *ieee = priv->ieee;
6442         struct iw_param *param = &wrqu->param;
6443         struct ieee80211_crypt_data *crypt;
6444         unsigned long flags;
6445         int ret = 0;
6446
6447         switch (param->flags & IW_AUTH_INDEX) {
6448         case IW_AUTH_WPA_VERSION:
6449                 break;
6450         case IW_AUTH_CIPHER_PAIRWISE:
6451                 ipw_set_hw_decrypt_unicast(priv,
6452                                            wext_cipher2level(param->value));
6453                 break;
6454         case IW_AUTH_CIPHER_GROUP:
6455                 ipw_set_hw_decrypt_multicast(priv,
6456                                              wext_cipher2level(param->value));
6457                 break;
6458         case IW_AUTH_KEY_MGMT:
6459                 /*
6460                  * ipw2200 does not use these parameters
6461                  */
6462                 break;
6463
6464         case IW_AUTH_TKIP_COUNTERMEASURES:
6465                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6466                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6467                         break;
6468
6469                 flags = crypt->ops->get_flags(crypt->priv);
6470
6471                 if (param->value)
6472                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6473                 else
6474                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6475
6476                 crypt->ops->set_flags(flags, crypt->priv);
6477
6478                 break;
6479
6480         case IW_AUTH_DROP_UNENCRYPTED:{
6481                         /* HACK:
6482                          *
6483                          * wpa_supplicant calls set_wpa_enabled when the driver
6484                          * is loaded and unloaded, regardless of if WPA is being
6485                          * used.  No other calls are made which can be used to
6486                          * determine if encryption will be used or not prior to
6487                          * association being expected.  If encryption is not being
6488                          * used, drop_unencrypted is set to false, else true -- we
6489                          * can use this to determine if the CAP_PRIVACY_ON bit should
6490                          * be set.
6491                          */
6492                         struct ieee80211_security sec = {
6493                                 .flags = SEC_ENABLED,
6494                                 .enabled = param->value,
6495                         };
6496                         priv->ieee->drop_unencrypted = param->value;
6497                         /* We only change SEC_LEVEL for open mode. Others
6498                          * are set by ipw_wpa_set_encryption.
6499                          */
6500                         if (!param->value) {
6501                                 sec.flags |= SEC_LEVEL;
6502                                 sec.level = SEC_LEVEL_0;
6503                         } else {
6504                                 sec.flags |= SEC_LEVEL;
6505                                 sec.level = SEC_LEVEL_1;
6506                         }
6507                         if (priv->ieee->set_security)
6508                                 priv->ieee->set_security(priv->ieee->dev, &sec);
6509                         break;
6510                 }
6511
6512         case IW_AUTH_80211_AUTH_ALG:
6513                 ret = ipw_wpa_set_auth_algs(priv, param->value);
6514                 break;
6515
6516         case IW_AUTH_WPA_ENABLED:
6517                 ret = ipw_wpa_enable(priv, param->value);
6518                 ipw_disassociate(priv);
6519                 break;
6520
6521         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6522                 ieee->ieee802_1x = param->value;
6523                 break;
6524
6525         case IW_AUTH_PRIVACY_INVOKED:
6526                 ieee->privacy_invoked = param->value;
6527                 break;
6528
6529         default:
6530                 return -EOPNOTSUPP;
6531         }
6532         return ret;
6533 }
6534
6535 /* SIOCGIWAUTH */
6536 static int ipw_wx_get_auth(struct net_device *dev,
6537                            struct iw_request_info *info,
6538                            union iwreq_data *wrqu, char *extra)
6539 {
6540         struct ipw_priv *priv = ieee80211_priv(dev);
6541         struct ieee80211_device *ieee = priv->ieee;
6542         struct ieee80211_crypt_data *crypt;
6543         struct iw_param *param = &wrqu->param;
6544         int ret = 0;
6545
6546         switch (param->flags & IW_AUTH_INDEX) {
6547         case IW_AUTH_WPA_VERSION:
6548         case IW_AUTH_CIPHER_PAIRWISE:
6549         case IW_AUTH_CIPHER_GROUP:
6550         case IW_AUTH_KEY_MGMT:
6551                 /*
6552                  * wpa_supplicant will control these internally
6553                  */
6554                 ret = -EOPNOTSUPP;
6555                 break;
6556
6557         case IW_AUTH_TKIP_COUNTERMEASURES:
6558                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6559                 if (!crypt || !crypt->ops->get_flags)
6560                         break;
6561
6562                 param->value = (crypt->ops->get_flags(crypt->priv) &
6563                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6564
6565                 break;
6566
6567         case IW_AUTH_DROP_UNENCRYPTED:
6568                 param->value = ieee->drop_unencrypted;
6569                 break;
6570
6571         case IW_AUTH_80211_AUTH_ALG:
6572                 param->value = ieee->sec.auth_mode;
6573                 break;
6574
6575         case IW_AUTH_WPA_ENABLED:
6576                 param->value = ieee->wpa_enabled;
6577                 break;
6578
6579         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6580                 param->value = ieee->ieee802_1x;
6581                 break;
6582
6583         case IW_AUTH_ROAMING_CONTROL:
6584         case IW_AUTH_PRIVACY_INVOKED:
6585                 param->value = ieee->privacy_invoked;
6586                 break;
6587
6588         default:
6589                 return -EOPNOTSUPP;
6590         }
6591         return 0;
6592 }
6593
6594 /* SIOCSIWENCODEEXT */
6595 static int ipw_wx_set_encodeext(struct net_device *dev,
6596                                 struct iw_request_info *info,
6597                                 union iwreq_data *wrqu, char *extra)
6598 {
6599         struct ipw_priv *priv = ieee80211_priv(dev);
6600         struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6601
6602         if (hwcrypto) {
6603                 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6604                         /* IPW HW can't build TKIP MIC,
6605                            host decryption still needed */
6606                         if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6607                                 priv->ieee->host_mc_decrypt = 1;
6608                         else {
6609                                 priv->ieee->host_encrypt = 0;
6610                                 priv->ieee->host_encrypt_msdu = 1;
6611                                 priv->ieee->host_decrypt = 1;
6612                         }
6613                 } else {
6614                         priv->ieee->host_encrypt = 0;
6615                         priv->ieee->host_encrypt_msdu = 0;
6616                         priv->ieee->host_decrypt = 0;
6617                         priv->ieee->host_mc_decrypt = 0;
6618                 }
6619         }
6620
6621         return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6622 }
6623
6624 /* SIOCGIWENCODEEXT */
6625 static int ipw_wx_get_encodeext(struct net_device *dev,
6626                                 struct iw_request_info *info,
6627                                 union iwreq_data *wrqu, char *extra)
6628 {
6629         struct ipw_priv *priv = ieee80211_priv(dev);
6630         return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6631 }
6632
6633 /* SIOCSIWMLME */
6634 static int ipw_wx_set_mlme(struct net_device *dev,
6635                            struct iw_request_info *info,
6636                            union iwreq_data *wrqu, char *extra)
6637 {
6638         struct ipw_priv *priv = ieee80211_priv(dev);
6639         struct iw_mlme *mlme = (struct iw_mlme *)extra;
6640         u16 reason;
6641
6642         reason = cpu_to_le16(mlme->reason_code);
6643
6644         switch (mlme->cmd) {
6645         case IW_MLME_DEAUTH:
6646                 /* silently ignore */
6647                 break;
6648
6649         case IW_MLME_DISASSOC:
6650                 ipw_disassociate(priv);
6651                 break;
6652
6653         default:
6654                 return -EOPNOTSUPP;
6655         }
6656         return 0;
6657 }
6658
6659 #ifdef CONFIG_IPW2200_QOS
6660
6661 /* QoS */
6662 /*
6663 * get the modulation type of the current network or
6664 * the card current mode
6665 */
6666 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6667 {
6668         u8 mode = 0;
6669
6670         if (priv->status & STATUS_ASSOCIATED) {
6671                 unsigned long flags;
6672
6673                 spin_lock_irqsave(&priv->ieee->lock, flags);
6674                 mode = priv->assoc_network->mode;
6675                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6676         } else {
6677                 mode = priv->ieee->mode;
6678         }
6679         IPW_DEBUG_QOS("QoS network/card mode %d \n", mode);
6680         return mode;
6681 }
6682
6683 /*
6684 * Handle management frame beacon and probe response
6685 */
6686 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6687                                          int active_network,
6688                                          struct ieee80211_network *network)
6689 {
6690         u32 size = sizeof(struct ieee80211_qos_parameters);
6691
6692         if (network->capability & WLAN_CAPABILITY_IBSS)
6693                 network->qos_data.active = network->qos_data.supported;
6694
6695         if (network->flags & NETWORK_HAS_QOS_MASK) {
6696                 if (active_network &&
6697                     (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6698                         network->qos_data.active = network->qos_data.supported;
6699
6700                 if ((network->qos_data.active == 1) && (active_network == 1) &&
6701                     (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6702                     (network->qos_data.old_param_count !=
6703                      network->qos_data.param_count)) {
6704                         network->qos_data.old_param_count =
6705                             network->qos_data.param_count;
6706                         schedule_work(&priv->qos_activate);
6707                         IPW_DEBUG_QOS("QoS parameters change call "
6708                                       "qos_activate\n");
6709                 }
6710         } else {
6711                 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6712                         memcpy(&network->qos_data.parameters,
6713                                &def_parameters_CCK, size);
6714                 else
6715                         memcpy(&network->qos_data.parameters,
6716                                &def_parameters_OFDM, size);
6717
6718                 if ((network->qos_data.active == 1) && (active_network == 1)) {
6719                         IPW_DEBUG_QOS("QoS was disabled call qos_activate \n");
6720                         schedule_work(&priv->qos_activate);
6721                 }
6722
6723                 network->qos_data.active = 0;
6724                 network->qos_data.supported = 0;
6725         }
6726         if ((priv->status & STATUS_ASSOCIATED) &&
6727             (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6728                 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6729                         if ((network->capability & WLAN_CAPABILITY_IBSS) &&
6730                             !(network->flags & NETWORK_EMPTY_ESSID))
6731                                 if ((network->ssid_len ==
6732                                      priv->assoc_network->ssid_len) &&
6733                                     !memcmp(network->ssid,
6734                                             priv->assoc_network->ssid,
6735                                             network->ssid_len)) {
6736                                         queue_work(priv->workqueue,
6737                                                    &priv->merge_networks);
6738                                 }
6739         }
6740
6741         return 0;
6742 }
6743
6744 /*
6745 * This function set up the firmware to support QoS. It sends
6746 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6747 */
6748 static int ipw_qos_activate(struct ipw_priv *priv,
6749                             struct ieee80211_qos_data *qos_network_data)
6750 {
6751         int err;
6752         struct ieee80211_qos_parameters qos_parameters[QOS_QOS_SETS];
6753         struct ieee80211_qos_parameters *active_one = NULL;
6754         u32 size = sizeof(struct ieee80211_qos_parameters);
6755         u32 burst_duration;
6756         int i;
6757         u8 type;
6758
6759         type = ipw_qos_current_mode(priv);
6760
6761         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6762         memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6763         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6764         memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6765
6766         if (qos_network_data == NULL) {
6767                 if (type == IEEE_B) {
6768                         IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6769                         active_one = &def_parameters_CCK;
6770                 } else
6771                         active_one = &def_parameters_OFDM;
6772
6773                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6774                 burst_duration = ipw_qos_get_burst_duration(priv);
6775                 for (i = 0; i < QOS_QUEUE_NUM; i++)
6776                         qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6777                             (u16) burst_duration;
6778         } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6779                 if (type == IEEE_B) {
6780                         IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
6781                                       type);
6782                         if (priv->qos_data.qos_enable == 0)
6783                                 active_one = &def_parameters_CCK;
6784                         else
6785                                 active_one = priv->qos_data.def_qos_parm_CCK;
6786                 } else {
6787                         if (priv->qos_data.qos_enable == 0)
6788                                 active_one = &def_parameters_OFDM;
6789                         else
6790                                 active_one = priv->qos_data.def_qos_parm_OFDM;
6791                 }
6792                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6793         } else {
6794                 unsigned long flags;
6795                 int active;
6796
6797                 spin_lock_irqsave(&priv->ieee->lock, flags);
6798                 active_one = &(qos_network_data->parameters);
6799                 qos_network_data->old_param_count =
6800                     qos_network_data->param_count;
6801                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6802                 active = qos_network_data->supported;
6803                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6804
6805                 if (active == 0) {
6806                         burst_duration = ipw_qos_get_burst_duration(priv);
6807                         for (i = 0; i < QOS_QUEUE_NUM; i++)
6808                                 qos_parameters[QOS_PARAM_SET_ACTIVE].
6809                                     tx_op_limit[i] = (u16) burst_duration;
6810                 }
6811         }
6812
6813         IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6814         err = ipw_send_qos_params_command(priv,
6815                                           (struct ieee80211_qos_parameters *)
6816                                           &(qos_parameters[0]));
6817         if (err)
6818                 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6819
6820         return err;
6821 }
6822
6823 /*
6824 * send IPW_CMD_WME_INFO to the firmware
6825 */
6826 static int ipw_qos_set_info_element(struct ipw_priv *priv)
6827 {
6828         int ret = 0;
6829         struct ieee80211_qos_information_element qos_info;
6830
6831         if (priv == NULL)
6832                 return -1;
6833
6834         qos_info.elementID = QOS_ELEMENT_ID;
6835         qos_info.length = sizeof(struct ieee80211_qos_information_element) - 2;
6836
6837         qos_info.version = QOS_VERSION_1;
6838         qos_info.ac_info = 0;
6839
6840         memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
6841         qos_info.qui_type = QOS_OUI_TYPE;
6842         qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
6843
6844         ret = ipw_send_qos_info_command(priv, &qos_info);
6845         if (ret != 0) {
6846                 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
6847         }
6848         return ret;
6849 }
6850
6851 /*
6852 * Set the QoS parameter with the association request structure
6853 */
6854 static int ipw_qos_association(struct ipw_priv *priv,
6855                                struct ieee80211_network *network)
6856 {
6857         int err = 0;
6858         struct ieee80211_qos_data *qos_data = NULL;
6859         struct ieee80211_qos_data ibss_data = {
6860                 .supported = 1,
6861                 .active = 1,
6862         };
6863
6864         switch (priv->ieee->iw_mode) {
6865         case IW_MODE_ADHOC:
6866                 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
6867
6868                 qos_data = &ibss_data;
6869                 break;
6870
6871         case IW_MODE_INFRA:
6872                 qos_data = &network->qos_data;
6873                 break;
6874
6875         default:
6876                 BUG();
6877                 break;
6878         }
6879
6880         err = ipw_qos_activate(priv, qos_data);
6881         if (err) {
6882                 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
6883                 return err;
6884         }
6885
6886         if (priv->qos_data.qos_enable && qos_data->supported) {
6887                 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
6888                 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
6889                 return ipw_qos_set_info_element(priv);
6890         }
6891
6892         return 0;
6893 }
6894
6895 /*
6896 * handling the beaconing responces. if we get different QoS setting
6897 * of the network from the the associated setting adjust the QoS
6898 * setting
6899 */
6900 static int ipw_qos_association_resp(struct ipw_priv *priv,
6901                                     struct ieee80211_network *network)
6902 {
6903         int ret = 0;
6904         unsigned long flags;
6905         u32 size = sizeof(struct ieee80211_qos_parameters);
6906         int set_qos_param = 0;
6907
6908         if ((priv == NULL) || (network == NULL) ||
6909             (priv->assoc_network == NULL))
6910                 return ret;
6911
6912         if (!(priv->status & STATUS_ASSOCIATED))
6913                 return ret;
6914
6915         if ((priv->ieee->iw_mode != IW_MODE_INFRA))
6916                 return ret;
6917
6918         spin_lock_irqsave(&priv->ieee->lock, flags);
6919         if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
6920                 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
6921                        sizeof(struct ieee80211_qos_data));
6922                 priv->assoc_network->qos_data.active = 1;
6923                 if ((network->qos_data.old_param_count !=
6924                      network->qos_data.param_count)) {
6925                         set_qos_param = 1;
6926                         network->qos_data.old_param_count =
6927                             network->qos_data.param_count;
6928                 }
6929
6930         } else {
6931                 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
6932                         memcpy(&priv->assoc_network->qos_data.parameters,
6933                                &def_parameters_CCK, size);
6934                 else
6935                         memcpy(&priv->assoc_network->qos_data.parameters,
6936                                &def_parameters_OFDM, size);
6937                 priv->assoc_network->qos_data.active = 0;
6938                 priv->assoc_network->qos_data.supported = 0;
6939                 set_qos_param = 1;
6940         }
6941
6942         spin_unlock_irqrestore(&priv->ieee->lock, flags);
6943
6944         if (set_qos_param == 1)
6945                 schedule_work(&priv->qos_activate);
6946
6947         return ret;
6948 }
6949
6950 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
6951 {
6952         u32 ret = 0;
6953
6954         if ((priv == NULL))
6955                 return 0;
6956
6957         if (!(priv->ieee->modulation & IEEE80211_OFDM_MODULATION))
6958                 ret = priv->qos_data.burst_duration_CCK;
6959         else
6960                 ret = priv->qos_data.burst_duration_OFDM;
6961
6962         return ret;
6963 }
6964
6965 /*
6966 * Initialize the setting of QoS global
6967 */
6968 static void ipw_qos_init(struct ipw_priv *priv, int enable,
6969                          int burst_enable, u32 burst_duration_CCK,
6970                          u32 burst_duration_OFDM)
6971 {
6972         priv->qos_data.qos_enable = enable;
6973
6974         if (priv->qos_data.qos_enable) {
6975                 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
6976                 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
6977                 IPW_DEBUG_QOS("QoS is enabled\n");
6978         } else {
6979                 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
6980                 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
6981                 IPW_DEBUG_QOS("QoS is not enabled\n");
6982         }
6983
6984         priv->qos_data.burst_enable = burst_enable;
6985
6986         if (burst_enable) {
6987                 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
6988                 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
6989         } else {
6990                 priv->qos_data.burst_duration_CCK = 0;
6991                 priv->qos_data.burst_duration_OFDM = 0;
6992         }
6993 }
6994
6995 /*
6996 * map the packet priority to the right TX Queue
6997 */
6998 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
6999 {
7000         if (priority > 7 || !priv->qos_data.qos_enable)
7001                 priority = 0;
7002
7003         return from_priority_to_tx_queue[priority] - 1;
7004 }
7005
7006 static int ipw_is_qos_active(struct net_device *dev,
7007                              struct sk_buff *skb)
7008 {
7009         struct ipw_priv *priv = ieee80211_priv(dev);
7010         struct ieee80211_qos_data *qos_data = NULL;
7011         int active, supported;
7012         u8 *daddr = skb->data + ETH_ALEN;
7013         int unicast = !is_multicast_ether_addr(daddr);
7014
7015         if (!(priv->status & STATUS_ASSOCIATED))
7016                 return 0;
7017
7018         qos_data = &priv->assoc_network->qos_data;
7019
7020         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7021                 if (unicast == 0)
7022                         qos_data->active = 0;
7023                 else
7024                         qos_data->active = qos_data->supported;
7025         }
7026         active = qos_data->active;
7027         supported = qos_data->supported;
7028         IPW_DEBUG_QOS("QoS  %d network is QoS active %d  supported %d  "
7029                       "unicast %d\n",
7030                       priv->qos_data.qos_enable, active, supported, unicast);
7031         if (active && priv->qos_data.qos_enable)
7032                 return 1;
7033
7034         return 0;
7035
7036 }
7037 /*
7038 * add QoS parameter to the TX command
7039 */
7040 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7041                                         u16 priority,
7042                                         struct tfd_data *tfd)
7043 {
7044         int tx_queue_id = 0;
7045
7046
7047         tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7048         tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7049
7050         if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7051                 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7052                 tfd->tfd.tfd_26.mchdr.qos_ctrl |= CTRL_QOS_NO_ACK;
7053         }
7054         return 0;
7055 }
7056
7057 /*
7058 * background support to run QoS activate functionality
7059 */
7060 static void ipw_bg_qos_activate(void *data)
7061 {
7062         struct ipw_priv *priv = data;
7063
7064         if (priv == NULL)
7065                 return;
7066
7067         mutex_lock(&priv->mutex);
7068
7069         if (priv->status & STATUS_ASSOCIATED)
7070                 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7071
7072         mutex_unlock(&priv->mutex);
7073 }
7074
7075 static int ipw_handle_probe_response(struct net_device *dev,
7076                                      struct ieee80211_probe_response *resp,
7077                                      struct ieee80211_network *network)
7078 {
7079         struct ipw_priv *priv = ieee80211_priv(dev);
7080         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7081                               (network == priv->assoc_network));
7082
7083         ipw_qos_handle_probe_response(priv, active_network, network);
7084
7085         return 0;
7086 }
7087
7088 static int ipw_handle_beacon(struct net_device *dev,
7089                              struct ieee80211_beacon *resp,
7090                              struct ieee80211_network *network)
7091 {
7092         struct ipw_priv *priv = ieee80211_priv(dev);
7093         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7094                               (network == priv->assoc_network));
7095
7096         ipw_qos_handle_probe_response(priv, active_network, network);
7097
7098         return 0;
7099 }
7100
7101 static int ipw_handle_assoc_response(struct net_device *dev,
7102                                      struct ieee80211_assoc_response *resp,
7103                                      struct ieee80211_network *network)
7104 {
7105         struct ipw_priv *priv = ieee80211_priv(dev);
7106         ipw_qos_association_resp(priv, network);
7107         return 0;
7108 }
7109
7110 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
7111                                        *qos_param)
7112 {
7113         return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7114                                 sizeof(*qos_param) * 3, qos_param);
7115 }
7116
7117 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
7118                                      *qos_param)
7119 {
7120         return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7121                                 qos_param);
7122 }
7123
7124 #endif                          /* CONFIG_IPW2200_QOS */
7125
7126 static int ipw_associate_network(struct ipw_priv *priv,
7127                                  struct ieee80211_network *network,
7128                                  struct ipw_supported_rates *rates, int roaming)
7129 {
7130         int err;
7131
7132         if (priv->config & CFG_FIXED_RATE)
7133                 ipw_set_fixed_rate(priv, network->mode);
7134
7135         if (!(priv->config & CFG_STATIC_ESSID)) {
7136                 priv->essid_len = min(network->ssid_len,
7137                                       (u8) IW_ESSID_MAX_SIZE);
7138                 memcpy(priv->essid, network->ssid, priv->essid_len);
7139         }
7140
7141         network->last_associate = jiffies;
7142
7143         memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7144         priv->assoc_request.channel = network->channel;
7145         priv->assoc_request.auth_key = 0;
7146
7147         if ((priv->capability & CAP_PRIVACY_ON) &&
7148             (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7149                 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7150                 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7151
7152                 if (priv->ieee->sec.level == SEC_LEVEL_1)
7153                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7154
7155         } else if ((priv->capability & CAP_PRIVACY_ON) &&
7156                    (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7157                 priv->assoc_request.auth_type = AUTH_LEAP;
7158         else
7159                 priv->assoc_request.auth_type = AUTH_OPEN;
7160
7161         if (priv->ieee->wpa_ie_len) {
7162                 priv->assoc_request.policy_support = 0x02;      /* RSN active */
7163                 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7164                                  priv->ieee->wpa_ie_len);
7165         }
7166
7167         /*
7168          * It is valid for our ieee device to support multiple modes, but
7169          * when it comes to associating to a given network we have to choose
7170          * just one mode.
