]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/wireless/ipw2200.c
[PATCH] ipw2200: Fix ipw2200 QOS parameters endian issue
[linux-2.6-omap-h63xx.git] / drivers / net / wireless / ipw2200.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   802.11 status code portion of this file from ethereal-0.10.6:
6     Copyright 2000, Axis Communications AB
7     Ethereal - Network traffic analyzer
8     By Gerald Combs <gerald@ethereal.com>
9     Copyright 1998 Gerald Combs
10
11   This program is free software; you can redistribute it and/or modify it
12   under the terms of version 2 of the GNU General Public License as
13   published by the Free Software Foundation.
14
15   This program is distributed in the hope that it will be useful, but WITHOUT
16   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18   more details.
19
20   You should have received a copy of the GNU General Public License along with
21   this program; if not, write to the Free Software Foundation, Inc., 59
22   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
23
24   The full GNU General Public License is included in this distribution in the
25   file called LICENSE.
26
27   Contact Information:
28   James P. Ketrenos <ipw2100-admin@linux.intel.com>
29   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30
31 ******************************************************************************/
32
33 #include "ipw2200.h"
34 #include <linux/version.h>
35
36
37 #ifndef KBUILD_EXTMOD
38 #define VK "k"
39 #else
40 #define VK
41 #endif
42
43 #ifdef CONFIG_IPW2200_DEBUG
44 #define VD "d"
45 #else
46 #define VD
47 #endif
48
49 #ifdef CONFIG_IPW2200_MONITOR
50 #define VM "m"
51 #else
52 #define VM
53 #endif
54
55 #ifdef CONFIG_IPW2200_PROMISCUOUS
56 #define VP "p"
57 #else
58 #define VP
59 #endif
60
61 #ifdef CONFIG_IPW2200_RADIOTAP
62 #define VR "r"
63 #else
64 #define VR
65 #endif
66
67 #ifdef CONFIG_IPW2200_QOS
68 #define VQ "q"
69 #else
70 #define VQ
71 #endif
72
73 #define IPW2200_VERSION "1.1.2" VK VD VM VP VR VQ
74 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
75 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
76 #define DRV_VERSION     IPW2200_VERSION
77
78 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
79
80 MODULE_DESCRIPTION(DRV_DESCRIPTION);
81 MODULE_VERSION(DRV_VERSION);
82 MODULE_AUTHOR(DRV_COPYRIGHT);
83 MODULE_LICENSE("GPL");
84
85 static int cmdlog = 0;
86 #ifdef CONFIG_IPW2200_DEBUG
87 static int debug = 0;
88 #endif
89 static int channel = 0;
90 static int mode = 0;
91
92 static u32 ipw_debug_level;
93 static int associate = 1;
94 static int auto_create = 1;
95 static int led = 0;
96 static int disable = 0;
97 static int bt_coexist = 0;
98 static int hwcrypto = 0;
99 static int roaming = 1;
100 static const char ipw_modes[] = {
101         'a', 'b', 'g', '?'
102 };
103 static int antenna = CFG_SYS_ANTENNA_BOTH;
104
105 #ifdef CONFIG_IPW2200_PROMISCUOUS
106 static int rtap_iface = 0;     /* def: 0 -- do not create rtap interface */
107 #endif
108
109
110 #ifdef CONFIG_IPW2200_QOS
111 static int qos_enable = 0;
112 static int qos_burst_enable = 0;
113 static int qos_no_ack_mask = 0;
114 static int burst_duration_CCK = 0;
115 static int burst_duration_OFDM = 0;
116
117 static struct ieee80211_qos_parameters def_qos_parameters_OFDM = {
118         {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
119          QOS_TX3_CW_MIN_OFDM},
120         {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
121          QOS_TX3_CW_MAX_OFDM},
122         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
123         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
124         {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
125          QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
126 };
127
128 static struct ieee80211_qos_parameters def_qos_parameters_CCK = {
129         {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
130          QOS_TX3_CW_MIN_CCK},
131         {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
132          QOS_TX3_CW_MAX_CCK},
133         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
134         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
135         {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
136          QOS_TX3_TXOP_LIMIT_CCK}
137 };
138
139 static struct ieee80211_qos_parameters def_parameters_OFDM = {
140         {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
141          DEF_TX3_CW_MIN_OFDM},
142         {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
143          DEF_TX3_CW_MAX_OFDM},
144         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
145         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
146         {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
147          DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
148 };
149
150 static struct ieee80211_qos_parameters def_parameters_CCK = {
151         {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
152          DEF_TX3_CW_MIN_CCK},
153         {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
154          DEF_TX3_CW_MAX_CCK},
155         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
156         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
157         {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
158          DEF_TX3_TXOP_LIMIT_CCK}
159 };
160
161 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
162
163 static int from_priority_to_tx_queue[] = {
164         IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
165         IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
166 };
167
168 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
169
170 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
171                                        *qos_param);
172 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
173                                      *qos_param);
174 #endif                          /* CONFIG_IPW2200_QOS */
175
176 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
177 static void ipw_remove_current_network(struct ipw_priv *priv);
178 static void ipw_rx(struct ipw_priv *priv);
179 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
180                                 struct clx2_tx_queue *txq, int qindex);
181 static int ipw_queue_reset(struct ipw_priv *priv);
182
183 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
184                              int len, int sync);
185
186 static void ipw_tx_queue_free(struct ipw_priv *);
187
188 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
189 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
190 static void ipw_rx_queue_replenish(void *);
191 static int ipw_up(struct ipw_priv *);
192 static void ipw_bg_up(void *);
193 static void ipw_down(struct ipw_priv *);
194 static void ipw_bg_down(void *);
195 static int ipw_config(struct ipw_priv *);
196 static int init_supported_rates(struct ipw_priv *priv,
197                                 struct ipw_supported_rates *prates);
198 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
199 static void ipw_send_wep_keys(struct ipw_priv *, int);
200
201 static int snprint_line(char *buf, size_t count,
202                         const u8 * data, u32 len, u32 ofs)
203 {
204         int out, i, j, l;
205         char c;
206
207         out = snprintf(buf, count, "%08X", ofs);
208
209         for (l = 0, i = 0; i < 2; i++) {
210                 out += snprintf(buf + out, count - out, " ");
211                 for (j = 0; j < 8 && l < len; j++, l++)
212                         out += snprintf(buf + out, count - out, "%02X ",
213                                         data[(i * 8 + j)]);
214                 for (; j < 8; j++)
215                         out += snprintf(buf + out, count - out, "   ");
216         }
217
218         out += snprintf(buf + out, count - out, " ");
219         for (l = 0, i = 0; i < 2; i++) {
220                 out += snprintf(buf + out, count - out, " ");
221                 for (j = 0; j < 8 && l < len; j++, l++) {
222                         c = data[(i * 8 + j)];
223                         if (!isascii(c) || !isprint(c))
224                                 c = '.';
225
226                         out += snprintf(buf + out, count - out, "%c", c);
227                 }
228
229                 for (; j < 8; j++)
230                         out += snprintf(buf + out, count - out, " ");
231         }
232
233         return out;
234 }
235
236 static void printk_buf(int level, const u8 * data, u32 len)
237 {
238         char line[81];
239         u32 ofs = 0;
240         if (!(ipw_debug_level & level))
241                 return;
242
243         while (len) {
244                 snprint_line(line, sizeof(line), &data[ofs],
245                              min(len, 16U), ofs);
246                 printk(KERN_DEBUG "%s\n", line);
247                 ofs += 16;
248                 len -= min(len, 16U);
249         }
250 }
251
252 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
253 {
254         size_t out = size;
255         u32 ofs = 0;
256         int total = 0;
257
258         while (size && len) {
259                 out = snprint_line(output, size, &data[ofs],
260                                    min_t(size_t, len, 16U), ofs);
261
262                 ofs += 16;
263                 output += out;
264                 size -= out;
265                 len -= min_t(size_t, len, 16U);
266                 total += out;
267         }
268         return total;
269 }
270
271 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
272 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
273 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
274
275 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
276 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
277 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
278
279 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
280 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
281 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
282 {
283         IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
284                      __LINE__, (u32) (b), (u32) (c));
285         _ipw_write_reg8(a, b, c);
286 }
287
288 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
289 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
290 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
291 {
292         IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
293                      __LINE__, (u32) (b), (u32) (c));
294         _ipw_write_reg16(a, b, c);
295 }
296
297 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
298 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
299 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
300 {
301         IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
302                      __LINE__, (u32) (b), (u32) (c));
303         _ipw_write_reg32(a, b, c);
304 }
305
306 /* 8-bit direct write (low 4K) */
307 #define _ipw_write8(ipw, ofs, val) writeb((val), (ipw)->hw_base + (ofs))
308
309 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
310 #define ipw_write8(ipw, ofs, val) \
311  IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
312  _ipw_write8(ipw, ofs, val)
313
314 /* 16-bit direct write (low 4K) */
315 #define _ipw_write16(ipw, ofs, val) writew((val), (ipw)->hw_base + (ofs))
316
317 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
318 #define ipw_write16(ipw, ofs, val) \
319  IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
320  _ipw_write16(ipw, ofs, val)
321
322 /* 32-bit direct write (low 4K) */
323 #define _ipw_write32(ipw, ofs, val) writel((val), (ipw)->hw_base + (ofs))
324
325 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
326 #define ipw_write32(ipw, ofs, val) \
327  IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
328  _ipw_write32(ipw, ofs, val)
329
330 /* 8-bit direct read (low 4K) */
331 #define _ipw_read8(ipw, ofs) readb((ipw)->hw_base + (ofs))
332
333 /* 8-bit direct read (low 4K), with debug wrapper */
334 static inline u8 __ipw_read8(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
335 {
336         IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", f, l, (u32) (ofs));
337         return _ipw_read8(ipw, ofs);
338 }
339
340 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
341 #define ipw_read8(ipw, ofs) __ipw_read8(__FILE__, __LINE__, ipw, ofs)
342
343 /* 16-bit direct read (low 4K) */
344 #define _ipw_read16(ipw, ofs) readw((ipw)->hw_base + (ofs))
345
346 /* 16-bit direct read (low 4K), with debug wrapper */
347 static inline u16 __ipw_read16(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
348 {
349         IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", f, l, (u32) (ofs));
350         return _ipw_read16(ipw, ofs);
351 }
352
353 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
354 #define ipw_read16(ipw, ofs) __ipw_read16(__FILE__, __LINE__, ipw, ofs)
355
356 /* 32-bit direct read (low 4K) */
357 #define _ipw_read32(ipw, ofs) readl((ipw)->hw_base + (ofs))
358
359 /* 32-bit direct read (low 4K), with debug wrapper */
360 static inline u32 __ipw_read32(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
361 {
362         IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", f, l, (u32) (ofs));
363         return _ipw_read32(ipw, ofs);
364 }
365
366 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
367 #define ipw_read32(ipw, ofs) __ipw_read32(__FILE__, __LINE__, ipw, ofs)
368
369 /* multi-byte read (above 4K), with debug wrapper */
370 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
371 static inline void __ipw_read_indirect(const char *f, int l,
372                                        struct ipw_priv *a, u32 b, u8 * c, int d)
373 {
374         IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %d bytes\n", f, l, (u32) (b),
375                      d);
376         _ipw_read_indirect(a, b, c, d);
377 }
378
379 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
380 #define ipw_read_indirect(a, b, c, d) __ipw_read_indirect(__FILE__, __LINE__, a, b, c, d)
381
382 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
383 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
384                                 int num);
385 #define ipw_write_indirect(a, b, c, d) \
386         IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %d bytes\n", __FILE__, __LINE__, (u32)(b), d); \
387         _ipw_write_indirect(a, b, c, d)
388
389 /* 32-bit indirect write (above 4K) */
390 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
391 {
392         IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
393         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
394         _ipw_write32(priv, IPW_INDIRECT_DATA, value);
395 }
396
397 /* 8-bit indirect write (above 4K) */
398 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
399 {
400         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
401         u32 dif_len = reg - aligned_addr;
402
403         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
404         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
405         _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
406 }
407
408 /* 16-bit indirect write (above 4K) */
409 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
410 {
411         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
412         u32 dif_len = (reg - aligned_addr) & (~0x1ul);
413
414         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
415         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
416         _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
417 }
418
419 /* 8-bit indirect read (above 4K) */
420 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
421 {
422         u32 word;
423         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
424         IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
425         word = _ipw_read32(priv, IPW_INDIRECT_DATA);
426         return (word >> ((reg & 0x3) * 8)) & 0xff;
427 }
428
429 /* 32-bit indirect read (above 4K) */
430 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
431 {
432         u32 value;
433
434         IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
435
436         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
437         value = _ipw_read32(priv, IPW_INDIRECT_DATA);
438         IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
439         return value;
440 }
441
442 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
443 /*    for area above 1st 4K of SRAM/reg space */
444 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
445                                int num)
446 {
447         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
448         u32 dif_len = addr - aligned_addr;
449         u32 i;
450
451         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
452
453         if (num <= 0) {
454                 return;
455         }
456
457         /* Read the first dword (or portion) byte by byte */
458         if (unlikely(dif_len)) {
459                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
460                 /* Start reading at aligned_addr + dif_len */
461                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
462                         *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
463                 aligned_addr += 4;
464         }
465
466         /* Read all of the middle dwords as dwords, with auto-increment */
467         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
468         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
469                 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
470
471         /* Read the last dword (or portion) byte by byte */
472         if (unlikely(num)) {
473                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
474                 for (i = 0; num > 0; i++, num--)
475                         *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
476         }
477 }
478
479 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
480 /*    for area above 1st 4K of SRAM/reg space */
481 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
482                                 int num)
483 {
484         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
485         u32 dif_len = addr - aligned_addr;
486         u32 i;
487
488         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
489
490         if (num <= 0) {
491                 return;
492         }
493
494         /* Write the first dword (or portion) byte by byte */
495         if (unlikely(dif_len)) {
496                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
497                 /* Start writing at aligned_addr + dif_len */
498                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
499                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
500                 aligned_addr += 4;
501         }
502
503         /* Write all of the middle dwords as dwords, with auto-increment */
504         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
505         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
506                 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
507
508         /* Write the last dword (or portion) byte by byte */
509         if (unlikely(num)) {
510                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
511                 for (i = 0; num > 0; i++, num--, buf++)
512                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
513         }
514 }
515
516 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
517 /*    for 1st 4K of SRAM/regs space */
518 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
519                              int num)
520 {
521         memcpy_toio((priv->hw_base + addr), buf, num);
522 }
523
524 /* Set bit(s) in low 4K of SRAM/regs */
525 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
526 {
527         ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
528 }
529
530 /* Clear bit(s) in low 4K of SRAM/regs */
531 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
532 {
533         ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
534 }
535
536 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
537 {
538         if (priv->status & STATUS_INT_ENABLED)
539                 return;
540         priv->status |= STATUS_INT_ENABLED;
541         ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
542 }
543
544 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
545 {
546         if (!(priv->status & STATUS_INT_ENABLED))
547                 return;
548         priv->status &= ~STATUS_INT_ENABLED;
549         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
550 }
551
552 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
553 {
554         unsigned long flags;
555
556         spin_lock_irqsave(&priv->irq_lock, flags);
557         __ipw_enable_interrupts(priv);
558         spin_unlock_irqrestore(&priv->irq_lock, flags);
559 }
560
561 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
562 {
563         unsigned long flags;
564
565         spin_lock_irqsave(&priv->irq_lock, flags);
566         __ipw_disable_interrupts(priv);
567         spin_unlock_irqrestore(&priv->irq_lock, flags);
568 }
569
570 static char *ipw_error_desc(u32 val)
571 {
572         switch (val) {
573         case IPW_FW_ERROR_OK:
574                 return "ERROR_OK";
575         case IPW_FW_ERROR_FAIL:
576                 return "ERROR_FAIL";
577         case IPW_FW_ERROR_MEMORY_UNDERFLOW:
578                 return "MEMORY_UNDERFLOW";
579         case IPW_FW_ERROR_MEMORY_OVERFLOW:
580                 return "MEMORY_OVERFLOW";
581         case IPW_FW_ERROR_BAD_PARAM:
582                 return "BAD_PARAM";
583         case IPW_FW_ERROR_BAD_CHECKSUM:
584                 return "BAD_CHECKSUM";
585         case IPW_FW_ERROR_NMI_INTERRUPT:
586                 return "NMI_INTERRUPT";
587         case IPW_FW_ERROR_BAD_DATABASE:
588                 return "BAD_DATABASE";
589         case IPW_FW_ERROR_ALLOC_FAIL:
590                 return "ALLOC_FAIL";
591         case IPW_FW_ERROR_DMA_UNDERRUN:
592                 return "DMA_UNDERRUN";
593         case IPW_FW_ERROR_DMA_STATUS:
594                 return "DMA_STATUS";
595         case IPW_FW_ERROR_DINO_ERROR:
596                 return "DINO_ERROR";
597         case IPW_FW_ERROR_EEPROM_ERROR:
598                 return "EEPROM_ERROR";
599         case IPW_FW_ERROR_SYSASSERT:
600                 return "SYSASSERT";
601         case IPW_FW_ERROR_FATAL_ERROR:
602                 return "FATAL_ERROR";
603         default:
604                 return "UNKNOWN_ERROR";
605         }
606 }
607
608 static void ipw_dump_error_log(struct ipw_priv *priv,
609                                struct ipw_fw_error *error)
610 {
611         u32 i;
612
613         if (!error) {
614                 IPW_ERROR("Error allocating and capturing error log.  "
615                           "Nothing to dump.\n");
616                 return;
617         }
618
619         IPW_ERROR("Start IPW Error Log Dump:\n");
620         IPW_ERROR("Status: 0x%08X, Config: %08X\n",
621                   error->status, error->config);
622
623         for (i = 0; i < error->elem_len; i++)
624                 IPW_ERROR("%s %i 0x%08x  0x%08x  0x%08x  0x%08x  0x%08x\n",
625                           ipw_error_desc(error->elem[i].desc),
626                           error->elem[i].time,
627                           error->elem[i].blink1,
628                           error->elem[i].blink2,
629                           error->elem[i].link1,
630                           error->elem[i].link2, error->elem[i].data);
631         for (i = 0; i < error->log_len; i++)
632                 IPW_ERROR("%i\t0x%08x\t%i\n",
633                           error->log[i].time,
634                           error->log[i].data, error->log[i].event);
635 }
636
637 static inline int ipw_is_init(struct ipw_priv *priv)
638 {
639         return (priv->status & STATUS_INIT) ? 1 : 0;
640 }
641
642 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
643 {
644         u32 addr, field_info, field_len, field_count, total_len;
645
646         IPW_DEBUG_ORD("ordinal = %i\n", ord);
647
648         if (!priv || !val || !len) {
649                 IPW_DEBUG_ORD("Invalid argument\n");
650                 return -EINVAL;
651         }
652
653         /* verify device ordinal tables have been initialized */
654         if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
655                 IPW_DEBUG_ORD("Access ordinals before initialization\n");
656                 return -EINVAL;
657         }
658
659         switch (IPW_ORD_TABLE_ID_MASK & ord) {
660         case IPW_ORD_TABLE_0_MASK:
661                 /*
662                  * TABLE 0: Direct access to a table of 32 bit values
663                  *
664                  * This is a very simple table with the data directly
665                  * read from the table
666                  */
667
668                 /* remove the table id from the ordinal */
669                 ord &= IPW_ORD_TABLE_VALUE_MASK;
670
671                 /* boundary check */
672                 if (ord > priv->table0_len) {
673                         IPW_DEBUG_ORD("ordinal value (%i) longer then "
674                                       "max (%i)\n", ord, priv->table0_len);
675                         return -EINVAL;
676                 }
677
678                 /* verify we have enough room to store the value */
679                 if (*len < sizeof(u32)) {
680                         IPW_DEBUG_ORD("ordinal buffer length too small, "
681                                       "need %zd\n", sizeof(u32));
682                         return -EINVAL;
683                 }
684
685                 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
686                               ord, priv->table0_addr + (ord << 2));
687
688                 *len = sizeof(u32);
689                 ord <<= 2;
690                 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
691                 break;
692
693         case IPW_ORD_TABLE_1_MASK:
694                 /*
695                  * TABLE 1: Indirect access to a table of 32 bit values
696                  *
697                  * This is a fairly large table of u32 values each
698                  * representing starting addr for the data (which is
699                  * also a u32)
700                  */
701
702                 /* remove the table id from the ordinal */
703                 ord &= IPW_ORD_TABLE_VALUE_MASK;
704
705                 /* boundary check */
706                 if (ord > priv->table1_len) {
707                         IPW_DEBUG_ORD("ordinal value too long\n");
708                         return -EINVAL;
709                 }
710
711                 /* verify we have enough room to store the value */
712                 if (*len < sizeof(u32)) {
713                         IPW_DEBUG_ORD("ordinal buffer length too small, "
714                                       "need %zd\n", sizeof(u32));
715                         return -EINVAL;
716                 }
717
718                 *((u32 *) val) =
719                     ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
720                 *len = sizeof(u32);
721                 break;
722
723         case IPW_ORD_TABLE_2_MASK:
724                 /*
725                  * TABLE 2: Indirect access to a table of variable sized values
726                  *
727                  * This table consist of six values, each containing
728                  *     - dword containing the starting offset of the data
729                  *     - dword containing the lengh in the first 16bits
730                  *       and the count in the second 16bits
731                  */
732
733                 /* remove the table id from the ordinal */
734                 ord &= IPW_ORD_TABLE_VALUE_MASK;
735
736                 /* boundary check */
737                 if (ord > priv->table2_len) {
738                         IPW_DEBUG_ORD("ordinal value too long\n");
739                         return -EINVAL;
740                 }
741
742                 /* get the address of statistic */
743                 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
744
745                 /* get the second DW of statistics ;
746                  * two 16-bit words - first is length, second is count */
747                 field_info =
748                     ipw_read_reg32(priv,
749                                    priv->table2_addr + (ord << 3) +
750                                    sizeof(u32));
751
752                 /* get each entry length */
753                 field_len = *((u16 *) & field_info);
754
755                 /* get number of entries */
756                 field_count = *(((u16 *) & field_info) + 1);
757
758                 /* abort if not enought memory */
759                 total_len = field_len * field_count;
760                 if (total_len > *len) {
761                         *len = total_len;
762                         return -EINVAL;
763                 }
764
765                 *len = total_len;
766                 if (!total_len)
767                         return 0;
768
769                 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
770                               "field_info = 0x%08x\n",
771                               addr, total_len, field_info);
772                 ipw_read_indirect(priv, addr, val, total_len);
773                 break;
774
775         default:
776                 IPW_DEBUG_ORD("Invalid ordinal!\n");
777                 return -EINVAL;
778
779         }
780
781         return 0;
782 }
783
784 static void ipw_init_ordinals(struct ipw_priv *priv)
785 {
786         priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
787         priv->table0_len = ipw_read32(priv, priv->table0_addr);
788
789         IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
790                       priv->table0_addr, priv->table0_len);
791
792         priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
793         priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
794
795         IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
796                       priv->table1_addr, priv->table1_len);
797
798         priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
799         priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
800         priv->table2_len &= 0x0000ffff; /* use first two bytes */
801
802         IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
803                       priv->table2_addr, priv->table2_len);
804
805 }
806
807 static u32 ipw_register_toggle(u32 reg)
808 {
809         reg &= ~IPW_START_STANDBY;
810         if (reg & IPW_GATE_ODMA)
811                 reg &= ~IPW_GATE_ODMA;
812         if (reg & IPW_GATE_IDMA)
813                 reg &= ~IPW_GATE_IDMA;
814         if (reg & IPW_GATE_ADMA)
815                 reg &= ~IPW_GATE_ADMA;
816         return reg;
817 }
818
819 /*
820  * LED behavior:
821  * - On radio ON, turn on any LEDs that require to be on during start
822  * - On initialization, start unassociated blink
823  * - On association, disable unassociated blink
824  * - On disassociation, start unassociated blink
825  * - On radio OFF, turn off any LEDs started during radio on
826  *
827  */
828 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
829 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
830 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
831
832 static void ipw_led_link_on(struct ipw_priv *priv)
833 {
834         unsigned long flags;
835         u32 led;
836
837         /* If configured to not use LEDs, or nic_type is 1,
838          * then we don't toggle a LINK led */
839         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
840                 return;
841
842         spin_lock_irqsave(&priv->lock, flags);
843
844         if (!(priv->status & STATUS_RF_KILL_MASK) &&
845             !(priv->status & STATUS_LED_LINK_ON)) {
846                 IPW_DEBUG_LED("Link LED On\n");
847                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
848                 led |= priv->led_association_on;
849
850                 led = ipw_register_toggle(led);
851
852                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
853                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
854
855                 priv->status |= STATUS_LED_LINK_ON;
856
857                 /* If we aren't associated, schedule turning the LED off */
858                 if (!(priv->status & STATUS_ASSOCIATED))
859                         queue_delayed_work(priv->workqueue,
860                                            &priv->led_link_off,
861                                            LD_TIME_LINK_ON);
862         }
863
864         spin_unlock_irqrestore(&priv->lock, flags);
865 }
866
867 static void ipw_bg_led_link_on(void *data)
868 {
869         struct ipw_priv *priv = data;
870         mutex_lock(&priv->mutex);
871         ipw_led_link_on(data);
872         mutex_unlock(&priv->mutex);
873 }
874
875 static void ipw_led_link_off(struct ipw_priv *priv)
876 {
877         unsigned long flags;
878         u32 led;
879
880         /* If configured not to use LEDs, or nic type is 1,
881          * then we don't goggle the LINK led. */
882         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
883                 return;
884
885         spin_lock_irqsave(&priv->lock, flags);
886
887         if (priv->status & STATUS_LED_LINK_ON) {
888                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
889                 led &= priv->led_association_off;
890                 led = ipw_register_toggle(led);
891
892                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
893                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
894
895                 IPW_DEBUG_LED("Link LED Off\n");
896
897                 priv->status &= ~STATUS_LED_LINK_ON;
898
899                 /* If we aren't associated and the radio is on, schedule
900                  * turning the LED on (blink while unassociated) */
901                 if (!(priv->status & STATUS_RF_KILL_MASK) &&
902                     !(priv->status & STATUS_ASSOCIATED))
903                         queue_delayed_work(priv->workqueue, &priv->led_link_on,
904                                            LD_TIME_LINK_OFF);
905
906         }
907
908         spin_unlock_irqrestore(&priv->lock, flags);
909 }
910
911 static void ipw_bg_led_link_off(void *data)
912 {
913         struct ipw_priv *priv = data;
914         mutex_lock(&priv->mutex);
915         ipw_led_link_off(data);
916         mutex_unlock(&priv->mutex);
917 }
918
919 static void __ipw_led_activity_on(struct ipw_priv *priv)
920 {
921         u32 led;
922
923         if (priv->config & CFG_NO_LED)
924                 return;
925
926         if (priv->status & STATUS_RF_KILL_MASK)
927                 return;
928
929         if (!(priv->status & STATUS_LED_ACT_ON)) {
930                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
931                 led |= priv->led_activity_on;
932
933                 led = ipw_register_toggle(led);
934
935                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
936                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
937
938                 IPW_DEBUG_LED("Activity LED On\n");
939
940                 priv->status |= STATUS_LED_ACT_ON;
941
942                 cancel_delayed_work(&priv->led_act_off);
943                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
944                                    LD_TIME_ACT_ON);
945         } else {
946                 /* Reschedule LED off for full time period */
947                 cancel_delayed_work(&priv->led_act_off);
948                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
949                                    LD_TIME_ACT_ON);
950         }
951 }
952
953 #if 0
954 void ipw_led_activity_on(struct ipw_priv *priv)
955 {
956         unsigned long flags;
957         spin_lock_irqsave(&priv->lock, flags);
958         __ipw_led_activity_on(priv);
959         spin_unlock_irqrestore(&priv->lock, flags);
960 }
961 #endif  /*  0  */
962
963 static void ipw_led_activity_off(struct ipw_priv *priv)
964 {
965         unsigned long flags;
966         u32 led;
967
968         if (priv->config & CFG_NO_LED)
969                 return;
970
971         spin_lock_irqsave(&priv->lock, flags);
972
973         if (priv->status & STATUS_LED_ACT_ON) {
974                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
975                 led &= priv->led_activity_off;
976
977                 led = ipw_register_toggle(led);
978
979                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
980                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
981
982                 IPW_DEBUG_LED("Activity LED Off\n");
983
984                 priv->status &= ~STATUS_LED_ACT_ON;
985         }
986
987         spin_unlock_irqrestore(&priv->lock, flags);
988 }
989
990 static void ipw_bg_led_activity_off(void *data)
991 {
992         struct ipw_priv *priv = data;
993         mutex_lock(&priv->mutex);
994         ipw_led_activity_off(data);
995         mutex_unlock(&priv->mutex);
996 }
997
998 static void ipw_led_band_on(struct ipw_priv *priv)
999 {
1000         unsigned long flags;
1001         u32 led;
1002
1003         /* Only nic type 1 supports mode LEDs */
1004         if (priv->config & CFG_NO_LED ||
1005             priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1006                 return;
1007
1008         spin_lock_irqsave(&priv->lock, flags);
1009
1010         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1011         if (priv->assoc_network->mode == IEEE_A) {
1012                 led |= priv->led_ofdm_on;
1013                 led &= priv->led_association_off;
1014                 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1015         } else if (priv->assoc_network->mode == IEEE_G) {
1016                 led |= priv->led_ofdm_on;
1017                 led |= priv->led_association_on;
1018                 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1019         } else {
1020                 led &= priv->led_ofdm_off;
1021                 led |= priv->led_association_on;
1022                 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1023         }
1024
1025         led = ipw_register_toggle(led);
1026
1027         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1028         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1029
1030         spin_unlock_irqrestore(&priv->lock, flags);
1031 }
1032
1033 static void ipw_led_band_off(struct ipw_priv *priv)
1034 {
1035         unsigned long flags;
1036         u32 led;
1037
1038         /* Only nic type 1 supports mode LEDs */
1039         if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1040                 return;
1041
1042         spin_lock_irqsave(&priv->lock, flags);
1043
1044         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1045         led &= priv->led_ofdm_off;
1046         led &= priv->led_association_off;
1047
1048         led = ipw_register_toggle(led);
1049
1050         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1051         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1052
1053         spin_unlock_irqrestore(&priv->lock, flags);
1054 }
1055
1056 static void ipw_led_radio_on(struct ipw_priv *priv)
1057 {
1058         ipw_led_link_on(priv);
1059 }
1060
1061 static void ipw_led_radio_off(struct ipw_priv *priv)
1062 {
1063         ipw_led_activity_off(priv);
1064         ipw_led_link_off(priv);
1065 }
1066
1067 static void ipw_led_link_up(struct ipw_priv *priv)
1068 {
1069         /* Set the Link Led on for all nic types */
1070         ipw_led_link_on(priv);
1071 }
1072
1073 static void ipw_led_link_down(struct ipw_priv *priv)
1074 {
1075         ipw_led_activity_off(priv);
1076         ipw_led_link_off(priv);
1077
1078         if (priv->status & STATUS_RF_KILL_MASK)
1079                 ipw_led_radio_off(priv);
1080 }
1081
1082 static void ipw_led_init(struct ipw_priv *priv)
1083 {
1084         priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1085
1086         /* Set the default PINs for the link and activity leds */
1087         priv->led_activity_on = IPW_ACTIVITY_LED;
1088         priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1089
1090         priv->led_association_on = IPW_ASSOCIATED_LED;
1091         priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1092
1093         /* Set the default PINs for the OFDM leds */
1094         priv->led_ofdm_on = IPW_OFDM_LED;
1095         priv->led_ofdm_off = ~(IPW_OFDM_LED);
1096
1097         switch (priv->nic_type) {
1098         case EEPROM_NIC_TYPE_1:
1099                 /* In this NIC type, the LEDs are reversed.... */
1100                 priv->led_activity_on = IPW_ASSOCIATED_LED;
1101                 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1102                 priv->led_association_on = IPW_ACTIVITY_LED;
1103                 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1104
1105                 if (!(priv->config & CFG_NO_LED))
1106                         ipw_led_band_on(priv);
1107
1108                 /* And we don't blink link LEDs for this nic, so
1109                  * just return here */
1110                 return;
1111
1112         case EEPROM_NIC_TYPE_3:
1113         case EEPROM_NIC_TYPE_2:
1114         case EEPROM_NIC_TYPE_4:
1115         case EEPROM_NIC_TYPE_0:
1116                 break;
1117
1118         default:
1119                 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1120                                priv->nic_type);
1121                 priv->nic_type = EEPROM_NIC_TYPE_0;
1122                 break;
1123         }
1124
1125         if (!(priv->config & CFG_NO_LED)) {
1126                 if (priv->status & STATUS_ASSOCIATED)
1127                         ipw_led_link_on(priv);
1128                 else
1129                         ipw_led_link_off(priv);
1130         }
1131 }
1132
1133 static void ipw_led_shutdown(struct ipw_priv *priv)
1134 {
1135         ipw_led_activity_off(priv);
1136         ipw_led_link_off(priv);
1137         ipw_led_band_off(priv);
1138         cancel_delayed_work(&priv->led_link_on);
1139         cancel_delayed_work(&priv->led_link_off);
1140         cancel_delayed_work(&priv->led_act_off);
1141 }
1142
1143 /*
1144  * The following adds a new attribute to the sysfs representation
1145  * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1146  * used for controling the debug level.
1147  *
1148  * See the level definitions in ipw for details.
1149  */
1150 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1151 {
1152         return sprintf(buf, "0x%08X\n", ipw_debug_level);
1153 }
1154
1155 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1156                                  size_t count)
1157 {
1158         char *p = (char *)buf;
1159         u32 val;
1160
1161         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1162                 p++;
1163                 if (p[0] == 'x' || p[0] == 'X')
1164                         p++;
1165                 val = simple_strtoul(p, &p, 16);
1166         } else
1167                 val = simple_strtoul(p, &p, 10);
1168         if (p == buf)
1169                 printk(KERN_INFO DRV_NAME
1170                        ": %s is not in hex or decimal form.\n", buf);
1171         else
1172                 ipw_debug_level = val;
1173
1174         return strnlen(buf, count);
1175 }
1176
1177 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1178                    show_debug_level, store_debug_level);
1179
1180 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1181 {
1182         /* length = 1st dword in log */
1183         return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1184 }
1185
1186 static void ipw_capture_event_log(struct ipw_priv *priv,
1187                                   u32 log_len, struct ipw_event *log)
1188 {
1189         u32 base;
1190
1191         if (log_len) {
1192                 base = ipw_read32(priv, IPW_EVENT_LOG);
1193                 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1194                                   (u8 *) log, sizeof(*log) * log_len);
1195         }
1196 }
1197
1198 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1199 {
1200         struct ipw_fw_error *error;
1201         u32 log_len = ipw_get_event_log_len(priv);
1202         u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1203         u32 elem_len = ipw_read_reg32(priv, base);
1204
1205         error = kmalloc(sizeof(*error) +
1206                         sizeof(*error->elem) * elem_len +
1207                         sizeof(*error->log) * log_len, GFP_ATOMIC);
1208         if (!error) {
1209                 IPW_ERROR("Memory allocation for firmware error log "
1210                           "failed.\n");
1211                 return NULL;
1212         }
1213         error->jiffies = jiffies;
1214         error->status = priv->status;
1215         error->config = priv->config;
1216         error->elem_len = elem_len;
1217         error->log_len = log_len;
1218         error->elem = (struct ipw_error_elem *)error->payload;
1219         error->log = (struct ipw_event *)(error->elem + elem_len);
1220
1221         ipw_capture_event_log(priv, log_len, error->log);
1222
1223         if (elem_len)
1224                 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1225                                   sizeof(*error->elem) * elem_len);
1226
1227         return error;
1228 }
1229
1230 static ssize_t show_event_log(struct device *d,
1231                               struct device_attribute *attr, char *buf)
1232 {
1233         struct ipw_priv *priv = dev_get_drvdata(d);
1234         u32 log_len = ipw_get_event_log_len(priv);
1235         struct ipw_event log[log_len];
1236         u32 len = 0, i;
1237
1238         ipw_capture_event_log(priv, log_len, log);
1239
1240         len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1241         for (i = 0; i < log_len; i++)
1242                 len += snprintf(buf + len, PAGE_SIZE - len,
1243                                 "\n%08X%08X%08X",
1244                                 log[i].time, log[i].event, log[i].data);
1245         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1246         return len;
1247 }
1248
1249 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1250
1251 static ssize_t show_error(struct device *d,
1252                           struct device_attribute *attr, char *buf)
1253 {
1254         struct ipw_priv *priv = dev_get_drvdata(d);
1255         u32 len = 0, i;
1256         if (!priv->error)
1257                 return 0;
1258         len += snprintf(buf + len, PAGE_SIZE - len,
1259                         "%08lX%08X%08X%08X",
1260                         priv->error->jiffies,
1261                         priv->error->status,
1262                         priv->error->config, priv->error->elem_len);
1263         for (i = 0; i < priv->error->elem_len; i++)
1264                 len += snprintf(buf + len, PAGE_SIZE - len,
1265                                 "\n%08X%08X%08X%08X%08X%08X%08X",
1266                                 priv->error->elem[i].time,
1267                                 priv->error->elem[i].desc,
1268                                 priv->error->elem[i].blink1,
1269                                 priv->error->elem[i].blink2,
1270                                 priv->error->elem[i].link1,
1271                                 priv->error->elem[i].link2,
1272                                 priv->error->elem[i].data);
1273
1274         len += snprintf(buf + len, PAGE_SIZE - len,
1275                         "\n%08X", priv->error->log_len);
1276         for (i = 0; i < priv->error->log_len; i++)
1277                 len += snprintf(buf + len, PAGE_SIZE - len,
1278                                 "\n%08X%08X%08X",
1279                                 priv->error->log[i].time,
1280                                 priv->error->log[i].event,
1281                                 priv->error->log[i].data);
1282         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1283         return len;
1284 }
1285
1286 static ssize_t clear_error(struct device *d,
1287                            struct device_attribute *attr,
1288                            const char *buf, size_t count)
1289 {
1290         struct ipw_priv *priv = dev_get_drvdata(d);
1291
1292         kfree(priv->error);
1293         priv->error = NULL;
1294         return count;
1295 }
1296
1297 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1298
1299 static ssize_t show_cmd_log(struct device *d,
1300                             struct device_attribute *attr, char *buf)
1301 {
1302         struct ipw_priv *priv = dev_get_drvdata(d);
1303         u32 len = 0, i;
1304         if (!priv->cmdlog)
1305                 return 0;
1306         for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1307              (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1308              i = (i + 1) % priv->cmdlog_len) {
1309                 len +=
1310                     snprintf(buf + len, PAGE_SIZE - len,
1311                              "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1312                              priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1313                              priv->cmdlog[i].cmd.len);
1314                 len +=
1315                     snprintk_buf(buf + len, PAGE_SIZE - len,
1316                                  (u8 *) priv->cmdlog[i].cmd.param,
1317                                  priv->cmdlog[i].cmd.len);
1318                 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1319         }
1320         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1321         return len;
1322 }
1323
1324 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1325
1326 #ifdef CONFIG_IPW2200_PROMISCUOUS
1327 static void ipw_prom_free(struct ipw_priv *priv);
1328 static int ipw_prom_alloc(struct ipw_priv *priv);
1329 static ssize_t store_rtap_iface(struct device *d,
1330                          struct device_attribute *attr,
1331                          const char *buf, size_t count)
1332 {
1333         struct ipw_priv *priv = dev_get_drvdata(d);
1334         int rc = 0;
1335
1336         if (count < 1)
1337                 return -EINVAL;
1338
1339         switch (buf[0]) {
1340         case '0':
1341                 if (!rtap_iface)
1342                         return count;
1343
1344                 if (netif_running(priv->prom_net_dev)) {
1345                         IPW_WARNING("Interface is up.  Cannot unregister.\n");
1346                         return count;
1347                 }
1348
1349                 ipw_prom_free(priv);
1350                 rtap_iface = 0;
1351                 break;
1352
1353         case '1':
1354                 if (rtap_iface)
1355                         return count;
1356
1357                 rc = ipw_prom_alloc(priv);
1358                 if (!rc)
1359                         rtap_iface = 1;
1360                 break;
1361
1362         default:
1363                 return -EINVAL;
1364         }
1365
1366         if (rc) {
1367                 IPW_ERROR("Failed to register promiscuous network "
1368                           "device (error %d).\n", rc);
1369         }
1370
1371         return count;
1372 }
1373
1374 static ssize_t show_rtap_iface(struct device *d,
1375                         struct device_attribute *attr,
1376                         char *buf)
1377 {
1378         struct ipw_priv *priv = dev_get_drvdata(d);
1379         if (rtap_iface)
1380                 return sprintf(buf, "%s", priv->prom_net_dev->name);
1381         else {
1382                 buf[0] = '-';
1383                 buf[1] = '1';
1384                 buf[2] = '\0';
1385                 return 3;
1386         }
1387 }
1388
1389 static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1390                    store_rtap_iface);
1391
1392 static ssize_t store_rtap_filter(struct device *d,
1393                          struct device_attribute *attr,
1394                          const char *buf, size_t count)
1395 {
1396         struct ipw_priv *priv = dev_get_drvdata(d);
1397
1398         if (!priv->prom_priv) {
1399                 IPW_ERROR("Attempting to set filter without "
1400                           "rtap_iface enabled.\n");
1401                 return -EPERM;
1402         }
1403
1404         priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1405
1406         IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1407                        BIT_ARG16(priv->prom_priv->filter));
1408
1409         return count;
1410 }
1411
1412 static ssize_t show_rtap_filter(struct device *d,
1413                         struct device_attribute *attr,
1414                         char *buf)
1415 {
1416         struct ipw_priv *priv = dev_get_drvdata(d);
1417         return sprintf(buf, "0x%04X",
1418                        priv->prom_priv ? priv->prom_priv->filter : 0);
1419 }
1420
1421 static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1422                    store_rtap_filter);
1423 #endif
1424
1425 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1426                              char *buf)
1427 {
1428         struct ipw_priv *priv = dev_get_drvdata(d);
1429         return sprintf(buf, "%d\n", priv->ieee->scan_age);
1430 }
1431
1432 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1433                               const char *buf, size_t count)
1434 {
1435         struct ipw_priv *priv = dev_get_drvdata(d);
1436         struct net_device *dev = priv->net_dev;
1437         char buffer[] = "00000000";
1438         unsigned long len =
1439             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1440         unsigned long val;
1441         char *p = buffer;
1442
1443         IPW_DEBUG_INFO("enter\n");
1444
1445         strncpy(buffer, buf, len);
1446         buffer[len] = 0;
1447
1448         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1449                 p++;
1450                 if (p[0] == 'x' || p[0] == 'X')
1451                         p++;
1452                 val = simple_strtoul(p, &p, 16);
1453         } else
1454                 val = simple_strtoul(p, &p, 10);
1455         if (p == buffer) {
1456                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1457         } else {
1458                 priv->ieee->scan_age = val;
1459                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1460         }
1461
1462         IPW_DEBUG_INFO("exit\n");
1463         return len;
1464 }
1465
1466 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1467
1468 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1469                         char *buf)
1470 {
1471         struct ipw_priv *priv = dev_get_drvdata(d);
1472         return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1473 }
1474
1475 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1476                          const char *buf, size_t count)
1477 {
1478         struct ipw_priv *priv = dev_get_drvdata(d);
1479
1480         IPW_DEBUG_INFO("enter\n");
1481
1482         if (count == 0)
1483                 return 0;
1484
1485         if (*buf == 0) {
1486                 IPW_DEBUG_LED("Disabling LED control.\n");
1487                 priv->config |= CFG_NO_LED;
1488                 ipw_led_shutdown(priv);
1489         } else {
1490                 IPW_DEBUG_LED("Enabling LED control.\n");
1491                 priv->config &= ~CFG_NO_LED;
1492                 ipw_led_init(priv);
1493         }
1494
1495         IPW_DEBUG_INFO("exit\n");
1496         return count;
1497 }
1498
1499 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1500
1501 static ssize_t show_status(struct device *d,
1502                            struct device_attribute *attr, char *buf)
1503 {
1504         struct ipw_priv *p = d->driver_data;
1505         return sprintf(buf, "0x%08x\n", (int)p->status);
1506 }
1507
1508 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1509
1510 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1511                         char *buf)
1512 {
1513         struct ipw_priv *p = d->driver_data;
1514         return sprintf(buf, "0x%08x\n", (int)p->config);
1515 }
1516
1517 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1518
1519 static ssize_t show_nic_type(struct device *d,
1520                              struct device_attribute *attr, char *buf)
1521 {
1522         struct ipw_priv *priv = d->driver_data;
1523         return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1524 }
1525
1526 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1527
1528 static ssize_t show_ucode_version(struct device *d,
1529                                   struct device_attribute *attr, char *buf)
1530 {
1531         u32 len = sizeof(u32), tmp = 0;
1532         struct ipw_priv *p = d->driver_data;
1533
1534         if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1535                 return 0;
1536
1537         return sprintf(buf, "0x%08x\n", tmp);
1538 }
1539
1540 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1541
1542 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1543                         char *buf)
1544 {
1545         u32 len = sizeof(u32), tmp = 0;
1546         struct ipw_priv *p = d->driver_data;
1547
1548         if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1549                 return 0;
1550
1551         return sprintf(buf, "0x%08x\n", tmp);
1552 }
1553
1554 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1555
1556 /*
1557  * Add a device attribute to view/control the delay between eeprom
1558  * operations.
