]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/sfc/tx.c
sfc: Use pci_map_single() to map the skb header when doing TSO
[linux-2.6-omap-h63xx.git] / drivers / net / sfc / tx.c
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2008 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/tcp.h>
13 #include <linux/ip.h>
14 #include <linux/in.h>
15 #include <linux/if_ether.h>
16 #include <linux/highmem.h>
17 #include "net_driver.h"
18 #include "tx.h"
19 #include "efx.h"
20 #include "falcon.h"
21 #include "workarounds.h"
22
23 /*
24  * TX descriptor ring full threshold
25  *
26  * The tx_queue descriptor ring fill-level must fall below this value
27  * before we restart the netif queue
28  */
29 #define EFX_NETDEV_TX_THRESHOLD(_tx_queue)      \
30         (_tx_queue->efx->type->txd_ring_mask / 2u)
31
32 /* We want to be able to nest calls to netif_stop_queue(), since each
33  * channel can have an individual stop on the queue.
34  */
35 void efx_stop_queue(struct efx_nic *efx)
36 {
37         spin_lock_bh(&efx->netif_stop_lock);
38         EFX_TRACE(efx, "stop TX queue\n");
39
40         atomic_inc(&efx->netif_stop_count);
41         netif_stop_queue(efx->net_dev);
42
43         spin_unlock_bh(&efx->netif_stop_lock);
44 }
45
46 /* Wake netif's TX queue
47  * We want to be able to nest calls to netif_stop_queue(), since each
48  * channel can have an individual stop on the queue.
49  */
50 inline void efx_wake_queue(struct efx_nic *efx)
51 {
52         local_bh_disable();
53         if (atomic_dec_and_lock(&efx->netif_stop_count,
54                                 &efx->netif_stop_lock)) {
55                 EFX_TRACE(efx, "waking TX queue\n");
56                 netif_wake_queue(efx->net_dev);
57                 spin_unlock(&efx->netif_stop_lock);
58         }
59         local_bh_enable();
60 }
61
62 static inline void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
63                                       struct efx_tx_buffer *buffer)
64 {
65         if (buffer->unmap_len) {
66                 struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
67                 if (buffer->unmap_single)
68                         pci_unmap_single(pci_dev, buffer->unmap_addr,
69                                          buffer->unmap_len, PCI_DMA_TODEVICE);
70                 else
71                         pci_unmap_page(pci_dev, buffer->unmap_addr,
72                                        buffer->unmap_len, PCI_DMA_TODEVICE);
73                 buffer->unmap_len = 0;
74                 buffer->unmap_single = 0;
75         }
76
77         if (buffer->skb) {
78                 dev_kfree_skb_any((struct sk_buff *) buffer->skb);
79                 buffer->skb = NULL;
80                 EFX_TRACE(tx_queue->efx, "TX queue %d transmission id %x "
81                           "complete\n", tx_queue->queue, read_ptr);
82         }
83 }
84
85 /**
86  * struct efx_tso_header - a DMA mapped buffer for packet headers
87  * @next: Linked list of free ones.
88  *      The list is protected by the TX queue lock.
89  * @dma_unmap_len: Length to unmap for an oversize buffer, or 0.
90  * @dma_addr: The DMA address of the header below.
91  *
92  * This controls the memory used for a TSO header.  Use TSOH_DATA()
93  * to find the packet header data.  Use TSOH_SIZE() to calculate the
94  * total size required for a given packet header length.  TSO headers
95  * in the free list are exactly %TSOH_STD_SIZE bytes in size.
96  */
97 struct efx_tso_header {
98         union {
99                 struct efx_tso_header *next;
100                 size_t unmap_len;
101         };
102         dma_addr_t dma_addr;
103 };
104
105 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
106                                const struct sk_buff *skb);
107 static void efx_fini_tso(struct efx_tx_queue *tx_queue);
108 static void efx_tsoh_heap_free(struct efx_tx_queue *tx_queue,
109                                struct efx_tso_header *tsoh);
110
111 static inline void efx_tsoh_free(struct efx_tx_queue *tx_queue,
112                                  struct efx_tx_buffer *buffer)
113 {
114         if (buffer->tsoh) {
115                 if (likely(!buffer->tsoh->unmap_len)) {
116                         buffer->tsoh->next = tx_queue->tso_headers_free;
117                         tx_queue->tso_headers_free = buffer->tsoh;
118                 } else {
119                         efx_tsoh_heap_free(tx_queue, buffer->tsoh);
120                 }
121                 buffer->tsoh = NULL;
122         }
123 }
124
125
126 /*
127  * Add a socket buffer to a TX queue
128  *
129  * This maps all fragments of a socket buffer for DMA and adds them to
130  * the TX queue.  The queue's insert pointer will be incremented by
131  * the number of fragments in the socket buffer.
132  *
133  * If any DMA mapping fails, any mapped fragments will be unmapped,
134  * the queue's insert pointer will be restored to its original value.
135  *
136  * Returns NETDEV_TX_OK or NETDEV_TX_BUSY
137  * You must hold netif_tx_lock() to call this function.