7171          */
7172         if (network->mode & priv->ieee->mode & IEEE_A)
7173                 priv->assoc_request.ieee_mode = IPW_A_MODE;
7174         else if (network->mode & priv->ieee->mode & IEEE_G)
7175                 priv->assoc_request.ieee_mode = IPW_G_MODE;
7176         else if (network->mode & priv->ieee->mode & IEEE_B)
7177                 priv->assoc_request.ieee_mode = IPW_B_MODE;
7178
7179         priv->assoc_request.capability = network->capability;
7180         if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7181             && !(priv->config & CFG_PREAMBLE_LONG)) {
7182                 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7183         } else {
7184                 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7185
7186                 /* Clear the short preamble if we won't be supporting it */
7187                 priv->assoc_request.capability &=
7188                     ~WLAN_CAPABILITY_SHORT_PREAMBLE;
7189         }
7190
7191         /* Clear capability bits that aren't used in Ad Hoc */
7192         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7193                 priv->assoc_request.capability &=
7194                     ~WLAN_CAPABILITY_SHORT_SLOT_TIME;
7195
7196         IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7197                         "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7198                         roaming ? "Rea" : "A",
7199                         escape_essid(priv->essid, priv->essid_len),
7200                         network->channel,
7201                         ipw_modes[priv->assoc_request.ieee_mode],
7202                         rates->num_rates,
7203                         (priv->assoc_request.preamble_length ==
7204                          DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7205                         network->capability &
7206                         WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7207                         priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7208                         priv->capability & CAP_PRIVACY_ON ?
7209                         (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7210                          "(open)") : "",
7211                         priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7212                         priv->capability & CAP_PRIVACY_ON ?
7213                         '1' + priv->ieee->sec.active_key : '.',
7214                         priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7215
7216         priv->assoc_request.beacon_interval = network->beacon_interval;
7217         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7218             (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7219                 priv->assoc_request.assoc_type = HC_IBSS_START;
7220                 priv->assoc_request.assoc_tsf_msw = 0;
7221                 priv->assoc_request.assoc_tsf_lsw = 0;
7222         } else {
7223                 if (unlikely(roaming))
7224                         priv->assoc_request.assoc_type = HC_REASSOCIATE;
7225                 else
7226                         priv->assoc_request.assoc_type = HC_ASSOCIATE;
7227                 priv->assoc_request.assoc_tsf_msw = network->time_stamp[1];
7228                 priv->assoc_request.assoc_tsf_lsw = network->time_stamp[0];
7229         }
7230
7231         memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7232
7233         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7234                 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7235                 priv->assoc_request.atim_window = network->atim_window;
7236         } else {
7237                 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7238                 priv->assoc_request.atim_window = 0;
7239         }
7240
7241         priv->assoc_request.listen_interval = network->listen_interval;
7242
7243         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7244         if (err) {
7245                 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7246                 return err;
7247         }
7248
7249         rates->ieee_mode = priv->assoc_request.ieee_mode;
7250         rates->purpose = IPW_RATE_CONNECT;
7251         ipw_send_supported_rates(priv, rates);
7252
7253         if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7254                 priv->sys_config.dot11g_auto_detection = 1;
7255         else
7256                 priv->sys_config.dot11g_auto_detection = 0;
7257
7258         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7259                 priv->sys_config.answer_broadcast_ssid_probe = 1;
7260         else
7261                 priv->sys_config.answer_broadcast_ssid_probe = 0;
7262
7263         err = ipw_send_system_config(priv);
7264         if (err) {
7265                 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7266                 return err;
7267         }
7268
7269         IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7270         err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7271         if (err) {
7272                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7273                 return err;
7274         }
7275
7276         /*
7277          * If preemption is enabled, it is possible for the association
7278          * to complete before we return from ipw_send_associate.  Therefore
7279          * we have to be sure and update our priviate data first.
7280          */
7281         priv->channel = network->channel;
7282         memcpy(priv->bssid, network->bssid, ETH_ALEN);
7283         priv->status |= STATUS_ASSOCIATING;
7284         priv->status &= ~STATUS_SECURITY_UPDATED;
7285
7286         priv->assoc_network = network;
7287
7288 #ifdef CONFIG_IPW2200_QOS
7289         ipw_qos_association(priv, network);
7290 #endif
7291
7292         err = ipw_send_associate(priv, &priv->assoc_request);
7293         if (err) {
7294                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7295                 return err;
7296         }
7297
7298         IPW_DEBUG(IPW_DL_STATE, "associating: '%s' " MAC_FMT " \n",
7299                   escape_essid(priv->essid, priv->essid_len),
7300                   MAC_ARG(priv->bssid));
7301
7302         return 0;
7303 }
7304
7305 static void ipw_roam(void *data)
7306 {
7307         struct ipw_priv *priv = data;
7308         struct ieee80211_network *network = NULL;
7309         struct ipw_network_match match = {
7310                 .network = priv->assoc_network
7311         };
7312
7313         /* The roaming process is as follows:
7314          *
7315          * 1.  Missed beacon threshold triggers the roaming process by
7316          *     setting the status ROAM bit and requesting a scan.
7317          * 2.  When the scan completes, it schedules the ROAM work
7318          * 3.  The ROAM work looks at all of the known networks for one that
7319          *     is a better network than the currently associated.  If none
7320          *     found, the ROAM process is over (ROAM bit cleared)
7321          * 4.  If a better network is found, a disassociation request is
7322          *     sent.
7323          * 5.  When the disassociation completes, the roam work is again
7324          *     scheduled.  The second time through, the driver is no longer
7325          *     associated, and the newly selected network is sent an
7326          *     association request.
7327          * 6.  At this point ,the roaming process is complete and the ROAM
7328          *     status bit is cleared.
7329          */
7330
7331         /* If we are no longer associated, and the roaming bit is no longer
7332          * set, then we are not actively roaming, so just return */
7333         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7334                 return;
7335
7336         if (priv->status & STATUS_ASSOCIATED) {
7337                 /* First pass through ROAM process -- look for a better
7338                  * network */
7339                 unsigned long flags;
7340                 u8 rssi = priv->assoc_network->stats.rssi;
7341                 priv->assoc_network->stats.rssi = -128;
7342                 spin_lock_irqsave(&priv->ieee->lock, flags);
7343                 list_for_each_entry(network, &priv->ieee->network_list, list) {
7344                         if (network != priv->assoc_network)
7345                                 ipw_best_network(priv, &match, network, 1);
7346                 }
7347                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7348                 priv->assoc_network->stats.rssi = rssi;
7349
7350                 if (match.network == priv->assoc_network) {
7351                         IPW_DEBUG_ASSOC("No better APs in this network to "
7352                                         "roam to.\n");
7353                         priv->status &= ~STATUS_ROAMING;
7354                         ipw_debug_config(priv);
7355                         return;
7356                 }
7357
7358                 ipw_send_disassociate(priv, 1);
7359                 priv->assoc_network = match.network;
7360
7361                 return;
7362         }
7363
7364         /* Second pass through ROAM process -- request association */
7365         ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7366         ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7367         priv->status &= ~STATUS_ROAMING;
7368 }
7369
7370 static void ipw_bg_roam(void *data)
7371 {
7372         struct ipw_priv *priv = data;
7373         mutex_lock(&priv->mutex);
7374         ipw_roam(data);
7375         mutex_unlock(&priv->mutex);
7376 }
7377
7378 static int ipw_associate(void *data)
7379 {
7380         struct ipw_priv *priv = data;
7381
7382         struct ieee80211_network *network = NULL;
7383         struct ipw_network_match match = {
7384                 .network = NULL
7385         };
7386         struct ipw_supported_rates *rates;
7387         struct list_head *element;
7388         unsigned long flags;
7389
7390         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7391                 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7392                 return 0;
7393         }
7394
7395         if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7396                 IPW_DEBUG_ASSOC("Not attempting association (already in "
7397                                 "progress)\n");
7398                 return 0;
7399         }
7400
7401         if (priv->status & STATUS_DISASSOCIATING) {
7402                 IPW_DEBUG_ASSOC("Not attempting association (in "
7403                                 "disassociating)\n ");
7404                 queue_work(priv->workqueue, &priv->associate);
7405                 return 0;
7406         }
7407
7408         if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7409                 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7410                                 "initialized)\n");
7411                 return 0;
7412         }
7413
7414         if (!(priv->config & CFG_ASSOCIATE) &&
7415             !(priv->config & (CFG_STATIC_ESSID |
7416                               CFG_STATIC_CHANNEL | CFG_STATIC_BSSID))) {
7417                 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7418                 return 0;
7419         }
7420
7421         /* Protect our use of the network_list */
7422         spin_lock_irqsave(&priv->ieee->lock, flags);
7423         list_for_each_entry(network, &priv->ieee->network_list, list)
7424             ipw_best_network(priv, &match, network, 0);
7425
7426         network = match.network;
7427         rates = &match.rates;
7428
7429         if (network == NULL &&
7430             priv->ieee->iw_mode == IW_MODE_ADHOC &&
7431             priv->config & CFG_ADHOC_CREATE &&
7432             priv->config & CFG_STATIC_ESSID &&
7433             priv->config & CFG_STATIC_CHANNEL &&
7434             !list_empty(&priv->ieee->network_free_list)) {
7435                 element = priv->ieee->network_free_list.next;
7436                 network = list_entry(element, struct ieee80211_network, list);
7437                 ipw_adhoc_create(priv, network);
7438                 rates = &priv->rates;
7439                 list_del(element);
7440                 list_add_tail(&network->list, &priv->ieee->network_list);
7441         }
7442         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7443
7444         /* If we reached the end of the list, then we don't have any valid
7445          * matching APs */
7446         if (!network) {
7447                 ipw_debug_config(priv);
7448
7449                 if (!(priv->status & STATUS_SCANNING)) {
7450                         if (!(priv->config & CFG_SPEED_SCAN))
7451                                 queue_delayed_work(priv->workqueue,
7452                                                    &priv->request_scan,
7453                                                    SCAN_INTERVAL);
7454                         else
7455                                 queue_work(priv->workqueue,
7456                                            &priv->request_scan);
7457                 }
7458
7459                 return 0;
7460         }
7461
7462         ipw_associate_network(priv, network, rates, 0);
7463
7464         return 1;
7465 }
7466
7467 static void ipw_bg_associate(void *data)
7468 {
7469         struct ipw_priv *priv = data;
7470         mutex_lock(&priv->mutex);
7471         ipw_associate(data);
7472         mutex_unlock(&priv->mutex);
7473 }
7474
7475 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7476                                       struct sk_buff *skb)
7477 {
7478         struct ieee80211_hdr *hdr;
7479         u16 fc;
7480
7481         hdr = (struct ieee80211_hdr *)skb->data;
7482         fc = le16_to_cpu(hdr->frame_ctl);
7483         if (!(fc & IEEE80211_FCTL_PROTECTED))
7484                 return;
7485
7486         fc &= ~IEEE80211_FCTL_PROTECTED;
7487         hdr->frame_ctl = cpu_to_le16(fc);
7488         switch (priv->ieee->sec.level) {
7489         case SEC_LEVEL_3:
7490                 /* Remove CCMP HDR */
7491                 memmove(skb->data + IEEE80211_3ADDR_LEN,
7492                         skb->data + IEEE80211_3ADDR_LEN + 8,
7493                         skb->len - IEEE80211_3ADDR_LEN - 8);
7494                 skb_trim(skb, skb->len - 16);   /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7495                 break;
7496         case SEC_LEVEL_2:
7497                 break;
7498         case SEC_LEVEL_1:
7499                 /* Remove IV */
7500                 memmove(skb->data + IEEE80211_3ADDR_LEN,
7501                         skb->data + IEEE80211_3ADDR_LEN + 4,
7502                         skb->len - IEEE80211_3ADDR_LEN - 4);
7503                 skb_trim(skb, skb->len - 8);    /* IV + ICV */
7504                 break;
7505         case SEC_LEVEL_0:
7506                 break;
7507         default:
7508                 printk(KERN_ERR "Unknow security level %d\n",
7509                        priv->ieee->sec.level);
7510                 break;
7511         }
7512 }
7513
7514 static void ipw_handle_data_packet(struct ipw_priv *priv,
7515                                    struct ipw_rx_mem_buffer *rxb,
7516                                    struct ieee80211_rx_stats *stats)
7517 {
7518         struct ieee80211_hdr_4addr *hdr;
7519         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7520
7521         /* We received data from the HW, so stop the watchdog */
7522         priv->net_dev->trans_start = jiffies;
7523
7524         /* We only process data packets if the
7525          * interface is open */
7526         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7527                      skb_tailroom(rxb->skb))) {
7528                 priv->ieee->stats.rx_errors++;
7529                 priv->wstats.discard.misc++;
7530                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7531                 return;
7532         } else if (unlikely(!netif_running(priv->net_dev))) {
7533                 priv->ieee->stats.rx_dropped++;
7534                 priv->wstats.discard.misc++;
7535                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7536                 return;
7537         }
7538
7539         /* Advance skb->data to the start of the actual payload */
7540         skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7541
7542         /* Set the size of the skb to the size of the frame */
7543         skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7544
7545         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7546
7547         /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7548         hdr = (struct ieee80211_hdr_4addr *)rxb->skb->data;
7549         if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7550             (is_multicast_ether_addr(hdr->addr1) ?
7551              !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7552                 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7553
7554         if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7555                 priv->ieee->stats.rx_errors++;
7556         else {                  /* ieee80211_rx succeeded, so it now owns the SKB */
7557                 rxb->skb = NULL;
7558                 __ipw_led_activity_on(priv);
7559         }
7560 }
7561
7562 #ifdef CONFIG_IPW2200_RADIOTAP
7563 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7564                                            struct ipw_rx_mem_buffer *rxb,
7565                                            struct ieee80211_rx_stats *stats)
7566 {
7567         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7568         struct ipw_rx_frame *frame = &pkt->u.frame;
7569
7570         /* initial pull of some data */
7571         u16 received_channel = frame->received_channel;
7572         u8 antennaAndPhy = frame->antennaAndPhy;
7573         s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM;       /* call it signed anyhow */
7574         u16 pktrate = frame->rate;
7575
7576         /* Magic struct that slots into the radiotap header -- no reason
7577          * to build this manually element by element, we can write it much
7578          * more efficiently than we can parse it. ORDER MATTERS HERE */
7579         struct ipw_rt_hdr *ipw_rt;
7580
7581         short len = le16_to_cpu(pkt->u.frame.length);
7582
7583         /* We received data from the HW, so stop the watchdog */
7584         priv->net_dev->trans_start = jiffies;
7585
7586         /* We only process data packets if the
7587          * interface is open */
7588         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7589                      skb_tailroom(rxb->skb))) {
7590                 priv->ieee->stats.rx_errors++;
7591                 priv->wstats.discard.misc++;
7592                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7593                 return;
7594         } else if (unlikely(!netif_running(priv->net_dev))) {
7595                 priv->ieee->stats.rx_dropped++;
7596                 priv->wstats.discard.misc++;
7597                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7598                 return;
7599         }
7600
7601         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7602          * that now */
7603         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7604                 /* FIXME: Should alloc bigger skb instead */
7605                 priv->ieee->stats.rx_dropped++;
7606                 priv->wstats.discard.misc++;
7607                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7608                 return;
7609         }
7610
7611         /* copy the frame itself */
7612         memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7613                 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7614
7615         /* Zero the radiotap static buffer  ...  We only need to zero the bytes NOT
7616          * part of our real header, saves a little time.
7617          *
7618          * No longer necessary since we fill in all our data.  Purge before merging
7619          * patch officially.
7620          * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7621          *        IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7622          */
7623
7624         ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7625
7626         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7627         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
7628         ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr);      /* total header+data */
7629
7630         /* Big bitfield of all the fields we provide in radiotap */
7631         ipw_rt->rt_hdr.it_present =
7632             ((1 << IEEE80211_RADIOTAP_FLAGS) |
7633              (1 << IEEE80211_RADIOTAP_TSFT) |
7634              (1 << IEEE80211_RADIOTAP_RATE) |
7635              (1 << IEEE80211_RADIOTAP_CHANNEL) |
7636              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7637              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7638              (1 << IEEE80211_RADIOTAP_ANTENNA));
7639
7640         /* Zero the flags, we'll add to them as we go */
7641         ipw_rt->rt_flags = 0;
7642
7643         /* Convert signal to DBM */
7644         ipw_rt->rt_dbmsignal = antsignal;
7645
7646         /* Convert the channel data and set the flags */
7647         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7648         if (received_channel > 14) {    /* 802.11a */
7649                 ipw_rt->rt_chbitmask =
7650                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7651         } else if (antennaAndPhy & 32) {        /* 802.11b */
7652                 ipw_rt->rt_chbitmask =
7653                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7654         } else {                /* 802.11g */
7655                 ipw_rt->rt_chbitmask =
7656                     (IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7657         }
7658
7659         /* set the rate in multiples of 500k/s */
7660         switch (pktrate) {
7661         case IPW_TX_RATE_1MB:
7662                 ipw_rt->rt_rate = 2;
7663                 break;
7664         case IPW_TX_RATE_2MB:
7665                 ipw_rt->rt_rate = 4;
7666                 break;
7667         case IPW_TX_RATE_5MB:
7668                 ipw_rt->rt_rate = 10;
7669                 break;
7670         case IPW_TX_RATE_6MB:
7671                 ipw_rt->rt_rate = 12;
7672                 break;
7673         case IPW_TX_RATE_9MB:
7674                 ipw_rt->rt_rate = 18;
7675                 break;
7676         case IPW_TX_RATE_11MB:
7677                 ipw_rt->rt_rate = 22;
7678                 break;
7679         case IPW_TX_RATE_12MB:
7680                 ipw_rt->rt_rate = 24;
7681                 break;
7682         case IPW_TX_RATE_18MB:
7683                 ipw_rt->rt_rate = 36;
7684                 break;
7685         case IPW_TX_RATE_24MB:
7686                 ipw_rt->rt_rate = 48;
7687                 break;
7688         case IPW_TX_RATE_36MB:
7689                 ipw_rt->rt_rate = 72;
7690                 break;
7691         case IPW_TX_RATE_48MB:
7692                 ipw_rt->rt_rate = 96;
7693                 break;
7694         case IPW_TX_RATE_54MB:
7695                 ipw_rt->rt_rate = 108;
7696                 break;
7697         default:
7698                 ipw_rt->rt_rate = 0;
7699                 break;
7700         }
7701
7702         /* antenna number */
7703         ipw_rt->rt_antenna = (antennaAndPhy & 3);       /* Is this right? */
7704
7705         /* set the preamble flag if we have it */
7706         if ((antennaAndPhy & 64))
7707                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7708
7709         /* Set the size of the skb to the size of the frame */
7710         skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7711
7712         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7713
7714         if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7715                 priv->ieee->stats.rx_errors++;
7716         else {                  /* ieee80211_rx succeeded, so it now owns the SKB */
7717                 rxb->skb = NULL;
7718                 /* no LED during capture */
7719         }
7720 }
7721 #endif
7722
7723 #ifdef CONFIG_IPW2200_PROMISCUOUS
7724 #define ieee80211_is_probe_response(fc) \
7725    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7726     (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7727
7728 #define ieee80211_is_management(fc) \
7729    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7730
7731 #define ieee80211_is_control(fc) \
7732    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7733
7734 #define ieee80211_is_data(fc) \
7735    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7736
7737 #define ieee80211_is_assoc_request(fc) \
7738    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7739
7740 #define ieee80211_is_reassoc_request(fc) \
7741    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7742
7743 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7744                                       struct ipw_rx_mem_buffer *rxb,
7745                                       struct ieee80211_rx_stats *stats)
7746 {
7747         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7748         struct ipw_rx_frame *frame = &pkt->u.frame;
7749         struct ipw_rt_hdr *ipw_rt;
7750
7751         /* First cache any information we need before we overwrite
7752          * the information provided in the skb from the hardware */
7753         struct ieee80211_hdr *hdr;
7754         u16 channel = frame->received_channel;
7755         u8 phy_flags = frame->antennaAndPhy;
7756         s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7757         s8 noise = frame->noise;
7758         u8 rate = frame->rate;
7759         short len = le16_to_cpu(pkt->u.frame.length);
7760         u64 tsf = 0;
7761         struct sk_buff *skb;
7762         int hdr_only = 0;
7763         u16 filter = priv->prom_priv->filter;
7764
7765         /* If the filter is set to not include Rx frames then return */
7766         if (filter & IPW_PROM_NO_RX)
7767                 return;
7768
7769         /* We received data from the HW, so stop the watchdog */
7770         priv->prom_net_dev->trans_start = jiffies;
7771
7772         if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7773                 priv->prom_priv->ieee->stats.rx_errors++;
7774                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7775                 return;
7776         }
7777
7778         /* We only process data packets if the interface is open */
7779         if (unlikely(!netif_running(priv->prom_net_dev))) {
7780                 priv->prom_priv->ieee->stats.rx_dropped++;
7781                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7782                 return;
7783         }
7784
7785         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7786          * that now */
7787         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7788                 /* FIXME: Should alloc bigger skb instead */
7789                 priv->prom_priv->ieee->stats.rx_dropped++;
7790                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7791                 return;
7792         }
7793
7794         hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
7795         if (ieee80211_is_management(hdr->frame_ctl)) {
7796                 if (filter & IPW_PROM_NO_MGMT)
7797                         return;
7798                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
7799                         hdr_only = 1;
7800         } else if (ieee80211_is_control(hdr->frame_ctl)) {
7801                 if (filter & IPW_PROM_NO_CTL)
7802                         return;
7803                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
7804                         hdr_only = 1;
7805         } else if (ieee80211_is_data(hdr->frame_ctl)) {
7806                 if (filter & IPW_PROM_NO_DATA)
7807                         return;
7808                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
7809                         hdr_only = 1;
7810         }
7811
7812         /* Copy the SKB since this is for the promiscuous side */
7813         skb = skb_copy(rxb->skb, GFP_ATOMIC);
7814         if (skb == NULL) {
7815                 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
7816                 return;
7817         }
7818
7819         /* copy the frame data to write after where the radiotap header goes */
7820         ipw_rt = (void *)skb->data;
7821
7822         if (hdr_only)
7823                 len = ieee80211_get_hdrlen(hdr->frame_ctl);
7824
7825         memcpy(ipw_rt->payload, hdr, len);
7826
7827         /* Zero the radiotap static buffer  ...  We only need to zero the bytes
7828          * NOT part of our real header, saves a little time.