1559  */
1560 static ssize_t show_eeprom_delay(struct device *d,
1561                                  struct device_attribute *attr, char *buf)
1562 {
1563         int n = ((struct ipw_priv *)d->driver_data)->eeprom_delay;
1564         return sprintf(buf, "%i\n", n);
1565 }
1566 static ssize_t store_eeprom_delay(struct device *d,
1567                                   struct device_attribute *attr,
1568                                   const char *buf, size_t count)
1569 {
1570         struct ipw_priv *p = d->driver_data;
1571         sscanf(buf, "%i", &p->eeprom_delay);
1572         return strnlen(buf, count);
1573 }
1574
1575 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1576                    show_eeprom_delay, store_eeprom_delay);
1577
1578 static ssize_t show_command_event_reg(struct device *d,
1579                                       struct device_attribute *attr, char *buf)
1580 {
1581         u32 reg = 0;
1582         struct ipw_priv *p = d->driver_data;
1583
1584         reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1585         return sprintf(buf, "0x%08x\n", reg);
1586 }
1587 static ssize_t store_command_event_reg(struct device *d,
1588                                        struct device_attribute *attr,
1589                                        const char *buf, size_t count)
1590 {
1591         u32 reg;
1592         struct ipw_priv *p = d->driver_data;
1593
1594         sscanf(buf, "%x", &reg);
1595         ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1596         return strnlen(buf, count);
1597 }
1598
1599 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1600                    show_command_event_reg, store_command_event_reg);
1601
1602 static ssize_t show_mem_gpio_reg(struct device *d,
1603                                  struct device_attribute *attr, char *buf)
1604 {
1605         u32 reg = 0;
1606         struct ipw_priv *p = d->driver_data;
1607
1608         reg = ipw_read_reg32(p, 0x301100);
1609         return sprintf(buf, "0x%08x\n", reg);
1610 }
1611 static ssize_t store_mem_gpio_reg(struct device *d,
1612                                   struct device_attribute *attr,
1613                                   const char *buf, size_t count)
1614 {
1615         u32 reg;
1616         struct ipw_priv *p = d->driver_data;
1617
1618         sscanf(buf, "%x", &reg);
1619         ipw_write_reg32(p, 0x301100, reg);
1620         return strnlen(buf, count);
1621 }
1622
1623 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1624                    show_mem_gpio_reg, store_mem_gpio_reg);
1625
1626 static ssize_t show_indirect_dword(struct device *d,
1627                                    struct device_attribute *attr, char *buf)
1628 {
1629         u32 reg = 0;
1630         struct ipw_priv *priv = d->driver_data;
1631
1632         if (priv->status & STATUS_INDIRECT_DWORD)
1633                 reg = ipw_read_reg32(priv, priv->indirect_dword);
1634         else
1635                 reg = 0;
1636
1637         return sprintf(buf, "0x%08x\n", reg);
1638 }
1639 static ssize_t store_indirect_dword(struct device *d,
1640                                     struct device_attribute *attr,
1641                                     const char *buf, size_t count)
1642 {
1643         struct ipw_priv *priv = d->driver_data;
1644
1645         sscanf(buf, "%x", &priv->indirect_dword);
1646         priv->status |= STATUS_INDIRECT_DWORD;
1647         return strnlen(buf, count);
1648 }
1649
1650 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1651                    show_indirect_dword, store_indirect_dword);
1652
1653 static ssize_t show_indirect_byte(struct device *d,
1654                                   struct device_attribute *attr, char *buf)
1655 {
1656         u8 reg = 0;
1657         struct ipw_priv *priv = d->driver_data;
1658
1659         if (priv->status & STATUS_INDIRECT_BYTE)
1660                 reg = ipw_read_reg8(priv, priv->indirect_byte);
1661         else
1662                 reg = 0;
1663
1664         return sprintf(buf, "0x%02x\n", reg);
1665 }
1666 static ssize_t store_indirect_byte(struct device *d,
1667                                    struct device_attribute *attr,
1668                                    const char *buf, size_t count)
1669 {
1670         struct ipw_priv *priv = d->driver_data;
1671
1672         sscanf(buf, "%x", &priv->indirect_byte);
1673         priv->status |= STATUS_INDIRECT_BYTE;
1674         return strnlen(buf, count);
1675 }
1676
1677 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1678                    show_indirect_byte, store_indirect_byte);
1679
1680 static ssize_t show_direct_dword(struct device *d,
1681                                  struct device_attribute *attr, char *buf)
1682 {
1683         u32 reg = 0;
1684         struct ipw_priv *priv = d->driver_data;
1685
1686         if (priv->status & STATUS_DIRECT_DWORD)
1687                 reg = ipw_read32(priv, priv->direct_dword);
1688         else
1689                 reg = 0;
1690
1691         return sprintf(buf, "0x%08x\n", reg);
1692 }
1693 static ssize_t store_direct_dword(struct device *d,
1694                                   struct device_attribute *attr,
1695                                   const char *buf, size_t count)
1696 {
1697         struct ipw_priv *priv = d->driver_data;
1698
1699         sscanf(buf, "%x", &priv->direct_dword);
1700         priv->status |= STATUS_DIRECT_DWORD;
1701         return strnlen(buf, count);
1702 }
1703
1704 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1705                    show_direct_dword, store_direct_dword);
1706
1707 static int rf_kill_active(struct ipw_priv *priv)
1708 {
1709         if (0 == (ipw_read32(priv, 0x30) & 0x10000))
1710                 priv->status |= STATUS_RF_KILL_HW;
1711         else
1712                 priv->status &= ~STATUS_RF_KILL_HW;
1713
1714         return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1715 }
1716
1717 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1718                             char *buf)
1719 {
1720         /* 0 - RF kill not enabled
1721            1 - SW based RF kill active (sysfs)
1722            2 - HW based RF kill active
1723            3 - Both HW and SW baed RF kill active */
1724         struct ipw_priv *priv = d->driver_data;
1725         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1726             (rf_kill_active(priv) ? 0x2 : 0x0);
1727         return sprintf(buf, "%i\n", val);
1728 }
1729
1730 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1731 {
1732         if ((disable_radio ? 1 : 0) ==
1733             ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1734                 return 0;
1735
1736         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
1737                           disable_radio ? "OFF" : "ON");
1738
1739         if (disable_radio) {
1740                 priv->status |= STATUS_RF_KILL_SW;
1741
1742                 if (priv->workqueue)
1743                         cancel_delayed_work(&priv->request_scan);
1744                 queue_work(priv->workqueue, &priv->down);
1745         } else {
1746                 priv->status &= ~STATUS_RF_KILL_SW;
1747                 if (rf_kill_active(priv)) {
1748                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1749                                           "disabled by HW switch\n");
1750                         /* Make sure the RF_KILL check timer is running */
1751                         cancel_delayed_work(&priv->rf_kill);
1752                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
1753                                            2 * HZ);
1754                 } else
1755                         queue_work(priv->workqueue, &priv->up);
1756         }
1757
1758         return 1;
1759 }
1760
1761 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1762                              const char *buf, size_t count)
1763 {
1764         struct ipw_priv *priv = d->driver_data;
1765
1766         ipw_radio_kill_sw(priv, buf[0] == '1');
1767
1768         return count;
1769 }
1770
1771 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1772
1773 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1774                                char *buf)
1775 {
1776         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1777         int pos = 0, len = 0;
1778         if (priv->config & CFG_SPEED_SCAN) {
1779                 while (priv->speed_scan[pos] != 0)
1780                         len += sprintf(&buf[len], "%d ",
1781                                        priv->speed_scan[pos++]);
1782                 return len + sprintf(&buf[len], "\n");
1783         }
1784
1785         return sprintf(buf, "0\n");
1786 }
1787
1788 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1789                                 const char *buf, size_t count)
1790 {
1791         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1792         int channel, pos = 0;
1793         const char *p = buf;
1794
1795         /* list of space separated channels to scan, optionally ending with 0 */
1796         while ((channel = simple_strtol(p, NULL, 0))) {
1797                 if (pos == MAX_SPEED_SCAN - 1) {
1798                         priv->speed_scan[pos] = 0;
1799                         break;
1800                 }
1801
1802                 if (ieee80211_is_valid_channel(priv->ieee, channel))
1803                         priv->speed_scan[pos++] = channel;
1804                 else
1805                         IPW_WARNING("Skipping invalid channel request: %d\n",
1806                                     channel);
1807                 p = strchr(p, ' ');
1808                 if (!p)
1809                         break;
1810                 while (*p == ' ' || *p == '\t')
1811                         p++;
1812         }
1813
1814         if (pos == 0)
1815                 priv->config &= ~CFG_SPEED_SCAN;
1816         else {
1817                 priv->speed_scan_pos = 0;
1818                 priv->config |= CFG_SPEED_SCAN;
1819         }
1820
1821         return count;
1822 }
1823
1824 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1825                    store_speed_scan);
1826
1827 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1828                               char *buf)
1829 {
1830         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1831         return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1832 }
1833
1834 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1835                                const char *buf, size_t count)
1836 {
1837         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1838         if (buf[0] == '1')
1839                 priv->config |= CFG_NET_STATS;
1840         else
1841                 priv->config &= ~CFG_NET_STATS;
1842
1843         return count;
1844 }
1845
1846 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1847                    show_net_stats, store_net_stats);
1848
1849 static void notify_wx_assoc_event(struct ipw_priv *priv)
1850 {
1851         union iwreq_data wrqu;
1852         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1853         if (priv->status & STATUS_ASSOCIATED)
1854                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1855         else
1856                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1857         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1858 }
1859
1860 static void ipw_irq_tasklet(struct ipw_priv *priv)
1861 {
1862         u32 inta, inta_mask, handled = 0;
1863         unsigned long flags;
1864         int rc = 0;
1865
1866         spin_lock_irqsave(&priv->irq_lock, flags);
1867
1868         inta = ipw_read32(priv, IPW_INTA_RW);
1869         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1870         inta &= (IPW_INTA_MASK_ALL & inta_mask);
1871
1872         /* Add any cached INTA values that need to be handled */
1873         inta |= priv->isr_inta;
1874
1875         spin_unlock_irqrestore(&priv->irq_lock, flags);
1876
1877         spin_lock_irqsave(&priv->lock, flags);
1878
1879         /* handle all the justifications for the interrupt */
1880         if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1881                 ipw_rx(priv);
1882                 handled |= IPW_INTA_BIT_RX_TRANSFER;
1883         }
1884
1885         if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1886                 IPW_DEBUG_HC("Command completed.\n");
1887                 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1888                 priv->status &= ~STATUS_HCMD_ACTIVE;
1889                 wake_up_interruptible(&priv->wait_command_queue);
1890                 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1891         }
1892
1893         if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1894                 IPW_DEBUG_TX("TX_QUEUE_1\n");
1895                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1896                 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1897         }
1898
1899         if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1900                 IPW_DEBUG_TX("TX_QUEUE_2\n");
1901                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1902                 handled |= IPW_INTA_BIT_TX_QUEUE_2;
1903         }
1904
1905         if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
1906                 IPW_DEBUG_TX("TX_QUEUE_3\n");
1907                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
1908                 handled |= IPW_INTA_BIT_TX_QUEUE_3;
1909         }
1910
1911         if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
1912                 IPW_DEBUG_TX("TX_QUEUE_4\n");
1913                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
1914                 handled |= IPW_INTA_BIT_TX_QUEUE_4;
1915         }
1916
1917         if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
1918                 IPW_WARNING("STATUS_CHANGE\n");
1919                 handled |= IPW_INTA_BIT_STATUS_CHANGE;
1920         }
1921
1922         if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
1923                 IPW_WARNING("TX_PERIOD_EXPIRED\n");
1924                 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
1925         }
1926
1927         if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
1928                 IPW_WARNING("HOST_CMD_DONE\n");
1929                 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
1930         }
1931
1932         if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
1933                 IPW_WARNING("FW_INITIALIZATION_DONE\n");
1934                 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
1935         }
1936
1937         if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
1938                 IPW_WARNING("PHY_OFF_DONE\n");
1939                 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
1940         }
1941
1942         if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
1943                 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
1944                 priv->status |= STATUS_RF_KILL_HW;
1945                 wake_up_interruptible(&priv->wait_command_queue);
1946                 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1947                 cancel_delayed_work(&priv->request_scan);
1948                 schedule_work(&priv->link_down);
1949                 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
1950                 handled |= IPW_INTA_BIT_RF_KILL_DONE;
1951         }
1952
1953         if (inta & IPW_INTA_BIT_FATAL_ERROR) {
1954                 IPW_WARNING("Firmware error detected.  Restarting.\n");
1955                 if (priv->error) {
1956                         IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
1957                         if (ipw_debug_level & IPW_DL_FW_ERRORS) {
1958                                 struct ipw_fw_error *error =
1959                                     ipw_alloc_error_log(priv);
1960                                 ipw_dump_error_log(priv, error);
1961                                 kfree(error);
1962                         }
1963                 } else {
1964                         priv->error = ipw_alloc_error_log(priv);
1965                         if (priv->error)
1966                                 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
1967                         else
1968                                 IPW_DEBUG_FW("Error allocating sysfs 'error' "
1969                                              "log.\n");
1970                         if (ipw_debug_level & IPW_DL_FW_ERRORS)
1971                                 ipw_dump_error_log(priv, priv->error);
1972                 }
1973
1974                 /* XXX: If hardware encryption is for WPA/WPA2,
1975                  * we have to notify the supplicant. */
1976                 if (priv->ieee->sec.encrypt) {
1977                         priv->status &= ~STATUS_ASSOCIATED;
1978                         notify_wx_assoc_event(priv);
1979                 }
1980
1981                 /* Keep the restart process from trying to send host
1982                  * commands by clearing the INIT status bit */
1983                 priv->status &= ~STATUS_INIT;
1984
1985                 /* Cancel currently queued command. */
1986                 priv->status &= ~STATUS_HCMD_ACTIVE;
1987                 wake_up_interruptible(&priv->wait_command_queue);
1988
1989                 queue_work(priv->workqueue, &priv->adapter_restart);
1990                 handled |= IPW_INTA_BIT_FATAL_ERROR;
1991         }
1992
1993         if (inta & IPW_INTA_BIT_PARITY_ERROR) {
1994                 IPW_ERROR("Parity error\n");
1995                 handled |= IPW_INTA_BIT_PARITY_ERROR;
1996         }
1997
1998         if (handled != inta) {
1999                 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2000         }
2001
2002         spin_unlock_irqrestore(&priv->lock, flags);
2003
2004         /* enable all interrupts */
2005         ipw_enable_interrupts(priv);
2006 }
2007
2008 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2009 static char *get_cmd_string(u8 cmd)
2010 {
2011         switch (cmd) {
2012                 IPW_CMD(HOST_COMPLETE);
2013                 IPW_CMD(POWER_DOWN);
2014                 IPW_CMD(SYSTEM_CONFIG);
2015                 IPW_CMD(MULTICAST_ADDRESS);
2016                 IPW_CMD(SSID);
2017                 IPW_CMD(ADAPTER_ADDRESS);
2018                 IPW_CMD(PORT_TYPE);
2019                 IPW_CMD(RTS_THRESHOLD);
2020                 IPW_CMD(FRAG_THRESHOLD);
2021                 IPW_CMD(POWER_MODE);
2022                 IPW_CMD(WEP_KEY);
2023                 IPW_CMD(TGI_TX_KEY);
2024                 IPW_CMD(SCAN_REQUEST);
2025                 IPW_CMD(SCAN_REQUEST_EXT);
2026                 IPW_CMD(ASSOCIATE);
2027                 IPW_CMD(SUPPORTED_RATES);
2028                 IPW_CMD(SCAN_ABORT);
2029                 IPW_CMD(TX_FLUSH);
2030                 IPW_CMD(QOS_PARAMETERS);
2031                 IPW_CMD(DINO_CONFIG);
2032                 IPW_CMD(RSN_CAPABILITIES);
2033                 IPW_CMD(RX_KEY);
2034                 IPW_CMD(CARD_DISABLE);
2035                 IPW_CMD(SEED_NUMBER);
2036                 IPW_CMD(TX_POWER);
2037                 IPW_CMD(COUNTRY_INFO);
2038                 IPW_CMD(AIRONET_INFO);
2039                 IPW_CMD(AP_TX_POWER);
2040                 IPW_CMD(CCKM_INFO);
2041                 IPW_CMD(CCX_VER_INFO);
2042                 IPW_CMD(SET_CALIBRATION);
2043                 IPW_CMD(SENSITIVITY_CALIB);
2044                 IPW_CMD(RETRY_LIMIT);
2045                 IPW_CMD(IPW_PRE_POWER_DOWN);
2046                 IPW_CMD(VAP_BEACON_TEMPLATE);
2047                 IPW_CMD(VAP_DTIM_PERIOD);
2048                 IPW_CMD(EXT_SUPPORTED_RATES);
2049                 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2050                 IPW_CMD(VAP_QUIET_INTERVALS);
2051                 IPW_CMD(VAP_CHANNEL_SWITCH);
2052                 IPW_CMD(VAP_MANDATORY_CHANNELS);
2053                 IPW_CMD(VAP_CELL_PWR_LIMIT);
2054                 IPW_CMD(VAP_CF_PARAM_SET);
2055                 IPW_CMD(VAP_SET_BEACONING_STATE);
2056                 IPW_CMD(MEASUREMENT);
2057                 IPW_CMD(POWER_CAPABILITY);
2058                 IPW_CMD(SUPPORTED_CHANNELS);
2059                 IPW_CMD(TPC_REPORT);
2060                 IPW_CMD(WME_INFO);
2061                 IPW_CMD(PRODUCTION_COMMAND);
2062         default:
2063                 return "UNKNOWN";
2064         }
2065 }
2066
2067 #define HOST_COMPLETE_TIMEOUT HZ
2068
2069 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2070 {
2071         int rc = 0;
2072         unsigned long flags;
2073
2074         spin_lock_irqsave(&priv->lock, flags);
2075         if (priv->status & STATUS_HCMD_ACTIVE) {
2076                 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2077                           get_cmd_string(cmd->cmd));
2078                 spin_unlock_irqrestore(&priv->lock, flags);
2079                 return -EAGAIN;
2080         }
2081
2082         priv->status |= STATUS_HCMD_ACTIVE;
2083
2084         if (priv->cmdlog) {
2085                 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2086                 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2087                 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2088                 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2089                        cmd->len);
2090                 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2091         }
2092
2093         IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2094                      get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2095                      priv->status);
2096
2097 #ifndef DEBUG_CMD_WEP_KEY
2098         if (cmd->cmd == IPW_CMD_WEP_KEY)
2099                 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2100         else
2101 #endif
2102                 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2103
2104         rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2105         if (rc) {
2106                 priv->status &= ~STATUS_HCMD_ACTIVE;
2107                 IPW_ERROR("Failed to send %s: Reason %d\n",
2108                           get_cmd_string(cmd->cmd), rc);
2109                 spin_unlock_irqrestore(&priv->lock, flags);
2110                 goto exit;
2111         }
2112         spin_unlock_irqrestore(&priv->lock, flags);
2113
2114         rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2115                                               !(priv->
2116                                                 status & STATUS_HCMD_ACTIVE),
2117                                               HOST_COMPLETE_TIMEOUT);
2118         if (rc == 0) {
2119                 spin_lock_irqsave(&priv->lock, flags);
2120                 if (priv->status & STATUS_HCMD_ACTIVE) {
2121                         IPW_ERROR("Failed to send %s: Command timed out.\n",
2122                                   get_cmd_string(cmd->cmd));
2123                         priv->status &= ~STATUS_HCMD_ACTIVE;
2124                         spin_unlock_irqrestore(&priv->lock, flags);
2125                         rc = -EIO;
2126                         goto exit;
2127                 }
2128                 spin_unlock_irqrestore(&priv->lock, flags);
2129         } else
2130                 rc = 0;
2131
2132         if (priv->status & STATUS_RF_KILL_HW) {
2133                 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2134                           get_cmd_string(cmd->cmd));
2135                 rc = -EIO;
2136                 goto exit;
2137         }
2138
2139       exit:
2140         if (priv->cmdlog) {
2141                 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2142                 priv->cmdlog_pos %= priv->cmdlog_len;
2143         }
2144         return rc;
2145 }
2146
2147 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2148 {
2149         struct host_cmd cmd = {
2150                 .cmd = command,
2151         };
2152
2153         return __ipw_send_cmd(priv, &cmd);
2154 }
2155
2156 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2157                             void *data)
2158 {
2159         struct host_cmd cmd = {
2160                 .cmd = command,
2161                 .len = len,
2162                 .param = data,
2163         };
2164
2165         return __ipw_send_cmd(priv, &cmd);
2166 }
2167
2168 static int ipw_send_host_complete(struct ipw_priv *priv)
2169 {
2170         if (!priv) {
2171                 IPW_ERROR("Invalid args\n");
2172                 return -1;
2173         }
2174
2175         return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2176 }
2177
2178 static int ipw_send_system_config(struct ipw_priv *priv)
2179 {
2180         return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2181                                 sizeof(priv->sys_config),
2182                                 &priv->sys_config);
2183 }
2184
2185 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2186 {
2187         if (!priv || !ssid) {
2188                 IPW_ERROR("Invalid args\n");
2189                 return -1;
2190         }
2191
2192         return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2193                                 ssid);
2194 }
2195
2196 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2197 {
2198         if (!priv || !mac) {
2199                 IPW_ERROR("Invalid args\n");
2200                 return -1;
2201         }
2202
2203         IPW_DEBUG_INFO("%s: Setting MAC to " MAC_FMT "\n",
2204                        priv->net_dev->name, MAC_ARG(mac));
2205
2206         return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2207 }
2208
2209 /*
2210  * NOTE: This must be executed from our workqueue as it results in udelay
2211  * being called which may corrupt the keyboard if executed on default
2212  * workqueue
2213  */
2214 static void ipw_adapter_restart(void *adapter)
2215 {
2216         struct ipw_priv *priv = adapter;
2217
2218         if (priv->status & STATUS_RF_KILL_MASK)
2219                 return;
2220
2221         ipw_down(priv);
2222
2223         if (priv->assoc_network &&
2224             (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2225                 ipw_remove_current_network(priv);
2226
2227         if (ipw_up(priv)) {
2228                 IPW_ERROR("Failed to up device\n");
2229                 return;
2230         }
2231 }
2232
2233 static void ipw_bg_adapter_restart(void *data)
2234 {
2235         struct ipw_priv *priv = data;
2236         mutex_lock(&priv->mutex);
2237         ipw_adapter_restart(data);
2238         mutex_unlock(&priv->mutex);
2239 }
2240
2241 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2242
2243 static void ipw_scan_check(void *data)
2244 {
2245         struct ipw_priv *priv = data;
2246         if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
2247                 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2248                                "adapter after (%dms).\n",
2249                                jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2250                 queue_work(priv->workqueue, &priv->adapter_restart);
2251         }
2252 }
2253
2254 static void ipw_bg_scan_check(void *data)
2255 {
2256         struct ipw_priv *priv = data;
2257         mutex_lock(&priv->mutex);
2258         ipw_scan_check(data);
2259         mutex_unlock(&priv->mutex);
2260 }
2261
2262 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2263                                      struct ipw_scan_request_ext *request)
2264 {
2265         return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2266                                 sizeof(*request), request);
2267 }
2268
2269 static int ipw_send_scan_abort(struct ipw_priv *priv)
2270 {
2271         if (!priv) {
2272                 IPW_ERROR("Invalid args\n");
2273                 return -1;
2274         }
2275
2276         return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2277 }
2278
2279 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2280 {
2281         struct ipw_sensitivity_calib calib = {
2282                 .beacon_rssi_raw = cpu_to_le16(sens),
2283         };
2284
2285         return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2286                                 &calib);
2287 }
2288
2289 static int ipw_send_associate(struct ipw_priv *priv,
2290                               struct ipw_associate *associate)
2291 {
2292         struct ipw_associate tmp_associate;
2293
2294         if (!priv || !associate) {
2295                 IPW_ERROR("Invalid args\n");
2296                 return -1;
2297         }
2298
2299         memcpy(&tmp_associate, associate, sizeof(*associate));
2300         tmp_associate.policy_support =
2301             cpu_to_le16(tmp_associate.policy_support);
2302         tmp_associate.assoc_tsf_msw = cpu_to_le32(tmp_associate.assoc_tsf_msw);
2303         tmp_associate.assoc_tsf_lsw = cpu_to_le32(tmp_associate.assoc_tsf_lsw);
2304         tmp_associate.capability = cpu_to_le16(tmp_associate.capability);
2305         tmp_associate.listen_interval =
2306             cpu_to_le16(tmp_associate.listen_interval);
2307         tmp_associate.beacon_interval =
2308             cpu_to_le16(tmp_associate.beacon_interval);
2309         tmp_associate.atim_window = cpu_to_le16(tmp_associate.atim_window);
2310
2311         return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(tmp_associate),
2312                                 &tmp_associate);
2313 }
2314
2315 static int ipw_send_supported_rates(struct ipw_priv *priv,
2316                                     struct ipw_supported_rates *rates)
2317 {
2318         if (!priv || !rates) {
2319                 IPW_ERROR("Invalid args\n");
2320                 return -1;
2321         }
2322
2323         return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2324                                 rates);
2325 }
2326
2327 static int ipw_set_random_seed(struct ipw_priv *priv)
2328 {
2329         u32 val;
2330
2331         if (!priv) {
2332                 IPW_ERROR("Invalid args\n");
2333                 return -1;
2334         }
2335
2336         get_random_bytes(&val, sizeof(val));
2337
2338         return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2339 }
2340
2341 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2342 {
2343         if (!priv) {
2344                 IPW_ERROR("Invalid args\n");
2345                 return -1;
2346         }
2347
2348         phy_off = cpu_to_le32(phy_off);
2349         return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(phy_off),
2350                                 &phy_off);
2351 }
2352
2353 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2354 {
2355         if (!priv || !power) {
2356                 IPW_ERROR("Invalid args\n");
2357                 return -1;
2358         }
2359
2360         return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2361 }
2362
2363 static int ipw_set_tx_power(struct ipw_priv *priv)
2364 {
2365         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
2366         struct ipw_tx_power tx_power;
2367         s8 max_power;
2368         int i;
2369
2370         memset(&tx_power, 0, sizeof(tx_power));
2371
2372         /* configure device for 'G' band */
2373         tx_power.ieee_mode = IPW_G_MODE;
2374         tx_power.num_channels = geo->bg_channels;
2375         for (i = 0; i < geo->bg_channels; i++) {
2376                 max_power = geo->bg[i].max_power;
2377                 tx_power.channels_tx_power[i].channel_number =
2378                     geo->bg[i].channel;
2379                 tx_power.channels_tx_power[i].tx_power = max_power ?
2380                     min(max_power, priv->tx_power) : priv->tx_power;
2381         }
2382         if (ipw_send_tx_power(priv, &tx_power))
2383                 return -EIO;
2384
2385         /* configure device to also handle 'B' band */
2386         tx_power.ieee_mode = IPW_B_MODE;
2387         if (ipw_send_tx_power(priv, &tx_power))
2388                 return -EIO;
2389
2390         /* configure device to also handle 'A' band */
2391         if (priv->ieee->abg_true) {
2392                 tx_power.ieee_mode = IPW_A_MODE;
2393                 tx_power.num_channels = geo->a_channels;
2394                 for (i = 0; i < tx_power.num_channels; i++) {
2395                         max_power = geo->a[i].max_power;
2396                         tx_power.channels_tx_power[i].channel_number =
2397                             geo->a[i].channel;
2398                         tx_power.channels_tx_power[i].tx_power = max_power ?
2399                             min(max_power, priv->tx_power) : priv->tx_power;
2400                 }
2401                 if (ipw_send_tx_power(priv, &tx_power))
2402                         return -EIO;
2403         }
2404         return 0;
2405 }
2406
2407 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2408 {
2409         struct ipw_rts_threshold rts_threshold = {
2410                 .rts_threshold = cpu_to_le16(rts),
2411         };
2412
2413         if (!priv) {
2414                 IPW_ERROR("Invalid args\n");
2415                 return -1;
2416         }
2417
2418         return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2419                                 sizeof(rts_threshold), &rts_threshold);
2420 }
2421
2422 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2423 {
2424         struct ipw_frag_threshold frag_threshold = {
2425                 .frag_threshold = cpu_to_le16(frag),
2426         };
2427
2428         if (!priv) {
2429                 IPW_ERROR("Invalid args\n");
2430                 return -1;
2431         }
2432
2433         return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2434                                 sizeof(frag_threshold), &frag_threshold);
2435 }
2436
2437 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2438 {
2439         u32 param;
2440
2441         if (!priv) {
2442                 IPW_ERROR("Invalid args\n");
2443                 return -1;
2444         }
2445
2446         /* If on battery, set to 3, if AC set to CAM, else user
2447          * level */
2448         switch (mode) {
2449         case IPW_POWER_BATTERY:
2450                 param = IPW_POWER_INDEX_3;
2451                 break;
2452         case IPW_POWER_AC:
2453                 param = IPW_POWER_MODE_CAM;
2454                 break;
2455         default:
2456                 param = mode;
2457                 break;
2458         }
2459
2460         param = cpu_to_le32(mode);
2461         return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2462                                 &param);
2463 }
2464
2465 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2466 {
2467         struct ipw_retry_limit retry_limit = {
2468                 .short_retry_limit = slimit,
2469                 .long_retry_limit = llimit
2470         };
2471
2472         if (!priv) {
2473                 IPW_ERROR("Invalid args\n");
2474                 return -1;
2475         }
2476
2477         return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2478                                 &retry_limit);
2479 }
2480
2481 /*
2482  * The IPW device contains a Microwire compatible EEPROM that stores
2483  * various data like the MAC address.  Usually the firmware has exclusive
2484  * access to the eeprom, but during device initialization (before the
2485  * device driver has sent the HostComplete command to the firmware) the
2486  * device driver has read access to the EEPROM by way of indirect addressing
2487  * through a couple of memory mapped registers.
2488  *
2489  * The following is a simplified implementation for pulling data out of the
2490  * the eeprom, along with some helper functions to find information in
2491  * the per device private data's copy of the eeprom.
2492  *
2493  * NOTE: To better understand how these functions work (i.e what is a chip
2494  *       select and why do have to keep driving the eeprom clock?), read
2495  *       just about any data sheet for a Microwire compatible EEPROM.
2496  */
2497
2498 /* write a 32 bit value into the indirect accessor register */
2499 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2500 {
2501         ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2502
2503         /* the eeprom requires some time to complete the operation */
2504         udelay(p->eeprom_delay);
2505
2506         return;
2507 }
2508
2509 /* perform a chip select operation */
2510 static void eeprom_cs(struct ipw_priv *priv)
2511 {
2512         eeprom_write_reg(priv, 0);
2513         eeprom_write_reg(priv, EEPROM_BIT_CS);
2514         eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2515         eeprom_write_reg(priv, EEPROM_BIT_CS);
2516 }
2517
2518 /* perform a chip select operation */
2519 static void eeprom_disable_cs(struct ipw_priv *priv)
2520 {
2521         eeprom_write_reg(priv, EEPROM_BIT_CS);
2522         eeprom_write_reg(priv, 0);
2523         eeprom_write_reg(priv, EEPROM_BIT_SK);
2524 }
2525
2526 /* push a single bit down to the eeprom */
2527 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2528 {
2529         int d = (bit ? EEPROM_BIT_DI : 0);
2530         eeprom_write_reg(p, EEPROM_BIT_CS | d);
2531         eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2532 }
2533
2534 /* push an opcode followed by an address down to the eeprom */
2535 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2536 {
2537         int i;
2538
2539         eeprom_cs(priv);
2540         eeprom_write_bit(priv, 1);
2541         eeprom_write_bit(priv, op & 2);
2542         eeprom_write_bit(priv, op & 1);
2543         for (i = 7; i >= 0; i--) {
2544                 eeprom_write_bit(priv, addr & (1 << i));
2545         }
2546 }
2547
2548 /* pull 16 bits off the eeprom, one bit at a time */
2549 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2550 {
2551         int i;
2552         u16 r = 0;
2553
2554         /* Send READ Opcode */
2555         eeprom_op(priv, EEPROM_CMD_READ, addr);
2556
2557         /* Send dummy bit */
2558         eeprom_write_reg(priv, EEPROM_BIT_CS);
2559
2560         /* Read the byte off the eeprom one bit at a time */
2561         for (i = 0; i < 16; i++) {
2562                 u32 data = 0;
2563                 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2564                 eeprom_write_reg(priv, EEPROM_BIT_CS);
2565                 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2566                 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2567         }
2568
2569         /* Send another dummy bit */
2570         eeprom_write_reg(priv, 0);
2571         eeprom_disable_cs(priv);
2572
2573         return r;
2574 }
2575
2576 /* helper function for pulling the mac address out of the private */
2577 /* data's copy of the eeprom data                                 */
2578 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2579 {
2580         memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2581 }
2582
2583 /*
2584  * Either the device driver (i.e. the host) or the firmware can
2585  * load eeprom data into the designated region in SRAM.  If neither
2586  * happens then the FW will shutdown with a fatal error.
2587  *
2588  * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2589  * bit needs region of shared SRAM needs to be non-zero.
2590  */
2591 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2592 {
2593         int i;
2594         u16 *eeprom = (u16 *) priv->eeprom;
2595
2596         IPW_DEBUG_TRACE(">>\n");
2597
2598         /* read entire contents of eeprom into private buffer */
2599         for (i = 0; i < 128; i++)
2600                 eeprom[i] = le16_to_cpu(eeprom_read_u16(priv, (u8) i));
2601
2602         /*
2603            If the data looks correct, then copy it to our private
2604            copy.  Otherwise let the firmware know to perform the operation
2605            on its own.
2606          */
2607         if (priv->eeprom[EEPROM_VERSION] != 0) {
2608                 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2609
2610                 /* write the eeprom data to sram */
2611                 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2612                         ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2613
2614                 /* Do not load eeprom data on fatal error or suspend */
2615                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2616         } else {
2617                 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2618
2619                 /* Load eeprom data on fatal error or suspend */
2620                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2621         }
2622
2623         IPW_DEBUG_TRACE("<<\n");
2624 }
2625
2626 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2627 {
2628         count >>= 2;
2629         if (!count)
2630                 return;
2631         _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2632         while (count--)
2633                 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2634 }
2635
2636 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2637 {
2638         ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2639                         CB_NUMBER_OF_ELEMENTS_SMALL *
2640                         sizeof(struct command_block));
2641 }
2642
2643 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2644 {                               /* start dma engine but no transfers yet */
2645
2646         IPW_DEBUG_FW(">> : \n");
2647
2648         /* Start the dma */
2649         ipw_fw_dma_reset_command_blocks(priv);
2650
2651         /* Write CB base address */
2652         ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2653
2654         IPW_DEBUG_FW("<< : \n");
2655         return 0;
2656 }
2657
2658 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2659 {
2660         u32 control = 0;
2661
2662         IPW_DEBUG_FW(">> :\n");
2663
2664         /* set the Stop and Abort bit */
2665         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2666         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2667         priv->sram_desc.last_cb_index = 0;
2668
2669         IPW_DEBUG_FW("<< \n");
2670 }
2671
2672 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2673                                           struct command_block *cb)
2674 {
2675         u32 address =
2676             IPW_SHARED_SRAM_DMA_CONTROL +
2677             (sizeof(struct command_block) * index);
2678         IPW_DEBUG_FW(">> :\n");
2679
2680         ipw_write_indirect(priv, address, (u8 *) cb,
2681                            (int)sizeof(struct command_block));
2682
2683         IPW_DEBUG_FW("<< :\n");
2684         return 0;
2685
2686 }
2687
2688 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2689 {
2690         u32 control = 0;
2691         u32 index = 0;
2692
2693         IPW_DEBUG_FW(">> :\n");
2694
2695         for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2696                 ipw_fw_dma_write_command_block(priv, index,
2697                                                &priv->sram_desc.cb_list[index]);
2698
2699         /* Enable the DMA in the CSR register */
2700         ipw_clear_bit(priv, IPW_RESET_REG,
2701                       IPW_RESET_REG_MASTER_DISABLED |
2702                       IPW_RESET_REG_STOP_MASTER);
2703
2704         /* Set the Start bit. */
2705         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2706         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2707
2708         IPW_DEBUG_FW("<< :\n");
2709         return 0;
2710 }
2711
2712 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2713 {
2714         u32 address;
2715         u32 register_value = 0;
2716         u32 cb_fields_address = 0;
2717
2718         IPW_DEBUG_FW(">> :\n");
2719         address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2720         IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);
2721
2722         /* Read the DMA Controlor register */
2723         register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2724         IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x \n", register_value);
2725
2726         /* Print the CB values */
2727         cb_fields_address = address;
2728         register_value = ipw_read_reg32(priv, cb_fields_address);
2729         IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);
2730
2731         cb_fields_address += sizeof(u32);
2732         register_value = ipw_read_reg32(priv, cb_fields_address);
2733         IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);
2734
2735         cb_fields_address += sizeof(u32);
2736         register_value = ipw_read_reg32(priv, cb_fields_address);
2737         IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
2738                           register_value);
2739
2740         cb_fields_address += sizeof(u32);
2741         register_value = ipw_read_reg32(priv, cb_fields_address);
2742         IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);
2743
2744         IPW_DEBUG_FW(">> :\n");
2745 }
2746
2747 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2748 {
2749         u32 current_cb_address = 0;
2750         u32 current_cb_index = 0;
2751
2752         IPW_DEBUG_FW("<< :\n");
2753         current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2754
2755         current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2756             sizeof(struct command_block);
2757
2758         IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
2759                           current_cb_index, current_cb_address);
2760
2761         IPW_DEBUG_FW(">> :\n");
2762         return current_cb_index;
2763
2764 }
2765
2766 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2767                                         u32 src_address,
2768                                         u32 dest_address,
2769                                         u32 length,
2770                                         int interrupt_enabled, int is_last)
2771 {
2772
2773         u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2774             CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2775             CB_DEST_SIZE_LONG;
2776         struct command_block *cb;
2777         u32 last_cb_element = 0;
2778
2779         IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2780                           src_address, dest_address, length);
2781
2782         if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2783                 return -1;
2784
2785         last_cb_element = priv->sram_desc.last_cb_index;
2786         cb = &priv->sram_desc.cb_list[last_cb_element];
2787         priv->sram_desc.last_cb_index++;
2788
2789         /* Calculate the new CB control word */
2790         if (interrupt_enabled)
2791                 control |= CB_INT_ENABLED;
2792
2793         if (is_last)
2794                 control |= CB_LAST_VALID;
2795
2796         control |= length;
2797
2798         /* Calculate the CB Element's checksum value */
2799         cb->status = control ^ src_address ^ dest_address;
2800
2801         /* Copy the Source and Destination addresses */
2802         cb->dest_addr = dest_address;
2803         cb->source_addr = src_address;
2804
2805         /* Copy the Control Word last */
2806         cb->control = control;
2807
2808         return 0;
2809 }
2810
2811 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv,
2812                                  u32 src_phys, u32 dest_address, u32 length)
2813 {
2814         u32 bytes_left = length;
2815         u32 src_offset = 0;
2816         u32 dest_offset = 0;
2817         int status = 0;
2818         IPW_DEBUG_FW(">> \n");
2819         IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n",
2820                           src_phys, dest_address, length);
2821         while (bytes_left > CB_MAX_LENGTH) {
2822                 status = ipw_fw_dma_add_command_block(priv,
2823                                                       src_phys + src_offset,
2824                                                       dest_address +
2825                                                       dest_offset,
2826                                                       CB_MAX_LENGTH, 0, 0);
2827                 if (status) {
2828                         IPW_DEBUG_FW_INFO(": Failed\n");
2829                         return -1;
2830                 } else
2831                         IPW_DEBUG_FW_INFO(": Added new cb\n");
2832
2833                 src_offset += CB_MAX_LENGTH;
2834                 dest_offset += CB_MAX_LENGTH;
2835                 bytes_left -= CB_MAX_LENGTH;
2836         }
2837
2838         /* add the buffer tail */
2839         if (bytes_left > 0) {
2840                 status =
2841                     ipw_fw_dma_add_command_block(priv, src_phys + src_offset,
2842                                                  dest_address + dest_offset,
2843                                                  bytes_left, 0, 0);
2844                 if (status) {
2845                         IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n");
2846                         return -1;
2847                 } else
2848                         IPW_DEBUG_FW_INFO
2849                             (": Adding new cb - the buffer tail\n");
2850         }
2851
2852         IPW_DEBUG_FW("<< \n");
2853         return 0;
2854 }
2855
2856 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2857 {
2858         u32 current_index = 0, previous_index;
2859         u32 watchdog = 0;
2860
2861         IPW_DEBUG_FW(">> : \n");
2862
2863         current_index = ipw_fw_dma_command_block_index(priv);
2864         IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2865                           (int)priv->sram_desc.last_cb_index);
2866
2867         while (current_index < priv->sram_desc.last_cb_index) {
2868                 udelay(50);
2869                 previous_index = current_index;
2870                 current_index = ipw_fw_dma_command_block_index(priv);
2871
2872                 if (previous_index < current_index) {
2873                         watchdog = 0;
2874                         continue;
2875                 }
2876                 if (++watchdog > 400) {
2877                         IPW_DEBUG_FW_INFO("Timeout\n");
2878                         ipw_fw_dma_dump_command_block(priv);
2879                         ipw_fw_dma_abort(priv);
2880                         return -1;
2881                 }
2882         }
2883
2884         ipw_fw_dma_abort(priv);
2885
2886         /*Disable the DMA in the CSR register */
2887         ipw_set_bit(priv, IPW_RESET_REG,
2888                     IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2889
2890         IPW_DEBUG_FW("<< dmaWaitSync \n");
2891         return 0;
2892 }
2893
2894 static void ipw_remove_current_network(struct ipw_priv *priv)
2895 {
2896         struct list_head *element, *safe;
2897         struct ieee80211_network *network = NULL;
2898         unsigned long flags;
2899
2900         spin_lock_irqsave(&priv->ieee->lock, flags);
2901         list_for_each_safe(element, safe, &priv->ieee->network_list) {
2902                 network = list_entry(element, struct ieee80211_network, list);
2903                 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
2904                         list_del(element);
2905                         list_add_tail(&network->list,
2906                                       &priv->ieee->network_free_list);
2907                 }
2908         }
2909         spin_unlock_irqrestore(&priv->ieee->lock, flags);
2910 }
2911
2912 /**
2913  * Check that card is still alive.
2914  * Reads debug register from domain0.
2915  * If card is present, pre-defined value should
2916  * be found there.
2917  *
2918  * @param priv
2919  * @return 1 if card is present, 0 otherwise
2920  */
2921 static inline int ipw_alive(struct ipw_priv *priv)
2922 {
2923         return ipw_read32(priv, 0x90) == 0xd55555d5;
2924 }
2925
2926 /* timeout in msec, attempted in 10-msec quanta */
2927 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
2928                                int timeout)
2929 {
2930         int i = 0;
2931
2932         do {
2933                 if ((ipw_read32(priv, addr) & mask) == mask)
2934                         return i;
2935                 mdelay(10);
2936                 i += 10;
2937         } while (i < timeout);
2938
2939         return -ETIME;
2940 }
2941
2942 /* These functions load the firmware and micro code for the operation of
2943  * the ipw hardware.  It assumes the buffer has all the bits for the
2944  * image and the caller is handling the memory allocation and clean up.
2945  */
2946
2947 static int ipw_stop_master(struct ipw_priv *priv)
2948 {
2949         int rc;
2950
2951         IPW_DEBUG_TRACE(">> \n");
2952         /* stop master. typical delay - 0 */
2953         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
2954
2955         /* timeout is in msec, polled in 10-msec quanta */
2956         rc = ipw_poll_bit(priv, IPW_RESET_REG,
2957                           IPW_RESET_REG_MASTER_DISABLED, 100);
2958         if (rc < 0) {
2959                 IPW_ERROR("wait for stop master failed after 100ms\n");
2960                 return -1;
2961         }
2962
2963         IPW_DEBUG_INFO("stop master %dms\n", rc);
2964
2965         return rc;
2966 }
2967
2968 static void ipw_arc_release(struct ipw_priv *priv)
2969 {
2970         IPW_DEBUG_TRACE(">> \n");
2971         mdelay(5);
2972
2973         ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
2974
2975         /* no one knows timing, for safety add some delay */
2976         mdelay(5);
2977 }
2978
2979 struct fw_chunk {
2980         u32 address;
2981         u32 length;
2982 };
2983
2984 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
2985 {
2986         int rc = 0, i, addr;
2987         u8 cr = 0;
2988         u16 *image;
2989
2990         image = (u16 *) data;
2991
2992         IPW_DEBUG_TRACE(">> \n");
2993
2994         rc = ipw_stop_master(priv);
2995
2996         if (rc < 0)
2997                 return rc;
2998
2999         for (addr = IPW_SHARED_LOWER_BOUND;
3000              addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3001                 ipw_write32(priv, addr, 0);
3002         }
3003
3004         /* no ucode (yet) */
3005         memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3006         /* destroy DMA queues */
3007         /* reset sequence */
3008
3009         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3010         ipw_arc_release(priv);
3011         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3012         mdelay(1);
3013
3014         /* reset PHY */
3015         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3016         mdelay(1);
3017
3018         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3019         mdelay(1);
3020
3021         /* enable ucode store */
3022         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3023         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3024         mdelay(1);
3025
3026         /* write ucode */
3027         /**
3028          * @bug
3029          * Do NOT set indirect address register once and then
3030          * store data to indirect data register in the loop.
3031          * It seems very reasonable, but in this case DINO do not
3032          * accept ucode. It is essential to set address each time.
3033          */
3034         /* load new ipw uCode */
3035         for (i = 0; i < len / 2; i++)
3036                 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3037                                 cpu_to_le16(image[i]));
3038
3039         /* enable DINO */
3040         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3041         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3042
3043         /* this is where the igx / win driver deveates from the VAP driver. */
3044
3045         /* wait for alive response */
3046         for (i = 0; i < 100; i++) {
3047                 /* poll for incoming data */
3048                 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3049                 if (cr & DINO_RXFIFO_DATA)
3050                         break;
3051                 mdelay(1);
3052         }
3053
3054         if (cr & DINO_RXFIFO_DATA) {
3055                 /* alive_command_responce size is NOT multiple of 4 */
3056                 u32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3057
3058                 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3059                         response_buffer[i] =
3060                             le32_to_cpu(ipw_read_reg32(priv,
3061                                                        IPW_BASEBAND_RX_FIFO_READ));
3062                 memcpy(&priv->dino_alive, response_buffer,
3063                        sizeof(priv->dino_alive));
3064                 if (priv->dino_alive.alive_command == 1
3065                     && priv->dino_alive.ucode_valid == 1) {
3066                         rc = 0;
3067                         IPW_DEBUG_INFO
3068                             ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3069                              "of %02d/%02d/%02d %02d:%02d\n",
3070                              priv->dino_alive.software_revision,
3071                              priv->dino_alive.software_revision,
3072                              priv->dino_alive.device_identifier,
3073                              priv->dino_alive.device_identifier,
3074                              priv->dino_alive.time_stamp[0],
3075                              priv->dino_alive.time_stamp[1],
3076                              priv->dino_alive.time_stamp[2],
3077                              priv->dino_alive.time_stamp[3],
3078                              priv->dino_alive.time_stamp[4]);
3079                 } else {
3080                         IPW_DEBUG_INFO("Microcode is not alive\n");
3081                         rc = -EINVAL;
3082                 }
3083         } else {
3084                 IPW_DEBUG_INFO("No alive response from DINO\n");
3085                 rc = -ETIME;
3086         }
3087
3088         /* disable DINO, otherwise for some reason
3089            firmware have problem getting alive resp. */
3090         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3091
3092         return rc;
3093 }
3094
3095 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3096 {
3097         int rc = -1;
3098         int offset = 0;
3099         struct fw_chunk *chunk;
3100         dma_addr_t shared_phys;
3101         u8 *shared_virt;
3102
3103         IPW_DEBUG_TRACE("<< : \n");
3104         shared_virt = pci_alloc_consistent(priv->pci_dev, len, &shared_phys);
3105
3106         if (!shared_virt)
3107                 return -ENOMEM;
3108
3109         memmove(shared_virt, data, len);
3110
3111         /* Start the Dma */
3112         rc = ipw_fw_dma_enable(priv);
3113
3114         if (priv->sram_desc.last_cb_index > 0) {
3115                 /* the DMA is already ready this would be a bug. */
3116                 BUG();
3117                 goto out;
3118         }
3119
3120         do {
3121                 chunk = (struct fw_chunk *)(data + offset);
3122                 offset += sizeof(struct fw_chunk);
3123                 /* build DMA packet and queue up for sending */
3124                 /* dma to chunk->address, the chunk->length bytes from data +
3125                  * offeset*/
3126                 /* Dma loading */
3127                 rc = ipw_fw_dma_add_buffer(priv, shared_phys + offset,
3128                                            le32_to_cpu(chunk->address),
3129                                            le32_to_cpu(chunk->length));
3130                 if (rc) {
3131                         IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3132                         goto out;
3133                 }
3134
3135                 offset += le32_to_cpu(chunk->length);
3136         } while (offset < len);
3137
3138         /* Run the DMA and wait for the answer */
3139         rc = ipw_fw_dma_kick(priv);
3140         if (rc) {
3141                 IPW_ERROR("dmaKick Failed\n");
3142                 goto out;
3143         }
3144
3145         rc = ipw_fw_dma_wait(priv);
3146         if (rc) {
3147                 IPW_ERROR("dmaWaitSync Failed\n");
3148                 goto out;
3149         }
3150       out:
3151         pci_free_consistent(priv->pci_dev, len, shared_virt, shared_phys);
3152         return rc;
3153 }
3154
3155 /* stop nic */
3156 static int ipw_stop_nic(struct ipw_priv *priv)
3157 {
3158         int rc = 0;
3159
3160         /* stop */
3161         ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3162
3163         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3164                           IPW_RESET_REG_MASTER_DISABLED, 500);
3165         if (rc < 0) {
3166                 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3167                 return rc;
3168         }
3169
3170         ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3171
3172         return rc;
3173 }
3174
3175 static void ipw_start_nic(struct ipw_priv *priv)
3176 {
3177         IPW_DEBUG_TRACE(">>\n");
3178
3179         /* prvHwStartNic  release ARC */
3180         ipw_clear_bit(priv, IPW_RESET_REG,
3181                       IPW_RESET_REG_MASTER_DISABLED |
3182                       IPW_RESET_REG_STOP_MASTER |
3183                       CBD_RESET_REG_PRINCETON_RESET);
3184
3185         /* enable power management */
3186         ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3187                     IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3188
3189         IPW_DEBUG_TRACE("<<\n");
3190 }
3191
3192 static int ipw_init_nic(struct ipw_priv *priv)
3193 {
3194         int rc;
3195
3196         IPW_DEBUG_TRACE(">>\n");
3197         /* reset */
3198         /*prvHwInitNic */
3199         /* set "initialization complete" bit to move adapter to D0 state */
3200         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3201
3202         /* low-level PLL activation */
3203         ipw_write32(priv, IPW_READ_INT_REGISTER,
3204                     IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3205
3206         /* wait for clock stabilization */
3207         rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3208                           IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3209         if (rc < 0)
3210                 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3211
3212         /* assert SW reset */
3213         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3214
3215         udelay(10);
3216
3217         /* set "initialization complete" bit to move adapter to D0 state */
3218         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3219
3220         IPW_DEBUG_TRACE(">>\n");
3221         return 0;
3222 }
3223
3224 /* Call this function from process context, it will sleep in request_firmware.