138  */
139 static inline int efx_enqueue_skb(struct efx_tx_queue *tx_queue,
140                                   const struct sk_buff *skb)
141 {
142         struct efx_nic *efx = tx_queue->efx;
143         struct pci_dev *pci_dev = efx->pci_dev;
144         struct efx_tx_buffer *buffer;
145         skb_frag_t *fragment;
146         struct page *page;
147         int page_offset;
148         unsigned int len, unmap_len = 0, fill_level, insert_ptr, misalign;
149         dma_addr_t dma_addr, unmap_addr = 0;
150         unsigned int dma_len;
151         unsigned unmap_single;
152         int q_space, i = 0;
153         int rc = NETDEV_TX_OK;
154
155         EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
156
157         if (skb_shinfo((struct sk_buff *)skb)->gso_size)
158                 return efx_enqueue_skb_tso(tx_queue, skb);
159
160         /* Get size of the initial fragment */
161         len = skb_headlen(skb);
162
163         fill_level = tx_queue->insert_count - tx_queue->old_read_count;
164         q_space = efx->type->txd_ring_mask - 1 - fill_level;
165
166         /* Map for DMA.  Use pci_map_single rather than pci_map_page
167          * since this is more efficient on machines with sparse
168          * memory.
169          */
170         unmap_single = 1;
171         dma_addr = pci_map_single(pci_dev, skb->data, len, PCI_DMA_TODEVICE);
172
173         /* Process all fragments */
174         while (1) {
175                 if (unlikely(pci_dma_mapping_error(pci_dev, dma_addr)))
176                         goto pci_err;
177
178                 /* Store fields for marking in the per-fragment final
179                  * descriptor */
180                 unmap_len = len;
181                 unmap_addr = dma_addr;
182
183                 /* Add to TX queue, splitting across DMA boundaries */
184                 do {
185                         if (unlikely(q_space-- <= 0)) {
186                                 /* It might be that completions have
187                                  * happened since the xmit path last
188                                  * checked.  Update the xmit path's
189                                  * copy of read_count.
190                                  */
191                                 ++tx_queue->stopped;
192                                 /* This memory barrier protects the
193                                  * change of stopped from the access
194                                  * of read_count. */
195                                 smp_mb();
196                                 tx_queue->old_read_count =
197                                         *(volatile unsigned *)
198                                         &tx_queue->read_count;
199                                 fill_level = (tx_queue->insert_count
200                                               - tx_queue->old_read_count);
201                                 q_space = (efx->type->txd_ring_mask - 1 -
202                                            fill_level);
203                                 if (unlikely(q_space-- <= 0))
204                                         goto stop;
205                                 smp_mb();
206                                 --tx_queue->stopped;
207                         }
208
209                         insert_ptr = (tx_queue->insert_count &
210                                       efx->type->txd_ring_mask);
211                         buffer = &tx_queue->buffer[insert_ptr];
212                         efx_tsoh_free(tx_queue, buffer);
213                         EFX_BUG_ON_PARANOID(buffer->tsoh);
214                         EFX_BUG_ON_PARANOID(buffer->skb);
215                         EFX_BUG_ON_PARANOID(buffer->len);
216                         EFX_BUG_ON_PARANOID(buffer->continuation != 1);
217                         EFX_BUG_ON_PARANOID(buffer->unmap_len);
218
219                         dma_len = (((~dma_addr) & efx->type->tx_dma_mask) + 1);
220                         if (likely(dma_len > len))
221                                 dma_len = len;
222
223                         misalign = (unsigned)dma_addr & efx->type->bug5391_mask;
224                         if (misalign && dma_len + misalign > 512)
225                                 dma_len = 512 - misalign;
226
227                         /* Fill out per descriptor fields */
228                         buffer->len = dma_len;
229                         buffer->dma_addr = dma_addr;
230                         len -= dma_len;
231                         dma_addr += dma_len;
232                         ++tx_queue->insert_count;
233                 } while (len);
234
235                 /* Transfer ownership of the unmapping to the final buffer */
236                 buffer->unmap_addr = unmap_addr;
237                 buffer->unmap_single = unmap_single;
238                 buffer->unmap_len = unmap_len;
239                 unmap_len = 0;
240
241                 /* Get address and size of next fragment */
242                 if (i >= skb_shinfo(skb)->nr_frags)
243                         break;
244                 fragment = &skb_shinfo(skb)->frags[i];
245                 len = fragment->size;
246                 page = fragment->page;
247                 page_offset = fragment->page_offset;
248                 i++;
249                 /* Map for DMA */
250                 unmap_single = 0;
251                 dma_addr = pci_map_page(pci_dev, page, page_offset, len,
252                                         PCI_DMA_TODEVICE);
253         }
254
255         /* Transfer ownership of the skb to the final buffer */
256         buffer->skb = skb;
257         buffer->continuation = 0;
258
259         /* Pass off to hardware */
260         falcon_push_buffers(tx_queue);
261
262         return NETDEV_TX_OK;
263
264  pci_err:
265         EFX_ERR_RL(efx, " TX queue %d could not map skb with %d bytes %d "
266                    "fragments for DMA\n", tx_queue->queue, skb->len,
267                    skb_shinfo(skb)->nr_frags + 1);
268
269         /* Mark the packet as transmitted, and free the SKB ourselves */
270         dev_kfree_skb_any((struct sk_buff *)skb);
271         goto unwind;
272
273  stop:
274         rc = NETDEV_TX_BUSY;
275
276         if (tx_queue->stopped == 1)
277                 efx_stop_queue(efx);
278
279  unwind:
280         /* Work backwards until we hit the original insert pointer value */
281         while (tx_queue->insert_count != tx_queue->write_count) {
282                 --tx_queue->insert_count;
283                 insert_ptr = tx_queue->insert_count & efx->type->txd_ring_mask;
284                 buffer = &tx_queue->buffer[insert_ptr];
285                 efx_dequeue_buffer(tx_queue, buffer);
286                 buffer->len = 0;
287         }
288
289         /* Free the fragment we were mid-way through pushing */
290         if (unmap_len) {
291                 if (unmap_single)
292                         pci_unmap_single(pci_dev, unmap_addr, unmap_len,
293                                          PCI_DMA_TODEVICE);
294                 else
295                         pci_unmap_page(pci_dev, unmap_addr, unmap_len,
296                                        PCI_DMA_TODEVICE);
297         }
298
299         return rc;
300 }
301
302 /* Remove packets from the TX queue
303  *
304  * This removes packets from the TX queue, up to and including the
305  * specified index.