7829          *
7830          * No longer necessary since we fill in all our data.  Purge before
7831          * merging patch officially.
7832          * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7833          *        IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7834          */
7835
7836         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7837         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
7838         ipw_rt->rt_hdr.it_len = sizeof(*ipw_rt);        /* total header+data */
7839
7840         /* Set the size of the skb to the size of the frame */
7841         skb_put(skb, ipw_rt->rt_hdr.it_len + len);
7842
7843         /* Big bitfield of all the fields we provide in radiotap */
7844         ipw_rt->rt_hdr.it_present =
7845             ((1 << IEEE80211_RADIOTAP_FLAGS) |
7846              (1 << IEEE80211_RADIOTAP_TSFT) |
7847              (1 << IEEE80211_RADIOTAP_RATE) |
7848              (1 << IEEE80211_RADIOTAP_CHANNEL) |
7849              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7850              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7851              (1 << IEEE80211_RADIOTAP_ANTENNA));
7852
7853         /* Zero the flags, we'll add to them as we go */
7854         ipw_rt->rt_flags = 0;
7855
7856         ipw_rt->rt_tsf = tsf;
7857
7858         /* Convert to DBM */
7859         ipw_rt->rt_dbmsignal = signal;
7860         ipw_rt->rt_dbmnoise = noise;
7861
7862         /* Convert the channel data and set the flags */
7863         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
7864         if (channel > 14) {     /* 802.11a */
7865                 ipw_rt->rt_chbitmask =
7866                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7867         } else if (phy_flags & (1 << 5)) {      /* 802.11b */
7868                 ipw_rt->rt_chbitmask =
7869                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7870         } else {                /* 802.11g */
7871                 ipw_rt->rt_chbitmask =
7872                     (IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7873         }
7874
7875         /* set the rate in multiples of 500k/s */
7876         switch (rate) {
7877         case IPW_TX_RATE_1MB:
7878                 ipw_rt->rt_rate = 2;
7879                 break;
7880         case IPW_TX_RATE_2MB:
7881                 ipw_rt->rt_rate = 4;
7882                 break;
7883         case IPW_TX_RATE_5MB:
7884                 ipw_rt->rt_rate = 10;
7885                 break;
7886         case IPW_TX_RATE_6MB:
7887                 ipw_rt->rt_rate = 12;
7888                 break;
7889         case IPW_TX_RATE_9MB:
7890                 ipw_rt->rt_rate = 18;
7891                 break;
7892         case IPW_TX_RATE_11MB:
7893                 ipw_rt->rt_rate = 22;
7894                 break;
7895         case IPW_TX_RATE_12MB:
7896                 ipw_rt->rt_rate = 24;
7897                 break;
7898         case IPW_TX_RATE_18MB:
7899                 ipw_rt->rt_rate = 36;
7900                 break;
7901         case IPW_TX_RATE_24MB:
7902                 ipw_rt->rt_rate = 48;
7903                 break;
7904         case IPW_TX_RATE_36MB:
7905                 ipw_rt->rt_rate = 72;
7906                 break;
7907         case IPW_TX_RATE_48MB:
7908                 ipw_rt->rt_rate = 96;
7909                 break;
7910         case IPW_TX_RATE_54MB:
7911                 ipw_rt->rt_rate = 108;
7912                 break;
7913         default:
7914                 ipw_rt->rt_rate = 0;
7915                 break;
7916         }
7917
7918         /* antenna number */
7919         ipw_rt->rt_antenna = (phy_flags & 3);
7920
7921         /* set the preamble flag if we have it */
7922         if (phy_flags & (1 << 6))
7923                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7924
7925         IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
7926
7927         if (!ieee80211_rx(priv->prom_priv->ieee, skb, stats)) {
7928                 priv->prom_priv->ieee->stats.rx_errors++;
7929                 dev_kfree_skb_any(skb);
7930         }
7931 }
7932 #endif
7933
7934 static int is_network_packet(struct ipw_priv *priv,
7935                                     struct ieee80211_hdr_4addr *header)
7936 {
7937         /* Filter incoming packets to determine if they are targetted toward
7938          * this network, discarding packets coming from ourselves */
7939         switch (priv->ieee->iw_mode) {
7940         case IW_MODE_ADHOC:     /* Header: Dest. | Source    | BSSID */
7941                 /* packets from our adapter are dropped (echo) */
7942                 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
7943                         return 0;
7944
7945                 /* {broad,multi}cast packets to our BSSID go through */
7946                 if (is_multicast_ether_addr(header->addr1))
7947                         return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
7948
7949                 /* packets to our adapter go through */
7950                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
7951                                ETH_ALEN);
7952
7953         case IW_MODE_INFRA:     /* Header: Dest. | BSSID | Source */
7954                 /* packets from our adapter are dropped (echo) */
7955                 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
7956                         return 0;
7957
7958                 /* {broad,multi}cast packets to our BSS go through */
7959                 if (is_multicast_ether_addr(header->addr1))
7960                         return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
7961
7962                 /* packets to our adapter go through */
7963                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
7964                                ETH_ALEN);
7965         }
7966
7967         return 1;
7968 }
7969
7970 #define IPW_PACKET_RETRY_TIME HZ
7971
7972 static  int is_duplicate_packet(struct ipw_priv *priv,
7973                                       struct ieee80211_hdr_4addr *header)
7974 {
7975         u16 sc = le16_to_cpu(header->seq_ctl);
7976         u16 seq = WLAN_GET_SEQ_SEQ(sc);
7977         u16 frag = WLAN_GET_SEQ_FRAG(sc);
7978         u16 *last_seq, *last_frag;
7979         unsigned long *last_time;
7980
7981         switch (priv->ieee->iw_mode) {
7982         case IW_MODE_ADHOC:
7983                 {
7984                         struct list_head *p;
7985                         struct ipw_ibss_seq *entry = NULL;
7986                         u8 *mac = header->addr2;
7987                         int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
7988
7989                         __list_for_each(p, &priv->ibss_mac_hash[index]) {
7990                                 entry =
7991                                     list_entry(p, struct ipw_ibss_seq, list);
7992                                 if (!memcmp(entry->mac, mac, ETH_ALEN))
7993                                         break;
7994                         }
7995                         if (p == &priv->ibss_mac_hash[index]) {
7996                                 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
7997                                 if (!entry) {
7998                                         IPW_ERROR
7999                                             ("Cannot malloc new mac entry\n");
8000                                         return 0;
8001                                 }
8002                                 memcpy(entry->mac, mac, ETH_ALEN);
8003                                 entry->seq_num = seq;
8004                                 entry->frag_num = frag;
8005                                 entry->packet_time = jiffies;
8006                                 list_add(&entry->list,
8007                                          &priv->ibss_mac_hash[index]);
8008                                 return 0;
8009                         }
8010                         last_seq = &entry->seq_num;
8011                         last_frag = &entry->frag_num;
8012                         last_time = &entry->packet_time;
8013                         break;
8014                 }
8015         case IW_MODE_INFRA:
8016                 last_seq = &priv->last_seq_num;
8017                 last_frag = &priv->last_frag_num;
8018                 last_time = &priv->last_packet_time;
8019                 break;
8020         default:
8021                 return 0;
8022         }
8023         if ((*last_seq == seq) &&
8024             time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8025                 if (*last_frag == frag)
8026                         goto drop;
8027                 if (*last_frag + 1 != frag)
8028                         /* out-of-order fragment */
8029                         goto drop;
8030         } else
8031                 *last_seq = seq;
8032
8033         *last_frag = frag;
8034         *last_time = jiffies;
8035         return 0;
8036
8037       drop:
8038         /* Comment this line now since we observed the card receives
8039          * duplicate packets but the FCTL_RETRY bit is not set in the
8040          * IBSS mode with fragmentation enabled.
8041          BUG_ON(!(le16_to_cpu(header->frame_ctl) & IEEE80211_FCTL_RETRY)); */
8042         return 1;
8043 }
8044
8045 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8046                                    struct ipw_rx_mem_buffer *rxb,
8047                                    struct ieee80211_rx_stats *stats)
8048 {
8049         struct sk_buff *skb = rxb->skb;
8050         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8051         struct ieee80211_hdr_4addr *header = (struct ieee80211_hdr_4addr *)
8052             (skb->data + IPW_RX_FRAME_SIZE);
8053
8054         ieee80211_rx_mgt(priv->ieee, header, stats);
8055
8056         if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8057             ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8058               IEEE80211_STYPE_PROBE_RESP) ||
8059              (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8060               IEEE80211_STYPE_BEACON))) {
8061                 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
8062                         ipw_add_station(priv, header->addr2);
8063         }
8064
8065         if (priv->config & CFG_NET_STATS) {
8066                 IPW_DEBUG_HC("sending stat packet\n");
8067
8068                 /* Set the size of the skb to the size of the full
8069                  * ipw header and 802.11 frame */
8070                 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8071                         IPW_RX_FRAME_SIZE);
8072
8073                 /* Advance past the ipw packet header to the 802.11 frame */
8074                 skb_pull(skb, IPW_RX_FRAME_SIZE);
8075
8076                 /* Push the ieee80211_rx_stats before the 802.11 frame */
8077                 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8078
8079                 skb->dev = priv->ieee->dev;
8080
8081                 /* Point raw at the ieee80211_stats */
8082                 skb->mac.raw = skb->data;
8083
8084                 skb->pkt_type = PACKET_OTHERHOST;
8085                 skb->protocol = __constant_htons(ETH_P_80211_STATS);
8086                 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8087                 netif_rx(skb);
8088                 rxb->skb = NULL;
8089         }
8090 }
8091
8092 /*
8093  * Main entry function for recieving a packet with 80211 headers.  This
8094  * should be called when ever the FW has notified us that there is a new
8095  * skb in the recieve queue.
8096  */
8097 static void ipw_rx(struct ipw_priv *priv)
8098 {
8099         struct ipw_rx_mem_buffer *rxb;
8100         struct ipw_rx_packet *pkt;
8101         struct ieee80211_hdr_4addr *header;
8102         u32 r, w, i;
8103         u8 network_packet;
8104
8105         r = ipw_read32(priv, IPW_RX_READ_INDEX);
8106         w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8107         i = (priv->rxq->processed + 1) % RX_QUEUE_SIZE;
8108
8109         while (i != r) {
8110                 rxb = priv->rxq->queue[i];
8111                 if (unlikely(rxb == NULL)) {
8112                         printk(KERN_CRIT "Queue not allocated!\n");
8113                         break;
8114                 }
8115                 priv->rxq->queue[i] = NULL;
8116
8117                 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8118                                             IPW_RX_BUF_SIZE,
8119                                             PCI_DMA_FROMDEVICE);
8120
8121                 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8122                 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8123                              pkt->header.message_type,
8124                              pkt->header.rx_seq_num, pkt->header.control_bits);
8125
8126                 switch (pkt->header.message_type) {
8127                 case RX_FRAME_TYPE:     /* 802.11 frame */  {
8128                                 struct ieee80211_rx_stats stats = {
8129                                         .rssi =
8130                                             le16_to_cpu(pkt->u.frame.rssi_dbm) -
8131                                             IPW_RSSI_TO_DBM,
8132                                         .signal =
8133                                             le16_to_cpu(pkt->u.frame.rssi_dbm) -
8134                                             IPW_RSSI_TO_DBM + 0x100,
8135                                         .noise =
8136                                             le16_to_cpu(pkt->u.frame.noise),
8137                                         .rate = pkt->u.frame.rate,
8138                                         .mac_time = jiffies,
8139                                         .received_channel =
8140                                             pkt->u.frame.received_channel,
8141                                         .freq =
8142                                             (pkt->u.frame.
8143                                              control & (1 << 0)) ?
8144                                             IEEE80211_24GHZ_BAND :
8145                                             IEEE80211_52GHZ_BAND,
8146                                         .len = le16_to_cpu(pkt->u.frame.length),
8147                                 };
8148
8149                                 if (stats.rssi != 0)
8150                                         stats.mask |= IEEE80211_STATMASK_RSSI;
8151                                 if (stats.signal != 0)
8152                                         stats.mask |= IEEE80211_STATMASK_SIGNAL;
8153                                 if (stats.noise != 0)
8154                                         stats.mask |= IEEE80211_STATMASK_NOISE;
8155                                 if (stats.rate != 0)
8156                                         stats.mask |= IEEE80211_STATMASK_RATE;
8157
8158                                 priv->rx_packets++;
8159
8160 #ifdef CONFIG_IPW2200_PROMISCUOUS
8161         if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8162                 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8163 #endif
8164
8165 #ifdef CONFIG_IPW2200_MONITOR
8166                                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8167 #ifdef CONFIG_IPW2200_RADIOTAP
8168
8169                 ipw_handle_data_packet_monitor(priv,
8170                                                rxb,
8171                                                &stats);
8172 #else
8173                 ipw_handle_data_packet(priv, rxb,
8174                                        &stats);
8175 #endif
8176                                         break;
8177                                 }
8178 #endif
8179
8180                                 header =
8181                                     (struct ieee80211_hdr_4addr *)(rxb->skb->
8182                                                                    data +
8183                                                                    IPW_RX_FRAME_SIZE);
8184                                 /* TODO: Check Ad-Hoc dest/source and make sure
8185                                  * that we are actually parsing these packets
8186                                  * correctly -- we should probably use the
8187                                  * frame control of the packet and disregard
8188                                  * the current iw_mode */
8189
8190                                 network_packet =
8191                                     is_network_packet(priv, header);
8192                                 if (network_packet && priv->assoc_network) {
8193                                         priv->assoc_network->stats.rssi =
8194                                             stats.rssi;
8195                                         priv->exp_avg_rssi =
8196                                             exponential_average(priv->exp_avg_rssi,
8197                                             stats.rssi, DEPTH_RSSI);
8198                                 }
8199
8200                                 IPW_DEBUG_RX("Frame: len=%u\n",
8201                                              le16_to_cpu(pkt->u.frame.length));
8202
8203                                 if (le16_to_cpu(pkt->u.frame.length) <
8204                                     ieee80211_get_hdrlen(le16_to_cpu(
8205                                                     header->frame_ctl))) {
8206                                         IPW_DEBUG_DROP
8207                                             ("Received packet is too small. "
8208                                              "Dropping.\n");
8209                                         priv->ieee->stats.rx_errors++;
8210                                         priv->wstats.discard.misc++;
8211                                         break;
8212                                 }
8213
8214                                 switch (WLAN_FC_GET_TYPE
8215                                         (le16_to_cpu(header->frame_ctl))) {
8216
8217                                 case IEEE80211_FTYPE_MGMT:
8218                                         ipw_handle_mgmt_packet(priv, rxb,
8219                                                                &stats);
8220                                         break;
8221
8222                                 case IEEE80211_FTYPE_CTL:
8223                                         break;
8224
8225                                 case IEEE80211_FTYPE_DATA:
8226                                         if (unlikely(!network_packet ||
8227                                                      is_duplicate_packet(priv,
8228                                                                          header)))
8229                                         {
8230                                                 IPW_DEBUG_DROP("Dropping: "
8231                                                                MAC_FMT ", "
8232                                                                MAC_FMT ", "
8233                                                                MAC_FMT "\n",
8234                                                                MAC_ARG(header->
8235                                                                        addr1),
8236                                                                MAC_ARG(header->
8237                                                                        addr2),
8238                                                                MAC_ARG(header->
8239                                                                        addr3));
8240                                                 break;
8241                                         }
8242
8243                                         ipw_handle_data_packet(priv, rxb,
8244                                                                &stats);
8245
8246                                         break;
8247                                 }
8248                                 break;
8249                         }
8250
8251                 case RX_HOST_NOTIFICATION_TYPE:{
8252                                 IPW_DEBUG_RX
8253                                     ("Notification: subtype=%02X flags=%02X size=%d\n",
8254                                      pkt->u.notification.subtype,
8255                                      pkt->u.notification.flags,
8256                                      pkt->u.notification.size);
8257                                 ipw_rx_notification(priv, &pkt->u.notification);
8258                                 break;
8259                         }
8260
8261                 default:
8262                         IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8263                                      pkt->header.message_type);
8264                         break;
8265                 }
8266
8267                 /* For now we just don't re-use anything.  We can tweak this
8268                  * later to try and re-use notification packets and SKBs that
8269                  * fail to Rx correctly */
8270                 if (rxb->skb != NULL) {
8271                         dev_kfree_skb_any(rxb->skb);
8272                         rxb->skb = NULL;
8273                 }
8274
8275                 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8276                                  IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8277                 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8278
8279                 i = (i + 1) % RX_QUEUE_SIZE;
8280         }
8281
8282         /* Backtrack one entry */
8283         priv->rxq->processed = (i ? i : RX_QUEUE_SIZE) - 1;
8284
8285         ipw_rx_queue_restock(priv);
8286 }
8287
8288 #define DEFAULT_RTS_THRESHOLD     2304U
8289 #define MIN_RTS_THRESHOLD         1U
8290 #define MAX_RTS_THRESHOLD         2304U
8291 #define DEFAULT_BEACON_INTERVAL   100U
8292 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8293 #define DEFAULT_LONG_RETRY_LIMIT  4U
8294
8295 /**
8296  * ipw_sw_reset
8297  * @option: options to control different reset behaviour
8298  *          0 = reset everything except the 'disable' module_param
8299  *          1 = reset everything and print out driver info (for probe only)
8300  *          2 = reset everything
8301  */
8302 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8303 {
8304         int band, modulation;
8305         int old_mode = priv->ieee->iw_mode;
8306
8307         /* Initialize module parameter values here */
8308         priv->config = 0;
8309
8310         /* We default to disabling the LED code as right now it causes
8311          * too many systems to lock up... */
8312         if (!led)
8313                 priv->config |= CFG_NO_LED;
8314
8315         if (associate)
8316                 priv->config |= CFG_ASSOCIATE;
8317         else
8318                 IPW_DEBUG_INFO("Auto associate disabled.\n");
8319
8320         if (auto_create)
8321                 priv->config |= CFG_ADHOC_CREATE;
8322         else
8323                 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8324
8325         priv->config &= ~CFG_STATIC_ESSID;
8326         priv->essid_len = 0;
8327         memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8328
8329         if (disable && option) {
8330                 priv->status |= STATUS_RF_KILL_SW;
8331                 IPW_DEBUG_INFO("Radio disabled.\n");
8332         }
8333
8334         if (channel != 0) {
8335                 priv->config |= CFG_STATIC_CHANNEL;
8336                 priv->channel = channel;
8337                 IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
8338                 /* TODO: Validate that provided channel is in range */
8339         }
8340 #ifdef CONFIG_IPW2200_QOS
8341         ipw_qos_init(priv, qos_enable, qos_burst_enable,
8342                      burst_duration_CCK, burst_duration_OFDM);
8343 #endif                          /* CONFIG_IPW2200_QOS */
8344
8345         switch (mode) {
8346         case 1:
8347                 priv->ieee->iw_mode = IW_MODE_ADHOC;
8348                 priv->net_dev->type = ARPHRD_ETHER;
8349
8350                 break;
8351 #ifdef CONFIG_IPW2200_MONITOR
8352         case 2:
8353                 priv->ieee->iw_mode = IW_MODE_MONITOR;
8354 #ifdef CONFIG_IPW2200_RADIOTAP
8355                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8356 #else
8357                 priv->net_dev->type = ARPHRD_IEEE80211;
8358 #endif
8359                 break;
8360 #endif
8361         default:
8362         case 0:
8363                 priv->net_dev->type = ARPHRD_ETHER;
8364                 priv->ieee->iw_mode = IW_MODE_INFRA;
8365                 break;
8366         }
8367
8368         if (hwcrypto) {
8369                 priv->ieee->host_encrypt = 0;
8370                 priv->ieee->host_encrypt_msdu = 0;
8371                 priv->ieee->host_decrypt = 0;
8372                 priv->ieee->host_mc_decrypt = 0;
8373         }
8374         IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8375
8376         /* IPW2200/2915 is abled to do hardware fragmentation. */
8377         priv->ieee->host_open_frag = 0;
8378
8379         if ((priv->pci_dev->device == 0x4223) ||
8380             (priv->pci_dev->device == 0x4224)) {
8381                 if (option == 1)
8382                         printk(KERN_INFO DRV_NAME
8383                                ": Detected Intel PRO/Wireless 2915ABG Network "
8384                                "Connection\n");
8385                 priv->ieee->abg_true = 1;
8386                 band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND;
8387                 modulation = IEEE80211_OFDM_MODULATION |
8388                     IEEE80211_CCK_MODULATION;
8389                 priv->adapter = IPW_2915ABG;
8390                 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8391         } else {
8392                 if (option == 1)
8393                         printk(KERN_INFO DRV_NAME
8394                                ": Detected Intel PRO/Wireless 2200BG Network "
8395                                "Connection\n");
8396
8397                 priv->ieee->abg_true = 0;
8398                 band = IEEE80211_24GHZ_BAND;
8399                 modulation = IEEE80211_OFDM_MODULATION |
8400                     IEEE80211_CCK_MODULATION;
8401                 priv->adapter = IPW_2200BG;
8402                 priv->ieee->mode = IEEE_G | IEEE_B;
8403         }
8404
8405         priv->ieee->freq_band = band;
8406         priv->ieee->modulation = modulation;
8407
8408         priv->rates_mask = IEEE80211_DEFAULT_RATES_MASK;
8409
8410         priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8411         priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8412
8413         priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8414         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8415         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8416
8417         /* If power management is turned on, default to AC mode */
8418         priv->power_mode = IPW_POWER_AC;
8419         priv->tx_power = IPW_TX_POWER_DEFAULT;
8420
8421         return old_mode == priv->ieee->iw_mode;
8422 }
8423
8424 /*
8425  * This file defines the Wireless Extension handlers.  It does not
8426  * define any methods of hardware manipulation and relies on the
8427  * functions defined in ipw_main to provide the HW interaction.
8428  *
8429  * The exception to this is the use of the ipw_get_ordinal()
8430  * function used to poll the hardware vs. making unecessary calls.