3225  * Probe is an ok place to call this from.
3226  */
3227 static int ipw_reset_nic(struct ipw_priv *priv)
3228 {
3229         int rc = 0;
3230         unsigned long flags;
3231
3232         IPW_DEBUG_TRACE(">>\n");
3233
3234         rc = ipw_init_nic(priv);
3235
3236         spin_lock_irqsave(&priv->lock, flags);
3237         /* Clear the 'host command active' bit... */
3238         priv->status &= ~STATUS_HCMD_ACTIVE;
3239         wake_up_interruptible(&priv->wait_command_queue);
3240         priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3241         wake_up_interruptible(&priv->wait_state);
3242         spin_unlock_irqrestore(&priv->lock, flags);
3243
3244         IPW_DEBUG_TRACE("<<\n");
3245         return rc;
3246 }
3247
3248
3249 struct ipw_fw {
3250         __le32 ver;
3251         __le32 boot_size;
3252         __le32 ucode_size;
3253         __le32 fw_size;
3254         u8 data[0];
3255 };
3256
3257 static int ipw_get_fw(struct ipw_priv *priv,
3258                       const struct firmware **raw, const char *name)
3259 {
3260         struct ipw_fw *fw;
3261         int rc;
3262
3263         /* ask firmware_class module to get the boot firmware off disk */
3264         rc = request_firmware(raw, name, &priv->pci_dev->dev);
3265         if (rc < 0) {
3266                 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3267                 return rc;
3268         }
3269
3270         if ((*raw)->size < sizeof(*fw)) {
3271                 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3272                 return -EINVAL;
3273         }
3274
3275         fw = (void *)(*raw)->data;
3276
3277         if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3278             le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3279                 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3280                           name, (*raw)->size);
3281                 return -EINVAL;
3282         }
3283
3284         IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3285                        name,
3286                        le32_to_cpu(fw->ver) >> 16,
3287                        le32_to_cpu(fw->ver) & 0xff,
3288                        (*raw)->size - sizeof(*fw));
3289         return 0;
3290 }
3291
3292 #define IPW_RX_BUF_SIZE (3000)
3293
3294 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3295                                       struct ipw_rx_queue *rxq)
3296 {
3297         unsigned long flags;
3298         int i;
3299
3300         spin_lock_irqsave(&rxq->lock, flags);
3301
3302         INIT_LIST_HEAD(&rxq->rx_free);
3303         INIT_LIST_HEAD(&rxq->rx_used);
3304
3305         /* Fill the rx_used queue with _all_ of the Rx buffers */
3306         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3307                 /* In the reset function, these buffers may have been allocated
3308                  * to an SKB, so we need to unmap and free potential storage */
3309                 if (rxq->pool[i].skb != NULL) {
3310                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3311                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3312                         dev_kfree_skb(rxq->pool[i].skb);
3313                         rxq->pool[i].skb = NULL;
3314                 }
3315                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3316         }
3317
3318         /* Set us so that we have processed and used all buffers, but have
3319          * not restocked the Rx queue with fresh buffers */
3320         rxq->read = rxq->write = 0;
3321         rxq->processed = RX_QUEUE_SIZE - 1;
3322         rxq->free_count = 0;
3323         spin_unlock_irqrestore(&rxq->lock, flags);
3324 }
3325
3326 #ifdef CONFIG_PM
3327 static int fw_loaded = 0;
3328 static const struct firmware *raw = NULL;
3329
3330 static void free_firmware(void)
3331 {
3332         if (fw_loaded) {
3333                 release_firmware(raw);
3334                 raw = NULL;
3335                 fw_loaded = 0;
3336         }
3337 }
3338 #else
3339 #define free_firmware() do {} while (0)
3340 #endif
3341
3342 static int ipw_load(struct ipw_priv *priv)
3343 {
3344 #ifndef CONFIG_PM
3345         const struct firmware *raw = NULL;
3346 #endif
3347         struct ipw_fw *fw;
3348         u8 *boot_img, *ucode_img, *fw_img;
3349         u8 *name = NULL;
3350         int rc = 0, retries = 3;
3351
3352         switch (priv->ieee->iw_mode) {
3353         case IW_MODE_ADHOC:
3354                 name = "ipw2200-ibss.fw";
3355                 break;
3356 #ifdef CONFIG_IPW2200_MONITOR
3357         case IW_MODE_MONITOR:
3358                 name = "ipw2200-sniffer.fw";
3359                 break;
3360 #endif
3361         case IW_MODE_INFRA:
3362                 name = "ipw2200-bss.fw";
3363                 break;
3364         }
3365
3366         if (!name) {
3367                 rc = -EINVAL;
3368                 goto error;
3369         }
3370
3371 #ifdef CONFIG_PM
3372         if (!fw_loaded) {
3373 #endif
3374                 rc = ipw_get_fw(priv, &raw, name);
3375                 if (rc < 0)
3376                         goto error;
3377 #ifdef CONFIG_PM
3378         }
3379 #endif
3380
3381         fw = (void *)raw->data;
3382         boot_img = &fw->data[0];
3383         ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3384         fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3385                            le32_to_cpu(fw->ucode_size)];
3386
3387         if (rc < 0)
3388                 goto error;
3389
3390         if (!priv->rxq)
3391                 priv->rxq = ipw_rx_queue_alloc(priv);
3392         else
3393                 ipw_rx_queue_reset(priv, priv->rxq);
3394         if (!priv->rxq) {
3395                 IPW_ERROR("Unable to initialize Rx queue\n");
3396                 goto error;
3397         }
3398
3399       retry:
3400         /* Ensure interrupts are disabled */
3401         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3402         priv->status &= ~STATUS_INT_ENABLED;
3403
3404         /* ack pending interrupts */
3405         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3406
3407         ipw_stop_nic(priv);
3408
3409         rc = ipw_reset_nic(priv);
3410         if (rc < 0) {
3411                 IPW_ERROR("Unable to reset NIC\n");
3412                 goto error;
3413         }
3414
3415         ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3416                         IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3417
3418         /* DMA the initial boot firmware into the device */
3419         rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3420         if (rc < 0) {
3421                 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3422                 goto error;
3423         }
3424
3425         /* kick start the device */
3426         ipw_start_nic(priv);
3427
3428         /* wait for the device to finish its initial startup sequence */
3429         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3430                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3431         if (rc < 0) {
3432                 IPW_ERROR("device failed to boot initial fw image\n");
3433                 goto error;
3434         }
3435         IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3436
3437         /* ack fw init done interrupt */
3438         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3439
3440         /* DMA the ucode into the device */
3441         rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3442         if (rc < 0) {
3443                 IPW_ERROR("Unable to load ucode: %d\n", rc);
3444                 goto error;
3445         }
3446
3447         /* stop nic */
3448         ipw_stop_nic(priv);
3449
3450         /* DMA bss firmware into the device */
3451         rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3452         if (rc < 0) {
3453                 IPW_ERROR("Unable to load firmware: %d\n", rc);
3454                 goto error;
3455         }
3456 #ifdef CONFIG_PM
3457         fw_loaded = 1;
3458 #endif
3459
3460         ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3461
3462         rc = ipw_queue_reset(priv);
3463         if (rc < 0) {
3464                 IPW_ERROR("Unable to initialize queues\n");
3465                 goto error;
3466         }
3467
3468         /* Ensure interrupts are disabled */
3469         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3470         /* ack pending interrupts */
3471         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3472
3473         /* kick start the device */
3474         ipw_start_nic(priv);
3475
3476         if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3477                 if (retries > 0) {
3478                         IPW_WARNING("Parity error.  Retrying init.\n");
3479                         retries--;
3480                         goto retry;
3481                 }
3482
3483                 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3484                 rc = -EIO;
3485                 goto error;
3486         }
3487
3488         /* wait for the device */
3489         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3490                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3491         if (rc < 0) {
3492                 IPW_ERROR("device failed to start within 500ms\n");
3493                 goto error;
3494         }
3495         IPW_DEBUG_INFO("device response after %dms\n", rc);
3496
3497         /* ack fw init done interrupt */
3498         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3499
3500         /* read eeprom data and initialize the eeprom region of sram */
3501         priv->eeprom_delay = 1;
3502         ipw_eeprom_init_sram(priv);
3503
3504         /* enable interrupts */
3505         ipw_enable_interrupts(priv);
3506
3507         /* Ensure our queue has valid packets */
3508         ipw_rx_queue_replenish(priv);
3509
3510         ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3511
3512         /* ack pending interrupts */
3513         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3514
3515 #ifndef CONFIG_PM
3516         release_firmware(raw);
3517 #endif
3518         return 0;
3519
3520       error:
3521         if (priv->rxq) {
3522                 ipw_rx_queue_free(priv, priv->rxq);
3523                 priv->rxq = NULL;
3524         }
3525         ipw_tx_queue_free(priv);
3526         if (raw)
3527                 release_firmware(raw);
3528 #ifdef CONFIG_PM
3529         fw_loaded = 0;
3530         raw = NULL;
3531 #endif
3532
3533         return rc;
3534 }
3535
3536 /**
3537  * DMA services
3538  *
3539  * Theory of operation
3540  *
3541  * A queue is a circular buffers with 'Read' and 'Write' pointers.
3542  * 2 empty entries always kept in the buffer to protect from overflow.
3543  *
3544  * For Tx queue, there are low mark and high mark limits. If, after queuing
3545  * the packet for Tx, free space become < low mark, Tx queue stopped. When
3546  * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3547  * Tx queue resumed.
3548  *
3549  * The IPW operates with six queues, one receive queue in the device's
3550  * sram, one transmit queue for sending commands to the device firmware,
3551  * and four transmit queues for data.
3552  *
3553  * The four transmit queues allow for performing quality of service (qos)
3554  * transmissions as per the 802.11 protocol.  Currently Linux does not
3555  * provide a mechanism to the user for utilizing prioritized queues, so
3556  * we only utilize the first data transmit queue (queue1).
3557  */
3558
3559 /**
3560  * Driver allocates buffers of this size for Rx
3561  */
3562
3563 static inline int ipw_queue_space(const struct clx2_queue *q)
3564 {
3565         int s = q->last_used - q->first_empty;
3566         if (s <= 0)
3567                 s += q->n_bd;
3568         s -= 2;                 /* keep some reserve to not confuse empty and full situations */
3569         if (s < 0)
3570                 s = 0;
3571         return s;
3572 }
3573
3574 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3575 {
3576         return (++index == n_bd) ? 0 : index;
3577 }
3578
3579 /**
3580  * Initialize common DMA queue structure
3581  *
3582  * @param q                queue to init
3583  * @param count            Number of BD's to allocate. Should be power of 2
3584  * @param read_register    Address for 'read' register
3585  *                         (not offset within BAR, full address)
3586  * @param write_register   Address for 'write' register
3587  *                         (not offset within BAR, full address)
3588  * @param base_register    Address for 'base' register
3589  *                         (not offset within BAR, full address)
3590  * @param size             Address for 'size' register
3591  *                         (not offset within BAR, full address)
3592  */
3593 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3594                            int count, u32 read, u32 write, u32 base, u32 size)
3595 {
3596         q->n_bd = count;
3597
3598         q->low_mark = q->n_bd / 4;
3599         if (q->low_mark < 4)
3600                 q->low_mark = 4;
3601
3602         q->high_mark = q->n_bd / 8;
3603         if (q->high_mark < 2)
3604                 q->high_mark = 2;
3605
3606         q->first_empty = q->last_used = 0;
3607         q->reg_r = read;
3608         q->reg_w = write;
3609
3610         ipw_write32(priv, base, q->dma_addr);
3611         ipw_write32(priv, size, count);
3612         ipw_write32(priv, read, 0);
3613         ipw_write32(priv, write, 0);
3614
3615         _ipw_read32(priv, 0x90);
3616 }
3617
3618 static int ipw_queue_tx_init(struct ipw_priv *priv,
3619                              struct clx2_tx_queue *q,
3620                              int count, u32 read, u32 write, u32 base, u32 size)
3621 {
3622         struct pci_dev *dev = priv->pci_dev;
3623
3624         q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3625         if (!q->txb) {
3626                 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3627                 return -ENOMEM;
3628         }
3629
3630         q->bd =
3631             pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3632         if (!q->bd) {
3633                 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3634                           sizeof(q->bd[0]) * count);
3635                 kfree(q->txb);
3636                 q->txb = NULL;
3637                 return -ENOMEM;
3638         }
3639
3640         ipw_queue_init(priv, &q->q, count, read, write, base, size);
3641         return 0;
3642 }
3643
3644 /**
3645  * Free one TFD, those at index [txq->q.last_used].
3646  * Do NOT advance any indexes
3647  *
3648  * @param dev
3649  * @param txq
3650  */
3651 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3652                                   struct clx2_tx_queue *txq)
3653 {
3654         struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3655         struct pci_dev *dev = priv->pci_dev;
3656         int i;
3657
3658         /* classify bd */
3659         if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3660                 /* nothing to cleanup after for host commands */
3661                 return;
3662
3663         /* sanity check */
3664         if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3665                 IPW_ERROR("Too many chunks: %i\n",
3666                           le32_to_cpu(bd->u.data.num_chunks));
3667                 /** @todo issue fatal error, it is quite serious situation */
3668                 return;
3669         }
3670
3671         /* unmap chunks if any */
3672         for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3673                 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3674                                  le16_to_cpu(bd->u.data.chunk_len[i]),
3675                                  PCI_DMA_TODEVICE);
3676                 if (txq->txb[txq->q.last_used]) {
3677                         ieee80211_txb_free(txq->txb[txq->q.last_used]);
3678                         txq->txb[txq->q.last_used] = NULL;
3679                 }
3680         }
3681 }
3682
3683 /**
3684  * Deallocate DMA queue.
3685  *
3686  * Empty queue by removing and destroying all BD's.
3687  * Free all buffers.
3688  *
3689  * @param dev
3690  * @param q
3691  */
3692 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3693 {
3694         struct clx2_queue *q = &txq->q;
3695         struct pci_dev *dev = priv->pci_dev;
3696
3697         if (q->n_bd == 0)
3698                 return;
3699
3700         /* first, empty all BD's */
3701         for (; q->first_empty != q->last_used;
3702              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3703                 ipw_queue_tx_free_tfd(priv, txq);
3704         }
3705
3706         /* free buffers belonging to queue itself */
3707         pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3708                             q->dma_addr);
3709         kfree(txq->txb);
3710
3711         /* 0 fill whole structure */
3712         memset(txq, 0, sizeof(*txq));
3713 }
3714
3715 /**
3716  * Destroy all DMA queues and structures
3717  *
3718  * @param priv
3719  */
3720 static void ipw_tx_queue_free(struct ipw_priv *priv)
3721 {
3722         /* Tx CMD queue */
3723         ipw_queue_tx_free(priv, &priv->txq_cmd);
3724
3725         /* Tx queues */
3726         ipw_queue_tx_free(priv, &priv->txq[0]);
3727         ipw_queue_tx_free(priv, &priv->txq[1]);
3728         ipw_queue_tx_free(priv, &priv->txq[2]);
3729         ipw_queue_tx_free(priv, &priv->txq[3]);
3730 }
3731
3732 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3733 {
3734         /* First 3 bytes are manufacturer */
3735         bssid[0] = priv->mac_addr[0];
3736         bssid[1] = priv->mac_addr[1];
3737         bssid[2] = priv->mac_addr[2];
3738
3739         /* Last bytes are random */
3740         get_random_bytes(&bssid[3], ETH_ALEN - 3);
3741
3742         bssid[0] &= 0xfe;       /* clear multicast bit */
3743         bssid[0] |= 0x02;       /* set local assignment bit (IEEE802) */
3744 }
3745
3746 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3747 {
3748         struct ipw_station_entry entry;
3749         int i;
3750
3751         for (i = 0; i < priv->num_stations; i++) {
3752                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3753                         /* Another node is active in network */
3754                         priv->missed_adhoc_beacons = 0;
3755                         if (!(priv->config & CFG_STATIC_CHANNEL))
3756                                 /* when other nodes drop out, we drop out */
3757                                 priv->config &= ~CFG_ADHOC_PERSIST;
3758
3759                         return i;
3760                 }
3761         }
3762
3763         if (i == MAX_STATIONS)
3764                 return IPW_INVALID_STATION;
3765
3766         IPW_DEBUG_SCAN("Adding AdHoc station: " MAC_FMT "\n", MAC_ARG(bssid));
3767
3768         entry.reserved = 0;
3769         entry.support_mode = 0;
3770         memcpy(entry.mac_addr, bssid, ETH_ALEN);
3771         memcpy(priv->stations[i], bssid, ETH_ALEN);
3772         ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3773                          &entry, sizeof(entry));
3774         priv->num_stations++;
3775
3776         return i;
3777 }
3778
3779 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3780 {
3781         int i;
3782
3783         for (i = 0; i < priv->num_stations; i++)
3784                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3785                         return i;
3786
3787         return IPW_INVALID_STATION;
3788 }
3789
3790 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3791 {
3792         int err;
3793
3794         if (priv->status & STATUS_ASSOCIATING) {
3795                 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3796                 queue_work(priv->workqueue, &priv->disassociate);
3797                 return;
3798         }
3799
3800         if (!(priv->status & STATUS_ASSOCIATED)) {
3801                 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3802                 return;
3803         }
3804
3805         IPW_DEBUG_ASSOC("Disassocation attempt from " MAC_FMT " "
3806                         "on channel %d.\n",
3807                         MAC_ARG(priv->assoc_request.bssid),
3808                         priv->assoc_request.channel);
3809
3810         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3811         priv->status |= STATUS_DISASSOCIATING;
3812
3813         if (quiet)
3814                 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3815         else
3816                 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3817
3818         err = ipw_send_associate(priv, &priv->assoc_request);
3819         if (err) {
3820                 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3821                              "failed.\n");
3822                 return;
3823         }
3824
3825 }
3826
3827 static int ipw_disassociate(void *data)
3828 {
3829         struct ipw_priv *priv = data;
3830         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3831                 return 0;
3832         ipw_send_disassociate(data, 0);
3833         return 1;
3834 }
3835
3836 static void ipw_bg_disassociate(void *data)
3837 {
3838         struct ipw_priv *priv = data;
3839         mutex_lock(&priv->mutex);
3840         ipw_disassociate(data);
3841         mutex_unlock(&priv->mutex);
3842 }
3843
3844 static void ipw_system_config(void *data)
3845 {
3846         struct ipw_priv *priv = data;
3847
3848 #ifdef CONFIG_IPW2200_PROMISCUOUS
3849         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
3850                 priv->sys_config.accept_all_data_frames = 1;
3851                 priv->sys_config.accept_non_directed_frames = 1;
3852                 priv->sys_config.accept_all_mgmt_bcpr = 1;
3853                 priv->sys_config.accept_all_mgmt_frames = 1;
3854         }
3855 #endif
3856
3857         ipw_send_system_config(priv);
3858 }
3859
3860 struct ipw_status_code {
3861         u16 status;
3862         const char *reason;
3863 };
3864
3865 static const struct ipw_status_code ipw_status_codes[] = {
3866         {0x00, "Successful"},
3867         {0x01, "Unspecified failure"},
3868         {0x0A, "Cannot support all requested capabilities in the "
3869          "Capability information field"},
3870         {0x0B, "Reassociation denied due to inability to confirm that "
3871          "association exists"},
3872         {0x0C, "Association denied due to reason outside the scope of this "
3873          "standard"},
3874         {0x0D,
3875          "Responding station does not support the specified authentication "
3876          "algorithm"},
3877         {0x0E,
3878          "Received an Authentication frame with authentication sequence "
3879          "transaction sequence number out of expected sequence"},
3880         {0x0F, "Authentication rejected because of challenge failure"},
3881         {0x10, "Authentication rejected due to timeout waiting for next "
3882          "frame in sequence"},
3883         {0x11, "Association denied because AP is unable to handle additional "
3884          "associated stations"},
3885         {0x12,
3886          "Association denied due to requesting station not supporting all "
3887          "of the datarates in the BSSBasicServiceSet Parameter"},
3888         {0x13,
3889          "Association denied due to requesting station not supporting "
3890          "short preamble operation"},
3891         {0x14,
3892          "Association denied due to requesting station not supporting "
3893          "PBCC encoding"},
3894         {0x15,
3895          "Association denied due to requesting station not supporting "
3896          "channel agility"},
3897         {0x19,
3898          "Association denied due to requesting station not supporting "
3899          "short slot operation"},
3900         {0x1A,
3901          "Association denied due to requesting station not supporting "
3902          "DSSS-OFDM operation"},
3903         {0x28, "Invalid Information Element"},
3904         {0x29, "Group Cipher is not valid"},
3905         {0x2A, "Pairwise Cipher is not valid"},
3906         {0x2B, "AKMP is not valid"},
3907         {0x2C, "Unsupported RSN IE version"},
3908         {0x2D, "Invalid RSN IE Capabilities"},
3909         {0x2E, "Cipher suite is rejected per security policy"},
3910 };
3911
3912 static const char *ipw_get_status_code(u16 status)
3913 {
3914         int i;
3915         for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
3916                 if (ipw_status_codes[i].status == (status & 0xff))
3917                         return ipw_status_codes[i].reason;
3918         return "Unknown status value.";
3919 }
3920
3921 static void inline average_init(struct average *avg)
3922 {
3923         memset(avg, 0, sizeof(*avg));
3924 }
3925
3926 #define DEPTH_RSSI 8
3927 #define DEPTH_NOISE 16
3928 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
3929 {
3930         return ((depth-1)*prev_avg +  val)/depth;
3931 }
3932
3933 static void average_add(struct average *avg, s16 val)
3934 {
3935         avg->sum -= avg->entries[avg->pos];
3936         avg->sum += val;
3937         avg->entries[avg->pos++] = val;
3938         if (unlikely(avg->pos == AVG_ENTRIES)) {
3939                 avg->init = 1;
3940                 avg->pos = 0;
3941         }
3942 }
3943
3944 static s16 average_value(struct average *avg)
3945 {
3946         if (!unlikely(avg->init)) {
3947                 if (avg->pos)
3948                         return avg->sum / avg->pos;
3949                 return 0;
3950         }
3951
3952         return avg->sum / AVG_ENTRIES;
3953 }
3954
3955 static void ipw_reset_stats(struct ipw_priv *priv)
3956 {
3957         u32 len = sizeof(u32);
3958
3959         priv->quality = 0;
3960
3961         average_init(&priv->average_missed_beacons);
3962         priv->exp_avg_rssi = -60;
3963         priv->exp_avg_noise = -85 + 0x100;
3964
3965         priv->last_rate = 0;
3966         priv->last_missed_beacons = 0;
3967         priv->last_rx_packets = 0;
3968         priv->last_tx_packets = 0;
3969         priv->last_tx_failures = 0;
3970
3971         /* Firmware managed, reset only when NIC is restarted, so we have to
3972          * normalize on the current value */
3973         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
3974                         &priv->last_rx_err, &len);
3975         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
3976                         &priv->last_tx_failures, &len);
3977
3978         /* Driver managed, reset with each association */
3979         priv->missed_adhoc_beacons = 0;
3980         priv->missed_beacons = 0;
3981         priv->tx_packets = 0;
3982         priv->rx_packets = 0;
3983
3984 }
3985
3986 static u32 ipw_get_max_rate(struct ipw_priv *priv)
3987 {
3988         u32 i = 0x80000000;
3989         u32 mask = priv->rates_mask;
3990         /* If currently associated in B mode, restrict the maximum
3991          * rate match to B rates */
3992         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
3993                 mask &= IEEE80211_CCK_RATES_MASK;
3994
3995         /* TODO: Verify that the rate is supported by the current rates
3996          * list. */
3997
3998         while (i && !(mask & i))
3999                 i >>= 1;
4000         switch (i) {
4001         case IEEE80211_CCK_RATE_1MB_MASK:
4002                 return 1000000;
4003         case IEEE80211_CCK_RATE_2MB_MASK:
4004                 return 2000000;
4005         case IEEE80211_CCK_RATE_5MB_MASK:
4006                 return 5500000;
4007         case IEEE80211_OFDM_RATE_6MB_MASK:
4008                 return 6000000;
4009         case IEEE80211_OFDM_RATE_9MB_MASK:
4010                 return 9000000;
4011         case IEEE80211_CCK_RATE_11MB_MASK:
4012                 return 11000000;
4013         case IEEE80211_OFDM_RATE_12MB_MASK:
4014                 return 12000000;
4015         case IEEE80211_OFDM_RATE_18MB_MASK:
4016                 return 18000000;
4017         case IEEE80211_OFDM_RATE_24MB_MASK:
4018                 return 24000000;
4019         case IEEE80211_OFDM_RATE_36MB_MASK:
4020                 return 36000000;
4021         case IEEE80211_OFDM_RATE_48MB_MASK:
4022                 return 48000000;
4023         case IEEE80211_OFDM_RATE_54MB_MASK:
4024                 return 54000000;
4025         }
4026
4027         if (priv->ieee->mode == IEEE_B)
4028                 return 11000000;
4029         else
4030                 return 54000000;
4031 }
4032
4033 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4034 {
4035         u32 rate, len = sizeof(rate);
4036         int err;
4037
4038         if (!(priv->status & STATUS_ASSOCIATED))
4039                 return 0;
4040
4041         if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4042                 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4043                                       &len);
4044                 if (err) {
4045                         IPW_DEBUG_INFO("failed querying ordinals.\n");
4046                         return 0;
4047                 }
4048         } else
4049                 return ipw_get_max_rate(priv);
4050
4051         switch (rate) {
4052         case IPW_TX_RATE_1MB:
4053                 return 1000000;
4054         case IPW_TX_RATE_2MB:
4055                 return 2000000;
4056         case IPW_TX_RATE_5MB:
4057                 return 5500000;
4058         case IPW_TX_RATE_6MB:
4059                 return 6000000;
4060         case IPW_TX_RATE_9MB:
4061                 return 9000000;
4062         case IPW_TX_RATE_11MB:
4063                 return 11000000;
4064         case IPW_TX_RATE_12MB:
4065                 return 12000000;
4066         case IPW_TX_RATE_18MB:
4067                 return 18000000;
4068         case IPW_TX_RATE_24MB:
4069                 return 24000000;
4070         case IPW_TX_RATE_36MB:
4071                 return 36000000;
4072         case IPW_TX_RATE_48MB:
4073                 return 48000000;
4074         case IPW_TX_RATE_54MB:
4075                 return 54000000;
4076         }
4077
4078         return 0;
4079 }
4080
4081 #define IPW_STATS_INTERVAL (2 * HZ)
4082 static void ipw_gather_stats(struct ipw_priv *priv)
4083 {
4084         u32 rx_err, rx_err_delta, rx_packets_delta;
4085         u32 tx_failures, tx_failures_delta, tx_packets_delta;
4086         u32 missed_beacons_percent, missed_beacons_delta;
4087         u32 quality = 0;
4088         u32 len = sizeof(u32);
4089         s16 rssi;
4090         u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4091             rate_quality;
4092         u32 max_rate;
4093
4094         if (!(priv->status & STATUS_ASSOCIATED)) {
4095                 priv->quality = 0;
4096                 return;
4097         }
4098
4099         /* Update the statistics */
4100         ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4101                         &priv->missed_beacons, &len);
4102         missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4103         priv->last_missed_beacons = priv->missed_beacons;
4104         if (priv->assoc_request.beacon_interval) {
4105                 missed_beacons_percent = missed_beacons_delta *
4106                     (HZ * priv->assoc_request.beacon_interval) /
4107                     (IPW_STATS_INTERVAL * 10);
4108         } else {
4109                 missed_beacons_percent = 0;
4110         }
4111         average_add(&priv->average_missed_beacons, missed_beacons_percent);
4112
4113         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4114         rx_err_delta = rx_err - priv->last_rx_err;
4115         priv->last_rx_err = rx_err;
4116
4117         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4118         tx_failures_delta = tx_failures - priv->last_tx_failures;
4119         priv->last_tx_failures = tx_failures;
4120
4121         rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4122         priv->last_rx_packets = priv->rx_packets;
4123
4124         tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4125         priv->last_tx_packets = priv->tx_packets;
4126
4127         /* Calculate quality based on the following:
4128          *
4129          * Missed beacon: 100% = 0, 0% = 70% missed
4130          * Rate: 60% = 1Mbs, 100% = Max
4131          * Rx and Tx errors represent a straight % of total Rx/Tx
4132          * RSSI: 100% = > -50,  0% = < -80
4133          * Rx errors: 100% = 0, 0% = 50% missed
4134          *
4135          * The lowest computed quality is used.
4136          *
4137          */
4138 #define BEACON_THRESHOLD 5
4139         beacon_quality = 100 - missed_beacons_percent;
4140         if (beacon_quality < BEACON_THRESHOLD)
4141                 beacon_quality = 0;
4142         else
4143                 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4144                     (100 - BEACON_THRESHOLD);
4145         IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4146                         beacon_quality, missed_beacons_percent);
4147
4148         priv->last_rate = ipw_get_current_rate(priv);
4149         max_rate = ipw_get_max_rate(priv);
4150         rate_quality = priv->last_rate * 40 / max_rate + 60;
4151         IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4152                         rate_quality, priv->last_rate / 1000000);
4153
4154         if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4155                 rx_quality = 100 - (rx_err_delta * 100) /
4156                     (rx_packets_delta + rx_err_delta);
4157         else
4158                 rx_quality = 100;
4159         IPW_DEBUG_STATS("Rx quality   : %3d%% (%u errors, %u packets)\n",
4160                         rx_quality, rx_err_delta, rx_packets_delta);
4161
4162         if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4163                 tx_quality = 100 - (tx_failures_delta * 100) /
4164                     (tx_packets_delta + tx_failures_delta);
4165         else
4166                 tx_quality = 100;
4167         IPW_DEBUG_STATS("Tx quality   : %3d%% (%u errors, %u packets)\n",
4168                         tx_quality, tx_failures_delta, tx_packets_delta);
4169
4170         rssi = priv->exp_avg_rssi;
4171         signal_quality =
4172             (100 *
4173              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4174              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4175              (priv->ieee->perfect_rssi - rssi) *
4176              (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4177               62 * (priv->ieee->perfect_rssi - rssi))) /
4178             ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4179              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4180         if (signal_quality > 100)
4181                 signal_quality = 100;
4182         else if (signal_quality < 1)
4183                 signal_quality = 0;
4184
4185         IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4186                         signal_quality, rssi);
4187
4188         quality = min(beacon_quality,
4189                       min(rate_quality,
4190                           min(tx_quality, min(rx_quality, signal_quality))));
4191         if (quality == beacon_quality)
4192                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4193                                 quality);
4194         if (quality == rate_quality)
4195                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4196                                 quality);
4197         if (quality == tx_quality)
4198                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4199                                 quality);
4200         if (quality == rx_quality)
4201                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4202                                 quality);
4203         if (quality == signal_quality)
4204                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4205                                 quality);
4206
4207         priv->quality = quality;
4208
4209         queue_delayed_work(priv->workqueue, &priv->gather_stats,
4210                            IPW_STATS_INTERVAL);
4211 }
4212
4213 static void ipw_bg_gather_stats(void *data)
4214 {
4215         struct ipw_priv *priv = data;
4216         mutex_lock(&priv->mutex);
4217         ipw_gather_stats(data);
4218         mutex_unlock(&priv->mutex);
4219 }
4220
4221 /* Missed beacon behavior:
4222  * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4223  * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4224  * Above disassociate threshold, give up and stop scanning.
4225  * Roaming is disabled if disassociate_threshold <= roaming_threshold  */
4226 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4227                                             int missed_count)
4228 {
4229         priv->notif_missed_beacons = missed_count;
4230
4231         if (missed_count > priv->disassociate_threshold &&
4232             priv->status & STATUS_ASSOCIATED) {
4233                 /* If associated and we've hit the missed
4234                  * beacon threshold, disassociate, turn
4235                  * off roaming, and abort any active scans */
4236                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4237                           IPW_DL_STATE | IPW_DL_ASSOC,
4238                           "Missed beacon: %d - disassociate\n", missed_count);
4239                 priv->status &= ~STATUS_ROAMING;
4240                 if (priv->status & STATUS_SCANNING) {
4241                         IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4242                                   IPW_DL_STATE,
4243                                   "Aborting scan with missed beacon.\n");
4244                         queue_work(priv->workqueue, &priv->abort_scan);
4245                 }
4246
4247                 queue_work(priv->workqueue, &priv->disassociate);
4248                 return;
4249         }
4250
4251         if (priv->status & STATUS_ROAMING) {
4252                 /* If we are currently roaming, then just
4253                  * print a debug statement... */
4254                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4255                           "Missed beacon: %d - roam in progress\n",
4256                           missed_count);
4257                 return;
4258         }
4259
4260         if (roaming &&
4261             (missed_count > priv->roaming_threshold &&
4262              missed_count <= priv->disassociate_threshold)) {
4263                 /* If we are not already roaming, set the ROAM
4264                  * bit in the status and kick off a scan.
4265                  * This can happen several times before we reach
4266                  * disassociate_threshold. */
4267                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4268                           "Missed beacon: %d - initiate "
4269                           "roaming\n", missed_count);
4270                 if (!(priv->status & STATUS_ROAMING)) {
4271                         priv->status |= STATUS_ROAMING;
4272                         if (!(priv->status & STATUS_SCANNING))
4273                                 queue_work(priv->workqueue,
4274                                            &priv->request_scan);
4275                 }
4276                 return;
4277         }
4278
4279         if (priv->status & STATUS_SCANNING) {
4280                 /* Stop scan to keep fw from getting
4281                  * stuck (only if we aren't roaming --
4282                  * otherwise we'll never scan more than 2 or 3
4283                  * channels..) */
4284                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4285                           "Aborting scan with missed beacon.\n");
4286                 queue_work(priv->workqueue, &priv->abort_scan);
4287         }
4288
4289         IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4290 }
4291
4292 /**
4293  * Handle host notification packet.
4294  * Called from interrupt routine
4295  */
4296 static void ipw_rx_notification(struct ipw_priv *priv,
4297                                        struct ipw_rx_notification *notif)
4298 {
4299         notif->size = le16_to_cpu(notif->size);
4300
4301         IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, notif->size);
4302
4303         switch (notif->subtype) {
4304         case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4305                         struct notif_association *assoc = &notif->u.assoc;
4306
4307                         switch (assoc->state) {
4308                         case CMAS_ASSOCIATED:{
4309                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4310                                                   IPW_DL_ASSOC,
4311                                                   "associated: '%s' " MAC_FMT
4312                                                   " \n",
4313                                                   escape_essid(priv->essid,
4314                                                                priv->essid_len),
4315                                                   MAC_ARG(priv->bssid));
4316
4317                                         switch (priv->ieee->iw_mode) {
4318                                         case IW_MODE_INFRA:
4319                                                 memcpy(priv->ieee->bssid,
4320                                                        priv->bssid, ETH_ALEN);
4321                                                 break;
4322
4323                                         case IW_MODE_ADHOC:
4324                                                 memcpy(priv->ieee->bssid,
4325                                                        priv->bssid, ETH_ALEN);
4326
4327                                                 /* clear out the station table */
4328                                                 priv->num_stations = 0;
4329
4330                                                 IPW_DEBUG_ASSOC
4331                                                     ("queueing adhoc check\n");
4332                                                 queue_delayed_work(priv->
4333                                                                    workqueue,
4334                                                                    &priv->
4335                                                                    adhoc_check,
4336                                                                    priv->
4337                                                                    assoc_request.
4338                                                                    beacon_interval);
4339                                                 break;
4340                                         }
4341
4342                                         priv->status &= ~STATUS_ASSOCIATING;
4343                                         priv->status |= STATUS_ASSOCIATED;
4344                                         queue_work(priv->workqueue,
4345                                                    &priv->system_config);
4346
4347 #ifdef CONFIG_IPW2200_QOS
4348 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4349                          le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_ctl))
4350                                         if ((priv->status & STATUS_AUTH) &&
4351                                             (IPW_GET_PACKET_STYPE(&notif->u.raw)
4352                                              == IEEE80211_STYPE_ASSOC_RESP)) {
4353                                                 if ((sizeof
4354                                                      (struct
4355                                                       ieee80211_assoc_response)
4356                                                      <= notif->size)
4357                                                     && (notif->size <= 2314)) {
4358                                                         struct
4359                                                         ieee80211_rx_stats
4360                                                             stats = {
4361                                                                 .len =
4362                                                                     notif->
4363                                                                     size - 1,
4364                                                         };
4365
4366                                                         IPW_DEBUG_QOS
4367                                                             ("QoS Associate "
4368                                                              "size %d\n",
4369                                                              notif->size);
4370                                                         ieee80211_rx_mgt(priv->
4371                                                                          ieee,
4372                                                                          (struct
4373                                                                           ieee80211_hdr_4addr
4374                                                                           *)
4375                                                                          &notif->u.raw, &stats);
4376                                                 }
4377                                         }
4378 #endif
4379
4380                                         schedule_work(&priv->link_up);
4381
4382                                         break;
4383                                 }
4384
4385                         case CMAS_AUTHENTICATED:{
4386                                         if (priv->
4387                                             status & (STATUS_ASSOCIATED |
4388                                                       STATUS_AUTH)) {
4389                                                 struct notif_authenticate *auth
4390                                                     = &notif->u.auth;
4391                                                 IPW_DEBUG(IPW_DL_NOTIF |
4392                                                           IPW_DL_STATE |
4393                                                           IPW_DL_ASSOC,
4394                                                           "deauthenticated: '%s' "
4395                                                           MAC_FMT
4396                                                           ": (0x%04X) - %s \n",
4397                                                           escape_essid(priv->
4398                                                                        essid,
4399                                                                        priv->
4400                                                                        essid_len),
4401                                                           MAC_ARG(priv->bssid),
4402                                                           ntohs(auth->status),
4403                                                           ipw_get_status_code
4404                                                           (ntohs
4405                                                            (auth->status)));
4406
4407                                                 priv->status &=
4408                                                     ~(STATUS_ASSOCIATING |
4409                                                       STATUS_AUTH |
4410                                                       STATUS_ASSOCIATED);
4411
4412                                                 schedule_work(&priv->link_down);
4413                                                 break;
4414                                         }
4415
4416                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4417                                                   IPW_DL_ASSOC,
4418                                                   "authenticated: '%s' " MAC_FMT
4419                                                   "\n",
4420                                                   escape_essid(priv->essid,
4421                                                                priv->essid_len),
4422                                                   MAC_ARG(priv->bssid));
4423                                         break;
4424                                 }
4425
4426                         case CMAS_INIT:{
4427                                         if (priv->status & STATUS_AUTH) {
4428                                                 struct
4429                                                     ieee80211_assoc_response
4430                                                 *resp;
4431                                                 resp =
4432                                                     (struct
4433                                                      ieee80211_assoc_response
4434                                                      *)&notif->u.raw;
4435                                                 IPW_DEBUG(IPW_DL_NOTIF |
4436                                                           IPW_DL_STATE |
4437                                                           IPW_DL_ASSOC,
4438                                                           "association failed (0x%04X): %s\n",
4439                                                           ntohs(resp->status),
4440                                                           ipw_get_status_code
4441                                                           (ntohs
4442                                                            (resp->status)));
4443                                         }
4444
4445                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4446                                                   IPW_DL_ASSOC,
4447                                                   "disassociated: '%s' " MAC_FMT
4448                                                   " \n",
4449                                                   escape_essid(priv->essid,
4450                                                                priv->essid_len),
4451                                                   MAC_ARG(priv->bssid));
4452
4453                                         priv->status &=
4454                                             ~(STATUS_DISASSOCIATING |
4455                                               STATUS_ASSOCIATING |
4456                                               STATUS_ASSOCIATED | STATUS_AUTH);
4457                                         if (priv->assoc_network
4458                                             && (priv->assoc_network->
4459                                                 capability &
4460                                                 WLAN_CAPABILITY_IBSS))
4461                                                 ipw_remove_current_network
4462                                                     (priv);
4463
4464                                         schedule_work(&priv->link_down);
4465
4466                                         break;
4467                                 }
4468
4469                         case CMAS_RX_ASSOC_RESP:
4470                                 break;
4471
4472                         default:
4473                                 IPW_ERROR("assoc: unknown (%d)\n",
4474                                           assoc->state);
4475                                 break;
4476                         }
4477
4478                         break;
4479                 }
4480
4481         case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4482                         struct notif_authenticate *auth = &notif->u.auth;
4483                         switch (auth->state) {
4484                         case CMAS_AUTHENTICATED:
4485                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4486                                           "authenticated: '%s' " MAC_FMT " \n",
4487                                           escape_essid(priv->essid,
4488                                                        priv->essid_len),
4489                                           MAC_ARG(priv->bssid));
4490                                 priv->status |= STATUS_AUTH;
4491                                 break;
4492
4493                         case CMAS_INIT:
4494                                 if (priv->status & STATUS_AUTH) {
4495                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4496                                                   IPW_DL_ASSOC,
4497                                                   "authentication failed (0x%04X): %s\n",
4498                                                   ntohs(auth->status),
4499                                                   ipw_get_status_code(ntohs
4500                                                                       (auth->
4501                                                                        status)));
4502                                 }
4503                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4504                                           IPW_DL_ASSOC,
4505                                           "deauthenticated: '%s' " MAC_FMT "\n",
4506                                           escape_essid(priv->essid,
4507                                                        priv->essid_len),
4508                                           MAC_ARG(priv->bssid));
4509
4510                                 priv->status &= ~(STATUS_ASSOCIATING |
4511                                                   STATUS_AUTH |
4512                                                   STATUS_ASSOCIATED);
4513
4514                                 schedule_work(&priv->link_down);
4515                                 break;
4516
4517                         case CMAS_TX_AUTH_SEQ_1:
4518                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4519                                           IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4520                                 break;
4521                         case CMAS_RX_AUTH_SEQ_2:
4522                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4523                                           IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4524                                 break;
4525                         case CMAS_AUTH_SEQ_1_PASS:
4526                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4527                                           IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4528                                 break;
4529                         case CMAS_AUTH_SEQ_1_FAIL:
4530                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4531                                           IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4532                                 break;
4533                         case CMAS_TX_AUTH_SEQ_3:
4534                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4535                                           IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4536                                 break;
4537                         case CMAS_RX_AUTH_SEQ_4:
4538                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4539                                           IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4540                                 break;
4541                         case CMAS_AUTH_SEQ_2_PASS:
4542                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4543                                           IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4544                                 break;
4545                         case CMAS_AUTH_SEQ_2_FAIL:
4546                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4547                                           IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4548                                 break;
4549                         case CMAS_TX_ASSOC:
4550                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4551                                           IPW_DL_ASSOC, "TX_ASSOC\n");
4552                                 break;
4553                         case CMAS_RX_ASSOC_RESP:
4554                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4555                                           IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4556
4557                                 break;
4558                         case CMAS_ASSOCIATED:
4559                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4560                                           IPW_DL_ASSOC, "ASSOCIATED\n");
4561                                 break;
4562                         default:
4563                                 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4564                                                 auth->state);
4565                                 break;
4566                         }
4567                         break;
4568                 }
4569
4570         case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4571                         struct notif_channel_result *x =
4572                             &notif->u.channel_result;
4573
4574                         if (notif->size == sizeof(*x)) {
4575                                 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4576                                                x->channel_num);
4577                         } else {
4578                                 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4579                                                "(should be %zd)\n",
4580                                                notif->size, sizeof(*x));
4581                         }
4582                         break;
4583                 }
4584
4585         case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4586                         struct notif_scan_complete *x = &notif->u.scan_complete;
4587                         if (notif->size == sizeof(*x)) {
4588                                 IPW_DEBUG_SCAN
4589                                     ("Scan completed: type %d, %d channels, "
4590                                      "%d status\n", x->scan_type,
4591                                      x->num_channels, x->status);
4592                         } else {
4593                                 IPW_ERROR("Scan completed of wrong size %d "
4594                                           "(should be %zd)\n",
4595                                           notif->size, sizeof(*x));
4596                         }
4597
4598                         priv->status &=
4599                             ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4600
4601                         wake_up_interruptible(&priv->wait_state);
4602                         cancel_delayed_work(&priv->scan_check);
4603
4604                         if (priv->status & STATUS_EXIT_PENDING)
4605                                 break;
4606
4607                         priv->ieee->scans++;
4608
4609 #ifdef CONFIG_IPW2200_MONITOR
4610                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4611                                 priv->status |= STATUS_SCAN_FORCED;
4612                                 queue_work(priv->workqueue,
4613                                            &priv->request_scan);
4614                                 break;
4615                         }
4616                         priv->status &= ~STATUS_SCAN_FORCED;
4617 #endif                          /* CONFIG_IPW2200_MONITOR */
4618
4619                         if (!(priv->status & (STATUS_ASSOCIATED |
4620                                               STATUS_ASSOCIATING |
4621                                               STATUS_ROAMING |
4622                                               STATUS_DISASSOCIATING)))
4623                                 queue_work(priv->workqueue, &priv->associate);
4624                         else if (priv->status & STATUS_ROAMING) {
4625                                 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4626                                         /* If a scan completed and we are in roam mode, then
4627                                          * the scan that completed was the one requested as a
4628                                          * result of entering roam... so, schedule the
4629                                          * roam work */
4630                                         queue_work(priv->workqueue,
4631                                                    &priv->roam);
4632                                 else
4633                                         /* Don't schedule if we aborted the scan */
4634                                         priv->status &= ~STATUS_ROAMING;
4635                         } else if (priv->status & STATUS_SCAN_PENDING)
4636                                 queue_work(priv->workqueue,
4637                                            &priv->request_scan);
4638                         else if (priv->config & CFG_BACKGROUND_SCAN
4639                                  && priv->status & STATUS_ASSOCIATED)
4640                                 queue_delayed_work(priv->workqueue,
4641                                                    &priv->request_scan, HZ);
4642
4643                         /* Send an empty event to user space.
4644                          * We don't send the received data on the event because
4645                          * it would require us to do complex transcoding, and
4646                          * we want to minimise the work done in the irq handler
4647                          * Use a request to extract the data.
4648                          * Also, we generate this even for any scan, regardless
4649                          * on how the scan was initiated. User space can just
4650                          * sync on periodic scan to get fresh data...
