]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/sfc/falcon.c
sfc: Reverse the XOFF/XON pause frame control fifo thresholds
[linux-2.6-omap-h63xx.git] / drivers / net / sfc / falcon.c
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2008 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/i2c-algo-bit.h>
18 #include "net_driver.h"
19 #include "bitfield.h"
20 #include "efx.h"
21 #include "mac.h"
22 #include "gmii.h"
23 #include "spi.h"
24 #include "falcon.h"
25 #include "falcon_hwdefs.h"
26 #include "falcon_io.h"
27 #include "mdio_10g.h"
28 #include "phy.h"
29 #include "boards.h"
30 #include "workarounds.h"
31
32 /* Falcon hardware control.
33  * Falcon is the internal codename for the SFC4000 controller that is
34  * present in SFE400X evaluation boards
35  */
36
37 /**
38  * struct falcon_nic_data - Falcon NIC state
39  * @next_buffer_table: First available buffer table id
40  * @pci_dev2: The secondary PCI device if present
41  * @i2c_data: Operations and state for I2C bit-bashing algorithm
42  */
43 struct falcon_nic_data {
44         unsigned next_buffer_table;
45         struct pci_dev *pci_dev2;
46         struct i2c_algo_bit_data i2c_data;
47 };
48
49 /**************************************************************************
50  *
51  * Configurable values
52  *
53  **************************************************************************
54  */
55
56 static int disable_dma_stats;
57
58 /* This is set to 16 for a good reason.  In summary, if larger than
59  * 16, the descriptor cache holds more than a default socket
60  * buffer's worth of packets (for UDP we can only have at most one
61  * socket buffer's worth outstanding).  This combined with the fact
62  * that we only get 1 TX event per descriptor cache means the NIC
63  * goes idle.
64  */
65 #define TX_DC_ENTRIES 16
66 #define TX_DC_ENTRIES_ORDER 0
67 #define TX_DC_BASE 0x130000
68
69 #define RX_DC_ENTRIES 64
70 #define RX_DC_ENTRIES_ORDER 2
71 #define RX_DC_BASE 0x100000
72
73 /* RX FIFO XOFF watermark
74  *
75  * When the amount of the RX FIFO increases used increases past this
76  * watermark send XOFF. Only used if RX flow control is enabled (ethtool -A)
77  * This also has an effect on RX/TX arbitration
78  */
79 static int rx_xoff_thresh_bytes = -1;
80 module_param(rx_xoff_thresh_bytes, int, 0644);
81 MODULE_PARM_DESC(rx_xoff_thresh_bytes, "RX fifo XOFF threshold");
82
83 /* RX FIFO XON watermark
84  *
85  * When the amount of the RX FIFO used decreases below this
86  * watermark send XON. Only used if TX flow control is enabled (ethtool -A)
87  * This also has an effect on RX/TX arbitration
88  */
89 static int rx_xon_thresh_bytes = -1;
90 module_param(rx_xon_thresh_bytes, int, 0644);
91 MODULE_PARM_DESC(rx_xon_thresh_bytes, "RX fifo XON threshold");
92
93 /* TX descriptor ring size - min 512 max 4k */
94 #define FALCON_TXD_RING_ORDER TX_DESCQ_SIZE_1K
95 #define FALCON_TXD_RING_SIZE 1024
96 #define FALCON_TXD_RING_MASK (FALCON_TXD_RING_SIZE - 1)
97
98 /* RX descriptor ring size - min 512 max 4k */
99 #define FALCON_RXD_RING_ORDER RX_DESCQ_SIZE_1K
100 #define FALCON_RXD_RING_SIZE 1024
101 #define FALCON_RXD_RING_MASK (FALCON_RXD_RING_SIZE - 1)
102
103 /* Event queue size - max 32k */
104 #define FALCON_EVQ_ORDER EVQ_SIZE_4K
105 #define FALCON_EVQ_SIZE 4096
106 #define FALCON_EVQ_MASK (FALCON_EVQ_SIZE - 1)
107
108 /* Max number of internal errors. After this resets will not be performed */
109 #define FALCON_MAX_INT_ERRORS 4
110
111 /* Maximum period that we wait for flush events. If the flush event
112  * doesn't arrive in this period of time then we check if the queue
113  * was disabled anyway. */
114 #define FALCON_FLUSH_TIMEOUT 10 /* 10ms */
115
116 /**************************************************************************
117  *
118  * Falcon constants
119  *
120  **************************************************************************
121  */
122
123 /* DMA address mask */
124 #define FALCON_DMA_MASK DMA_BIT_MASK(46)
125
126 /* TX DMA length mask (13-bit) */
127 #define FALCON_TX_DMA_MASK (4096 - 1)
128
129 /* Size and alignment of special buffers (4KB) */
130 #define FALCON_BUF_SIZE 4096
131
132 /* Dummy SRAM size code */
133 #define SRM_NB_BSZ_ONCHIP_ONLY (-1)
134
135 /* Be nice if these (or equiv.) were in linux/pci_regs.h, but they're not. */
136 #define PCI_EXP_DEVCAP_PWR_VAL_LBN      18
137 #define PCI_EXP_DEVCAP_PWR_SCL_LBN      26
138 #define PCI_EXP_DEVCTL_PAYLOAD_LBN      5
139 #define PCI_EXP_LNKSTA_LNK_WID          0x3f0
140 #define PCI_EXP_LNKSTA_LNK_WID_LBN      4
141
142 #define FALCON_IS_DUAL_FUNC(efx)                \
143         (falcon_rev(efx) < FALCON_REV_B0)
144
145 /**************************************************************************
146  *
147  * Falcon hardware access
148  *
149  **************************************************************************/
150
151 /* Read the current event from the event queue */
152 static inline efx_qword_t *falcon_event(struct efx_channel *channel,
153                                         unsigned int index)
154 {
155         return (((efx_qword_t *) (channel->eventq.addr)) + index);
156 }
157
158 /* See if an event is present
159  *
160  * We check both the high and low dword of the event for all ones.  We
161  * wrote all ones when we cleared the event, and no valid event can
162  * have all ones in either its high or low dwords.  This approach is
163  * robust against reordering.
164  *
165  * Note that using a single 64-bit comparison is incorrect; even
166  * though the CPU read will be atomic, the DMA write may not be.
167  */
168 static inline int falcon_event_present(efx_qword_t *event)
169 {
170         return (!(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
171                   EFX_DWORD_IS_ALL_ONES(event->dword[1])));
172 }
173
174 /**************************************************************************
175  *
176  * I2C bus - this is a bit-bashing interface using GPIO pins
177  * Note that it uses the output enables to tristate the outputs
178  * SDA is the data pin and SCL is the clock
179  *
180  **************************************************************************
181  */
182 static void falcon_setsda(void *data, int state)
183 {
184         struct efx_nic *efx = (struct efx_nic *)data;
185         efx_oword_t reg;
186
187         falcon_read(efx, &reg, GPIO_CTL_REG_KER);
188         EFX_SET_OWORD_FIELD(reg, GPIO3_OEN, !state);
189         falcon_write(efx, &reg, GPIO_CTL_REG_KER);
190 }
191
192 static void falcon_setscl(void *data, int state)
193 {
194         struct efx_nic *efx = (struct efx_nic *)data;
195         efx_oword_t reg;
196
197         falcon_read(efx, &reg, GPIO_CTL_REG_KER);
198         EFX_SET_OWORD_FIELD(reg, GPIO0_OEN, !state);
199         falcon_write(efx, &reg, GPIO_CTL_REG_KER);
200 }
201
202 static int falcon_getsda(void *data)
203 {
204         struct efx_nic *efx = (struct efx_nic *)data;
205         efx_oword_t reg;
206
207         falcon_read(efx, &reg, GPIO_CTL_REG_KER);
208         return EFX_OWORD_FIELD(reg, GPIO3_IN);
209 }
210
211 static int falcon_getscl(void *data)
212 {
213         struct efx_nic *efx = (struct efx_nic *)data;
214         efx_oword_t reg;
215
216         falcon_read(efx, &reg, GPIO_CTL_REG_KER);
217         return EFX_OWORD_FIELD(reg, GPIO0_IN);
218 }
219
220 static struct i2c_algo_bit_data falcon_i2c_bit_operations = {
221         .setsda         = falcon_setsda,
222         .setscl         = falcon_setscl,
223         .getsda         = falcon_getsda,
224         .getscl         = falcon_getscl,
225         .udelay         = 5,
226         /* Wait up to 50 ms for slave to let us pull SCL high */
227         .timeout        = DIV_ROUND_UP(HZ, 20),
228 };
229
230 /**************************************************************************
231  *
232  * Falcon special buffer handling
233  * Special buffers are used for event queues and the TX and RX
234  * descriptor rings.
235  *
236  *************************************************************************/
237
238 /*
239  * Initialise a Falcon special buffer
240  *
241  * This will define a buffer (previously allocated via
242  * falcon_alloc_special_buffer()) in Falcon's buffer table, allowing
243  * it to be used for event queues, descriptor rings etc.
244  */
245 static int
246 falcon_init_special_buffer(struct efx_nic *efx,
247                            struct efx_special_buffer *buffer)
248 {
249         efx_qword_t buf_desc;
250         int index;
251         dma_addr_t dma_addr;
252         int i;
253
254         EFX_BUG_ON_PARANOID(!buffer->addr);
255
256         /* Write buffer descriptors to NIC */
257         for (i = 0; i < buffer->entries; i++) {
258                 index = buffer->index + i;
259                 dma_addr = buffer->dma_addr + (i * 4096);
260                 EFX_LOG(efx, "mapping special buffer %d at %llx\n",
261                         index, (unsigned long long)dma_addr);
262                 EFX_POPULATE_QWORD_4(buf_desc,
263                                      IP_DAT_BUF_SIZE, IP_DAT_BUF_SIZE_4K,
264                                      BUF_ADR_REGION, 0,
265                                      BUF_ADR_FBUF, (dma_addr >> 12),
266                                      BUF_OWNER_ID_FBUF, 0);
267                 falcon_write_sram(efx, &buf_desc, index);
268         }
269
270         return 0;
271 }
272
273 /* Unmaps a buffer from Falcon and clears the buffer table entries */
274 static void
275 falcon_fini_special_buffer(struct efx_nic *efx,
276                            struct efx_special_buffer *buffer)
277 {
278         efx_oword_t buf_tbl_upd;
279         unsigned int start = buffer->index;
280         unsigned int end = (buffer->index + buffer->entries - 1);
281
282         if (!buffer->entries)
283                 return;
284
285         EFX_LOG(efx, "unmapping special buffers %d-%d\n",
286                 buffer->index, buffer->index + buffer->entries - 1);
287
288         EFX_POPULATE_OWORD_4(buf_tbl_upd,
289                              BUF_UPD_CMD, 0,
290                              BUF_CLR_CMD, 1,
291                              BUF_CLR_END_ID, end,
292                              BUF_CLR_START_ID, start);
293         falcon_write(efx, &buf_tbl_upd, BUF_TBL_UPD_REG_KER);
294 }
295
296 /*
297  * Allocate a new Falcon special buffer
298  *
299  * This allocates memory for a new buffer, clears it and allocates a
300  * new buffer ID range.  It does not write into Falcon's buffer table.
301  *
302  * This call will allocate 4KB buffers, since Falcon can't use 8KB
303  * buffers for event queues and descriptor rings.
304  */
305 static int falcon_alloc_special_buffer(struct efx_nic *efx,
306                                        struct efx_special_buffer *buffer,
307                                        unsigned int len)
308 {
309         struct falcon_nic_data *nic_data = efx->nic_data;
310
311         len = ALIGN(len, FALCON_BUF_SIZE);
312
313         buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
314                                             &buffer->dma_addr);
315         if (!buffer->addr)
316                 return -ENOMEM;
317         buffer->len = len;
318         buffer->entries = len / FALCON_BUF_SIZE;
319         BUG_ON(buffer->dma_addr & (FALCON_BUF_SIZE - 1));
320
321         /* All zeros is a potentially valid event so memset to 0xff */
322         memset(buffer->addr, 0xff, len);
323
324         /* Select new buffer ID */
325         buffer->index = nic_data->next_buffer_table;
326         nic_data->next_buffer_table += buffer->entries;
327
328         EFX_LOG(efx, "allocating special buffers %d-%d at %llx+%x "
329                 "(virt %p phys %lx)\n", buffer->index,
330                 buffer->index + buffer->entries - 1,
331                 (unsigned long long)buffer->dma_addr, len,
332                 buffer->addr, virt_to_phys(buffer->addr));
333
334         return 0;
335 }
336
337 static void falcon_free_special_buffer(struct efx_nic *efx,
338                                        struct efx_special_buffer *buffer)
339 {
340         if (!buffer->addr)
341                 return;
342
343         EFX_LOG(efx, "deallocating special buffers %d-%d at %llx+%x "
344                 "(virt %p phys %lx)\n", buffer->index,
345                 buffer->index + buffer->entries - 1,
346                 (unsigned long long)buffer->dma_addr, buffer->len,
347                 buffer->addr, virt_to_phys(buffer->addr));
348
349         pci_free_consistent(efx->pci_dev, buffer->len, buffer->addr,
350                             buffer->dma_addr);
351         buffer->addr = NULL;
352         buffer->entries = 0;
353 }
354
355 /**************************************************************************
356  *
357  * Falcon generic buffer handling
358  * These buffers are used for interrupt status and MAC stats
359  *
360  **************************************************************************/
361
362 static int falcon_alloc_buffer(struct efx_nic *efx,
363                                struct efx_buffer *buffer, unsigned int len)
364 {
365         buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
366                                             &buffer->dma_addr);
367         if (!buffer->addr)
368                 return -ENOMEM;
369         buffer->len = len;
370         memset(buffer->addr, 0, len);
371         return 0;
372 }
373
374 static void falcon_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
375 {
376         if (buffer->addr) {
377                 pci_free_consistent(efx->pci_dev, buffer->len,
378                                     buffer->addr, buffer->dma_addr);
379                 buffer->addr = NULL;
380         }
381 }
382
383 /**************************************************************************
384  *
385  * Falcon TX path
386  *
387  **************************************************************************/
388
389 /* Returns a pointer to the specified transmit descriptor in the TX
390  * descriptor queue belonging to the specified channel.