8431  *
8432  */
8433
8434 static int ipw_wx_get_name(struct net_device *dev,
8435                            struct iw_request_info *info,
8436                            union iwreq_data *wrqu, char *extra)
8437 {
8438         struct ipw_priv *priv = ieee80211_priv(dev);
8439         mutex_lock(&priv->mutex);
8440         if (priv->status & STATUS_RF_KILL_MASK)
8441                 strcpy(wrqu->name, "radio off");
8442         else if (!(priv->status & STATUS_ASSOCIATED))
8443                 strcpy(wrqu->name, "unassociated");
8444         else
8445                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11%c",
8446                          ipw_modes[priv->assoc_request.ieee_mode]);
8447         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
8448         mutex_unlock(&priv->mutex);
8449         return 0;
8450 }
8451
8452 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8453 {
8454         if (channel == 0) {
8455                 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8456                 priv->config &= ~CFG_STATIC_CHANNEL;
8457                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8458                                 "parameters.\n");
8459                 ipw_associate(priv);
8460                 return 0;
8461         }
8462
8463         priv->config |= CFG_STATIC_CHANNEL;
8464
8465         if (priv->channel == channel) {
8466                 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8467                                channel);
8468                 return 0;
8469         }
8470
8471         IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8472         priv->channel = channel;
8473
8474 #ifdef CONFIG_IPW2200_MONITOR
8475         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8476                 int i;
8477                 if (priv->status & STATUS_SCANNING) {
8478                         IPW_DEBUG_SCAN("Scan abort triggered due to "
8479                                        "channel change.\n");
8480                         ipw_abort_scan(priv);
8481                 }
8482
8483                 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8484                         udelay(10);
8485
8486                 if (priv->status & STATUS_SCANNING)
8487                         IPW_DEBUG_SCAN("Still scanning...\n");
8488                 else
8489                         IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8490                                        1000 - i);
8491
8492                 return 0;
8493         }
8494 #endif                          /* CONFIG_IPW2200_MONITOR */
8495
8496         /* Network configuration changed -- force [re]association */
8497         IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8498         if (!ipw_disassociate(priv))
8499                 ipw_associate(priv);
8500
8501         return 0;
8502 }
8503
8504 static int ipw_wx_set_freq(struct net_device *dev,
8505                            struct iw_request_info *info,
8506                            union iwreq_data *wrqu, char *extra)
8507 {
8508         struct ipw_priv *priv = ieee80211_priv(dev);
8509         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8510         struct iw_freq *fwrq = &wrqu->freq;
8511         int ret = 0, i;
8512         u8 channel, flags;
8513         int band;
8514
8515         if (fwrq->m == 0) {
8516                 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8517                 mutex_lock(&priv->mutex);
8518                 ret = ipw_set_channel(priv, 0);
8519                 mutex_unlock(&priv->mutex);
8520                 return ret;
8521         }
8522         /* if setting by freq convert to channel */
8523         if (fwrq->e == 1) {
8524                 channel = ieee80211_freq_to_channel(priv->ieee, fwrq->m);
8525                 if (channel == 0)
8526                         return -EINVAL;
8527         } else
8528                 channel = fwrq->m;
8529
8530         if (!(band = ieee80211_is_valid_channel(priv->ieee, channel)))
8531                 return -EINVAL;
8532
8533         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8534                 i = ieee80211_channel_to_index(priv->ieee, channel);
8535                 if (i == -1)
8536                         return -EINVAL;
8537
8538                 flags = (band == IEEE80211_24GHZ_BAND) ?
8539                     geo->bg[i].flags : geo->a[i].flags;
8540                 if (flags & IEEE80211_CH_PASSIVE_ONLY) {
8541                         IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8542                         return -EINVAL;
8543                 }
8544         }
8545
8546         IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
8547         mutex_lock(&priv->mutex);
8548         ret = ipw_set_channel(priv, channel);
8549         mutex_unlock(&priv->mutex);
8550         return ret;
8551 }
8552
8553 static int ipw_wx_get_freq(struct net_device *dev,
8554                            struct iw_request_info *info,
8555                            union iwreq_data *wrqu, char *extra)
8556 {
8557         struct ipw_priv *priv = ieee80211_priv(dev);
8558
8559         wrqu->freq.e = 0;
8560
8561         /* If we are associated, trying to associate, or have a statically
8562          * configured CHANNEL then return that; otherwise return ANY */
8563         mutex_lock(&priv->mutex);
8564         if (priv->config & CFG_STATIC_CHANNEL ||
8565             priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8566                 int i;
8567
8568                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
8569                 BUG_ON(i == -1);
8570                 wrqu->freq.e = 1;
8571
8572                 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
8573                 case IEEE80211_52GHZ_BAND:
8574                         wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8575                         break;
8576
8577                 case IEEE80211_24GHZ_BAND:
8578                         wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8579                         break;
8580
8581                 default:
8582                         BUG();
8583                 }
8584         } else
8585                 wrqu->freq.m = 0;
8586
8587         mutex_unlock(&priv->mutex);
8588         IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
8589         return 0;
8590 }
8591
8592 static int ipw_wx_set_mode(struct net_device *dev,
8593                            struct iw_request_info *info,
8594                            union iwreq_data *wrqu, char *extra)
8595 {
8596         struct ipw_priv *priv = ieee80211_priv(dev);
8597         int err = 0;
8598
8599         IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8600
8601         switch (wrqu->mode) {
8602 #ifdef CONFIG_IPW2200_MONITOR
8603         case IW_MODE_MONITOR:
8604 #endif
8605         case IW_MODE_ADHOC:
8606         case IW_MODE_INFRA:
8607                 break;
8608         case IW_MODE_AUTO:
8609                 wrqu->mode = IW_MODE_INFRA;
8610                 break;
8611         default:
8612                 return -EINVAL;
8613         }
8614         if (wrqu->mode == priv->ieee->iw_mode)
8615                 return 0;
8616
8617         mutex_lock(&priv->mutex);
8618
8619         ipw_sw_reset(priv, 0);
8620
8621 #ifdef CONFIG_IPW2200_MONITOR
8622         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8623                 priv->net_dev->type = ARPHRD_ETHER;
8624
8625         if (wrqu->mode == IW_MODE_MONITOR)
8626 #ifdef CONFIG_IPW2200_RADIOTAP
8627                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8628 #else
8629                 priv->net_dev->type = ARPHRD_IEEE80211;
8630 #endif
8631 #endif                          /* CONFIG_IPW2200_MONITOR */
8632
8633         /* Free the existing firmware and reset the fw_loaded
8634          * flag so ipw_load() will bring in the new firmawre */
8635         free_firmware();
8636
8637         priv->ieee->iw_mode = wrqu->mode;
8638
8639         queue_work(priv->workqueue, &priv->adapter_restart);
8640         mutex_unlock(&priv->mutex);
8641         return err;
8642 }
8643
8644 static int ipw_wx_get_mode(struct net_device *dev,
8645                            struct iw_request_info *info,
8646                            union iwreq_data *wrqu, char *extra)
8647 {
8648         struct ipw_priv *priv = ieee80211_priv(dev);
8649         mutex_lock(&priv->mutex);
8650         wrqu->mode = priv->ieee->iw_mode;
8651         IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8652         mutex_unlock(&priv->mutex);
8653         return 0;
8654 }
8655
8656 /* Values are in microsecond */
8657 static const s32 timeout_duration[] = {
8658         350000,
8659         250000,
8660         75000,
8661         37000,
8662         25000,
8663 };
8664
8665 static const s32 period_duration[] = {
8666         400000,
8667         700000,
8668         1000000,
8669         1000000,
8670         1000000
8671 };
8672
8673 static int ipw_wx_get_range(struct net_device *dev,
8674                             struct iw_request_info *info,
8675                             union iwreq_data *wrqu, char *extra)
8676 {
8677         struct ipw_priv *priv = ieee80211_priv(dev);
8678         struct iw_range *range = (struct iw_range *)extra;
8679         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8680         int i = 0, j;
8681
8682         wrqu->data.length = sizeof(*range);
8683         memset(range, 0, sizeof(*range));
8684
8685         /* 54Mbs == ~27 Mb/s real (802.11g) */
8686         range->throughput = 27 * 1000 * 1000;
8687
8688         range->max_qual.qual = 100;
8689         /* TODO: Find real max RSSI and stick here */
8690         range->max_qual.level = 0;
8691         range->max_qual.noise = 0;
8692         range->max_qual.updated = 7;    /* Updated all three */
8693
8694         range->avg_qual.qual = 70;
8695         /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
8696         range->avg_qual.level = 0;      /* FIXME to real average level */
8697         range->avg_qual.noise = 0;
8698         range->avg_qual.updated = 7;    /* Updated all three */
8699         mutex_lock(&priv->mutex);
8700         range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8701
8702         for (i = 0; i < range->num_bitrates; i++)
8703                 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8704                     500000;
8705
8706         range->max_rts = DEFAULT_RTS_THRESHOLD;
8707         range->min_frag = MIN_FRAG_THRESHOLD;
8708         range->max_frag = MAX_FRAG_THRESHOLD;
8709
8710         range->encoding_size[0] = 5;
8711         range->encoding_size[1] = 13;
8712         range->num_encoding_sizes = 2;
8713         range->max_encoding_tokens = WEP_KEYS;
8714
8715         /* Set the Wireless Extension versions */
8716         range->we_version_compiled = WIRELESS_EXT;
8717         range->we_version_source = 18;
8718
8719         i = 0;
8720         if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8721                 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8722                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8723                             (geo->bg[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8724                                 continue;
8725
8726                         range->freq[i].i = geo->bg[j].channel;
8727                         range->freq[i].m = geo->bg[j].freq * 100000;
8728                         range->freq[i].e = 1;
8729                         i++;
8730                 }
8731         }
8732
8733         if (priv->ieee->mode & IEEE_A) {
8734                 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8735                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8736                             (geo->a[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8737                                 continue;
8738
8739                         range->freq[i].i = geo->a[j].channel;
8740                         range->freq[i].m = geo->a[j].freq * 100000;
8741                         range->freq[i].e = 1;
8742                         i++;
8743                 }
8744         }
8745
8746         range->num_channels = i;
8747         range->num_frequency = i;
8748
8749         mutex_unlock(&priv->mutex);
8750
8751         /* Event capability (kernel + driver) */
8752         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8753                                 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8754                                 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8755                                 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8756         range->event_capa[1] = IW_EVENT_CAPA_K_1;
8757
8758         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8759                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8760
8761         IPW_DEBUG_WX("GET Range\n");
8762         return 0;
8763 }
8764
8765 static int ipw_wx_set_wap(struct net_device *dev,
8766                           struct iw_request_info *info,
8767                           union iwreq_data *wrqu, char *extra)
8768 {
8769         struct ipw_priv *priv = ieee80211_priv(dev);
8770
8771         static const unsigned char any[] = {
8772                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
8773         };
8774         static const unsigned char off[] = {
8775                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
8776         };
8777
8778         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8779                 return -EINVAL;
8780         mutex_lock(&priv->mutex);
8781         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
8782             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8783                 /* we disable mandatory BSSID association */
8784                 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8785                 priv->config &= ~CFG_STATIC_BSSID;
8786                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8787                                 "parameters.\n");
8788                 ipw_associate(priv);
8789                 mutex_unlock(&priv->mutex);
8790                 return 0;
8791         }
8792
8793         priv->config |= CFG_STATIC_BSSID;
8794         if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8795                 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8796                 mutex_unlock(&priv->mutex);
8797                 return 0;
8798         }
8799
8800         IPW_DEBUG_WX("Setting mandatory BSSID to " MAC_FMT "\n",
8801                      MAC_ARG(wrqu->ap_addr.sa_data));
8802
8803         memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
8804
8805         /* Network configuration changed -- force [re]association */
8806         IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
8807         if (!ipw_disassociate(priv))
8808                 ipw_associate(priv);
8809
8810         mutex_unlock(&priv->mutex);
8811         return 0;
8812 }
8813
8814 static int ipw_wx_get_wap(struct net_device *dev,
8815                           struct iw_request_info *info,
8816                           union iwreq_data *wrqu, char *extra)
8817 {
8818         struct ipw_priv *priv = ieee80211_priv(dev);
8819         /* If we are associated, trying to associate, or have a statically
8820          * configured BSSID then return that; otherwise return ANY */
8821         mutex_lock(&priv->mutex);
8822         if (priv->config & CFG_STATIC_BSSID ||
8823             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8824                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
8825                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
8826         } else
8827                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
8828
8829         IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
8830                      MAC_ARG(wrqu->ap_addr.sa_data));
8831         mutex_unlock(&priv->mutex);
8832         return 0;
8833 }
8834
8835 static int ipw_wx_set_essid(struct net_device *dev,
8836                             struct iw_request_info *info,
8837                             union iwreq_data *wrqu, char *extra)
8838 {
8839         struct ipw_priv *priv = ieee80211_priv(dev);
8840         char *essid = "";       /* ANY */
8841         int length = 0;
8842         mutex_lock(&priv->mutex);
8843         if (wrqu->essid.flags && wrqu->essid.length) {
8844                 length = wrqu->essid.length - 1;
8845                 essid = extra;
8846         }
8847         if (length == 0) {
8848                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
8849                 if ((priv->config & CFG_STATIC_ESSID) &&
8850                     !(priv->status & (STATUS_ASSOCIATED |
8851                                       STATUS_ASSOCIATING))) {
8852                         IPW_DEBUG_ASSOC("Attempting to associate with new "
8853                                         "parameters.\n");
8854                         priv->config &= ~CFG_STATIC_ESSID;
8855                         ipw_associate(priv);
8856                 }
8857                 mutex_unlock(&priv->mutex);
8858                 return 0;
8859         }
8860
8861         length = min(length, IW_ESSID_MAX_SIZE);
8862
8863         priv->config |= CFG_STATIC_ESSID;
8864
8865         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
8866                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
8867                 mutex_unlock(&priv->mutex);
8868                 return 0;
8869         }
8870
8871         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
8872                      length);
8873
8874         priv->essid_len = length;
8875         memcpy(priv->essid, essid, priv->essid_len);
8876
8877         /* Network configuration changed -- force [re]association */
8878         IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
8879         if (!ipw_disassociate(priv))
8880                 ipw_associate(priv);
8881
8882         mutex_unlock(&priv->mutex);
8883         return 0;
8884 }
8885
8886 static int ipw_wx_get_essid(struct net_device *dev,
8887                             struct iw_request_info *info,
8888                             union iwreq_data *wrqu, char *extra)
8889 {
8890         struct ipw_priv *priv = ieee80211_priv(dev);
8891
8892         /* If we are associated, trying to associate, or have a statically
8893          * configured ESSID then return that; otherwise return ANY */
8894         mutex_lock(&priv->mutex);
8895         if (priv->config & CFG_STATIC_ESSID ||
8896             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8897                 IPW_DEBUG_WX("Getting essid: '%s'\n",
8898                              escape_essid(priv->essid, priv->essid_len));
8899                 memcpy(extra, priv->essid, priv->essid_len);
8900                 wrqu->essid.length = priv->essid_len;
8901                 wrqu->essid.flags = 1;  /* active */
8902         } else {
8903                 IPW_DEBUG_WX("Getting essid: ANY\n");
8904                 wrqu->essid.length = 0;
8905                 wrqu->essid.flags = 0;  /* active */
8906         }
8907         mutex_unlock(&priv->mutex);
8908         return 0;
8909 }
8910
8911 static int ipw_wx_set_nick(struct net_device *dev,
8912                            struct iw_request_info *info,
8913                            union iwreq_data *wrqu, char *extra)
8914 {
8915         struct ipw_priv *priv = ieee80211_priv(dev);
8916
8917         IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
8918         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
8919                 return -E2BIG;
8920         mutex_lock(&priv->mutex);
8921         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
8922         memset(priv->nick, 0, sizeof(priv->nick));
8923         memcpy(priv->nick, extra, wrqu->data.length);
8924         IPW_DEBUG_TRACE("<<\n");
8925         mutex_unlock(&priv->mutex);
8926         return 0;
8927
8928 }
8929
8930 static int ipw_wx_get_nick(struct net_device *dev,
8931                            struct iw_request_info *info,
8932                            union iwreq_data *wrqu, char *extra)
8933 {
8934         struct ipw_priv *priv = ieee80211_priv(dev);
8935         IPW_DEBUG_WX("Getting nick\n");
8936         mutex_lock(&priv->mutex);
8937         wrqu->data.length = strlen(priv->nick) + 1;
8938         memcpy(extra, priv->nick, wrqu->data.length);
8939         wrqu->data.flags = 1;   /* active */
8940         mutex_unlock(&priv->mutex);
8941         return 0;
8942 }
8943
8944 static int ipw_wx_set_sens(struct net_device *dev,
8945                             struct iw_request_info *info,
8946                             union iwreq_data *wrqu, char *extra)
8947 {
8948         struct ipw_priv *priv = ieee80211_priv(dev);
8949         int err = 0;
8950
8951         IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
8952         IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
8953         mutex_lock(&priv->mutex);
8954
8955         if (wrqu->sens.fixed == 0)
8956         {
8957                 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8958                 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8959                 goto out;
8960         }
8961         if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
8962             (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
8963                 err = -EINVAL;
8964                 goto out;
8965         }
8966
8967         priv->roaming_threshold = wrqu->sens.value;
8968         priv->disassociate_threshold = 3*wrqu->sens.value;
8969       out:
8970         mutex_unlock(&priv->mutex);
8971         return err;
8972 }
8973
8974 static int ipw_wx_get_sens(struct net_device *dev,
8975                             struct iw_request_info *info,
8976                             union iwreq_data *wrqu, char *extra)
8977 {
8978         struct ipw_priv *priv = ieee80211_priv(dev);
8979         mutex_lock(&priv->mutex);
8980         wrqu->sens.fixed = 1;
8981         wrqu->sens.value = priv->roaming_threshold;
8982         mutex_unlock(&priv->mutex);
8983
8984         IPW_DEBUG_WX("GET roaming threshold -> %s %d \n",
8985                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
8986
8987         return 0;
8988 }
8989
8990 static int ipw_wx_set_rate(struct net_device *dev,
8991                            struct iw_request_info *info,
8992                            union iwreq_data *wrqu, char *extra)
8993 {
8994         /* TODO: We should use semaphores or locks for access to priv */
8995         struct ipw_priv *priv = ieee80211_priv(dev);
8996         u32 target_rate = wrqu->bitrate.value;
8997         u32 fixed, mask;
8998
8999         /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9000         /* value = X, fixed = 1 means only rate X */
9001         /* value = X, fixed = 0 means all rates lower equal X */
9002
9003         if (target_rate == -1) {
9004                 fixed = 0;
9005                 mask = IEEE80211_DEFAULT_RATES_MASK;
9006                 /* Now we should reassociate */
9007                 goto apply;
9008         }
9009
9010         mask = 0;
9011         fixed = wrqu->bitrate.fixed;
9012
9013         if (target_rate == 1000000 || !fixed)
9014                 mask |= IEEE80211_CCK_RATE_1MB_MASK;
9015         if (target_rate == 1000000)
9016                 goto apply;
9017
9018         if (target_rate == 2000000 || !fixed)
9019                 mask |= IEEE80211_CCK_RATE_2MB_MASK;
9020         if (target_rate == 2000000)
9021                 goto apply;
9022
9023         if (target_rate == 5500000 || !fixed)
9024                 mask |= IEEE80211_CCK_RATE_5MB_MASK;
9025         if (target_rate == 5500000)
9026                 goto apply;
9027
9028         if (target_rate == 6000000 || !fixed)
9029                 mask |= IEEE80211_OFDM_RATE_6MB_MASK;
9030         if (target_rate == 6000000)
9031                 goto apply;
9032
9033         if (target_rate == 9000000 || !fixed)
9034                 mask |= IEEE80211_OFDM_RATE_9MB_MASK;
9035         if (target_rate == 9000000)
9036                 goto apply;
9037
9038         if (target_rate == 11000000 || !fixed)
9039                 mask |= IEEE80211_CCK_RATE_11MB_MASK;
9040         if (target_rate == 11000000)
9041                 goto apply;
9042
9043         if (target_rate == 12000000 || !fixed)
9044                 mask |= IEEE80211_OFDM_RATE_12MB_MASK;
9045         if (target_rate == 12000000)
9046                 goto apply;
9047
9048         if (target_rate == 18000000 || !fixed)
9049                 mask |= IEEE80211_OFDM_RATE_18MB_MASK;
9050         if (target_rate == 18000000)
9051                 goto apply;
9052
9053         if (target_rate == 24000000 || !fixed)
9054                 mask |= IEEE80211_OFDM_RATE_24MB_MASK;
9055         if (target_rate == 24000000)
9056                 goto apply;
9057
9058         if (target_rate == 36000000 || !fixed)
9059                 mask |= IEEE80211_OFDM_RATE_36MB_MASK;
9060         if (target_rate == 36000000)
9061                 goto apply;
9062
9063         if (target_rate == 48000000 || !fixed)
9064                 mask |= IEEE80211_OFDM_RATE_48MB_MASK;
9065         if (target_rate == 48000000)
9066                 goto apply;
9067
9068         if (target_rate == 54000000 || !fixed)
9069                 mask |= IEEE80211_OFDM_RATE_54MB_MASK;
9070         if (target_rate == 54000000)
9071                 goto apply;
9072
9073         IPW_DEBUG_WX("invalid rate specified, returning error\n");
9074         return -EINVAL;
9075
9076       apply:
9077         IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9078                      mask, fixed ? "fixed" : "sub-rates");
9079         mutex_lock(&priv->mutex);
9080         if (mask == IEEE80211_DEFAULT_RATES_MASK) {
9081                 priv->config &= ~CFG_FIXED_RATE;
9082                 ipw_set_fixed_rate(priv, priv->ieee->mode);
9083         } else
9084                 priv->config |= CFG_FIXED_RATE;
9085
9086         if (priv->rates_mask == mask) {
9087                 IPW_DEBUG_WX("Mask set to current mask.\n");
9088                 mutex_unlock(&priv->mutex);
9089                 return 0;
9090         }
9091
9092         priv->rates_mask = mask;
9093
9094         /* Network configuration changed -- force [re]association */
9095         IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9096         if (!ipw_disassociate(priv))
9097                 ipw_associate(priv);
9098
9099         mutex_unlock(&priv->mutex);
9100         return 0;
9101 }
9102
9103 static int ipw_wx_get_rate(struct net_device *dev,
9104                            struct iw_request_info *info,
9105                            union iwreq_data *wrqu, char *extra)
9106 {
9107         struct ipw_priv *priv = ieee80211_priv(dev);
9108         mutex_lock(&priv->mutex);
9109         wrqu->bitrate.value = priv->last_rate;
9110         wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9111         mutex_unlock(&priv->mutex);
9112         IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
9113         return 0;
9114 }
9115
9116 static int ipw_wx_set_rts(struct net_device *dev,
9117                           struct iw_request_info *info,
9118                           union iwreq_data *wrqu, char *extra)
9119 {
9120         struct ipw_priv *priv = ieee80211_priv(dev);
9121         mutex_lock(&priv->mutex);
9122         if (wrqu->rts.disabled)
9123                 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9124         else {
9125                 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9126                     wrqu->rts.value > MAX_RTS_THRESHOLD) {
9127                         mutex_unlock(&priv->mutex);
9128                         return -EINVAL;
9129                 }
9130                 priv->rts_threshold = wrqu->rts.value;
9131         }
9132
9133         ipw_send_rts_threshold(priv, priv->rts_threshold);
9134         mutex_unlock(&priv->mutex);
9135         IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
9136         return 0;
9137 }
9138
9139 static int ipw_wx_get_rts(struct net_device *dev,
9140                           struct iw_request_info *info,
9141                           union iwreq_data *wrqu, char *extra)
9142 {
9143         struct ipw_priv *priv = ieee80211_priv(dev);
9144         mutex_lock(&priv->mutex);
9145         wrqu->rts.value = priv->rts_threshold;
9146         wrqu->rts.fixed = 0;    /* no auto select */
9147         wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9148         mutex_unlock(&priv->mutex);
9149         IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
9150         return 0;
9151 }
9152
9153 static int ipw_wx_set_txpow(struct net_device *dev,
9154                             struct iw_request_info *info,
9155                             union iwreq_data *wrqu, char *extra)
9156 {
9157         struct ipw_priv *priv = ieee80211_priv(dev);
9158         int err = 0;
9159
9160         mutex_lock(&priv->mutex);
9161         if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9162                 err = -EINPROGRESS;
9163                 goto out;
9164         }
9165
9166         if (!wrqu->power.fixed)
9167                 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9168
9169         if (wrqu->power.flags != IW_TXPOW_DBM) {
9170                 err = -EINVAL;
9171                 goto out;
9172         }
9173
9174         if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9175             (wrqu->power.value < IPW_TX_POWER_MIN)) {
9176                 err = -EINVAL;
9177                 goto out;
9178         }
9179
9180         priv->tx_power = wrqu->power.value;
9181         err = ipw_set_tx_power(priv);
9182       out:
9183         mutex_unlock(&priv->mutex);
9184         return err;
9185 }
9186
9187 static int ipw_wx_get_txpow(struct net_device *dev,
9188                             struct iw_request_info *info,