4651                          * Jean II */
4652                         if (x->status == SCAN_COMPLETED_STATUS_COMPLETE) {
4653                                 union iwreq_data wrqu;
4654
4655                                 wrqu.data.length = 0;
4656                                 wrqu.data.flags = 0;
4657                                 wireless_send_event(priv->net_dev, SIOCGIWSCAN,
4658                                                     &wrqu, NULL);
4659                         }
4660                         break;
4661                 }
4662
4663         case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4664                         struct notif_frag_length *x = &notif->u.frag_len;
4665
4666                         if (notif->size == sizeof(*x))
4667                                 IPW_ERROR("Frag length: %d\n",
4668                                           le16_to_cpu(x->frag_length));
4669                         else
4670                                 IPW_ERROR("Frag length of wrong size %d "
4671                                           "(should be %zd)\n",
4672                                           notif->size, sizeof(*x));
4673                         break;
4674                 }
4675
4676         case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4677                         struct notif_link_deterioration *x =
4678                             &notif->u.link_deterioration;
4679
4680                         if (notif->size == sizeof(*x)) {
4681                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4682                                         "link deterioration: type %d, cnt %d\n",
4683                                         x->silence_notification_type,
4684                                         x->silence_count);
4685                                 memcpy(&priv->last_link_deterioration, x,
4686                                        sizeof(*x));
4687                         } else {
4688                                 IPW_ERROR("Link Deterioration of wrong size %d "
4689                                           "(should be %zd)\n",
4690                                           notif->size, sizeof(*x));
4691                         }
4692                         break;
4693                 }
4694
4695         case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4696                         IPW_ERROR("Dino config\n");
4697                         if (priv->hcmd
4698                             && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4699                                 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4700
4701                         break;
4702                 }
4703
4704         case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4705                         struct notif_beacon_state *x = &notif->u.beacon_state;
4706                         if (notif->size != sizeof(*x)) {
4707                                 IPW_ERROR
4708                                     ("Beacon state of wrong size %d (should "
4709                                      "be %zd)\n", notif->size, sizeof(*x));
4710                                 break;
4711                         }
4712
4713                         if (le32_to_cpu(x->state) ==
4714                             HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4715                                 ipw_handle_missed_beacon(priv,
4716                                                          le32_to_cpu(x->
4717                                                                      number));
4718
4719                         break;
4720                 }
4721
4722         case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4723                         struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4724                         if (notif->size == sizeof(*x)) {
4725                                 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4726                                           "0x%02x station %d\n",
4727                                           x->key_state, x->security_type,
4728                                           x->station_index);
4729                                 break;
4730                         }
4731
4732                         IPW_ERROR
4733                             ("TGi Tx Key of wrong size %d (should be %zd)\n",
4734                              notif->size, sizeof(*x));
4735                         break;
4736                 }
4737
4738         case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4739                         struct notif_calibration *x = &notif->u.calibration;
4740
4741                         if (notif->size == sizeof(*x)) {
4742                                 memcpy(&priv->calib, x, sizeof(*x));
4743                                 IPW_DEBUG_INFO("TODO: Calibration\n");
4744                                 break;
4745                         }
4746
4747                         IPW_ERROR
4748                             ("Calibration of wrong size %d (should be %zd)\n",
4749                              notif->size, sizeof(*x));
4750                         break;
4751                 }
4752
4753         case HOST_NOTIFICATION_NOISE_STATS:{
4754                         if (notif->size == sizeof(u32)) {
4755                                 priv->exp_avg_noise =
4756                                     exponential_average(priv->exp_avg_noise,
4757                                     (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4758                                     DEPTH_NOISE);
4759                                 break;
4760                         }
4761
4762                         IPW_ERROR
4763                             ("Noise stat is wrong size %d (should be %zd)\n",
4764                              notif->size, sizeof(u32));
4765                         break;
4766                 }
4767
4768         default:
4769                 IPW_DEBUG_NOTIF("Unknown notification: "
4770                                 "subtype=%d,flags=0x%2x,size=%d\n",
4771                                 notif->subtype, notif->flags, notif->size);
4772         }
4773 }
4774
4775 /**
4776  * Destroys all DMA structures and initialise them again
4777  *
4778  * @param priv
4779  * @return error code
4780  */
4781 static int ipw_queue_reset(struct ipw_priv *priv)
4782 {
4783         int rc = 0;
4784         /** @todo customize queue sizes */
4785         int nTx = 64, nTxCmd = 8;
4786         ipw_tx_queue_free(priv);
4787         /* Tx CMD queue */
4788         rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4789                                IPW_TX_CMD_QUEUE_READ_INDEX,
4790                                IPW_TX_CMD_QUEUE_WRITE_INDEX,
4791                                IPW_TX_CMD_QUEUE_BD_BASE,
4792                                IPW_TX_CMD_QUEUE_BD_SIZE);
4793         if (rc) {
4794                 IPW_ERROR("Tx Cmd queue init failed\n");
4795                 goto error;
4796         }
4797         /* Tx queue(s) */
4798         rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4799                                IPW_TX_QUEUE_0_READ_INDEX,
4800                                IPW_TX_QUEUE_0_WRITE_INDEX,
4801                                IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4802         if (rc) {
4803                 IPW_ERROR("Tx 0 queue init failed\n");
4804                 goto error;
4805         }
4806         rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4807                                IPW_TX_QUEUE_1_READ_INDEX,
4808                                IPW_TX_QUEUE_1_WRITE_INDEX,
4809                                IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4810         if (rc) {
4811                 IPW_ERROR("Tx 1 queue init failed\n");
4812                 goto error;
4813         }
4814         rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4815                                IPW_TX_QUEUE_2_READ_INDEX,
4816                                IPW_TX_QUEUE_2_WRITE_INDEX,
4817                                IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4818         if (rc) {
4819                 IPW_ERROR("Tx 2 queue init failed\n");
4820                 goto error;
4821         }
4822         rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4823                                IPW_TX_QUEUE_3_READ_INDEX,
4824                                IPW_TX_QUEUE_3_WRITE_INDEX,
4825                                IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4826         if (rc) {
4827                 IPW_ERROR("Tx 3 queue init failed\n");
4828                 goto error;
4829         }
4830         /* statistics */
4831         priv->rx_bufs_min = 0;
4832         priv->rx_pend_max = 0;
4833         return rc;
4834
4835       error:
4836         ipw_tx_queue_free(priv);
4837         return rc;
4838 }
4839
4840 /**
4841  * Reclaim Tx queue entries no more used by NIC.
4842  *
4843  * When FW adwances 'R' index, all entries between old and
4844  * new 'R' index need to be reclaimed. As result, some free space
4845  * forms. If there is enough free space (> low mark), wake Tx queue.
4846  *
4847  * @note Need to protect against garbage in 'R' index
4848  * @param priv
4849  * @param txq
4850  * @param qindex
4851  * @return Number of used entries remains in the queue
4852  */
4853 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
4854                                 struct clx2_tx_queue *txq, int qindex)
4855 {
4856         u32 hw_tail;
4857         int used;
4858         struct clx2_queue *q = &txq->q;
4859
4860         hw_tail = ipw_read32(priv, q->reg_r);
4861         if (hw_tail >= q->n_bd) {
4862                 IPW_ERROR
4863                     ("Read index for DMA queue (%d) is out of range [0-%d)\n",
4864                      hw_tail, q->n_bd);
4865                 goto done;
4866         }
4867         for (; q->last_used != hw_tail;
4868              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
4869                 ipw_queue_tx_free_tfd(priv, txq);
4870                 priv->tx_packets++;
4871         }
4872       done:
4873         if ((ipw_queue_space(q) > q->low_mark) &&
4874             (qindex >= 0) &&
4875             (priv->status & STATUS_ASSOCIATED) && netif_running(priv->net_dev))
4876                 netif_wake_queue(priv->net_dev);
4877         used = q->first_empty - q->last_used;
4878         if (used < 0)
4879                 used += q->n_bd;
4880
4881         return used;
4882 }
4883
4884 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
4885                              int len, int sync)
4886 {
4887         struct clx2_tx_queue *txq = &priv->txq_cmd;
4888         struct clx2_queue *q = &txq->q;
4889         struct tfd_frame *tfd;
4890
4891         if (ipw_queue_space(q) < (sync ? 1 : 2)) {
4892                 IPW_ERROR("No space for Tx\n");
4893                 return -EBUSY;
4894         }
4895
4896         tfd = &txq->bd[q->first_empty];
4897         txq->txb[q->first_empty] = NULL;
4898
4899         memset(tfd, 0, sizeof(*tfd));
4900         tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
4901         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
4902         priv->hcmd_seq++;
4903         tfd->u.cmd.index = hcmd;
4904         tfd->u.cmd.length = len;
4905         memcpy(tfd->u.cmd.payload, buf, len);
4906         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
4907         ipw_write32(priv, q->reg_w, q->first_empty);
4908         _ipw_read32(priv, 0x90);
4909
4910         return 0;
4911 }
4912
4913 /*
4914  * Rx theory of operation
4915  *
4916  * The host allocates 32 DMA target addresses and passes the host address
4917  * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
4918  * 0 to 31
4919  *
4920  * Rx Queue Indexes
4921  * The host/firmware share two index registers for managing the Rx buffers.
4922  *
4923  * The READ index maps to the first position that the firmware may be writing
4924  * to -- the driver can read up to (but not including) this position and get
4925  * good data.
4926  * The READ index is managed by the firmware once the card is enabled.
4927  *
4928  * The WRITE index maps to the last position the driver has read from -- the
4929  * position preceding WRITE is the last slot the firmware can place a packet.
4930  *
4931  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
4932  * WRITE = READ.
4933  *
4934  * During initialization the host sets up the READ queue position to the first
4935  * INDEX position, and WRITE to the last (READ - 1 wrapped)
4936  *
4937  * When the firmware places a packet in a buffer it will advance the READ index
4938  * and fire the RX interrupt.  The driver can then query the READ index and
4939  * process as many packets as possible, moving the WRITE index forward as it
4940  * resets the Rx queue buffers with new memory.
4941  *
4942  * The management in the driver is as follows:
4943  * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free.  When
4944  *   ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
4945  *   to replensish the ipw->rxq->rx_free.
4946  * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
4947  *   ipw->rxq is replenished and the READ INDEX is updated (updating the
4948  *   'processed' and 'read' driver indexes as well)
4949  * + A received packet is processed and handed to the kernel network stack,
4950  *   detached from the ipw->rxq.  The driver 'processed' index is updated.
4951  * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
4952  *   list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
4953  *   INDEX is not incremented and ipw->status(RX_STALLED) is set.  If there
4954  *   were enough free buffers and RX_STALLED is set it is cleared.
4955  *
4956  *
4957  * Driver sequence:
4958  *
4959  * ipw_rx_queue_alloc()       Allocates rx_free
4960  * ipw_rx_queue_replenish()   Replenishes rx_free list from rx_used, and calls
4961  *                            ipw_rx_queue_restock
4962  * ipw_rx_queue_restock()     Moves available buffers from rx_free into Rx
4963  *                            queue, updates firmware pointers, and updates
4964  *                            the WRITE index.  If insufficient rx_free buffers
4965  *                            are available, schedules ipw_rx_queue_replenish
4966  *
4967  * -- enable interrupts --
4968  * ISR - ipw_rx()             Detach ipw_rx_mem_buffers from pool up to the
4969  *                            READ INDEX, detaching the SKB from the pool.
4970  *                            Moves the packet buffer from queue to rx_used.
4971  *                            Calls ipw_rx_queue_restock to refill any empty
4972  *                            slots.
4973  * ...
4974  *
4975  */
4976
4977 /*
4978  * If there are slots in the RX queue that  need to be restocked,
4979  * and we have free pre-allocated buffers, fill the ranks as much
4980  * as we can pulling from rx_free.
4981  *
4982  * This moves the 'write' index forward to catch up with 'processed', and
4983  * also updates the memory address in the firmware to reference the new
4984  * target buffer.
4985  */
4986 static void ipw_rx_queue_restock(struct ipw_priv *priv)
4987 {
4988         struct ipw_rx_queue *rxq = priv->rxq;
4989         struct list_head *element;
4990         struct ipw_rx_mem_buffer *rxb;
4991         unsigned long flags;
4992         int write;
4993
4994         spin_lock_irqsave(&rxq->lock, flags);
4995         write = rxq->write;
4996         while ((rxq->write != rxq->processed) && (rxq->free_count)) {
4997                 element = rxq->rx_free.next;
4998                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
4999                 list_del(element);
5000
5001                 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5002                             rxb->dma_addr);
5003                 rxq->queue[rxq->write] = rxb;
5004                 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5005                 rxq->free_count--;
5006         }
5007         spin_unlock_irqrestore(&rxq->lock, flags);
5008
5009         /* If the pre-allocated buffer pool is dropping low, schedule to
5010          * refill it */
5011         if (rxq->free_count <= RX_LOW_WATERMARK)
5012                 queue_work(priv->workqueue, &priv->rx_replenish);
5013
5014         /* If we've added more space for the firmware to place data, tell it */
5015         if (write != rxq->write)
5016                 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5017 }
5018
5019 /*
5020  * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5021  * Also restock the Rx queue via ipw_rx_queue_restock.
5022  *
5023  * This is called as a scheduled work item (except for during intialization)
5024  */
5025 static void ipw_rx_queue_replenish(void *data)
5026 {
5027         struct ipw_priv *priv = data;
5028         struct ipw_rx_queue *rxq = priv->rxq;
5029         struct list_head *element;
5030         struct ipw_rx_mem_buffer *rxb;
5031         unsigned long flags;
5032
5033         spin_lock_irqsave(&rxq->lock, flags);
5034         while (!list_empty(&rxq->rx_used)) {
5035                 element = rxq->rx_used.next;
5036                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5037                 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5038                 if (!rxb->skb) {
5039                         printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5040                                priv->net_dev->name);
5041                         /* We don't reschedule replenish work here -- we will
5042                          * call the restock method and if it still needs
5043                          * more buffers it will schedule replenish */
5044                         break;
5045                 }
5046                 list_del(element);
5047
5048                 rxb->dma_addr =
5049                     pci_map_single(priv->pci_dev, rxb->skb->data,
5050                                    IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5051
5052                 list_add_tail(&rxb->list, &rxq->rx_free);
5053                 rxq->free_count++;
5054         }
5055         spin_unlock_irqrestore(&rxq->lock, flags);
5056
5057         ipw_rx_queue_restock(priv);
5058 }
5059
5060 static void ipw_bg_rx_queue_replenish(void *data)
5061 {
5062         struct ipw_priv *priv = data;
5063         mutex_lock(&priv->mutex);
5064         ipw_rx_queue_replenish(data);
5065         mutex_unlock(&priv->mutex);
5066 }
5067
5068 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5069  * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5070  * This free routine walks the list of POOL entries and if SKB is set to
5071  * non NULL it is unmapped and freed
5072  */
5073 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5074 {
5075         int i;
5076
5077         if (!rxq)
5078                 return;
5079
5080         for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5081                 if (rxq->pool[i].skb != NULL) {
5082                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5083                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5084                         dev_kfree_skb(rxq->pool[i].skb);
5085                 }
5086         }
5087
5088         kfree(rxq);
5089 }
5090
5091 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5092 {
5093         struct ipw_rx_queue *rxq;
5094         int i;
5095
5096         rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5097         if (unlikely(!rxq)) {
5098                 IPW_ERROR("memory allocation failed\n");
5099                 return NULL;
5100         }
5101         spin_lock_init(&rxq->lock);
5102         INIT_LIST_HEAD(&rxq->rx_free);
5103         INIT_LIST_HEAD(&rxq->rx_used);
5104
5105         /* Fill the rx_used queue with _all_ of the Rx buffers */
5106         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5107                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5108
5109         /* Set us so that we have processed and used all buffers, but have
5110          * not restocked the Rx queue with fresh buffers */
5111         rxq->read = rxq->write = 0;
5112         rxq->processed = RX_QUEUE_SIZE - 1;
5113         rxq->free_count = 0;
5114
5115         return rxq;
5116 }
5117
5118 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5119 {
5120         rate &= ~IEEE80211_BASIC_RATE_MASK;
5121         if (ieee_mode == IEEE_A) {
5122                 switch (rate) {
5123                 case IEEE80211_OFDM_RATE_6MB:
5124                         return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ?
5125                             1 : 0;
5126                 case IEEE80211_OFDM_RATE_9MB:
5127                         return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ?
5128                             1 : 0;
5129                 case IEEE80211_OFDM_RATE_12MB:
5130                         return priv->
5131                             rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5132                 case IEEE80211_OFDM_RATE_18MB:
5133                         return priv->
5134                             rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5135                 case IEEE80211_OFDM_RATE_24MB:
5136                         return priv->
5137                             rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5138                 case IEEE80211_OFDM_RATE_36MB:
5139                         return priv->
5140                             rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5141                 case IEEE80211_OFDM_RATE_48MB:
5142                         return priv->
5143                             rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5144                 case IEEE80211_OFDM_RATE_54MB:
5145                         return priv->
5146                             rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5147                 default:
5148                         return 0;
5149                 }
5150         }
5151
5152         /* B and G mixed */
5153         switch (rate) {
5154         case IEEE80211_CCK_RATE_1MB:
5155                 return priv->rates_mask & IEEE80211_CCK_RATE_1MB_MASK ? 1 : 0;
5156         case IEEE80211_CCK_RATE_2MB:
5157                 return priv->rates_mask & IEEE80211_CCK_RATE_2MB_MASK ? 1 : 0;
5158         case IEEE80211_CCK_RATE_5MB:
5159                 return priv->rates_mask & IEEE80211_CCK_RATE_5MB_MASK ? 1 : 0;
5160         case IEEE80211_CCK_RATE_11MB:
5161                 return priv->rates_mask & IEEE80211_CCK_RATE_11MB_MASK ? 1 : 0;
5162         }
5163
5164         /* If we are limited to B modulations, bail at this point */
5165         if (ieee_mode == IEEE_B)
5166                 return 0;
5167
5168         /* G */
5169         switch (rate) {
5170         case IEEE80211_OFDM_RATE_6MB:
5171                 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0;
5172         case IEEE80211_OFDM_RATE_9MB:
5173                 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0;
5174         case IEEE80211_OFDM_RATE_12MB:
5175                 return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5176         case IEEE80211_OFDM_RATE_18MB:
5177                 return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5178         case IEEE80211_OFDM_RATE_24MB:
5179                 return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5180         case IEEE80211_OFDM_RATE_36MB:
5181                 return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5182         case IEEE80211_OFDM_RATE_48MB:
5183                 return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5184         case IEEE80211_OFDM_RATE_54MB:
5185                 return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5186         }
5187
5188         return 0;
5189 }
5190
5191 static int ipw_compatible_rates(struct ipw_priv *priv,
5192                                 const struct ieee80211_network *network,
5193                                 struct ipw_supported_rates *rates)
5194 {
5195         int num_rates, i;
5196
5197         memset(rates, 0, sizeof(*rates));
5198         num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5199         rates->num_rates = 0;
5200         for (i = 0; i < num_rates; i++) {
5201                 if (!ipw_is_rate_in_mask(priv, network->mode,
5202                                          network->rates[i])) {
5203
5204                         if (network->rates[i] & IEEE80211_BASIC_RATE_MASK) {
5205                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5206                                                "rate %02X\n",
5207                                                network->rates[i]);
5208                                 rates->supported_rates[rates->num_rates++] =
5209                                     network->rates[i];
5210                                 continue;
5211                         }
5212
5213                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5214                                        network->rates[i], priv->rates_mask);
5215                         continue;
5216                 }
5217
5218                 rates->supported_rates[rates->num_rates++] = network->rates[i];
5219         }
5220
5221         num_rates = min(network->rates_ex_len,
5222                         (u8) (IPW_MAX_RATES - num_rates));
5223         for (i = 0; i < num_rates; i++) {
5224                 if (!ipw_is_rate_in_mask(priv, network->mode,
5225                                          network->rates_ex[i])) {
5226                         if (network->rates_ex[i] & IEEE80211_BASIC_RATE_MASK) {
5227                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5228                                                "rate %02X\n",
5229                                                network->rates_ex[i]);
5230                                 rates->supported_rates[rates->num_rates++] =
5231                                     network->rates[i];
5232                                 continue;
5233                         }
5234
5235                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5236                                        network->rates_ex[i], priv->rates_mask);
5237                         continue;
5238                 }
5239
5240                 rates->supported_rates[rates->num_rates++] =
5241                     network->rates_ex[i];
5242         }
5243
5244         return 1;
5245 }
5246
5247 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5248                                   const struct ipw_supported_rates *src)
5249 {
5250         u8 i;
5251         for (i = 0; i < src->num_rates; i++)
5252                 dest->supported_rates[i] = src->supported_rates[i];
5253         dest->num_rates = src->num_rates;
5254 }
5255
5256 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5257  * mask should ever be used -- right now all callers to add the scan rates are
5258  * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5259 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5260                                    u8 modulation, u32 rate_mask)
5261 {
5262         u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5263             IEEE80211_BASIC_RATE_MASK : 0;
5264
5265         if (rate_mask & IEEE80211_CCK_RATE_1MB_MASK)
5266                 rates->supported_rates[rates->num_rates++] =
5267                     IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_1MB;
5268
5269         if (rate_mask & IEEE80211_CCK_RATE_2MB_MASK)
5270                 rates->supported_rates[rates->num_rates++] =
5271                     IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_2MB;
5272
5273         if (rate_mask & IEEE80211_CCK_RATE_5MB_MASK)
5274                 rates->supported_rates[rates->num_rates++] = basic_mask |
5275                     IEEE80211_CCK_RATE_5MB;
5276
5277         if (rate_mask & IEEE80211_CCK_RATE_11MB_MASK)
5278                 rates->supported_rates[rates->num_rates++] = basic_mask |
5279                     IEEE80211_CCK_RATE_11MB;
5280 }
5281
5282 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5283                                     u8 modulation, u32 rate_mask)
5284 {
5285         u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5286             IEEE80211_BASIC_RATE_MASK : 0;
5287
5288         if (rate_mask & IEEE80211_OFDM_RATE_6MB_MASK)
5289                 rates->supported_rates[rates->num_rates++] = basic_mask |
5290                     IEEE80211_OFDM_RATE_6MB;
5291
5292         if (rate_mask & IEEE80211_OFDM_RATE_9MB_MASK)
5293                 rates->supported_rates[rates->num_rates++] =
5294                     IEEE80211_OFDM_RATE_9MB;
5295
5296         if (rate_mask & IEEE80211_OFDM_RATE_12MB_MASK)
5297                 rates->supported_rates[rates->num_rates++] = basic_mask |
5298                     IEEE80211_OFDM_RATE_12MB;
5299
5300         if (rate_mask & IEEE80211_OFDM_RATE_18MB_MASK)
5301                 rates->supported_rates[rates->num_rates++] =
5302                     IEEE80211_OFDM_RATE_18MB;
5303
5304         if (rate_mask & IEEE80211_OFDM_RATE_24MB_MASK)
5305                 rates->supported_rates[rates->num_rates++] = basic_mask |
5306                     IEEE80211_OFDM_RATE_24MB;
5307
5308         if (rate_mask & IEEE80211_OFDM_RATE_36MB_MASK)
5309                 rates->supported_rates[rates->num_rates++] =
5310                     IEEE80211_OFDM_RATE_36MB;
5311
5312         if (rate_mask & IEEE80211_OFDM_RATE_48MB_MASK)
5313                 rates->supported_rates[rates->num_rates++] =
5314                     IEEE80211_OFDM_RATE_48MB;
5315
5316         if (rate_mask & IEEE80211_OFDM_RATE_54MB_MASK)
5317                 rates->supported_rates[rates->num_rates++] =
5318                     IEEE80211_OFDM_RATE_54MB;
5319 }
5320
5321 struct ipw_network_match {
5322         struct ieee80211_network *network;
5323         struct ipw_supported_rates rates;
5324 };
5325
5326 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5327                                   struct ipw_network_match *match,
5328                                   struct ieee80211_network *network,
5329                                   int roaming)
5330 {
5331         struct ipw_supported_rates rates;
5332
5333         /* Verify that this network's capability is compatible with the
5334          * current mode (AdHoc or Infrastructure) */
5335         if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5336              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5337                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded due to "
5338                                 "capability mismatch.\n",
5339                                 escape_essid(network->ssid, network->ssid_len),
5340                                 MAC_ARG(network->bssid));
5341                 return 0;
5342         }
5343
5344         /* If we do not have an ESSID for this AP, we can not associate with
5345          * it */
5346         if (network->flags & NETWORK_EMPTY_ESSID) {
5347                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5348                                 "because of hidden ESSID.\n",
5349                                 escape_essid(network->ssid, network->ssid_len),
5350                                 MAC_ARG(network->bssid));
5351                 return 0;
5352         }
5353
5354         if (unlikely(roaming)) {
5355                 /* If we are roaming, then ensure check if this is a valid
5356                  * network to try and roam to */
5357                 if ((network->ssid_len != match->network->ssid_len) ||
5358                     memcmp(network->ssid, match->network->ssid,
5359                            network->ssid_len)) {
5360                         IPW_DEBUG_MERGE("Netowrk '%s (" MAC_FMT ")' excluded "
5361                                         "because of non-network ESSID.\n",
5362                                         escape_essid(network->ssid,
5363                                                      network->ssid_len),
5364                                         MAC_ARG(network->bssid));
5365                         return 0;
5366                 }
5367         } else {
5368                 /* If an ESSID has been configured then compare the broadcast
5369                  * ESSID to ours */
5370                 if ((priv->config & CFG_STATIC_ESSID) &&
5371                     ((network->ssid_len != priv->essid_len) ||
5372                      memcmp(network->ssid, priv->essid,
5373                             min(network->ssid_len, priv->essid_len)))) {
5374                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5375
5376                         strncpy(escaped,
5377                                 escape_essid(network->ssid, network->ssid_len),
5378                                 sizeof(escaped));
5379                         IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5380                                         "because of ESSID mismatch: '%s'.\n",
5381                                         escaped, MAC_ARG(network->bssid),
5382                                         escape_essid(priv->essid,
5383                                                      priv->essid_len));
5384                         return 0;
5385                 }
5386         }
5387
5388         /* If the old network rate is better than this one, don't bother
5389          * testing everything else. */
5390
5391         if (network->time_stamp[0] < match->network->time_stamp[0]) {
5392                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5393                                 "current network.\n",
5394                                 escape_essid(match->network->ssid,
5395                                              match->network->ssid_len));
5396                 return 0;
5397         } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5398                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5399                                 "current network.\n",
5400                                 escape_essid(match->network->ssid,
5401                                              match->network->ssid_len));
5402                 return 0;
5403         }
5404
5405         /* Now go through and see if the requested network is valid... */
5406         if (priv->ieee->scan_age != 0 &&
5407             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5408                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5409                                 "because of age: %ums.\n",
5410                                 escape_essid(network->ssid, network->ssid_len),
5411                                 MAC_ARG(network->bssid),
5412                                 jiffies_to_msecs(jiffies -
5413                                                  network->last_scanned));
5414                 return 0;
5415         }
5416
5417         if ((priv->config & CFG_STATIC_CHANNEL) &&
5418             (network->channel != priv->channel)) {
5419                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5420                                 "because of channel mismatch: %d != %d.\n",
5421                                 escape_essid(network->ssid, network->ssid_len),
5422                                 MAC_ARG(network->bssid),
5423                                 network->channel, priv->channel);
5424                 return 0;
5425         }
5426
5427         /* Verify privacy compatability */
5428         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5429             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5430                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5431                                 "because of privacy mismatch: %s != %s.\n",
5432                                 escape_essid(network->ssid, network->ssid_len),
5433                                 MAC_ARG(network->bssid),
5434                                 priv->
5435                                 capability & CAP_PRIVACY_ON ? "on" : "off",
5436                                 network->
5437                                 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5438                                 "off");
5439                 return 0;
5440         }
5441
5442         if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5443                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5444                                 "because of the same BSSID match: " MAC_FMT
5445                                 ".\n", escape_essid(network->ssid,
5446                                                     network->ssid_len),
5447                                 MAC_ARG(network->bssid), MAC_ARG(priv->bssid));
5448                 return 0;
5449         }
5450
5451         /* Filter out any incompatible freq / mode combinations */
5452         if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5453                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5454                                 "because of invalid frequency/mode "
5455                                 "combination.\n",
5456                                 escape_essid(network->ssid, network->ssid_len),
5457                                 MAC_ARG(network->bssid));
5458                 return 0;
5459         }
5460
5461         /* Ensure that the rates supported by the driver are compatible with
5462          * this AP, including verification of basic rates (mandatory) */
5463         if (!ipw_compatible_rates(priv, network, &rates)) {
5464                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5465                                 "because configured rate mask excludes "
5466                                 "AP mandatory rate.\n",
5467                                 escape_essid(network->ssid, network->ssid_len),
5468                                 MAC_ARG(network->bssid));
5469                 return 0;
5470         }
5471
5472         if (rates.num_rates == 0) {
5473                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5474                                 "because of no compatible rates.\n",
5475                                 escape_essid(network->ssid, network->ssid_len),
5476                                 MAC_ARG(network->bssid));
5477                 return 0;
5478         }
5479
5480         /* TODO: Perform any further minimal comparititive tests.  We do not
5481          * want to put too much policy logic here; intelligent scan selection
5482          * should occur within a generic IEEE 802.11 user space tool.  */
5483
5484         /* Set up 'new' AP to this network */
5485         ipw_copy_rates(&match->rates, &rates);
5486         match->network = network;
5487         IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' is a viable match.\n",
5488                         escape_essid(network->ssid, network->ssid_len),
5489                         MAC_ARG(network->bssid));
5490
5491         return 1;
5492 }
5493
5494 static void ipw_merge_adhoc_network(void *data)
5495 {
5496         struct ipw_priv *priv = data;
5497         struct ieee80211_network *network = NULL;
5498         struct ipw_network_match match = {
5499                 .network = priv->assoc_network
5500         };
5501
5502         if ((priv->status & STATUS_ASSOCIATED) &&
5503             (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5504                 /* First pass through ROAM process -- look for a better
5505                  * network */
5506                 unsigned long flags;
5507
5508                 spin_lock_irqsave(&priv->ieee->lock, flags);
5509                 list_for_each_entry(network, &priv->ieee->network_list, list) {
5510                         if (network != priv->assoc_network)
5511                                 ipw_find_adhoc_network(priv, &match, network,
5512                                                        1);
5513                 }
5514                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5515
5516                 if (match.network == priv->assoc_network) {
5517                         IPW_DEBUG_MERGE("No better ADHOC in this network to "
5518                                         "merge to.\n");
5519                         return;
5520                 }
5521
5522                 mutex_lock(&priv->mutex);
5523                 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5524                         IPW_DEBUG_MERGE("remove network %s\n",
5525                                         escape_essid(priv->essid,
5526                                                      priv->essid_len));
5527                         ipw_remove_current_network(priv);
5528                 }
5529
5530                 ipw_disassociate(priv);
5531                 priv->assoc_network = match.network;
5532                 mutex_unlock(&priv->mutex);
5533                 return;
5534         }
5535 }
5536
5537 static int ipw_best_network(struct ipw_priv *priv,
5538                             struct ipw_network_match *match,
5539                             struct ieee80211_network *network, int roaming)
5540 {
5541         struct ipw_supported_rates rates;
5542
5543         /* Verify that this network's capability is compatible with the
5544          * current mode (AdHoc or Infrastructure) */
5545         if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5546              !(network->capability & WLAN_CAPABILITY_ESS)) ||
5547             (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5548              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5549                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded due to "
5550                                 "capability mismatch.\n",
5551                                 escape_essid(network->ssid, network->ssid_len),
5552                                 MAC_ARG(network->bssid));
5553                 return 0;
5554         }
5555
5556         /* If we do not have an ESSID for this AP, we can not associate with
5557          * it */
5558         if (network->flags & NETWORK_EMPTY_ESSID) {
5559                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5560                                 "because of hidden ESSID.\n",
5561                                 escape_essid(network->ssid, network->ssid_len),
5562                                 MAC_ARG(network->bssid));
5563                 return 0;
5564         }
5565
5566         if (unlikely(roaming)) {
5567                 /* If we are roaming, then ensure check if this is a valid
5568                  * network to try and roam to */
5569                 if ((network->ssid_len != match->network->ssid_len) ||
5570                     memcmp(network->ssid, match->network->ssid,
5571                            network->ssid_len)) {
5572                         IPW_DEBUG_ASSOC("Netowrk '%s (" MAC_FMT ")' excluded "
5573                                         "because of non-network ESSID.\n",
5574                                         escape_essid(network->ssid,
5575                                                      network->ssid_len),
5576                                         MAC_ARG(network->bssid));
5577                         return 0;
5578                 }
5579         } else {
5580                 /* If an ESSID has been configured then compare the broadcast
5581                  * ESSID to ours */
5582                 if ((priv->config & CFG_STATIC_ESSID) &&
5583                     ((network->ssid_len != priv->essid_len) ||
5584                      memcmp(network->ssid, priv->essid,
5585                             min(network->ssid_len, priv->essid_len)))) {
5586                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5587                         strncpy(escaped,
5588                                 escape_essid(network->ssid, network->ssid_len),
5589                                 sizeof(escaped));
5590                         IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5591                                         "because of ESSID mismatch: '%s'.\n",
5592                                         escaped, MAC_ARG(network->bssid),
5593                                         escape_essid(priv->essid,
5594                                                      priv->essid_len));
5595                         return 0;
5596                 }
5597         }
5598
5599         /* If the old network rate is better than this one, don't bother
5600          * testing everything else. */
5601         if (match->network && match->network->stats.rssi > network->stats.rssi) {
5602                 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5603                 strncpy(escaped,
5604                         escape_essid(network->ssid, network->ssid_len),
5605                         sizeof(escaped));
5606                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded because "
5607                                 "'%s (" MAC_FMT ")' has a stronger signal.\n",
5608                                 escaped, MAC_ARG(network->bssid),
5609                                 escape_essid(match->network->ssid,
5610                                              match->network->ssid_len),
5611                                 MAC_ARG(match->network->bssid));
5612                 return 0;
5613         }
5614
5615         /* If this network has already had an association attempt within the
5616          * last 3 seconds, do not try and associate again... */
5617         if (network->last_associate &&
5618             time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5619                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5620                                 "because of storming (%ums since last "
5621                                 "assoc attempt).\n",
5622                                 escape_essid(network->ssid, network->ssid_len),
5623                                 MAC_ARG(network->bssid),
5624                                 jiffies_to_msecs(jiffies -
5625                                                  network->last_associate));
5626                 return 0;
5627         }
5628
5629         /* Now go through and see if the requested network is valid... */
5630         if (priv->ieee->scan_age != 0 &&
5631             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5632                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5633                                 "because of age: %ums.\n",
5634                                 escape_essid(network->ssid, network->ssid_len),
5635                                 MAC_ARG(network->bssid),
5636                                 jiffies_to_msecs(jiffies -
5637                                                  network->last_scanned));
5638                 return 0;
5639         }
5640
5641         if ((priv->config & CFG_STATIC_CHANNEL) &&
5642             (network->channel != priv->channel)) {
5643                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5644                                 "because of channel mismatch: %d != %d.\n",
5645                                 escape_essid(network->ssid, network->ssid_len),
5646                                 MAC_ARG(network->bssid),
5647                                 network->channel, priv->channel);
5648                 return 0;
5649         }
5650
5651         /* Verify privacy compatability */
5652         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5653             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5654                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5655                                 "because of privacy mismatch: %s != %s.\n",
5656                                 escape_essid(network->ssid, network->ssid_len),
5657                                 MAC_ARG(network->bssid),
5658                                 priv->capability & CAP_PRIVACY_ON ? "on" :
5659                                 "off",
5660                                 network->capability &
5661                                 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5662                 return 0;
5663         }
5664
5665         if ((priv->config & CFG_STATIC_BSSID) &&
5666             memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5667                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5668                                 "because of BSSID mismatch: " MAC_FMT ".\n",
5669                                 escape_essid(network->ssid, network->ssid_len),
5670                                 MAC_ARG(network->bssid), MAC_ARG(priv->bssid));
5671                 return 0;
5672         }
5673
5674         /* Filter out any incompatible freq / mode combinations */
5675         if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5676                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5677                                 "because of invalid frequency/mode "
5678                                 "combination.\n",
5679                                 escape_essid(network->ssid, network->ssid_len),
5680                                 MAC_ARG(network->bssid));
5681                 return 0;
5682         }
5683
5684         /* Filter out invalid channel in current GEO */
5685         if (!ieee80211_is_valid_channel(priv->ieee, network->channel)) {
5686                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5687                                 "because of invalid channel in current GEO\n",
5688                                 escape_essid(network->ssid, network->ssid_len),
5689                                 MAC_ARG(network->bssid));
5690                 return 0;
5691         }
5692
5693         /* Ensure that the rates supported by the driver are compatible with
5694          * this AP, including verification of basic rates (mandatory) */
5695         if (!ipw_compatible_rates(priv, network, &rates)) {
5696                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5697                                 "because configured rate mask excludes "
5698                                 "AP mandatory rate.\n",
5699                                 escape_essid(network->ssid, network->ssid_len),
5700                                 MAC_ARG(network->bssid));
5701                 return 0;
5702         }
5703
5704         if (rates.num_rates == 0) {
5705                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5706                                 "because of no compatible rates.\n",
5707                                 escape_essid(network->ssid, network->ssid_len),
5708                                 MAC_ARG(network->bssid));
5709                 return 0;
5710         }
5711
5712         /* TODO: Perform any further minimal comparititive tests.  We do not
5713          * want to put too much policy logic here; intelligent scan selection
5714          * should occur within a generic IEEE 802.11 user space tool.  */
5715
5716         /* Set up 'new' AP to this network */
5717         ipw_copy_rates(&match->rates, &rates);
5718         match->network = network;
5719
5720         IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' is a viable match.\n",
5721                         escape_essid(network->ssid, network->ssid_len),
5722                         MAC_ARG(network->bssid));
5723
5724         return 1;
5725 }
5726
5727 static void ipw_adhoc_create(struct ipw_priv *priv,
5728                              struct ieee80211_network *network)
5729 {
5730         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
5731         int i;
5732
5733         /*
5734          * For the purposes of scanning, we can set our wireless mode
5735          * to trigger scans across combinations of bands, but when it
5736          * comes to creating a new ad-hoc network, we have tell the FW
5737          * exactly which band to use.
5738          *
5739          * We also have the possibility of an invalid channel for the
5740          * chossen band.  Attempting to create a new ad-hoc network
5741          * with an invalid channel for wireless mode will trigger a
5742          * FW fatal error.
5743          *
5744          */
5745         switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
5746         case IEEE80211_52GHZ_BAND:
5747                 network->mode = IEEE_A;
5748                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5749                 BUG_ON(i == -1);
5750                 if (geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5751                         IPW_WARNING("Overriding invalid channel\n");
5752                         priv->channel = geo->a[0].channel;
5753                 }
5754                 break;
5755
5756         case IEEE80211_24GHZ_BAND:
5757                 if (priv->ieee->mode & IEEE_G)
5758                         network->mode = IEEE_G;
5759                 else
5760                         network->mode = IEEE_B;
5761                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5762                 BUG_ON(i == -1);
5763                 if (geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5764                         IPW_WARNING("Overriding invalid channel\n");
5765                         priv->channel = geo->bg[0].channel;
5766                 }
5767                 break;
5768
5769         default:
5770                 IPW_WARNING("Overriding invalid channel\n");
5771                 if (priv->ieee->mode & IEEE_A) {
5772                         network->mode = IEEE_A;
5773                         priv->channel = geo->a[0].channel;
5774                 } else if (priv->ieee->mode & IEEE_G) {
5775                         network->mode = IEEE_G;
5776                         priv->channel = geo->bg[0].channel;
5777                 } else {
5778                         network->mode = IEEE_B;
5779                         priv->channel = geo->bg[0].channel;
5780                 }
5781                 break;
5782         }
5783
5784         network->channel = priv->channel;
5785         priv->config |= CFG_ADHOC_PERSIST;
5786         ipw_create_bssid(priv, network->bssid);
5787         network->ssid_len = priv->essid_len;
5788         memcpy(network->ssid, priv->essid, priv->essid_len);
5789         memset(&network->stats, 0, sizeof(network->stats));
5790         network->capability = WLAN_CAPABILITY_IBSS;
5791         if (!(priv->config & CFG_PREAMBLE_LONG))
5792                 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5793         if (priv->capability & CAP_PRIVACY_ON)
5794                 network->capability |= WLAN_CAPABILITY_PRIVACY;
5795         network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5796         memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5797         network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5798         memcpy(network->rates_ex,
5799                &priv->rates.supported_rates[network->rates_len],
5800                network->rates_ex_len);
5801         network->last_scanned = 0;
5802         network->flags = 0;
5803         network->last_associate = 0;
5804         network->time_stamp[0] = 0;
5805         network->time_stamp[1] = 0;
5806         network->beacon_interval = 100; /* Default */
5807         network->listen_interval = 10;  /* Default */
5808         network->atim_window = 0;       /* Default */
5809         network->wpa_ie_len = 0;
5810         network->rsn_ie_len = 0;
5811 }
5812
5813 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5814 {
5815         struct ipw_tgi_tx_key key;
5816
5817         if (!(priv->ieee->sec.flags & (1 << index)))
5818                 return;
5819
5820         key.key_id = index;
5821         memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5822         key.security_type = type;
5823         key.station_index = 0;  /* always 0 for BSS */
5824         key.flags = 0;
5825         /* 0 for new key; previous value of counter (after fatal error) */
5826         key.tx_counter[0] = cpu_to_le32(0);
5827         key.tx_counter[1] = cpu_to_le32(0);
5828
5829         ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5830 }
5831
5832 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5833 {
5834         struct ipw_wep_key key;
5835         int i;
5836
5837         key.cmd_id = DINO_CMD_WEP_KEY;
5838         key.seq_num = 0;
5839
5840         /* Note: AES keys cannot be set for multiple times.
5841          * Only set it at the first time. */
5842         for (i = 0; i < 4; i++) {
5843                 key.key_index = i | type;
5844                 if (!(priv->ieee->sec.flags & (1 << i))) {
5845                         key.key_size = 0;
5846                         continue;
5847                 }
5848
5849                 key.key_size = priv->ieee->sec.key_sizes[i];
5850                 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5851
5852                 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5853         }
5854 }
5855
5856 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5857 {
5858         if (priv->ieee->host_encrypt)
5859                 return;
5860
5861         switch (level) {
5862         case SEC_LEVEL_3:
5863                 priv->sys_config.disable_unicast_decryption = 0;
5864                 priv->ieee->host_decrypt = 0;
5865                 break;
5866         case SEC_LEVEL_2:
5867                 priv->sys_config.disable_unicast_decryption = 1;
5868                 priv->ieee->host_decrypt = 1;
5869                 break;
5870         case SEC_LEVEL_1:
5871                 priv->sys_config.disable_unicast_decryption = 0;
5872                 priv->ieee->host_decrypt = 0;
5873                 break;
5874         case SEC_LEVEL_0:
5875                 priv->sys_config.disable_unicast_decryption = 1;
5876                 break;
5877         default:
5878                 break;
5879         }
5880 }
5881
5882 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5883 {
5884         if (priv->ieee->host_encrypt)
5885                 return;
5886
5887         switch (level) {
5888         case SEC_LEVEL_3:
5889                 priv->sys_config.disable_multicast_decryption = 0;
5890                 break;
5891         case SEC_LEVEL_2:
5892                 priv->sys_config.disable_multicast_decryption = 1;
5893                 break;
5894         case SEC_LEVEL_1:
5895                 priv->sys_config.disable_multicast_decryption = 0;
5896                 break;
5897         case SEC_LEVEL_0:
5898                 priv->sys_config.disable_multicast_decryption = 1;
5899                 break;
5900         default:
5901                 break;
5902         }
5903 }
5904
5905 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
5906 {
5907         switch (priv->ieee->sec.level) {
5908         case SEC_LEVEL_3:
5909                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5910                         ipw_send_tgi_tx_key(priv,
5911                                             DCT_FLAG_EXT_SECURITY_CCM,
5912                                             priv->ieee->sec.active_key);
5913
5914                 if (!priv->ieee->host_mc_decrypt)
5915                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
5916                 break;
5917         case SEC_LEVEL_2:
5918                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5919                         ipw_send_tgi_tx_key(priv,
5920                                             DCT_FLAG_EXT_SECURITY_TKIP,
5921                                             priv->ieee->sec.active_key);
5922                 break;
5923         case SEC_LEVEL_1:
5924                 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
5925                 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
5926                 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
5927                 break;
5928         case SEC_LEVEL_0:
5929         default:
5930                 break;
5931         }
5932 }
5933
5934 static void ipw_adhoc_check(void *data)
5935 {
5936         struct ipw_priv *priv = data;
5937
5938         if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
5939             !(priv->config & CFG_ADHOC_PERSIST)) {
5940                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
5941                           IPW_DL_STATE | IPW_DL_ASSOC,
5942                           "Missed beacon: %d - disassociate\n",
5943                           priv->missed_adhoc_beacons);
5944                 ipw_remove_current_network(priv);
5945                 ipw_disassociate(priv);
5946                 return;
5947         }
5948
5949         queue_delayed_work(priv->workqueue, &priv->adhoc_check,
5950                            priv->assoc_request.beacon_interval);
5951 }
5952
5953 static void ipw_bg_adhoc_check(void *data)
5954 {
5955         struct ipw_priv *priv = data;
5956         mutex_lock(&priv->mutex);
5957         ipw_adhoc_check(data);
5958         mutex_unlock(&priv->mutex);
5959 }
5960
5961 static void ipw_debug_config(struct ipw_priv *priv)
5962 {
5963         IPW_DEBUG_INFO("Scan completed, no valid APs matched "
5964                        "[CFG 0x%08X]\n", priv->config);
5965         if (priv->config & CFG_STATIC_CHANNEL)
5966                 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
5967         else
5968                 IPW_DEBUG_INFO("Channel unlocked.\n");
5969         if (priv->config & CFG_STATIC_ESSID)
5970                 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
5971                                escape_essid(priv->essid, priv->essid_len));
5972         else
5973                 IPW_DEBUG_INFO("ESSID unlocked.\n");
5974         if (priv->config & CFG_STATIC_BSSID)
5975                 IPW_DEBUG_INFO("BSSID locked to " MAC_FMT "\n",
5976                                MAC_ARG(priv->bssid));
5977         else
5978                 IPW_DEBUG_INFO("BSSID unlocked.\n");
5979         if (priv->capability & CAP_PRIVACY_ON)
5980                 IPW_DEBUG_INFO("PRIVACY on\n");
5981         else
5982                 IPW_DEBUG_INFO("PRIVACY off\n");
5983         IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
5984 }
5985
5986 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
5987 {
5988         /* TODO: Verify that this works... */
5989         struct ipw_fixed_rate fr = {
5990                 .tx_rates = priv->rates_mask
5991         };
5992         u32 reg;
5993         u16 mask = 0;
5994
5995         /* Identify 'current FW band' and match it with the fixed
5996          * Tx rates */
5997
5998         switch (priv->ieee->freq_band) {
5999         case IEEE80211_52GHZ_BAND:      /* A only */
6000                 /* IEEE_A */
6001                 if (priv->rates_mask & ~IEEE80211_OFDM_RATES_MASK) {
6002                         /* Invalid fixed rate mask */
6003                         IPW_DEBUG_WX
6004                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6005                         fr.tx_rates = 0;
6006                         break;
6007                 }
6008
6009                 fr.tx_rates >>= IEEE80211_OFDM_SHIFT_MASK_A;
6010                 break;
6011
6012         default:                /* 2.4Ghz or Mixed */
6013                 /* IEEE_B */
6014                 if (mode == IEEE_B) {
6015                         if (fr.tx_rates & ~IEEE80211_CCK_RATES_MASK) {
6016                                 /* Invalid fixed rate mask */
6017                                 IPW_DEBUG_WX
6018                                     ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6019                                 fr.tx_rates = 0;
6020                         }
6021                         break;
6022                 }
6023
6024                 /* IEEE_G */
6025                 if (fr.tx_rates & ~(IEEE80211_CCK_RATES_MASK |
6026                                     IEEE80211_OFDM_RATES_MASK)) {
6027                         /* Invalid fixed rate mask */
6028                         IPW_DEBUG_WX
6029                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6030                         fr.tx_rates = 0;
6031                         break;
6032                 }
6033
6034                 if (IEEE80211_OFDM_RATE_6MB_MASK & fr.tx_rates) {
6035                         mask |= (IEEE80211_OFDM_RATE_6MB_MASK >> 1);
6036                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_6MB_MASK;
6037                 }
6038
6039                 if (IEEE80211_OFDM_RATE_9MB_MASK & fr.tx_rates) {
6040                         mask |= (IEEE80211_OFDM_RATE_9MB_MASK >> 1);
6041                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_9MB_MASK;
6042                 }
6043
6044                 if (IEEE80211_OFDM_RATE_12MB_MASK & fr.tx_rates) {
6045                         mask |= (IEEE80211_OFDM_RATE_12MB_MASK >> 1);
6046                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_12MB_MASK;
6047                 }
6048
6049                 fr.tx_rates |= mask;
6050                 break;
6051         }
6052
6053         reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6054         ipw_write_reg32(priv, reg, *(u32 *) & fr);
6055 }
6056
6057 static void ipw_abort_scan(struct ipw_priv *priv)
6058 {
6059         int err;
6060
6061         if (priv->status & STATUS_SCAN_ABORTING) {
6062                 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6063                 return;
6064         }
6065         priv->status |= STATUS_SCAN_ABORTING;
6066
6067         err = ipw_send_scan_abort(priv);
6068         if (err)
6069                 IPW_DEBUG_HC("Request to abort scan failed.\n");
6070 }
6071
6072 static void ipw_add_scan_channels(struct ipw_priv *priv,
6073                                   struct ipw_scan_request_ext *scan,
6074                                   int scan_type)
6075 {
6076         int channel_index = 0;
6077         const struct ieee80211_geo *geo;
6078         int i;
6079
6080         geo = ieee80211_get_geo(priv->ieee);
6081
6082         if (priv->ieee->freq_band & IEEE80211_52GHZ_BAND) {
6083                 int start = channel_index;
6084                 for (i = 0; i < geo->a_channels; i++) {
6085                         if ((priv->status & STATUS_ASSOCIATED) &&
6086                             geo->a[i].channel == priv->channel)
6087                                 continue;
6088                         channel_index++;
6089                         scan->channels_list[channel_index] = geo->a[i].channel;
6090                         ipw_set_scan_type(scan, channel_index,
6091                                           geo->a[i].