306  */
307 static inline void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
308                                        unsigned int index)
309 {
310         struct efx_nic *efx = tx_queue->efx;
311         unsigned int stop_index, read_ptr;
312         unsigned int mask = tx_queue->efx->type->txd_ring_mask;
313
314         stop_index = (index + 1) & mask;
315         read_ptr = tx_queue->read_count & mask;
316
317         while (read_ptr != stop_index) {
318                 struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
319                 if (unlikely(buffer->len == 0)) {
320                         EFX_ERR(tx_queue->efx, "TX queue %d spurious TX "
321                                 "completion id %x\n", tx_queue->queue,
322                                 read_ptr);
323                         efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
324                         return;
325                 }
326
327                 efx_dequeue_buffer(tx_queue, buffer);
328                 buffer->continuation = 1;
329                 buffer->len = 0;
330
331                 ++tx_queue->read_count;
332                 read_ptr = tx_queue->read_count & mask;
333         }
334 }
335
336 /* Initiate a packet transmission on the specified TX queue.
337  * Note that returning anything other than NETDEV_TX_OK will cause the
338  * OS to free the skb.
339  *
340  * This function is split out from efx_hard_start_xmit to allow the
341  * loopback test to direct packets via specific TX queues.  It is
342  * therefore a non-static inline, so as not to penalise performance
343  * for non-loopback transmissions.
344  *
345  * Context: netif_tx_lock held
346  */
347 inline int efx_xmit(struct efx_nic *efx,
348                     struct efx_tx_queue *tx_queue, struct sk_buff *skb)
349 {
350         int rc;
351
352         /* Map fragments for DMA and add to TX queue */
353         rc = efx_enqueue_skb(tx_queue, skb);
354         if (unlikely(rc != NETDEV_TX_OK))
355                 goto out;
356
357         /* Update last TX timer */
358         efx->net_dev->trans_start = jiffies;
359
360  out:
361         return rc;
362 }
363
364 /* Initiate a packet transmission.  We use one channel per CPU
365  * (sharing when we have more CPUs than channels).  On Falcon, the TX
366  * completion events will be directed back to the CPU that transmitted
367  * the packet, which should be cache-efficient.
368  *
369  * Context: non-blocking.
370  * Note that returning anything other than NETDEV_TX_OK will cause the
371  * OS to free the skb.
372  */
373 int efx_hard_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
374 {
375         struct efx_nic *efx = netdev_priv(net_dev);
376         struct efx_tx_queue *tx_queue;
377
378         if (likely(skb->ip_summed == CHECKSUM_PARTIAL))
379                 tx_queue = &efx->tx_queue[EFX_TX_QUEUE_OFFLOAD_CSUM];
380         else
381                 tx_queue = &efx->tx_queue[EFX_TX_QUEUE_NO_CSUM];
382
383         return efx_xmit(efx, tx_queue, skb);
384 }
385
386 void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
387 {
388         unsigned fill_level;
389         struct efx_nic *efx = tx_queue->efx;
390
391         EFX_BUG_ON_PARANOID(index > efx->type->txd_ring_mask);
392
393         efx_dequeue_buffers(tx_queue, index);
394
395         /* See if we need to restart the netif queue.  This barrier
396          * separates the update of read_count from the test of
397          * stopped. */
398         smp_mb();
399         if (unlikely(tx_queue->stopped)) {
400                 fill_level = tx_queue->insert_count - tx_queue->read_count;
401                 if (fill_level < EFX_NETDEV_TX_THRESHOLD(tx_queue)) {
402                         EFX_BUG_ON_PARANOID(!efx_dev_registered(efx));
403
404                         /* Do this under netif_tx_lock(), to avoid racing
405                          * with efx_xmit(). */
406                         netif_tx_lock(efx->net_dev);
407                         if (tx_queue->stopped) {
408                                 tx_queue->stopped = 0;
409                                 efx_wake_queue(efx);
410                         }
411                         netif_tx_unlock(efx->net_dev);
412                 }
413         }
414 }
415
416 int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
417 {
418         struct efx_nic *efx = tx_queue->efx;
419         unsigned int txq_size;
420         int i, rc;
421
422         EFX_LOG(efx, "creating TX queue %d\n", tx_queue->queue);
423
424         /* Allocate software ring */
425         txq_size = (efx->type->txd_ring_mask + 1) * sizeof(*tx_queue->buffer);
426         tx_queue->buffer = kzalloc(txq_size, GFP_KERNEL);
427         if (!tx_queue->buffer)
428                 return -ENOMEM;
429         for (i = 0; i <= efx->type->txd_ring_mask; ++i)
430                 tx_queue->buffer[i].continuation = 1;
431
432         /* Allocate hardware ring */
433         rc = falcon_probe_tx(tx_queue);
434         if (rc)
435                 goto fail;
436
437         return 0;