9189                             union iwreq_data *wrqu, char *extra)
9190 {
9191         struct ipw_priv *priv = ieee80211_priv(dev);
9192         mutex_lock(&priv->mutex);
9193         wrqu->power.value = priv->tx_power;
9194         wrqu->power.fixed = 1;
9195         wrqu->power.flags = IW_TXPOW_DBM;
9196         wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9197         mutex_unlock(&priv->mutex);
9198
9199         IPW_DEBUG_WX("GET TX Power -> %s %d \n",
9200                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9201
9202         return 0;
9203 }
9204
9205 static int ipw_wx_set_frag(struct net_device *dev,
9206                            struct iw_request_info *info,
9207                            union iwreq_data *wrqu, char *extra)
9208 {
9209         struct ipw_priv *priv = ieee80211_priv(dev);
9210         mutex_lock(&priv->mutex);
9211         if (wrqu->frag.disabled)
9212                 priv->ieee->fts = DEFAULT_FTS;
9213         else {
9214                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9215                     wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9216                         mutex_unlock(&priv->mutex);
9217                         return -EINVAL;
9218                 }
9219
9220                 priv->ieee->fts = wrqu->frag.value & ~0x1;
9221         }
9222
9223         ipw_send_frag_threshold(priv, wrqu->frag.value);
9224         mutex_unlock(&priv->mutex);
9225         IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
9226         return 0;
9227 }
9228
9229 static int ipw_wx_get_frag(struct net_device *dev,
9230                            struct iw_request_info *info,
9231                            union iwreq_data *wrqu, char *extra)
9232 {
9233         struct ipw_priv *priv = ieee80211_priv(dev);
9234         mutex_lock(&priv->mutex);
9235         wrqu->frag.value = priv->ieee->fts;
9236         wrqu->frag.fixed = 0;   /* no auto select */
9237         wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9238         mutex_unlock(&priv->mutex);
9239         IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
9240
9241         return 0;
9242 }
9243
9244 static int ipw_wx_set_retry(struct net_device *dev,
9245                             struct iw_request_info *info,
9246                             union iwreq_data *wrqu, char *extra)
9247 {
9248         struct ipw_priv *priv = ieee80211_priv(dev);
9249
9250         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9251                 return -EINVAL;
9252
9253         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9254                 return 0;
9255
9256         if (wrqu->retry.value < 0 || wrqu->retry.value > 255)
9257                 return -EINVAL;
9258
9259         mutex_lock(&priv->mutex);
9260         if (wrqu->retry.flags & IW_RETRY_MIN)
9261                 priv->short_retry_limit = (u8) wrqu->retry.value;
9262         else if (wrqu->retry.flags & IW_RETRY_MAX)
9263                 priv->long_retry_limit = (u8) wrqu->retry.value;
9264         else {
9265                 priv->short_retry_limit = (u8) wrqu->retry.value;
9266                 priv->long_retry_limit = (u8) wrqu->retry.value;
9267         }
9268
9269         ipw_send_retry_limit(priv, priv->short_retry_limit,
9270                              priv->long_retry_limit);
9271         mutex_unlock(&priv->mutex);
9272         IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9273                      priv->short_retry_limit, priv->long_retry_limit);
9274         return 0;
9275 }
9276
9277 static int ipw_wx_get_retry(struct net_device *dev,
9278                             struct iw_request_info *info,
9279                             union iwreq_data *wrqu, char *extra)
9280 {
9281         struct ipw_priv *priv = ieee80211_priv(dev);
9282
9283         mutex_lock(&priv->mutex);
9284         wrqu->retry.disabled = 0;
9285
9286         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9287                 mutex_unlock(&priv->mutex);
9288                 return -EINVAL;
9289         }
9290
9291         if (wrqu->retry.flags & IW_RETRY_MAX) {
9292                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_MAX;
9293                 wrqu->retry.value = priv->long_retry_limit;
9294         } else if (wrqu->retry.flags & IW_RETRY_MIN) {
9295                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_MIN;
9296                 wrqu->retry.value = priv->short_retry_limit;
9297         } else {
9298                 wrqu->retry.flags = IW_RETRY_LIMIT;
9299                 wrqu->retry.value = priv->short_retry_limit;
9300         }
9301         mutex_unlock(&priv->mutex);
9302
9303         IPW_DEBUG_WX("GET retry -> %d \n", wrqu->retry.value);
9304
9305         return 0;
9306 }
9307
9308 static int ipw_request_direct_scan(struct ipw_priv *priv, char *essid,
9309                                    int essid_len)
9310 {
9311         struct ipw_scan_request_ext scan;
9312         int err = 0, scan_type;
9313
9314         if (!(priv->status & STATUS_INIT) ||
9315             (priv->status & STATUS_EXIT_PENDING))
9316                 return 0;
9317
9318         mutex_lock(&priv->mutex);
9319
9320         if (priv->status & STATUS_RF_KILL_MASK) {
9321                 IPW_DEBUG_HC("Aborting scan due to RF kill activation\n");
9322                 priv->status |= STATUS_SCAN_PENDING;
9323                 goto done;
9324         }
9325
9326         IPW_DEBUG_HC("starting request direct scan!\n");
9327
9328         if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
9329                 /* We should not sleep here; otherwise we will block most
9330                  * of the system (for instance, we hold rtnl_lock when we
9331                  * get here).
9332                  */
9333                 err = -EAGAIN;
9334                 goto done;
9335         }
9336         memset(&scan, 0, sizeof(scan));
9337
9338         if (priv->config & CFG_SPEED_SCAN)
9339                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
9340                     cpu_to_le16(30);
9341         else
9342                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
9343                     cpu_to_le16(20);
9344
9345         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
9346             cpu_to_le16(20);
9347         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
9348         scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
9349
9350         scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
9351
9352         err = ipw_send_ssid(priv, essid, essid_len);
9353         if (err) {
9354                 IPW_DEBUG_HC("Attempt to send SSID command failed\n");
9355                 goto done;
9356         }
9357         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
9358
9359         ipw_add_scan_channels(priv, &scan, scan_type);
9360
9361         err = ipw_send_scan_request_ext(priv, &scan);
9362         if (err) {
9363                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
9364                 goto done;
9365         }
9366
9367         priv->status |= STATUS_SCANNING;
9368
9369       done:
9370         mutex_unlock(&priv->mutex);
9371         return err;
9372 }
9373
9374 static int ipw_wx_set_scan(struct net_device *dev,
9375                            struct iw_request_info *info,
9376                            union iwreq_data *wrqu, char *extra)
9377 {
9378         struct ipw_priv *priv = ieee80211_priv(dev);
9379         struct iw_scan_req *req = NULL;
9380         if (wrqu->data.length
9381             && wrqu->data.length == sizeof(struct iw_scan_req)) {
9382                 req = (struct iw_scan_req *)extra;
9383                 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9384                         ipw_request_direct_scan(priv, req->essid,
9385                                                 req->essid_len);
9386                         return 0;
9387                 }
9388         }
9389
9390         IPW_DEBUG_WX("Start scan\n");
9391
9392         queue_work(priv->workqueue, &priv->request_scan);
9393
9394         return 0;
9395 }
9396
9397 static int ipw_wx_get_scan(struct net_device *dev,
9398                            struct iw_request_info *info,
9399                            union iwreq_data *wrqu, char *extra)
9400 {
9401         struct ipw_priv *priv = ieee80211_priv(dev);
9402         return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
9403 }
9404
9405 static int ipw_wx_set_encode(struct net_device *dev,
9406                              struct iw_request_info *info,
9407                              union iwreq_data *wrqu, char *key)
9408 {
9409         struct ipw_priv *priv = ieee80211_priv(dev);
9410         int ret;
9411         u32 cap = priv->capability;
9412
9413         mutex_lock(&priv->mutex);
9414         ret = ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
9415
9416         /* In IBSS mode, we need to notify the firmware to update
9417          * the beacon info after we changed the capability. */
9418         if (cap != priv->capability &&
9419             priv->ieee->iw_mode == IW_MODE_ADHOC &&
9420             priv->status & STATUS_ASSOCIATED)
9421                 ipw_disassociate(priv);
9422
9423         mutex_unlock(&priv->mutex);
9424         return ret;
9425 }
9426
9427 static int ipw_wx_get_encode(struct net_device *dev,
9428                              struct iw_request_info *info,
9429                              union iwreq_data *wrqu, char *key)
9430 {
9431         struct ipw_priv *priv = ieee80211_priv(dev);
9432         return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
9433 }
9434
9435 static int ipw_wx_set_power(struct net_device *dev,
9436                             struct iw_request_info *info,
9437                             union iwreq_data *wrqu, char *extra)
9438 {
9439         struct ipw_priv *priv = ieee80211_priv(dev);
9440         int err;
9441         mutex_lock(&priv->mutex);
9442         if (wrqu->power.disabled) {
9443                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9444                 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9445                 if (err) {
9446                         IPW_DEBUG_WX("failed setting power mode.\n");
9447                         mutex_unlock(&priv->mutex);
9448                         return err;
9449                 }
9450                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9451                 mutex_unlock(&priv->mutex);
9452                 return 0;
9453         }
9454
9455         switch (wrqu->power.flags & IW_POWER_MODE) {
9456         case IW_POWER_ON:       /* If not specified */
9457         case IW_POWER_MODE:     /* If set all mask */
9458         case IW_POWER_ALL_R:    /* If explicitely state all */
9459                 break;
9460         default:                /* Otherwise we don't support it */
9461                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9462                              wrqu->power.flags);
9463                 mutex_unlock(&priv->mutex);
9464                 return -EOPNOTSUPP;
9465         }
9466
9467         /* If the user hasn't specified a power management mode yet, default
9468          * to BATTERY */
9469         if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9470                 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9471         else
9472                 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9473         err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9474         if (err) {
9475                 IPW_DEBUG_WX("failed setting power mode.\n");
9476                 mutex_unlock(&priv->mutex);
9477                 return err;
9478         }
9479
9480         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9481         mutex_unlock(&priv->mutex);
9482         return 0;
9483 }
9484
9485 static int ipw_wx_get_power(struct net_device *dev,
9486                             struct iw_request_info *info,
9487                             union iwreq_data *wrqu, char *extra)
9488 {
9489         struct ipw_priv *priv = ieee80211_priv(dev);
9490         mutex_lock(&priv->mutex);
9491         if (!(priv->power_mode & IPW_POWER_ENABLED))
9492                 wrqu->power.disabled = 1;
9493         else
9494                 wrqu->power.disabled = 0;
9495
9496         mutex_unlock(&priv->mutex);
9497         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9498
9499         return 0;
9500 }
9501
9502 static int ipw_wx_set_powermode(struct net_device *dev,
9503                                 struct iw_request_info *info,
9504                                 union iwreq_data *wrqu, char *extra)
9505 {
9506         struct ipw_priv *priv = ieee80211_priv(dev);
9507         int mode = *(int *)extra;
9508         int err;
9509         mutex_lock(&priv->mutex);
9510         if ((mode < 1) || (mode > IPW_POWER_LIMIT)) {
9511                 mode = IPW_POWER_AC;
9512                 priv->power_mode = mode;
9513         } else {
9514                 priv->power_mode = IPW_POWER_ENABLED | mode;
9515         }
9516
9517         if (priv->power_mode != mode) {
9518                 err = ipw_send_power_mode(priv, mode);
9519
9520                 if (err) {
9521                         IPW_DEBUG_WX("failed setting power mode.\n");
9522                         mutex_unlock(&priv->mutex);
9523                         return err;
9524                 }
9525         }
9526         mutex_unlock(&priv->mutex);
9527         return 0;
9528 }
9529
9530 #define MAX_WX_STRING 80
9531 static int ipw_wx_get_powermode(struct net_device *dev,
9532                                 struct iw_request_info *info,
9533                                 union iwreq_data *wrqu, char *extra)
9534 {
9535         struct ipw_priv *priv = ieee80211_priv(dev);
9536         int level = IPW_POWER_LEVEL(priv->power_mode);
9537         char *p = extra;
9538
9539         p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9540
9541         switch (level) {
9542         case IPW_POWER_AC:
9543                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9544                 break;
9545         case IPW_POWER_BATTERY:
9546                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9547                 break;
9548         default:
9549                 p += snprintf(p, MAX_WX_STRING - (p - extra),
9550                               "(Timeout %dms, Period %dms)",
9551                               timeout_duration[level - 1] / 1000,
9552                               period_duration[level - 1] / 1000);
9553         }
9554
9555         if (!(priv->power_mode & IPW_POWER_ENABLED))
9556                 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9557
9558         wrqu->data.length = p - extra + 1;
9559
9560         return 0;
9561 }
9562
9563 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9564                                     struct iw_request_info *info,
9565                                     union iwreq_data *wrqu, char *extra)
9566 {
9567         struct ipw_priv *priv = ieee80211_priv(dev);
9568         int mode = *(int *)extra;
9569         u8 band = 0, modulation = 0;
9570
9571         if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9572                 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9573                 return -EINVAL;
9574         }
9575         mutex_lock(&priv->mutex);
9576         if (priv->adapter == IPW_2915ABG) {
9577                 priv->ieee->abg_true = 1;
9578                 if (mode & IEEE_A) {
9579                         band |= IEEE80211_52GHZ_BAND;
9580                         modulation |= IEEE80211_OFDM_MODULATION;
9581                 } else
9582                         priv->ieee->abg_true = 0;
9583         } else {
9584                 if (mode & IEEE_A) {
9585                         IPW_WARNING("Attempt to set 2200BG into "
9586                                     "802.11a mode\n");
9587                         mutex_unlock(&priv->mutex);
9588                         return -EINVAL;
9589                 }
9590
9591                 priv->ieee->abg_true = 0;
9592         }
9593
9594         if (mode & IEEE_B) {
9595                 band |= IEEE80211_24GHZ_BAND;
9596                 modulation |= IEEE80211_CCK_MODULATION;
9597         } else
9598                 priv->ieee->abg_true = 0;
9599
9600         if (mode & IEEE_G) {
9601                 band |= IEEE80211_24GHZ_BAND;
9602                 modulation |= IEEE80211_OFDM_MODULATION;
9603         } else
9604                 priv->ieee->abg_true = 0;
9605
9606         priv->ieee->mode = mode;
9607         priv->ieee->freq_band = band;
9608         priv->ieee->modulation = modulation;
9609         init_supported_rates(priv, &priv->rates);
9610
9611         /* Network configuration changed -- force [re]association */
9612         IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9613         if (!ipw_disassociate(priv)) {
9614                 ipw_send_supported_rates(priv, &priv->rates);
9615                 ipw_associate(priv);
9616         }
9617
9618         /* Update the band LEDs */
9619         ipw_led_band_on(priv);
9620
9621         IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9622                      mode & IEEE_A ? 'a' : '.',
9623                      mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9624         mutex_unlock(&priv->mutex);
9625         return 0;
9626 }
9627
9628 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9629                                     struct iw_request_info *info,
9630                                     union iwreq_data *wrqu, char *extra)
9631 {
9632         struct ipw_priv *priv = ieee80211_priv(dev);
9633         mutex_lock(&priv->mutex);
9634         switch (priv->ieee->mode) {
9635         case IEEE_A:
9636                 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9637                 break;
9638         case IEEE_B:
9639                 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9640                 break;
9641         case IEEE_A | IEEE_B:
9642                 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9643                 break;
9644         case IEEE_G:
9645                 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9646                 break;
9647         case IEEE_A | IEEE_G:
9648                 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9649                 break;
9650         case IEEE_B | IEEE_G:
9651                 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9652                 break;
9653         case IEEE_A | IEEE_B | IEEE_G:
9654                 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9655                 break;
9656         default:
9657                 strncpy(extra, "unknown", MAX_WX_STRING);
9658                 break;
9659         }
9660
9661         IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9662
9663         wrqu->data.length = strlen(extra) + 1;
9664         mutex_unlock(&priv->mutex);
9665
9666         return 0;
9667 }
9668
9669 static int ipw_wx_set_preamble(struct net_device *dev,
9670                                struct iw_request_info *info,
9671                                union iwreq_data *wrqu, char *extra)
9672 {
9673         struct ipw_priv *priv = ieee80211_priv(dev);
9674         int mode = *(int *)extra;
9675         mutex_lock(&priv->mutex);
9676         /* Switching from SHORT -> LONG requires a disassociation */
9677         if (mode == 1) {
9678                 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9679                         priv->config |= CFG_PREAMBLE_LONG;
9680
9681                         /* Network configuration changed -- force [re]association */
9682                         IPW_DEBUG_ASSOC
9683                             ("[re]association triggered due to preamble change.\n");
9684                         if (!ipw_disassociate(priv))
9685                                 ipw_associate(priv);
9686                 }
9687                 goto done;
9688         }
9689
9690         if (mode == 0) {
9691                 priv->config &= ~CFG_PREAMBLE_LONG;
9692                 goto done;
9693         }
9694         mutex_unlock(&priv->mutex);
9695         return -EINVAL;
9696
9697       done:
9698         mutex_unlock(&priv->mutex);
9699         return 0;
9700 }
9701
9702 static int ipw_wx_get_preamble(struct net_device *dev,
9703                                struct iw_request_info *info,
9704                                union iwreq_data *wrqu, char *extra)
9705 {
9706         struct ipw_priv *priv = ieee80211_priv(dev);
9707         mutex_lock(&priv->mutex);
9708         if (priv->config & CFG_PREAMBLE_LONG)
9709                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9710         else
9711                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9712         mutex_unlock(&priv->mutex);
9713         return 0;
9714 }
9715
9716 #ifdef CONFIG_IPW2200_MONITOR
9717 static int ipw_wx_set_monitor(struct net_device *dev,
9718                               struct iw_request_info *info,
9719                               union iwreq_data *wrqu, char *extra)
9720 {
9721         struct ipw_priv *priv = ieee80211_priv(dev);
9722         int *parms = (int *)extra;
9723         int enable = (parms[0] > 0);
9724         mutex_lock(&priv->mutex);
9725         IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9726         if (enable) {
9727                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9728 #ifdef CONFIG_IPW2200_RADIOTAP
9729                         priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9730 #else
9731                         priv->net_dev->type = ARPHRD_IEEE80211;
9732 #endif
9733                         queue_work(priv->workqueue, &priv->adapter_restart);
9734                 }
9735
9736                 ipw_set_channel(priv, parms[1]);
9737         } else {
9738                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9739                         mutex_unlock(&priv->mutex);
9740                         return 0;
9741                 }
9742                 priv->net_dev->type = ARPHRD_ETHER;
9743                 queue_work(priv->workqueue, &priv->adapter_restart);
9744         }
9745         mutex_unlock(&priv->mutex);
9746         return 0;
9747 }
9748
9749 #endif                          /* CONFIG_IPW2200_MONITOR */
9750
9751 static int ipw_wx_reset(struct net_device *dev,
9752                         struct iw_request_info *info,
9753                         union iwreq_data *wrqu, char *extra)
9754 {
9755         struct ipw_priv *priv = ieee80211_priv(dev);
9756         IPW_DEBUG_WX("RESET\n");
9757         queue_work(priv->workqueue, &priv->adapter_restart);
9758         return 0;
9759 }
9760
9761 static int ipw_wx_sw_reset(struct net_device *dev,
9762                            struct iw_request_info *info,
9763                            union iwreq_data *wrqu, char *extra)
9764 {
9765         struct ipw_priv *priv = ieee80211_priv(dev);
9766         union iwreq_data wrqu_sec = {
9767                 .encoding = {
9768                              .flags = IW_ENCODE_DISABLED,
9769                              },
9770         };
9771         int ret;
9772
9773         IPW_DEBUG_WX("SW_RESET\n");
9774
9775         mutex_lock(&priv->mutex);
9776
9777         ret = ipw_sw_reset(priv, 2);
9778         if (!ret) {
9779                 free_firmware();
9780                 ipw_adapter_restart(priv);
9781         }
9782
9783         /* The SW reset bit might have been toggled on by the 'disable'
9784          * module parameter, so take appropriate action */
9785         ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9786
9787         mutex_unlock(&priv->mutex);
9788         ieee80211_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9789         mutex_lock(&priv->mutex);
9790
9791         if (!(priv->status & STATUS_RF_KILL_MASK)) {
9792                 /* Configuration likely changed -- force [re]association */
9793                 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9794                                 "reset.\n");
9795                 if (!ipw_disassociate(priv))
9796                         ipw_associate(priv);
9797         }
9798
9799         mutex_unlock(&priv->mutex);
9800
9801         return 0;
9802 }
9803
9804 /* Rebase the WE IOCTLs to zero for the handler array */
9805 #define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
9806 static iw_handler ipw_wx_handlers[] = {
9807         IW_IOCTL(SIOCGIWNAME) = ipw_wx_get_name,
9808         IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq,
9809         IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq,
9810         IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode,
9811         IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode,
9812         IW_IOCTL(SIOCSIWSENS) = ipw_wx_set_sens,
9813         IW_IOCTL(SIOCGIWSENS) = ipw_wx_get_sens,
9814         IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range,
9815         IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap,
9816         IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap,
9817         IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan,
9818         IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan,
9819         IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid,
9820         IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid,
9821         IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick,
9822         IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick,
9823         IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate,
9824         IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate,
9825         IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts,
9826         IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts,
9827         IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag,
9828         IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag,
9829         IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow,
9830         IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow,
9831         IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry,
9832         IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry,
9833         IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode,
9834         IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode,
9835         IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power,
9836         IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power,
9837         IW_IOCTL(SIOCSIWSPY) = iw_handler_set_spy,
9838         IW_IOCTL(SIOCGIWSPY) = iw_handler_get_spy,
9839         IW_IOCTL(SIOCSIWTHRSPY) = iw_handler_set_thrspy,
9840         IW_IOCTL(SIOCGIWTHRSPY) = iw_handler_get_thrspy,
9841         IW_IOCTL(SIOCSIWGENIE) = ipw_wx_set_genie,
9842         IW_IOCTL(SIOCGIWGENIE) = ipw_wx_get_genie,
9843         IW_IOCTL(SIOCSIWMLME) = ipw_wx_set_mlme,
9844         IW_IOCTL(SIOCSIWAUTH) = ipw_wx_set_auth,
9845         IW_IOCTL(SIOCGIWAUTH) = ipw_wx_get_auth,
9846         IW_IOCTL(SIOCSIWENCODEEXT) = ipw_wx_set_encodeext,
9847         IW_IOCTL(SIOCGIWENCODEEXT) = ipw_wx_get_encodeext,
9848 };
9849
9850 enum {
9851         IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
9852         IPW_PRIV_GET_POWER,
9853         IPW_PRIV_SET_MODE,
9854         IPW_PRIV_GET_MODE,
9855         IPW_PRIV_SET_PREAMBLE,
9856         IPW_PRIV_GET_PREAMBLE,
9857         IPW_PRIV_RESET,
9858         IPW_PRIV_SW_RESET,
9859 #ifdef CONFIG_IPW2200_MONITOR
9860         IPW_PRIV_SET_MONITOR,
9861 #endif
9862 };
9863
9864 static struct iw_priv_args ipw_priv_args[] = {
9865         {
9866          .cmd = IPW_PRIV_SET_POWER,
9867          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9868          .name = "set_power"},
9869         {
9870          .cmd = IPW_PRIV_GET_POWER,
9871          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9872          .name = "get_power"},
9873         {
9874          .cmd = IPW_PRIV_SET_MODE,
9875          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9876          .name = "set_mode"},
9877         {
9878          .cmd = IPW_PRIV_GET_MODE,
9879          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9880          .name = "get_mode"},
9881         {
9882          .cmd = IPW_PRIV_SET_PREAMBLE,
9883          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9884          .name = "set_preamble"},
9885         {
9886          .cmd = IPW_PRIV_GET_PREAMBLE,
9887          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
9888          .name = "get_preamble"},
9889         {
9890          IPW_PRIV_RESET,
9891          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
9892         {
9893          IPW_PRIV_SW_RESET,
9894          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
9895 #ifdef CONFIG_IPW2200_MONITOR
9896         {
9897          IPW_PRIV_SET_MONITOR,
9898          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
9899 #endif                          /* CONFIG_IPW2200_MONITOR */
9900 };
9901
9902 static iw_handler ipw_priv_handler[] = {
9903         ipw_wx_set_powermode,
9904         ipw_wx_get_powermode,
9905         ipw_wx_set_wireless_mode,
9906         ipw_wx_get_wireless_mode,
9907         ipw_wx_set_preamble,
9908         ipw_wx_get_preamble,
9909         ipw_wx_reset,
9910         ipw_wx_sw_reset,
9911 #ifdef CONFIG_IPW2200_MONITOR
9912         ipw_wx_set_monitor,
9913 #endif
9914 };
9915
9916 static struct iw_handler_def ipw_wx_handler_def = {
9917         .standard = ipw_wx_handlers,
9918         .num_standard = ARRAY_SIZE(ipw_wx_handlers),
9919         .num_private = ARRAY_SIZE(ipw_priv_handler),
9920         .num_private_args = ARRAY_SIZE(ipw_priv_args),
9921         .private = ipw_priv_handler,
9922         .private_args = ipw_priv_args,
9923         .get_wireless_stats = ipw_get_wireless_stats,
9924 };
9925
9926 /*
9927  * Get wireless statistics.
