]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/sfc/falcon.c
70c681ecdabe69daceef77b06e70e440e5d30bb9
[linux-2.6-omap-h63xx.git] / drivers / net / sfc / falcon.c
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2008 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/i2c-algo-bit.h>
18 #include "net_driver.h"
19 #include "bitfield.h"
20 #include "efx.h"
21 #include "mac.h"
22 #include "gmii.h"
23 #include "spi.h"
24 #include "falcon.h"
25 #include "falcon_hwdefs.h"
26 #include "falcon_io.h"
27 #include "mdio_10g.h"
28 #include "phy.h"
29 #include "boards.h"
30 #include "workarounds.h"
31
32 /* Falcon hardware control.
33  * Falcon is the internal codename for the SFC4000 controller that is
34  * present in SFE400X evaluation boards
35  */
36
37 /**
38  * struct falcon_nic_data - Falcon NIC state
39  * @next_buffer_table: First available buffer table id
40  * @pci_dev2: The secondary PCI device if present
41  * @i2c_data: Operations and state for I2C bit-bashing algorithm
42  */
43 struct falcon_nic_data {
44         unsigned next_buffer_table;
45         struct pci_dev *pci_dev2;
46         struct i2c_algo_bit_data i2c_data;
47 };
48
49 /**************************************************************************
50  *
51  * Configurable values
52  *
53  **************************************************************************
54  */
55
56 static int disable_dma_stats;
57
58 /* This is set to 16 for a good reason.  In summary, if larger than
59  * 16, the descriptor cache holds more than a default socket
60  * buffer's worth of packets (for UDP we can only have at most one
61  * socket buffer's worth outstanding).  This combined with the fact
62  * that we only get 1 TX event per descriptor cache means the NIC
63  * goes idle.
64  */
65 #define TX_DC_ENTRIES 16
66 #define TX_DC_ENTRIES_ORDER 0
67 #define TX_DC_BASE 0x130000
68
69 #define RX_DC_ENTRIES 64
70 #define RX_DC_ENTRIES_ORDER 2
71 #define RX_DC_BASE 0x100000
72
73 /* RX FIFO XOFF watermark
74  *
75  * When the amount of the RX FIFO increases used increases past this
76  * watermark send XOFF. Only used if RX flow control is enabled (ethtool -A)
77  * This also has an effect on RX/TX arbitration
78  */
79 static int rx_xoff_thresh_bytes = -1;
80 module_param(rx_xoff_thresh_bytes, int, 0644);
81 MODULE_PARM_DESC(rx_xoff_thresh_bytes, "RX fifo XOFF threshold");
82
83 /* RX FIFO XON watermark
84  *
85  * When the amount of the RX FIFO used decreases below this
86  * watermark send XON. Only used if TX flow control is enabled (ethtool -A)
87  * This also has an effect on RX/TX arbitration
88  */
89 static int rx_xon_thresh_bytes = -1;
90 module_param(rx_xon_thresh_bytes, int, 0644);
91 MODULE_PARM_DESC(rx_xon_thresh_bytes, "RX fifo XON threshold");
92
93 /* TX descriptor ring size - min 512 max 4k */
94 #define FALCON_TXD_RING_ORDER TX_DESCQ_SIZE_1K
95 #define FALCON_TXD_RING_SIZE 1024
96 #define FALCON_TXD_RING_MASK (FALCON_TXD_RING_SIZE - 1)
97
98 /* RX descriptor ring size - min 512 max 4k */
99 #define FALCON_RXD_RING_ORDER RX_DESCQ_SIZE_1K
100 #define FALCON_RXD_RING_SIZE 1024
101 #define FALCON_RXD_RING_MASK (FALCON_RXD_RING_SIZE - 1)
102
103 /* Event queue size - max 32k */
104 #define FALCON_EVQ_ORDER EVQ_SIZE_4K
105 #define FALCON_EVQ_SIZE 4096
106 #define FALCON_EVQ_MASK (FALCON_EVQ_SIZE - 1)
107
108 /* Max number of internal errors. After this resets will not be performed */
109 #define FALCON_MAX_INT_ERRORS 4
110
111 /* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times
112  */
113 #define FALCON_FLUSH_INTERVAL 10
114 #define FALCON_FLUSH_POLL_COUNT 100
115
116 /**************************************************************************
117  *
118  * Falcon constants
119  *
120  **************************************************************************
121  */
122
123 /* DMA address mask */
124 #define FALCON_DMA_MASK DMA_BIT_MASK(46)
125
126 /* TX DMA length mask (13-bit) */
127 #define FALCON_TX_DMA_MASK (4096 - 1)
128
129 /* Size and alignment of special buffers (4KB) */
130 #define FALCON_BUF_SIZE 4096
131
132 /* Dummy SRAM size code */