391  */
392 static inline efx_qword_t *falcon_tx_desc(struct efx_tx_queue *tx_queue,
393                                                unsigned int index)
394 {
395         return (((efx_qword_t *) (tx_queue->txd.addr)) + index);
396 }
397
398 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
399 static inline void falcon_notify_tx_desc(struct efx_tx_queue *tx_queue)
400 {
401         unsigned write_ptr;
402         efx_dword_t reg;
403
404         write_ptr = tx_queue->write_count & FALCON_TXD_RING_MASK;
405         EFX_POPULATE_DWORD_1(reg, TX_DESC_WPTR_DWORD, write_ptr);
406         falcon_writel_page(tx_queue->efx, &reg,
407                            TX_DESC_UPD_REG_KER_DWORD, tx_queue->queue);
408 }
409
410
411 /* For each entry inserted into the software descriptor ring, create a
412  * descriptor in the hardware TX descriptor ring (in host memory), and
413  * write a doorbell.
414  */
415 void falcon_push_buffers(struct efx_tx_queue *tx_queue)
416 {
417
418         struct efx_tx_buffer *buffer;
419         efx_qword_t *txd;
420         unsigned write_ptr;
421
422         BUG_ON(tx_queue->write_count == tx_queue->insert_count);
423
424         do {
425                 write_ptr = tx_queue->write_count & FALCON_TXD_RING_MASK;
426                 buffer = &tx_queue->buffer[write_ptr];
427                 txd = falcon_tx_desc(tx_queue, write_ptr);
428                 ++tx_queue->write_count;
429
430                 /* Create TX descriptor ring entry */
431                 EFX_POPULATE_QWORD_5(*txd,
432                                      TX_KER_PORT, 0,
433                                      TX_KER_CONT, buffer->continuation,
434                                      TX_KER_BYTE_CNT, buffer->len,
435                                      TX_KER_BUF_REGION, 0,
436                                      TX_KER_BUF_ADR, buffer->dma_addr);
437         } while (tx_queue->write_count != tx_queue->insert_count);
438
439         wmb(); /* Ensure descriptors are written before they are fetched */
440         falcon_notify_tx_desc(tx_queue);
441 }
442
443 /* Allocate hardware resources for a TX queue */
444 int falcon_probe_tx(struct efx_tx_queue *tx_queue)
445 {
446         struct efx_nic *efx = tx_queue->efx;
447         return falcon_alloc_special_buffer(efx, &tx_queue->txd,
448                                            FALCON_TXD_RING_SIZE *
449                                            sizeof(efx_qword_t));
450 }
451
452 int falcon_init_tx(struct efx_tx_queue *tx_queue)
453 {
454         efx_oword_t tx_desc_ptr;
455         struct efx_nic *efx = tx_queue->efx;
456         int rc;
457
458         /* Pin TX descriptor ring */
459         rc = falcon_init_special_buffer(efx, &tx_queue->txd);
460         if (rc)
461                 return rc;
462
463         /* Push TX descriptor ring to card */
464         EFX_POPULATE_OWORD_10(tx_desc_ptr,
465                               TX_DESCQ_EN, 1,
466                               TX_ISCSI_DDIG_EN, 0,
467                               TX_ISCSI_HDIG_EN, 0,
468                               TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
469                               TX_DESCQ_EVQ_ID, tx_queue->channel->evqnum,
470                               TX_DESCQ_OWNER_ID, 0,
471                               TX_DESCQ_LABEL, tx_queue->queue,
472                               TX_DESCQ_SIZE, FALCON_TXD_RING_ORDER,
473                               TX_DESCQ_TYPE, 0,
474                               TX_NON_IP_DROP_DIS_B0, 1);
475
476         if (falcon_rev(efx) >= FALCON_REV_B0) {
477                 int csum = tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM;
478                 EFX_SET_OWORD_FIELD(tx_desc_ptr, TX_IP_CHKSM_DIS_B0, !csum);
479                 EFX_SET_OWORD_FIELD(tx_desc_ptr, TX_TCP_CHKSM_DIS_B0, !csum);
480         }
481
482         falcon_write_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
483                            tx_queue->queue);
484
485         if (falcon_rev(efx) < FALCON_REV_B0) {
486                 efx_oword_t reg;
487
488                 /* Only 128 bits in this register */
489                 BUILD_BUG_ON(EFX_TX_QUEUE_COUNT >= 128);
490
491                 falcon_read(efx, &reg, TX_CHKSM_CFG_REG_KER_A1);
492                 if (tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM)
493                         clear_bit_le(tx_queue->queue, (void *)&reg);
494                 else
495                         set_bit_le(tx_queue->queue, (void *)&reg);
496                 falcon_write(efx, &reg, TX_CHKSM_CFG_REG_KER_A1);
497         }
498
499         return 0;
500 }
501
502 static int falcon_flush_tx_queue(struct efx_tx_queue *tx_queue)
503 {
504         struct efx_nic *efx = tx_queue->efx;
505         struct efx_channel *channel = &efx->channel[0];
506         efx_oword_t tx_flush_descq;
507         unsigned int read_ptr, i;
508
509         /* Post a flush command */
510         EFX_POPULATE_OWORD_2(tx_flush_descq,
511                              TX_FLUSH_DESCQ_CMD, 1,
512                              TX_FLUSH_DESCQ, tx_queue->queue);
513         falcon_write(efx, &tx_flush_descq, TX_FLUSH_DESCQ_REG_KER);
514         msleep(FALCON_FLUSH_TIMEOUT);
515
516         if (EFX_WORKAROUND_7803(efx))
517                 return 0;
518
519         /* Look for a flush completed event */
520         read_ptr = channel->eventq_read_ptr;
521         for (i = 0; i < FALCON_EVQ_SIZE; ++i) {
522                 efx_qword_t *event = falcon_event(channel, read_ptr);
523                 int ev_code, ev_sub_code, ev_queue;
524                 if (!falcon_event_present(event))
525                         break;
526
527                 ev_code = EFX_QWORD_FIELD(*event, EV_CODE);
528                 ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE);
529                 ev_queue = EFX_QWORD_FIELD(*event, DRIVER_EV_TX_DESCQ_ID);
530                 if ((ev_sub_code == TX_DESCQ_FLS_DONE_EV_DECODE) &&
531                     (ev_queue == tx_queue->queue)) {
532                         EFX_LOG(efx, "tx queue %d flush command succesful\n",
533                                 tx_queue->queue);
534                         return 0;
535                 }
536
537                 read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK;
538         }
539
540         if (EFX_WORKAROUND_11557(efx)) {
541                 efx_oword_t reg;
542                 int enabled;
543
544                 falcon_read_table(efx, &reg, efx->type->txd_ptr_tbl_base,
545                                   tx_queue->queue);
546                 enabled = EFX_OWORD_FIELD(reg, TX_DESCQ_EN);
547                 if (!enabled) {
548                         EFX_LOG(efx, "tx queue %d disabled without a "
549                                 "flush event seen\n", tx_queue->queue);
550                         return 0;
551                 }
552         }
553
554         EFX_ERR(efx, "tx queue %d flush command timed out\n", tx_queue->queue);
555         return -ETIMEDOUT;
556 }
557
558 void falcon_fini_tx(struct efx_tx_queue *tx_queue)
559 {
560         struct efx_nic *efx = tx_queue->efx;
561         efx_oword_t tx_desc_ptr;
562
563         /* Stop the hardware using the queue */
564         if (falcon_flush_tx_queue(tx_queue))
565                 EFX_ERR(efx, "failed to flush tx queue %d\n", tx_queue->queue);
566
567         /* Remove TX descriptor ring from card */
568         EFX_ZERO_OWORD(tx_desc_ptr);
569         falcon_write_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
570                            tx_queue->queue);
571
572         /* Unpin TX descriptor ring */
573         falcon_fini_special_buffer(efx, &tx_queue->txd);
574 }
575
576 /* Free buffers backing TX queue */
577 void falcon_remove_tx(struct efx_tx_queue *tx_queue)
578 {
579         falcon_free_special_buffer(tx_queue->efx, &tx_queue->txd);
580 }
581
582 /**************************************************************************
583  *
584  * Falcon RX path
585  *
586  **************************************************************************/
587
588 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
589 static inline efx_qword_t *falcon_rx_desc(struct efx_rx_queue *rx_queue,
590                                                unsigned int index)
591 {
592         return (((efx_qword_t *) (rx_queue->rxd.addr)) + index);
593 }
594
595 /* This creates an entry in the RX descriptor queue */
596 static inline void falcon_build_rx_desc(struct efx_rx_queue *rx_queue,
597                                         unsigned index)
598 {
599         struct efx_rx_buffer *rx_buf;
600         efx_qword_t *rxd;
601
602         rxd = falcon_rx_desc(rx_queue, index);
603         rx_buf = efx_rx_buffer(rx_queue, index);
604         EFX_POPULATE_QWORD_3(*rxd,
605                              RX_KER_BUF_SIZE,
606                              rx_buf->len -
607                              rx_queue->efx->type->rx_buffer_padding,
608                              RX_KER_BUF_REGION, 0,
609                              RX_KER_BUF_ADR, rx_buf->dma_addr);
610 }
611
612 /* This writes to the RX_DESC_WPTR register for the specified receive
613  * descriptor ring.
614  */
615 void falcon_notify_rx_desc(struct efx_rx_queue *rx_queue)
616 {
617         efx_dword_t reg;
618         unsigned write_ptr;
619
620         while (rx_queue->notified_count != rx_queue->added_count) {
621                 falcon_build_rx_desc(rx_queue,
622                                      rx_queue->notified_count &
623                                      FALCON_RXD_RING_MASK);
624                 ++rx_queue->notified_count;
625         }
626
627         wmb();
628         write_ptr = rx_queue->added_count & FALCON_RXD_RING_MASK;
629         EFX_POPULATE_DWORD_1(reg, RX_DESC_WPTR_DWORD, write_ptr);
630         falcon_writel_page(rx_queue->efx, &reg,
631                            RX_DESC_UPD_REG_KER_DWORD, rx_queue->queue);
632 }
633
634 int falcon_probe_rx(struct efx_rx_queue *rx_queue)
635 {
636         struct efx_nic *efx = rx_queue->efx;
637         return falcon_alloc_special_buffer(efx, &rx_queue->rxd,
638                                            FALCON_RXD_RING_SIZE *
639                                            sizeof(efx_qword_t));
640 }
641
642 int falcon_init_rx(struct efx_rx_queue *rx_queue)
643 {
644         efx_oword_t rx_desc_ptr;
645         struct efx_nic *efx = rx_queue->efx;
646         int rc;
647         int is_b0 = falcon_rev(efx) >= FALCON_REV_B0;
648         int iscsi_digest_en = is_b0;
649
650         EFX_LOG(efx, "RX queue %d ring in special buffers %d-%d\n",
651                 rx_queue->queue, rx_queue->rxd.index,
652                 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
653
654         /* Pin RX descriptor ring */
655         rc = falcon_init_special_buffer(efx, &rx_queue->rxd);
656         if (rc)
657                 return rc;
658
659         /* Push RX descriptor ring to card */
660         EFX_POPULATE_OWORD_10(rx_desc_ptr,
661                               RX_ISCSI_DDIG_EN, iscsi_digest_en,
662                               RX_ISCSI_HDIG_EN, iscsi_digest_en,
663                               RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
664                               RX_DESCQ_EVQ_ID, rx_queue->channel->evqnum,
665                               RX_DESCQ_OWNER_ID, 0,
666                               RX_DESCQ_LABEL, rx_queue->queue,
667                               RX_DESCQ_SIZE, FALCON_RXD_RING_ORDER,
668                               RX_DESCQ_TYPE, 0 /* kernel queue */ ,
669                               /* For >=B0 this is scatter so disable */
670                               RX_DESCQ_JUMBO, !is_b0,
671                               RX_DESCQ_EN, 1);
672         falcon_write_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
673                            rx_queue->queue);
674         return 0;
675 }
676
677 static int falcon_flush_rx_queue(struct efx_rx_queue *rx_queue)
678 {
679         struct efx_nic *efx = rx_queue->efx;
680         struct efx_channel *channel = &efx->channel[0];
681         unsigned int read_ptr, i;
682         efx_oword_t rx_flush_descq;
683
684         /* Post a flush command */
685         EFX_POPULATE_OWORD_2(rx_flush_descq,
686                              RX_FLUSH_DESCQ_CMD, 1,
687                              RX_FLUSH_DESCQ, rx_queue->queue);
688         falcon_write(efx, &rx_flush_descq, RX_FLUSH_DESCQ_REG_KER);
689         msleep(FALCON_FLUSH_TIMEOUT);
690
691         if (EFX_WORKAROUND_7803(efx))
692                 return 0;
693
694         /* Look for a flush completed event */
695         read_ptr = channel->eventq_read_ptr;
696         for (i = 0; i < FALCON_EVQ_SIZE; ++i) {
697                 efx_qword_t *event = falcon_event(channel, read_ptr);
698                 int ev_code, ev_sub_code, ev_queue, ev_failed;
699                 if (!falcon_event_present(event))
700                         break;
701
702                 ev_code = EFX_QWORD_FIELD(*event, EV_CODE);
703                 ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE);
704                 ev_queue = EFX_QWORD_FIELD(*event, DRIVER_EV_RX_DESCQ_ID);
705                 ev_failed = EFX_QWORD_FIELD(*event, DRIVER_EV_RX_FLUSH_FAIL);
706
707                 if ((ev_sub_code == RX_DESCQ_FLS_DONE_EV_DECODE) &&
708                     (ev_queue == rx_queue->queue)) {
709                         if (ev_failed) {
710                                 EFX_INFO(efx, "rx queue %d flush command "
711                                          "failed\n", rx_queue->queue);
712                                 return -EAGAIN;
713                         } else {
714                                 EFX_LOG(efx, "rx queue %d flush command "
715                                         "succesful\n", rx_queue->queue);
716                                 return 0;
717                         }
718                 }
719
720                 read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK;
721         }
722
723         if (EFX_WORKAROUND_11557(efx)) {
724                 efx_oword_t reg;
725                 int enabled;
726
727                 falcon_read_table(efx, &reg, efx->type->rxd_ptr_tbl_base,
728                                   rx_queue->queue);
729                 enabled = EFX_OWORD_FIELD(reg, RX_DESCQ_EN);
730                 if (!enabled) {
731                         EFX_LOG(efx, "rx queue %d disabled without a "
732                                 "flush event seen\n", rx_queue->queue);
733                         return 0;
734                 }
735         }
736
737         EFX_ERR(efx, "rx queue %d flush command timed out\n", rx_queue->queue);
738         return -ETIMEDOUT;
739 }
740
741 void falcon_fini_rx(struct efx_rx_queue *rx_queue)
742 {
743         efx_oword_t rx_desc_ptr;
744         struct efx_nic *efx = rx_queue->efx;
745         int i, rc;
746
747         /* Try and flush the rx queue. This may need to be repeated */
748         for (i = 0; i < 5; i++) {
749                 rc = falcon_flush_rx_queue(rx_queue);
750                 if (rc == -EAGAIN)
751                         continue;
752                 break;
753         }
754         if (rc) {
755                 EFX_ERR(efx, "failed to flush rx queue %d\n", rx_queue->queue);
756                 efx_schedule_reset(efx, RESET_TYPE_INVISIBLE);
757         }
758
759         /* Remove RX descriptor ring from card */
760         EFX_ZERO_OWORD(rx_desc_ptr);
761         falcon_write_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
762                            rx_queue->queue);
763
764         /* Unpin RX descriptor ring */
765         falcon_fini_special_buffer(efx, &rx_queue->rxd);
766 }
767
768 /* Free buffers backing RX queue */
769 void falcon_remove_rx(struct efx_rx_queue *rx_queue)
770 {
771         falcon_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
772 }
773
774 /**************************************************************************
775  *
776  * Falcon event queue processing
777  * Event queues are processed by per-channel tasklets.