9928  * Called by /proc/net/wireless
9929  * Also called by SIOCGIWSTATS
9930  */
9931 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
9932 {
9933         struct ipw_priv *priv = ieee80211_priv(dev);
9934         struct iw_statistics *wstats;
9935
9936         wstats = &priv->wstats;
9937
9938         /* if hw is disabled, then ipw_get_ordinal() can't be called.
9939          * netdev->get_wireless_stats seems to be called before fw is
9940          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
9941          * and associated; if not associcated, the values are all meaningless
9942          * anyway, so set them all to NULL and INVALID */
9943         if (!(priv->status & STATUS_ASSOCIATED)) {
9944                 wstats->miss.beacon = 0;
9945                 wstats->discard.retries = 0;
9946                 wstats->qual.qual = 0;
9947                 wstats->qual.level = 0;
9948                 wstats->qual.noise = 0;
9949                 wstats->qual.updated = 7;
9950                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
9951                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
9952                 return wstats;
9953         }
9954
9955         wstats->qual.qual = priv->quality;
9956         wstats->qual.level = priv->exp_avg_rssi;
9957         wstats->qual.noise = priv->exp_avg_noise;
9958         wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
9959             IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
9960
9961         wstats->miss.beacon = average_value(&priv->average_missed_beacons);
9962         wstats->discard.retries = priv->last_tx_failures;
9963         wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
9964
9965 /*      if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
9966         goto fail_get_ordinal;
9967         wstats->discard.retries += tx_retry; */
9968
9969         return wstats;
9970 }
9971
9972 /* net device stuff */
9973
9974 static  void init_sys_config(struct ipw_sys_config *sys_config)
9975 {
9976         memset(sys_config, 0, sizeof(struct ipw_sys_config));
9977         sys_config->bt_coexistence = 0;
9978         sys_config->answer_broadcast_ssid_probe = 0;
9979         sys_config->accept_all_data_frames = 0;
9980         sys_config->accept_non_directed_frames = 1;
9981         sys_config->exclude_unicast_unencrypted = 0;
9982         sys_config->disable_unicast_decryption = 1;
9983         sys_config->exclude_multicast_unencrypted = 0;
9984         sys_config->disable_multicast_decryption = 1;
9985         if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
9986                 antenna = CFG_SYS_ANTENNA_BOTH;
9987         sys_config->antenna_diversity = antenna;
9988         sys_config->pass_crc_to_host = 0;       /* TODO: See if 1 gives us FCS */
9989         sys_config->dot11g_auto_detection = 0;
9990         sys_config->enable_cts_to_self = 0;
9991         sys_config->bt_coexist_collision_thr = 0;
9992         sys_config->pass_noise_stats_to_host = 1;       /* 1 -- fix for 256 */
9993         sys_config->silence_threshold = 0x1e;
9994 }
9995
9996 static int ipw_net_open(struct net_device *dev)
9997 {
9998         struct ipw_priv *priv = ieee80211_priv(dev);
9999         IPW_DEBUG_INFO("dev->open\n");
10000         /* we should be verifying the device is ready to be opened */
10001         mutex_lock(&priv->mutex);
10002         if (!(priv->status & STATUS_RF_KILL_MASK) &&
10003             (priv->status & STATUS_ASSOCIATED))
10004                 netif_start_queue(dev);
10005         mutex_unlock(&priv->mutex);
10006         return 0;
10007 }
10008
10009 static int ipw_net_stop(struct net_device *dev)
10010 {
10011         IPW_DEBUG_INFO("dev->close\n");
10012         netif_stop_queue(dev);
10013         return 0;
10014 }
10015
10016 /*
10017 todo:
10018
10019 modify to send one tfd per fragment instead of using chunking.  otherwise
10020 we need to heavily modify the ieee80211_skb_to_txb.
10021 */
10022
10023 static int ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb,
10024                              int pri)
10025 {
10026         struct ieee80211_hdr_3addrqos *hdr = (struct ieee80211_hdr_3addrqos *)
10027             txb->fragments[0]->data;
10028         int i = 0;
10029         struct tfd_frame *tfd;
10030 #ifdef CONFIG_IPW2200_QOS
10031         int tx_id = ipw_get_tx_queue_number(priv, pri);
10032         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10033 #else
10034         struct clx2_tx_queue *txq = &priv->txq[0];
10035 #endif
10036         struct clx2_queue *q = &txq->q;
10037         u8 id, hdr_len, unicast;
10038         u16 remaining_bytes;
10039         int fc;
10040
10041         hdr_len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10042         switch (priv->ieee->iw_mode) {
10043         case IW_MODE_ADHOC:
10044                 unicast = !is_multicast_ether_addr(hdr->addr1);
10045                 id = ipw_find_station(priv, hdr->addr1);
10046                 if (id == IPW_INVALID_STATION) {
10047                         id = ipw_add_station(priv, hdr->addr1);
10048                         if (id == IPW_INVALID_STATION) {
10049                                 IPW_WARNING("Attempt to send data to "
10050                                             "invalid cell: " MAC_FMT "\n",
10051                                             MAC_ARG(hdr->addr1));
10052                                 goto drop;
10053                         }
10054                 }
10055                 break;
10056
10057         case IW_MODE_INFRA:
10058         default:
10059                 unicast = !is_multicast_ether_addr(hdr->addr3);
10060                 id = 0;
10061                 break;
10062         }
10063
10064         tfd = &txq->bd[q->first_empty];
10065         txq->txb[q->first_empty] = txb;
10066         memset(tfd, 0, sizeof(*tfd));
10067         tfd->u.data.station_number = id;
10068
10069         tfd->control_flags.message_type = TX_FRAME_TYPE;
10070         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10071
10072         tfd->u.data.cmd_id = DINO_CMD_TX;
10073         tfd->u.data.len = cpu_to_le16(txb->payload_size);
10074         remaining_bytes = txb->payload_size;
10075
10076         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10077                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10078         else
10079                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10080
10081         if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10082                 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10083
10084         fc = le16_to_cpu(hdr->frame_ctl);
10085         hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10086
10087         memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10088
10089         if (likely(unicast))
10090                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10091
10092         if (txb->encrypted && !priv->ieee->host_encrypt) {
10093                 switch (priv->ieee->sec.level) {
10094                 case SEC_LEVEL_3:
10095                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10096                             IEEE80211_FCTL_PROTECTED;
10097                         /* XXX: ACK flag must be set for CCMP even if it
10098                          * is a multicast/broadcast packet, because CCMP
10099                          * group communication encrypted by GTK is
10100                          * actually done by the AP. */
10101                         if (!unicast)
10102                                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10103
10104                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10105                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10106                         tfd->u.data.key_index = 0;
10107                         tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10108                         break;
10109                 case SEC_LEVEL_2:
10110                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10111                             IEEE80211_FCTL_PROTECTED;
10112                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10113                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10114                         tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10115                         break;
10116                 case SEC_LEVEL_1:
10117                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10118                             IEEE80211_FCTL_PROTECTED;
10119                         tfd->u.data.key_index = priv->ieee->tx_keyidx;
10120                         if (priv->ieee->sec.key_sizes[priv->ieee->tx_keyidx] <=
10121                             40)
10122                                 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10123                         else
10124                                 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10125                         break;
10126                 case SEC_LEVEL_0:
10127                         break;
10128                 default:
10129                         printk(KERN_ERR "Unknow security level %d\n",
10130                                priv->ieee->sec.level);
10131                         break;
10132                 }
10133         } else
10134                 /* No hardware encryption */
10135                 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10136
10137 #ifdef CONFIG_IPW2200_QOS
10138         if (fc & IEEE80211_STYPE_QOS_DATA)
10139                 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10140 #endif                          /* CONFIG_IPW2200_QOS */
10141
10142         /* payload */
10143         tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10144                                                  txb->nr_frags));
10145         IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10146                        txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10147         for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10148                 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10149                                i, le32_to_cpu(tfd->u.data.num_chunks),
10150                                txb->fragments[i]->len - hdr_len);
10151                 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10152                              i, tfd->u.data.num_chunks,
10153                              txb->fragments[i]->len - hdr_len);
10154                 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10155                            txb->fragments[i]->len - hdr_len);
10156
10157                 tfd->u.data.chunk_ptr[i] =
10158                     cpu_to_le32(pci_map_single
10159                                 (priv->pci_dev,
10160                                  txb->fragments[i]->data + hdr_len,
10161                                  txb->fragments[i]->len - hdr_len,
10162                                  PCI_DMA_TODEVICE));
10163                 tfd->u.data.chunk_len[i] =
10164                     cpu_to_le16(txb->fragments[i]->len - hdr_len);
10165         }
10166
10167         if (i != txb->nr_frags) {
10168                 struct sk_buff *skb;
10169                 u16 remaining_bytes = 0;
10170                 int j;
10171
10172                 for (j = i; j < txb->nr_frags; j++)
10173                         remaining_bytes += txb->fragments[j]->len - hdr_len;
10174
10175                 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10176                        remaining_bytes);
10177                 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10178                 if (skb != NULL) {
10179                         tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10180                         for (j = i; j < txb->nr_frags; j++) {
10181                                 int size = txb->fragments[j]->len - hdr_len;
10182
10183                                 printk(KERN_INFO "Adding frag %d %d...\n",
10184                                        j, size);
10185                                 memcpy(skb_put(skb, size),
10186                                        txb->fragments[j]->data + hdr_len, size);
10187                         }
10188                         dev_kfree_skb_any(txb->fragments[i]);
10189                         txb->fragments[i] = skb;
10190                         tfd->u.data.chunk_ptr[i] =
10191                             cpu_to_le32(pci_map_single
10192                                         (priv->pci_dev, skb->data,
10193                                          tfd->u.data.chunk_len[i],
10194                                          PCI_DMA_TODEVICE));
10195
10196                         tfd->u.data.num_chunks =
10197                             cpu_to_le32(le32_to_cpu(tfd->u.data.num_chunks) +
10198                                         1);
10199                 }
10200         }
10201
10202         /* kick DMA */
10203         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10204         ipw_write32(priv, q->reg_w, q->first_empty);
10205
10206         if (ipw_queue_space(q) < q->high_mark)
10207                 netif_stop_queue(priv->net_dev);
10208
10209         return NETDEV_TX_OK;
10210
10211       drop:
10212         IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10213         ieee80211_txb_free(txb);
10214         return NETDEV_TX_OK;
10215 }
10216
10217 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10218 {
10219         struct ipw_priv *priv = ieee80211_priv(dev);
10220 #ifdef CONFIG_IPW2200_QOS
10221         int tx_id = ipw_get_tx_queue_number(priv, pri);
10222         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10223 #else
10224         struct clx2_tx_queue *txq = &priv->txq[0];
10225 #endif                          /* CONFIG_IPW2200_QOS */
10226
10227         if (ipw_queue_space(&txq->q) < txq->q.high_mark)
10228                 return 1;
10229
10230         return 0;
10231 }
10232
10233 #ifdef CONFIG_IPW2200_PROMISCUOUS
10234 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10235                                       struct ieee80211_txb *txb)
10236 {
10237         struct ieee80211_rx_stats dummystats;
10238         struct ieee80211_hdr *hdr;
10239         u8 n;
10240         u16 filter = priv->prom_priv->filter;
10241         int hdr_only = 0;
10242
10243         if (filter & IPW_PROM_NO_TX)
10244                 return;
10245
10246         memset(&dummystats, 0, sizeof(dummystats));
10247
10248         /* Filtering of fragment chains is done agains the first fragment */
10249         hdr = (void *)txb->fragments[0]->data;
10250         if (ieee80211_is_management(hdr->frame_ctl)) {
10251                 if (filter & IPW_PROM_NO_MGMT)
10252                         return;
10253                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10254                         hdr_only = 1;
10255         } else if (ieee80211_is_control(hdr->frame_ctl)) {
10256                 if (filter & IPW_PROM_NO_CTL)
10257                         return;
10258                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10259                         hdr_only = 1;
10260         } else if (ieee80211_is_data(hdr->frame_ctl)) {
10261                 if (filter & IPW_PROM_NO_DATA)
10262                         return;
10263                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10264                         hdr_only = 1;
10265         }
10266
10267         for(n=0; n<txb->nr_frags; ++n) {
10268                 struct sk_buff *src = txb->fragments[n];
10269                 struct sk_buff *dst;
10270                 struct ieee80211_radiotap_header *rt_hdr;
10271                 int len;
10272
10273                 if (hdr_only) {
10274                         hdr = (void *)src->data;
10275                         len = ieee80211_get_hdrlen(hdr->frame_ctl);
10276                 } else
10277                         len = src->len;
10278
10279                 dst = alloc_skb(
10280                         len + IEEE80211_RADIOTAP_HDRLEN, GFP_ATOMIC);
10281                 if (!dst) continue;
10282
10283                 rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));
10284
10285                 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10286                 rt_hdr->it_pad = 0;
10287                 rt_hdr->it_present = 0; /* after all, it's just an idea */
10288                 rt_hdr->it_present |=  (1 << IEEE80211_RADIOTAP_CHANNEL);
10289
10290                 *(u16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10291                         ieee80211chan2mhz(priv->channel));
10292                 if (priv->channel > 14)         /* 802.11a */
10293                         *(u16*)skb_put(dst, sizeof(u16)) =
10294                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10295                                              IEEE80211_CHAN_5GHZ);
10296                 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10297                         *(u16*)skb_put(dst, sizeof(u16)) =
10298                                 cpu_to_le16(IEEE80211_CHAN_CCK |
10299                                              IEEE80211_CHAN_2GHZ);
10300                 else            /* 802.11g */
10301                         *(u16*)skb_put(dst, sizeof(u16)) =
10302                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10303                                  IEEE80211_CHAN_2GHZ);
10304
10305                 rt_hdr->it_len = dst->len;
10306
10307                 memcpy(skb_put(dst, len), src->data, len);
10308
10309                 if (!ieee80211_rx(priv->prom_priv->ieee, dst, &dummystats))
10310                         dev_kfree_skb_any(dst);
10311         }
10312 }
10313 #endif
10314
10315 static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb,
10316                                    struct net_device *dev, int pri)
10317 {
10318         struct ipw_priv *priv = ieee80211_priv(dev);
10319         unsigned long flags;
10320         int ret;
10321
10322         IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10323         spin_lock_irqsave(&priv->lock, flags);
10324
10325         if (!(priv->status & STATUS_ASSOCIATED)) {
10326                 IPW_DEBUG_INFO("Tx attempt while not associated.\n");
10327                 priv->ieee->stats.tx_carrier_errors++;
10328                 netif_stop_queue(dev);
10329                 goto fail_unlock;
10330         }
10331
10332 #ifdef CONFIG_IPW2200_PROMISCUOUS
10333         if (rtap_iface && netif_running(priv->prom_net_dev))
10334                 ipw_handle_promiscuous_tx(priv, txb);
10335 #endif
10336
10337         ret = ipw_tx_skb(priv, txb, pri);
10338         if (ret == NETDEV_TX_OK)
10339                 __ipw_led_activity_on(priv);
10340         spin_unlock_irqrestore(&priv->lock, flags);
10341
10342         return ret;
10343
10344       fail_unlock:
10345         spin_unlock_irqrestore(&priv->lock, flags);
10346         return 1;
10347 }
10348
10349 static struct net_device_stats *ipw_net_get_stats(struct net_device *dev)
10350 {
10351         struct ipw_priv *priv = ieee80211_priv(dev);
10352
10353         priv->ieee->stats.tx_packets = priv->tx_packets;
10354         priv->ieee->stats.rx_packets = priv->rx_packets;
10355         return &priv->ieee->stats;
10356 }
10357
10358 static void ipw_net_set_multicast_list(struct net_device *dev)
10359 {
10360
10361 }
10362
10363 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10364 {
10365         struct ipw_priv *priv = ieee80211_priv(dev);
10366         struct sockaddr *addr = p;
10367         if (!is_valid_ether_addr(addr->sa_data))
10368                 return -EADDRNOTAVAIL;
10369         mutex_lock(&priv->mutex);
10370         priv->config |= CFG_CUSTOM_MAC;
10371         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10372         printk(KERN_INFO "%s: Setting MAC to " MAC_FMT "\n",
10373                priv->net_dev->name, MAC_ARG(priv->mac_addr));
10374         queue_work(priv->workqueue, &priv->adapter_restart);
10375         mutex_unlock(&priv->mutex);
10376         return 0;
10377 }
10378
10379 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10380                                     struct ethtool_drvinfo *info)
10381 {
10382         struct ipw_priv *p = ieee80211_priv(dev);
10383         char vers[64];
10384         char date[32];
10385         u32 len;
10386
10387         strcpy(info->driver, DRV_NAME);
10388         strcpy(info->version, DRV_VERSION);
10389
10390         len = sizeof(vers);
10391         ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10392         len = sizeof(date);
10393         ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10394
10395         snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10396                  vers, date);
10397         strcpy(info->bus_info, pci_name(p->pci_dev));
10398         info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
10399 }
10400
10401 static u32 ipw_ethtool_get_link(struct net_device *dev)
10402 {
10403         struct ipw_priv *priv = ieee80211_priv(dev);
10404         return (priv->status & STATUS_ASSOCIATED) != 0;
10405 }
10406
10407 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10408 {
10409         return IPW_EEPROM_IMAGE_SIZE;
10410 }
10411
10412 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10413                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10414 {
10415         struct ipw_priv *p = ieee80211_priv(dev);
10416
10417         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10418                 return -EINVAL;
10419         mutex_lock(&p->mutex);
10420         memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10421         mutex_unlock(&p->mutex);
10422         return 0;
10423 }
10424
10425 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10426                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10427 {
10428         struct ipw_priv *p = ieee80211_priv(dev);
10429         int i;
10430
10431         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10432                 return -EINVAL;
10433         mutex_lock(&p->mutex);
10434         memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10435         for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10436                 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10437         mutex_unlock(&p->mutex);
10438         return 0;
10439 }
10440
10441 static struct ethtool_ops ipw_ethtool_ops = {
10442         .get_link = ipw_ethtool_get_link,
10443         .get_drvinfo = ipw_ethtool_get_drvinfo,
10444         .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10445         .get_eeprom = ipw_ethtool_get_eeprom,
10446         .set_eeprom = ipw_ethtool_set_eeprom,
10447 };
10448
10449 static irqreturn_t ipw_isr(int irq, void *data, struct pt_regs *regs)
10450 {
10451         struct ipw_priv *priv = data;
10452         u32 inta, inta_mask;
10453
10454         if (!priv)
10455                 return IRQ_NONE;
10456
10457         spin_lock(&priv->irq_lock);
10458
10459         if (!(priv->status & STATUS_INT_ENABLED)) {
10460                 /* Shared IRQ */
10461                 goto none;
10462         }
10463
10464         inta = ipw_read32(priv, IPW_INTA_RW);
10465         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10466
10467         if (inta == 0xFFFFFFFF) {
10468                 /* Hardware disappeared */
10469                 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10470                 goto none;
10471         }
10472
10473         if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10474                 /* Shared interrupt */
10475                 goto none;
10476         }
10477
10478         /* tell the device to stop sending interrupts */
10479         __ipw_disable_interrupts(priv);
10480
10481         /* ack current interrupts */
10482         inta &= (IPW_INTA_MASK_ALL & inta_mask);
10483         ipw_write32(priv, IPW_INTA_RW, inta);
10484
10485         /* Cache INTA value for our tasklet */
10486         priv->isr_inta = inta;
10487
10488         tasklet_schedule(&priv->irq_tasklet);
10489
10490         spin_unlock(&priv->irq_lock);
10491
10492         return IRQ_HANDLED;
10493       none:
10494         spin_unlock(&priv->irq_lock);
10495         return IRQ_NONE;
10496 }
10497
10498 static void ipw_rf_kill(void *adapter)
10499 {
10500         struct ipw_priv *priv = adapter;
10501         unsigned long flags;
10502
10503         spin_lock_irqsave(&priv->lock, flags);
10504
10505         if (rf_kill_active(priv)) {
10506                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10507                 if (priv->workqueue)
10508                         queue_delayed_work(priv->workqueue,
10509                                            &priv->rf_kill, 2 * HZ);
10510                 goto exit_unlock;
10511         }
10512
10513         /* RF Kill is now disabled, so bring the device back up */
10514
10515         if (!(priv->status & STATUS_RF_KILL_MASK)) {
10516                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10517                                   "device\n");
10518
10519                 /* we can not do an adapter restart while inside an irq lock */
10520                 queue_work(priv->workqueue, &priv->adapter_restart);
10521         } else
10522                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
10523                                   "enabled\n");
10524
10525       exit_unlock:
10526         spin_unlock_irqrestore(&priv->lock, flags);
10527 }
10528
10529 static void ipw_bg_rf_kill(void *data)
10530 {
10531         struct ipw_priv *priv = data;
10532         mutex_lock(&priv->mutex);
10533         ipw_rf_kill(data);
10534         mutex_unlock(&priv->mutex);
10535 }
10536
10537 static void ipw_link_up(struct ipw_priv *priv)
10538 {
10539         priv->last_seq_num = -1;
10540         priv->last_frag_num = -1;
10541         priv->last_packet_time = 0;
10542
10543         netif_carrier_on(priv->net_dev);
10544         if (netif_queue_stopped(priv->net_dev)) {
10545                 IPW_DEBUG_NOTIF("waking queue\n");
10546                 netif_wake_queue(priv->net_dev);
10547         } else {
10548                 IPW_DEBUG_NOTIF("starting queue\n");
10549                 netif_start_queue(priv->net_dev);
10550         }
10551
10552         cancel_delayed_work(&priv->request_scan);