133 #define SRM_NB_BSZ_ONCHIP_ONLY (-1)
134
135 /* Be nice if these (or equiv.) were in linux/pci_regs.h, but they're not. */
136 #define PCI_EXP_DEVCAP_PWR_VAL_LBN      18
137 #define PCI_EXP_DEVCAP_PWR_SCL_LBN      26
138 #define PCI_EXP_DEVCTL_PAYLOAD_LBN      5
139 #define PCI_EXP_LNKSTA_LNK_WID          0x3f0
140 #define PCI_EXP_LNKSTA_LNK_WID_LBN      4
141
142 #define FALCON_IS_DUAL_FUNC(efx)                \
143         (falcon_rev(efx) < FALCON_REV_B0)
144
145 /**************************************************************************
146  *
147  * Falcon hardware access
148  *
149  **************************************************************************/
150
151 /* Read the current event from the event queue */
152 static inline efx_qword_t *falcon_event(struct efx_channel *channel,
153                                         unsigned int index)
154 {
155         return (((efx_qword_t *) (channel->eventq.addr)) + index);
156 }
157
158 /* See if an event is present
159  *
160  * We check both the high and low dword of the event for all ones.  We
161  * wrote all ones when we cleared the event, and no valid event can
162  * have all ones in either its high or low dwords.  This approach is
163  * robust against reordering.
164  *
165  * Note that using a single 64-bit comparison is incorrect; even
166  * though the CPU read will be atomic, the DMA write may not be.
167  */
168 static inline int falcon_event_present(efx_qword_t *event)
169 {
170         return (!(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
171                   EFX_DWORD_IS_ALL_ONES(event->dword[1])));
172 }
173
174 /**************************************************************************
175  *
176  * I2C bus - this is a bit-bashing interface using GPIO pins
177  * Note that it uses the output enables to tristate the outputs
178  * SDA is the data pin and SCL is the clock
179  *
180  **************************************************************************
181  */
182 static void falcon_setsda(void *data, int state)
183 {
184         struct efx_nic *efx = (struct efx_nic *)data;
185         efx_oword_t reg;
186
187         falcon_read(efx, &reg, GPIO_CTL_REG_KER);
188         EFX_SET_OWORD_FIELD(reg, GPIO3_OEN, !state);
189         falcon_write(efx, &reg, GPIO_CTL_REG_KER);
190 }
191
192 static void falcon_setscl(void *data, int state)
193 {
194         struct efx_nic *efx = (struct efx_nic *)data;
195         efx_oword_t reg;
196
197         falcon_read(efx, &reg, GPIO_CTL_REG_KER);
198         EFX_SET_OWORD_FIELD(reg, GPIO0_OEN, !state);
199         falcon_write(efx, &reg, GPIO_CTL_REG_KER);
200 }
201
202 static int falcon_getsda(void *data)
203 {
204         struct efx_nic *efx = (struct efx_nic *)data;
205         efx_oword_t reg;
206
207         falcon_read(efx, &reg, GPIO_CTL_REG_KER);
208         return EFX_OWORD_FIELD(reg, GPIO3_IN);
209 }
210
211 static int falcon_getscl(void *data)
212 {
213         struct efx_nic *efx = (struct efx_nic *)data;
214         efx_oword_t reg;
215
216         falcon_read(efx, &reg, GPIO_CTL_REG_KER);
217         return EFX_OWORD_FIELD(reg, GPIO0_IN);
218 }
219
220 static struct i2c_algo_bit_data falcon_i2c_bit_operations = {
221         .setsda         = falcon_setsda,
222         .setscl         = falcon_setscl,
223         .getsda         = falcon_getsda,
224         .getscl         = falcon_getscl,
225         .udelay         = 5,
226         /* Wait up to 50 ms for slave to let us pull SCL high */
227         .timeout        = DIV_ROUND_UP(HZ, 20),
228 };
229
230 /**************************************************************************
231  *
232  * Falcon special buffer handling
233  * Special buffers are used for event queues and the TX and RX
234  * descriptor rings.
235  *
236  *************************************************************************/
237
238 /*
239  * Initialise a Falcon special buffer
240  *
241  * This will define a buffer (previously allocated via
242  * falcon_alloc_special_buffer()) in Falcon's buffer table, allowing
243  * it to be used for event queues, descriptor rings etc.