6092                                           flags & IEEE80211_CH_PASSIVE_ONLY ?
6093                                           IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6094                                           scan_type);
6095                 }
6096
6097                 if (start != channel_index) {
6098                         scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6099                             (channel_index - start);
6100                         channel_index++;
6101                 }
6102         }
6103
6104         if (priv->ieee->freq_band & IEEE80211_24GHZ_BAND) {
6105                 int start = channel_index;
6106                 if (priv->config & CFG_SPEED_SCAN) {
6107                         int index;
6108                         u8 channels[IEEE80211_24GHZ_CHANNELS] = {
6109                                 /* nop out the list */
6110                                 [0] = 0
6111                         };
6112
6113                         u8 channel;
6114                         while (channel_index < IPW_SCAN_CHANNELS) {
6115                                 channel =
6116                                     priv->speed_scan[priv->speed_scan_pos];
6117                                 if (channel == 0) {
6118                                         priv->speed_scan_pos = 0;
6119                                         channel = priv->speed_scan[0];
6120                                 }
6121                                 if ((priv->status & STATUS_ASSOCIATED) &&
6122                                     channel == priv->channel) {
6123                                         priv->speed_scan_pos++;
6124                                         continue;
6125                                 }
6126
6127                                 /* If this channel has already been
6128                                  * added in scan, break from loop
6129                                  * and this will be the first channel
6130                                  * in the next scan.
6131                                  */
6132                                 if (channels[channel - 1] != 0)
6133                                         break;
6134
6135                                 channels[channel - 1] = 1;
6136                                 priv->speed_scan_pos++;
6137                                 channel_index++;
6138                                 scan->channels_list[channel_index] = channel;
6139                                 index =
6140                                     ieee80211_channel_to_index(priv->ieee, channel);
6141                                 ipw_set_scan_type(scan, channel_index,
6142                                                   geo->bg[index].
6143                                                   flags &
6144                                                   IEEE80211_CH_PASSIVE_ONLY ?
6145                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6146                                                   : scan_type);
6147                         }
6148                 } else {
6149                         for (i = 0; i < geo->bg_channels; i++) {
6150                                 if ((priv->status & STATUS_ASSOCIATED) &&
6151                                     geo->bg[i].channel == priv->channel)
6152                                         continue;
6153                                 channel_index++;
6154                                 scan->channels_list[channel_index] =
6155                                     geo->bg[i].channel;
6156                                 ipw_set_scan_type(scan, channel_index,
6157                                                   geo->bg[i].
6158                                                   flags &
6159                                                   IEEE80211_CH_PASSIVE_ONLY ?
6160                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6161                                                   : scan_type);
6162                         }
6163                 }
6164
6165                 if (start != channel_index) {
6166                         scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6167                             (channel_index - start);
6168                 }
6169         }
6170 }
6171
6172 static int ipw_request_scan(struct ipw_priv *priv)
6173 {
6174         struct ipw_scan_request_ext scan;
6175         int err = 0, scan_type;
6176
6177         if (!(priv->status & STATUS_INIT) ||
6178             (priv->status & STATUS_EXIT_PENDING))
6179                 return 0;
6180
6181         mutex_lock(&priv->mutex);
6182
6183         if (priv->status & STATUS_SCANNING) {
6184                 IPW_DEBUG_HC("Concurrent scan requested.  Ignoring.\n");
6185                 priv->status |= STATUS_SCAN_PENDING;
6186                 goto done;
6187         }
6188
6189         if (!(priv->status & STATUS_SCAN_FORCED) &&
6190             priv->status & STATUS_SCAN_ABORTING) {
6191                 IPW_DEBUG_HC("Scan request while abort pending.  Queuing.\n");
6192                 priv->status |= STATUS_SCAN_PENDING;
6193                 goto done;
6194         }
6195
6196         if (priv->status & STATUS_RF_KILL_MASK) {
6197                 IPW_DEBUG_HC("Aborting scan due to RF Kill activation\n");
6198                 priv->status |= STATUS_SCAN_PENDING;
6199                 goto done;
6200         }
6201
6202         memset(&scan, 0, sizeof(scan));
6203
6204         if (priv->config & CFG_SPEED_SCAN)
6205                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6206                     cpu_to_le16(30);
6207         else
6208                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6209                     cpu_to_le16(20);
6210
6211         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6212             cpu_to_le16(20);
6213         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
6214
6215         scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
6216
6217 #ifdef CONFIG_IPW2200_MONITOR
6218         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6219                 u8 channel;
6220                 u8 band = 0;
6221
6222                 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
6223                 case IEEE80211_52GHZ_BAND:
6224                         band = (u8) (IPW_A_MODE << 6) | 1;
6225                         channel = priv->channel;
6226                         break;
6227
6228                 case IEEE80211_24GHZ_BAND:
6229                         band = (u8) (IPW_B_MODE << 6) | 1;
6230                         channel = priv->channel;
6231                         break;
6232
6233                 default:
6234                         band = (u8) (IPW_B_MODE << 6) | 1;
6235                         channel = 9;
6236                         break;
6237                 }
6238
6239                 scan.channels_list[0] = band;
6240                 scan.channels_list[1] = channel;
6241                 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6242
6243                 /* NOTE:  The card will sit on this channel for this time
6244                  * period.  Scan aborts are timing sensitive and frequently
6245                  * result in firmware restarts.  As such, it is best to
6246                  * set a small dwell_time here and just keep re-issuing
6247                  * scans.  Otherwise fast channel hopping will not actually
6248                  * hop channels.
6249                  *
6250                  * TODO: Move SPEED SCAN support to all modes and bands */
6251                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6252                     cpu_to_le16(2000);
6253         } else {
6254 #endif                          /* CONFIG_IPW2200_MONITOR */
6255                 /* If we are roaming, then make this a directed scan for the
6256                  * current network.  Otherwise, ensure that every other scan
6257                  * is a fast channel hop scan */
6258                 if ((priv->status & STATUS_ROAMING)
6259                     || (!(priv->status & STATUS_ASSOCIATED)
6260                         && (priv->config & CFG_STATIC_ESSID)
6261                         && (le32_to_cpu(scan.full_scan_index) % 2))) {
6262                         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6263                         if (err) {
6264                                 IPW_DEBUG_HC("Attempt to send SSID command "
6265                                              "failed.\n");
6266                                 goto done;
6267                         }
6268
6269                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6270                 } else
6271                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6272
6273                 ipw_add_scan_channels(priv, &scan, scan_type);
6274 #ifdef CONFIG_IPW2200_MONITOR
6275         }
6276 #endif
6277
6278         err = ipw_send_scan_request_ext(priv, &scan);
6279         if (err) {
6280                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6281                 goto done;
6282         }
6283
6284         priv->status |= STATUS_SCANNING;
6285         priv->status &= ~STATUS_SCAN_PENDING;
6286         queue_delayed_work(priv->workqueue, &priv->scan_check,
6287                            IPW_SCAN_CHECK_WATCHDOG);
6288       done:
6289         mutex_unlock(&priv->mutex);
6290         return err;
6291 }
6292
6293 static void ipw_bg_abort_scan(void *data)
6294 {
6295         struct ipw_priv *priv = data;
6296         mutex_lock(&priv->mutex);
6297         ipw_abort_scan(data);
6298         mutex_unlock(&priv->mutex);
6299 }
6300
6301 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6302 {
6303         /* This is called when wpa_supplicant loads and closes the driver
6304          * interface. */
6305         priv->ieee->wpa_enabled = value;
6306         return 0;
6307 }
6308
6309 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6310 {
6311         struct ieee80211_device *ieee = priv->ieee;
6312         struct ieee80211_security sec = {
6313                 .flags = SEC_AUTH_MODE,
6314         };
6315         int ret = 0;
6316
6317         if (value & IW_AUTH_ALG_SHARED_KEY) {
6318                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6319                 ieee->open_wep = 0;
6320         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6321                 sec.auth_mode = WLAN_AUTH_OPEN;
6322                 ieee->open_wep = 1;
6323         } else if (value & IW_AUTH_ALG_LEAP) {
6324                 sec.auth_mode = WLAN_AUTH_LEAP;
6325                 ieee->open_wep = 1;
6326         } else
6327                 return -EINVAL;
6328
6329         if (ieee->set_security)
6330                 ieee->set_security(ieee->dev, &sec);
6331         else
6332                 ret = -EOPNOTSUPP;
6333
6334         return ret;
6335 }
6336
6337 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6338                                 int wpa_ie_len)
6339 {
6340         /* make sure WPA is enabled */
6341         ipw_wpa_enable(priv, 1);
6342 }
6343
6344 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6345                             char *capabilities, int length)
6346 {
6347         IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6348
6349         return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6350                                 capabilities);
6351 }
6352
6353 /*
6354  * WE-18 support
6355  */
6356
6357 /* SIOCSIWGENIE */
6358 static int ipw_wx_set_genie(struct net_device *dev,
6359                             struct iw_request_info *info,
6360                             union iwreq_data *wrqu, char *extra)
6361 {
6362         struct ipw_priv *priv = ieee80211_priv(dev);
6363         struct ieee80211_device *ieee = priv->ieee;
6364         u8 *buf;
6365         int err = 0;
6366
6367         if (wrqu->data.length > MAX_WPA_IE_LEN ||
6368             (wrqu->data.length && extra == NULL))
6369                 return -EINVAL;
6370
6371         if (wrqu->data.length) {
6372                 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
6373                 if (buf == NULL) {
6374                         err = -ENOMEM;
6375                         goto out;
6376                 }
6377
6378                 memcpy(buf, extra, wrqu->data.length);
6379                 kfree(ieee->wpa_ie);
6380                 ieee->wpa_ie = buf;
6381                 ieee->wpa_ie_len = wrqu->data.length;
6382         } else {
6383                 kfree(ieee->wpa_ie);
6384                 ieee->wpa_ie = NULL;
6385                 ieee->wpa_ie_len = 0;
6386         }
6387
6388         ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6389       out:
6390         return err;
6391 }
6392
6393 /* SIOCGIWGENIE */
6394 static int ipw_wx_get_genie(struct net_device *dev,
6395                             struct iw_request_info *info,
6396                             union iwreq_data *wrqu, char *extra)
6397 {
6398         struct ipw_priv *priv = ieee80211_priv(dev);
6399         struct ieee80211_device *ieee = priv->ieee;
6400         int err = 0;
6401
6402         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6403                 wrqu->data.length = 0;
6404                 goto out;
6405         }
6406
6407         if (wrqu->data.length < ieee->wpa_ie_len) {
6408                 err = -E2BIG;
6409                 goto out;
6410         }
6411
6412         wrqu->data.length = ieee->wpa_ie_len;
6413         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6414
6415       out:
6416         return err;
6417 }
6418
6419 static int wext_cipher2level(int cipher)
6420 {
6421         switch (cipher) {
6422         case IW_AUTH_CIPHER_NONE:
6423                 return SEC_LEVEL_0;
6424         case IW_AUTH_CIPHER_WEP40:
6425         case IW_AUTH_CIPHER_WEP104:
6426                 return SEC_LEVEL_1;
6427         case IW_AUTH_CIPHER_TKIP:
6428                 return SEC_LEVEL_2;
6429         case IW_AUTH_CIPHER_CCMP:
6430                 return SEC_LEVEL_3;
6431         default:
6432                 return -1;
6433         }
6434 }
6435
6436 /* SIOCSIWAUTH */
6437 static int ipw_wx_set_auth(struct net_device *dev,
6438                            struct iw_request_info *info,
6439                            union iwreq_data *wrqu, char *extra)
6440 {
6441         struct ipw_priv *priv = ieee80211_priv(dev);
6442         struct ieee80211_device *ieee = priv->ieee;
6443         struct iw_param *param = &wrqu->param;
6444         struct ieee80211_crypt_data *crypt;
6445         unsigned long flags;
6446         int ret = 0;
6447
6448         switch (param->flags & IW_AUTH_INDEX) {
6449         case IW_AUTH_WPA_VERSION:
6450                 break;
6451         case IW_AUTH_CIPHER_PAIRWISE:
6452                 ipw_set_hw_decrypt_unicast(priv,
6453                                            wext_cipher2level(param->value));
6454                 break;
6455         case IW_AUTH_CIPHER_GROUP:
6456                 ipw_set_hw_decrypt_multicast(priv,
6457                                              wext_cipher2level(param->value));
6458                 break;
6459         case IW_AUTH_KEY_MGMT:
6460                 /*
6461                  * ipw2200 does not use these parameters
6462                  */
6463                 break;
6464
6465         case IW_AUTH_TKIP_COUNTERMEASURES:
6466                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6467                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6468                         break;
6469
6470                 flags = crypt->ops->get_flags(crypt->priv);
6471
6472                 if (param->value)
6473                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6474                 else
6475                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6476
6477                 crypt->ops->set_flags(flags, crypt->priv);
6478
6479                 break;
6480
6481         case IW_AUTH_DROP_UNENCRYPTED:{
6482                         /* HACK:
6483                          *
6484                          * wpa_supplicant calls set_wpa_enabled when the driver
6485                          * is loaded and unloaded, regardless of if WPA is being
6486                          * used.  No other calls are made which can be used to
6487                          * determine if encryption will be used or not prior to
6488                          * association being expected.  If encryption is not being
6489                          * used, drop_unencrypted is set to false, else true -- we
6490                          * can use this to determine if the CAP_PRIVACY_ON bit should
6491                          * be set.
6492                          */
6493                         struct ieee80211_security sec = {
6494                                 .flags = SEC_ENABLED,
6495                                 .enabled = param->value,
6496                         };
6497                         priv->ieee->drop_unencrypted = param->value;
6498                         /* We only change SEC_LEVEL for open mode. Others
6499                          * are set by ipw_wpa_set_encryption.
6500                          */
6501                         if (!param->value) {
6502                                 sec.flags |= SEC_LEVEL;
6503                                 sec.level = SEC_LEVEL_0;
6504                         } else {
6505                                 sec.flags |= SEC_LEVEL;
6506                                 sec.level = SEC_LEVEL_1;
6507                         }
6508                         if (priv->ieee->set_security)
6509                                 priv->ieee->set_security(priv->ieee->dev, &sec);
6510                         break;
6511                 }
6512
6513         case IW_AUTH_80211_AUTH_ALG:
6514                 ret = ipw_wpa_set_auth_algs(priv, param->value);
6515                 break;
6516
6517         case IW_AUTH_WPA_ENABLED:
6518                 ret = ipw_wpa_enable(priv, param->value);
6519                 ipw_disassociate(priv);
6520                 break;
6521
6522         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6523                 ieee->ieee802_1x = param->value;
6524                 break;
6525
6526         case IW_AUTH_PRIVACY_INVOKED:
6527                 ieee->privacy_invoked = param->value;
6528                 break;
6529
6530         default:
6531                 return -EOPNOTSUPP;
6532         }
6533         return ret;
6534 }
6535
6536 /* SIOCGIWAUTH */
6537 static int ipw_wx_get_auth(struct net_device *dev,
6538                            struct iw_request_info *info,
6539                            union iwreq_data *wrqu, char *extra)
6540 {
6541         struct ipw_priv *priv = ieee80211_priv(dev);
6542         struct ieee80211_device *ieee = priv->ieee;
6543         struct ieee80211_crypt_data *crypt;
6544         struct iw_param *param = &wrqu->param;
6545         int ret = 0;
6546
6547         switch (param->flags & IW_AUTH_INDEX) {
6548         case IW_AUTH_WPA_VERSION:
6549         case IW_AUTH_CIPHER_PAIRWISE:
6550         case IW_AUTH_CIPHER_GROUP:
6551         case IW_AUTH_KEY_MGMT:
6552                 /*
6553                  * wpa_supplicant will control these internally
6554                  */
6555                 ret = -EOPNOTSUPP;
6556                 break;
6557
6558         case IW_AUTH_TKIP_COUNTERMEASURES:
6559                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6560                 if (!crypt || !crypt->ops->get_flags)
6561                         break;
6562
6563                 param->value = (crypt->ops->get_flags(crypt->priv) &
6564                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6565
6566                 break;
6567
6568         case IW_AUTH_DROP_UNENCRYPTED:
6569                 param->value = ieee->drop_unencrypted;
6570                 break;
6571
6572         case IW_AUTH_80211_AUTH_ALG:
6573                 param->value = ieee->sec.auth_mode;
6574                 break;
6575
6576         case IW_AUTH_WPA_ENABLED:
6577                 param->value = ieee->wpa_enabled;
6578                 break;
6579
6580         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6581                 param->value = ieee->ieee802_1x;
6582                 break;
6583
6584         case IW_AUTH_ROAMING_CONTROL:
6585         case IW_AUTH_PRIVACY_INVOKED:
6586                 param->value = ieee->privacy_invoked;
6587                 break;
6588
6589         default:
6590                 return -EOPNOTSUPP;
6591         }
6592         return 0;
6593 }
6594
6595 /* SIOCSIWENCODEEXT */
6596 static int ipw_wx_set_encodeext(struct net_device *dev,
6597                                 struct iw_request_info *info,
6598                                 union iwreq_data *wrqu, char *extra)
6599 {
6600         struct ipw_priv *priv = ieee80211_priv(dev);
6601         struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6602
6603         if (hwcrypto) {
6604                 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6605                         /* IPW HW can't build TKIP MIC,
6606                            host decryption still needed */
6607                         if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6608                                 priv->ieee->host_mc_decrypt = 1;
6609                         else {
6610                                 priv->ieee->host_encrypt = 0;
6611                                 priv->ieee->host_encrypt_msdu = 1;
6612                                 priv->ieee->host_decrypt = 1;
6613                         }
6614                 } else {
6615                         priv->ieee->host_encrypt = 0;
6616                         priv->ieee->host_encrypt_msdu = 0;
6617                         priv->ieee->host_decrypt = 0;
6618                         priv->ieee->host_mc_decrypt = 0;
6619                 }
6620         }
6621
6622         return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6623 }
6624
6625 /* SIOCGIWENCODEEXT */
6626 static int ipw_wx_get_encodeext(struct net_device *dev,
6627                                 struct iw_request_info *info,
6628                                 union iwreq_data *wrqu, char *extra)
6629 {
6630         struct ipw_priv *priv = ieee80211_priv(dev);
6631         return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6632 }
6633
6634 /* SIOCSIWMLME */
6635 static int ipw_wx_set_mlme(struct net_device *dev,
6636                            struct iw_request_info *info,
6637                            union iwreq_data *wrqu, char *extra)
6638 {
6639         struct ipw_priv *priv = ieee80211_priv(dev);
6640         struct iw_mlme *mlme = (struct iw_mlme *)extra;
6641         u16 reason;
6642
6643         reason = cpu_to_le16(mlme->reason_code);
6644
6645         switch (mlme->cmd) {
6646         case IW_MLME_DEAUTH:
6647                 /* silently ignore */
6648                 break;
6649
6650         case IW_MLME_DISASSOC:
6651                 ipw_disassociate(priv);
6652                 break;
6653
6654         default:
6655                 return -EOPNOTSUPP;
6656         }
6657         return 0;
6658 }
6659
6660 #ifdef CONFIG_IPW2200_QOS
6661
6662 /* QoS */
6663 /*
6664 * get the modulation type of the current network or
6665 * the card current mode
6666 */
6667 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6668 {
6669         u8 mode = 0;
6670
6671         if (priv->status & STATUS_ASSOCIATED) {
6672                 unsigned long flags;
6673
6674                 spin_lock_irqsave(&priv->ieee->lock, flags);
6675                 mode = priv->assoc_network->mode;
6676                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6677         } else {
6678                 mode = priv->ieee->mode;
6679         }
6680         IPW_DEBUG_QOS("QoS network/card mode %d \n", mode);
6681         return mode;
6682 }
6683
6684 /*
6685 * Handle management frame beacon and probe response
6686 */
6687 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6688                                          int active_network,
6689                                          struct ieee80211_network *network)
6690 {
6691         u32 size = sizeof(struct ieee80211_qos_parameters);
6692
6693         if (network->capability & WLAN_CAPABILITY_IBSS)
6694                 network->qos_data.active = network->qos_data.supported;
6695
6696         if (network->flags & NETWORK_HAS_QOS_MASK) {
6697                 if (active_network &&
6698                     (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6699                         network->qos_data.active = network->qos_data.supported;
6700
6701                 if ((network->qos_data.active == 1) && (active_network == 1) &&
6702                     (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6703                     (network->qos_data.old_param_count !=
6704                      network->qos_data.param_count)) {
6705                         network->qos_data.old_param_count =
6706                             network->qos_data.param_count;
6707                         schedule_work(&priv->qos_activate);
6708                         IPW_DEBUG_QOS("QoS parameters change call "
6709                                       "qos_activate\n");
6710                 }
6711         } else {
6712                 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6713                         memcpy(&network->qos_data.parameters,
6714                                &def_parameters_CCK, size);
6715                 else
6716                         memcpy(&network->qos_data.parameters,
6717                                &def_parameters_OFDM, size);
6718
6719                 if ((network->qos_data.active == 1) && (active_network == 1)) {
6720                         IPW_DEBUG_QOS("QoS was disabled call qos_activate \n");
6721                         schedule_work(&priv->qos_activate);
6722                 }
6723
6724                 network->qos_data.active = 0;
6725                 network->qos_data.supported = 0;
6726         }
6727         if ((priv->status & STATUS_ASSOCIATED) &&
6728             (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6729                 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6730                         if ((network->capability & WLAN_CAPABILITY_IBSS) &&
6731                             !(network->flags & NETWORK_EMPTY_ESSID))
6732                                 if ((network->ssid_len ==
6733                                      priv->assoc_network->ssid_len) &&
6734                                     !memcmp(network->ssid,
6735                                             priv->assoc_network->ssid,
6736                                             network->ssid_len)) {
6737                                         queue_work(priv->workqueue,
6738                                                    &priv->merge_networks);
6739                                 }
6740         }
6741
6742         return 0;
6743 }
6744
6745 /*
6746 * This function set up the firmware to support QoS. It sends
6747 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6748 */
6749 static int ipw_qos_activate(struct ipw_priv *priv,
6750                             struct ieee80211_qos_data *qos_network_data)
6751 {
6752         int err;
6753         struct ieee80211_qos_parameters qos_parameters[QOS_QOS_SETS];
6754         struct ieee80211_qos_parameters *active_one = NULL;
6755         u32 size = sizeof(struct ieee80211_qos_parameters);
6756         u32 burst_duration;
6757         int i;
6758         u8 type;
6759
6760         type = ipw_qos_current_mode(priv);
6761
6762         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6763         memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6764         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6765         memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6766
6767         if (qos_network_data == NULL) {
6768                 if (type == IEEE_B) {
6769                         IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6770                         active_one = &def_parameters_CCK;
6771                 } else
6772                         active_one = &def_parameters_OFDM;
6773
6774                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6775                 burst_duration = ipw_qos_get_burst_duration(priv);
6776                 for (i = 0; i < QOS_QUEUE_NUM; i++)
6777                         qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6778                             (u16)burst_duration;
6779         } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6780                 if (type == IEEE_B) {
6781                         IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
6782                                       type);
6783                         if (priv->qos_data.qos_enable == 0)
6784                                 active_one = &def_parameters_CCK;
6785                         else
6786                                 active_one = priv->qos_data.def_qos_parm_CCK;
6787                 } else {
6788                         if (priv->qos_data.qos_enable == 0)
6789                                 active_one = &def_parameters_OFDM;
6790                         else
6791                                 active_one = priv->qos_data.def_qos_parm_OFDM;
6792                 }
6793                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6794         } else {
6795                 unsigned long flags;
6796                 int active;
6797
6798                 spin_lock_irqsave(&priv->ieee->lock, flags);
6799                 active_one = &(qos_network_data->parameters);
6800                 qos_network_data->old_param_count =
6801                     qos_network_data->param_count;
6802                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6803                 active = qos_network_data->supported;
6804                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6805
6806                 if (active == 0) {
6807                         burst_duration = ipw_qos_get_burst_duration(priv);
6808                         for (i = 0; i < QOS_QUEUE_NUM; i++)
6809                                 qos_parameters[QOS_PARAM_SET_ACTIVE].
6810                                     tx_op_limit[i] = (u16)burst_duration;
6811                 }
6812         }
6813
6814         IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6815         for (i = 0; i < 3; i++) {
6816                 int j;
6817                 for (j = 0; j < QOS_QUEUE_NUM; j++) {
6818                         qos_parameters[i].cw_min[j] = cpu_to_le16(qos_parameters[i].cw_min[j]);
6819                         qos_parameters[i].cw_max[j] = cpu_to_le16(qos_parameters[i].cw_max[j]);
6820                         qos_parameters[i].tx_op_limit[j] = cpu_to_le16(qos_parameters[i].tx_op_limit[j]);
6821                 }
6822         }
6823
6824         err = ipw_send_qos_params_command(priv,
6825                                           (struct ieee80211_qos_parameters *)
6826                                           &(qos_parameters[0]));
6827         if (err)
6828                 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6829
6830         return err;
6831 }
6832
6833 /*
6834 * send IPW_CMD_WME_INFO to the firmware
6835 */
6836 static int ipw_qos_set_info_element(struct ipw_priv *priv)
6837 {
6838         int ret = 0;
6839         struct ieee80211_qos_information_element qos_info;
6840
6841         if (priv == NULL)
6842                 return -1;
6843
6844         qos_info.elementID = QOS_ELEMENT_ID;
6845         qos_info.length = sizeof(struct ieee80211_qos_information_element) - 2;
6846
6847         qos_info.version = QOS_VERSION_1;
6848         qos_info.ac_info = 0;
6849
6850         memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
6851         qos_info.qui_type = QOS_OUI_TYPE;
6852         qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
6853
6854         ret = ipw_send_qos_info_command(priv, &qos_info);
6855         if (ret != 0) {
6856                 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
6857         }
6858         return ret;
6859 }
6860
6861 /*
6862 * Set the QoS parameter with the association request structure
6863 */
6864 static int ipw_qos_association(struct ipw_priv *priv,
6865                                struct ieee80211_network *network)
6866 {
6867         int err = 0;
6868         struct ieee80211_qos_data *qos_data = NULL;
6869         struct ieee80211_qos_data ibss_data = {
6870                 .supported = 1,
6871                 .active = 1,
6872         };
6873
6874         switch (priv->ieee->iw_mode) {
6875         case IW_MODE_ADHOC:
6876                 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
6877
6878                 qos_data = &ibss_data;
6879                 break;
6880
6881         case IW_MODE_INFRA:
6882                 qos_data = &network->qos_data;
6883                 break;
6884
6885         default:
6886                 BUG();
6887                 break;
6888         }
6889
6890         err = ipw_qos_activate(priv, qos_data);
6891         if (err) {
6892                 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
6893                 return err;
6894         }
6895
6896         if (priv->qos_data.qos_enable && qos_data->supported) {
6897                 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
6898                 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
6899                 return ipw_qos_set_info_element(priv);
6900         }
6901
6902         return 0;
6903 }
6904
6905 /*
6906 * handling the beaconing responces. if we get different QoS setting
6907 * of the network from the the associated setting adjust the QoS
6908 * setting
6909 */
6910 static int ipw_qos_association_resp(struct ipw_priv *priv,
6911                                     struct ieee80211_network *network)
6912 {
6913         int ret = 0;
6914         unsigned long flags;
6915         u32 size = sizeof(struct ieee80211_qos_parameters);
6916         int set_qos_param = 0;
6917
6918         if ((priv == NULL) || (network == NULL) ||
6919             (priv->assoc_network == NULL))
6920                 return ret;
6921
6922         if (!(priv->status & STATUS_ASSOCIATED))
6923                 return ret;
6924
6925         if ((priv->ieee->iw_mode != IW_MODE_INFRA))
6926                 return ret;
6927
6928         spin_lock_irqsave(&priv->ieee->lock, flags);
6929         if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
6930                 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
6931                        sizeof(struct ieee80211_qos_data));
6932                 priv->assoc_network->qos_data.active = 1;
6933                 if ((network->qos_data.old_param_count !=
6934                      network->qos_data.param_count)) {
6935                         set_qos_param = 1;
6936                         network->qos_data.old_param_count =
6937                             network->qos_data.param_count;
6938                 }
6939
6940         } else {
6941                 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
6942                         memcpy(&priv->assoc_network->qos_data.parameters,
6943                                &def_parameters_CCK, size);
6944                 else
6945                         memcpy(&priv->assoc_network->qos_data.parameters,
6946                                &def_parameters_OFDM, size);
6947                 priv->assoc_network->qos_data.active = 0;
6948                 priv->assoc_network->qos_data.supported = 0;
6949                 set_qos_param = 1;
6950         }
6951
6952         spin_unlock_irqrestore(&priv->ieee->lock, flags);
6953
6954         if (set_qos_param == 1)
6955                 schedule_work(&priv->qos_activate);
6956
6957         return ret;
6958 }
6959
6960 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
6961 {
6962         u32 ret = 0;
6963
6964         if ((priv == NULL))
6965                 return 0;
6966
6967         if (!(priv->ieee->modulation & IEEE80211_OFDM_MODULATION))
6968                 ret = priv->qos_data.burst_duration_CCK;
6969         else
6970                 ret = priv->qos_data.burst_duration_OFDM;
6971
6972         return ret;
6973 }
6974
6975 /*
6976 * Initialize the setting of QoS global
6977 */
6978 static void ipw_qos_init(struct ipw_priv *priv, int enable,
6979                          int burst_enable, u32 burst_duration_CCK,
6980                          u32 burst_duration_OFDM)
6981 {
6982         priv->qos_data.qos_enable = enable;
6983
6984         if (priv->qos_data.qos_enable) {
6985                 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
6986                 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
6987                 IPW_DEBUG_QOS("QoS is enabled\n");
6988         } else {
6989                 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
6990                 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
6991                 IPW_DEBUG_QOS("QoS is not enabled\n");
6992         }
6993
6994         priv->qos_data.burst_enable = burst_enable;
6995
6996         if (burst_enable) {
6997                 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
6998                 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
6999         } else {
7000                 priv->qos_data.burst_duration_CCK = 0;
7001                 priv->qos_data.burst_duration_OFDM = 0;
7002         }
7003 }
7004
7005 /*
7006 * map the packet priority to the right TX Queue
7007 */
7008 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7009 {
7010         if (priority > 7 || !priv->qos_data.qos_enable)
7011                 priority = 0;
7012
7013         return from_priority_to_tx_queue[priority] - 1;
7014 }
7015
7016 static int ipw_is_qos_active(struct net_device *dev,
7017                              struct sk_buff *skb)
7018 {
7019         struct ipw_priv *priv = ieee80211_priv(dev);
7020         struct ieee80211_qos_data *qos_data = NULL;
7021         int active, supported;
7022         u8 *daddr = skb->data + ETH_ALEN;
7023         int unicast = !is_multicast_ether_addr(daddr);
7024
7025         if (!(priv->status & STATUS_ASSOCIATED))
7026                 return 0;
7027
7028         qos_data = &priv->assoc_network->qos_data;
7029
7030         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7031                 if (unicast == 0)
7032                         qos_data->active = 0;
7033                 else
7034                         qos_data->active = qos_data->supported;
7035         }
7036         active = qos_data->active;
7037         supported = qos_data->supported;
7038         IPW_DEBUG_QOS("QoS  %d network is QoS active %d  supported %d  "
7039                       "unicast %d\n",
7040                       priv->qos_data.qos_enable, active, supported, unicast);
7041         if (active && priv->qos_data.qos_enable)
7042                 return 1;
7043
7044         return 0;
7045
7046 }
7047 /*
7048 * add QoS parameter to the TX command
7049 */
7050 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7051                                         u16 priority,
7052                                         struct tfd_data *tfd)
7053 {
7054         int tx_queue_id = 0;
7055
7056
7057         tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7058         tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7059
7060         if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7061                 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7062                 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7063         }
7064         return 0;
7065 }
7066
7067 /*
7068 * background support to run QoS activate functionality
7069 */
7070 static void ipw_bg_qos_activate(void *data)
7071 {
7072         struct ipw_priv *priv = data;
7073
7074         if (priv == NULL)
7075                 return;
7076
7077         mutex_lock(&priv->mutex);
7078
7079         if (priv->status & STATUS_ASSOCIATED)
7080                 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7081
7082         mutex_unlock(&priv->mutex);
7083 }
7084
7085 static int ipw_handle_probe_response(struct net_device *dev,
7086                                      struct ieee80211_probe_response *resp,
7087                                      struct ieee80211_network *network)
7088 {
7089         struct ipw_priv *priv = ieee80211_priv(dev);
7090         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7091                               (network == priv->assoc_network));
7092
7093         ipw_qos_handle_probe_response(priv, active_network, network);
7094
7095         return 0;
7096 }
7097
7098 static int ipw_handle_beacon(struct net_device *dev,
7099                              struct ieee80211_beacon *resp,
7100                              struct ieee80211_network *network)
7101 {
7102         struct ipw_priv *priv = ieee80211_priv(dev);
7103         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7104                               (network == priv->assoc_network));
7105
7106         ipw_qos_handle_probe_response(priv, active_network, network);
7107
7108         return 0;
7109 }
7110
7111 static int ipw_handle_assoc_response(struct net_device *dev,
7112                                      struct ieee80211_assoc_response *resp,
7113                                      struct ieee80211_network *network)
7114 {
7115         struct ipw_priv *priv = ieee80211_priv(dev);
7116         ipw_qos_association_resp(priv, network);
7117         return 0;
7118 }
7119
7120 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
7121                                        *qos_param)
7122 {
7123         return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7124                                 sizeof(*qos_param) * 3, qos_param);
7125 }
7126
7127 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
7128                                      *qos_param)
7129 {
7130         return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7131                                 qos_param);
7132 }
7133
7134 #endif                          /* CONFIG_IPW2200_QOS */
7135
7136 static int ipw_associate_network(struct ipw_priv *priv,
7137                                  struct ieee80211_network *network,
7138                                  struct ipw_supported_rates *rates, int roaming)
7139 {
7140         int err;
7141
7142         if (priv->config & CFG_FIXED_RATE)
7143                 ipw_set_fixed_rate(priv, network->mode);
7144
7145         if (!(priv->config & CFG_STATIC_ESSID)) {
7146                 priv->essid_len = min(network->ssid_len,
7147                                       (u8) IW_ESSID_MAX_SIZE);
7148                 memcpy(priv->essid, network->ssid, priv->essid_len);
7149         }
7150
7151         network->last_associate = jiffies;
7152
7153         memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7154         priv->assoc_request.channel = network->channel;
7155         priv->assoc_request.auth_key = 0;
7156
7157         if ((priv->capability & CAP_PRIVACY_ON) &&
7158             (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7159                 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7160                 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7161
7162                 if (priv->ieee->sec.level == SEC_LEVEL_1)
7163                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7164
7165         } else if ((priv->capability & CAP_PRIVACY_ON) &&
7166                    (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7167                 priv->assoc_request.auth_type = AUTH_LEAP;
7168         else
7169                 priv->assoc_request.auth_type = AUTH_OPEN;
7170
7171         if (priv->ieee->wpa_ie_len) {
7172                 priv->assoc_request.policy_support = 0x02;      /* RSN active */
7173                 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7174                                  priv->ieee->wpa_ie_len);
7175         }
7176
7177         /*
7178          * It is valid for our ieee device to support multiple modes, but
7179          * when it comes to associating to a given network we have to choose
7180          * just one mode.
7181          */
7182         if (network->mode & priv->ieee->mode & IEEE_A)
7183                 priv->assoc_request.ieee_mode = IPW_A_MODE;
7184         else if (network->mode & priv->ieee->mode & IEEE_G)
7185                 priv->assoc_request.ieee_mode = IPW_G_MODE;
7186         else if (network->mode & priv->ieee->mode & IEEE_B)
7187                 priv->assoc_request.ieee_mode = IPW_B_MODE;
7188
7189         priv->assoc_request.capability = network->capability;
7190         if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7191             && !(priv->config & CFG_PREAMBLE_LONG)) {
7192                 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7193         } else {
7194                 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7195
7196                 /* Clear the short preamble if we won't be supporting it */
7197                 priv->assoc_request.capability &=
7198                     ~WLAN_CAPABILITY_SHORT_PREAMBLE;
7199         }
7200
7201         /* Clear capability bits that aren't used in Ad Hoc */
7202         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7203                 priv->assoc_request.capability &=
7204                     ~WLAN_CAPABILITY_SHORT_SLOT_TIME;
7205
7206         IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7207                         "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7208                         roaming ? "Rea" : "A",
7209                         escape_essid(priv->essid, priv->essid_len),
7210                         network->channel,
7211                         ipw_modes[priv->assoc_request.ieee_mode],
7212                         rates->num_rates,
7213                         (priv->assoc_request.preamble_length ==
7214                          DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7215                         network->capability &
7216                         WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7217                         priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7218                         priv->capability & CAP_PRIVACY_ON ?
7219                         (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7220                          "(open)") : "",
7221                         priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7222                         priv->capability & CAP_PRIVACY_ON ?
7223                         '1' + priv->ieee->sec.active_key : '.',
7224                         priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7225
7226         priv->assoc_request.beacon_interval = network->beacon_interval;
7227         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7228             (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7229                 priv->assoc_request.assoc_type = HC_IBSS_START;
7230                 priv->assoc_request.assoc_tsf_msw = 0;
7231                 priv->assoc_request.assoc_tsf_lsw = 0;
7232         } else {
7233                 if (unlikely(roaming))
7234                         priv->assoc_request.assoc_type = HC_REASSOCIATE;
7235                 else
7236                         priv->assoc_request.assoc_type = HC_ASSOCIATE;
7237                 priv->assoc_request.assoc_tsf_msw = network->time_stamp[1];
7238                 priv->assoc_request.assoc_tsf_lsw = network->time_stamp[0];
7239         }
7240
7241         memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7242
7243         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7244                 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7245                 priv->assoc_request.atim_window = network->atim_window;
7246         } else {
7247                 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7248                 priv->assoc_request.atim_window = 0;
7249         }
7250
7251         priv->assoc_request.listen_interval = network->listen_interval;
7252
7253         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7254         if (err) {
7255                 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7256                 return err;
7257         }
7258
7259         rates->ieee_mode = priv->assoc_request.ieee_mode;
7260         rates->purpose = IPW_RATE_CONNECT;
7261         ipw_send_supported_rates(priv, rates);
7262
7263         if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7264                 priv->sys_config.dot11g_auto_detection = 1;
7265         else
7266                 priv->sys_config.dot11g_auto_detection = 0;
7267
7268         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7269                 priv->sys_config.answer_broadcast_ssid_probe = 1;
7270         else
7271                 priv->sys_config.answer_broadcast_ssid_probe = 0;
7272
7273         err = ipw_send_system_config(priv);
7274         if (err) {
7275                 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7276                 return err;
7277         }
7278
7279         IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7280         err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7281         if (err) {
7282                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7283                 return err;
7284         }
7285
7286         /*
7287          * If preemption is enabled, it is possible for the association
7288          * to complete before we return from ipw_send_associate.  Therefore
7289          * we have to be sure and update our priviate data first.
7290          */
7291         priv->channel = network->channel;
7292         memcpy(priv->bssid, network->bssid, ETH_ALEN);
7293         priv->status |= STATUS_ASSOCIATING;
7294         priv->status &= ~STATUS_SECURITY_UPDATED;
7295
7296         priv->assoc_network = network;
7297
7298 #ifdef CONFIG_IPW2200_QOS
7299         ipw_qos_association(priv, network);
7300 #endif
7301
7302         err = ipw_send_associate(priv, &priv->assoc_request);
7303         if (err) {
7304                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7305                 return err;
7306         }
7307
7308         IPW_DEBUG(IPW_DL_STATE, "associating: '%s' " MAC_FMT " \n",
7309                   escape_essid(priv->essid, priv->essid_len),
7310                   MAC_ARG(priv->bssid));
7311
7312         return 0;
7313 }
7314
7315 static void ipw_roam(void *data)
7316 {
7317         struct ipw_priv *priv = data;
7318         struct ieee80211_network *network = NULL;
7319         struct ipw_network_match match = {
7320                 .network = priv->assoc_network
7321         };
7322
7323         /* The roaming process is as follows:
7324          *
7325          * 1.  Missed beacon threshold triggers the roaming process by
7326          *     setting the status ROAM bit and requesting a scan.
7327          * 2.  When the scan completes, it schedules the ROAM work
7328          * 3.  The ROAM work looks at all of the known networks for one that
7329          *     is a better network than the currently associated.  If none
7330          *     found, the ROAM process is over (ROAM bit cleared)
7331          * 4.  If a better network is found, a disassociation request is
7332          *     sent.
7333          * 5.  When the disassociation completes, the roam work is again
7334          *     scheduled.  The second time through, the driver is no longer
7335          *     associated, and the newly selected network is sent an
7336          *     association request.
7337          * 6.  At this point ,the roaming process is complete and the ROAM
7338          *     status bit is cleared.
7339          */
7340
7341         /* If we are no longer associated, and the roaming bit is no longer
7342          * set, then we are not actively roaming, so just return */
7343         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7344                 return;
7345
7346         if (priv->status & STATUS_ASSOCIATED) {
7347                 /* First pass through ROAM process -- look for a better
7348                  * network */
7349                 unsigned long flags;
7350                 u8 rssi = priv->assoc_network->stats.rssi;
7351                 priv->assoc_network->stats.rssi = -128;
7352                 spin_lock_irqsave(&priv->ieee->lock, flags);
7353                 list_for_each_entry(network, &priv->ieee->network_list, list) {
7354                         if (network != priv->assoc_network)
7355                                 ipw_best_network(priv, &match, network, 1);
7356                 }
7357                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7358                 priv->assoc_network->stats.rssi = rssi;
7359
7360                 if (match.network == priv->assoc_network) {
7361                         IPW_DEBUG_ASSOC("No better APs in this network to "
7362                                         "roam to.\n");
7363                         priv->status &= ~STATUS_ROAMING;
7364                         ipw_debug_config(priv);
7365                         return;
7366                 }
7367
7368                 ipw_send_disassociate(priv, 1);
7369                 priv->assoc_network = match.network;
7370
7371                 return;
7372         }
7373
7374         /* Second pass through ROAM process -- request association */
7375         ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7376         ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7377         priv->status &= ~STATUS_ROAMING;
7378 }
7379
7380 static void ipw_bg_roam(void *data)
7381 {
7382         struct ipw_priv *priv = data;
7383         mutex_lock(&priv->mutex);
7384         ipw_roam(data);
7385         mutex_unlock(&priv->mutex);
7386 }
7387
7388 static int ipw_associate(void *data)
7389 {
7390         struct ipw_priv *priv = data;
7391
7392         struct ieee80211_network *network = NULL;
7393         struct ipw_network_match match = {
7394                 .network = NULL
7395         };
7396         struct ipw_supported_rates *rates;
7397         struct list_head *element;
7398         unsigned long flags;
7399
7400         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7401                 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7402                 return 0;
7403         }
7404
7405         if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7406                 IPW_DEBUG_ASSOC("Not attempting association (already in "
7407                                 "progress)\n");
7408                 return 0;
7409         }
7410
7411         if (priv->status & STATUS_DISASSOCIATING) {
7412                 IPW_DEBUG_ASSOC("Not attempting association (in "
7413                                 "disassociating)\n ");
7414                 queue_work(priv->workqueue, &priv->associate);
7415                 return 0;
7416         }
7417
7418         if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7419                 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7420                                 "initialized)\n");
7421                 return 0;
7422         }
7423
7424         if (!(priv->config & CFG_ASSOCIATE) &&
7425             !(priv->config & (CFG_STATIC_ESSID |
7426                               CFG_STATIC_CHANNEL | CFG_STATIC_BSSID))) {
7427                 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7428                 return 0;
7429         }
7430
7431         /* Protect our use of the network_list */
7432         spin_lock_irqsave(&priv->ieee->lock, flags);
7433         list_for_each_entry(network, &priv->ieee->network_list, list)
7434             ipw_best_network(priv, &match, network, 0);
7435
7436         network = match.network;
7437         rates = &match.rates;
7438
7439         if (network == NULL &&
7440             priv->ieee->iw_mode == IW_MODE_ADHOC &&
7441             priv->config & CFG_ADHOC_CREATE &&
7442             priv->config & CFG_STATIC_ESSID &&
7443             priv->config & CFG_STATIC_CHANNEL &&
7444             !list_empty(&priv->ieee->network_free_list)) {
7445                 element = priv->ieee->network_free_list.next;
7446                 network = list_entry(element, struct ieee80211_network, list);
7447                 ipw_adhoc_create(priv, network);
7448                 rates = &priv->rates;
7449                 list_del(element);
7450                 list_add_tail(&network->list, &priv->ieee->network_list);
7451         }
7452         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7453
7454         /* If we reached the end of the list, then we don't have any valid
7455          * matching APs */
7456         if (!network) {
7457                 ipw_debug_config(priv);
7458
7459                 if (!(priv->status & STATUS_SCANNING)) {
7460                         if (!(priv->config & CFG_SPEED_SCAN))
7461                                 queue_delayed_work(priv->workqueue,
7462                                                    &priv->request_scan,
7463                                                    SCAN_INTERVAL);
7464                         else
7465                                 queue_work(priv->workqueue,
7466                                            &priv->request_scan);
7467                 }
7468
7469                 return 0;
7470         }
7471
7472         ipw_associate_network(priv, network, rates, 0);
7473
7474         return 1;
7475 }
7476
7477 static void ipw_bg_associate(void *data)
7478 {
7479         struct ipw_priv *priv = data;
7480         mutex_lock(&priv->mutex);
7481         ipw_associate(data);
7482         mutex_unlock(&priv->mutex);
7483 }
7484
7485 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7486                                       struct sk_buff *skb)
7487 {
7488         struct ieee80211_hdr *hdr;
7489         u16 fc;
7490
7491         hdr = (struct ieee80211_hdr *)skb->data;
7492         fc = le16_to_cpu(hdr->frame_ctl);
7493         if (!(fc & IEEE80211_FCTL_PROTECTED))
7494                 return;
7495
7496         fc &= ~IEEE80211_FCTL_PROTECTED;
7497         hdr->frame_ctl = cpu_to_le16(fc);
7498         switch (priv->ieee->sec.level) {
7499         case SEC_LEVEL_3:
7500                 /* Remove CCMP HDR */
7501                 memmove(skb->data + IEEE80211_3ADDR_LEN,
7502                         skb->data + IEEE80211_3ADDR_LEN + 8,
7503                         skb->len - IEEE80211_3ADDR_LEN - 8);
7504                 skb_trim(skb, skb->len - 16);   /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7505                 break;
7506         case SEC_LEVEL_2:
7507                 break;
7508         case SEC_LEVEL_1:
7509                 /* Remove IV */
7510                 memmove(skb->data + IEEE80211_3ADDR_LEN,
7511                         skb->data + IEEE80211_3ADDR_LEN + 4,
7512                         skb->len - IEEE80211_3ADDR_LEN - 4);
7513                 skb_trim(skb, skb->len - 8);    /* IV + ICV */
7514                 break;
7515         case SEC_LEVEL_0:
7516                 break;
7517         default:
7518                 printk(KERN_ERR "Unknow security level %d\n",
7519                        priv->ieee->sec.level);
7520                 break;
7521         }
7522 }
7523
7524 static void ipw_handle_data_packet(struct ipw_priv *priv,
7525                                    struct ipw_rx_mem_buffer *rxb,
7526                                    struct ieee80211_rx_stats *stats)
7527 {
7528         struct ieee80211_hdr_4addr *hdr;
7529         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7530
7531         /* We received data from the HW, so stop the watchdog */
7532         priv->net_dev->trans_start = jiffies;
7533
7534         /* We only process data packets if the
7535          * interface is open */
7536         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7537                      skb_tailroom(rxb->skb))) {
7538                 priv->ieee->stats.rx_errors++;
7539                 priv->wstats.discard.misc++;
7540                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7541                 return;
7542         } else if (unlikely(!netif_running(priv->net_dev))) {
7543                 priv->ieee->stats.rx_dropped++;
7544                 priv->wstats.discard.misc++;
7545                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7546                 return;
7547         }
7548
7549         /* Advance skb->data to the start of the actual payload */
7550         skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7551
7552         /* Set the size of the skb to the size of the frame */
7553         skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7554
7555         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7556
7557         /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7558         hdr = (struct ieee80211_hdr_4addr *)rxb->skb->data;
7559         if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7560             (is_multicast_ether_addr(hdr->addr1) ?