438
439  fail:
440         kfree(tx_queue->buffer);
441         tx_queue->buffer = NULL;
442         return rc;
443 }
444
445 int efx_init_tx_queue(struct efx_tx_queue *tx_queue)
446 {
447         EFX_LOG(tx_queue->efx, "initialising TX queue %d\n", tx_queue->queue);
448
449         tx_queue->insert_count = 0;
450         tx_queue->write_count = 0;
451         tx_queue->read_count = 0;
452         tx_queue->old_read_count = 0;
453         BUG_ON(tx_queue->stopped);
454
455         /* Set up TX descriptor ring */
456         return falcon_init_tx(tx_queue);
457 }
458
459 void efx_release_tx_buffers(struct efx_tx_queue *tx_queue)
460 {
461         struct efx_tx_buffer *buffer;
462
463         if (!tx_queue->buffer)
464                 return;
465
466         /* Free any buffers left in the ring */
467         while (tx_queue->read_count != tx_queue->write_count) {
468                 buffer = &tx_queue->buffer[tx_queue->read_count &
469                                            tx_queue->efx->type->txd_ring_mask];
470                 efx_dequeue_buffer(tx_queue, buffer);
471                 buffer->continuation = 1;
472                 buffer->len = 0;
473
474                 ++tx_queue->read_count;
475         }
476 }
477
478 void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
479 {
480         EFX_LOG(tx_queue->efx, "shutting down TX queue %d\n", tx_queue->queue);
481
482         /* Flush TX queue, remove descriptor ring */
483         falcon_fini_tx(tx_queue);
484
485         efx_release_tx_buffers(tx_queue);
486
487         /* Free up TSO header cache */
488         efx_fini_tso(tx_queue);
489
490         /* Release queue's stop on port, if any */
491         if (tx_queue->stopped) {
492                 tx_queue->stopped = 0;
493                 efx_wake_queue(tx_queue->efx);
494         }
495 }
496
497 void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
498 {
499         EFX_LOG(tx_queue->efx, "destroying TX queue %d\n", tx_queue->queue);
500         falcon_remove_tx(tx_queue);
501
502         kfree(tx_queue->buffer);
503         tx_queue->buffer = NULL;
504 }
505
506
507 /* Efx TCP segmentation acceleration.
508  *
509  * Why?  Because by doing it here in the driver we can go significantly
510  * faster than the GSO.
511  *
512  * Requires TX checksum offload support.
513  */
514
515 /* Number of bytes inserted at the start of a TSO header buffer,
516  * similar to NET_IP_ALIGN.
517  */
518 #if defined(__i386__) || defined(__x86_64__)
519 #define TSOH_OFFSET     0
520 #else
521 #define TSOH_OFFSET     NET_IP_ALIGN
522 #endif
523
524 #define TSOH_BUFFER(tsoh)       ((u8 *)(tsoh + 1) + TSOH_OFFSET)
525
526 /* Total size of struct efx_tso_header, buffer and padding */
527 #define TSOH_SIZE(hdr_len)                                      \
528         (sizeof(struct efx_tso_header) + TSOH_OFFSET + hdr_len)
529
530 /* Size of blocks on free list.  Larger blocks must be allocated from
531  * the heap.
532  */
533 #define TSOH_STD_SIZE           128
534
535 #define PTR_DIFF(p1, p2)  ((u8 *)(p1) - (u8 *)(p2))
536 #define ETH_HDR_LEN(skb)  (skb_network_header(skb) - (skb)->data)
537 #define SKB_TCP_OFF(skb)  PTR_DIFF(tcp_hdr(skb), (skb)->data)
538 #define SKB_IPV4_OFF(skb) PTR_DIFF(ip_hdr(skb), (skb)->data)
539
540 /**
541  * struct tso_state - TSO state for an SKB
542  * @remaining_len: Bytes of data we've yet to segment
543  * @seqnum: Current sequence number
544  * @packet_space: Remaining space in current packet
545  * @ifc: Input fragment cursor.
546  *      Where we are in the current fragment of the incoming SKB.  These
547  *      values get updated in place when we split a fragment over
548  *      multiple packets.
549  * @p: Parameters.
550  *      These values are set once at the start of the TSO send and do
551  *      not get changed as the routine progresses.
552  *
553  * The state used during segmentation.  It is put into this data structure
554  * just to make it easy to pass into inline functions.
555  */
556 struct tso_state {
557         unsigned remaining_len;
558         unsigned seqnum;
559         unsigned packet_space;
560
561         struct {
562                 /* DMA address of current position */
563                 dma_addr_t dma_addr;
564                 /* Remaining length */
565                 unsigned int len;
566                 /* DMA address and length of the whole fragment */
567                 unsigned int unmap_len;
568                 dma_addr_t unmap_addr;
569                 unsigned int unmap_single;
570         } ifc;
571
572         struct {
573                 /* The number of bytes of header */
574                 unsigned int header_length;
575
576                 /* The number of bytes to put in each outgoing segment. */
577                 int full_packet_size;
578
579                 /* Current IPv4 ID, host endian. */
580                 unsigned ipv4_id;
581         } p;
582 };
583
584
585 /*
586  * Verify that our various assumptions about sk_buffs and the conditions
587  * under which TSO will be attempted hold true.