10553         ipw_reset_stats(priv);
10554         /* Ensure the rate is updated immediately */
10555         priv->last_rate = ipw_get_current_rate(priv);
10556         ipw_gather_stats(priv);
10557         ipw_led_link_up(priv);
10558         notify_wx_assoc_event(priv);
10559
10560         if (priv->config & CFG_BACKGROUND_SCAN)
10561                 queue_delayed_work(priv->workqueue, &priv->request_scan, HZ);
10562 }
10563
10564 static void ipw_bg_link_up(void *data)
10565 {
10566         struct ipw_priv *priv = data;
10567         mutex_lock(&priv->mutex);
10568         ipw_link_up(data);
10569         mutex_unlock(&priv->mutex);
10570 }
10571
10572 static void ipw_link_down(struct ipw_priv *priv)
10573 {
10574         ipw_led_link_down(priv);
10575         netif_carrier_off(priv->net_dev);
10576         netif_stop_queue(priv->net_dev);
10577         notify_wx_assoc_event(priv);
10578
10579         /* Cancel any queued work ... */
10580         cancel_delayed_work(&priv->request_scan);
10581         cancel_delayed_work(&priv->adhoc_check);
10582         cancel_delayed_work(&priv->gather_stats);
10583
10584         ipw_reset_stats(priv);
10585
10586         if (!(priv->status & STATUS_EXIT_PENDING)) {
10587                 /* Queue up another scan... */
10588                 queue_work(priv->workqueue, &priv->request_scan);
10589         }
10590 }
10591
10592 static void ipw_bg_link_down(void *data)
10593 {
10594         struct ipw_priv *priv = data;
10595         mutex_lock(&priv->mutex);
10596         ipw_link_down(data);
10597         mutex_unlock(&priv->mutex);
10598 }
10599
10600 static int ipw_setup_deferred_work(struct ipw_priv *priv)
10601 {
10602         int ret = 0;
10603
10604         priv->workqueue = create_workqueue(DRV_NAME);
10605         init_waitqueue_head(&priv->wait_command_queue);
10606         init_waitqueue_head(&priv->wait_state);
10607
10608         INIT_WORK(&priv->adhoc_check, ipw_bg_adhoc_check, priv);
10609         INIT_WORK(&priv->associate, ipw_bg_associate, priv);
10610         INIT_WORK(&priv->disassociate, ipw_bg_disassociate, priv);
10611         INIT_WORK(&priv->system_config, ipw_system_config, priv);
10612         INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish, priv);
10613         INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart, priv);
10614         INIT_WORK(&priv->rf_kill, ipw_bg_rf_kill, priv);
10615         INIT_WORK(&priv->up, (void (*)(void *))ipw_bg_up, priv);
10616         INIT_WORK(&priv->down, (void (*)(void *))ipw_bg_down, priv);
10617         INIT_WORK(&priv->request_scan,
10618                   (void (*)(void *))ipw_request_scan, priv);
10619         INIT_WORK(&priv->gather_stats,
10620                   (void (*)(void *))ipw_bg_gather_stats, priv);
10621         INIT_WORK(&priv->abort_scan, (void (*)(void *))ipw_bg_abort_scan, priv);
10622         INIT_WORK(&priv->roam, ipw_bg_roam, priv);
10623         INIT_WORK(&priv->scan_check, ipw_bg_scan_check, priv);
10624         INIT_WORK(&priv->link_up, (void (*)(void *))ipw_bg_link_up, priv);
10625         INIT_WORK(&priv->link_down, (void (*)(void *))ipw_bg_link_down, priv);
10626         INIT_WORK(&priv->led_link_on, (void (*)(void *))ipw_bg_led_link_on,
10627                   priv);
10628         INIT_WORK(&priv->led_link_off, (void (*)(void *))ipw_bg_led_link_off,
10629                   priv);
10630         INIT_WORK(&priv->led_act_off, (void (*)(void *))ipw_bg_led_activity_off,
10631                   priv);
10632         INIT_WORK(&priv->merge_networks,
10633                   (void (*)(void *))ipw_merge_adhoc_network, priv);
10634
10635 #ifdef CONFIG_IPW2200_QOS
10636         INIT_WORK(&priv->qos_activate, (void (*)(void *))ipw_bg_qos_activate,
10637                   priv);
10638 #endif                          /* CONFIG_IPW2200_QOS */
10639
10640         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10641                      ipw_irq_tasklet, (unsigned long)priv);
10642
10643         return ret;
10644 }
10645
10646 static void shim__set_security(struct net_device *dev,
10647                                struct ieee80211_security *sec)
10648 {
10649         struct ipw_priv *priv = ieee80211_priv(dev);
10650         int i;
10651         for (i = 0; i < 4; i++) {
10652                 if (sec->flags & (1 << i)) {
10653                         priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10654                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10655                         if (sec->key_sizes[i] == 0)
10656                                 priv->ieee->sec.flags &= ~(1 << i);
10657                         else {
10658                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10659                                        sec->key_sizes[i]);
10660                                 priv->ieee->sec.flags |= (1 << i);
10661                         }
10662                         priv->status |= STATUS_SECURITY_UPDATED;
10663                 } else if (sec->level != SEC_LEVEL_1)
10664                         priv->ieee->sec.flags &= ~(1 << i);
10665         }
10666
10667         if (sec->flags & SEC_ACTIVE_KEY) {
10668                 if (sec->active_key <= 3) {
10669                         priv->ieee->sec.active_key = sec->active_key;
10670                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10671                 } else
10672                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10673                 priv->status |= STATUS_SECURITY_UPDATED;
10674         } else
10675                 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10676
10677         if ((sec->flags & SEC_AUTH_MODE) &&
10678             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10679                 priv->ieee->sec.auth_mode = sec->auth_mode;
10680                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10681                 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10682                         priv->capability |= CAP_SHARED_KEY;
10683                 else
10684                         priv->capability &= ~CAP_SHARED_KEY;
10685                 priv->status |= STATUS_SECURITY_UPDATED;
10686         }
10687
10688         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10689                 priv->ieee->sec.flags |= SEC_ENABLED;
10690                 priv->ieee->sec.enabled = sec->enabled;
10691                 priv->status |= STATUS_SECURITY_UPDATED;
10692                 if (sec->enabled)
10693                         priv->capability |= CAP_PRIVACY_ON;
10694                 else
10695                         priv->capability &= ~CAP_PRIVACY_ON;
10696         }
10697
10698         if (sec->flags & SEC_ENCRYPT)
10699                 priv->ieee->sec.encrypt = sec->encrypt;
10700
10701         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10702                 priv->ieee->sec.level = sec->level;
10703                 priv->ieee->sec.flags |= SEC_LEVEL;
10704                 priv->status |= STATUS_SECURITY_UPDATED;
10705         }
10706
10707         if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10708                 ipw_set_hwcrypto_keys(priv);
10709
10710         /* To match current functionality of ipw2100 (which works well w/
10711          * various supplicants, we don't force a disassociate if the
10712          * privacy capability changes ... */
10713 #if 0
10714         if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10715             (((priv->assoc_request.capability &
10716                WLAN_CAPABILITY_PRIVACY) && !sec->enabled) ||
10717              (!(priv->assoc_request.capability &
10718                 WLAN_CAPABILITY_PRIVACY) && sec->enabled))) {
10719                 IPW_DEBUG_ASSOC("Disassociating due to capability "
10720                                 "change.\n");
10721                 ipw_disassociate(priv);
10722         }
10723 #endif
10724 }
10725
10726 static int init_supported_rates(struct ipw_priv *priv,
10727                                 struct ipw_supported_rates *rates)
10728 {
10729         /* TODO: Mask out rates based on priv->rates_mask */
10730
10731         memset(rates, 0, sizeof(*rates));
10732         /* configure supported rates */
10733         switch (priv->ieee->freq_band) {
10734         case IEEE80211_52GHZ_BAND:
10735                 rates->ieee_mode = IPW_A_MODE;
10736                 rates->purpose = IPW_RATE_CAPABILITIES;
10737                 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10738                                         IEEE80211_OFDM_DEFAULT_RATES_MASK);
10739                 break;
10740
10741         default:                /* Mixed or 2.4Ghz */
10742                 rates->ieee_mode = IPW_G_MODE;
10743                 rates->purpose = IPW_RATE_CAPABILITIES;
10744                 ipw_add_cck_scan_rates(rates, IEEE80211_CCK_MODULATION,
10745                                        IEEE80211_CCK_DEFAULT_RATES_MASK);
10746                 if (priv->ieee->modulation & IEEE80211_OFDM_MODULATION) {
10747                         ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10748                                                 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10749                 }
10750                 break;
10751         }
10752
10753         return 0;
10754 }
10755
10756 static int ipw_config(struct ipw_priv *priv)
10757 {
10758         /* This is only called from ipw_up, which resets/reloads the firmware
10759            so, we don't need to first disable the card before we configure
10760            it */
10761         if (ipw_set_tx_power(priv))
10762                 goto error;
10763
10764         /* initialize adapter address */
10765         if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10766                 goto error;
10767
10768         /* set basic system config settings */
10769         init_sys_config(&priv->sys_config);
10770
10771         /* Support Bluetooth if we have BT h/w on board, and user wants to.
10772          * Does not support BT priority yet (don't abort or defer our Tx) */
10773         if (bt_coexist) {
10774                 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10775
10776                 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10777                         priv->sys_config.bt_coexistence
10778                             |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10779                 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10780                         priv->sys_config.bt_coexistence
10781                             |= CFG_BT_COEXISTENCE_OOB;
10782         }
10783
10784 #ifdef CONFIG_IPW2200_PROMISCUOUS
10785         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10786                 priv->sys_config.accept_all_data_frames = 1;
10787                 priv->sys_config.accept_non_directed_frames = 1;
10788                 priv->sys_config.accept_all_mgmt_bcpr = 1;
10789                 priv->sys_config.accept_all_mgmt_frames = 1;
10790         }
10791 #endif
10792
10793         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10794                 priv->sys_config.answer_broadcast_ssid_probe = 1;
10795         else
10796                 priv->sys_config.answer_broadcast_ssid_probe = 0;
10797
10798         if (ipw_send_system_config(priv))
10799                 goto error;
10800
10801         init_supported_rates(priv, &priv->rates);
10802         if (ipw_send_supported_rates(priv, &priv->rates))
10803                 goto error;
10804
10805         /* Set request-to-send threshold */
10806         if (priv->rts_threshold) {
10807                 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10808                         goto error;
10809         }
10810 #ifdef CONFIG_IPW2200_QOS
10811         IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10812         ipw_qos_activate(priv, NULL);
10813 #endif                          /* CONFIG_IPW2200_QOS */
10814
10815         if (ipw_set_random_seed(priv))
10816                 goto error;
10817
10818         /* final state transition to the RUN state */
10819         if (ipw_send_host_complete(priv))
10820                 goto error;
10821
10822         priv->status |= STATUS_INIT;
10823
10824         ipw_led_init(priv);
10825         ipw_led_radio_on(priv);
10826         priv->notif_missed_beacons = 0;
10827
10828         /* Set hardware WEP key if it is configured. */
10829         if ((priv->capability & CAP_PRIVACY_ON) &&
10830             (priv->ieee->sec.level == SEC_LEVEL_1) &&
10831             !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10832                 ipw_set_hwcrypto_keys(priv);
10833
10834         return 0;
10835
10836       error:
10837         return -EIO;
10838 }
10839
10840 /*
10841  * NOTE:
10842  *
10843  * These tables have been tested in conjunction with the
10844  * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10845  *
10846  * Altering this values, using it on other hardware, or in geographies
10847  * not intended for resale of the above mentioned Intel adapters has
10848  * not been tested.
10849  *
10850  * Remember to update the table in README.ipw2200 when changing this
10851  * table.
10852  *
10853  */
10854 static const struct ieee80211_geo ipw_geos[] = {
10855         {                       /* Restricted */
10856          "---",
10857          .bg_channels = 11,
10858          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10859                 {2427, 4}, {2432, 5}, {2437, 6},
10860                 {2442, 7}, {2447, 8}, {2452, 9},
10861                 {2457, 10}, {2462, 11}},
10862          },
10863
10864         {                       /* Custom US/Canada */
10865          "ZZF",
10866          .bg_channels = 11,
10867          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10868                 {2427, 4}, {2432, 5}, {2437, 6},
10869                 {2442, 7}, {2447, 8}, {2452, 9},
10870                 {2457, 10}, {2462, 11}},
10871          .a_channels = 8,
10872          .a = {{5180, 36},
10873                {5200, 40},
10874                {5220, 44},
10875                {5240, 48},
10876                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10877                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10878                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10879                {5320, 64, IEEE80211_CH_PASSIVE_ONLY}},
10880          },
10881
10882         {                       /* Rest of World */
10883          "ZZD",
10884          .bg_channels = 13,
10885          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10886                 {2427, 4}, {2432, 5}, {2437, 6},
10887                 {2442, 7}, {2447, 8}, {2452, 9},
10888                 {2457, 10}, {2462, 11}, {2467, 12},
10889                 {2472, 13}},
10890          },
10891
10892         {                       /* Custom USA & Europe & High */
10893          "ZZA",
10894          .bg_channels = 11,
10895          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10896                 {2427, 4}, {2432, 5}, {2437, 6},
10897                 {2442, 7}, {2447, 8}, {2452, 9},
10898                 {2457, 10}, {2462, 11}},
10899          .a_channels = 13,
10900          .a = {{5180, 36},
10901                {5200, 40},
10902                {5220, 44},
10903                {5240, 48},
10904                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10905                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10906                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10907                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10908                {5745, 149},
10909                {5765, 153},
10910                {5785, 157},
10911                {5805, 161},
10912                {5825, 165}},
10913          },
10914
10915         {                       /* Custom NA & Europe */
10916          "ZZB",
10917          .bg_channels = 11,
10918          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10919                 {2427, 4}, {2432, 5}, {2437, 6},
10920                 {2442, 7}, {2447, 8}, {2452, 9},
10921                 {2457, 10}, {2462, 11}},
10922          .a_channels = 13,
10923          .a = {{5180, 36},
10924                {5200, 40},
10925                {5220, 44},
10926                {5240, 48},
10927                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10928                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10929                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10930                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10931                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
10932                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
10933                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
10934                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
10935                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
10936          },
10937
10938         {                       /* Custom Japan */
10939          "ZZC",
10940          .bg_channels = 11,
10941          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10942                 {2427, 4}, {2432, 5}, {2437, 6},
10943                 {2442, 7}, {2447, 8}, {2452, 9},
10944                 {2457, 10}, {2462, 11}},
10945          .a_channels = 4,
10946          .a = {{5170, 34}, {5190, 38},
10947                {5210, 42}, {5230, 46}},
10948          },
10949
10950         {                       /* Custom */
10951          "ZZM",
10952          .bg_channels = 11,
10953          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10954                 {2427, 4}, {2432, 5}, {2437, 6},
10955                 {2442, 7}, {2447, 8}, {2452, 9},
10956                 {2457, 10}, {2462, 11}},
10957          },
10958
10959         {                       /* Europe */
10960          "ZZE",
10961          .bg_channels = 13,
10962          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10963                 {2427, 4}, {2432, 5}, {2437, 6},
10964                 {2442, 7}, {2447, 8}, {2452, 9},
10965                 {2457, 10}, {2462, 11}, {2467, 12},
10966                 {2472, 13}},
10967          .a_channels = 19,
10968          .a = {{5180, 36},
10969                {5200, 40},
10970                {5220, 44},
10971                {5240, 48},
10972                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10973                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10974                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10975                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10976                {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
10977                {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
10978                {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
10979                {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
10980                {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
10981                {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
10982                {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
10983                {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
10984                {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
10985                {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
10986                {5700, 140, IEEE80211_CH_PASSIVE_ONLY}},
10987          },
10988
10989         {                       /* Custom Japan */
10990          "ZZJ",
10991          .bg_channels = 14,
10992          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10993                 {2427, 4}, {2432, 5}, {2437, 6},
10994                 {2442, 7}, {2447, 8}, {2452, 9},
10995                 {2457, 10}, {2462, 11}, {2467, 12},
10996                 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY}},
10997          .a_channels = 4,
10998          .a = {{5170, 34}, {5190, 38},
10999                {5210, 42}, {5230, 46}},
11000          },
11001
11002         {                       /* Rest of World */
11003          "ZZR",
11004          .bg_channels = 14,
11005          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11006                 {2427, 4}, {2432, 5}, {2437, 6},
11007                 {2442, 7}, {2447, 8}, {2452, 9},
11008                 {2457, 10}, {2462, 11}, {2467, 12},
11009                 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY |
11010                              IEEE80211_CH_PASSIVE_ONLY}},
11011          },
11012
11013         {                       /* High Band */
11014          "ZZH",
11015          .bg_channels = 13,
11016          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11017                 {2427, 4}, {2432, 5}, {2437, 6},
11018                 {2442, 7}, {2447, 8}, {2452, 9},
11019                 {2457, 10}, {2462, 11},
11020                 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11021                 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11022          .a_channels = 4,
11023          .a = {{5745, 149}, {5765, 153},
11024                {5785, 157}, {5805, 161}},
11025          },
11026
11027         {                       /* Custom Europe */
11028          "ZZG",
11029          .bg_channels = 13,
11030          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11031                 {2427, 4}, {2432, 5}, {2437, 6},
11032                 {2442, 7}, {2447, 8}, {2452, 9},
11033                 {2457, 10}, {2462, 11},
11034                 {2467, 12}, {2472, 13}},
11035          .a_channels = 4,
11036          .a = {{5180, 36}, {5200, 40},
11037                {5220, 44}, {5240, 48}},
11038          },
11039
11040         {                       /* Europe */
11041          "ZZK",
11042          .bg_channels = 13,
11043          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11044                 {2427, 4}, {2432, 5}, {2437, 6},
11045                 {2442, 7}, {2447, 8}, {2452, 9},
11046                 {2457, 10}, {2462, 11},
11047                 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11048                 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11049          .a_channels = 24,
11050          .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11051                {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11052                {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11053                {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11054                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11055                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11056                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11057                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11058                {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11059                {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11060                {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11061                {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11062                {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11063                {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11064                {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11065                {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11066                {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11067                {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11068                {5700, 140, IEEE80211_CH_PASSIVE_ONLY},
11069                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11070                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11071                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11072                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11073                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11074          },
11075
11076         {                       /* Europe */
11077          "ZZL",
11078          .bg_channels = 11,
11079          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11080                 {2427, 4}, {2432, 5}, {2437, 6},
11081                 {2442, 7}, {2447, 8}, {2452, 9},
11082                 {2457, 10}, {2462, 11}},
11083          .a_channels = 13,
11084          .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11085                {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11086                {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11087                {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11088                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11089                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11090                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11091                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11092                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11093                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11094                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11095                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11096                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11097          }
11098 };
11099
11100 #define MAX_HW_RESTARTS 5
11101 static int ipw_up(struct ipw_priv *priv)
11102 {
11103         int rc, i, j;
11104
11105         if (priv->status & STATUS_EXIT_PENDING)
11106                 return -EIO;
11107
11108         if (cmdlog && !priv->cmdlog) {
11109                 priv->cmdlog = kmalloc(sizeof(*priv->cmdlog) * cmdlog,
11110                                        GFP_KERNEL);
11111                 if (priv->cmdlog == NULL) {
11112                         IPW_ERROR("Error allocating %d command log entries.\n",
11113                                   cmdlog);
11114                         return -ENOMEM;
11115                 } else {
11116                         memset(priv->cmdlog, 0, sizeof(*priv->cmdlog) * cmdlog);
11117                         priv->cmdlog_len = cmdlog;
11118                 }
11119         }
11120
11121         for (i = 0; i < MAX_HW_RESTARTS; i++) {
11122                 /* Load the microcode, firmware, and eeprom.