244  */
245 static void
246 falcon_init_special_buffer(struct efx_nic *efx,
247                            struct efx_special_buffer *buffer)
248 {
249         efx_qword_t buf_desc;
250         int index;
251         dma_addr_t dma_addr;
252         int i;
253
254         EFX_BUG_ON_PARANOID(!buffer->addr);
255
256         /* Write buffer descriptors to NIC */
257         for (i = 0; i < buffer->entries; i++) {
258                 index = buffer->index + i;
259                 dma_addr = buffer->dma_addr + (i * 4096);
260                 EFX_LOG(efx, "mapping special buffer %d at %llx\n",
261                         index, (unsigned long long)dma_addr);
262                 EFX_POPULATE_QWORD_4(buf_desc,
263                                      IP_DAT_BUF_SIZE, IP_DAT_BUF_SIZE_4K,
264                                      BUF_ADR_REGION, 0,
265                                      BUF_ADR_FBUF, (dma_addr >> 12),
266                                      BUF_OWNER_ID_FBUF, 0);
267                 falcon_write_sram(efx, &buf_desc, index);
268         }
269 }
270
271 /* Unmaps a buffer from Falcon and clears the buffer table entries */
272 static void
273 falcon_fini_special_buffer(struct efx_nic *efx,
274                            struct efx_special_buffer *buffer)
275 {
276         efx_oword_t buf_tbl_upd;
277         unsigned int start = buffer->index;
278         unsigned int end = (buffer->index + buffer->entries - 1);
279
280         if (!buffer->entries)
281                 return;
282
283         EFX_LOG(efx, "unmapping special buffers %d-%d\n",
284                 buffer->index, buffer->index + buffer->entries - 1);
285
286         EFX_POPULATE_OWORD_4(buf_tbl_upd,
287                              BUF_UPD_CMD, 0,
288                              BUF_CLR_CMD, 1,
289                              BUF_CLR_END_ID, end,
290                              BUF_CLR_START_ID, start);
291         falcon_write(efx, &buf_tbl_upd, BUF_TBL_UPD_REG_KER);
292 }
293
294 /*
295  * Allocate a new Falcon special buffer
296  *
297  * This allocates memory for a new buffer, clears it and allocates a
298  * new buffer ID range.  It does not write into Falcon's buffer table.
299  *
300  * This call will allocate 4KB buffers, since Falcon can't use 8KB
301  * buffers for event queues and descriptor rings.
302  */
303 static int falcon_alloc_special_buffer(struct efx_nic *efx,
304                                        struct efx_special_buffer *buffer,
305                                        unsigned int len)
306 {
307         struct falcon_nic_data *nic_data = efx->nic_data;
308
309         len = ALIGN(len, FALCON_BUF_SIZE);
310
311         buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
312                                             &buffer->dma_addr);
313         if (!buffer->addr)
314                 return -ENOMEM;
315         buffer->len = len;
316         buffer->entries = len / FALCON_BUF_SIZE;
317         BUG_ON(buffer->dma_addr & (FALCON_BUF_SIZE - 1));
318
319         /* All zeros is a potentially valid event so memset to 0xff */
320         memset(buffer->addr, 0xff, len);
321
322         /* Select new buffer ID */
323         buffer->index = nic_data->next_buffer_table;
324         nic_data->next_buffer_table += buffer->entries;
325
326         EFX_LOG(efx, "allocating special buffers %d-%d at %llx+%x "
327                 "(virt %p phys %lx)\n", buffer->index,
328                 buffer->index + buffer->entries - 1,
329                 (unsigned long long)buffer->dma_addr, len,
330                 buffer->addr, virt_to_phys(buffer->addr));
331
332         return 0;
333 }
334
335 static void falcon_free_special_buffer(struct efx_nic *efx,
336                                        struct efx_special_buffer *buffer)
337 {
338         if (!buffer->addr)
339                 return;
340
341         EFX_LOG(efx, "deallocating special buffers %d-%d at %llx+%x "
342                 "(virt %p phys %lx)\n", buffer->index,
343                 buffer->index + buffer->entries - 1,
344                 (unsigned long long)buffer->dma_addr, buffer->len,
345                 buffer->addr, virt_to_phys(buffer->addr));
346
347         pci_free_consistent(efx->pci_dev, buffer->len, buffer->addr,
348                             buffer->dma_addr);
349         buffer->addr = NULL;
350         buffer->entries = 0;
351 }
352
353 /**************************************************************************
354  *
355  * Falcon generic buffer handling
356  * These buffers are used for interrupt status and MAC stats
357  *
358  **************************************************************************/
359
360 static int falcon_alloc_buffer(struct efx_nic *efx,
361                                struct efx_buffer *buffer, unsigned int len)
362 {
363         buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
364                                             &buffer->dma_addr);
365         if (!buffer->addr)
366                 return -ENOMEM;
367         buffer->len = len;
368         memset(buffer->addr, 0, len);
369         return 0;
370 }
371
372 static void falcon_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
373 {
374         if (buffer->addr) {
375                 pci_free_consistent(efx->pci_dev, buffer->len,
376                                     buffer->addr, buffer->dma_addr);
377                 buffer->addr = NULL;
378         }
379 }
380
381 /**************************************************************************
382  *
383  * Falcon TX path
384  *
385  **************************************************************************/
386
387 /* Returns a pointer to the specified transmit descriptor in the TX
388  * descriptor queue belonging to the specified channel.