7561              !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7562                 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7563
7564         if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7565                 priv->ieee->stats.rx_errors++;
7566         else {                  /* ieee80211_rx succeeded, so it now owns the SKB */
7567                 rxb->skb = NULL;
7568                 __ipw_led_activity_on(priv);
7569         }
7570 }
7571
7572 #ifdef CONFIG_IPW2200_RADIOTAP
7573 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7574                                            struct ipw_rx_mem_buffer *rxb,
7575                                            struct ieee80211_rx_stats *stats)
7576 {
7577         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7578         struct ipw_rx_frame *frame = &pkt->u.frame;
7579
7580         /* initial pull of some data */
7581         u16 received_channel = frame->received_channel;
7582         u8 antennaAndPhy = frame->antennaAndPhy;
7583         s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM;       /* call it signed anyhow */
7584         u16 pktrate = frame->rate;
7585
7586         /* Magic struct that slots into the radiotap header -- no reason
7587          * to build this manually element by element, we can write it much
7588          * more efficiently than we can parse it. ORDER MATTERS HERE */
7589         struct ipw_rt_hdr *ipw_rt;
7590
7591         short len = le16_to_cpu(pkt->u.frame.length);
7592
7593         /* We received data from the HW, so stop the watchdog */
7594         priv->net_dev->trans_start = jiffies;
7595
7596         /* We only process data packets if the
7597          * interface is open */
7598         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7599                      skb_tailroom(rxb->skb))) {
7600                 priv->ieee->stats.rx_errors++;
7601                 priv->wstats.discard.misc++;
7602                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7603                 return;
7604         } else if (unlikely(!netif_running(priv->net_dev))) {
7605                 priv->ieee->stats.rx_dropped++;
7606                 priv->wstats.discard.misc++;
7607                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7608                 return;
7609         }
7610
7611         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7612          * that now */
7613         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7614                 /* FIXME: Should alloc bigger skb instead */
7615                 priv->ieee->stats.rx_dropped++;
7616                 priv->wstats.discard.misc++;
7617                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7618                 return;
7619         }
7620
7621         /* copy the frame itself */
7622         memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7623                 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7624
7625         /* Zero the radiotap static buffer  ...  We only need to zero the bytes NOT
7626          * part of our real header, saves a little time.
7627          *
7628          * No longer necessary since we fill in all our data.  Purge before merging
7629          * patch officially.
7630          * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7631          *        IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7632          */
7633
7634         ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7635
7636         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7637         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
7638         ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr);      /* total header+data */
7639
7640         /* Big bitfield of all the fields we provide in radiotap */
7641         ipw_rt->rt_hdr.it_present =
7642             ((1 << IEEE80211_RADIOTAP_FLAGS) |
7643              (1 << IEEE80211_RADIOTAP_TSFT) |
7644              (1 << IEEE80211_RADIOTAP_RATE) |
7645              (1 << IEEE80211_RADIOTAP_CHANNEL) |
7646              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7647              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7648              (1 << IEEE80211_RADIOTAP_ANTENNA));
7649
7650         /* Zero the flags, we'll add to them as we go */
7651         ipw_rt->rt_flags = 0;
7652
7653         /* Convert signal to DBM */
7654         ipw_rt->rt_dbmsignal = antsignal;
7655
7656         /* Convert the channel data and set the flags */
7657         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7658         if (received_channel > 14) {    /* 802.11a */
7659                 ipw_rt->rt_chbitmask =
7660                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7661         } else if (antennaAndPhy & 32) {        /* 802.11b */
7662                 ipw_rt->rt_chbitmask =
7663                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7664         } else {                /* 802.11g */
7665                 ipw_rt->rt_chbitmask =
7666                     (IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7667         }
7668
7669         /* set the rate in multiples of 500k/s */
7670         switch (pktrate) {
7671         case IPW_TX_RATE_1MB:
7672                 ipw_rt->rt_rate = 2;
7673                 break;
7674         case IPW_TX_RATE_2MB:
7675                 ipw_rt->rt_rate = 4;
7676                 break;
7677         case IPW_TX_RATE_5MB:
7678                 ipw_rt->rt_rate = 10;
7679                 break;
7680         case IPW_TX_RATE_6MB:
7681                 ipw_rt->rt_rate = 12;
7682                 break;
7683         case IPW_TX_RATE_9MB:
7684                 ipw_rt->rt_rate = 18;
7685                 break;
7686         case IPW_TX_RATE_11MB:
7687                 ipw_rt->rt_rate = 22;
7688                 break;
7689         case IPW_TX_RATE_12MB:
7690                 ipw_rt->rt_rate = 24;
7691                 break;
7692         case IPW_TX_RATE_18MB:
7693                 ipw_rt->rt_rate = 36;
7694                 break;
7695         case IPW_TX_RATE_24MB:
7696                 ipw_rt->rt_rate = 48;
7697                 break;
7698         case IPW_TX_RATE_36MB:
7699                 ipw_rt->rt_rate = 72;
7700                 break;
7701         case IPW_TX_RATE_48MB:
7702                 ipw_rt->rt_rate = 96;
7703                 break;
7704         case IPW_TX_RATE_54MB:
7705                 ipw_rt->rt_rate = 108;
7706                 break;
7707         default:
7708                 ipw_rt->rt_rate = 0;
7709                 break;
7710         }
7711
7712         /* antenna number */
7713         ipw_rt->rt_antenna = (antennaAndPhy & 3);       /* Is this right? */
7714
7715         /* set the preamble flag if we have it */
7716         if ((antennaAndPhy & 64))
7717                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7718
7719         /* Set the size of the skb to the size of the frame */
7720         skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7721
7722         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7723
7724         if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7725                 priv->ieee->stats.rx_errors++;
7726         else {                  /* ieee80211_rx succeeded, so it now owns the SKB */
7727                 rxb->skb = NULL;
7728                 /* no LED during capture */
7729         }
7730 }
7731 #endif
7732
7733 #ifdef CONFIG_IPW2200_PROMISCUOUS
7734 #define ieee80211_is_probe_response(fc) \
7735    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7736     (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7737
7738 #define ieee80211_is_management(fc) \
7739    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7740
7741 #define ieee80211_is_control(fc) \
7742    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7743
7744 #define ieee80211_is_data(fc) \
7745    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7746
7747 #define ieee80211_is_assoc_request(fc) \
7748    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7749
7750 #define ieee80211_is_reassoc_request(fc) \
7751    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7752
7753 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7754                                       struct ipw_rx_mem_buffer *rxb,
7755                                       struct ieee80211_rx_stats *stats)
7756 {
7757         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7758         struct ipw_rx_frame *frame = &pkt->u.frame;
7759         struct ipw_rt_hdr *ipw_rt;
7760
7761         /* First cache any information we need before we overwrite
7762          * the information provided in the skb from the hardware */
7763         struct ieee80211_hdr *hdr;
7764         u16 channel = frame->received_channel;
7765         u8 phy_flags = frame->antennaAndPhy;
7766         s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7767         s8 noise = frame->noise;
7768         u8 rate = frame->rate;
7769         short len = le16_to_cpu(pkt->u.frame.length);
7770         u64 tsf = 0;
7771         struct sk_buff *skb;
7772         int hdr_only = 0;
7773         u16 filter = priv->prom_priv->filter;
7774
7775         /* If the filter is set to not include Rx frames then return */
7776         if (filter & IPW_PROM_NO_RX)
7777                 return;
7778
7779         /* We received data from the HW, so stop the watchdog */
7780         priv->prom_net_dev->trans_start = jiffies;
7781
7782         if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7783                 priv->prom_priv->ieee->stats.rx_errors++;
7784                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7785                 return;
7786         }
7787
7788         /* We only process data packets if the interface is open */
7789         if (unlikely(!netif_running(priv->prom_net_dev))) {
7790                 priv->prom_priv->ieee->stats.rx_dropped++;
7791                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7792                 return;
7793         }
7794
7795         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7796          * that now */
7797         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7798                 /* FIXME: Should alloc bigger skb instead */
7799                 priv->prom_priv->ieee->stats.rx_dropped++;
7800                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7801                 return;
7802         }
7803
7804         hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
7805         if (ieee80211_is_management(le16_to_cpu(hdr->frame_ctl))) {
7806                 if (filter & IPW_PROM_NO_MGMT)
7807                         return;
7808                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
7809                         hdr_only = 1;
7810         } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_ctl))) {
7811                 if (filter & IPW_PROM_NO_CTL)
7812                         return;
7813                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
7814                         hdr_only = 1;
7815         } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_ctl))) {
7816                 if (filter & IPW_PROM_NO_DATA)
7817                         return;
7818                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
7819                         hdr_only = 1;
7820         }
7821
7822         /* Copy the SKB since this is for the promiscuous side */
7823         skb = skb_copy(rxb->skb, GFP_ATOMIC);
7824         if (skb == NULL) {
7825                 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
7826                 return;
7827         }
7828
7829         /* copy the frame data to write after where the radiotap header goes */
7830         ipw_rt = (void *)skb->data;
7831
7832         if (hdr_only)
7833                 len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
7834
7835         memcpy(ipw_rt->payload, hdr, len);
7836
7837         /* Zero the radiotap static buffer  ...  We only need to zero the bytes
7838          * NOT part of our real header, saves a little time.
7839          *
7840          * No longer necessary since we fill in all our data.  Purge before
7841          * merging patch officially.
7842          * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7843          *        IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7844          */
7845
7846         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7847         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
7848         ipw_rt->rt_hdr.it_len = sizeof(*ipw_rt);        /* total header+data */
7849
7850         /* Set the size of the skb to the size of the frame */
7851         skb_put(skb, ipw_rt->rt_hdr.it_len + len);
7852
7853         /* Big bitfield of all the fields we provide in radiotap */
7854         ipw_rt->rt_hdr.it_present =
7855             ((1 << IEEE80211_RADIOTAP_FLAGS) |
7856              (1 << IEEE80211_RADIOTAP_TSFT) |
7857              (1 << IEEE80211_RADIOTAP_RATE) |
7858              (1 << IEEE80211_RADIOTAP_CHANNEL) |
7859              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7860              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7861              (1 << IEEE80211_RADIOTAP_ANTENNA));
7862
7863         /* Zero the flags, we'll add to them as we go */
7864         ipw_rt->rt_flags = 0;
7865
7866         ipw_rt->rt_tsf = tsf;
7867
7868         /* Convert to DBM */
7869         ipw_rt->rt_dbmsignal = signal;
7870         ipw_rt->rt_dbmnoise = noise;
7871
7872         /* Convert the channel data and set the flags */
7873         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
7874         if (channel > 14) {     /* 802.11a */
7875                 ipw_rt->rt_chbitmask =
7876                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7877         } else if (phy_flags & (1 << 5)) {      /* 802.11b */
7878                 ipw_rt->rt_chbitmask =
7879                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7880         } else {                /* 802.11g */
7881                 ipw_rt->rt_chbitmask =
7882                     (IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7883         }
7884
7885         /* set the rate in multiples of 500k/s */
7886         switch (rate) {
7887         case IPW_TX_RATE_1MB:
7888                 ipw_rt->rt_rate = 2;
7889                 break;
7890         case IPW_TX_RATE_2MB:
7891                 ipw_rt->rt_rate = 4;
7892                 break;
7893         case IPW_TX_RATE_5MB:
7894                 ipw_rt->rt_rate = 10;
7895                 break;
7896         case IPW_TX_RATE_6MB:
7897                 ipw_rt->rt_rate = 12;
7898                 break;
7899         case IPW_TX_RATE_9MB:
7900                 ipw_rt->rt_rate = 18;
7901                 break;
7902         case IPW_TX_RATE_11MB:
7903                 ipw_rt->rt_rate = 22;
7904                 break;
7905         case IPW_TX_RATE_12MB:
7906                 ipw_rt->rt_rate = 24;
7907                 break;
7908         case IPW_TX_RATE_18MB:
7909                 ipw_rt->rt_rate = 36;
7910                 break;
7911         case IPW_TX_RATE_24MB:
7912                 ipw_rt->rt_rate = 48;
7913                 break;
7914         case IPW_TX_RATE_36MB:
7915                 ipw_rt->rt_rate = 72;
7916                 break;
7917         case IPW_TX_RATE_48MB:
7918                 ipw_rt->rt_rate = 96;
7919                 break;
7920         case IPW_TX_RATE_54MB:
7921                 ipw_rt->rt_rate = 108;
7922                 break;
7923         default:
7924                 ipw_rt->rt_rate = 0;
7925                 break;
7926         }
7927
7928         /* antenna number */
7929         ipw_rt->rt_antenna = (phy_flags & 3);
7930
7931         /* set the preamble flag if we have it */
7932         if (phy_flags & (1 << 6))
7933                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7934
7935         IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
7936
7937         if (!ieee80211_rx(priv->prom_priv->ieee, skb, stats)) {
7938                 priv->prom_priv->ieee->stats.rx_errors++;
7939                 dev_kfree_skb_any(skb);
7940         }
7941 }
7942 #endif
7943
7944 static int is_network_packet(struct ipw_priv *priv,
7945                                     struct ieee80211_hdr_4addr *header)
7946 {
7947         /* Filter incoming packets to determine if they are targetted toward
7948          * this network, discarding packets coming from ourselves */
7949         switch (priv->ieee->iw_mode) {
7950         case IW_MODE_ADHOC:     /* Header: Dest. | Source    | BSSID */
7951                 /* packets from our adapter are dropped (echo) */
7952                 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
7953                         return 0;
7954
7955                 /* {broad,multi}cast packets to our BSSID go through */
7956                 if (is_multicast_ether_addr(header->addr1))
7957                         return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
7958
7959                 /* packets to our adapter go through */
7960                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
7961                                ETH_ALEN);
7962
7963         case IW_MODE_INFRA:     /* Header: Dest. | BSSID | Source */
7964                 /* packets from our adapter are dropped (echo) */
7965                 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
7966                         return 0;
7967
7968                 /* {broad,multi}cast packets to our BSS go through */
7969                 if (is_multicast_ether_addr(header->addr1))
7970                         return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
7971
7972                 /* packets to our adapter go through */
7973                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
7974                                ETH_ALEN);
7975         }
7976
7977         return 1;
7978 }
7979
7980 #define IPW_PACKET_RETRY_TIME HZ
7981
7982 static  int is_duplicate_packet(struct ipw_priv *priv,
7983                                       struct ieee80211_hdr_4addr *header)
7984 {
7985         u16 sc = le16_to_cpu(header->seq_ctl);
7986         u16 seq = WLAN_GET_SEQ_SEQ(sc);
7987         u16 frag = WLAN_GET_SEQ_FRAG(sc);
7988         u16 *last_seq, *last_frag;
7989         unsigned long *last_time;
7990
7991         switch (priv->ieee->iw_mode) {
7992         case IW_MODE_ADHOC:
7993                 {
7994                         struct list_head *p;
7995                         struct ipw_ibss_seq *entry = NULL;
7996                         u8 *mac = header->addr2;
7997                         int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
7998
7999                         __list_for_each(p, &priv->ibss_mac_hash[index]) {
8000                                 entry =
8001                                     list_entry(p, struct ipw_ibss_seq, list);
8002                                 if (!memcmp(entry->mac, mac, ETH_ALEN))
8003                                         break;
8004                         }
8005                         if (p == &priv->ibss_mac_hash[index]) {
8006                                 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8007                                 if (!entry) {
8008                                         IPW_ERROR
8009                                             ("Cannot malloc new mac entry\n");
8010                                         return 0;
8011                                 }
8012                                 memcpy(entry->mac, mac, ETH_ALEN);
8013                                 entry->seq_num = seq;
8014                                 entry->frag_num = frag;
8015                                 entry->packet_time = jiffies;
8016                                 list_add(&entry->list,
8017                                          &priv->ibss_mac_hash[index]);
8018                                 return 0;
8019                         }
8020                         last_seq = &entry->seq_num;
8021                         last_frag = &entry->frag_num;
8022                         last_time = &entry->packet_time;
8023                         break;
8024                 }
8025         case IW_MODE_INFRA:
8026                 last_seq = &priv->last_seq_num;
8027                 last_frag = &priv->last_frag_num;
8028                 last_time = &priv->last_packet_time;
8029                 break;
8030         default:
8031                 return 0;
8032         }
8033         if ((*last_seq == seq) &&
8034             time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8035                 if (*last_frag == frag)
8036                         goto drop;
8037                 if (*last_frag + 1 != frag)
8038                         /* out-of-order fragment */
8039                         goto drop;
8040         } else
8041                 *last_seq = seq;
8042
8043         *last_frag = frag;
8044         *last_time = jiffies;
8045         return 0;
8046
8047       drop:
8048         /* Comment this line now since we observed the card receives
8049          * duplicate packets but the FCTL_RETRY bit is not set in the
8050          * IBSS mode with fragmentation enabled.
8051          BUG_ON(!(le16_to_cpu(header->frame_ctl) & IEEE80211_FCTL_RETRY)); */
8052         return 1;
8053 }
8054
8055 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8056                                    struct ipw_rx_mem_buffer *rxb,
8057                                    struct ieee80211_rx_stats *stats)
8058 {
8059         struct sk_buff *skb = rxb->skb;
8060         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8061         struct ieee80211_hdr_4addr *header = (struct ieee80211_hdr_4addr *)
8062             (skb->data + IPW_RX_FRAME_SIZE);
8063
8064         ieee80211_rx_mgt(priv->ieee, header, stats);
8065
8066         if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8067             ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8068               IEEE80211_STYPE_PROBE_RESP) ||
8069              (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8070               IEEE80211_STYPE_BEACON))) {
8071                 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
8072                         ipw_add_station(priv, header->addr2);
8073         }
8074
8075         if (priv->config & CFG_NET_STATS) {
8076                 IPW_DEBUG_HC("sending stat packet\n");
8077
8078                 /* Set the size of the skb to the size of the full
8079                  * ipw header and 802.11 frame */
8080                 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8081                         IPW_RX_FRAME_SIZE);
8082
8083                 /* Advance past the ipw packet header to the 802.11 frame */
8084                 skb_pull(skb, IPW_RX_FRAME_SIZE);
8085
8086                 /* Push the ieee80211_rx_stats before the 802.11 frame */
8087                 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8088
8089                 skb->dev = priv->ieee->dev;
8090
8091                 /* Point raw at the ieee80211_stats */
8092                 skb->mac.raw = skb->data;
8093
8094                 skb->pkt_type = PACKET_OTHERHOST;
8095                 skb->protocol = __constant_htons(ETH_P_80211_STATS);
8096                 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8097                 netif_rx(skb);
8098                 rxb->skb = NULL;
8099         }
8100 }
8101
8102 /*
8103  * Main entry function for recieving a packet with 80211 headers.  This
8104  * should be called when ever the FW has notified us that there is a new
8105  * skb in the recieve queue.
8106  */
8107 static void ipw_rx(struct ipw_priv *priv)
8108 {
8109         struct ipw_rx_mem_buffer *rxb;
8110         struct ipw_rx_packet *pkt;
8111         struct ieee80211_hdr_4addr *header;
8112         u32 r, w, i;
8113         u8 network_packet;
8114
8115         r = ipw_read32(priv, IPW_RX_READ_INDEX);
8116         w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8117         i = (priv->rxq->processed + 1) % RX_QUEUE_SIZE;
8118
8119         while (i != r) {
8120                 rxb = priv->rxq->queue[i];
8121                 if (unlikely(rxb == NULL)) {
8122                         printk(KERN_CRIT "Queue not allocated!\n");
8123                         break;
8124                 }
8125                 priv->rxq->queue[i] = NULL;
8126
8127                 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8128                                             IPW_RX_BUF_SIZE,
8129                                             PCI_DMA_FROMDEVICE);
8130
8131                 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8132                 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8133                              pkt->header.message_type,
8134                              pkt->header.rx_seq_num, pkt->header.control_bits);
8135
8136                 switch (pkt->header.message_type) {
8137                 case RX_FRAME_TYPE:     /* 802.11 frame */  {
8138                                 struct ieee80211_rx_stats stats = {
8139                                         .rssi = pkt->u.frame.rssi_dbm -
8140                                             IPW_RSSI_TO_DBM,
8141                                         .signal =
8142                                             le16_to_cpu(pkt->u.frame.rssi_dbm) -
8143                                             IPW_RSSI_TO_DBM + 0x100,
8144                                         .noise =
8145                                             le16_to_cpu(pkt->u.frame.noise),
8146                                         .rate = pkt->u.frame.rate,
8147                                         .mac_time = jiffies,
8148                                         .received_channel =
8149                                             pkt->u.frame.received_channel,
8150                                         .freq =
8151                                             (pkt->u.frame.
8152                                              control & (1 << 0)) ?
8153                                             IEEE80211_24GHZ_BAND :
8154                                             IEEE80211_52GHZ_BAND,
8155                                         .len = le16_to_cpu(pkt->u.frame.length),
8156                                 };
8157
8158                                 if (stats.rssi != 0)
8159                                         stats.mask |= IEEE80211_STATMASK_RSSI;
8160                                 if (stats.signal != 0)
8161                                         stats.mask |= IEEE80211_STATMASK_SIGNAL;
8162                                 if (stats.noise != 0)
8163                                         stats.mask |= IEEE80211_STATMASK_NOISE;
8164                                 if (stats.rate != 0)
8165                                         stats.mask |= IEEE80211_STATMASK_RATE;
8166
8167                                 priv->rx_packets++;
8168
8169 #ifdef CONFIG_IPW2200_PROMISCUOUS
8170         if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8171                 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8172 #endif
8173
8174 #ifdef CONFIG_IPW2200_MONITOR
8175                                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8176 #ifdef CONFIG_IPW2200_RADIOTAP
8177
8178                 ipw_handle_data_packet_monitor(priv,
8179                                                rxb,
8180                                                &stats);
8181 #else
8182                 ipw_handle_data_packet(priv, rxb,
8183                                        &stats);
8184 #endif
8185                                         break;
8186                                 }
8187 #endif
8188
8189                                 header =
8190                                     (struct ieee80211_hdr_4addr *)(rxb->skb->
8191                                                                    data +
8192                                                                    IPW_RX_FRAME_SIZE);
8193                                 /* TODO: Check Ad-Hoc dest/source and make sure
8194                                  * that we are actually parsing these packets
8195                                  * correctly -- we should probably use the
8196                                  * frame control of the packet and disregard
8197                                  * the current iw_mode */
8198
8199                                 network_packet =
8200                                     is_network_packet(priv, header);
8201                                 if (network_packet && priv->assoc_network) {
8202                                         priv->assoc_network->stats.rssi =
8203                                             stats.rssi;
8204                                         priv->exp_avg_rssi =
8205                                             exponential_average(priv->exp_avg_rssi,
8206                                             stats.rssi, DEPTH_RSSI);
8207                                 }
8208
8209                                 IPW_DEBUG_RX("Frame: len=%u\n",
8210                                              le16_to_cpu(pkt->u.frame.length));
8211
8212                                 if (le16_to_cpu(pkt->u.frame.length) <
8213                                     ieee80211_get_hdrlen(le16_to_cpu(
8214                                                     header->frame_ctl))) {
8215                                         IPW_DEBUG_DROP
8216                                             ("Received packet is too small. "
8217                                              "Dropping.\n");
8218                                         priv->ieee->stats.rx_errors++;
8219                                         priv->wstats.discard.misc++;
8220                                         break;
8221                                 }
8222
8223                                 switch (WLAN_FC_GET_TYPE
8224                                         (le16_to_cpu(header->frame_ctl))) {
8225
8226                                 case IEEE80211_FTYPE_MGMT:
8227                                         ipw_handle_mgmt_packet(priv, rxb,
8228                                                                &stats);
8229                                         break;
8230
8231                                 case IEEE80211_FTYPE_CTL:
8232                                         break;
8233
8234                                 case IEEE80211_FTYPE_DATA:
8235                                         if (unlikely(!network_packet ||
8236                                                      is_duplicate_packet(priv,
8237                                                                          header)))
8238                                         {
8239                                                 IPW_DEBUG_DROP("Dropping: "
8240                                                                MAC_FMT ", "
8241                                                                MAC_FMT ", "
8242                                                                MAC_FMT "\n",
8243                                                                MAC_ARG(header->
8244                                                                        addr1),
8245                                                                MAC_ARG(header->
8246                                                                        addr2),
8247                                                                MAC_ARG(header->
8248                                                                        addr3));
8249                                                 break;
8250                                         }
8251
8252                                         ipw_handle_data_packet(priv, rxb,
8253                                                                &stats);
8254
8255                                         break;
8256                                 }
8257                                 break;
8258                         }
8259
8260                 case RX_HOST_NOTIFICATION_TYPE:{
8261                                 IPW_DEBUG_RX
8262                                     ("Notification: subtype=%02X flags=%02X size=%d\n",
8263                                      pkt->u.notification.subtype,
8264                                      pkt->u.notification.flags,
8265                                      pkt->u.notification.size);
8266                                 ipw_rx_notification(priv, &pkt->u.notification);
8267                                 break;
8268                         }
8269
8270                 default:
8271                         IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8272                                      pkt->header.message_type);
8273                         break;
8274                 }
8275
8276                 /* For now we just don't re-use anything.  We can tweak this
8277                  * later to try and re-use notification packets and SKBs that
8278                  * fail to Rx correctly */
8279                 if (rxb->skb != NULL) {
8280                         dev_kfree_skb_any(rxb->skb);
8281                         rxb->skb = NULL;
8282                 }
8283
8284                 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8285                                  IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8286                 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8287
8288                 i = (i + 1) % RX_QUEUE_SIZE;
8289         }
8290
8291         /* Backtrack one entry */
8292         priv->rxq->processed = (i ? i : RX_QUEUE_SIZE) - 1;
8293
8294         ipw_rx_queue_restock(priv);
8295 }
8296
8297 #define DEFAULT_RTS_THRESHOLD     2304U
8298 #define MIN_RTS_THRESHOLD         1U
8299 #define MAX_RTS_THRESHOLD         2304U
8300 #define DEFAULT_BEACON_INTERVAL   100U
8301 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8302 #define DEFAULT_LONG_RETRY_LIMIT  4U
8303
8304 /**
8305  * ipw_sw_reset
8306  * @option: options to control different reset behaviour
8307  *          0 = reset everything except the 'disable' module_param
8308  *          1 = reset everything and print out driver info (for probe only)
8309  *          2 = reset everything
8310  */
8311 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8312 {
8313         int band, modulation;
8314         int old_mode = priv->ieee->iw_mode;
8315
8316         /* Initialize module parameter values here */
8317         priv->config = 0;
8318
8319         /* We default to disabling the LED code as right now it causes
8320          * too many systems to lock up... */
8321         if (!led)
8322                 priv->config |= CFG_NO_LED;
8323
8324         if (associate)
8325                 priv->config |= CFG_ASSOCIATE;
8326         else
8327                 IPW_DEBUG_INFO("Auto associate disabled.\n");
8328
8329         if (auto_create)
8330                 priv->config |= CFG_ADHOC_CREATE;
8331         else
8332                 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8333
8334         priv->config &= ~CFG_STATIC_ESSID;
8335         priv->essid_len = 0;
8336         memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8337
8338         if (disable && option) {
8339                 priv->status |= STATUS_RF_KILL_SW;
8340                 IPW_DEBUG_INFO("Radio disabled.\n");
8341         }
8342
8343         if (channel != 0) {
8344                 priv->config |= CFG_STATIC_CHANNEL;
8345                 priv->channel = channel;
8346                 IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
8347                 /* TODO: Validate that provided channel is in range */
8348         }
8349 #ifdef CONFIG_IPW2200_QOS
8350         ipw_qos_init(priv, qos_enable, qos_burst_enable,
8351                      burst_duration_CCK, burst_duration_OFDM);
8352 #endif                          /* CONFIG_IPW2200_QOS */
8353
8354         switch (mode) {
8355         case 1:
8356                 priv->ieee->iw_mode = IW_MODE_ADHOC;
8357                 priv->net_dev->type = ARPHRD_ETHER;
8358
8359                 break;
8360 #ifdef CONFIG_IPW2200_MONITOR
8361         case 2:
8362                 priv->ieee->iw_mode = IW_MODE_MONITOR;
8363 #ifdef CONFIG_IPW2200_RADIOTAP
8364                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8365 #else
8366                 priv->net_dev->type = ARPHRD_IEEE80211;
8367 #endif
8368                 break;
8369 #endif
8370         default:
8371         case 0:
8372                 priv->net_dev->type = ARPHRD_ETHER;
8373                 priv->ieee->iw_mode = IW_MODE_INFRA;
8374                 break;
8375         }
8376
8377         if (hwcrypto) {
8378                 priv->ieee->host_encrypt = 0;
8379                 priv->ieee->host_encrypt_msdu = 0;
8380                 priv->ieee->host_decrypt = 0;
8381                 priv->ieee->host_mc_decrypt = 0;
8382         }
8383         IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8384
8385         /* IPW2200/2915 is abled to do hardware fragmentation. */
8386         priv->ieee->host_open_frag = 0;
8387
8388         if ((priv->pci_dev->device == 0x4223) ||
8389             (priv->pci_dev->device == 0x4224)) {
8390                 if (option == 1)
8391                         printk(KERN_INFO DRV_NAME
8392                                ": Detected Intel PRO/Wireless 2915ABG Network "
8393                                "Connection\n");
8394                 priv->ieee->abg_true = 1;
8395                 band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND;
8396                 modulation = IEEE80211_OFDM_MODULATION |
8397                     IEEE80211_CCK_MODULATION;
8398                 priv->adapter = IPW_2915ABG;
8399                 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8400         } else {
8401                 if (option == 1)
8402                         printk(KERN_INFO DRV_NAME
8403                                ": Detected Intel PRO/Wireless 2200BG Network "
8404                                "Connection\n");
8405
8406                 priv->ieee->abg_true = 0;
8407                 band = IEEE80211_24GHZ_BAND;
8408                 modulation = IEEE80211_OFDM_MODULATION |
8409                     IEEE80211_CCK_MODULATION;
8410                 priv->adapter = IPW_2200BG;
8411                 priv->ieee->mode = IEEE_G | IEEE_B;
8412         }
8413
8414         priv->ieee->freq_band = band;
8415         priv->ieee->modulation = modulation;
8416
8417         priv->rates_mask = IEEE80211_DEFAULT_RATES_MASK;
8418
8419         priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8420         priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8421
8422         priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8423         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8424         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8425
8426         /* If power management is turned on, default to AC mode */
8427         priv->power_mode = IPW_POWER_AC;
8428         priv->tx_power = IPW_TX_POWER_DEFAULT;
8429
8430         return old_mode == priv->ieee->iw_mode;
8431 }
8432
8433 /*
8434  * This file defines the Wireless Extension handlers.  It does not
8435  * define any methods of hardware manipulation and relies on the
8436  * functions defined in ipw_main to provide the HW interaction.
8437  *
8438  * The exception to this is the use of the ipw_get_ordinal()
8439  * function used to poll the hardware vs. making unecessary calls.
8440  *
8441  */
8442
8443 static int ipw_wx_get_name(struct net_device *dev,
8444                            struct iw_request_info *info,
8445                            union iwreq_data *wrqu, char *extra)
8446 {
8447         struct ipw_priv *priv = ieee80211_priv(dev);
8448         mutex_lock(&priv->mutex);
8449         if (priv->status & STATUS_RF_KILL_MASK)
8450                 strcpy(wrqu->name, "radio off");
8451         else if (!(priv->status & STATUS_ASSOCIATED))
8452                 strcpy(wrqu->name, "unassociated");
8453         else
8454                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11%c",
8455                          ipw_modes[priv->assoc_request.ieee_mode]);
8456         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
8457         mutex_unlock(&priv->mutex);
8458         return 0;
8459 }
8460
8461 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8462 {
8463         if (channel == 0) {
8464                 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8465                 priv->config &= ~CFG_STATIC_CHANNEL;
8466                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8467                                 "parameters.\n");
8468                 ipw_associate(priv);
8469                 return 0;
8470         }
8471
8472         priv->config |= CFG_STATIC_CHANNEL;
8473
8474         if (priv->channel == channel) {
8475                 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8476                                channel);
8477                 return 0;
8478         }
8479
8480         IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8481         priv->channel = channel;
8482
8483 #ifdef CONFIG_IPW2200_MONITOR
8484         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8485                 int i;
8486                 if (priv->status & STATUS_SCANNING) {
8487                         IPW_DEBUG_SCAN("Scan abort triggered due to "
8488                                        "channel change.\n");
8489                         ipw_abort_scan(priv);
8490                 }
8491
8492                 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8493                         udelay(10);
8494
8495                 if (priv->status & STATUS_SCANNING)
8496                         IPW_DEBUG_SCAN("Still scanning...\n");
8497                 else
8498                         IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8499                                        1000 - i);
8500
8501                 return 0;
8502         }
8503 #endif                          /* CONFIG_IPW2200_MONITOR */
8504
8505         /* Network configuration changed -- force [re]association */
8506         IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8507         if (!ipw_disassociate(priv))
8508                 ipw_associate(priv);
8509
8510         return 0;
8511 }
8512
8513 static int ipw_wx_set_freq(struct net_device *dev,
8514                            struct iw_request_info *info,
8515                            union iwreq_data *wrqu, char *extra)
8516 {
8517         struct ipw_priv *priv = ieee80211_priv(dev);
8518         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8519         struct iw_freq *fwrq = &wrqu->freq;
8520         int ret = 0, i;
8521         u8 channel, flags;
8522         int band;
8523
8524         if (fwrq->m == 0) {
8525                 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8526                 mutex_lock(&priv->mutex);
8527                 ret = ipw_set_channel(priv, 0);
8528                 mutex_unlock(&priv->mutex);
8529                 return ret;
8530         }
8531         /* if setting by freq convert to channel */
8532         if (fwrq->e == 1) {
8533                 channel = ieee80211_freq_to_channel(priv->ieee, fwrq->m);
8534                 if (channel == 0)
8535                         return -EINVAL;
8536         } else
8537                 channel = fwrq->m;
8538
8539         if (!(band = ieee80211_is_valid_channel(priv->ieee, channel)))
8540                 return -EINVAL;
8541
8542         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8543                 i = ieee80211_channel_to_index(priv->ieee, channel);
8544                 if (i == -1)
8545                         return -EINVAL;
8546
8547                 flags = (band == IEEE80211_24GHZ_BAND) ?
8548                     geo->bg[i].flags : geo->a[i].flags;
8549                 if (flags & IEEE80211_CH_PASSIVE_ONLY) {
8550                         IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8551                         return -EINVAL;
8552                 }
8553         }
8554
8555         IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
8556         mutex_lock(&priv->mutex);
8557         ret = ipw_set_channel(priv, channel);
8558         mutex_unlock(&priv->mutex);
8559         return ret;
8560 }
8561
8562 static int ipw_wx_get_freq(struct net_device *dev,
8563                            struct iw_request_info *info,
8564                            union iwreq_data *wrqu, char *extra)
8565 {
8566         struct ipw_priv *priv = ieee80211_priv(dev);
8567
8568         wrqu->freq.e = 0;
8569
8570         /* If we are associated, trying to associate, or have a statically
8571          * configured CHANNEL then return that; otherwise return ANY */
8572         mutex_lock(&priv->mutex);
8573         if (priv->config & CFG_STATIC_CHANNEL ||
8574             priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8575                 int i;
8576
8577                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
8578                 BUG_ON(i == -1);
8579                 wrqu->freq.e = 1;
8580
8581                 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
8582                 case IEEE80211_52GHZ_BAND:
8583                         wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8584                         break;
8585
8586                 case IEEE80211_24GHZ_BAND:
8587                         wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8588                         break;
8589
8590                 default:
8591                         BUG();
8592                 }
8593         } else
8594                 wrqu->freq.m = 0;
8595
8596         mutex_unlock(&priv->mutex);
8597         IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
8598         return 0;
8599 }
8600
8601 static int ipw_wx_set_mode(struct net_device *dev,
8602                            struct iw_request_info *info,
8603                            union iwreq_data *wrqu, char *extra)
8604 {
8605         struct ipw_priv *priv = ieee80211_priv(dev);
8606         int err = 0;
8607
8608         IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8609
8610         switch (wrqu->mode) {
8611 #ifdef CONFIG_IPW2200_MONITOR
8612         case IW_MODE_MONITOR:
8613 #endif
8614         case IW_MODE_ADHOC:
8615         case IW_MODE_INFRA:
8616                 break;
8617         case IW_MODE_AUTO:
8618                 wrqu->mode = IW_MODE_INFRA;
8619                 break;
8620         default:
8621                 return -EINVAL;
8622         }
8623         if (wrqu->mode == priv->ieee->iw_mode)
8624                 return 0;
8625
8626         mutex_lock(&priv->mutex);
8627
8628         ipw_sw_reset(priv, 0);
8629
8630 #ifdef CONFIG_IPW2200_MONITOR
8631         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8632                 priv->net_dev->type = ARPHRD_ETHER;
8633
8634         if (wrqu->mode == IW_MODE_MONITOR)
8635 #ifdef CONFIG_IPW2200_RADIOTAP
8636                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8637 #else
8638                 priv->net_dev->type = ARPHRD_IEEE80211;
8639 #endif
8640 #endif                          /* CONFIG_IPW2200_MONITOR */
8641
8642         /* Free the existing firmware and reset the fw_loaded
8643          * flag so ipw_load() will bring in the new firmawre */
8644         free_firmware();
8645
8646         priv->ieee->iw_mode = wrqu->mode;
8647
8648         queue_work(priv->workqueue, &priv->adapter_restart);
8649         mutex_unlock(&priv->mutex);
8650         return err;
8651 }
8652
8653 static int ipw_wx_get_mode(struct net_device *dev,
8654                            struct iw_request_info *info,
8655                            union iwreq_data *wrqu, char *extra)
8656 {
8657         struct ipw_priv *priv = ieee80211_priv(dev);
8658         mutex_lock(&priv->mutex);
8659         wrqu->mode = priv->ieee->iw_mode;
8660         IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8661         mutex_unlock(&priv->mutex);
8662         return 0;
8663 }
8664
8665 /* Values are in microsecond */
8666 static const s32 timeout_duration[] = {
8667         350000,
8668         250000,
8669         75000,
8670         37000,
8671         25000,
8672 };
8673
8674 static const s32 period_duration[] = {
8675         400000,
8676         700000,
8677         1000000,
8678         1000000,
8679         1000000
8680 };
8681
8682 static int ipw_wx_get_range(struct net_device *dev,
8683                             struct iw_request_info *info,
8684                             union iwreq_data *wrqu, char *extra)
8685 {
8686         struct ipw_priv *priv = ieee80211_priv(dev);
8687         struct iw_range *range = (struct iw_range *)extra;
8688         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8689         int i = 0, j;
8690
8691         wrqu->data.length = sizeof(*range);
8692         memset(range, 0, sizeof(*range));
8693
8694         /* 54Mbs == ~27 Mb/s real (802.11g) */
8695         range->throughput = 27 * 1000 * 1000;
8696
8697         range->max_qual.qual = 100;
8698         /* TODO: Find real max RSSI and stick here */
8699         range->max_qual.level = 0;
8700         range->max_qual.noise = 0;
8701         range->max_qual.updated = 7;    /* Updated all three */
8702
8703         range->avg_qual.qual = 70;
8704         /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
8705         range->avg_qual.level = 0;      /* FIXME to real average level */
8706         range->avg_qual.noise = 0;
8707         range->avg_qual.updated = 7;    /* Updated all three */
8708         mutex_lock(&priv->mutex);
8709         range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8710
8711         for (i = 0; i < range->num_bitrates; i++)
8712                 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8713                     500000;
8714
8715         range->max_rts = DEFAULT_RTS_THRESHOLD;
8716         range->min_frag = MIN_FRAG_THRESHOLD;
8717         range->max_frag = MAX_FRAG_THRESHOLD;
8718
8719         range->encoding_size[0] = 5;
8720         range->encoding_size[1] = 13;
8721         range->num_encoding_sizes = 2;
8722         range->max_encoding_tokens = WEP_KEYS;
8723
8724         /* Set the Wireless Extension versions */
8725         range->we_version_compiled = WIRELESS_EXT;
8726         range->we_version_source = 18;
8727
8728         i = 0;
8729         if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8730                 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8731                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8732                             (geo->bg[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8733                                 continue;
8734
8735                         range->freq[i].i = geo->bg[j].channel;
8736                         range->freq[i].m = geo->bg[j].freq * 100000;
8737                         range->freq[i].e = 1;
8738                         i++;
8739                 }
8740         }
8741
8742         if (priv->ieee->mode & IEEE_A) {
8743                 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8744                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8745                             (geo->a[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8746                                 continue;
8747
8748                         range->freq[i].i = geo->a[j].channel;
8749                         range->freq[i].m = geo->a[j].freq * 100000;
8750                         range->freq[i].e = 1;
8751                         i++;
8752                 }
8753         }
8754
8755         range->num_channels = i;
8756         range->num_frequency = i;
8757
8758         mutex_unlock(&priv->mutex);
8759
8760         /* Event capability (kernel + driver) */
8761         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8762                                 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8763                                 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8764                                 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8765         range->event_capa[1] = IW_EVENT_CAPA_K_1;
8766
8767         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8768                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8769
8770         IPW_DEBUG_WX("GET Range\n");
8771         return 0;
8772 }
8773
8774 static int ipw_wx_set_wap(struct net_device *dev,
8775                           struct iw_request_info *info,
8776                           union iwreq_data *wrqu, char *extra)
8777 {
8778         struct ipw_priv *priv = ieee80211_priv(dev);
8779
8780         static const unsigned char any[] = {
8781                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
8782         };
8783         static const unsigned char off[] = {
8784                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
8785         };
8786
8787         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8788                 return -EINVAL;
8789         mutex_lock(&priv->mutex);
8790         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
8791             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8792                 /* we disable mandatory BSSID association */
8793                 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8794                 priv->config &= ~CFG_STATIC_BSSID;
8795                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8796                                 "parameters.\n");
8797                 ipw_associate(priv);
8798                 mutex_unlock(&priv->mutex);
8799                 return 0;
8800         }
8801
8802         priv->config |= CFG_STATIC_BSSID;
8803         if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8804                 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8805                 mutex_unlock(&priv->mutex);
8806                 return 0;
8807         }
8808
8809         IPW_DEBUG_WX("Setting mandatory BSSID to " MAC_FMT "\n",
8810                      MAC_ARG(wrqu->ap_addr.sa_data));
8811
8812         memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
8813
8814         /* Network configuration changed -- force [re]association */
8815         IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
8816         if (!ipw_disassociate(priv))
8817                 ipw_associate(priv);
8818
8819         mutex_unlock(&priv->mutex);
8820         return 0;
8821 }
8822
8823 static int ipw_wx_get_wap(struct net_device *dev,
8824                           struct iw_request_info *info,
8825                           union iwreq_data *wrqu, char *extra)
8826 {
8827         struct ipw_priv *priv = ieee80211_priv(dev);
8828         /* If we are associated, trying to associate, or have a statically
8829          * configured BSSID then return that; otherwise return ANY */
8830         mutex_lock(&priv->mutex);
8831         if (priv->config & CFG_STATIC_BSSID ||
8832             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8833                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
8834                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
8835         } else
8836                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
8837
8838         IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
8839                      MAC_ARG(wrqu->ap_addr.sa_data));
8840         mutex_unlock(&priv->mutex);
8841         return 0;
8842 }
8843
8844 static int ipw_wx_set_essid(struct net_device *dev,
8845                             struct iw_request_info *info,
8846                             union iwreq_data *wrqu, char *extra)
8847 {
8848         struct ipw_priv *priv = ieee80211_priv(dev);
8849         int length;
8850
8851         mutex_lock(&priv->mutex);
8852
8853         if (!wrqu->essid.flags)
8854         {
8855                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
8856                 ipw_disassociate(priv);
8857                 priv->config &= ~CFG_STATIC_ESSID;
8858                 ipw_associate(priv);
8859                 mutex_unlock(&priv->mutex);
8860                 return 0;
8861         }
8862
8863         length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
8864         if (!extra[length - 1])
8865                 length--;
8866
8867         priv->config |= CFG_STATIC_ESSID;
8868
8869         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
8870             && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
8871                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
8872                 mutex_unlock(&priv->mutex);
8873                 return 0;
8874         }
8875
8876         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(extra, length),
8877                      length);
8878
8879         priv->essid_len = length;
8880         memcpy(priv->essid, extra, priv->essid_len);
8881
8882         /* Network configuration changed -- force [re]association */
8883         IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
8884         if (!ipw_disassociate(priv))
8885                 ipw_associate(priv);
8886
8887         mutex_unlock(&priv->mutex);
8888         return 0;
8889 }
8890
8891 static int ipw_wx_get_essid(struct net_device *dev,
8892                             struct iw_request_info *info,
8893                             union iwreq_data *wrqu, char *extra)
8894 {
8895         struct ipw_priv *priv = ieee80211_priv(dev);
8896
8897         /* If we are associated, trying to associate, or have a statically
8898          * configured ESSID then return that; otherwise return ANY */
8899         mutex_lock(&priv->mutex);
8900         if (priv->config & CFG_STATIC_ESSID ||
8901             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8902                 IPW_DEBUG_WX("Getting essid: '%s'\n",
8903                              escape_essid(priv->essid, priv->essid_len));
8904                 memcpy(extra, priv->essid, priv->essid_len);
8905                 wrqu->essid.length = priv->essid_len;
8906                 wrqu->essid.flags = 1;  /* active */
8907         } else {
8908                 IPW_DEBUG_WX("Getting essid: ANY\n");
8909                 wrqu->essid.length = 0;
8910                 wrqu->essid.flags = 0;  /* active */
8911         }
8912         mutex_unlock(&priv->mutex);
8913         return 0;
8914 }
8915
8916 static int ipw_wx_set_nick(struct net_device *dev,
8917                            struct iw_request_info *info,
8918                            union iwreq_data *wrqu, char *extra)
8919 {
8920         struct ipw_priv *priv = ieee80211_priv(dev);
8921
8922         IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
8923         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
8924                 return -E2BIG;
8925         mutex_lock(&priv->mutex);
8926         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
8927         memset(priv->nick, 0, sizeof(priv->nick));
8928         memcpy(priv->nick, extra, wrqu->data.length);
8929         IPW_DEBUG_TRACE("<<\n");
8930         mutex_unlock(&priv->mutex);
8931         return 0;
8932
8933 }
8934
8935 static int ipw_wx_get_nick(struct net_device *dev,
8936                            struct iw_request_info *info,
8937                            union iwreq_data *wrqu, char *extra)
8938 {
8939         struct ipw_priv *priv = ieee80211_priv(dev);
8940         IPW_DEBUG_WX("Getting nick\n");
8941         mutex_lock(&priv->mutex);
8942         wrqu->data.length = strlen(priv->nick) + 1;
8943         memcpy(extra, priv->nick, wrqu->data.length);
8944         wrqu->data.flags = 1;   /* active */
8945         mutex_unlock(&priv->mutex);
8946         return 0;
8947 }
8948
8949 static int ipw_wx_set_sens(struct net_device *dev,
8950                             struct iw_request_info *info,
8951                             union iwreq_data *wrqu, char *extra)
8952 {
8953         struct ipw_priv *priv = ieee80211_priv(dev);
8954         int err = 0;
8955
8956         IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
8957         IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
8958         mutex_lock(&priv->mutex);
8959
8960         if (wrqu->sens.fixed == 0)
8961         {
8962                 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8963                 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8964                 goto out;
8965         }
8966         if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
8967             (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
8968                 err = -EINVAL;
8969                 goto out;
8970         }
8971
8972         priv->roaming_threshold = wrqu->sens.value;
8973         priv->disassociate_threshold = 3*wrqu->sens.value;
8974       out:
8975         mutex_unlock(&priv->mutex);
8976         return err;
8977 }
8978
8979 static int ipw_wx_get_sens(struct net_device *dev,
8980                             struct iw_request_info *info,
8981                             union iwreq_data *wrqu, char *extra)
8982 {
8983         struct ipw_priv *priv = ieee80211_priv(dev);
8984         mutex_lock(&priv->mutex);
8985         wrqu->sens.fixed = 1;
8986         wrqu->sens.value = priv->roaming_threshold;
8987         mutex_unlock(&priv->mutex);
8988
8989         IPW_DEBUG_WX("GET roaming threshold -> %s %d \n",
8990                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
8991
8992         return 0;
8993 }
8994
8995 static int ipw_wx_set_rate(struct net_device *dev,
8996                            struct iw_request_info *info,
8997                            union iwreq_data *wrqu, char *extra)
8998 {
8999         /* TODO: We should use semaphores or locks for access to priv */
9000         struct ipw_priv *priv = ieee80211_priv(dev);
9001         u32 target_rate = wrqu->bitrate.value;
9002         u32 fixed, mask;
9003
9004         /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9005         /* value = X, fixed = 1 means only rate X */
9006         /* value = X, fixed = 0 means all rates lower equal X */
9007
9008         if (target_rate == -1) {
9009                 fixed = 0;
9010                 mask = IEEE80211_DEFAULT_RATES_MASK;
9011                 /* Now we should reassociate */
9012                 goto apply;
9013         }
9014
9015         mask = 0;
9016         fixed = wrqu->bitrate.fixed;
9017
9018         if (target_rate == 1000000 || !fixed)
9019                 mask |= IEEE80211_CCK_RATE_1MB_MASK;
9020         if (target_rate == 1000000)
9021                 goto apply;
9022
9023         if (target_rate == 2000000 || !fixed)
9024                 mask |= IEEE80211_CCK_RATE_2MB_MASK;
9025         if (target_rate == 2000000)
9026                 goto apply;
9027
9028         if (target_rate == 5500000 || !fixed)
9029                 mask |= IEEE80211_CCK_RATE_5MB_MASK;
9030         if (target_rate == 5500000)
9031                 goto apply;
9032
9033         if (target_rate == 6000000 || !fixed)
9034                 mask |= IEEE80211_OFDM_RATE_6MB_MASK;
9035         if (target_rate == 6000000)
9036                 goto apply;
9037
9038         if (target_rate == 9000000 || !fixed)
9039                 mask |= IEEE80211_OFDM_RATE_9MB_MASK;
9040         if (target_rate == 9000000)
9041                 goto apply;
9042
9043         if (target_rate == 11000000 || !fixed)
9044                 mask |= IEEE80211_CCK_RATE_11MB_MASK;
9045         if (target_rate == 11000000)
9046                 goto apply;
9047
9048         if (target_rate == 12000000 || !fixed)
9049                 mask |= IEEE80211_OFDM_RATE_12MB_MASK;
9050         if (target_rate == 12000000)
9051                 goto apply;
9052
9053         if (target_rate == 18000000 || !fixed)
9054                 mask |= IEEE80211_OFDM_RATE_18MB_MASK;
9055         if (target_rate == 18000000)
9056                 goto apply;
9057
9058         if (target_rate == 24000000 || !fixed)
9059                 mask |= IEEE80211_OFDM_RATE_24MB_MASK;
9060         if (target_rate == 24000000)
9061                 goto apply;
9062
9063         if (target_rate == 36000000 || !fixed)
9064                 mask |= IEEE80211_OFDM_RATE_36MB_MASK;
9065         if (target_rate == 36000000)
9066                 goto apply;
9067
9068         if (target_rate == 48000000 || !fixed)
9069                 mask |= IEEE80211_OFDM_RATE_48MB_MASK;
9070         if (target_rate == 48000000)
9071                 goto apply;
9072
9073         if (target_rate == 54000000 || !fixed)
9074                 mask |= IEEE80211_OFDM_RATE_54MB_MASK;
9075         if (target_rate == 54000000)
9076                 goto apply;
9077
9078         IPW_DEBUG_WX("invalid rate specified, returning error\n");
9079         return -EINVAL;
9080
9081       apply:
9082         IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9083                      mask, fixed ? "fixed" : "sub-rates");
9084         mutex_lock(&priv->mutex);
9085         if (mask == IEEE80211_DEFAULT_RATES_MASK) {
9086                 priv->config &= ~CFG_FIXED_RATE;
9087                 ipw_set_fixed_rate(priv, priv->ieee->mode);
9088         } else
9089                 priv->config |= CFG_FIXED_RATE;
9090
9091         if (priv->rates_mask == mask) {
9092                 IPW_DEBUG_WX("Mask set to current mask.\n");
9093                 mutex_unlock(&priv->mutex);
9094                 return 0;
9095         }
9096
9097         priv->rates_mask = mask;
9098
9099         /* Network configuration changed -- force [re]association */
9100         IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9101         if (!ipw_disassociate(priv))
9102                 ipw_associate(priv);
9103
9104         mutex_unlock(&priv->mutex);
9105         return 0;
9106 }
9107
9108 static int ipw_wx_get_rate(struct net_device *dev,
9109                            struct iw_request_info *info,
9110                            union iwreq_data *wrqu, char *extra)
9111 {
9112         struct ipw_priv *priv = ieee80211_priv(dev);
9113         mutex_lock(&priv->mutex);
9114         wrqu->bitrate.value = priv->last_rate;
9115         wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9116         mutex_unlock(&priv->mutex);
9117         IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
9118         return 0;
9119 }
9120
9121 static int ipw_wx_set_rts(struct net_device *dev,
9122                           struct iw_request_info *info,
9123                           union iwreq_data *wrqu, char *extra)
9124 {
9125         struct ipw_priv *priv = ieee80211_priv(dev);
9126         mutex_lock(&priv->mutex);
9127         if (wrqu->rts.disabled)
9128                 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9129         else {
9130                 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9131                     wrqu->rts.value > MAX_RTS_THRESHOLD) {
9132                         mutex_unlock(&priv->mutex);
9133                         return -EINVAL;
9134                 }
9135                 priv->rts_threshold = wrqu->rts.value;
9136         }
9137
9138         ipw_send_rts_threshold(priv, priv->rts_threshold);
9139         mutex_unlock(&priv->mutex);
9140         IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
9141         return 0;
9142 }
9143
9144 static int ipw_wx_get_rts(struct net_device *dev,
9145                           struct iw_request_info *info,
9146                           union iwreq_data *wrqu, char *extra)
9147 {
9148         struct ipw_priv *priv = ieee80211_priv(dev);
9149         mutex_lock(&priv->mutex);
9150         wrqu->rts.value = priv->rts_threshold;
9151         wrqu->rts.fixed = 0;    /* no auto select */
9152         wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9153         mutex_unlock(&priv->mutex);
9154         IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
9155         return 0;
9156 }
9157
9158 static int ipw_wx_set_txpow(struct net_device *dev,
9159                             struct iw_request_info *info,
9160                             union iwreq_data *wrqu, char *extra)
9161 {
9162         struct ipw_priv *priv = ieee80211_priv(dev);
9163         int err = 0;
9164
9165         mutex_lock(&priv->mutex);
9166         if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9167                 err = -EINPROGRESS;
9168                 goto out;
9169         }
9170
9171         if (!wrqu->power.fixed)
9172                 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9173
9174         if (wrqu->power.flags != IW_TXPOW_DBM) {
9175                 err = -EINVAL;
9176                 goto out;
9177         }
9178
9179         if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9180             (wrqu->power.value < IPW_TX_POWER_MIN)) {
9181                 err = -EINVAL;
9182                 goto out;
9183         }
9184
9185         priv->tx_power = wrqu->power.value;
9186         err = ipw_set_tx_power(priv);
9187       out:
9188         mutex_unlock(&priv->mutex);
9189         return err;
9190 }
9191
9192 static int ipw_wx_get_txpow(struct net_device *dev,
9193                             struct iw_request_info *info,
9194                             union iwreq_data *wrqu, char *extra)
9195 {
9196         struct ipw_priv *priv = ieee80211_priv(dev);
9197         mutex_lock(&priv->mutex);
9198         wrqu->power.value = priv->tx_power;
9199         wrqu->power.fixed = 1;
9200         wrqu->power.flags = IW_TXPOW_DBM;
9201         wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9202         mutex_unlock(&priv->mutex);
9203
9204         IPW_DEBUG_WX("GET TX Power -> %s %d \n",
9205                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9206
9207         return 0;
9208 }
9209
9210 static int ipw_wx_set_frag(struct net_device *dev,
9211                            struct iw_request_info *info,
9212                            union iwreq_data *wrqu, char *extra)
9213 {
9214         struct ipw_priv *priv = ieee80211_priv(dev);
9215         mutex_lock(&priv->mutex);
9216         if (wrqu->frag.disabled)
9217                 priv->ieee->fts = DEFAULT_FTS;
9218         else {
9219                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9220                     wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9221                         mutex_unlock(&priv->mutex);
9222                         return -EINVAL;
9223                 }
9224
9225                 priv->ieee->fts = wrqu->frag.value & ~0x1;
9226         }
9227
9228         ipw_send_frag_threshold(priv, wrqu->frag.value);
9229         mutex_unlock(&priv->mutex);
9230         IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
9231         return 0;
9232 }
9233
9234 static int ipw_wx_get_frag(struct net_device *dev,
9235                            struct iw_request_info *info,
9236                            union iwreq_data *wrqu, char *extra)
9237 {
9238         struct ipw_priv *priv = ieee80211_priv(dev);
9239         mutex_lock(&priv->mutex);
9240         wrqu->frag.value = priv->ieee->fts;
9241         wrqu->frag.fixed = 0;   /* no auto select */
9242         wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9243         mutex_unlock(&priv->mutex);
9244         IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
9245
9246         return 0;
9247 }
9248
9249 static int ipw_wx_set_retry(struct net_device *dev,
9250                             struct iw_request_info *info,
9251                             union iwreq_data *wrqu, char *extra)
9252 {
9253         struct ipw_priv *priv = ieee80211_priv(dev);
9254
9255         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9256                 return -EINVAL;
9257
9258         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9259                 return 0;
9260
9261         if (wrqu->retry.value < 0 || wrqu->retry.value > 255)
9262                 return -EINVAL;
9263
9264         mutex_lock(&priv->mutex);
9265         if (wrqu->retry.flags & IW_RETRY_MIN)
9266                 priv->short_retry_limit = (u8) wrqu->retry.value;
9267         else if (wrqu->retry.flags & IW_RETRY_MAX)
9268                 priv->long_retry_limit = (u8) wrqu->retry.value;
9269         else {
9270                 priv->short_retry_limit = (u8) wrqu->retry.value;
9271                 priv->long_retry_limit = (u8) wrqu->retry.value;
9272         }
9273
9274         ipw_send_retry_limit(priv, priv->short_retry_limit,
9275                              priv->long_retry_limit);
9276         mutex_unlock(&priv->mutex);
9277         IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9278                      priv->short_retry_limit, priv->long_retry_limit);
9279         return 0;
9280 }
9281
9282 static int ipw_wx_get_retry(struct net_device *dev,
9283                             struct iw_request_info *info,
9284                             union iwreq_data *wrqu, char *extra)
9285 {
9286         struct ipw_priv *priv = ieee80211_priv(dev);
9287
9288         mutex_lock(&priv->mutex);
9289         wrqu->retry.disabled = 0;
9290
9291         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9292                 mutex_unlock(&priv->mutex);
9293                 return -EINVAL;
9294         }
9295
9296         if (wrqu->retry.flags & IW_RETRY_MAX) {
9297                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_MAX;
9298                 wrqu->retry.value = priv->long_retry_limit;
9299         } else if (wrqu->retry.flags & IW_RETRY_MIN) {
9300                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_MIN;
9301                 wrqu->retry.value = priv->short_retry_limit;
9302         } else {
9303                 wrqu->retry.flags = IW_RETRY_LIMIT;
9304                 wrqu->retry.value = priv->short_retry_limit;
9305         }
9306         mutex_unlock(&priv->mutex);
9307
9308         IPW_DEBUG_WX("GET retry -> %d \n", wrqu->retry.value);
9309
9310         return 0;
9311 }
9312
9313 static int ipw_request_direct_scan(struct ipw_priv *priv, char *essid,
9314                                    int essid_len)
9315 {
9316         struct ipw_scan_request_ext scan;
9317         int err = 0, scan_type;
9318
9319         if (!(priv->status & STATUS_INIT) ||
9320             (priv->status & STATUS_EXIT_PENDING))
9321                 return 0;
9322
9323         mutex_lock(&priv->mutex);
9324
9325         if (priv->status & STATUS_RF_KILL_MASK) {
9326                 IPW_DEBUG_HC("Aborting scan due to RF kill activation\n");
9327                 priv->status |= STATUS_SCAN_PENDING;
9328                 goto done;
9329         }
9330
9331         IPW_DEBUG_HC("starting request direct scan!\n");
9332
9333         if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
9334                 /* We should not sleep here; otherwise we will block most
9335                  * of the system (for instance, we hold rtnl_lock when we
9336                  * get here).