588  */
589 static inline void efx_tso_check_safe(const struct sk_buff *skb)
590 {
591         EFX_BUG_ON_PARANOID(skb->protocol != htons(ETH_P_IP));
592         EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
593                             skb->protocol);
594         EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
595         EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
596                              + (tcp_hdr(skb)->doff << 2u)) >
597                             skb_headlen(skb));
598 }
599
600
601 /*
602  * Allocate a page worth of efx_tso_header structures, and string them
603  * into the tx_queue->tso_headers_free linked list. Return 0 or -ENOMEM.
604  */
605 static int efx_tsoh_block_alloc(struct efx_tx_queue *tx_queue)
606 {
607
608         struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
609         struct efx_tso_header *tsoh;
610         dma_addr_t dma_addr;
611         u8 *base_kva, *kva;
612
613         base_kva = pci_alloc_consistent(pci_dev, PAGE_SIZE, &dma_addr);
614         if (base_kva == NULL) {
615                 EFX_ERR(tx_queue->efx, "Unable to allocate page for TSO"
616                         " headers\n");
617                 return -ENOMEM;
618         }
619
620         /* pci_alloc_consistent() allocates pages. */
621         EFX_BUG_ON_PARANOID(dma_addr & (PAGE_SIZE - 1u));
622
623         for (kva = base_kva; kva < base_kva + PAGE_SIZE; kva += TSOH_STD_SIZE) {
624                 tsoh = (struct efx_tso_header *)kva;
625                 tsoh->dma_addr = dma_addr + (TSOH_BUFFER(tsoh) - base_kva);
626                 tsoh->next = tx_queue->tso_headers_free;
627                 tx_queue->tso_headers_free = tsoh;
628         }
629
630         return 0;
631 }
632
633
634 /* Free up a TSO header, and all others in the same page. */
635 static void efx_tsoh_block_free(struct efx_tx_queue *tx_queue,
636                                 struct efx_tso_header *tsoh,
637                                 struct pci_dev *pci_dev)
638 {
639         struct efx_tso_header **p;
640         unsigned long base_kva;
641         dma_addr_t base_dma;
642
643         base_kva = (unsigned long)tsoh & PAGE_MASK;
644         base_dma = tsoh->dma_addr & PAGE_MASK;
645
646         p = &tx_queue->tso_headers_free;
647         while (*p != NULL) {
648                 if (((unsigned long)*p & PAGE_MASK) == base_kva)
649                         *p = (*p)->next;
650                 else
651                         p = &(*p)->next;
652         }
653
654         pci_free_consistent(pci_dev, PAGE_SIZE, (void *)base_kva, base_dma);
655 }
656
657 static struct efx_tso_header *
658 efx_tsoh_heap_alloc(struct efx_tx_queue *tx_queue, size_t header_len)
659 {
660         struct efx_tso_header *tsoh;
661
662         tsoh = kmalloc(TSOH_SIZE(header_len), GFP_ATOMIC | GFP_DMA);
663         if (unlikely(!tsoh))
664                 return NULL;
665
666         tsoh->dma_addr = pci_map_single(tx_queue->efx->pci_dev,
667                                         TSOH_BUFFER(tsoh), header_len,
668                                         PCI_DMA_TODEVICE);
669         if (unlikely(pci_dma_mapping_error(tx_queue->efx->pci_dev,
670                                            tsoh->dma_addr))) {
671                 kfree(tsoh);
672                 return NULL;
673         }
674
675         tsoh->unmap_len = header_len;
676         return tsoh;
677 }
678
679 static void
680 efx_tsoh_heap_free(struct efx_tx_queue *tx_queue, struct efx_tso_header *tsoh)
681 {
682         pci_unmap_single(tx_queue->efx->pci_dev,
683                          tsoh->dma_addr, tsoh->unmap_len,
684                          PCI_DMA_TODEVICE);
685         kfree(tsoh);
686 }
687
688 /**
689  * efx_tx_queue_insert - push descriptors onto the TX queue
690  * @tx_queue:           Efx TX queue
691  * @dma_addr:           DMA address of fragment
692  * @len:                Length of fragment
693  * @final_buffer:       The final buffer inserted into the queue
694  *
695  * Push descriptors onto the TX queue.  Return 0 on success or 1 if
696  * @tx_queue full.
697  */
698 static int efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
699                                dma_addr_t dma_addr, unsigned len,
700                                struct efx_tx_buffer **final_buffer)
701 {
702         struct efx_tx_buffer *buffer;
703         struct efx_nic *efx = tx_queue->efx;
704         unsigned dma_len, fill_level, insert_ptr, misalign;
705         int q_space;
706
707         EFX_BUG_ON_PARANOID(len <= 0);
708
709         fill_level = tx_queue->insert_count - tx_queue->old_read_count;
710         /* -1 as there is no way to represent all descriptors used */
711         q_space = efx->type->txd_ring_mask - 1 - fill_level;
712
713         while (1) {
714                 if (unlikely(q_space-- <= 0)) {
715                         /* It might be that completions have happened
716                          * since the xmit path last checked.  Update
717                          * the xmit path's copy of read_count.