389  */
390 static inline efx_qword_t *falcon_tx_desc(struct efx_tx_queue *tx_queue,
391                                                unsigned int index)
392 {
393         return (((efx_qword_t *) (tx_queue->txd.addr)) + index);
394 }
395
396 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
397 static inline void falcon_notify_tx_desc(struct efx_tx_queue *tx_queue)
398 {
399         unsigned write_ptr;
400         efx_dword_t reg;
401
402         write_ptr = tx_queue->write_count & FALCON_TXD_RING_MASK;
403         EFX_POPULATE_DWORD_1(reg, TX_DESC_WPTR_DWORD, write_ptr);
404         falcon_writel_page(tx_queue->efx, &reg,
405                            TX_DESC_UPD_REG_KER_DWORD, tx_queue->queue);
406 }
407
408
409 /* For each entry inserted into the software descriptor ring, create a
410  * descriptor in the hardware TX descriptor ring (in host memory), and
411  * write a doorbell.
412  */
413 void falcon_push_buffers(struct efx_tx_queue *tx_queue)
414 {
415
416         struct efx_tx_buffer *buffer;
417         efx_qword_t *txd;
418         unsigned write_ptr;
419
420         BUG_ON(tx_queue->write_count == tx_queue->insert_count);
421
422         do {
423                 write_ptr = tx_queue->write_count & FALCON_TXD_RING_MASK;
424                 buffer = &tx_queue->buffer[write_ptr];
425                 txd = falcon_tx_desc(tx_queue, write_ptr);
426                 ++tx_queue->write_count;
427
428                 /* Create TX descriptor ring entry */
429                 EFX_POPULATE_QWORD_5(*txd,
430                                      TX_KER_PORT, 0,
431                                      TX_KER_CONT, buffer->continuation,
432                                      TX_KER_BYTE_CNT, buffer->len,
433                                      TX_KER_BUF_REGION, 0,
434                                      TX_KER_BUF_ADR, buffer->dma_addr);
435         } while (tx_queue->write_count != tx_queue->insert_count);
436
437         wmb(); /* Ensure descriptors are written before they are fetched */
438         falcon_notify_tx_desc(tx_queue);
439 }
440
441 /* Allocate hardware resources for a TX queue */
442 int falcon_probe_tx(struct efx_tx_queue *tx_queue)
443 {
444         struct efx_nic *efx = tx_queue->efx;
445         return falcon_alloc_special_buffer(efx, &tx_queue->txd,
446                                            FALCON_TXD_RING_SIZE *
447                                            sizeof(efx_qword_t));
448 }
449
450 void falcon_init_tx(struct efx_tx_queue *tx_queue)
451 {
452         efx_oword_t tx_desc_ptr;
453         struct efx_nic *efx = tx_queue->efx;
454
455         tx_queue->flushed = false;
456
457         /* Pin TX descriptor ring */
458         falcon_init_special_buffer(efx, &tx_queue->txd);
459
460         /* Push TX descriptor ring to card */
461         EFX_POPULATE_OWORD_10(tx_desc_ptr,
462                               TX_DESCQ_EN, 1,
463                               TX_ISCSI_DDIG_EN, 0,
464                               TX_ISCSI_HDIG_EN, 0,
465                               TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
466                               TX_DESCQ_EVQ_ID, tx_queue->channel->channel,
467                               TX_DESCQ_OWNER_ID, 0,
468                               TX_DESCQ_LABEL, tx_queue->queue,
469                               TX_DESCQ_SIZE, FALCON_TXD_RING_ORDER,
470                               TX_DESCQ_TYPE, 0,
471                               TX_NON_IP_DROP_DIS_B0, 1);
472
473         if (falcon_rev(efx) >= FALCON_REV_B0) {