778  *
779  **************************************************************************/
780
781 /* Update a channel's event queue's read pointer (RPTR) register
782  *
783  * This writes the EVQ_RPTR_REG register for the specified channel's
784  * event queue.
785  *
786  * Note that EVQ_RPTR_REG contains the index of the "last read" event,
787  * whereas channel->eventq_read_ptr contains the index of the "next to
788  * read" event.
789  */
790 void falcon_eventq_read_ack(struct efx_channel *channel)
791 {
792         efx_dword_t reg;
793         struct efx_nic *efx = channel->efx;
794
795         EFX_POPULATE_DWORD_1(reg, EVQ_RPTR_DWORD, channel->eventq_read_ptr);
796         falcon_writel_table(efx, &reg, efx->type->evq_rptr_tbl_base,
797                             channel->evqnum);
798 }
799
800 /* Use HW to insert a SW defined event */
801 void falcon_generate_event(struct efx_channel *channel, efx_qword_t *event)
802 {
803         efx_oword_t drv_ev_reg;
804
805         EFX_POPULATE_OWORD_2(drv_ev_reg,
806                              DRV_EV_QID, channel->evqnum,
807                              DRV_EV_DATA,
808                              EFX_QWORD_FIELD64(*event, WHOLE_EVENT));
809         falcon_write(channel->efx, &drv_ev_reg, DRV_EV_REG_KER);
810 }
811
812 /* Handle a transmit completion event
813  *
814  * Falcon batches TX completion events; the message we receive is of
815  * the form "complete all TX events up to this index".
816  */
817 static inline void falcon_handle_tx_event(struct efx_channel *channel,
818                                           efx_qword_t *event)
819 {
820         unsigned int tx_ev_desc_ptr;
821         unsigned int tx_ev_q_label;
822         struct efx_tx_queue *tx_queue;
823         struct efx_nic *efx = channel->efx;
824
825         if (likely(EFX_QWORD_FIELD(*event, TX_EV_COMP))) {
826                 /* Transmit completion */
827                 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, TX_EV_DESC_PTR);
828                 tx_ev_q_label = EFX_QWORD_FIELD(*event, TX_EV_Q_LABEL);
829                 tx_queue = &efx->tx_queue[tx_ev_q_label];
830                 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
831         } else if (EFX_QWORD_FIELD(*event, TX_EV_WQ_FF_FULL)) {
832                 /* Rewrite the FIFO write pointer */
833                 tx_ev_q_label = EFX_QWORD_FIELD(*event, TX_EV_Q_LABEL);
834                 tx_queue = &efx->tx_queue[tx_ev_q_label];
835
836                 if (efx_dev_registered(efx))
837                         netif_tx_lock(efx->net_dev);
838                 falcon_notify_tx_desc(tx_queue);
839                 if (efx_dev_registered(efx))
840                         netif_tx_unlock(efx->net_dev);
841         } else if (EFX_QWORD_FIELD(*event, TX_EV_PKT_ERR) &&
842                    EFX_WORKAROUND_10727(efx)) {
843                 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
844         } else {
845                 EFX_ERR(efx, "channel %d unexpected TX event "
846                         EFX_QWORD_FMT"\n", channel->channel,
847                         EFX_QWORD_VAL(*event));
848         }
849 }
850
851 /* Detect errors included in the rx_evt_pkt_ok bit. */
852 static void falcon_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
853                                     const efx_qword_t *event,
854                                     unsigned *rx_ev_pkt_ok,
855                                     int *discard)
856 {
857         struct efx_nic *efx = rx_queue->efx;
858         unsigned rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
859         unsigned rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
860         unsigned rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
861         unsigned rx_ev_pkt_type, rx_ev_other_err, rx_ev_pause_frm;
862         unsigned rx_ev_ip_frag_err, rx_ev_hdr_type, rx_ev_mcast_pkt;
863
864         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, RX_EV_HDR_TYPE);
865         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, RX_EV_MCAST_PKT);
866         rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, RX_EV_TOBE_DISC);
867         rx_ev_pkt_type = EFX_QWORD_FIELD(*event, RX_EV_PKT_TYPE);
868         rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
869                                                  RX_EV_BUF_OWNER_ID_ERR);
870         rx_ev_ip_frag_err = EFX_QWORD_FIELD(*event, RX_EV_IF_FRAG_ERR);
871         rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
872                                                   RX_EV_IP_HDR_CHKSUM_ERR);
873         rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
874                                                    RX_EV_TCP_UDP_CHKSUM_ERR);
875         rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, RX_EV_ETH_CRC_ERR);
876         rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, RX_EV_FRM_TRUNC);
877         rx_ev_drib_nib = ((falcon_rev(efx) >= FALCON_REV_B0) ?
878                           0 : EFX_QWORD_FIELD(*event, RX_EV_DRIB_NIB));
879         rx_ev_pause_frm = EFX_QWORD_FIELD(*event, RX_EV_PAUSE_FRM_ERR);
880
881         /* Every error apart from tobe_disc and pause_frm */
882         rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
883                            rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
884                            rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
885
886         /* Count errors that are not in MAC stats. */
887         if (rx_ev_frm_trunc)
888                 ++rx_queue->channel->n_rx_frm_trunc;
889         else if (rx_ev_tobe_disc)
890                 ++rx_queue->channel->n_rx_tobe_disc;
891         else if (rx_ev_ip_hdr_chksum_err)
892                 ++rx_queue->channel->n_rx_ip_hdr_chksum_err;
893         else if (rx_ev_tcp_udp_chksum_err)
894                 ++rx_queue->channel->n_rx_tcp_udp_chksum_err;
895         if (rx_ev_ip_frag_err)
896                 ++rx_queue->channel->n_rx_ip_frag_err;
897
898         /* The frame must be discarded if any of these are true. */
899         *discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
900                     rx_ev_tobe_disc | rx_ev_pause_frm);
901
902         /* TOBE_DISC is expected on unicast mismatches; don't print out an
903          * error message.  FRM_TRUNC indicates RXDP dropped the packet due
904          * to a FIFO overflow.
905          */
906 #ifdef EFX_ENABLE_DEBUG
907         if (rx_ev_other_err) {
908                 EFX_INFO_RL(efx, " RX queue %d unexpected RX event "
909                             EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
910                             rx_queue->queue, EFX_QWORD_VAL(*event),
911                             rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
912                             rx_ev_ip_hdr_chksum_err ?
913                             " [IP_HDR_CHKSUM_ERR]" : "",
914                             rx_ev_tcp_udp_chksum_err ?
915                             " [TCP_UDP_CHKSUM_ERR]" : "",
916                             rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
917                             rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
918                             rx_ev_drib_nib ? " [DRIB_NIB]" : "",
919                             rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
920                             rx_ev_pause_frm ? " [PAUSE]" : "");
921         }
922 #endif
923
924         if (unlikely(rx_ev_eth_crc_err && EFX_WORKAROUND_10750(efx) &&
925                      efx->phy_type == PHY_TYPE_10XPRESS))
926                 tenxpress_crc_err(efx);
927 }
928
929 /* Handle receive events that are not in-order. */
930 static void falcon_handle_rx_bad_index(struct efx_rx_queue *rx_queue,
931                                        unsigned index)
932 {
933         struct efx_nic *efx = rx_queue->efx;
934         unsigned expected, dropped;
935
936         expected = rx_queue->removed_count & FALCON_RXD_RING_MASK;
937         dropped = ((index + FALCON_RXD_RING_SIZE - expected) &
938                    FALCON_RXD_RING_MASK);
939         EFX_INFO(efx, "dropped %d events (index=%d expected=%d)\n",
940                 dropped, index, expected);
941
942         efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
943                            RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
944 }
945
946 /* Handle a packet received event
947  *
948  * Falcon silicon gives a "discard" flag if it's a unicast packet with the
949  * wrong destination address
950  * Also "is multicast" and "matches multicast filter" flags can be used to
951  * discard non-matching multicast packets.
952  */
953 static inline int falcon_handle_rx_event(struct efx_channel *channel,
954                                          const efx_qword_t *event)
955 {
956         unsigned int rx_ev_q_label, rx_ev_desc_ptr, rx_ev_byte_cnt;
957         unsigned int rx_ev_pkt_ok, rx_ev_hdr_type, rx_ev_mcast_pkt;
958         unsigned expected_ptr;
959         int discard = 0, checksummed;
960         struct efx_rx_queue *rx_queue;
961         struct efx_nic *efx = channel->efx;
962
963         /* Basic packet information */
964         rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, RX_EV_BYTE_CNT);
965         rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, RX_EV_PKT_OK);
966         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, RX_EV_HDR_TYPE);
967         WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_JUMBO_CONT));
968         WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_SOP) != 1);
969
970         rx_ev_q_label = EFX_QWORD_FIELD(*event, RX_EV_Q_LABEL);
971         rx_queue = &efx->rx_queue[rx_ev_q_label];
972
973         rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, RX_EV_DESC_PTR);
974         expected_ptr = rx_queue->removed_count & FALCON_RXD_RING_MASK;
975         if (unlikely(rx_ev_desc_ptr != expected_ptr)) {
976                 falcon_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
977                 return rx_ev_q_label;
978         }
979
980         if (likely(rx_ev_pkt_ok)) {
981                 /* If packet is marked as OK and packet type is TCP/IPv4 or
982                  * UDP/IPv4, then we can rely on the hardware checksum.
983                  */
984                 checksummed = RX_EV_HDR_TYPE_HAS_CHECKSUMS(rx_ev_hdr_type);
985         } else {
986                 falcon_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok,
987                                         &discard);
988                 checksummed = 0;
989         }
990
991         /* Detect multicast packets that didn't match the filter */
992         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, RX_EV_MCAST_PKT);
993         if (rx_ev_mcast_pkt) {
994                 unsigned int rx_ev_mcast_hash_match =
995                         EFX_QWORD_FIELD(*event, RX_EV_MCAST_HASH_MATCH);
996
997                 if (unlikely(!rx_ev_mcast_hash_match))
998                         discard = 1;
999         }
1000
1001         /* Handle received packet */
1002         efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt,
1003                       checksummed, discard);
1004
1005         return rx_ev_q_label;
1006 }
1007
1008 /* Global events are basically PHY events */
1009 static void falcon_handle_global_event(struct efx_channel *channel,
1010                                        efx_qword_t *event)
1011 {
1012         struct efx_nic *efx = channel->efx;
1013         int is_phy_event = 0, handled = 0;
1014
1015         /* Check for interrupt on either port.  Some boards have a
1016          * single PHY wired to the interrupt line for port 1. */
1017         if (EFX_QWORD_FIELD(*event, G_PHY0_INTR) ||
1018             EFX_QWORD_FIELD(*event, G_PHY1_INTR) ||
1019             EFX_QWORD_FIELD(*event, XG_PHY_INTR))
1020                 is_phy_event = 1;
1021
1022         if ((falcon_rev(efx) >= FALCON_REV_B0) &&
1023             EFX_OWORD_FIELD(*event, XG_MNT_INTR_B0))
1024                 is_phy_event = 1;
1025
1026         if (is_phy_event) {
1027                 efx->phy_op->clear_interrupt(efx);
1028                 queue_work(efx->workqueue, &efx->reconfigure_work);
1029                 handled = 1;
1030         }
1031
1032         if (EFX_QWORD_FIELD_VER(efx, *event, RX_RECOVERY)) {
1033                 EFX_ERR(efx, "channel %d seen global RX_RESET "
1034                         "event. Resetting.\n", channel->channel);
1035
1036                 atomic_inc(&efx->rx_reset);
1037                 efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
1038                                    RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
1039                 handled = 1;
1040         }
1041
1042         if (!handled)
1043                 EFX_ERR(efx, "channel %d unknown global event "
1044                         EFX_QWORD_FMT "\n", channel->channel,
1045                         EFX_QWORD_VAL(*event));
1046 }
1047
1048 static void falcon_handle_driver_event(struct efx_channel *channel,
1049                                        efx_qword_t *event)
1050 {
1051         struct efx_nic *efx = channel->efx;
1052         unsigned int ev_sub_code;
1053         unsigned int ev_sub_data;
1054
1055         ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE);
1056         ev_sub_data = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_DATA);
1057
1058         switch (ev_sub_code) {
1059         case TX_DESCQ_FLS_DONE_EV_DECODE:
1060                 EFX_TRACE(efx, "channel %d TXQ %d flushed\n",
1061                           channel->channel, ev_sub_data);
1062                 break;
1063         case RX_DESCQ_FLS_DONE_EV_DECODE:
1064                 EFX_TRACE(efx, "channel %d RXQ %d flushed\n",
1065                           channel->channel, ev_sub_data);
1066                 break;
1067         case EVQ_INIT_DONE_EV_DECODE:
1068                 EFX_LOG(efx, "channel %d EVQ %d initialised\n",
1069                         channel->channel, ev_sub_data);
1070                 break;
1071         case SRM_UPD_DONE_EV_DECODE:
1072                 EFX_TRACE(efx, "channel %d SRAM update done\n",
1073                           channel->channel);
1074                 break;
1075         case WAKE_UP_EV_DECODE:
1076                 EFX_TRACE(efx, "channel %d RXQ %d wakeup event\n",
1077                           channel->channel, ev_sub_data);
1078                 break;
1079         case TIMER_EV_DECODE:
1080                 EFX_TRACE(efx, "channel %d RX queue %d timer expired\n",
1081                           channel->channel, ev_sub_data);
1082                 break;
1083         case RX_RECOVERY_EV_DECODE:
1084                 EFX_ERR(efx, "channel %d seen DRIVER RX_RESET event. "
1085                         "Resetting.\n", channel->channel);
1086                 atomic_inc(&efx->rx_reset);