718                          */
719                         ++tx_queue->stopped;
720                         /* This memory barrier protects the change of
721                          * stopped from the access of read_count. */
722                         smp_mb();
723                         tx_queue->old_read_count =
724                                 *(volatile unsigned *)&tx_queue->read_count;
725                         fill_level = (tx_queue->insert_count
726                                       - tx_queue->old_read_count);
727                         q_space = efx->type->txd_ring_mask - 1 - fill_level;
728                         if (unlikely(q_space-- <= 0)) {
729                                 *final_buffer = NULL;
730                                 return 1;
731                         }
732                         smp_mb();
733                         --tx_queue->stopped;
734                 }
735
736                 insert_ptr = tx_queue->insert_count & efx->type->txd_ring_mask;
737                 buffer = &tx_queue->buffer[insert_ptr];
738                 ++tx_queue->insert_count;
739
740                 EFX_BUG_ON_PARANOID(tx_queue->insert_count -
741                                     tx_queue->read_count >
742                                     efx->type->txd_ring_mask);
743
744                 efx_tsoh_free(tx_queue, buffer);
745                 EFX_BUG_ON_PARANOID(buffer->len);
746                 EFX_BUG_ON_PARANOID(buffer->unmap_len);
747                 EFX_BUG_ON_PARANOID(buffer->skb);
748                 EFX_BUG_ON_PARANOID(buffer->continuation != 1);
749                 EFX_BUG_ON_PARANOID(buffer->tsoh);
750
751                 buffer->dma_addr = dma_addr;
752
753                 /* Ensure we do not cross a boundary unsupported by H/W */
754                 dma_len = (~dma_addr & efx->type->tx_dma_mask) + 1;
755
756                 misalign = (unsigned)dma_addr & efx->type->bug5391_mask;
757                 if (misalign && dma_len + misalign > 512)
758                         dma_len = 512 - misalign;
759
760                 /* If there is enough space to send then do so */
761                 if (dma_len >= len)
762                         break;
763
764                 buffer->len = dma_len; /* Don't set the other members */
765                 dma_addr += dma_len;
766                 len -= dma_len;
767         }
768
769         EFX_BUG_ON_PARANOID(!len);
770         buffer->len = len;
771         *final_buffer = buffer;
772         return 0;
773 }
774
775
776 /*
777  * Put a TSO header into the TX queue.
778  *
779  * This is special-cased because we know that it is small enough to fit in
780  * a single fragment, and we know it doesn't cross a page boundary.  It
781  * also allows us to not worry about end-of-packet etc.
782  */
783 static inline void efx_tso_put_header(struct efx_tx_queue *tx_queue,
784                                       struct efx_tso_header *tsoh, unsigned len)
785 {
786         struct efx_tx_buffer *buffer;
787
788         buffer = &tx_queue->buffer[tx_queue->insert_count &
789                                    tx_queue->efx->type->txd_ring_mask];
790         efx_tsoh_free(tx_queue, buffer);
791         EFX_BUG_ON_PARANOID(buffer->len);
792         EFX_BUG_ON_PARANOID(buffer->unmap_len);
793         EFX_BUG_ON_PARANOID(buffer->skb);
794         EFX_BUG_ON_PARANOID(buffer->continuation != 1);
795         EFX_BUG_ON_PARANOID(buffer->tsoh);
796         buffer->len = len;
797         buffer->dma_addr = tsoh->dma_addr;
798         buffer->tsoh = tsoh;
799
800         ++tx_queue->insert_count;
801 }
802
803
804 /* Remove descriptors put into a tx_queue. */
805 static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue)
806 {
807         struct efx_tx_buffer *buffer;
808
809         /* Work backwards until we hit the original insert pointer value */
810         while (tx_queue->insert_count != tx_queue->write_count) {
811                 --tx_queue->insert_count;
812                 buffer = &tx_queue->buffer[tx_queue->insert_count &
813                                            tx_queue->efx->type->txd_ring_mask];
814                 efx_tsoh_free(tx_queue, buffer);
815                 EFX_BUG_ON_PARANOID(buffer->skb);
816                 buffer->len = 0;
817                 buffer->continuation = 1;
818                 if (buffer->unmap_len) {
819                         if (buffer->unmap_single)
820                                 pci_unmap_single(tx_queue->efx->pci_dev,
821                                                  buffer->unmap_addr,
822                                                  buffer->unmap_len,
823                                                  PCI_DMA_TODEVICE);
824                         else
825                                 pci_unmap_page(tx_queue->efx->pci_dev,
826                                                buffer->unmap_addr,
827                                                buffer->unmap_len,
828                                                PCI_DMA_TODEVICE);
829                         buffer->unmap_len = 0;
830                 }
831         }
832 }
833
834
835 /* Parse the SKB header and initialise state. */
836 static inline void tso_start(struct tso_state *st, const struct sk_buff *skb)
837 {
838         /* All ethernet/IP/TCP headers combined size is TCP header size
839          * plus offset of TCP header relative to start of packet.