474                 int csum = tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM;
475                 EFX_SET_OWORD_FIELD(tx_desc_ptr, TX_IP_CHKSM_DIS_B0, !csum);
476                 EFX_SET_OWORD_FIELD(tx_desc_ptr, TX_TCP_CHKSM_DIS_B0, !csum);
477         }
478
479         falcon_write_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
480                            tx_queue->queue);
481
482         if (falcon_rev(efx) < FALCON_REV_B0) {
483                 efx_oword_t reg;
484
485                 /* Only 128 bits in this register */
486                 BUILD_BUG_ON(EFX_TX_QUEUE_COUNT >= 128);
487
488                 falcon_read(efx, &reg, TX_CHKSM_CFG_REG_KER_A1);
489                 if (tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM)
490                         clear_bit_le(tx_queue->queue, (void *)&reg);
491                 else
492                         set_bit_le(tx_queue->queue, (void *)&reg);
493                 falcon_write(efx, &reg, TX_CHKSM_CFG_REG_KER_A1);
494         }
495 }
496
497 static void falcon_flush_tx_queue(struct efx_tx_queue *tx_queue)
498 {
499         struct efx_nic *efx = tx_queue->efx;
500         efx_oword_t tx_flush_descq;
501
502         /* Post a flush command */
503         EFX_POPULATE_OWORD_2(tx_flush_descq,
504                              TX_FLUSH_DESCQ_CMD, 1,
505                              TX_FLUSH_DESCQ, tx_queue->queue);
506         falcon_write(efx, &tx_flush_descq, TX_FLUSH_DESCQ_REG_KER);
507 }
508
509 void falcon_fini_tx(struct efx_tx_queue *tx_queue)
510 {
511         struct efx_nic *efx = tx_queue->efx;
512         efx_oword_t tx_desc_ptr;
513
514         /* The queue should have been flushed */
515         WARN_ON(!tx_queue->flushed);
516
517         /* Remove TX descriptor ring from card */
518         EFX_ZERO_OWORD(tx_desc_ptr);
519         falcon_write_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
520                            tx_queue->queue);
521
522         /* Unpin TX descriptor ring */
523         falcon_fini_special_buffer(efx, &tx_queue->txd);
524 }
525
526 /* Free buffers backing TX queue */
527 void falcon_remove_tx(struct efx_tx_queue *tx_queue)
528 {
529         falcon_free_special_buffer(tx_queue->efx, &tx_queue->txd);
530 }
531
532 /**************************************************************************
533  *
534  * Falcon RX path
535  *
536  **************************************************************************/
537
538 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
539 static inline efx_qword_t *falcon_rx_desc(struct efx_rx_queue *rx_queue,
540                                                unsigned int index)
541 {
542         return (((efx_qword_t *) (rx_queue->rxd.addr)) + index);
543 }
544
545 /* This creates an entry in the RX descriptor queue */
546 static inline void falcon_build_rx_desc(struct efx_rx_queue *rx_queue,
547                                         unsigned index)
548 {
549         struct efx_rx_buffer *rx_buf;
550         efx_qword_t *rxd;
551
552         rxd = falcon_rx_desc(rx_queue, index);
553         rx_buf = efx_rx_buffer(rx_queue, index);
554         EFX_POPULATE_QWORD_3(*rxd,
555                              RX_KER_BUF_SIZE,
556                              rx_buf->len -
557                              rx_queue->efx->type->rx_buffer_padding,
558                              RX_KER_BUF_REGION, 0,
559                              RX_KER_BUF_ADR, rx_buf->dma_addr);
560 }
561
562 /* This writes to the RX_DESC_WPTR register for the specified receive
563  * descriptor ring.