11123                  * Also start the clocks. */
11124                 rc = ipw_load(priv);
11125                 if (rc) {
11126                         IPW_ERROR("Unable to load firmware: %d\n", rc);
11127                         return rc;
11128                 }
11129
11130                 ipw_init_ordinals(priv);
11131                 if (!(priv->config & CFG_CUSTOM_MAC))
11132                         eeprom_parse_mac(priv, priv->mac_addr);
11133                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11134
11135                 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11136                         if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11137                                     ipw_geos[j].name, 3))
11138                                 break;
11139                 }
11140                 if (j == ARRAY_SIZE(ipw_geos)) {
11141                         IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11142                                     priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11143                                     priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11144                                     priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11145                         j = 0;
11146                 }
11147                 if (ieee80211_set_geo(priv->ieee, &ipw_geos[j])) {
11148                         IPW_WARNING("Could not set geography.");
11149                         return 0;
11150                 }
11151
11152                 if (priv->status & STATUS_RF_KILL_SW) {
11153                         IPW_WARNING("Radio disabled by module parameter.\n");
11154                         return 0;
11155                 } else if (rf_kill_active(priv)) {
11156                         IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11157                                     "Kill switch must be turned off for "
11158                                     "wireless networking to work.\n");
11159                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
11160                                            2 * HZ);
11161                         return 0;
11162                 }
11163
11164                 rc = ipw_config(priv);
11165                 if (!rc) {
11166                         IPW_DEBUG_INFO("Configured device on count %i\n", i);
11167
11168                         /* If configure to try and auto-associate, kick
11169                          * off a scan. */
11170                         queue_work(priv->workqueue, &priv->request_scan);
11171
11172                         return 0;
11173                 }
11174
11175                 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11176                 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11177                                i, MAX_HW_RESTARTS);
11178
11179                 /* We had an error bringing up the hardware, so take it
11180                  * all the way back down so we can try again */
11181                 ipw_down(priv);
11182         }
11183
11184         /* tried to restart and config the device for as long as our
11185          * patience could withstand */
11186         IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11187
11188         return -EIO;
11189 }
11190
11191 static void ipw_bg_up(void *data)
11192 {
11193         struct ipw_priv *priv = data;
11194         mutex_lock(&priv->mutex);
11195         ipw_up(data);
11196         mutex_unlock(&priv->mutex);
11197 }
11198
11199 static void ipw_deinit(struct ipw_priv *priv)
11200 {
11201         int i;
11202
11203         if (priv->status & STATUS_SCANNING) {
11204                 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11205                 ipw_abort_scan(priv);
11206         }
11207
11208         if (priv->status & STATUS_ASSOCIATED) {
11209                 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11210                 ipw_disassociate(priv);
11211         }
11212
11213         ipw_led_shutdown(priv);
11214
11215         /* Wait up to 1s for status to change to not scanning and not
11216          * associated (disassociation can take a while for a ful 802.11
11217          * exchange */
11218         for (i = 1000; i && (priv->status &
11219                              (STATUS_DISASSOCIATING |
11220                               STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11221                 udelay(10);
11222
11223         if (priv->status & (STATUS_DISASSOCIATING |
11224                             STATUS_ASSOCIATED | STATUS_SCANNING))
11225                 IPW_DEBUG_INFO("Still associated or scanning...\n");
11226         else
11227                 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11228
11229         /* Attempt to disable the card */
11230         ipw_send_card_disable(priv, 0);
11231
11232         priv->status &= ~STATUS_INIT;
11233 }
11234
11235 static void ipw_down(struct ipw_priv *priv)
11236 {
11237         int exit_pending = priv->status & STATUS_EXIT_PENDING;
11238
11239         priv->status |= STATUS_EXIT_PENDING;
11240
11241         if (ipw_is_init(priv))
11242                 ipw_deinit(priv);
11243
11244         /* Wipe out the EXIT_PENDING status bit if we are not actually
11245          * exiting the module */
11246         if (!exit_pending)
11247                 priv->status &= ~STATUS_EXIT_PENDING;
11248
11249         /* tell the device to stop sending interrupts */
11250         ipw_disable_interrupts(priv);
11251
11252         /* Clear all bits but the RF Kill */
11253         priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11254         netif_carrier_off(priv->net_dev);
11255         netif_stop_queue(priv->net_dev);
11256
11257         ipw_stop_nic(priv);
11258
11259         ipw_led_radio_off(priv);
11260 }
11261
11262 static void ipw_bg_down(void *data)
11263 {
11264         struct ipw_priv *priv = data;
11265         mutex_lock(&priv->mutex);
11266         ipw_down(data);
11267         mutex_unlock(&priv->mutex);
11268 }
11269
11270 /* Called by register_netdev() */
11271 static int ipw_net_init(struct net_device *dev)
11272 {
11273         struct ipw_priv *priv = ieee80211_priv(dev);
11274         mutex_lock(&priv->mutex);
11275
11276         if (ipw_up(priv)) {
11277                 mutex_unlock(&priv->mutex);
11278                 return -EIO;
11279         }
11280
11281         mutex_unlock(&priv->mutex);
11282         return 0;
11283 }
11284
11285 /* PCI driver stuff */
11286 static struct pci_device_id card_ids[] = {
11287         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11288         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11289         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11290         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11291         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11292         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11293         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11294         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11295         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11296         {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11297         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11298         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11299         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11300         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11301         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11302         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11303         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11304         {PCI_VENDOR_ID_INTEL, 0x104f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11305         {PCI_VENDOR_ID_INTEL, 0x4220, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11306         {PCI_VENDOR_ID_INTEL, 0x4221, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11307         {PCI_VENDOR_ID_INTEL, 0x4223, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11308         {PCI_VENDOR_ID_INTEL, 0x4224, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11309
11310         /* required last entry */
11311         {0,}
11312 };
11313
11314 MODULE_DEVICE_TABLE(pci, card_ids);
11315
11316 static struct attribute *ipw_sysfs_entries[] = {
11317         &dev_attr_rf_kill.attr,
11318         &dev_attr_direct_dword.attr,
11319         &dev_attr_indirect_byte.attr,
11320         &dev_attr_indirect_dword.attr,
11321         &dev_attr_mem_gpio_reg.attr,
11322         &dev_attr_command_event_reg.attr,
11323         &dev_attr_nic_type.attr,
11324         &dev_attr_status.attr,
11325         &dev_attr_cfg.attr,
11326         &dev_attr_error.attr,
11327         &dev_attr_event_log.attr,
11328         &dev_attr_cmd_log.attr,
11329         &dev_attr_eeprom_delay.attr,
11330         &dev_attr_ucode_version.attr,
11331         &dev_attr_rtc.attr,
11332         &dev_attr_scan_age.attr,
11333         &dev_attr_led.attr,
11334         &dev_attr_speed_scan.attr,
11335         &dev_attr_net_stats.attr,
11336 #ifdef CONFIG_IPW2200_PROMISCUOUS
11337         &dev_attr_rtap_iface.attr,
11338         &dev_attr_rtap_filter.attr,
11339 #endif
11340         NULL
11341 };
11342
11343 static struct attribute_group ipw_attribute_group = {
11344         .name = NULL,           /* put in device directory */
11345         .attrs = ipw_sysfs_entries,
11346 };
11347
11348 #ifdef CONFIG_IPW2200_PROMISCUOUS
11349 static int ipw_prom_open(struct net_device *dev)
11350 {
11351         struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11352         struct ipw_priv *priv = prom_priv->priv;
11353
11354         IPW_DEBUG_INFO("prom dev->open\n");
11355         netif_carrier_off(dev);
11356         netif_stop_queue(dev);
11357
11358         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11359                 priv->sys_config.accept_all_data_frames = 1;
11360                 priv->sys_config.accept_non_directed_frames = 1;
11361                 priv->sys_config.accept_all_mgmt_bcpr = 1;
11362                 priv->sys_config.accept_all_mgmt_frames = 1;
11363
11364                 ipw_send_system_config(priv);
11365         }
11366
11367         return 0;
11368 }
11369
11370 static int ipw_prom_stop(struct net_device *dev)
11371 {
11372         struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11373         struct ipw_priv *priv = prom_priv->priv;
11374
11375         IPW_DEBUG_INFO("prom dev->stop\n");
11376
11377         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11378                 priv->sys_config.accept_all_data_frames = 0;
11379                 priv->sys_config.accept_non_directed_frames = 0;
11380                 priv->sys_config.accept_all_mgmt_bcpr = 0;
11381                 priv->sys_config.accept_all_mgmt_frames = 0;
11382
11383                 ipw_send_system_config(priv);
11384         }
11385
11386         return 0;
11387 }
11388
11389 static int ipw_prom_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
11390 {
11391         IPW_DEBUG_INFO("prom dev->xmit\n");
11392         netif_stop_queue(dev);
11393         return -EOPNOTSUPP;
11394 }
11395
11396 static struct net_device_stats *ipw_prom_get_stats(struct net_device *dev)
11397 {
11398         struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11399         return &prom_priv->ieee->stats;
11400 }
11401
11402 static int ipw_prom_alloc(struct ipw_priv *priv)
11403 {
11404         int rc = 0;
11405
11406         if (priv->prom_net_dev)
11407                 return -EPERM;
11408
11409         priv->prom_net_dev = alloc_ieee80211(sizeof(struct ipw_prom_priv));
11410         if (priv->prom_net_dev == NULL)
11411                 return -ENOMEM;
11412
11413         priv->prom_priv = ieee80211_priv(priv->prom_net_dev);
11414         priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11415         priv->prom_priv->priv = priv;
11416
11417         strcpy(priv->prom_net_dev->name, "rtap%d");
11418
11419         priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11420         priv->prom_net_dev->open = ipw_prom_open;
11421         priv->prom_net_dev->stop = ipw_prom_stop;
11422         priv->prom_net_dev->get_stats = ipw_prom_get_stats;
11423         priv->prom_net_dev->hard_start_xmit = ipw_prom_hard_start_xmit;
11424
11425         priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11426
11427         rc = register_netdev(priv->prom_net_dev);
11428         if (rc) {
11429                 free_ieee80211(priv->prom_net_dev);
11430                 priv->prom_net_dev = NULL;
11431                 return rc;
11432         }
11433
11434         return 0;
11435 }
11436
11437 static void ipw_prom_free(struct ipw_priv *priv)
11438 {
11439         if (!priv->prom_net_dev)
11440                 return;
11441
11442         unregister_netdev(priv->prom_net_dev);
11443         free_ieee80211(priv->prom_net_dev);
11444
11445         priv->prom_net_dev = NULL;
11446 }
11447
11448 #endif
11449
11450
11451 static int ipw_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
11452 {
11453         int err = 0;
11454         struct net_device *net_dev;
11455         void __iomem *base;
11456         u32 length, val;
11457         struct ipw_priv *priv;
11458         int i;
11459
11460         net_dev = alloc_ieee80211(sizeof(struct ipw_priv));
11461         if (net_dev == NULL) {
11462                 err = -ENOMEM;
11463                 goto out;
11464         }
11465
11466         priv = ieee80211_priv(net_dev);
11467         priv->ieee = netdev_priv(net_dev);
11468
11469         priv->net_dev = net_dev;
11470         priv->pci_dev = pdev;
11471         ipw_debug_level = debug;
11472         spin_lock_init(&priv->irq_lock);
11473         spin_lock_init(&priv->lock);
11474         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11475                 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11476
11477         mutex_init(&priv->mutex);
11478         if (pci_enable_device(pdev)) {
11479                 err = -ENODEV;
11480                 goto out_free_ieee80211;
11481         }
11482
11483         pci_set_master(pdev);
11484
11485         err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
11486         if (!err)
11487                 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
11488         if (err) {
11489                 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11490                 goto out_pci_disable_device;
11491         }
11492
11493         pci_set_drvdata(pdev, priv);
11494
11495         err = pci_request_regions(pdev, DRV_NAME);
11496         if (err)
11497                 goto out_pci_disable_device;
11498
11499         /* We disable the RETRY_TIMEOUT register (0x41) to keep
11500          * PCI Tx retries from interfering with C3 CPU state */
11501         pci_read_config_dword(pdev, 0x40, &val);
11502         if ((val & 0x0000ff00) != 0)
11503                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11504
11505         length = pci_resource_len(pdev, 0);
11506         priv->hw_len = length;
11507
11508         base = ioremap_nocache(pci_resource_start(pdev, 0), length);
11509         if (!base) {
11510                 err = -ENODEV;
11511                 goto out_pci_release_regions;
11512         }
11513
11514         priv->hw_base = base;
11515         IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11516         IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11517
11518         err = ipw_setup_deferred_work(priv);
11519         if (err) {
11520                 IPW_ERROR("Unable to setup deferred work\n");
11521                 goto out_iounmap;
11522         }
11523
11524         ipw_sw_reset(priv, 1);
11525
11526         err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11527         if (err) {
11528                 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11529                 goto out_destroy_workqueue;
11530         }
11531
11532         SET_MODULE_OWNER(net_dev);
11533         SET_NETDEV_DEV(net_dev, &pdev->dev);
11534
11535         mutex_lock(&priv->mutex);
11536
11537         priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11538         priv->ieee->set_security = shim__set_security;
11539         priv->ieee->is_queue_full = ipw_net_is_queue_full;
11540
11541 #ifdef CONFIG_IPW2200_QOS
11542         priv->ieee->is_qos_active = ipw_is_qos_active;
11543         priv->ieee->handle_probe_response = ipw_handle_beacon;
11544         priv->ieee->handle_beacon = ipw_handle_probe_response;
11545         priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11546 #endif                          /* CONFIG_IPW2200_QOS */
11547
11548         priv->ieee->perfect_rssi = -20;
11549         priv->ieee->worst_rssi = -85;
11550
11551         net_dev->open = ipw_net_open;
11552         net_dev->stop = ipw_net_stop;
11553         net_dev->init = ipw_net_init;
11554         net_dev->get_stats = ipw_net_get_stats;
11555         net_dev->set_multicast_list = ipw_net_set_multicast_list;
11556         net_dev->set_mac_address = ipw_net_set_mac_address;
11557         priv->wireless_data.spy_data = &priv->ieee->spy_data;
11558         net_dev->wireless_data = &priv->wireless_data;
11559         net_dev->wireless_handlers = &ipw_wx_handler_def;
11560         net_dev->ethtool_ops = &ipw_ethtool_ops;
11561         net_dev->irq = pdev->irq;
11562         net_dev->base_addr = (unsigned long)priv->hw_base;
11563         net_dev->mem_start = pci_resource_start(pdev, 0);
11564         net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
11565
11566         err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11567         if (err) {
11568                 IPW_ERROR("failed to create sysfs device attributes\n");
11569                 mutex_unlock(&priv->mutex);
11570                 goto out_release_irq;
11571         }
11572
11573         mutex_unlock(&priv->mutex);
11574         err = register_netdev(net_dev);
11575         if (err) {
11576                 IPW_ERROR("failed to register network device\n");
11577                 goto out_remove_sysfs;
11578         }
11579
11580 #ifdef CONFIG_IPW2200_PROMISCUOUS
11581         if (rtap_iface) {
11582                 err = ipw_prom_alloc(priv);
11583                 if (err) {
11584                         IPW_ERROR("Failed to register promiscuous network "
11585                                   "device (error %d).\n", err);
11586                         unregister_netdev(priv->net_dev);
11587                         goto out_remove_sysfs;
11588                 }
11589         }
11590 #endif
11591
11592         printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11593                "channels, %d 802.11a channels)\n",
11594                priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11595                priv->ieee->geo.a_channels);
11596
11597         return 0;
11598
11599       out_remove_sysfs:
11600         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11601       out_release_irq:
11602         free_irq(pdev->irq, priv);
11603       out_destroy_workqueue:
11604         destroy_workqueue(priv->workqueue);
11605         priv->workqueue = NULL;
11606       out_iounmap:
11607         iounmap(priv->hw_base);
11608       out_pci_release_regions:
11609         pci_release_regions(pdev);
11610       out_pci_disable_device:
11611         pci_disable_device(pdev);
11612         pci_set_drvdata(pdev, NULL);
11613       out_free_ieee80211:
11614         free_ieee80211(priv->net_dev);
11615       out:
11616         return err;
11617 }
11618
11619 static void ipw_pci_remove(struct pci_dev *pdev)
11620 {
11621         struct ipw_priv *priv = pci_get_drvdata(pdev);
11622         struct list_head *p, *q;
11623         int i;
11624
11625         if (!priv)
11626                 return;
11627
11628         mutex_lock(&priv->mutex);
11629
11630         priv->status |= STATUS_EXIT_PENDING;
11631         ipw_down(priv);
11632         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11633
11634         mutex_unlock(&priv->mutex);
11635
11636         unregister_netdev(priv->net_dev);
11637
11638         if (priv->rxq) {
11639                 ipw_rx_queue_free(priv, priv->rxq);
11640                 priv->rxq = NULL;
11641         }
11642         ipw_tx_queue_free(priv);
11643
11644         if (priv->cmdlog) {
11645                 kfree(priv->cmdlog);
11646                 priv->cmdlog = NULL;
11647         }
11648         /* ipw_down will ensure that there is no more pending work
11649          * in the workqueue's, so we can safely remove them now. */
11650         cancel_delayed_work(&priv->adhoc_check);
11651         cancel_delayed_work(&priv->gather_stats);
11652         cancel_delayed_work(&priv->request_scan);
11653         cancel_delayed_work(&priv->rf_kill);
11654         cancel_delayed_work(&priv->scan_check);
11655         destroy_workqueue(priv->workqueue);
11656         priv->workqueue = NULL;
11657
11658         /* Free MAC hash list for ADHOC */
11659         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11660                 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11661                         list_del(p);
11662                         kfree(list_entry(p, struct ipw_ibss_seq, list));
11663                 }
11664         }
11665
11666         kfree(priv->error);
11667         priv->error = NULL;
11668
11669 #ifdef CONFIG_IPW2200_PROMISCUOUS
11670         ipw_prom_free(priv);
11671 #endif
11672
11673         free_irq(pdev->irq, priv);
11674         iounmap(priv->hw_base);
11675         pci_release_regions(pdev);
11676         pci_disable_device(pdev);
11677         pci_set_drvdata(pdev, NULL);
11678         free_ieee80211(priv->net_dev);
11679         free_firmware();
11680 }
11681
11682 #ifdef CONFIG_PM
11683 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11684 {
11685         struct ipw_priv *priv = pci_get_drvdata(pdev);
11686         struct net_device *dev = priv->net_dev;
11687
11688         printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11689
11690         /* Take down the device; powers it off, etc. */
11691         ipw_down(priv);
11692
11693         /* Remove the PRESENT state of the device */
11694         netif_device_detach(dev);
11695
11696         pci_save_state(pdev);
11697         pci_disable_device(pdev);
11698         pci_set_power_state(pdev, pci_choose_state(pdev, state));
11699
11700         return 0;
11701 }
11702
11703 static int ipw_pci_resume(struct pci_dev *pdev)
11704 {
11705         struct ipw_priv *priv = pci_get_drvdata(pdev);
11706         struct net_device *dev = priv->net_dev;
11707         u32 val;
11708
11709         printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11710
11711         pci_set_power_state(pdev, PCI_D0);
11712         pci_enable_device(pdev);
11713         pci_restore_state(pdev);
11714
11715         /*
11716          * Suspend/Resume resets the PCI configuration space, so we have to
11717          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11718          * from interfering with C3 CPU state. pci_restore_state won't help
11719          * here since it only restores the first 64 bytes pci config header.
11720          */
11721         pci_read_config_dword(pdev, 0x40, &val);
11722         if ((val & 0x0000ff00) != 0)
11723                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11724
11725         /* Set the device back into the PRESENT state; this will also wake
11726          * the queue of needed */
11727         netif_device_attach(dev);
11728
11729         /* Bring the device back up */
11730         queue_work(priv->workqueue, &priv->up);
11731
11732         return 0;
11733 }
11734 #endif
11735
11736 /* driver initialization stuff */
11737 static struct pci_driver ipw_driver = {
11738         .name = DRV_NAME,
11739         .id_table = card_ids,
11740         .probe = ipw_pci_probe,
11741         .remove = __devexit_p(ipw_pci_remove),
11742 #ifdef CONFIG_PM
11743         .suspend = ipw_pci_suspend,
11744         .resume = ipw_pci_resume,
11745 #endif
11746 };
11747
11748 static int __init ipw_init(void)
11749 {
11750         int ret;
11751
11752         printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11753         printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11754
11755         ret = pci_module_init(&ipw_driver);
11756         if (ret) {
11757                 IPW_ERROR("Unable to initialize PCI module\n");
11758                 return ret;
11759         }
11760
11761         ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11762         if (ret) {
11763                 IPW_ERROR("Unable to create driver sysfs file\n");
11764                 pci_unregister_driver(&ipw_driver);
11765                 return ret;
11766         }
11767
11768         return ret;
11769 }
11770
11771 static void __exit ipw_exit(void)
11772 {
11773         driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11774         pci_unregister_driver(&ipw_driver);
11775 }
11776
11777 module_param(disable, int, 0444);
11778 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11779
11780 module_param(associate, int, 0444);
11781 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
11782
11783 module_param(auto_create, int, 0444);
11784 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11785
11786 module_param(led, int, 0444);
11787 MODULE_PARM_DESC(led, "enable led control on some systems (default 0 off)\n");
11788
11789 #ifdef CONFIG_IPW2200_DEBUG
11790 module_param(debug, int, 0444);
11791 MODULE_PARM_DESC(debug, "debug output mask");
11792 #endif
11793
11794 module_param(channel, int, 0444);
11795 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11796
11797 #ifdef CONFIG_IPW2200_PROMISCUOUS
11798 module_param(rtap_iface, int, 0444);
11799 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
11800 #endif
11801
11802 #ifdef CONFIG_IPW2200_QOS
11803 module_param(qos_enable, int, 0444);
11804 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
11805
11806 module_param(qos_burst_enable, int, 0444);
11807 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11808
11809 module_param(qos_no_ack_mask, int, 0444);
11810 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
11811
11812 module_param(burst_duration_CCK, int, 0444);
11813 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11814
11815 module_param(burst_duration_OFDM, int, 0444);
11816 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11817 #endif                          /* CONFIG_IPW2200_QOS */
11818
11819 #ifdef CONFIG_IPW2200_MONITOR
11820 module_param(mode, int, 0444);
11821 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
11822 #else
11823 module_param(mode, int, 0444);
11824 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
11825 #endif
11826
11827 module_param(bt_coexist, int, 0444);
11828 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
11829
11830 module_param(hwcrypto, int, 0444);
11831 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
11832
11833 module_param(cmdlog, int, 0444);
11834 MODULE_PARM_DESC(cmdlog,
11835                  "allocate a ring buffer for logging firmware commands");
11836
11837 module_param(roaming, int, 0444);
11838 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
11839
11840 module_param(antenna, int, 0444);
11841 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
11842
11843 module_exit(ipw_exit);
11844 module_init(ipw_init);