9337                  */
9338                 err = -EAGAIN;
9339                 goto done;
9340         }
9341         memset(&scan, 0, sizeof(scan));
9342
9343         if (priv->config & CFG_SPEED_SCAN)
9344                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
9345                     cpu_to_le16(30);
9346         else
9347                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
9348                     cpu_to_le16(20);
9349
9350         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
9351             cpu_to_le16(20);
9352         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
9353         scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
9354
9355         scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
9356
9357         err = ipw_send_ssid(priv, essid, essid_len);
9358         if (err) {
9359                 IPW_DEBUG_HC("Attempt to send SSID command failed\n");
9360                 goto done;
9361         }
9362         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
9363
9364         ipw_add_scan_channels(priv, &scan, scan_type);
9365
9366         err = ipw_send_scan_request_ext(priv, &scan);
9367         if (err) {
9368                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
9369                 goto done;
9370         }
9371
9372         priv->status |= STATUS_SCANNING;
9373
9374       done:
9375         mutex_unlock(&priv->mutex);
9376         return err;
9377 }
9378
9379 static int ipw_wx_set_scan(struct net_device *dev,
9380                            struct iw_request_info *info,
9381                            union iwreq_data *wrqu, char *extra)
9382 {
9383         struct ipw_priv *priv = ieee80211_priv(dev);
9384         struct iw_scan_req *req = NULL;
9385         if (wrqu->data.length
9386             && wrqu->data.length == sizeof(struct iw_scan_req)) {
9387                 req = (struct iw_scan_req *)extra;
9388                 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9389                         ipw_request_direct_scan(priv, req->essid,
9390                                                 req->essid_len);
9391                         return 0;
9392                 }
9393         }
9394
9395         IPW_DEBUG_WX("Start scan\n");
9396
9397         queue_work(priv->workqueue, &priv->request_scan);
9398
9399         return 0;
9400 }
9401
9402 static int ipw_wx_get_scan(struct net_device *dev,
9403                            struct iw_request_info *info,
9404                            union iwreq_data *wrqu, char *extra)
9405 {
9406         struct ipw_priv *priv = ieee80211_priv(dev);
9407         return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
9408 }
9409
9410 static int ipw_wx_set_encode(struct net_device *dev,
9411                              struct iw_request_info *info,
9412                              union iwreq_data *wrqu, char *key)
9413 {
9414         struct ipw_priv *priv = ieee80211_priv(dev);
9415         int ret;
9416         u32 cap = priv->capability;
9417
9418         mutex_lock(&priv->mutex);
9419         ret = ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
9420
9421         /* In IBSS mode, we need to notify the firmware to update
9422          * the beacon info after we changed the capability. */
9423         if (cap != priv->capability &&
9424             priv->ieee->iw_mode == IW_MODE_ADHOC &&
9425             priv->status & STATUS_ASSOCIATED)
9426                 ipw_disassociate(priv);
9427
9428         mutex_unlock(&priv->mutex);
9429         return ret;
9430 }
9431
9432 static int ipw_wx_get_encode(struct net_device *dev,
9433                              struct iw_request_info *info,
9434                              union iwreq_data *wrqu, char *key)
9435 {
9436         struct ipw_priv *priv = ieee80211_priv(dev);
9437         return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
9438 }
9439
9440 static int ipw_wx_set_power(struct net_device *dev,
9441                             struct iw_request_info *info,
9442                             union iwreq_data *wrqu, char *extra)
9443 {
9444         struct ipw_priv *priv = ieee80211_priv(dev);
9445         int err;
9446         mutex_lock(&priv->mutex);
9447         if (wrqu->power.disabled) {
9448                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9449                 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9450                 if (err) {
9451                         IPW_DEBUG_WX("failed setting power mode.\n");
9452                         mutex_unlock(&priv->mutex);
9453                         return err;
9454                 }
9455                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9456                 mutex_unlock(&priv->mutex);
9457                 return 0;
9458         }
9459
9460         switch (wrqu->power.flags & IW_POWER_MODE) {
9461         case IW_POWER_ON:       /* If not specified */
9462         case IW_POWER_MODE:     /* If set all mask */
9463         case IW_POWER_ALL_R:    /* If explicitely state all */
9464                 break;
9465         default:                /* Otherwise we don't support it */
9466                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9467                              wrqu->power.flags);
9468                 mutex_unlock(&priv->mutex);
9469                 return -EOPNOTSUPP;
9470         }
9471
9472         /* If the user hasn't specified a power management mode yet, default
9473          * to BATTERY */
9474         if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9475                 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9476         else
9477                 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9478         err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9479         if (err) {
9480                 IPW_DEBUG_WX("failed setting power mode.\n");
9481                 mutex_unlock(&priv->mutex);
9482                 return err;
9483         }
9484
9485         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9486         mutex_unlock(&priv->mutex);
9487         return 0;
9488 }
9489
9490 static int ipw_wx_get_power(struct net_device *dev,
9491                             struct iw_request_info *info,
9492                             union iwreq_data *wrqu, char *extra)
9493 {
9494         struct ipw_priv *priv = ieee80211_priv(dev);
9495         mutex_lock(&priv->mutex);
9496         if (!(priv->power_mode & IPW_POWER_ENABLED))
9497                 wrqu->power.disabled = 1;
9498         else
9499                 wrqu->power.disabled = 0;
9500
9501         mutex_unlock(&priv->mutex);
9502         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9503
9504         return 0;
9505 }
9506
9507 static int ipw_wx_set_powermode(struct net_device *dev,
9508                                 struct iw_request_info *info,
9509                                 union iwreq_data *wrqu, char *extra)
9510 {
9511         struct ipw_priv *priv = ieee80211_priv(dev);
9512         int mode = *(int *)extra;
9513         int err;
9514         mutex_lock(&priv->mutex);
9515         if ((mode < 1) || (mode > IPW_POWER_LIMIT)) {
9516                 mode = IPW_POWER_AC;
9517                 priv->power_mode = mode;
9518         } else {
9519                 priv->power_mode = IPW_POWER_ENABLED | mode;
9520         }
9521
9522         if (priv->power_mode != mode) {
9523                 err = ipw_send_power_mode(priv, mode);
9524
9525                 if (err) {
9526                         IPW_DEBUG_WX("failed setting power mode.\n");
9527                         mutex_unlock(&priv->mutex);
9528                         return err;
9529                 }
9530         }
9531         mutex_unlock(&priv->mutex);
9532         return 0;
9533 }
9534
9535 #define MAX_WX_STRING 80
9536 static int ipw_wx_get_powermode(struct net_device *dev,
9537                                 struct iw_request_info *info,
9538                                 union iwreq_data *wrqu, char *extra)
9539 {
9540         struct ipw_priv *priv = ieee80211_priv(dev);
9541         int level = IPW_POWER_LEVEL(priv->power_mode);
9542         char *p = extra;
9543
9544         p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9545
9546         switch (level) {
9547         case IPW_POWER_AC:
9548                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9549                 break;
9550         case IPW_POWER_BATTERY:
9551                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9552                 break;
9553         default:
9554                 p += snprintf(p, MAX_WX_STRING - (p - extra),
9555                               "(Timeout %dms, Period %dms)",
9556                               timeout_duration[level - 1] / 1000,
9557                               period_duration[level - 1] / 1000);
9558         }
9559
9560         if (!(priv->power_mode & IPW_POWER_ENABLED))
9561                 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9562
9563         wrqu->data.length = p - extra + 1;
9564
9565         return 0;
9566 }
9567
9568 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9569                                     struct iw_request_info *info,
9570                                     union iwreq_data *wrqu, char *extra)
9571 {
9572         struct ipw_priv *priv = ieee80211_priv(dev);
9573         int mode = *(int *)extra;
9574         u8 band = 0, modulation = 0;
9575
9576         if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9577                 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9578                 return -EINVAL;
9579         }
9580         mutex_lock(&priv->mutex);
9581         if (priv->adapter == IPW_2915ABG) {
9582                 priv->ieee->abg_true = 1;
9583                 if (mode & IEEE_A) {
9584                         band |= IEEE80211_52GHZ_BAND;
9585                         modulation |= IEEE80211_OFDM_MODULATION;
9586                 } else
9587                         priv->ieee->abg_true = 0;
9588         } else {
9589                 if (mode & IEEE_A) {
9590                         IPW_WARNING("Attempt to set 2200BG into "
9591                                     "802.11a mode\n");
9592                         mutex_unlock(&priv->mutex);
9593                         return -EINVAL;
9594                 }
9595
9596                 priv->ieee->abg_true = 0;
9597         }
9598
9599         if (mode & IEEE_B) {
9600                 band |= IEEE80211_24GHZ_BAND;
9601                 modulation |= IEEE80211_CCK_MODULATION;
9602         } else
9603                 priv->ieee->abg_true = 0;
9604
9605         if (mode & IEEE_G) {
9606                 band |= IEEE80211_24GHZ_BAND;
9607                 modulation |= IEEE80211_OFDM_MODULATION;
9608         } else
9609                 priv->ieee->abg_true = 0;
9610
9611         priv->ieee->mode = mode;
9612         priv->ieee->freq_band = band;
9613         priv->ieee->modulation = modulation;
9614         init_supported_rates(priv, &priv->rates);
9615
9616         /* Network configuration changed -- force [re]association */
9617         IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9618         if (!ipw_disassociate(priv)) {
9619                 ipw_send_supported_rates(priv, &priv->rates);
9620                 ipw_associate(priv);
9621         }
9622
9623         /* Update the band LEDs */
9624         ipw_led_band_on(priv);
9625
9626         IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9627                      mode & IEEE_A ? 'a' : '.',
9628                      mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9629         mutex_unlock(&priv->mutex);
9630         return 0;
9631 }
9632
9633 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9634                                     struct iw_request_info *info,
9635                                     union iwreq_data *wrqu, char *extra)
9636 {
9637         struct ipw_priv *priv = ieee80211_priv(dev);
9638         mutex_lock(&priv->mutex);
9639         switch (priv->ieee->mode) {
9640         case IEEE_A:
9641                 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9642                 break;
9643         case IEEE_B:
9644                 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9645                 break;
9646         case IEEE_A | IEEE_B:
9647                 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9648                 break;
9649         case IEEE_G:
9650                 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9651                 break;
9652         case IEEE_A | IEEE_G:
9653                 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9654                 break;
9655         case IEEE_B | IEEE_G:
9656                 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9657                 break;
9658         case IEEE_A | IEEE_B | IEEE_G:
9659                 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9660                 break;
9661         default:
9662                 strncpy(extra, "unknown", MAX_WX_STRING);
9663                 break;
9664         }
9665
9666         IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9667
9668         wrqu->data.length = strlen(extra) + 1;
9669         mutex_unlock(&priv->mutex);
9670
9671         return 0;
9672 }
9673
9674 static int ipw_wx_set_preamble(struct net_device *dev,
9675                                struct iw_request_info *info,
9676                                union iwreq_data *wrqu, char *extra)
9677 {
9678         struct ipw_priv *priv = ieee80211_priv(dev);
9679         int mode = *(int *)extra;
9680         mutex_lock(&priv->mutex);
9681         /* Switching from SHORT -> LONG requires a disassociation */
9682         if (mode == 1) {
9683                 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9684                         priv->config |= CFG_PREAMBLE_LONG;
9685
9686                         /* Network configuration changed -- force [re]association */
9687                         IPW_DEBUG_ASSOC
9688                             ("[re]association triggered due to preamble change.\n");
9689                         if (!ipw_disassociate(priv))
9690                                 ipw_associate(priv);
9691                 }
9692                 goto done;
9693         }
9694
9695         if (mode == 0) {
9696                 priv->config &= ~CFG_PREAMBLE_LONG;
9697                 goto done;
9698         }
9699         mutex_unlock(&priv->mutex);
9700         return -EINVAL;
9701
9702       done:
9703         mutex_unlock(&priv->mutex);
9704         return 0;
9705 }
9706
9707 static int ipw_wx_get_preamble(struct net_device *dev,
9708                                struct iw_request_info *info,
9709                                union iwreq_data *wrqu, char *extra)
9710 {
9711         struct ipw_priv *priv = ieee80211_priv(dev);
9712         mutex_lock(&priv->mutex);
9713         if (priv->config & CFG_PREAMBLE_LONG)
9714                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9715         else
9716                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9717         mutex_unlock(&priv->mutex);
9718         return 0;
9719 }
9720
9721 #ifdef CONFIG_IPW2200_MONITOR
9722 static int ipw_wx_set_monitor(struct net_device *dev,
9723                               struct iw_request_info *info,
9724                               union iwreq_data *wrqu, char *extra)
9725 {
9726         struct ipw_priv *priv = ieee80211_priv(dev);
9727         int *parms = (int *)extra;
9728         int enable = (parms[0] > 0);
9729         mutex_lock(&priv->mutex);
9730         IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9731         if (enable) {
9732                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9733 #ifdef CONFIG_IPW2200_RADIOTAP
9734                         priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9735 #else
9736                         priv->net_dev->type = ARPHRD_IEEE80211;
9737 #endif
9738                         queue_work(priv->workqueue, &priv->adapter_restart);
9739                 }
9740
9741                 ipw_set_channel(priv, parms[1]);
9742         } else {
9743                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9744                         mutex_unlock(&priv->mutex);
9745                         return 0;
9746                 }
9747                 priv->net_dev->type = ARPHRD_ETHER;
9748                 queue_work(priv->workqueue, &priv->adapter_restart);
9749         }
9750         mutex_unlock(&priv->mutex);
9751         return 0;
9752 }
9753
9754 #endif                          /* CONFIG_IPW2200_MONITOR */
9755
9756 static int ipw_wx_reset(struct net_device *dev,
9757                         struct iw_request_info *info,
9758                         union iwreq_data *wrqu, char *extra)
9759 {
9760         struct ipw_priv *priv = ieee80211_priv(dev);
9761         IPW_DEBUG_WX("RESET\n");
9762         queue_work(priv->workqueue, &priv->adapter_restart);
9763         return 0;
9764 }
9765
9766 static int ipw_wx_sw_reset(struct net_device *dev,
9767                            struct iw_request_info *info,
9768                            union iwreq_data *wrqu, char *extra)
9769 {
9770         struct ipw_priv *priv = ieee80211_priv(dev);
9771         union iwreq_data wrqu_sec = {
9772                 .encoding = {
9773                              .flags = IW_ENCODE_DISABLED,
9774                              },
9775         };
9776         int ret;
9777
9778         IPW_DEBUG_WX("SW_RESET\n");
9779
9780         mutex_lock(&priv->mutex);
9781
9782         ret = ipw_sw_reset(priv, 2);
9783         if (!ret) {
9784                 free_firmware();
9785                 ipw_adapter_restart(priv);
9786         }
9787
9788         /* The SW reset bit might have been toggled on by the 'disable'
9789          * module parameter, so take appropriate action */
9790         ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9791
9792         mutex_unlock(&priv->mutex);
9793         ieee80211_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9794         mutex_lock(&priv->mutex);
9795
9796         if (!(priv->status & STATUS_RF_KILL_MASK)) {
9797                 /* Configuration likely changed -- force [re]association */
9798                 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9799                                 "reset.\n");
9800                 if (!ipw_disassociate(priv))
9801                         ipw_associate(priv);
9802         }
9803
9804         mutex_unlock(&priv->mutex);
9805
9806         return 0;
9807 }
9808
9809 /* Rebase the WE IOCTLs to zero for the handler array */
9810 #define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
9811 static iw_handler ipw_wx_handlers[] = {
9812         IW_IOCTL(SIOCGIWNAME) = ipw_wx_get_name,
9813         IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq,
9814         IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq,
9815         IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode,
9816         IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode,
9817         IW_IOCTL(SIOCSIWSENS) = ipw_wx_set_sens,
9818         IW_IOCTL(SIOCGIWSENS) = ipw_wx_get_sens,
9819         IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range,
9820         IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap,
9821         IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap,
9822         IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan,
9823         IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan,
9824         IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid,
9825         IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid,
9826         IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick,
9827         IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick,
9828         IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate,
9829         IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate,
9830         IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts,
9831         IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts,
9832         IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag,
9833         IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag,
9834         IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow,
9835         IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow,
9836         IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry,
9837         IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry,
9838         IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode,
9839         IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode,
9840         IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power,
9841         IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power,
9842         IW_IOCTL(SIOCSIWSPY) = iw_handler_set_spy,
9843         IW_IOCTL(SIOCGIWSPY) = iw_handler_get_spy,
9844         IW_IOCTL(SIOCSIWTHRSPY) = iw_handler_set_thrspy,
9845         IW_IOCTL(SIOCGIWTHRSPY) = iw_handler_get_thrspy,
9846         IW_IOCTL(SIOCSIWGENIE) = ipw_wx_set_genie,
9847         IW_IOCTL(SIOCGIWGENIE) = ipw_wx_get_genie,
9848         IW_IOCTL(SIOCSIWMLME) = ipw_wx_set_mlme,
9849         IW_IOCTL(SIOCSIWAUTH) = ipw_wx_set_auth,
9850         IW_IOCTL(SIOCGIWAUTH) = ipw_wx_get_auth,
9851         IW_IOCTL(SIOCSIWENCODEEXT) = ipw_wx_set_encodeext,
9852         IW_IOCTL(SIOCGIWENCODEEXT) = ipw_wx_get_encodeext,
9853 };
9854
9855 enum {
9856         IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
9857         IPW_PRIV_GET_POWER,
9858         IPW_PRIV_SET_MODE,
9859         IPW_PRIV_GET_MODE,
9860         IPW_PRIV_SET_PREAMBLE,
9861         IPW_PRIV_GET_PREAMBLE,
9862         IPW_PRIV_RESET,
9863         IPW_PRIV_SW_RESET,
9864 #ifdef CONFIG_IPW2200_MONITOR
9865         IPW_PRIV_SET_MONITOR,
9866 #endif
9867 };
9868
9869 static struct iw_priv_args ipw_priv_args[] = {
9870         {
9871          .cmd = IPW_PRIV_SET_POWER,
9872          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9873          .name = "set_power"},
9874         {
9875          .cmd = IPW_PRIV_GET_POWER,
9876          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9877          .name = "get_power"},
9878         {
9879          .cmd = IPW_PRIV_SET_MODE,
9880          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9881          .name = "set_mode"},
9882         {
9883          .cmd = IPW_PRIV_GET_MODE,
9884          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9885          .name = "get_mode"},
9886         {
9887          .cmd = IPW_PRIV_SET_PREAMBLE,
9888          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9889          .name = "set_preamble"},
9890         {
9891          .cmd = IPW_PRIV_GET_PREAMBLE,
9892          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
9893          .name = "get_preamble"},
9894         {
9895          IPW_PRIV_RESET,
9896          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
9897         {
9898          IPW_PRIV_SW_RESET,
9899          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
9900 #ifdef CONFIG_IPW2200_MONITOR
9901         {
9902          IPW_PRIV_SET_MONITOR,
9903          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
9904 #endif                          /* CONFIG_IPW2200_MONITOR */
9905 };
9906
9907 static iw_handler ipw_priv_handler[] = {
9908         ipw_wx_set_powermode,
9909         ipw_wx_get_powermode,
9910         ipw_wx_set_wireless_mode,
9911         ipw_wx_get_wireless_mode,
9912         ipw_wx_set_preamble,
9913         ipw_wx_get_preamble,
9914         ipw_wx_reset,
9915         ipw_wx_sw_reset,
9916 #ifdef CONFIG_IPW2200_MONITOR
9917         ipw_wx_set_monitor,
9918 #endif
9919 };
9920
9921 static struct iw_handler_def ipw_wx_handler_def = {
9922         .standard = ipw_wx_handlers,
9923         .num_standard = ARRAY_SIZE(ipw_wx_handlers),
9924         .num_private = ARRAY_SIZE(ipw_priv_handler),
9925         .num_private_args = ARRAY_SIZE(ipw_priv_args),
9926         .private = ipw_priv_handler,
9927         .private_args = ipw_priv_args,
9928         .get_wireless_stats = ipw_get_wireless_stats,
9929 };
9930
9931 /*
9932  * Get wireless statistics.
9933  * Called by /proc/net/wireless
9934  * Also called by SIOCGIWSTATS
9935  */
9936 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
9937 {
9938         struct ipw_priv *priv = ieee80211_priv(dev);
9939         struct iw_statistics *wstats;
9940
9941         wstats = &priv->wstats;
9942
9943         /* if hw is disabled, then ipw_get_ordinal() can't be called.
9944          * netdev->get_wireless_stats seems to be called before fw is
9945          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
9946          * and associated; if not associcated, the values are all meaningless
9947          * anyway, so set them all to NULL and INVALID */
9948         if (!(priv->status & STATUS_ASSOCIATED)) {
9949                 wstats->miss.beacon = 0;
9950                 wstats->discard.retries = 0;
9951                 wstats->qual.qual = 0;
9952                 wstats->qual.level = 0;
9953                 wstats->qual.noise = 0;
9954                 wstats->qual.updated = 7;
9955                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
9956                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
9957                 return wstats;
9958         }
9959
9960         wstats->qual.qual = priv->quality;
9961         wstats->qual.level = priv->exp_avg_rssi;
9962         wstats->qual.noise = priv->exp_avg_noise;
9963         wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
9964             IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
9965
9966         wstats->miss.beacon = average_value(&priv->average_missed_beacons);
9967         wstats->discard.retries = priv->last_tx_failures;
9968         wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
9969
9970 /*      if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
9971         goto fail_get_ordinal;
9972         wstats->discard.retries += tx_retry; */
9973
9974         return wstats;
9975 }
9976
9977 /* net device stuff */
9978
9979 static  void init_sys_config(struct ipw_sys_config *sys_config)
9980 {
9981         memset(sys_config, 0, sizeof(struct ipw_sys_config));
9982         sys_config->bt_coexistence = 0;
9983         sys_config->answer_broadcast_ssid_probe = 0;
9984         sys_config->accept_all_data_frames = 0;
9985         sys_config->accept_non_directed_frames = 1;
9986         sys_config->exclude_unicast_unencrypted = 0;
9987         sys_config->disable_unicast_decryption = 1;
9988         sys_config->exclude_multicast_unencrypted = 0;
9989         sys_config->disable_multicast_decryption = 1;
9990         if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
9991                 antenna = CFG_SYS_ANTENNA_BOTH;
9992         sys_config->antenna_diversity = antenna;
9993         sys_config->pass_crc_to_host = 0;       /* TODO: See if 1 gives us FCS */
9994         sys_config->dot11g_auto_detection = 0;
9995         sys_config->enable_cts_to_self = 0;
9996         sys_config->bt_coexist_collision_thr = 0;
9997         sys_config->pass_noise_stats_to_host = 1;       /* 1 -- fix for 256 */
9998         sys_config->silence_threshold = 0x1e;
9999 }
10000
10001 static int ipw_net_open(struct net_device *dev)
10002 {
10003         struct ipw_priv *priv = ieee80211_priv(dev);
10004         IPW_DEBUG_INFO("dev->open\n");
10005         /* we should be verifying the device is ready to be opened */
10006         mutex_lock(&priv->mutex);
10007         if (!(priv->status & STATUS_RF_KILL_MASK) &&
10008             (priv->status & STATUS_ASSOCIATED))
10009                 netif_start_queue(dev);
10010         mutex_unlock(&priv->mutex);
10011         return 0;
10012 }
10013
10014 static int ipw_net_stop(struct net_device *dev)
10015 {
10016         IPW_DEBUG_INFO("dev->close\n");
10017         netif_stop_queue(dev);
10018         return 0;
10019 }
10020
10021 /*
10022 todo:
10023
10024 modify to send one tfd per fragment instead of using chunking.  otherwise
10025 we need to heavily modify the ieee80211_skb_to_txb.