1087                 efx_schedule_reset(efx,
1088                                    EFX_WORKAROUND_6555(efx) ?
1089                                    RESET_TYPE_RX_RECOVERY :
1090                                    RESET_TYPE_DISABLE);
1091                 break;
1092         case RX_DSC_ERROR_EV_DECODE:
1093                 EFX_ERR(efx, "RX DMA Q %d reports descriptor fetch error."
1094                         " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
1095                 efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
1096                 break;
1097         case TX_DSC_ERROR_EV_DECODE:
1098                 EFX_ERR(efx, "TX DMA Q %d reports descriptor fetch error."
1099                         " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
1100                 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
1101                 break;
1102         default:
1103                 EFX_TRACE(efx, "channel %d unknown driver event code %d "
1104                           "data %04x\n", channel->channel, ev_sub_code,
1105                           ev_sub_data);
1106                 break;
1107         }
1108 }
1109
1110 int falcon_process_eventq(struct efx_channel *channel, int *rx_quota)
1111 {
1112         unsigned int read_ptr;
1113         efx_qword_t event, *p_event;
1114         int ev_code;
1115         int rxq;
1116         int rxdmaqs = 0;
1117
1118         read_ptr = channel->eventq_read_ptr;
1119
1120         do {
1121                 p_event = falcon_event(channel, read_ptr);
1122                 event = *p_event;
1123
1124                 if (!falcon_event_present(&event))
1125                         /* End of events */
1126                         break;
1127
1128                 EFX_TRACE(channel->efx, "channel %d event is "EFX_QWORD_FMT"\n",
1129                           channel->channel, EFX_QWORD_VAL(event));
1130
1131                 /* Clear this event by marking it all ones */
1132                 EFX_SET_QWORD(*p_event);
1133
1134                 ev_code = EFX_QWORD_FIELD(event, EV_CODE);
1135
1136                 switch (ev_code) {
1137                 case RX_IP_EV_DECODE:
1138                         rxq = falcon_handle_rx_event(channel, &event);
1139                         rxdmaqs |= (1 << rxq);
1140                         (*rx_quota)--;
1141                         break;
1142                 case TX_IP_EV_DECODE:
1143                         falcon_handle_tx_event(channel, &event);
1144                         break;
1145                 case DRV_GEN_EV_DECODE:
1146                         channel->eventq_magic
1147                                 = EFX_QWORD_FIELD(event, EVQ_MAGIC);
1148                         EFX_LOG(channel->efx, "channel %d received generated "
1149                                 "event "EFX_QWORD_FMT"\n", channel->channel,
1150                                 EFX_QWORD_VAL(event));
1151                         break;
1152                 case GLOBAL_EV_DECODE:
1153                         falcon_handle_global_event(channel, &event);
1154                         break;
1155                 case DRIVER_EV_DECODE:
1156                         falcon_handle_driver_event(channel, &event);
1157                         break;
1158                 default:
1159                         EFX_ERR(channel->efx, "channel %d unknown event type %d"
1160                                 " (data " EFX_QWORD_FMT ")\n", channel->channel,
1161                                 ev_code, EFX_QWORD_VAL(event));
1162                 }
1163
1164                 /* Increment read pointer */
1165                 read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK;
1166
1167         } while (*rx_quota);
1168
1169         channel->eventq_read_ptr = read_ptr;
1170         return rxdmaqs;
1171 }
1172
1173 void falcon_set_int_moderation(struct efx_channel *channel)
1174 {
1175         efx_dword_t timer_cmd;
1176         struct efx_nic *efx = channel->efx;
1177
1178         /* Set timer register */
1179         if (channel->irq_moderation) {
1180                 /* Round to resolution supported by hardware.  The value we
1181                  * program is based at 0.  So actual interrupt moderation
1182                  * achieved is ((x + 1) * res).
1183                  */
1184                 unsigned int res = 5;
1185                 channel->irq_moderation -= (channel->irq_moderation % res);
1186                 if (channel->irq_moderation < res)
1187                         channel->irq_moderation = res;
1188                 EFX_POPULATE_DWORD_2(timer_cmd,
1189                                      TIMER_MODE, TIMER_MODE_INT_HLDOFF,
1190                                      TIMER_VAL,
1191                                      (channel->irq_moderation / res) - 1);
1192         } else {
1193                 EFX_POPULATE_DWORD_2(timer_cmd,
1194                                      TIMER_MODE, TIMER_MODE_DIS,
1195                                      TIMER_VAL, 0);
1196         }
1197         falcon_writel_page_locked(efx, &timer_cmd, TIMER_CMD_REG_KER,
1198                                   channel->evqnum);
1199
1200 }
1201
1202 /* Allocate buffer table entries for event queue */
1203 int falcon_probe_eventq(struct efx_channel *channel)
1204 {
1205         struct efx_nic *efx = channel->efx;
1206         unsigned int evq_size;
1207
1208         evq_size = FALCON_EVQ_SIZE * sizeof(efx_qword_t);
1209         return falcon_alloc_special_buffer(efx, &channel->eventq, evq_size);
1210 }
1211
1212 int falcon_init_eventq(struct efx_channel *channel)
1213 {
1214         efx_oword_t evq_ptr;
1215         struct efx_nic *efx = channel->efx;
1216         int rc;
1217
1218         EFX_LOG(efx, "channel %d event queue in special buffers %d-%d\n",
1219                 channel->channel, channel->eventq.index,
1220                 channel->eventq.index + channel->eventq.entries - 1);
1221
1222         /* Pin event queue buffer */
1223         rc = falcon_init_special_buffer(efx, &channel->eventq);
1224         if (rc)
1225                 return rc;
1226
1227         /* Fill event queue with all ones (i.e. empty events) */
1228         memset(channel->eventq.addr, 0xff, channel->eventq.len);
1229
1230         /* Push event queue to card */
1231         EFX_POPULATE_OWORD_3(evq_ptr,
1232                              EVQ_EN, 1,
1233                              EVQ_SIZE, FALCON_EVQ_ORDER,
1234                              EVQ_BUF_BASE_ID, channel->eventq.index);
1235         falcon_write_table(efx, &evq_ptr, efx->type->evq_ptr_tbl_base,
1236                            channel->evqnum);
1237
1238         falcon_set_int_moderation(channel);
1239
1240         return 0;
1241 }
1242
1243 void falcon_fini_eventq(struct efx_channel *channel)
1244 {
1245         efx_oword_t eventq_ptr;
1246         struct efx_nic *efx = channel->efx;
1247
1248         /* Remove event queue from card */
1249         EFX_ZERO_OWORD(eventq_ptr);
1250         falcon_write_table(efx, &eventq_ptr, efx->type->evq_ptr_tbl_base,
1251                            channel->evqnum);
1252
1253         /* Unpin event queue */
1254         falcon_fini_special_buffer(efx, &channel->eventq);
1255 }
1256
1257 /* Free buffers backing event queue */
1258 void falcon_remove_eventq(struct efx_channel *channel)
1259 {
1260         falcon_free_special_buffer(channel->efx, &channel->eventq);
1261 }
1262
1263
1264 /* Generates a test event on the event queue.  A subsequent call to
1265  * process_eventq() should pick up the event and place the value of
1266  * "magic" into channel->eventq_magic;
1267  */
1268 void falcon_generate_test_event(struct efx_channel *channel, unsigned int magic)
1269 {
1270         efx_qword_t test_event;
1271
1272         EFX_POPULATE_QWORD_2(test_event,
1273                              EV_CODE, DRV_GEN_EV_DECODE,
1274                              EVQ_MAGIC, magic);
1275         falcon_generate_event(channel, &test_event);
1276 }
1277
1278
1279 /**************************************************************************
1280  *
1281  * Falcon hardware interrupts
1282  * The hardware interrupt handler does very little work; all the event
1283  * queue processing is carried out by per-channel tasklets.
1284  *
1285  **************************************************************************/
1286
1287 /* Enable/disable/generate Falcon interrupts */
1288 static inline void falcon_interrupts(struct efx_nic *efx, int enabled,
1289                                      int force)
1290 {
1291         efx_oword_t int_en_reg_ker;
1292
1293         EFX_POPULATE_OWORD_2(int_en_reg_ker,
1294                              KER_INT_KER, force,
1295                              DRV_INT_EN_KER, enabled);
1296         falcon_write(efx, &int_en_reg_ker, INT_EN_REG_KER);
1297 }
1298
1299 void falcon_enable_interrupts(struct efx_nic *efx)
1300 {
1301         efx_oword_t int_adr_reg_ker;
1302         struct efx_channel *channel;
1303
1304         EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1305         wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1306
1307         /* Program address */
1308         EFX_POPULATE_OWORD_2(int_adr_reg_ker,
1309                              NORM_INT_VEC_DIS_KER, EFX_INT_MODE_USE_MSI(efx),
1310                              INT_ADR_KER, efx->irq_status.dma_addr);
1311         falcon_write(efx, &int_adr_reg_ker, INT_ADR_REG_KER);
1312
1313         /* Enable interrupts */
1314         falcon_interrupts(efx, 1, 0);
1315
1316         /* Force processing of all the channels to get the EVQ RPTRs up to
1317            date */
1318         efx_for_each_channel_with_interrupt(channel, efx)
1319                 efx_schedule_channel(channel);
1320 }
1321
1322 void falcon_disable_interrupts(struct efx_nic *efx)
1323 {
1324         /* Disable interrupts */
1325         falcon_interrupts(efx, 0, 0);
1326 }
1327
1328 /* Generate a Falcon test interrupt
1329  * Interrupt must already have been enabled, otherwise nasty things
1330  * may happen.
1331  */
1332 void falcon_generate_interrupt(struct efx_nic *efx)
1333 {
1334         falcon_interrupts(efx, 1, 1);
1335 }
1336
1337 /* Acknowledge a legacy interrupt from Falcon
1338  *
1339  * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
1340  *
1341  * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
1342  * BIU. Interrupt acknowledge is read sensitive so must write instead
1343  * (then read to ensure the BIU collector is flushed)
1344  *
1345  * NB most hardware supports MSI interrupts
1346  */
1347 static inline void falcon_irq_ack_a1(struct efx_nic *efx)
1348 {
1349         efx_dword_t reg;
1350
1351         EFX_POPULATE_DWORD_1(reg, INT_ACK_DUMMY_DATA, 0xb7eb7e);
1352         falcon_writel(efx, &reg, INT_ACK_REG_KER_A1);
1353         falcon_readl(efx, &reg, WORK_AROUND_BROKEN_PCI_READS_REG_KER_A1);
1354 }
1355
1356 /* Process a fatal interrupt
1357  * Disable bus mastering ASAP and schedule a reset
1358  */
1359 static irqreturn_t falcon_fatal_interrupt(struct efx_nic *efx)
1360 {
1361         struct falcon_nic_data *nic_data = efx->nic_data;
1362         efx_oword_t *int_ker = efx->irq_status.addr;
1363         efx_oword_t fatal_intr;
1364         int error, mem_perr;
1365         static int n_int_errors;
1366
1367         falcon_read(efx, &fatal_intr, FATAL_INTR_REG_KER);
1368         error = EFX_OWORD_FIELD(fatal_intr, INT_KER_ERROR);
1369
1370         EFX_ERR(efx, "SYSTEM ERROR " EFX_OWORD_FMT " status "
1371                 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1372                 EFX_OWORD_VAL(fatal_intr),
1373                 error ? "disabling bus mastering" : "no recognised error");
1374         if (error == 0)
1375                 goto out;
1376
1377         /* If this is a memory parity error dump which blocks are offending */
1378         mem_perr = EFX_OWORD_FIELD(fatal_intr, MEM_PERR_INT_KER);
1379         if (mem_perr) {
1380                 efx_oword_t reg;
1381                 falcon_read(efx, &reg, MEM_STAT_REG_KER);
1382                 EFX_ERR(efx, "SYSTEM ERROR: memory parity error "
1383                         EFX_OWORD_FMT "\n", EFX_OWORD_VAL(reg));
1384         }
1385
1386         /* Disable DMA bus mastering on both devices */
1387         pci_disable_device(efx->pci_dev);
1388         if (FALCON_IS_DUAL_FUNC(efx))
1389                 pci_disable_device(nic_data->pci_dev2);
1390
1391         if (++n_int_errors < FALCON_MAX_INT_ERRORS) {
1392                 EFX_ERR(efx, "SYSTEM ERROR - reset scheduled\n");
1393                 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1394         } else {
1395                 EFX_ERR(efx, "SYSTEM ERROR - max number of errors seen."
1396                         "NIC will be disabled\n");
1397                 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1398         }
1399 out:
1400         return IRQ_HANDLED;
1401 }
1402
1403 /* Handle a legacy interrupt from Falcon
1404  * Acknowledges the interrupt and schedule event queue processing.