840          */
841         st->p.header_length = ((tcp_hdr(skb)->doff << 2u)
842                                + PTR_DIFF(tcp_hdr(skb), skb->data));
843         st->p.full_packet_size = (st->p.header_length
844                                   + skb_shinfo(skb)->gso_size);
845
846         st->p.ipv4_id = ntohs(ip_hdr(skb)->id);
847         st->seqnum = ntohl(tcp_hdr(skb)->seq);
848
849         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
850         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
851         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);
852
853         st->packet_space = st->p.full_packet_size;
854         st->remaining_len = skb->len - st->p.header_length;
855         st->ifc.unmap_len = 0;
856         st->ifc.unmap_single = 0;
857 }
858
859 static inline int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
860                                    skb_frag_t *frag)
861 {
862         st->ifc.unmap_addr = pci_map_page(efx->pci_dev, frag->page,
863                                           frag->page_offset, frag->size,
864                                           PCI_DMA_TODEVICE);
865         if (likely(!pci_dma_mapping_error(efx->pci_dev, st->ifc.unmap_addr))) {
866                 st->ifc.unmap_single = 0;
867                 st->ifc.unmap_len = frag->size;
868                 st->ifc.len = frag->size;
869                 st->ifc.dma_addr = st->ifc.unmap_addr;
870                 return 0;
871         }
872         return -ENOMEM;
873 }
874
875 static inline int
876 tso_get_head_fragment(struct tso_state *st, struct efx_nic *efx,
877                       const struct sk_buff *skb)
878 {
879         int hl = st->p.header_length;
880         int len = skb_headlen(skb) - hl;
881
882         st->ifc.unmap_addr = pci_map_single(efx->pci_dev, skb->data + hl,
883                                             len, PCI_DMA_TODEVICE);
884         if (likely(!pci_dma_mapping_error(efx->pci_dev, st->ifc.unmap_addr))) {
885                 st->ifc.unmap_single = 1;
886                 st->ifc.unmap_len = len;
887                 st->ifc.len = len;
888                 st->ifc.dma_addr = st->ifc.unmap_addr;
889                 return 0;
890         }
891         return -ENOMEM;
892 }
893
894
895 /**
896  * tso_fill_packet_with_fragment - form descriptors for the current fragment
897  * @tx_queue:           Efx TX queue
898  * @skb:                Socket buffer
899  * @st:                 TSO state
900  *
901  * Form descriptors for the current fragment, until we reach the end
902  * of fragment or end-of-packet.  Return 0 on success, 1 if not enough
903  * space in @tx_queue.
904  */
905 static inline int tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
906                                                 const struct sk_buff *skb,
907                                                 struct tso_state *st)
908 {
909         struct efx_tx_buffer *buffer;
910         int n, end_of_packet, rc;
911
912         if (st->ifc.len == 0)
913                 return 0;
914         if (st->packet_space == 0)
915                 return 0;
916
917         EFX_BUG_ON_PARANOID(st->ifc.len <= 0);
918         EFX_BUG_ON_PARANOID(st->packet_space <= 0);
919
920         n = min(st->ifc.len, st->packet_space);
921
922         st->packet_space -= n;
923         st->remaining_len -= n;
924         st->ifc.len -= n;
925
926         rc = efx_tx_queue_insert(tx_queue, st->ifc.dma_addr, n, &buffer);
927         if (likely(rc == 0)) {
928                 if (st->remaining_len == 0)
929                         /* Transfer ownership of the skb */
930                         buffer->skb = skb;
931
932                 end_of_packet = st->remaining_len == 0 || st->packet_space == 0;
933                 buffer->continuation = !end_of_packet;
934
935                 if (st->ifc.len == 0) {
936                         /* Transfer ownership of the pci mapping */
937                         buffer->unmap_len = st->ifc.unmap_len;
938                         buffer->unmap_single = st->ifc.unmap_single;
939                         st->ifc.unmap_len = 0;
940                 }
941         }
942
943         st->ifc.dma_addr += n;
944         return rc;
945 }
946
947
948 /**
949  * tso_start_new_packet - generate a new header and prepare for the new packet
950  * @tx_queue:           Efx TX queue
951  * @skb:                Socket buffer
952  * @st:                 TSO state
953  *
954  * Generate a new header and prepare for the new packet.  Return 0 on
955  * success, or -1 if failed to alloc header.
956  */
957 static inline int tso_start_new_packet(struct efx_tx_queue *tx_queue,
958                                        const struct sk_buff *skb,
959                                        struct tso_state *st)
960 {
961         struct efx_tso_header *tsoh;
962         struct iphdr *tsoh_iph;
963         struct tcphdr *tsoh_th;
964         unsigned ip_length;
965         u8 *header;
966
967         /* Allocate a DMA-mapped header buffer. */
968         if (likely(TSOH_SIZE(st->p.header_length) <= TSOH_STD_SIZE)) {
969                 if (tx_queue->tso_headers_free == NULL) {
970                         if (efx_tsoh_block_alloc(tx_queue))
971                                 return -1;
972                 }
973                 EFX_BUG_ON_PARANOID(!tx_queue->tso_headers_free);
974                 tsoh = tx_queue->tso_headers_free;
975                 tx_queue->tso_headers_free = tsoh->next;
976                 tsoh->unmap_len = 0;
977         } else {
978                 tx_queue->tso_long_headers++;
979                 tsoh = efx_tsoh_heap_alloc(tx_queue, st->p.header_length);
980                 if (unlikely(!tsoh))
981                         return -1;
982         }
983
984         header = TSOH_BUFFER(tsoh);
985         tsoh_th = (struct tcphdr *)(header + SKB_TCP_OFF(skb));
986         tsoh_iph = (struct iphdr *)(header + SKB_IPV4_OFF(skb));
987
988         /* Copy and update the headers. */
989         memcpy(header, skb->data, st->p.header_length);
990
991         tsoh_th->seq = htonl(st->seqnum);
992         st->seqnum += skb_shinfo(skb)->gso_size;
993         if (st->remaining_len > skb_shinfo(skb)->gso_size) {
994                 /* This packet will not finish the TSO burst. */
995                 ip_length = st->p.full_packet_size - ETH_HDR_LEN(skb);
996                 tsoh_th->fin = 0;
997                 tsoh_th->psh = 0;
998         } else {
999                 /* This packet will be the last in the TSO burst. */
1000                 ip_length = (st->p.header_length - ETH_HDR_LEN(skb)
1001                              + st->remaining_len);
1002                 tsoh_th->fin = tcp_hdr(skb)->fin;
1003                 tsoh_th->psh = tcp_hdr(skb)->psh;
1004         }
1005         tsoh_iph->tot_len = htons(ip_length);
1006
1007         /* Linux leaves suitable gaps in the IP ID space for us to fill. */
1008         tsoh_iph->id = htons(st->p.ipv4_id);
1009         st->p.ipv4_id++;
1010
1011         st->packet_space = skb_shinfo(skb)->gso_size;
1012         ++tx_queue->tso_packets;
1013
1014         /* Form a descriptor for this header. */
1015         efx_tso_put_header(tx_queue, tsoh, st->p.header_length);
1016
1017         return 0;
1018 }
1019
1020
1021 /**
1022  * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
1023  * @tx_queue:           Efx TX queue
1024  * @skb:                Socket buffer
1025  *
1026  * Context: You must hold netif_tx_lock() to call this function.