10026 */
10027
10028 static int ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb,
10029                              int pri)
10030 {
10031         struct ieee80211_hdr_3addrqos *hdr = (struct ieee80211_hdr_3addrqos *)
10032             txb->fragments[0]->data;
10033         int i = 0;
10034         struct tfd_frame *tfd;
10035 #ifdef CONFIG_IPW2200_QOS
10036         int tx_id = ipw_get_tx_queue_number(priv, pri);
10037         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10038 #else
10039         struct clx2_tx_queue *txq = &priv->txq[0];
10040 #endif
10041         struct clx2_queue *q = &txq->q;
10042         u8 id, hdr_len, unicast;
10043         u16 remaining_bytes;
10044         int fc;
10045
10046         hdr_len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10047         switch (priv->ieee->iw_mode) {
10048         case IW_MODE_ADHOC:
10049                 unicast = !is_multicast_ether_addr(hdr->addr1);
10050                 id = ipw_find_station(priv, hdr->addr1);
10051                 if (id == IPW_INVALID_STATION) {
10052                         id = ipw_add_station(priv, hdr->addr1);
10053                         if (id == IPW_INVALID_STATION) {
10054                                 IPW_WARNING("Attempt to send data to "
10055                                             "invalid cell: " MAC_FMT "\n",
10056                                             MAC_ARG(hdr->addr1));
10057                                 goto drop;
10058                         }
10059                 }
10060                 break;
10061
10062         case IW_MODE_INFRA:
10063         default:
10064                 unicast = !is_multicast_ether_addr(hdr->addr3);
10065                 id = 0;
10066                 break;
10067         }
10068
10069         tfd = &txq->bd[q->first_empty];
10070         txq->txb[q->first_empty] = txb;
10071         memset(tfd, 0, sizeof(*tfd));
10072         tfd->u.data.station_number = id;
10073
10074         tfd->control_flags.message_type = TX_FRAME_TYPE;
10075         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10076
10077         tfd->u.data.cmd_id = DINO_CMD_TX;
10078         tfd->u.data.len = cpu_to_le16(txb->payload_size);
10079         remaining_bytes = txb->payload_size;
10080
10081         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10082                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10083         else
10084                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10085
10086         if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10087                 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10088
10089         fc = le16_to_cpu(hdr->frame_ctl);
10090         hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10091
10092         memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10093
10094         if (likely(unicast))
10095                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10096
10097         if (txb->encrypted && !priv->ieee->host_encrypt) {
10098                 switch (priv->ieee->sec.level) {
10099                 case SEC_LEVEL_3:
10100                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10101                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10102                         /* XXX: ACK flag must be set for CCMP even if it
10103                          * is a multicast/broadcast packet, because CCMP
10104                          * group communication encrypted by GTK is
10105                          * actually done by the AP. */
10106                         if (!unicast)
10107                                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10108
10109                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10110                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10111                         tfd->u.data.key_index = 0;
10112                         tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10113                         break;
10114                 case SEC_LEVEL_2:
10115                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10116                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10117                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10118                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10119                         tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10120                         break;
10121                 case SEC_LEVEL_1:
10122                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10123                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10124                         tfd->u.data.key_index = priv->ieee->tx_keyidx;
10125                         if (priv->ieee->sec.key_sizes[priv->ieee->tx_keyidx] <=
10126                             40)
10127                                 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10128                         else
10129                                 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10130                         break;
10131                 case SEC_LEVEL_0:
10132                         break;
10133                 default:
10134                         printk(KERN_ERR "Unknow security level %d\n",
10135                                priv->ieee->sec.level);
10136                         break;
10137                 }
10138         } else
10139                 /* No hardware encryption */
10140                 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10141
10142 #ifdef CONFIG_IPW2200_QOS
10143         if (fc & IEEE80211_STYPE_QOS_DATA)
10144                 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10145 #endif                          /* CONFIG_IPW2200_QOS */
10146
10147         /* payload */
10148         tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10149                                                  txb->nr_frags));
10150         IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10151                        txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10152         for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10153                 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10154                                i, le32_to_cpu(tfd->u.data.num_chunks),
10155                                txb->fragments[i]->len - hdr_len);
10156                 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10157                              i, tfd->u.data.num_chunks,
10158                              txb->fragments[i]->len - hdr_len);
10159                 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10160                            txb->fragments[i]->len - hdr_len);
10161
10162                 tfd->u.data.chunk_ptr[i] =
10163                     cpu_to_le32(pci_map_single
10164                                 (priv->pci_dev,
10165                                  txb->fragments[i]->data + hdr_len,
10166                                  txb->fragments[i]->len - hdr_len,
10167                                  PCI_DMA_TODEVICE));
10168                 tfd->u.data.chunk_len[i] =
10169                     cpu_to_le16(txb->fragments[i]->len - hdr_len);
10170         }
10171
10172         if (i != txb->nr_frags) {
10173                 struct sk_buff *skb;
10174                 u16 remaining_bytes = 0;
10175                 int j;
10176
10177                 for (j = i; j < txb->nr_frags; j++)
10178                         remaining_bytes += txb->fragments[j]->len - hdr_len;
10179
10180                 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10181                        remaining_bytes);
10182                 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10183                 if (skb != NULL) {
10184                         tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10185                         for (j = i; j < txb->nr_frags; j++) {
10186                                 int size = txb->fragments[j]->len - hdr_len;
10187
10188                                 printk(KERN_INFO "Adding frag %d %d...\n",
10189                                        j, size);
10190                                 memcpy(skb_put(skb, size),
10191                                        txb->fragments[j]->data + hdr_len, size);
10192                         }
10193                         dev_kfree_skb_any(txb->fragments[i]);
10194                         txb->fragments[i] = skb;
10195                         tfd->u.data.chunk_ptr[i] =
10196                             cpu_to_le32(pci_map_single
10197                                         (priv->pci_dev, skb->data,
10198                                          tfd->u.data.chunk_len[i],
10199                                          PCI_DMA_TODEVICE));
10200
10201                         tfd->u.data.num_chunks =
10202                             cpu_to_le32(le32_to_cpu(tfd->u.data.num_chunks) +
10203                                         1);
10204                 }
10205         }
10206
10207         /* kick DMA */
10208         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10209         ipw_write32(priv, q->reg_w, q->first_empty);
10210
10211         if (ipw_queue_space(q) < q->high_mark)
10212                 netif_stop_queue(priv->net_dev);
10213
10214         return NETDEV_TX_OK;
10215
10216       drop:
10217         IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10218         ieee80211_txb_free(txb);
10219         return NETDEV_TX_OK;
10220 }
10221
10222 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10223 {
10224         struct ipw_priv *priv = ieee80211_priv(dev);
10225 #ifdef CONFIG_IPW2200_QOS
10226         int tx_id = ipw_get_tx_queue_number(priv, pri);
10227         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10228 #else
10229         struct clx2_tx_queue *txq = &priv->txq[0];
10230 #endif                          /* CONFIG_IPW2200_QOS */
10231
10232         if (ipw_queue_space(&txq->q) < txq->q.high_mark)
10233                 return 1;
10234
10235         return 0;
10236 }
10237
10238 #ifdef CONFIG_IPW2200_PROMISCUOUS
10239 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10240                                       struct ieee80211_txb *txb)
10241 {
10242         struct ieee80211_rx_stats dummystats;
10243         struct ieee80211_hdr *hdr;
10244         u8 n;
10245         u16 filter = priv->prom_priv->filter;
10246         int hdr_only = 0;
10247
10248         if (filter & IPW_PROM_NO_TX)
10249                 return;
10250
10251         memset(&dummystats, 0, sizeof(dummystats));
10252
10253         /* Filtering of fragment chains is done agains the first fragment */
10254         hdr = (void *)txb->fragments[0]->data;
10255         if (ieee80211_is_management(le16_to_cpu(hdr->frame_ctl))) {
10256                 if (filter & IPW_PROM_NO_MGMT)
10257                         return;
10258                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10259                         hdr_only = 1;
10260         } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_ctl))) {
10261                 if (filter & IPW_PROM_NO_CTL)
10262                         return;
10263                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10264                         hdr_only = 1;
10265         } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_ctl))) {
10266                 if (filter & IPW_PROM_NO_DATA)
10267                         return;
10268                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10269                         hdr_only = 1;
10270         }
10271
10272         for(n=0; n<txb->nr_frags; ++n) {
10273                 struct sk_buff *src = txb->fragments[n];
10274                 struct sk_buff *dst;
10275                 struct ieee80211_radiotap_header *rt_hdr;
10276                 int len;
10277
10278                 if (hdr_only) {
10279                         hdr = (void *)src->data;
10280                         len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10281                 } else
10282                         len = src->len;
10283
10284                 dst = alloc_skb(
10285                         len + IEEE80211_RADIOTAP_HDRLEN, GFP_ATOMIC);
10286                 if (!dst) continue;
10287
10288                 rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));
10289
10290                 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10291                 rt_hdr->it_pad = 0;
10292                 rt_hdr->it_present = 0; /* after all, it's just an idea */
10293                 rt_hdr->it_present |=  (1 << IEEE80211_RADIOTAP_CHANNEL);
10294
10295                 *(u16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10296                         ieee80211chan2mhz(priv->channel));
10297                 if (priv->channel > 14)         /* 802.11a */
10298                         *(u16*)skb_put(dst, sizeof(u16)) =
10299                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10300                                              IEEE80211_CHAN_5GHZ);
10301                 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10302                         *(u16*)skb_put(dst, sizeof(u16)) =
10303                                 cpu_to_le16(IEEE80211_CHAN_CCK |
10304                                              IEEE80211_CHAN_2GHZ);
10305                 else            /* 802.11g */
10306                         *(u16*)skb_put(dst, sizeof(u16)) =
10307                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10308                                  IEEE80211_CHAN_2GHZ);
10309
10310                 rt_hdr->it_len = dst->len;
10311
10312                 memcpy(skb_put(dst, len), src->data, len);
10313
10314                 if (!ieee80211_rx(priv->prom_priv->ieee, dst, &dummystats))
10315                         dev_kfree_skb_any(dst);
10316         }
10317 }
10318 #endif
10319
10320 static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb,
10321                                    struct net_device *dev, int pri)
10322 {
10323         struct ipw_priv *priv = ieee80211_priv(dev);
10324         unsigned long flags;
10325         int ret;
10326
10327         IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10328         spin_lock_irqsave(&priv->lock, flags);
10329
10330         if (!(priv->status & STATUS_ASSOCIATED)) {
10331                 IPW_DEBUG_INFO("Tx attempt while not associated.\n");
10332                 priv->ieee->stats.tx_carrier_errors++;
10333                 netif_stop_queue(dev);
10334                 goto fail_unlock;
10335         }
10336
10337 #ifdef CONFIG_IPW2200_PROMISCUOUS
10338         if (rtap_iface && netif_running(priv->prom_net_dev))
10339                 ipw_handle_promiscuous_tx(priv, txb);
10340 #endif
10341
10342         ret = ipw_tx_skb(priv, txb, pri);
10343         if (ret == NETDEV_TX_OK)
10344                 __ipw_led_activity_on(priv);
10345         spin_unlock_irqrestore(&priv->lock, flags);
10346
10347         return ret;
10348
10349       fail_unlock:
10350         spin_unlock_irqrestore(&priv->lock, flags);
10351         return 1;
10352 }
10353
10354 static struct net_device_stats *ipw_net_get_stats(struct net_device *dev)
10355 {
10356         struct ipw_priv *priv = ieee80211_priv(dev);
10357
10358         priv->ieee->stats.tx_packets = priv->tx_packets;
10359         priv->ieee->stats.rx_packets = priv->rx_packets;
10360         return &priv->ieee->stats;
10361 }
10362
10363 static void ipw_net_set_multicast_list(struct net_device *dev)
10364 {
10365
10366 }
10367
10368 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10369 {
10370         struct ipw_priv *priv = ieee80211_priv(dev);
10371         struct sockaddr *addr = p;
10372         if (!is_valid_ether_addr(addr->sa_data))
10373                 return -EADDRNOTAVAIL;
10374         mutex_lock(&priv->mutex);
10375         priv->config |= CFG_CUSTOM_MAC;
10376         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10377         printk(KERN_INFO "%s: Setting MAC to " MAC_FMT "\n",
10378                priv->net_dev->name, MAC_ARG(priv->mac_addr));
10379         queue_work(priv->workqueue, &priv->adapter_restart);
10380         mutex_unlock(&priv->mutex);
10381         return 0;
10382 }
10383
10384 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10385                                     struct ethtool_drvinfo *info)
10386 {
10387         struct ipw_priv *p = ieee80211_priv(dev);
10388         char vers[64];
10389         char date[32];
10390         u32 len;
10391
10392         strcpy(info->driver, DRV_NAME);
10393         strcpy(info->version, DRV_VERSION);
10394
10395         len = sizeof(vers);
10396         ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10397         len = sizeof(date);
10398         ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10399
10400         snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10401                  vers, date);
10402         strcpy(info->bus_info, pci_name(p->pci_dev));
10403         info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
10404 }
10405
10406 static u32 ipw_ethtool_get_link(struct net_device *dev)
10407 {
10408         struct ipw_priv *priv = ieee80211_priv(dev);
10409         return (priv->status & STATUS_ASSOCIATED) != 0;
10410 }
10411
10412 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10413 {
10414         return IPW_EEPROM_IMAGE_SIZE;
10415 }
10416
10417 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10418                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10419 {
10420         struct ipw_priv *p = ieee80211_priv(dev);
10421
10422         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10423                 return -EINVAL;
10424         mutex_lock(&p->mutex);
10425         memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10426         mutex_unlock(&p->mutex);
10427         return 0;
10428 }
10429
10430 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10431                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10432 {
10433         struct ipw_priv *p = ieee80211_priv(dev);
10434         int i;
10435
10436         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10437                 return -EINVAL;
10438         mutex_lock(&p->mutex);
10439         memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10440         for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10441                 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10442         mutex_unlock(&p->mutex);
10443         return 0;
10444 }
10445
10446 static struct ethtool_ops ipw_ethtool_ops = {
10447         .get_link = ipw_ethtool_get_link,
10448         .get_drvinfo = ipw_ethtool_get_drvinfo,
10449         .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10450         .get_eeprom = ipw_ethtool_get_eeprom,
10451         .set_eeprom = ipw_ethtool_set_eeprom,
10452 };
10453
10454 static irqreturn_t ipw_isr(int irq, void *data, struct pt_regs *regs)
10455 {
10456         struct ipw_priv *priv = data;
10457         u32 inta, inta_mask;
10458
10459         if (!priv)
10460                 return IRQ_NONE;
10461
10462         spin_lock(&priv->irq_lock);
10463
10464         if (!(priv->status & STATUS_INT_ENABLED)) {
10465                 /* Shared IRQ */
10466                 goto none;
10467         }
10468
10469         inta = ipw_read32(priv, IPW_INTA_RW);
10470         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10471
10472         if (inta == 0xFFFFFFFF) {
10473                 /* Hardware disappeared */
10474                 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10475                 goto none;
10476         }
10477
10478         if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10479                 /* Shared interrupt */
10480                 goto none;
10481         }
10482
10483         /* tell the device to stop sending interrupts */
10484         __ipw_disable_interrupts(priv);
10485
10486         /* ack current interrupts */
10487         inta &= (IPW_INTA_MASK_ALL & inta_mask);
10488         ipw_write32(priv, IPW_INTA_RW, inta);
10489
10490         /* Cache INTA value for our tasklet */
10491         priv->isr_inta = inta;
10492
10493         tasklet_schedule(&priv->irq_tasklet);
10494
10495         spin_unlock(&priv->irq_lock);
10496
10497         return IRQ_HANDLED;
10498       none:
10499         spin_unlock(&priv->irq_lock);
10500         return IRQ_NONE;
10501 }
10502
10503 static void ipw_rf_kill(void *adapter)
10504 {
10505         struct ipw_priv *priv = adapter;
10506         unsigned long flags;
10507
10508         spin_lock_irqsave(&priv->lock, flags);
10509
10510         if (rf_kill_active(priv)) {
10511                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10512                 if (priv->workqueue)
10513                         queue_delayed_work(priv->workqueue,
10514                                            &priv->rf_kill, 2 * HZ);
10515                 goto exit_unlock;
10516         }
10517
10518         /* RF Kill is now disabled, so bring the device back up */
10519
10520         if (!(priv->status & STATUS_RF_KILL_MASK)) {
10521                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10522                                   "device\n");
10523
10524                 /* we can not do an adapter restart while inside an irq lock */
10525                 queue_work(priv->workqueue, &priv->adapter_restart);
10526         } else
10527                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
10528                                   "enabled\n");
10529
10530       exit_unlock:
10531         spin_unlock_irqrestore(&priv->lock, flags);
10532 }
10533
10534 static void ipw_bg_rf_kill(void *data)
10535 {
10536         struct ipw_priv *priv = data;
10537         mutex_lock(&priv->mutex);
10538         ipw_rf_kill(data);
10539         mutex_unlock(&priv->mutex);
10540 }
10541
10542 static void ipw_link_up(struct ipw_priv *priv)
10543 {
10544         priv->last_seq_num = -1;
10545         priv->last_frag_num = -1;
10546         priv->last_packet_time = 0;
10547
10548         netif_carrier_on(priv->net_dev);
10549         if (netif_queue_stopped(priv->net_dev)) {
10550                 IPW_DEBUG_NOTIF("waking queue\n");
10551                 netif_wake_queue(priv->net_dev);
10552         } else {
10553                 IPW_DEBUG_NOTIF("starting queue\n");
10554                 netif_start_queue(priv->net_dev);
10555         }
10556
10557         cancel_delayed_work(&priv->request_scan);
10558         ipw_reset_stats(priv);
10559         /* Ensure the rate is updated immediately */
10560         priv->last_rate = ipw_get_current_rate(priv);
10561         ipw_gather_stats(priv);
10562         ipw_led_link_up(priv);
10563         notify_wx_assoc_event(priv);
10564
10565         if (priv->config & CFG_BACKGROUND_SCAN)
10566                 queue_delayed_work(priv->workqueue, &priv->request_scan, HZ);
10567 }
10568
10569 static void ipw_bg_link_up(void *data)
10570 {
10571         struct ipw_priv *priv = data;
10572         mutex_lock(&priv->mutex);
10573         ipw_link_up(data);
10574         mutex_unlock(&priv->mutex);
10575 }
10576
10577 static void ipw_link_down(struct ipw_priv *priv)
10578 {
10579         ipw_led_link_down(priv);
10580         netif_carrier_off(priv->net_dev);
10581         netif_stop_queue(priv->net_dev);
10582         notify_wx_assoc_event(priv);
10583
10584         /* Cancel any queued work ... */
10585         cancel_delayed_work(&priv->request_scan);
10586         cancel_delayed_work(&priv->adhoc_check);
10587         cancel_delayed_work(&priv->gather_stats);
10588
10589         ipw_reset_stats(priv);
10590
10591         if (!(priv->status & STATUS_EXIT_PENDING)) {
10592                 /* Queue up another scan... */
10593                 queue_work(priv->workqueue, &priv->request_scan);
10594         }
10595 }
10596
10597 static void ipw_bg_link_down(void *data)
10598 {
10599         struct ipw_priv *priv = data;
10600         mutex_lock(&priv->mutex);
10601         ipw_link_down(data);
10602         mutex_unlock(&priv->mutex);
10603 }
10604
10605 static int ipw_setup_deferred_work(struct ipw_priv *priv)
10606 {
10607         int ret = 0;
10608
10609         priv->workqueue = create_workqueue(DRV_NAME);
10610         init_waitqueue_head(&priv->wait_command_queue);
10611         init_waitqueue_head(&priv->wait_state);
10612
10613         INIT_WORK(&priv->adhoc_check, ipw_bg_adhoc_check, priv);
10614         INIT_WORK(&priv->associate, ipw_bg_associate, priv);
10615         INIT_WORK(&priv->disassociate, ipw_bg_disassociate, priv);
10616         INIT_WORK(&priv->system_config, ipw_system_config, priv);
10617         INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish, priv);
10618         INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart, priv);
10619         INIT_WORK(&priv->rf_kill, ipw_bg_rf_kill, priv);
10620         INIT_WORK(&priv->up, (void (*)(void *))ipw_bg_up, priv);
10621         INIT_WORK(&priv->down, (void (*)(void *))ipw_bg_down, priv);
10622         INIT_WORK(&priv->request_scan,
10623                   (void (*)(void *))ipw_request_scan, priv);
10624         INIT_WORK(&priv->gather_stats,
10625                   (void (*)(void *))ipw_bg_gather_stats, priv);
10626         INIT_WORK(&priv->abort_scan, (void (*)(void *))ipw_bg_abort_scan, priv);
10627         INIT_WORK(&priv->roam, ipw_bg_roam, priv);
10628         INIT_WORK(&priv->scan_check, ipw_bg_scan_check, priv);
10629         INIT_WORK(&priv->link_up, (void (*)(void *))ipw_bg_link_up, priv);
10630         INIT_WORK(&priv->link_down, (void (*)(void *))ipw_bg_link_down, priv);
10631         INIT_WORK(&priv->led_link_on, (void (*)(void *))ipw_bg_led_link_on,
10632                   priv);
10633         INIT_WORK(&priv->led_link_off, (void (*)(void *))ipw_bg_led_link_off,
10634                   priv);
10635         INIT_WORK(&priv->led_act_off, (void (*)(void *))ipw_bg_led_activity_off,
10636                   priv);
10637         INIT_WORK(&priv->merge_networks,
10638                   (void (*)(void *))ipw_merge_adhoc_network, priv);
10639
10640 #ifdef CONFIG_IPW2200_QOS
10641         INIT_WORK(&priv->qos_activate, (void (*)(void *))ipw_bg_qos_activate,
10642                   priv);
10643 #endif                          /* CONFIG_IPW2200_QOS */
10644
10645         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10646                      ipw_irq_tasklet, (unsigned long)priv);
10647
10648         return ret;
10649 }
10650
10651 static void shim__set_security(struct net_device *dev,
10652                                struct ieee80211_security *sec)
10653 {
10654         struct ipw_priv *priv = ieee80211_priv(dev);
10655         int i;
10656         for (i = 0; i < 4; i++) {
10657                 if (sec->flags & (1 << i)) {
10658                         priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10659                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10660                         if (sec->key_sizes[i] == 0)
10661                                 priv->ieee->sec.flags &= ~(1 << i);
10662                         else {
10663                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10664                                        sec->key_sizes[i]);
10665                                 priv->ieee->sec.flags |= (1 << i);
10666                         }
10667                         priv->status |= STATUS_SECURITY_UPDATED;
10668                 } else if (sec->level != SEC_LEVEL_1)
10669                         priv->ieee->sec.flags &= ~(1 << i);
10670         }
10671
10672         if (sec->flags & SEC_ACTIVE_KEY) {
10673                 if (sec->active_key <= 3) {
10674                         priv->ieee->sec.active_key = sec->active_key;
10675                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10676                 } else
10677                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10678                 priv->status |= STATUS_SECURITY_UPDATED;
10679         } else
10680                 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10681
10682         if ((sec->flags & SEC_AUTH_MODE) &&
10683             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10684                 priv->ieee->sec.auth_mode = sec->auth_mode;
10685                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10686                 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10687                         priv->capability |= CAP_SHARED_KEY;
10688                 else
10689                         priv->capability &= ~CAP_SHARED_KEY;
10690                 priv->status |= STATUS_SECURITY_UPDATED;
10691         }
10692
10693         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10694                 priv->ieee->sec.flags |= SEC_ENABLED;
10695                 priv->ieee->sec.enabled = sec->enabled;
10696                 priv->status |= STATUS_SECURITY_UPDATED;
10697                 if (sec->enabled)
10698                         priv->capability |= CAP_PRIVACY_ON;
10699                 else
10700                         priv->capability &= ~CAP_PRIVACY_ON;
10701         }
10702
10703         if (sec->flags & SEC_ENCRYPT)
10704                 priv->ieee->sec.encrypt = sec->encrypt;
10705
10706         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10707                 priv->ieee->sec.level = sec->level;
10708                 priv->ieee->sec.flags |= SEC_LEVEL;
10709                 priv->status |= STATUS_SECURITY_UPDATED;
10710         }
10711
10712         if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10713                 ipw_set_hwcrypto_keys(priv);
10714
10715         /* To match current functionality of ipw2100 (which works well w/
10716          * various supplicants, we don't force a disassociate if the
10717          * privacy capability changes ... */
10718 #if 0
10719         if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10720             (((priv->assoc_request.capability &
10721                WLAN_CAPABILITY_PRIVACY) && !sec->enabled) ||
10722              (!(priv->assoc_request.capability &
10723                 WLAN_CAPABILITY_PRIVACY) && sec->enabled))) {
10724                 IPW_DEBUG_ASSOC("Disassociating due to capability "
10725                                 "change.\n");
10726                 ipw_disassociate(priv);
10727         }
10728 #endif
10729 }
10730
10731 static int init_supported_rates(struct ipw_priv *priv,
10732                                 struct ipw_supported_rates *rates)
10733 {
10734         /* TODO: Mask out rates based on priv->rates_mask */
10735
10736         memset(rates, 0, sizeof(*rates));
10737         /* configure supported rates */
10738         switch (priv->ieee->freq_band) {
10739         case IEEE80211_52GHZ_BAND:
10740                 rates->ieee_mode = IPW_A_MODE;
10741                 rates->purpose = IPW_RATE_CAPABILITIES;
10742                 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10743                                         IEEE80211_OFDM_DEFAULT_RATES_MASK);
10744                 break;
10745
10746         default:                /* Mixed or 2.4Ghz */
10747                 rates->ieee_mode = IPW_G_MODE;
10748                 rates->purpose = IPW_RATE_CAPABILITIES;
10749                 ipw_add_cck_scan_rates(rates, IEEE80211_CCK_MODULATION,
10750                                        IEEE80211_CCK_DEFAULT_RATES_MASK);
10751                 if (priv->ieee->modulation & IEEE80211_OFDM_MODULATION) {
10752                         ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10753                                                 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10754                 }
10755                 break;
10756         }
10757
10758         return 0;
10759 }
10760
10761 static int ipw_config(struct ipw_priv *priv)
10762 {
10763         /* This is only called from ipw_up, which resets/reloads the firmware
10764            so, we don't need to first disable the card before we configure
10765            it */
10766         if (ipw_set_tx_power(priv))
10767                 goto error;
10768
10769         /* initialize adapter address */
10770         if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10771                 goto error;
10772
10773         /* set basic system config settings */
10774         init_sys_config(&priv->sys_config);
10775
10776         /* Support Bluetooth if we have BT h/w on board, and user wants to.
10777          * Does not support BT priority yet (don't abort or defer our Tx) */
10778         if (bt_coexist) {
10779                 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10780
10781                 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10782                         priv->sys_config.bt_coexistence
10783                             |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10784                 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10785                         priv->sys_config.bt_coexistence
10786                             |= CFG_BT_COEXISTENCE_OOB;
10787         }
10788
10789 #ifdef CONFIG_IPW2200_PROMISCUOUS
10790         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10791                 priv->sys_config.accept_all_data_frames = 1;
10792                 priv->sys_config.accept_non_directed_frames = 1;
10793                 priv->sys_config.accept_all_mgmt_bcpr = 1;
10794                 priv->sys_config.accept_all_mgmt_frames = 1;
10795         }
10796 #endif
10797
10798         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10799                 priv->sys_config.answer_broadcast_ssid_probe = 1;
10800         else
10801                 priv->sys_config.answer_broadcast_ssid_probe = 0;
10802
10803         if (ipw_send_system_config(priv))
10804                 goto error;
10805
10806         init_supported_rates(priv, &priv->rates);
10807         if (ipw_send_supported_rates(priv, &priv->rates))
10808                 goto error;
10809
10810         /* Set request-to-send threshold */
10811         if (priv->rts_threshold) {
10812                 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10813                         goto error;
10814         }
10815 #ifdef CONFIG_IPW2200_QOS
10816         IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10817         ipw_qos_activate(priv, NULL);
10818 #endif                          /* CONFIG_IPW2200_QOS */
10819
10820         if (ipw_set_random_seed(priv))
10821                 goto error;
10822
10823         /* final state transition to the RUN state */
10824         if (ipw_send_host_complete(priv))
10825                 goto error;
10826
10827         priv->status |= STATUS_INIT;
10828
10829         ipw_led_init(priv);
10830         ipw_led_radio_on(priv);
10831         priv->notif_missed_beacons = 0;
10832
10833         /* Set hardware WEP key if it is configured. */
10834         if ((priv->capability & CAP_PRIVACY_ON) &&
10835             (priv->ieee->sec.level == SEC_LEVEL_1) &&
10836             !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10837                 ipw_set_hwcrypto_keys(priv);
10838
10839         return 0;
10840
10841       error:
10842         return -EIO;
10843 }
10844
10845 /*
10846  * NOTE:
10847  *
10848  * These tables have been tested in conjunction with the
10849  * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10850  *
10851  * Altering this values, using it on other hardware, or in geographies
10852  * not intended for resale of the above mentioned Intel adapters has
10853  * not been tested.
10854  *
10855  * Remember to update the table in README.ipw2200 when changing this
10856  * table.
10857  *
10858  */
10859 static const struct ieee80211_geo ipw_geos[] = {
10860         {                       /* Restricted */
10861          "---",
10862          .bg_channels = 11,
10863          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10864                 {2427, 4}, {2432, 5}, {2437, 6},
10865                 {2442, 7}, {2447, 8}, {2452, 9},
10866                 {2457, 10}, {2462, 11}},
10867          },
10868
10869         {                       /* Custom US/Canada */
10870          "ZZF",
10871          .bg_channels = 11,
10872          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10873                 {2427, 4}, {2432, 5}, {2437, 6},
10874                 {2442, 7}, {2447, 8}, {2452, 9},
10875                 {2457, 10}, {2462, 11}},
10876          .a_channels = 8,
10877          .a = {{5180, 36},
10878                {5200, 40},
10879                {5220, 44},
10880                {5240, 48},
10881                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10882                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10883                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10884                {5320, 64, IEEE80211_CH_PASSIVE_ONLY}},
10885          },
10886
10887         {                       /* Rest of World */
10888          "ZZD",
10889          .bg_channels = 13,
10890          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10891                 {2427, 4}, {2432, 5}, {2437, 6},
10892                 {2442, 7}, {2447, 8}, {2452, 9},
10893                 {2457, 10}, {2462, 11}, {2467, 12},
10894                 {2472, 13}},
10895          },
10896
10897         {                       /* Custom USA & Europe & High */
10898          "ZZA",
10899          .bg_channels = 11,
10900          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10901                 {2427, 4}, {2432, 5}, {2437, 6},
10902                 {2442, 7}, {2447, 8}, {2452, 9},
10903                 {2457, 10}, {2462, 11}},
10904          .a_channels = 13,
10905          .a = {{5180, 36},
10906                {5200, 40},
10907                {5220, 44},
10908                {5240, 48},
10909                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10910                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10911                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10912                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10913                {5745, 149},
10914                {5765, 153},
10915                {5785, 157},
10916                {5805, 161},
10917                {5825, 165}},
10918          },
10919
10920         {                       /* Custom NA & Europe */
10921          "ZZB",
10922          .bg_channels = 11,
10923          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10924                 {2427, 4}, {2432, 5}, {2437, 6},
10925                 {2442, 7}, {2447, 8}, {2452, 9},
10926                 {2457, 10}, {2462, 11}},
10927          .a_channels = 13,
10928          .a = {{5180, 36},
10929                {5200, 40},
10930                {5220, 44},
10931                {5240, 48},
10932                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10933                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10934                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10935                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10936                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
10937                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
10938                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
10939                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
10940                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
10941          },
10942
10943         {                       /* Custom Japan */
10944          "ZZC",
10945          .bg_channels = 11,
10946          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10947                 {2427, 4}, {2432, 5}, {2437, 6},
10948                 {2442, 7}, {2447, 8}, {2452, 9},
10949                 {2457, 10}, {2462, 11}},
10950          .a_channels = 4,
10951          .a = {{5170, 34}, {5190, 38},
10952                {5210, 42}, {5230, 46}},
10953          },
10954
10955         {                       /* Custom */
10956          "ZZM",
10957          .bg_channels = 11,
10958          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10959                 {2427, 4}, {2432, 5}, {2437, 6},
10960                 {2442, 7}, {2447, 8}, {2452, 9},
10961                 {2457, 10}, {2462, 11}},
10962          },
10963
10964         {                       /* Europe */
10965          "ZZE",
10966          .bg_channels = 13,
10967          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10968                 {2427, 4}, {2432, 5}, {2437, 6},
10969                 {2442, 7}, {2447, 8}, {2452, 9},
10970                 {2457, 10}, {2462, 11}, {2467, 12},
10971                 {2472, 13}},
10972          .a_channels = 19,
10973          .a = {{5180, 36},
10974                {5200, 40},
10975                {5220, 44},
10976                {5240, 48},
10977                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10978                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10979                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10980                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10981                {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
10982                {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
10983                {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
10984                {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
10985                {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
10986                {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
10987                {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
10988                {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
10989                {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
10990                {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
10991                {5700, 140, IEEE80211_CH_PASSIVE_ONLY}},
10992          },
10993
10994         {                       /* Custom Japan */
10995          "ZZJ",
10996          .bg_channels = 14,
10997          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10998                 {2427, 4}, {2432, 5}, {2437, 6},
10999                 {2442, 7}, {2447, 8}, {2452, 9},
11000                 {2457, 10}, {2462, 11}, {2467, 12},
11001                 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY}},
11002          .a_channels = 4,
11003          .a = {{5170, 34}, {5190, 38},
11004                {5210, 42}, {5230, 46}},
11005          },
11006
11007         {                       /* Rest of World */
11008          "ZZR",
11009          .bg_channels = 14,
11010          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11011                 {2427, 4}, {2432, 5}, {2437, 6},
11012                 {2442, 7}, {2447, 8}, {2452, 9},
11013                 {2457, 10}, {2462, 11}, {2467, 12},
11014                 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY |
11015                              IEEE80211_CH_PASSIVE_ONLY}},
11016          },
11017
11018         {                       /* High Band */
11019          "ZZH",
11020          .bg_channels = 13,
11021          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11022                 {2427, 4}, {2432, 5}, {2437, 6},
11023                 {2442, 7}, {2447, 8}, {2452, 9},
11024                 {2457, 10}, {2462, 11},
11025                 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11026                 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11027          .a_channels = 4,
11028          .a = {{5745, 149}, {5765, 153},
11029                {5785, 157}, {5805, 161}},
11030          },
11031
11032         {                       /* Custom Europe */
11033          "ZZG",
11034          .bg_channels = 13,
11035          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11036                 {2427, 4}, {2432, 5}, {2437, 6},
11037                 {2442, 7}, {2447, 8}, {2452, 9},
11038                 {2457, 10}, {2462, 11},
11039                 {2467, 12}, {2472, 13}},
11040          .a_channels = 4,
11041          .a = {{5180, 36}, {5200, 40},
11042                {5220, 44}, {5240, 48}},
11043          },
11044
11045         {                       /* Europe */
11046          "ZZK",
11047          .bg_channels = 13,
11048          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11049                 {2427, 4}, {2432, 5}, {2437, 6},
11050                 {2442, 7}, {2447, 8}, {2452, 9},
11051                 {2457, 10}, {2462, 11},
11052                 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11053                 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11054          .a_channels = 24,
11055          .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11056                {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11057                {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11058                {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11059                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11060                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11061                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11062                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11063                {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11064                {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11065                {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11066                {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11067                {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11068                {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11069                {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11070                {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11071                {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11072                {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11073                {5700, 140, IEEE80211_CH_PASSIVE_ONLY},
11074                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11075                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11076                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11077                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11078                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11079          },
11080
11081         {                       /* Europe */
11082          "ZZL",
11083          .bg_channels = 11,
11084          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11085                 {2427, 4}, {2432, 5}, {2437, 6},
11086                 {2442, 7}, {2447, 8}, {2452, 9},
11087                 {2457, 10}, {2462, 11}},
11088          .a_channels = 13,
11089          .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11090                {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11091                {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11092                {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11093                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11094                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11095                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11096                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11097                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11098                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11099                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11100                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11101                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11102          }
11103 };
11104
11105 #define MAX_HW_RESTARTS 5
11106 static int ipw_up(struct ipw_priv *priv)
11107 {
11108         int rc, i, j;
11109
11110         if (priv->status & STATUS_EXIT_PENDING)
11111                 return -EIO;
11112
11113         if (cmdlog && !priv->cmdlog) {
11114                 priv->cmdlog = kmalloc(sizeof(*priv->cmdlog) * cmdlog,
11115                                        GFP_KERNEL);
11116                 if (priv->cmdlog == NULL) {
11117                         IPW_ERROR("Error allocating %d command log entries.\n",
11118                                   cmdlog);
11119                         return -ENOMEM;
11120                 } else {
11121                         memset(priv->cmdlog, 0, sizeof(*priv->cmdlog) * cmdlog);
11122                         priv->cmdlog_len = cmdlog;
11123                 }
11124         }
11125
11126         for (i = 0; i < MAX_HW_RESTARTS; i++) {
11127                 /* Load the microcode, firmware, and eeprom.
11128                  * Also start the clocks. */
11129                 rc = ipw_load(priv);
11130                 if (rc) {
11131                         IPW_ERROR("Unable to load firmware: %d\n", rc);
11132                         return rc;
11133                 }
11134
11135                 ipw_init_ordinals(priv);
11136                 if (!(priv->config & CFG_CUSTOM_MAC))
11137                         eeprom_parse_mac(priv, priv->mac_addr);
11138                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11139
11140                 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11141                         if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11142                                     ipw_geos[j].name, 3))
11143                                 break;
11144                 }
11145                 if (j == ARRAY_SIZE(ipw_geos)) {
11146                         IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11147                                     priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11148                                     priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11149                                     priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11150                         j = 0;
11151                 }
11152                 if (ieee80211_set_geo(priv->ieee, &ipw_geos[j])) {
11153                         IPW_WARNING("Could not set geography.");
11154                         return 0;
11155                 }
11156
11157                 if (priv->status & STATUS_RF_KILL_SW) {
11158                         IPW_WARNING("Radio disabled by module parameter.\n");
11159                         return 0;
11160                 } else if (rf_kill_active(priv)) {
11161                         IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11162                                     "Kill switch must be turned off for "
11163                                     "wireless networking to work.\n");
11164                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
11165                                            2 * HZ);
11166                         return 0;
11167                 }
11168
11169                 rc = ipw_config(priv);
11170                 if (!rc) {
11171                         IPW_DEBUG_INFO("Configured device on count %i\n", i);
11172
11173                         /* If configure to try and auto-associate, kick
11174                          * off a scan. */
11175                         queue_work(priv->workqueue, &priv->request_scan);
11176
11177                         return 0;
11178                 }
11179
11180                 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11181                 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11182                                i, MAX_HW_RESTARTS);
11183
11184                 /* We had an error bringing up the hardware, so take it
11185                  * all the way back down so we can try again */
11186                 ipw_down(priv);
11187         }
11188
11189         /* tried to restart and config the device for as long as our
11190          * patience could withstand */
11191         IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11192
11193         return -EIO;
11194 }
11195
11196 static void ipw_bg_up(void *data)
11197 {
11198         struct ipw_priv *priv = data;
11199         mutex_lock(&priv->mutex);
11200         ipw_up(data);
11201         mutex_unlock(&priv->mutex);
11202 }
11203
11204 static void ipw_deinit(struct ipw_priv *priv)
11205 {
11206         int i;
11207
11208         if (priv->status & STATUS_SCANNING) {
11209                 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11210                 ipw_abort_scan(priv);
11211         }
11212
11213         if (priv->status & STATUS_ASSOCIATED) {
11214                 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11215                 ipw_disassociate(priv);
11216         }
11217
11218         ipw_led_shutdown(priv);
11219
11220         /* Wait up to 1s for status to change to not scanning and not
11221          * associated (disassociation can take a while for a ful 802.11
11222          * exchange */
11223         for (i = 1000; i && (priv->status &
11224                              (STATUS_DISASSOCIATING |
11225                               STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11226                 udelay(10);
11227
11228         if (priv->status & (STATUS_DISASSOCIATING |
11229                             STATUS_ASSOCIATED | STATUS_SCANNING))
11230                 IPW_DEBUG_INFO("Still associated or scanning...\n");
11231         else
11232                 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11233
11234         /* Attempt to disable the card */
11235         ipw_send_card_disable(priv, 0);
11236
11237         priv->status &= ~STATUS_INIT;
11238 }
11239
11240 static void ipw_down(struct ipw_priv *priv)
11241 {
11242         int exit_pending = priv->status & STATUS_EXIT_PENDING;
11243
11244         priv->status |= STATUS_EXIT_PENDING;
11245
11246         if (ipw_is_init(priv))
11247                 ipw_deinit(priv);
11248
11249         /* Wipe out the EXIT_PENDING status bit if we are not actually
11250          * exiting the module */
11251         if (!exit_pending)
11252                 priv->status &= ~STATUS_EXIT_PENDING;
11253
11254         /* tell the device to stop sending interrupts */
11255         ipw_disable_interrupts(priv);
11256
11257         /* Clear all bits but the RF Kill */
11258         priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11259         netif_carrier_off(priv->net_dev);
11260         netif_stop_queue(priv->net_dev);
11261
11262         ipw_stop_nic(priv);
11263
11264         ipw_led_radio_off(priv);
11265 }
11266
11267 static void ipw_bg_down(void *data)
11268 {
11269         struct ipw_priv *priv = data;
11270         mutex_lock(&priv->mutex);
11271         ipw_down(data);
11272         mutex_unlock(&priv->mutex);
11273 }
11274
11275 /* Called by register_netdev() */
11276 static int ipw_net_init(struct net_device *dev)
11277 {
11278         struct ipw_priv *priv = ieee80211_priv(dev);
11279         mutex_lock(&priv->mutex);
11280
11281         if (ipw_up(priv)) {
11282                 mutex_unlock(&priv->mutex);
11283                 return -EIO;
11284         }
11285
11286         mutex_unlock(&priv->mutex);
11287         return 0;
11288 }
11289
11290 /* PCI driver stuff */
11291 static struct pci_device_id card_ids[] = {
11292         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11293         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11294         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11295         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11296         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11297         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11298         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11299         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11300         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11301         {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11302         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11303         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11304         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11305         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11306         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11307         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11308         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11309         {PCI_VENDOR_ID_INTEL, 0x104f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11310         {PCI_VENDOR_ID_INTEL, 0x4220, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11311         {PCI_VENDOR_ID_INTEL, 0x4221, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11312         {PCI_VENDOR_ID_INTEL, 0x4223, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11313         {PCI_VENDOR_ID_INTEL, 0x4224, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11314
11315         /* required last entry */
11316         {0,}
11317 };
11318
11319 MODULE_DEVICE_TABLE(pci, card_ids);
11320
11321 static struct attribute *ipw_sysfs_entries[] = {
11322         &dev_attr_rf_kill.attr,
11323         &dev_attr_direct_dword.attr,
11324         &dev_attr_indirect_byte.attr,
11325         &dev_attr_indirect_dword.attr,
11326         &dev_attr_mem_gpio_reg.attr,
11327         &dev_attr_command_event_reg.attr,
11328         &dev_attr_nic_type.attr,
11329         &dev_attr_status.attr,
11330         &dev_attr_cfg.attr,
11331         &dev_attr_error.attr,
11332         &dev_attr_event_log.attr,
11333         &dev_attr_cmd_log.attr,
11334         &dev_attr_eeprom_delay.attr,
11335         &dev_attr_ucode_version.attr,
11336         &dev_attr_rtc.attr,
11337         &dev_attr_scan_age.attr,
11338         &dev_attr_led.attr,
11339         &dev_attr_speed_scan.attr,
11340         &dev_attr_net_stats.attr,
11341 #ifdef CONFIG_IPW2200_PROMISCUOUS
11342         &dev_attr_rtap_iface.attr,
11343         &dev_attr_rtap_filter.attr,
11344 #endif
11345         NULL
11346 };
11347
11348 static struct attribute_group ipw_attribute_group = {
11349         .name = NULL,           /* put in device directory */
11350         .attrs = ipw_sysfs_entries,
11351 };
11352
11353 #ifdef CONFIG_IPW2200_PROMISCUOUS
11354 static int ipw_prom_open(struct net_device *dev)
11355 {
11356         struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11357         struct ipw_priv *priv = prom_priv->priv;
11358
11359         IPW_DEBUG_INFO("prom dev->open\n");
11360         netif_carrier_off(dev);
11361         netif_stop_queue(dev);
11362
11363         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11364                 priv->sys_config.accept_all_data_frames = 1;
11365                 priv->sys_config.accept_non_directed_frames = 1;
11366                 priv->sys_config.accept_all_mgmt_bcpr = 1;
11367                 priv->sys_config.accept_all_mgmt_frames = 1;
11368
11369                 ipw_send_system_config(priv);
11370         }
11371
11372         return 0;
11373 }
11374
11375 static int ipw_prom_stop(struct net_device *dev)
11376 {
11377         struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11378         struct ipw_priv *priv = prom_priv->priv;
11379
11380         IPW_DEBUG_INFO("prom dev->stop\n");
11381
11382         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11383                 priv->sys_config.accept_all_data_frames = 0;
11384                 priv->sys_config.accept_non_directed_frames = 0;
11385                 priv->sys_config.accept_all_mgmt_bcpr = 0;
11386                 priv->sys_config.accept_all_mgmt_frames = 0;
11387
11388                 ipw_send_system_config(priv);
11389         }
11390
11391         return 0;
11392 }
11393
11394 static int ipw_prom_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
11395 {
11396         IPW_DEBUG_INFO("prom dev->xmit\n");
11397         netif_stop_queue(dev);
11398         return -EOPNOTSUPP;
11399 }
11400
11401 static struct net_device_stats *ipw_prom_get_stats(struct net_device *dev)
11402 {
11403         struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11404         return &prom_priv->ieee->stats;
11405 }
11406
11407 static int ipw_prom_alloc(struct ipw_priv *priv)
11408 {
11409         int rc = 0;
11410
11411         if (priv->prom_net_dev)
11412                 return -EPERM;
11413
11414         priv->prom_net_dev = alloc_ieee80211(sizeof(struct ipw_prom_priv));
11415         if (priv->prom_net_dev == NULL)
11416                 return -ENOMEM;
11417
11418         priv->prom_priv = ieee80211_priv(priv->prom_net_dev);
11419         priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11420         priv->prom_priv->priv = priv;
11421
11422         strcpy(priv->prom_net_dev->name, "rtap%d");
11423
11424         priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11425         priv->prom_net_dev->open = ipw_prom_open;
11426         priv->prom_net_dev->stop = ipw_prom_stop;
11427         priv->prom_net_dev->get_stats = ipw_prom_get_stats;
11428         priv->prom_net_dev->hard_start_xmit = ipw_prom_hard_start_xmit;
11429
11430         priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11431
11432         rc = register_netdev(priv->prom_net_dev);
11433         if (rc) {
11434                 free_ieee80211(priv->prom_net_dev);
11435                 priv->prom_net_dev = NULL;
11436                 return rc;
11437         }
11438
11439         return 0;
11440 }
11441
11442 static void ipw_prom_free(struct ipw_priv *priv)
11443 {
11444         if (!priv->prom_net_dev)
11445                 return;
11446
11447         unregister_netdev(priv->prom_net_dev);
11448         free_ieee80211(priv->prom_net_dev);
11449
11450         priv->prom_net_dev = NULL;
11451 }
11452
11453 #endif
11454
11455
11456 static int ipw_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
11457 {
11458         int err = 0;
11459         struct net_device *net_dev;
11460         void __iomem *base;
11461         u32 length, val;
11462         struct ipw_priv *priv;
11463         int i;
11464
11465         net_dev = alloc_ieee80211(sizeof(struct ipw_priv));
11466         if (net_dev == NULL) {
11467                 err = -ENOMEM;
11468                 goto out;
11469         }
11470
11471         priv = ieee80211_priv(net_dev);
11472         priv->ieee = netdev_priv(net_dev);
11473
11474         priv->net_dev = net_dev;
11475         priv->pci_dev = pdev;
11476         ipw_debug_level = debug;
11477         spin_lock_init(&priv->irq_lock);
11478         spin_lock_init(&priv->lock);
11479         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11480                 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11481
11482         mutex_init(&priv->mutex);
11483         if (pci_enable_device(pdev)) {
11484                 err = -ENODEV;
11485                 goto out_free_ieee80211;
11486         }
11487
11488         pci_set_master(pdev);
11489
11490         err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
11491         if (!err)
11492                 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
11493         if (err) {
11494                 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11495                 goto out_pci_disable_device;
11496         }
11497
11498         pci_set_drvdata(pdev, priv);
11499
11500         err = pci_request_regions(pdev, DRV_NAME);
11501         if (err)
11502                 goto out_pci_disable_device;
11503
11504         /* We disable the RETRY_TIMEOUT register (0x41) to keep
11505          * PCI Tx retries from interfering with C3 CPU state */
11506         pci_read_config_dword(pdev, 0x40, &val);
11507         if ((val & 0x0000ff00) != 0)
11508                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11509
11510         length = pci_resource_len(pdev, 0);
11511         priv->hw_len = length;
11512
11513         base = ioremap_nocache(pci_resource_start(pdev, 0), length);
11514         if (!base) {
11515                 err = -ENODEV;
11516                 goto out_pci_release_regions;
11517         }
11518
11519         priv->hw_base = base;
11520         IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11521         IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11522
11523         err = ipw_setup_deferred_work(priv);
11524         if (err) {
11525                 IPW_ERROR("Unable to setup deferred work\n");
11526                 goto out_iounmap;
11527         }
11528
11529         ipw_sw_reset(priv, 1);
11530
11531         err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11532         if (err) {
11533                 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11534                 goto out_destroy_workqueue;
11535         }
11536
11537         SET_MODULE_OWNER(net_dev);
11538         SET_NETDEV_DEV(net_dev, &pdev->dev);
11539
11540         mutex_lock(&priv->mutex);
11541
11542         priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11543         priv->ieee->set_security = shim__set_security;
11544         priv->ieee->is_queue_full = ipw_net_is_queue_full;
11545
11546 #ifdef CONFIG_IPW2200_QOS
11547         priv->ieee->is_qos_active = ipw_is_qos_active;
11548         priv->ieee->handle_probe_response = ipw_handle_beacon;
11549         priv->ieee->handle_beacon = ipw_handle_probe_response;
11550         priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11551 #endif                          /* CONFIG_IPW2200_QOS */
11552
11553         priv->ieee->perfect_rssi = -20;
11554         priv->ieee->worst_rssi = -85;
11555
11556         net_dev->open = ipw_net_open;
11557         net_dev->stop = ipw_net_stop;
11558         net_dev->init = ipw_net_init;
11559         net_dev->get_stats = ipw_net_get_stats;
11560         net_dev->set_multicast_list = ipw_net_set_multicast_list;
11561         net_dev->set_mac_address = ipw_net_set_mac_address;
11562         priv->wireless_data.spy_data = &priv->ieee->spy_data;
11563         net_dev->wireless_data = &priv->wireless_data;
11564         net_dev->wireless_handlers = &ipw_wx_handler_def;
11565         net_dev->ethtool_ops = &ipw_ethtool_ops;
11566         net_dev->irq = pdev->irq;
11567         net_dev->base_addr = (unsigned long)priv->hw_base;
11568         net_dev->mem_start = pci_resource_start(pdev, 0);
11569         net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
11570
11571         err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11572         if (err) {
11573                 IPW_ERROR("failed to create sysfs device attributes\n");
11574                 mutex_unlock(&priv->mutex);
11575                 goto out_release_irq;
11576         }
11577
11578         mutex_unlock(&priv->mutex);
11579         err = register_netdev(net_dev);
11580         if (err) {
11581                 IPW_ERROR("failed to register network device\n");
11582                 goto out_remove_sysfs;
11583         }
11584
11585 #ifdef CONFIG_IPW2200_PROMISCUOUS
11586         if (rtap_iface) {
11587                 err = ipw_prom_alloc(priv);
11588                 if (err) {
11589                         IPW_ERROR("Failed to register promiscuous network "
11590                                   "device (error %d).\n", err);
11591                         unregister_netdev(priv->net_dev);
11592                         goto out_remove_sysfs;
11593                 }
11594         }
11595 #endif
11596
11597         printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11598                "channels, %d 802.11a channels)\n",
11599                priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11600                priv->ieee->geo.a_channels);
11601
11602         return 0;
11603
11604       out_remove_sysfs:
11605         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11606       out_release_irq:
11607         free_irq(pdev->irq, priv);
11608       out_destroy_workqueue:
11609         destroy_workqueue(priv->workqueue);
11610         priv->workqueue = NULL;
11611       out_iounmap:
11612         iounmap(priv->hw_base);
11613       out_pci_release_regions:
11614         pci_release_regions(pdev);
11615       out_pci_disable_device:
11616         pci_disable_device(pdev);
11617         pci_set_drvdata(pdev, NULL);
11618       out_free_ieee80211:
11619         free_ieee80211(priv->net_dev);
11620       out:
11621         return err;
11622 }
11623
11624 static void ipw_pci_remove(struct pci_dev *pdev)
11625 {
11626         struct ipw_priv *priv = pci_get_drvdata(pdev);
11627         struct list_head *p, *q;
11628         int i;
11629
11630         if (!priv)
11631                 return;
11632
11633         mutex_lock(&priv->mutex);
11634
11635         priv->status |= STATUS_EXIT_PENDING;
11636         ipw_down(priv);
11637         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11638
11639         mutex_unlock(&priv->mutex);
11640
11641         unregister_netdev(priv->net_dev);
11642
11643         if (priv->rxq) {
11644                 ipw_rx_queue_free(priv, priv->rxq);
11645                 priv->rxq = NULL;
11646         }
11647         ipw_tx_queue_free(priv);
11648
11649         if (priv->cmdlog) {
11650                 kfree(priv->cmdlog);
11651                 priv->cmdlog = NULL;
11652         }
11653         /* ipw_down will ensure that there is no more pending work
11654          * in the workqueue's, so we can safely remove them now. */
11655         cancel_delayed_work(&priv->adhoc_check);
11656         cancel_delayed_work(&priv->gather_stats);
11657         cancel_delayed_work(&priv->request_scan);
11658         cancel_delayed_work(&priv->rf_kill);
11659         cancel_delayed_work(&priv->scan_check);
11660         destroy_workqueue(priv->workqueue);
11661         priv->workqueue = NULL;
11662
11663         /* Free MAC hash list for ADHOC */
11664         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11665                 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11666                         list_del(p);
11667                         kfree(list_entry(p, struct ipw_ibss_seq, list));
11668                 }
11669         }
11670
11671         kfree(priv->error);
11672         priv->error = NULL;
11673
11674 #ifdef CONFIG_IPW2200_PROMISCUOUS
11675         ipw_prom_free(priv);
11676 #endif
11677
11678         free_irq(pdev->irq, priv);
11679         iounmap(priv->hw_base);
11680         pci_release_regions(pdev);
11681         pci_disable_device(pdev);
11682         pci_set_drvdata(pdev, NULL);
11683         free_ieee80211(priv->net_dev);
11684         free_firmware();
11685 }
11686
11687 #ifdef CONFIG_PM
11688 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11689 {
11690         struct ipw_priv *priv = pci_get_drvdata(pdev);
11691         struct net_device *dev = priv->net_dev;
11692
11693         printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11694
11695         /* Take down the device; powers it off, etc. */
11696         ipw_down(priv);
11697
11698         /* Remove the PRESENT state of the device */
11699         netif_device_detach(dev);
11700
11701         pci_save_state(pdev);
11702         pci_disable_device(pdev);
11703         pci_set_power_state(pdev, pci_choose_state(pdev, state));
11704
11705         return 0;
11706 }
11707
11708 static int ipw_pci_resume(struct pci_dev *pdev)
11709 {
11710         struct ipw_priv *priv = pci_get_drvdata(pdev);
11711         struct net_device *dev = priv->net_dev;
11712         u32 val;
11713
11714         printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11715
11716         pci_set_power_state(pdev, PCI_D0);
11717         pci_enable_device(pdev);
11718         pci_restore_state(pdev);
11719
11720         /*
11721          * Suspend/Resume resets the PCI configuration space, so we have to
11722          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11723          * from interfering with C3 CPU state. pci_restore_state won't help
11724          * here since it only restores the first 64 bytes pci config header.
11725          */
11726         pci_read_config_dword(pdev, 0x40, &val);
11727         if ((val & 0x0000ff00) != 0)
11728                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11729
11730         /* Set the device back into the PRESENT state; this will also wake
11731          * the queue of needed */
11732         netif_device_attach(dev);
11733
11734         /* Bring the device back up */
11735         queue_work(priv->workqueue, &priv->up);
11736
11737         return 0;
11738 }
11739 #endif
11740
11741 /* driver initialization stuff */
11742 static struct pci_driver ipw_driver = {
11743         .name = DRV_NAME,
11744         .id_table = card_ids,
11745         .probe = ipw_pci_probe,
11746         .remove = __devexit_p(ipw_pci_remove),
11747 #ifdef CONFIG_PM
11748         .suspend = ipw_pci_suspend,
11749         .resume = ipw_pci_resume,
11750 #endif
11751 };
11752
11753 static int __init ipw_init(void)
11754 {
11755         int ret;
11756
11757         printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11758         printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11759
11760         ret = pci_module_init(&ipw_driver);
11761         if (ret) {
11762                 IPW_ERROR("Unable to initialize PCI module\n");
11763                 return ret;
11764         }
11765
11766         ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11767         if (ret) {
11768                 IPW_ERROR("Unable to create driver sysfs file\n");
11769                 pci_unregister_driver(&ipw_driver);
11770                 return ret;
11771         }
11772
11773         return ret;
11774 }
11775
11776 static void __exit ipw_exit(void)
11777 {
11778         driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11779         pci_unregister_driver(&ipw_driver);
11780 }
11781
11782 module_param(disable, int, 0444);
11783 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11784
11785 module_param(associate, int, 0444);
11786 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
11787
11788 module_param(auto_create, int, 0444);
11789 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11790
11791 module_param(led, int, 0444);
11792 MODULE_PARM_DESC(led, "enable led control on some systems (default 0 off)\n");
11793
11794 #ifdef CONFIG_IPW2200_DEBUG
11795 module_param(debug, int, 0444);
11796 MODULE_PARM_DESC(debug, "debug output mask");
11797 #endif
11798
11799 module_param(channel, int, 0444);
11800 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11801
11802 #ifdef CONFIG_IPW2200_PROMISCUOUS
11803 module_param(rtap_iface, int, 0444);
11804 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
11805 #endif
11806
11807 #ifdef CONFIG_IPW2200_QOS
11808 module_param(qos_enable, int, 0444);
11809 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
11810
11811 module_param(qos_burst_enable, int, 0444);
11812 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11813
11814 module_param(qos_no_ack_mask, int, 0444);
11815 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
11816
11817 module_param(burst_duration_CCK, int, 0444);
11818 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11819
11820 module_param(burst_duration_OFDM, int, 0444);
11821 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11822 #endif                          /* CONFIG_IPW2200_QOS */
11823
11824 #ifdef CONFIG_IPW2200_MONITOR
11825 module_param(mode, int, 0444);
11826 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
11827 #else
11828 module_param(mode, int, 0444);
11829 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
11830 #endif
11831
11832 module_param(bt_coexist, int, 0444);
11833 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
11834
11835 module_param(hwcrypto, int, 0444);
11836 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
11837
11838 module_param(cmdlog, int, 0444);
11839 MODULE_PARM_DESC(cmdlog,
11840                  "allocate a ring buffer for logging firmware commands");
11841
11842 module_param(roaming, int, 0444);
11843 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
11844
11845 module_param(antenna, int, 0444);
11846 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
11847
11848 module_exit(ipw_exit);
11849 module_init(ipw_init);