1405  */
1406 static irqreturn_t falcon_legacy_interrupt_b0(int irq, void *dev_id)
1407 {
1408         struct efx_nic *efx = dev_id;
1409         efx_oword_t *int_ker = efx->irq_status.addr;
1410         struct efx_channel *channel;
1411         efx_dword_t reg;
1412         u32 queues;
1413         int syserr;
1414
1415         /* Read the ISR which also ACKs the interrupts */
1416         falcon_readl(efx, &reg, INT_ISR0_B0);
1417         queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1418
1419         /* Check to see if we have a serious error condition */
1420         syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
1421         if (unlikely(syserr))
1422                 return falcon_fatal_interrupt(efx);
1423
1424         if (queues == 0)
1425                 return IRQ_NONE;
1426
1427         efx->last_irq_cpu = raw_smp_processor_id();
1428         EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1429                   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1430
1431         /* Schedule processing of any interrupting queues */
1432         channel = &efx->channel[0];
1433         while (queues) {
1434                 if (queues & 0x01)
1435                         efx_schedule_channel(channel);
1436                 channel++;
1437                 queues >>= 1;
1438         }
1439
1440         return IRQ_HANDLED;
1441 }
1442
1443
1444 static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
1445 {
1446         struct efx_nic *efx = dev_id;
1447         efx_oword_t *int_ker = efx->irq_status.addr;
1448         struct efx_channel *channel;
1449         int syserr;
1450         int queues;
1451
1452         /* Check to see if this is our interrupt.  If it isn't, we
1453          * exit without having touched the hardware.
1454          */
1455         if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
1456                 EFX_TRACE(efx, "IRQ %d on CPU %d not for me\n", irq,
1457                           raw_smp_processor_id());
1458                 return IRQ_NONE;
1459         }
1460         efx->last_irq_cpu = raw_smp_processor_id();
1461         EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1462                   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1463
1464         /* Check to see if we have a serious error condition */
1465         syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
1466         if (unlikely(syserr))
1467                 return falcon_fatal_interrupt(efx);
1468
1469         /* Determine interrupting queues, clear interrupt status
1470          * register and acknowledge the device interrupt.
1471          */
1472         BUILD_BUG_ON(INT_EVQS_WIDTH > EFX_MAX_CHANNELS);
1473         queues = EFX_OWORD_FIELD(*int_ker, INT_EVQS);
1474         EFX_ZERO_OWORD(*int_ker);
1475         wmb(); /* Ensure the vector is cleared before interrupt ack */
1476         falcon_irq_ack_a1(efx);
1477
1478         /* Schedule processing of any interrupting queues */
1479         channel = &efx->channel[0];
1480         while (queues) {
1481                 if (queues & 0x01)
1482                         efx_schedule_channel(channel);
1483                 channel++;
1484                 queues >>= 1;
1485         }
1486
1487         return IRQ_HANDLED;
1488 }
1489
1490 /* Handle an MSI interrupt from Falcon
1491  *
1492  * Handle an MSI hardware interrupt.  This routine schedules event
1493  * queue processing.  No interrupt acknowledgement cycle is necessary.
1494  * Also, we never need to check that the interrupt is for us, since
1495  * MSI interrupts cannot be shared.
1496  */
1497 static irqreturn_t falcon_msi_interrupt(int irq, void *dev_id)
1498 {
1499         struct efx_channel *channel = dev_id;
1500         struct efx_nic *efx = channel->efx;
1501         efx_oword_t *int_ker = efx->irq_status.addr;
1502         int syserr;
1503
1504         efx->last_irq_cpu = raw_smp_processor_id();
1505         EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1506                   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1507
1508         /* Check to see if we have a serious error condition */
1509         syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
1510         if (unlikely(syserr))
1511                 return falcon_fatal_interrupt(efx);
1512
1513         /* Schedule processing of the channel */
1514         efx_schedule_channel(channel);
1515
1516         return IRQ_HANDLED;
1517 }
1518
1519
1520 /* Setup RSS indirection table.
1521  * This maps from the hash value of the packet to RXQ
1522  */
1523 static void falcon_setup_rss_indir_table(struct efx_nic *efx)
1524 {
1525         int i = 0;
1526         unsigned long offset;
1527         efx_dword_t dword;
1528
1529         if (falcon_rev(efx) < FALCON_REV_B0)
1530                 return;
1531
1532         for (offset = RX_RSS_INDIR_TBL_B0;
1533              offset < RX_RSS_INDIR_TBL_B0 + 0x800;
1534              offset += 0x10) {
1535                 EFX_POPULATE_DWORD_1(dword, RX_RSS_INDIR_ENT_B0,
1536                                      i % efx->rss_queues);
1537                 falcon_writel(efx, &dword, offset);
1538                 i++;
1539         }
1540 }
1541
1542 /* Hook interrupt handler(s)
1543  * Try MSI and then legacy interrupts.
1544  */
1545 int falcon_init_interrupt(struct efx_nic *efx)
1546 {
1547         struct efx_channel *channel;
1548         int rc;
1549
1550         if (!EFX_INT_MODE_USE_MSI(efx)) {
1551                 irq_handler_t handler;
1552                 if (falcon_rev(efx) >= FALCON_REV_B0)
1553                         handler = falcon_legacy_interrupt_b0;
1554                 else
1555                         handler = falcon_legacy_interrupt_a1;
1556
1557                 rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1558                                  efx->name, efx);
1559                 if (rc) {
1560                         EFX_ERR(efx, "failed to hook legacy IRQ %d\n",
1561                                 efx->pci_dev->irq);
1562                         goto fail1;
1563                 }
1564                 return 0;
1565         }
1566
1567         /* Hook MSI or MSI-X interrupt */
1568         efx_for_each_channel_with_interrupt(channel, efx) {
1569                 rc = request_irq(channel->irq, falcon_msi_interrupt,
1570                                  IRQF_PROBE_SHARED, /* Not shared */
1571                                  efx->name, channel);
1572                 if (rc) {
1573                         EFX_ERR(efx, "failed to hook IRQ %d\n", channel->irq);
1574                         goto fail2;
1575                 }
1576         }
1577
1578         return 0;
1579
1580  fail2:
1581         efx_for_each_channel_with_interrupt(channel, efx)
1582                 free_irq(channel->irq, channel);
1583  fail1:
1584         return rc;
1585 }
1586
1587 void falcon_fini_interrupt(struct efx_nic *efx)
1588 {
1589         struct efx_channel *channel;
1590         efx_oword_t reg;
1591
1592         /* Disable MSI/MSI-X interrupts */
1593         efx_for_each_channel_with_interrupt(channel, efx) {
1594                 if (channel->irq)
1595                         free_irq(channel->irq, channel);
1596         }
1597
1598         /* ACK legacy interrupt */
1599         if (falcon_rev(efx) >= FALCON_REV_B0)
1600                 falcon_read(efx, &reg, INT_ISR0_B0);
1601         else
1602                 falcon_irq_ack_a1(efx);
1603
1604         /* Disable legacy interrupt */
1605         if (efx->legacy_irq)
1606                 free_irq(efx->legacy_irq, efx);
1607 }
1608
1609 /**************************************************************************
1610  *
1611  * EEPROM/flash
1612  *
1613  **************************************************************************
1614  */
1615
1616 #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
1617
1618 /* Wait for SPI command completion */
1619 static int falcon_spi_wait(struct efx_nic *efx)
1620 {
1621         efx_oword_t reg;
1622         int cmd_en, timer_active;
1623         int count;
1624
1625         count = 0;
1626         do {
1627                 falcon_read(efx, &reg, EE_SPI_HCMD_REG_KER);
1628                 cmd_en = EFX_OWORD_FIELD(reg, EE_SPI_HCMD_CMD_EN);
1629                 timer_active = EFX_OWORD_FIELD(reg, EE_WR_TIMER_ACTIVE);
1630                 if (!cmd_en && !timer_active)
1631                         return 0;
1632                 udelay(10);
1633         } while (++count < 10000); /* wait upto 100msec */
1634         EFX_ERR(efx, "timed out waiting for SPI\n");
1635         return -ETIMEDOUT;
1636 }
1637
1638 static int
1639 falcon_spi_read(struct efx_nic *efx, int device_id, unsigned int command,
1640                 unsigned int address, unsigned int addr_len,
1641                 void *data, unsigned int len)
1642 {
1643         efx_oword_t reg;
1644         int rc;
1645
1646         BUG_ON(len > FALCON_SPI_MAX_LEN);
1647
1648         /* Check SPI not currently being accessed */
1649         rc = falcon_spi_wait(efx);
1650         if (rc)
1651                 return rc;
1652
1653         /* Program address register */
1654         EFX_POPULATE_OWORD_1(reg, EE_SPI_HADR_ADR, address);
1655         falcon_write(efx, &reg, EE_SPI_HADR_REG_KER);
1656
1657         /* Issue read command */
1658         EFX_POPULATE_OWORD_7(reg,
1659                              EE_SPI_HCMD_CMD_EN, 1,
1660                              EE_SPI_HCMD_SF_SEL, device_id,
1661                              EE_SPI_HCMD_DABCNT, len,
1662                              EE_SPI_HCMD_READ, EE_SPI_READ,
1663                              EE_SPI_HCMD_DUBCNT, 0,
1664                              EE_SPI_HCMD_ADBCNT, addr_len,
1665                              EE_SPI_HCMD_ENC, command);
1666         falcon_write(efx, &reg, EE_SPI_HCMD_REG_KER);
1667
1668         /* Wait for read to complete */
1669         rc = falcon_spi_wait(efx);
1670         if (rc)
1671                 return rc;
1672
1673         /* Read data */
1674         falcon_read(efx, &reg, EE_SPI_HDATA_REG_KER);
1675         memcpy(data, &reg, len);
1676         return 0;
1677 }
1678
1679 /**************************************************************************
1680  *
1681  * MAC wrapper
1682  *
1683  **************************************************************************
1684  */
1685 void falcon_drain_tx_fifo(struct efx_nic *efx)
1686 {
1687         efx_oword_t temp;
1688         int count;
1689
1690         if ((falcon_rev(efx) < FALCON_REV_B0) ||
1691             (efx->loopback_mode != LOOPBACK_NONE))
1692                 return;
1693
1694         falcon_read(efx, &temp, MAC0_CTRL_REG_KER);
1695         /* There is no point in draining more than once */
1696         if (EFX_OWORD_FIELD(temp, TXFIFO_DRAIN_EN_B0))
1697                 return;
1698
1699         /* MAC stats will fail whilst the TX fifo is draining. Serialise
1700          * the drain sequence with the statistics fetch */
1701         spin_lock(&efx->stats_lock);
1702
1703         EFX_SET_OWORD_FIELD(temp, TXFIFO_DRAIN_EN_B0, 1);
1704         falcon_write(efx, &temp, MAC0_CTRL_REG_KER);
1705
1706         /* Reset the MAC and EM block. */
1707         falcon_read(efx, &temp, GLB_CTL_REG_KER);
1708         EFX_SET_OWORD_FIELD(temp, RST_XGTX, 1);
1709         EFX_SET_OWORD_FIELD(temp, RST_XGRX, 1);
1710         EFX_SET_OWORD_FIELD(temp, RST_EM, 1);
1711         falcon_write(efx, &temp, GLB_CTL_REG_KER);
1712
1713         count = 0;
1714         while (1) {
1715                 falcon_read(efx, &temp, GLB_CTL_REG_KER);
1716                 if (!EFX_OWORD_FIELD(temp, RST_XGTX) &&
1717                     !EFX_OWORD_FIELD(temp, RST_XGRX) &&
1718                     !EFX_OWORD_FIELD(temp, RST_EM)) {
1719                         EFX_LOG(efx, "Completed MAC reset after %d loops\n",
1720                                 count);
1721                         break;
1722                 }
1723                 if (count > 20) {
1724                         EFX_ERR(efx, "MAC reset failed\n");
1725                         break;
1726                 }
1727                 count++;
1728                 udelay(10);
1729         }
1730
1731         spin_unlock(&efx->stats_lock);
1732
1733         /* If we've reset the EM block and the link is up, then
1734          * we'll have to kick the XAUI link so the PHY can recover */
1735         if (efx->link_up && EFX_WORKAROUND_5147(efx))
1736                 falcon_reset_xaui(efx);
1737 }
1738
1739 void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
1740 {
1741         efx_oword_t temp;
1742
1743         if (falcon_rev(efx) < FALCON_REV_B0)
1744                 return;
1745
1746         /* Isolate the MAC -> RX */
1747         falcon_read(efx, &temp, RX_CFG_REG_KER);
1748         EFX_SET_OWORD_FIELD(temp, RX_INGR_EN_B0, 0);
1749         falcon_write(efx, &temp, RX_CFG_REG_KER);
1750
1751         if (!efx->link_up)
1752                 falcon_drain_tx_fifo(efx);
1753 }
1754
1755 void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
1756 {
1757         efx_oword_t reg;
1758         int link_speed;
1759         unsigned int tx_fc;
1760
1761         if (efx->link_options & GM_LPA_10000)
1762                 link_speed = 0x3;
1763         else if (efx->link_options & GM_LPA_1000)
1764                 link_speed = 0x2;
1765         else if (efx->link_options & GM_LPA_100)
1766                 link_speed = 0x1;
1767         else
1768                 link_speed = 0x0;
1769         /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
1770          * as advertised.  Disable to ensure packets are not
1771          * indefinitely held and TX queue can be flushed at any point
1772          * while the link is down. */
1773         EFX_POPULATE_OWORD_5(reg,
1774                              MAC_XOFF_VAL, 0xffff /* max pause time */,
1775                              MAC_BCAD_ACPT, 1,
1776                              MAC_UC_PROM, efx->promiscuous,
1777                              MAC_LINK_STATUS, 1, /* always set */
1778                              MAC_SPEED, link_speed);
1779         /* On B0, MAC backpressure can be disabled and packets get
1780          * discarded. */
1781         if (falcon_rev(efx) >= FALCON_REV_B0) {
1782                 EFX_SET_OWORD_FIELD(reg, TXFIFO_DRAIN_EN_B0,
1783                                     !efx->link_up);
1784         }
1785
1786         falcon_write(efx, &reg, MAC0_CTRL_REG_KER);
1787
1788         /* Restore the multicast hash registers. */
1789         falcon_set_multicast_hash(efx);
1790
1791         /* Transmission of pause frames when RX crosses the threshold is
1792          * covered by RX_XOFF_MAC_EN and XM_TX_CFG_REG:XM_FCNTL.