1027  *
1028  * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
1029  * @skb was not enqueued.  In all cases @skb is consumed.  Return
1030  * %NETDEV_TX_OK or %NETDEV_TX_BUSY.
1031  */
1032 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
1033                                const struct sk_buff *skb)
1034 {
1035         struct efx_nic *efx = tx_queue->efx;
1036         int frag_i, rc, rc2 = NETDEV_TX_OK;
1037         struct tso_state state;
1038
1039         /* Verify TSO is safe - these checks should never fail. */
1040         efx_tso_check_safe(skb);
1041
1042         EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
1043
1044         tso_start(&state, skb);
1045
1046         /* Assume that skb header area contains exactly the headers, and
1047          * all payload is in the frag list.
1048          */
1049         if (skb_headlen(skb) == state.p.header_length) {
1050                 /* Grab the first payload fragment. */
1051                 EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
1052                 frag_i = 0;
1053                 rc = tso_get_fragment(&state, efx,
1054                                       skb_shinfo(skb)->frags + frag_i);
1055                 if (rc)
1056                         goto mem_err;
1057         } else {
1058                 rc = tso_get_head_fragment(&state, efx, skb);
1059                 if (rc)
1060                         goto mem_err;
1061                 frag_i = -1;
1062         }
1063
1064         if (tso_start_new_packet(tx_queue, skb, &state) < 0)
1065                 goto mem_err;
1066
1067         while (1) {
1068                 rc = tso_fill_packet_with_fragment(tx_queue, skb, &state);
1069                 if (unlikely(rc))
1070                         goto stop;
1071
1072                 /* Move onto the next fragment? */
1073                 if (state.ifc.len == 0) {
1074                         if (++frag_i >= skb_shinfo(skb)->nr_frags)
1075                                 /* End of payload reached. */
1076                                 break;
1077                         rc = tso_get_fragment(&state, efx,
1078                                               skb_shinfo(skb)->frags + frag_i);
1079                         if (rc)
1080                                 goto mem_err;
1081                 }
1082
1083                 /* Start at new packet? */
1084                 if (state.packet_space == 0 &&
1085                     tso_start_new_packet(tx_queue, skb, &state) < 0)
1086                         goto mem_err;
1087         }
1088
1089         /* Pass off to hardware */
1090         falcon_push_buffers(tx_queue);
1091
1092         tx_queue->tso_bursts++;
1093         return NETDEV_TX_OK;
1094
1095  mem_err:
1096         EFX_ERR(efx, "Out of memory for TSO headers, or PCI mapping error\n");
1097         dev_kfree_skb_any((struct sk_buff *)skb);
1098         goto unwind;
1099
1100  stop:
1101         rc2 = NETDEV_TX_BUSY;
1102
1103         /* Stop the queue if it wasn't stopped before. */
1104         if (tx_queue->stopped == 1)
1105                 efx_stop_queue(efx);
1106
1107  unwind:
1108         /* Free the DMA mapping we were in the process of writing out */
1109         if (state.ifc.unmap_len) {
1110                 if (state.ifc.unmap_single)
1111                         pci_unmap_single(efx->pci_dev, state.ifc.unmap_addr,
1112                                          state.ifc.unmap_len, PCI_DMA_TODEVICE);
1113                 else
1114                         pci_unmap_page(efx->pci_dev, state.ifc.unmap_addr,
1115                                        state.ifc.unmap_len, PCI_DMA_TODEVICE);
1116         }
1117
1118         efx_enqueue_unwind(tx_queue);
1119         return rc2;
1120 }
1121
1122
1123 /*
1124  * Free up all TSO datastructures associated with tx_queue. This
1125  * routine should be called only once the tx_queue is both empty and
1126  * will no longer be used.
1127  */
1128 static void efx_fini_tso(struct efx_tx_queue *tx_queue)
1129 {
1130         unsigned i;
1131
1132         if (tx_queue->buffer) {
1133                 for (i = 0; i <= tx_queue->efx->type->txd_ring_mask; ++i)
1134                         efx_tsoh_free(tx_queue, &tx_queue->buffer[i]);
1135         }
1136
1137         while (tx_queue->tso_headers_free != NULL)
1138                 efx_tsoh_block_free(tx_queue, tx_queue->tso_headers_free,
1139                                     tx_queue->efx->pci_dev);
1140 }