1793          * Action on receipt of pause frames is controller by XM_DIS_FCNTL */
1794         tx_fc = (efx->flow_control & EFX_FC_TX) ? 1 : 0;
1795         falcon_read(efx, &reg, RX_CFG_REG_KER);
1796         EFX_SET_OWORD_FIELD_VER(efx, reg, RX_XOFF_MAC_EN, tx_fc);
1797
1798         /* Unisolate the MAC -> RX */
1799         if (falcon_rev(efx) >= FALCON_REV_B0)
1800                 EFX_SET_OWORD_FIELD(reg, RX_INGR_EN_B0, 1);
1801         falcon_write(efx, &reg, RX_CFG_REG_KER);
1802 }
1803
1804 int falcon_dma_stats(struct efx_nic *efx, unsigned int done_offset)
1805 {
1806         efx_oword_t reg;
1807         u32 *dma_done;
1808         int i;
1809
1810         if (disable_dma_stats)
1811                 return 0;
1812
1813         /* Statistics fetch will fail if the MAC is in TX drain */
1814         if (falcon_rev(efx) >= FALCON_REV_B0) {
1815                 efx_oword_t temp;
1816                 falcon_read(efx, &temp, MAC0_CTRL_REG_KER);
1817                 if (EFX_OWORD_FIELD(temp, TXFIFO_DRAIN_EN_B0))
1818                         return 0;
1819         }
1820
1821         dma_done = (efx->stats_buffer.addr + done_offset);
1822         *dma_done = FALCON_STATS_NOT_DONE;
1823         wmb(); /* ensure done flag is clear */
1824
1825         /* Initiate DMA transfer of stats */
1826         EFX_POPULATE_OWORD_2(reg,
1827                              MAC_STAT_DMA_CMD, 1,
1828                              MAC_STAT_DMA_ADR,
1829                              efx->stats_buffer.dma_addr);
1830         falcon_write(efx, &reg, MAC0_STAT_DMA_REG_KER);
1831
1832         /* Wait for transfer to complete */
1833         for (i = 0; i < 400; i++) {
1834                 if (*(volatile u32 *)dma_done == FALCON_STATS_DONE)
1835                         return 0;
1836                 udelay(10);
1837         }
1838
1839         EFX_ERR(efx, "timed out waiting for statistics\n");
1840         return -ETIMEDOUT;
1841 }
1842
1843 /**************************************************************************
1844  *
1845  * PHY access via GMII
1846  *
1847  **************************************************************************
1848  */
1849
1850 /* Use the top bit of the MII PHY id to indicate the PHY type
1851  * (1G/10G), with the remaining bits as the actual PHY id.
1852  *
1853  * This allows us to avoid leaking information from the mii_if_info
1854  * structure into other data structures.
1855  */
1856 #define FALCON_PHY_ID_ID_WIDTH  EFX_WIDTH(MD_PRT_DEV_ADR)
1857 #define FALCON_PHY_ID_ID_MASK   ((1 << FALCON_PHY_ID_ID_WIDTH) - 1)
1858 #define FALCON_PHY_ID_WIDTH     (FALCON_PHY_ID_ID_WIDTH + 1)
1859 #define FALCON_PHY_ID_MASK      ((1 << FALCON_PHY_ID_WIDTH) - 1)
1860 #define FALCON_PHY_ID_10G       (1 << (FALCON_PHY_ID_WIDTH - 1))
1861
1862
1863 /* Packing the clause 45 port and device fields into a single value */
1864 #define MD_PRT_ADR_COMP_LBN   (MD_PRT_ADR_LBN - MD_DEV_ADR_LBN)
1865 #define MD_PRT_ADR_COMP_WIDTH  MD_PRT_ADR_WIDTH
1866 #define MD_DEV_ADR_COMP_LBN    0
1867 #define MD_DEV_ADR_COMP_WIDTH  MD_DEV_ADR_WIDTH
1868
1869
1870 /* Wait for GMII access to complete */
1871 static int falcon_gmii_wait(struct efx_nic *efx)
1872 {
1873         efx_dword_t md_stat;
1874         int count;
1875
1876         for (count = 0; count < 1000; count++) {        /* wait upto 10ms */
1877                 falcon_readl(efx, &md_stat, MD_STAT_REG_KER);
1878                 if (EFX_DWORD_FIELD(md_stat, MD_BSY) == 0) {
1879                         if (EFX_DWORD_FIELD(md_stat, MD_LNFL) != 0 ||
1880                             EFX_DWORD_FIELD(md_stat, MD_BSERR) != 0) {
1881                                 EFX_ERR(efx, "error from GMII access "
1882                                         EFX_DWORD_FMT"\n",
1883                                         EFX_DWORD_VAL(md_stat));
1884                                 return -EIO;
1885                         }
1886                         return 0;
1887                 }
1888                 udelay(10);
1889         }
1890         EFX_ERR(efx, "timed out waiting for GMII\n");
1891         return -ETIMEDOUT;
1892 }
1893
1894 /* Writes a GMII register of a PHY connected to Falcon using MDIO. */
1895 static void falcon_mdio_write(struct net_device *net_dev, int phy_id,
1896                               int addr, int value)
1897 {
1898         struct efx_nic *efx = netdev_priv(net_dev);
1899         unsigned int phy_id2 = phy_id & FALCON_PHY_ID_ID_MASK;
1900         efx_oword_t reg;
1901
1902         /* The 'generic' prt/dev packing in mdio_10g.h is conveniently
1903          * chosen so that the only current user, Falcon, can take the
1904          * packed value and use them directly.
1905          * Fail to build if this assumption is broken.
1906          */
1907         BUILD_BUG_ON(FALCON_PHY_ID_10G != MDIO45_XPRT_ID_IS10G);
1908         BUILD_BUG_ON(FALCON_PHY_ID_ID_WIDTH != MDIO45_PRT_DEV_WIDTH);
1909         BUILD_BUG_ON(MD_PRT_ADR_COMP_LBN != MDIO45_PRT_ID_COMP_LBN);
1910         BUILD_BUG_ON(MD_DEV_ADR_COMP_LBN != MDIO45_DEV_ID_COMP_LBN);
1911
1912         if (phy_id2 == PHY_ADDR_INVALID)
1913                 return;
1914
1915         /* See falcon_mdio_read for an explanation. */
1916         if (!(phy_id & FALCON_PHY_ID_10G)) {
1917                 int mmd = ffs(efx->phy_op->mmds) - 1;
1918                 EFX_TRACE(efx, "Fixing erroneous clause22 write\n");
1919                 phy_id2 = mdio_clause45_pack(phy_id2, mmd)
1920                         & FALCON_PHY_ID_ID_MASK;
1921         }
1922
1923         EFX_REGDUMP(efx, "writing GMII %d register %02x with %04x\n", phy_id,
1924                     addr, value);
1925
1926         spin_lock_bh(&efx->phy_lock);
1927
1928         /* Check MII not currently being accessed */
1929         if (falcon_gmii_wait(efx) != 0)
1930                 goto out;
1931
1932         /* Write the address/ID register */
1933         EFX_POPULATE_OWORD_1(reg, MD_PHY_ADR, addr);
1934         falcon_write(efx, &reg, MD_PHY_ADR_REG_KER);
1935
1936         EFX_POPULATE_OWORD_1(reg, MD_PRT_DEV_ADR, phy_id2);
1937         falcon_write(efx, &reg, MD_ID_REG_KER);
1938
1939         /* Write data */
1940         EFX_POPULATE_OWORD_1(reg, MD_TXD, value);
1941         falcon_write(efx, &reg, MD_TXD_REG_KER);
1942
1943         EFX_POPULATE_OWORD_2(reg,
1944                              MD_WRC, 1,
1945                              MD_GC, 0);
1946         falcon_write(efx, &reg, MD_CS_REG_KER);
1947
1948         /* Wait for data to be written */
1949         if (falcon_gmii_wait(efx) != 0) {
1950                 /* Abort the write operation */
1951                 EFX_POPULATE_OWORD_2(reg,
1952                                      MD_WRC, 0,
1953                                      MD_GC, 1);
1954                 falcon_write(efx, &reg, MD_CS_REG_KER);
1955                 udelay(10);
1956         }
1957
1958  out:
1959         spin_unlock_bh(&efx->phy_lock);
1960 }
1961
1962 /* Reads a GMII register from a PHY connected to Falcon.  If no value
1963  * could be read, -1 will be returned. */
1964 static int falcon_mdio_read(struct net_device *net_dev, int phy_id, int addr)
1965 {
1966         struct efx_nic *efx = netdev_priv(net_dev);
1967         unsigned int phy_addr = phy_id & FALCON_PHY_ID_ID_MASK;
1968         efx_oword_t reg;
1969         int value = -1;
1970
1971         if (phy_addr == PHY_ADDR_INVALID)
1972                 return -1;
1973
1974         /* Our PHY code knows whether it needs to talk clause 22(1G) or 45(10G)
1975          * but the generic Linux code does not make any distinction or have
1976          * any state for this.
1977          * We spot the case where someone tried to talk 22 to a 45 PHY and
1978          * redirect the request to the lowest numbered MMD as a clause45
1979          * request. This is enough to allow simple queries like id and link
1980          * state to succeed. TODO: We may need to do more in future.
1981          */
1982         if (!(phy_id & FALCON_PHY_ID_10G)) {
1983                 int mmd = ffs(efx->phy_op->mmds) - 1;
1984                 EFX_TRACE(efx, "Fixing erroneous clause22 read\n");
1985                 phy_addr = mdio_clause45_pack(phy_addr, mmd)
1986                         & FALCON_PHY_ID_ID_MASK;
1987         }
1988
1989         spin_lock_bh(&efx->phy_lock);
1990
1991         /* Check MII not currently being accessed */
1992         if (falcon_gmii_wait(efx) != 0)
1993                 goto out;
1994
1995         EFX_POPULATE_OWORD_1(reg, MD_PHY_ADR, addr);
1996         falcon_write(efx, &reg, MD_PHY_ADR_REG_KER);
1997
1998         EFX_POPULATE_OWORD_1(reg, MD_PRT_DEV_ADR, phy_addr);
1999         falcon_write(efx, &reg, MD_ID_REG_KER);
2000
2001         /* Request data to be read */
2002         EFX_POPULATE_OWORD_2(reg, MD_RDC, 1, MD_GC, 0);
2003         falcon_write(efx, &reg, MD_CS_REG_KER);
2004
2005         /* Wait for data to become available */
2006         value = falcon_gmii_wait(efx);
2007         if (value == 0) {
2008                 falcon_read(efx, &reg, MD_RXD_REG_KER);
2009                 value = EFX_OWORD_FIELD(reg, MD_RXD);
2010                 EFX_REGDUMP(efx, "read from GMII %d register %02x, got %04x\n",
2011                             phy_id, addr, value);
2012         } else {
2013                 /* Abort the read operation */
2014                 EFX_POPULATE_OWORD_2(reg,
2015                                      MD_RIC, 0,
2016                                      MD_GC, 1);
2017                 falcon_write(efx, &reg, MD_CS_REG_KER);
2018
2019                 EFX_LOG(efx, "read from GMII 0x%x register %02x, got "
2020                         "error %d\n", phy_id, addr, value);
2021         }
2022
2023  out:
2024         spin_unlock_bh(&efx->phy_lock);
2025
2026         return value;
2027 }
2028
2029 static void falcon_init_mdio(struct mii_if_info *gmii)
2030 {
2031         gmii->mdio_read = falcon_mdio_read;
2032         gmii->mdio_write = falcon_mdio_write;
2033         gmii->phy_id_mask = FALCON_PHY_ID_MASK;
2034         gmii->reg_num_mask = ((1 << EFX_WIDTH(MD_PHY_ADR)) - 1);
2035 }
2036
2037 static int falcon_probe_phy(struct efx_nic *efx)
2038 {
2039         switch (efx->phy_type) {
2040         case PHY_TYPE_10XPRESS:
2041                 efx->phy_op = &falcon_tenxpress_phy_ops;
2042                 break;
2043         case PHY_TYPE_XFP:
2044                 efx->phy_op = &falcon_xfp_phy_ops;
2045                 break;
2046         default:
2047                 EFX_ERR(efx, "Unknown PHY type %d\n",
2048                         efx->phy_type);
2049                 return -1;
2050         }
2051
2052         efx->loopback_modes = LOOPBACKS_10G_INTERNAL | efx->phy_op->loopbacks;
2053         return 0;
2054 }
2055
2056 /* This call is responsible for hooking in the MAC and PHY operations */
2057 int falcon_probe_port(struct efx_nic *efx)
2058 {
2059         int rc;
2060
2061         /* Hook in PHY operations table */
2062         rc = falcon_probe_phy(efx);
2063         if (rc)
2064                 return rc;
2065
2066         /* Set up GMII structure for PHY */
2067         efx->mii.supports_gmii = 1;
2068         falcon_init_mdio(&efx->mii);
2069
2070         /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
2071         if (falcon_rev(efx) >= FALCON_REV_B0)
2072                 efx->flow_control = EFX_FC_RX | EFX_FC_TX;
2073         else
2074                 efx->flow_control = EFX_FC_RX;
2075
2076         /* Allocate buffer for stats */
2077         rc = falcon_alloc_buffer(efx, &efx->stats_buffer,
2078                                  FALCON_MAC_STATS_SIZE);
2079         if (rc)
2080                 return rc;
2081         EFX_LOG(efx, "stats buffer at %llx (virt %p phys %lx)\n",
2082                 (unsigned long long)efx->stats_buffer.dma_addr,
2083                 efx->stats_buffer.addr,
2084                 virt_to_phys(efx->stats_buffer.addr));
2085
2086         return 0;
2087 }
2088
2089 void falcon_remove_port(struct efx_nic *efx)
2090 {
2091         falcon_free_buffer(efx, &efx->stats_buffer);
2092 }
2093
2094 /**************************************************************************
2095  *
2096  * Multicast filtering
2097  *
2098  **************************************************************************
2099  */
2100
2101 void falcon_set_multicast_hash(struct efx_nic *efx)
2102 {
2103         union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2104
2105         /* Broadcast packets go through the multicast hash filter.
2106          * ether_crc_le() of the broadcast address is 0xbe2612ff
2107          * so we always add bit 0xff to the mask.
2108          */
2109         set_bit_le(0xff, mc_hash->byte);
2110
2111         falcon_write(efx, &mc_hash->oword[0], MAC_MCAST_HASH_REG0_KER);
2112         falcon_write(efx, &mc_hash->oword[1], MAC_MCAST_HASH_REG1_KER);
2113 }
2114
2115 /**************************************************************************
2116  *
2117  * Device reset
2118  *
2119  **************************************************************************
2120  */
2121
2122 /* Resets NIC to known state.  This routine must be called in process
2123  * context and is allowed to sleep. */
2124 int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
2125 {
2126         struct falcon_nic_data *nic_data = efx->nic_data;
2127         efx_oword_t glb_ctl_reg_ker;
2128         int rc;
2129
2130         EFX_LOG(efx, "performing hardware reset (%d)\n", method);
2131
2132         /* Initiate device reset */
2133         if (method == RESET_TYPE_WORLD) {
2134                 rc = pci_save_state(efx->pci_dev);
2135                 if (rc) {
2136                         EFX_ERR(efx, "failed to backup PCI state of primary "
2137                                 "function prior to hardware reset\n");
2138                         goto fail1;
2139                 }
2140                 if (FALCON_IS_DUAL_FUNC(efx)) {
2141                         rc = pci_save_state(nic_data->pci_dev2);
2142                         if (rc) {
2143                                 EFX_ERR(efx, "failed to backup PCI state of "
2144                                         "secondary function prior to "
2145                                         "hardware reset\n");
2146                                 goto fail2;
2147                         }
2148                 }
2149
2150                 EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
2151                                      EXT_PHY_RST_DUR, 0x7,
2152                                      SWRST, 1);
2153         } else {
2154                 int reset_phy = (method == RESET_TYPE_INVISIBLE ?
2155                                  EXCLUDE_FROM_RESET : 0);
2156
2157                 EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
2158                                      EXT_PHY_RST_CTL, reset_phy,
2159                                      PCIE_CORE_RST_CTL, EXCLUDE_FROM_RESET,
2160                                      PCIE_NSTCK_RST_CTL, EXCLUDE_FROM_RESET,
2161                                      PCIE_SD_RST_CTL, EXCLUDE_FROM_RESET,
2162                                      EE_RST_CTL, EXCLUDE_FROM_RESET,
2163                                      EXT_PHY_RST_DUR, 0x7 /* 10ms */,
2164                                      SWRST, 1);
2165         }
2166         falcon_write(efx, &glb_ctl_reg_ker, GLB_CTL_REG_KER);
2167
2168         EFX_LOG(efx, "waiting for hardware reset\n");
2169         schedule_timeout_uninterruptible(HZ / 20);
2170
2171         /* Restore PCI configuration if needed */
2172         if (method == RESET_TYPE_WORLD) {
2173                 if (FALCON_IS_DUAL_FUNC(efx)) {
2174                         rc = pci_restore_state(nic_data->pci_dev2);
2175                         if (rc) {
2176                                 EFX_ERR(efx, "failed to restore PCI config for "
2177                                         "the secondary function\n");
2178                                 goto fail3;
2179                         }
2180                 }
2181                 rc = pci_restore_state(efx->pci_dev);
2182                 if (rc) {
2183                         EFX_ERR(efx, "failed to restore PCI config for the "
2184                                 "primary function\n");
2185                         goto fail4;
2186                 }
2187                 EFX_LOG(efx, "successfully restored PCI config\n");
2188         }
2189
2190         /* Assert that reset complete */
2191         falcon_read(efx, &glb_ctl_reg_ker, GLB_CTL_REG_KER);
2192         if (EFX_OWORD_FIELD(glb_ctl_reg_ker, SWRST) != 0) {
2193                 rc = -ETIMEDOUT;
2194                 EFX_ERR(efx, "timed out waiting for hardware reset\n");
2195                 goto fail5;
2196         }
2197         EFX_LOG(efx, "hardware reset complete\n");
2198
2199         return 0;
2200
2201         /* pci_save_state() and pci_restore_state() MUST be called in pairs */
2202 fail2:
2203 fail3:
2204         pci_restore_state(efx->pci_dev);
2205 fail1:
2206 fail4:
2207 fail5:
2208         return rc;
2209 }
2210
2211 /* Zeroes out the SRAM contents.  This routine must be called in
2212  * process context and is allowed to sleep.
2213  */
2214 static int falcon_reset_sram(struct efx_nic *efx)
2215 {
2216         efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
2217         int count;
2218
2219         /* Set the SRAM wake/sleep GPIO appropriately. */
2220         falcon_read(efx, &gpio_cfg_reg_ker, GPIO_CTL_REG_KER);
2221         EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, GPIO1_OEN, 1);
2222         EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, GPIO1_OUT, 1);
2223         falcon_write(efx, &gpio_cfg_reg_ker, GPIO_CTL_REG_KER);
2224
2225         /* Initiate SRAM reset */
2226         EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
2227                              SRAM_OOB_BT_INIT_EN, 1,
2228                              SRM_NUM_BANKS_AND_BANK_SIZE, 0);
2229         falcon_write(efx, &srm_cfg_reg_ker, SRM_CFG_REG_KER);
2230
2231         /* Wait for SRAM reset to complete */
2232         count = 0;
2233         do {
2234                 EFX_LOG(efx, "waiting for SRAM reset (attempt %d)...\n", count);
2235
2236                 /* SRAM reset is slow; expect around 16ms */
2237                 schedule_timeout_uninterruptible(HZ / 50);
2238
2239                 /* Check for reset complete */
2240                 falcon_read(efx, &srm_cfg_reg_ker, SRM_CFG_REG_KER);
2241                 if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, SRAM_OOB_BT_INIT_EN)) {
2242                         EFX_LOG(efx, "SRAM reset complete\n");
2243
2244                         return 0;
2245                 }
2246         } while (++count < 20); /* wait upto 0.4 sec */
2247
2248         EFX_ERR(efx, "timed out waiting for SRAM reset\n");
2249         return -ETIMEDOUT;
2250 }
2251
2252 /* Extract non-volatile configuration */
2253 static int falcon_probe_nvconfig(struct efx_nic *efx)
2254 {
2255         struct falcon_nvconfig *nvconfig;
2256         efx_oword_t nic_stat;
2257         int device_id;
2258         unsigned addr_len;
2259         size_t offset, len;
2260         int magic_num, struct_ver, board_rev;
2261         int rc;
2262
2263         /* Find the boot device. */
2264         falcon_read(efx, &nic_stat, NIC_STAT_REG);
2265         if (EFX_OWORD_FIELD(nic_stat, SF_PRST)) {
2266                 device_id = EE_SPI_FLASH;
2267                 addr_len = 3;
2268         } else if (EFX_OWORD_FIELD(nic_stat, EE_PRST)) {
2269                 device_id = EE_SPI_EEPROM;
2270                 addr_len = 2;
2271         } else {
2272                 return -ENODEV;
2273         }
2274
2275         nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
2276
2277         /* Read the whole configuration structure into memory. */
2278         for (offset = 0; offset < sizeof(*nvconfig); offset += len) {
2279                 len = min(sizeof(*nvconfig) - offset,
2280                           (size_t) FALCON_SPI_MAX_LEN);
2281                 rc = falcon_spi_read(efx, device_id, SPI_READ,
2282                                      NVCONFIG_BASE + offset, addr_len,
2283                                      (char *)nvconfig + offset, len);
2284                 if (rc)
2285                         goto out;
2286         }
2287
2288         /* Read the MAC addresses */
2289         memcpy(efx->mac_address, nvconfig->mac_address[0], ETH_ALEN);
2290
2291         /* Read the board configuration. */
2292         magic_num = le16_to_cpu(nvconfig->board_magic_num);
2293         struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
2294
2295         if (magic_num != NVCONFIG_BOARD_MAGIC_NUM || struct_ver < 2) {
2296                 EFX_ERR(efx, "Non volatile memory bad magic=%x ver=%x "
2297                         "therefore using defaults\n", magic_num, struct_ver);
2298                 efx->phy_type = PHY_TYPE_NONE;
2299                 efx->mii.phy_id = PHY_ADDR_INVALID;
2300                 board_rev = 0;
2301         } else {
2302                 struct falcon_nvconfig_board_v2 *v2 = &nvconfig->board_v2;
2303
2304                 efx->phy_type = v2->port0_phy_type;
2305                 efx->mii.phy_id = v2->port0_phy_addr;
2306                 board_rev = le16_to_cpu(v2->board_revision);
2307         }
2308
2309         EFX_LOG(efx, "PHY is %d phy_id %d\n", efx->phy_type, efx->mii.phy_id);
2310
2311         efx_set_board_info(efx, board_rev);
2312
2313  out:
2314         kfree(nvconfig);
2315         return rc;
2316 }
2317
2318 /* Probe the NIC variant (revision, ASIC vs FPGA, function count, port
2319  * count, port speed).  Set workaround and feature flags accordingly.
2320  */
2321 static int falcon_probe_nic_variant(struct efx_nic *efx)
2322 {
2323         efx_oword_t altera_build;
2324
2325         falcon_read(efx, &altera_build, ALTERA_BUILD_REG_KER);
2326         if (EFX_OWORD_FIELD(altera_build, VER_ALL)) {
2327                 EFX_ERR(efx, "Falcon FPGA not supported\n");
2328                 return -ENODEV;
2329         }
2330
2331         switch (falcon_rev(efx)) {
2332         case FALCON_REV_A0:
2333         case 0xff:
2334                 EFX_ERR(efx, "Falcon rev A0 not supported\n");
2335                 return -ENODEV;
2336
2337         case FALCON_REV_A1:{
2338                 efx_oword_t nic_stat;
2339
2340                 falcon_read(efx, &nic_stat, NIC_STAT_REG);
2341
2342                 if (EFX_OWORD_FIELD(nic_stat, STRAP_PCIE) == 0) {
2343                         EFX_ERR(efx, "Falcon rev A1 PCI-X not supported\n");
2344                         return -ENODEV;
2345                 }
2346                 if (!EFX_OWORD_FIELD(nic_stat, STRAP_10G)) {
2347                         EFX_ERR(efx, "1G mode not supported\n");
2348                         return -ENODEV;
2349                 }
2350                 break;
2351         }
2352
2353         case FALCON_REV_B0:
2354                 break;
2355
2356         default:
2357                 EFX_ERR(efx, "Unknown Falcon rev %d\n", falcon_rev(efx));
2358                 return -ENODEV;
2359         }
2360
2361         return 0;
2362 }
2363
2364 int falcon_probe_nic(struct efx_nic *efx)
2365 {
2366         struct falcon_nic_data *nic_data;
2367         int rc;
2368
2369         /* Allocate storage for hardware specific data */
2370         nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
2371         efx->nic_data = nic_data;
2372
2373         /* Determine number of ports etc. */
2374         rc = falcon_probe_nic_variant(efx);
2375         if (rc)
2376                 goto fail1;
2377
2378         /* Probe secondary function if expected */
2379         if (FALCON_IS_DUAL_FUNC(efx)) {
2380                 struct pci_dev *dev = pci_dev_get(efx->pci_dev);
2381
2382                 while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID,
2383                                              dev))) {
2384                         if (dev->bus == efx->pci_dev->bus &&
2385                             dev->devfn == efx->pci_dev->devfn + 1) {
2386                                 nic_data->pci_dev2 = dev;
2387                                 break;
2388                         }
2389                 }
2390                 if (!nic_data->pci_dev2) {
2391                         EFX_ERR(efx, "failed to find secondary function\n");
2392                         rc = -ENODEV;
2393                         goto fail2;
2394                 }
2395         }
2396
2397         /* Now we can reset the NIC */
2398         rc = falcon_reset_hw(efx, RESET_TYPE_ALL);
2399         if (rc) {
2400                 EFX_ERR(efx, "failed to reset NIC\n");
2401                 goto fail3;
2402         }
2403
2404         /* Allocate memory for INT_KER */
2405         rc = falcon_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
2406         if (rc)
2407                 goto fail4;
2408         BUG_ON(efx->irq_status.dma_addr & 0x0f);
2409
2410         EFX_LOG(efx, "INT_KER at %llx (virt %p phys %lx)\n",
2411                 (unsigned long long)efx->irq_status.dma_addr,
2412                 efx->irq_status.addr, virt_to_phys(efx->irq_status.addr));
2413
2414         /* Read in the non-volatile configuration */
2415         rc = falcon_probe_nvconfig(efx);
2416         if (rc)
2417                 goto fail5;
2418
2419         /* Initialise I2C adapter */
2420         efx->i2c_adap.owner = THIS_MODULE;
2421         nic_data->i2c_data = falcon_i2c_bit_operations;
2422         nic_data->i2c_data.data = efx;
2423         efx->i2c_adap.algo_data = &nic_data->i2c_data;
2424         efx->i2c_adap.dev.parent = &efx->pci_dev->dev;
2425         strlcpy(efx->i2c_adap.name, "SFC4000 GPIO", sizeof(efx->i2c_adap.name));
2426         rc = i2c_bit_add_bus(&efx->i2c_adap);
2427         if (rc)
2428                 goto fail5;
2429
2430         return 0;
2431
2432  fail5:
2433         falcon_free_buffer(efx, &efx->irq_status);
2434  fail4:
2435  fail3:
2436         if (nic_data->pci_dev2) {
2437                 pci_dev_put(nic_data->pci_dev2);
2438                 nic_data->pci_dev2 = NULL;
2439         }
2440  fail2:
2441  fail1:
2442         kfree(efx->nic_data);
2443         return rc;
2444 }
2445
2446 /* This call performs hardware-specific global initialisation, such as
2447  * defining the descriptor cache sizes and number of RSS channels.
2448  * It does not set up any buffers, descriptor rings or event queues.
2449  */
2450 int falcon_init_nic(struct efx_nic *efx)
2451 {
2452         efx_oword_t temp;
2453         unsigned thresh;
2454         int rc;
2455
2456         /* Set up the address region register. This is only needed
2457          * for the B0 FPGA, but since we are just pushing in the
2458          * reset defaults this may as well be unconditional. */
2459         EFX_POPULATE_OWORD_4(temp, ADR_REGION0, 0,
2460                                    ADR_REGION1, (1 << 16),
2461                                    ADR_REGION2, (2 << 16),
2462                                    ADR_REGION3, (3 << 16));
2463         falcon_write(efx, &temp, ADR_REGION_REG_KER);
2464
2465         /* Use on-chip SRAM */
2466         falcon_read(efx, &temp, NIC_STAT_REG);
2467         EFX_SET_OWORD_FIELD(temp, ONCHIP_SRAM, 1);
2468         falcon_write(efx, &temp, NIC_STAT_REG);
2469
2470         /* Set buffer table mode */
2471         EFX_POPULATE_OWORD_1(temp, BUF_TBL_MODE, BUF_TBL_MODE_FULL);
2472         falcon_write(efx, &temp, BUF_TBL_CFG_REG_KER);
2473
2474         rc = falcon_reset_sram(efx);
2475         if (rc)
2476                 return rc;
2477
2478         /* Set positions of descriptor caches in SRAM. */
2479         EFX_POPULATE_OWORD_1(temp, SRM_TX_DC_BASE_ADR, TX_DC_BASE / 8);
2480         falcon_write(efx, &temp, SRM_TX_DC_CFG_REG_KER);
2481         EFX_POPULATE_OWORD_1(temp, SRM_RX_DC_BASE_ADR, RX_DC_BASE / 8);
2482         falcon_write(efx, &temp, SRM_RX_DC_CFG_REG_KER);
2483
2484         /* Set TX descriptor cache size. */
2485         BUILD_BUG_ON(TX_DC_ENTRIES != (16 << TX_DC_ENTRIES_ORDER));
2486         EFX_POPULATE_OWORD_1(temp, TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
2487         falcon_write(efx, &temp, TX_DC_CFG_REG_KER);
2488
2489         /* Set RX descriptor cache size.  Set low watermark to size-8, as
2490          * this allows most efficient prefetching.
2491          */
2492         BUILD_BUG_ON(RX_DC_ENTRIES != (16 << RX_DC_ENTRIES_ORDER));
2493         EFX_POPULATE_OWORD_1(temp, RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
2494         falcon_write(efx, &temp, RX_DC_CFG_REG_KER);
2495         EFX_POPULATE_OWORD_1(temp, RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
2496         falcon_write(efx, &temp, RX_DC_PF_WM_REG_KER);
2497
2498         /* Clear the parity enables on the TX data fifos as
2499          * they produce false parity errors because of timing issues
2500          */
2501         if (EFX_WORKAROUND_5129(efx)) {
2502                 falcon_read(efx, &temp, SPARE_REG_KER);
2503                 EFX_SET_OWORD_FIELD(temp, MEM_PERR_EN_TX_DATA, 0);
2504                 falcon_write(efx, &temp, SPARE_REG_KER);
2505         }
2506
2507         /* Enable all the genuinely fatal interrupts.  (They are still
2508          * masked by the overall interrupt mask, controlled by
2509          * falcon_interrupts()).
2510          *
2511          * Note: All other fatal interrupts are enabled
2512          */
2513         EFX_POPULATE_OWORD_3(temp,
2514                              ILL_ADR_INT_KER_EN, 1,
2515                              RBUF_OWN_INT_KER_EN, 1,
2516                              TBUF_OWN_INT_KER_EN, 1);
2517         EFX_INVERT_OWORD(temp);
2518         falcon_write(efx, &temp, FATAL_INTR_REG_KER);
2519
2520         /* Set number of RSS queues for receive path. */
2521         falcon_read(efx, &temp, RX_FILTER_CTL_REG);
2522         if (falcon_rev(efx) >= FALCON_REV_B0)
2523                 EFX_SET_OWORD_FIELD(temp, NUM_KER, 0);
2524         else
2525                 EFX_SET_OWORD_FIELD(temp, NUM_KER, efx->rss_queues - 1);
2526         if (EFX_WORKAROUND_7244(efx)) {
2527                 EFX_SET_OWORD_FIELD(temp, UDP_FULL_SRCH_LIMIT, 8);
2528                 EFX_SET_OWORD_FIELD(temp, UDP_WILD_SRCH_LIMIT, 8);
2529                 EFX_SET_OWORD_FIELD(temp, TCP_FULL_SRCH_LIMIT, 8);
2530                 EFX_SET_OWORD_FIELD(temp, TCP_WILD_SRCH_LIMIT, 8);
2531         }
2532         falcon_write(efx, &temp, RX_FILTER_CTL_REG);
2533
2534         falcon_setup_rss_indir_table(efx);
2535
2536         /* Setup RX.  Wait for descriptor is broken and must
2537          * be disabled.  RXDP recovery shouldn't be needed, but is.
2538          */
2539         falcon_read(efx, &temp, RX_SELF_RST_REG_KER);
2540         EFX_SET_OWORD_FIELD(temp, RX_NODESC_WAIT_DIS, 1);
2541         EFX_SET_OWORD_FIELD(temp, RX_RECOVERY_EN, 1);
2542         if (EFX_WORKAROUND_5583(efx))
2543                 EFX_SET_OWORD_FIELD(temp, RX_ISCSI_DIS, 1);
2544         falcon_write(efx, &temp, RX_SELF_RST_REG_KER);
2545
2546         /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
2547          * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
2548          */
2549         falcon_read(efx, &temp, TX_CFG2_REG_KER);
2550         EFX_SET_OWORD_FIELD(temp, TX_RX_SPACER, 0xfe);
2551         EFX_SET_OWORD_FIELD(temp, TX_RX_SPACER_EN, 1);
2552         EFX_SET_OWORD_FIELD(temp, TX_ONE_PKT_PER_Q, 1);
2553         EFX_SET_OWORD_FIELD(temp, TX_CSR_PUSH_EN, 0);
2554         EFX_SET_OWORD_FIELD(temp, TX_DIS_NON_IP_EV, 1);
2555         /* Enable SW_EV to inherit in char driver - assume harmless here */
2556         EFX_SET_OWORD_FIELD(temp, TX_SW_EV_EN, 1);
2557         /* Prefetch threshold 2 => fetch when descriptor cache half empty */
2558         EFX_SET_OWORD_FIELD(temp, TX_PREF_THRESHOLD, 2);
2559         /* Squash TX of packets of 16 bytes or less */
2560         if (falcon_rev(efx) >= FALCON_REV_B0 && EFX_WORKAROUND_9141(efx))
2561                 EFX_SET_OWORD_FIELD(temp, TX_FLUSH_MIN_LEN_EN_B0, 1);
2562         falcon_write(efx, &temp, TX_CFG2_REG_KER);
2563
2564         /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
2565          * descriptors (which is bad).
2566          */
2567         falcon_read(efx, &temp, TX_CFG_REG_KER);
2568         EFX_SET_OWORD_FIELD(temp, TX_NO_EOP_DISC_EN, 0);
2569         falcon_write(efx, &temp, TX_CFG_REG_KER);
2570
2571         /* RX config */
2572         falcon_read(efx, &temp, RX_CFG_REG_KER);
2573         EFX_SET_OWORD_FIELD_VER(efx, temp, RX_DESC_PUSH_EN, 0);
2574         if (EFX_WORKAROUND_7575(efx))
2575                 EFX_SET_OWORD_FIELD_VER(efx, temp, RX_USR_BUF_SIZE,
2576                                         (3 * 4096) / 32);
2577         if (falcon_rev(efx) >= FALCON_REV_B0)
2578                 EFX_SET_OWORD_FIELD(temp, RX_INGR_EN_B0, 1);
2579
2580         /* RX FIFO flow control thresholds */
2581         thresh = ((rx_xon_thresh_bytes >= 0) ?
2582                   rx_xon_thresh_bytes : efx->type->rx_xon_thresh);
2583         EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XON_MAC_TH, thresh / 256);
2584         thresh = ((rx_xoff_thresh_bytes >= 0) ?
2585                   rx_xoff_thresh_bytes : efx->type->rx_xoff_thresh);
2586         EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XOFF_MAC_TH, thresh / 256);
2587         /* RX control FIFO thresholds [32 entries] */
2588         EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XON_TX_TH, 20);
2589         EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XOFF_TX_TH, 25);
2590         falcon_write(efx, &temp, RX_CFG_REG_KER);
2591
2592         /* Set destination of both TX and RX Flush events */
2593         if (falcon_rev(efx) >= FALCON_REV_B0) {
2594                 EFX_POPULATE_OWORD_1(temp, FLS_EVQ_ID, 0);
2595                 falcon_write(efx, &temp, DP_CTRL_REG);
2596         }
2597
2598         return 0;
2599 }
2600
2601 void falcon_remove_nic(struct efx_nic *efx)
2602 {
2603         struct falcon_nic_data *nic_data = efx->nic_data;
2604         int rc;
2605
2606         rc = i2c_del_adapter(&efx->i2c_adap);
2607         BUG_ON(rc);
2608
2609         falcon_free_buffer(efx, &efx->irq_status);
2610
2611         falcon_reset_hw(efx, RESET_TYPE_ALL);
2612
2613         /* Release the second function after the reset */
2614         if (nic_data->pci_dev2) {
2615                 pci_dev_put(nic_data->pci_dev2);
2616                 nic_data->pci_dev2 = NULL;
2617         }
2618
2619         /* Tear down the private nic state */
2620         kfree(efx->nic_data);
2621         efx->nic_data = NULL;
2622 }
2623
2624 void falcon_update_nic_stats(struct efx_nic *efx)
2625 {
2626         efx_oword_t cnt;
2627
2628         falcon_read(efx, &cnt, RX_NODESC_DROP_REG_KER);
2629         efx->n_rx_nodesc_drop_cnt += EFX_OWORD_FIELD(cnt, RX_NODESC_DROP_CNT);
2630 }
2631
2632 /**************************************************************************
2633  *
2634  * Revision-dependent attributes used by efx.c
2635  *
2636  **************************************************************************
2637  */
2638
2639 struct efx_nic_type falcon_a_nic_type = {
2640         .mem_bar = 2,
2641         .mem_map_size = 0x20000,
2642         .txd_ptr_tbl_base = TX_DESC_PTR_TBL_KER_A1,
2643         .rxd_ptr_tbl_base = RX_DESC_PTR_TBL_KER_A1,
2644         .buf_tbl_base = BUF_TBL_KER_A1,
2645         .evq_ptr_tbl_base = EVQ_PTR_TBL_KER_A1,
2646         .evq_rptr_tbl_base = EVQ_RPTR_REG_KER_A1,
2647         .txd_ring_mask = FALCON_TXD_RING_MASK,
2648         .rxd_ring_mask = FALCON_RXD_RING_MASK,
2649         .evq_size = FALCON_EVQ_SIZE,
2650         .max_dma_mask = FALCON_DMA_MASK,
2651         .tx_dma_mask = FALCON_TX_DMA_MASK,
2652         .bug5391_mask = 0xf,
2653         .rx_xoff_thresh = 2048,
2654         .rx_xon_thresh = 512,
2655         .rx_buffer_padding = 0x24,
2656         .max_interrupt_mode = EFX_INT_MODE_MSI,
2657         .phys_addr_channels = 4,
2658 };
2659
2660 struct efx_nic_type falcon_b_nic_type = {
2661         .mem_bar = 2,
2662         /* Map everything up to and including the RSS indirection
2663          * table.  Don't map MSI-X table, MSI-X PBA since Linux
2664          * requires that they not be mapped.  */
2665         .mem_map_size = RX_RSS_INDIR_TBL_B0 + 0x800,
2666         .txd_ptr_tbl_base = TX_DESC_PTR_TBL_KER_B0,
2667         .rxd_ptr_tbl_base = RX_DESC_PTR_TBL_KER_B0,
2668         .buf_tbl_base = BUF_TBL_KER_B0,
2669         .evq_ptr_tbl_base = EVQ_PTR_TBL_KER_B0,
2670         .evq_rptr_tbl_base = EVQ_RPTR_REG_KER_B0,
2671         .txd_ring_mask = FALCON_TXD_RING_MASK,
2672         .rxd_ring_mask = FALCON_RXD_RING_MASK,
2673         .evq_size = FALCON_EVQ_SIZE,
2674         .max_dma_mask = FALCON_DMA_MASK,
2675         .tx_dma_mask = FALCON_TX_DMA_MASK,
2676         .bug5391_mask = 0,
2677         .rx_xoff_thresh = 54272, /* ~80Kb - 3*max MTU */
2678         .rx_xon_thresh = 27648,  /* ~3*max MTU */
2679         .rx_buffer_padding = 0,
2680         .max_interrupt_mode = EFX_INT_MODE_MSIX,
2681         .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
2682                                    * interrupt handler only supports 32
2683                                    * channels */
2684 };
2685