564  */
565 void falcon_notify_rx_desc(struct efx_rx_queue *rx_queue)
566 {
567         efx_dword_t reg;
568         unsigned write_ptr;
569
570         while (rx_queue->notified_count != rx_queue->added_count) {
571                 falcon_build_rx_desc(rx_queue,
572                                      rx_queue->notified_count &
573                                      FALCON_RXD_RING_MASK);
574                 ++rx_queue->notified_count;
575         }
576
577         wmb();
578         write_ptr = rx_queue->added_count & FALCON_RXD_RING_MASK;
579         EFX_POPULATE_DWORD_1(reg, RX_DESC_WPTR_DWORD, write_ptr);
580         falcon_writel_page(rx_queue->efx, &reg,
581                            RX_DESC_UPD_REG_KER_DWORD, rx_queue->queue);
582 }
583
584 int falcon_probe_rx(struct efx_rx_queue *rx_queue)
585 {
586         struct efx_nic *efx = rx_queue->efx;
587         return falcon_alloc_special_buffer(efx, &rx_queue->rxd,
588                                            FALCON_RXD_RING_SIZE *
589                                            sizeof(efx_qword_t));
590 }
591
592 void falcon_init_rx(struct efx_rx_queue *rx_queue)
593 {
594         efx_oword_t rx_desc_ptr;
595         struct efx_nic *efx = rx_queue->efx;
596         bool is_b0 = falcon_rev(efx) >= FALCON_REV_B0;
597         bool iscsi_digest_en = is_b0;
598
599         EFX_LOG(efx, "RX queue %d ring in special buffers %d-%d\n",
600                 rx_queue->queue, rx_queue->rxd.index,
601                 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
602
603         rx_queue->flushed = false;
604
605         /* Pin RX descriptor ring */
606         falcon_init_special_buffer(efx, &rx_queue->rxd);
607
608         /* Push RX descriptor ring to card */
609         EFX_POPULATE_OWORD_10(rx_desc_ptr,
610                               RX_ISCSI_DDIG_EN, iscsi_digest_en,
611                               RX_ISCSI_HDIG_EN, iscsi_digest_en,
612                               RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
613                               RX_DESCQ_EVQ_ID, rx_queue->channel->channel,
614                               RX_DESCQ_OWNER_ID, 0,
615                               RX_DESCQ_LABEL, rx_queue->queue,
616                               RX_DESCQ_SIZE, FALCON_RXD_RING_ORDER,
617                               RX_DESCQ_TYPE, 0 /* kernel queue */ ,
618                               /* For >=B0 this is scatter so disable */
619                               RX_DESCQ_JUMBO, !is_b0,
620                               RX_DESCQ_EN, 1);
621         falcon_write_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
622                            rx_queue->queue);
623 }
624
625 static void falcon_flush_rx_queue(struct efx_rx_queue *rx_queue)
626 {
627         struct efx_nic *efx = rx_queue->efx;
628         efx_oword_t rx_flush_descq;
629
630         /* Post a flush command */
631         EFX_POPULATE_OWORD_2(rx_flush_descq,
632                              RX_FLUSH_DESCQ_CMD, 1,
633                              RX_FLUSH_DESCQ, rx_queue->queue);
634         falcon_write(efx, &rx_flush_descq, RX_FLUSH_DESCQ_REG_KER);
635 }
636
637 void falcon_fini_rx(struct efx_rx_queue *rx_queue)
638 {
639         efx_oword_t rx_desc_ptr;
640         struct efx_nic *efx = rx_queue->efx;
641
642         /* The queue should already have been flushed */
643         WARN_ON(!rx_queue->flushed);
644
645         /* Remove RX descriptor ring from card */
646         EFX_ZERO_OWORD(rx_desc_ptr);
647         falcon_write_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
648                            rx_queue->queue);
649
650         /* Unpin RX descriptor ring */
651         falcon_fini_special_buffer(efx, &rx_queue->rxd);
652 }
653
654 /* Free buffers backing RX queue */
655 void falcon_remove_rx(struct efx_rx_queue *rx_queue)
656 {
657         falcon_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
658 }
659
660 /**************************************************************************
661  *
662  * Falcon event queue processing
663  * Event queues are processed by per-channel tasklets.
664  *
665  **************************************************************************/
666
667 /* Update a channel's event queue's read pointer (RPTR) register
668  *
669  * This writes the EVQ_RPTR_REG register for the specified channel's
670  * event queue.
671  *
672  * Note that EVQ_RPTR_REG contains the index of the "last read" event,
673  * whereas channel->eventq_read_ptr contains the index of the "next to
674  * read" event.
675  */
676 void falcon_eventq_read_ack(struct efx_channel *channel)
677 {
678         efx_dword_t reg;
679         struct efx_nic *efx = channel->efx;
680
681         EFX_POPULATE_DWORD_1(reg, EVQ_RPTR_DWORD, channel->eventq_read_ptr);
682         falcon_writel_table(efx, &reg, efx->type->evq_rptr_tbl_base,
683                             channel->channel);
684 }
685
686 /* Use HW to insert a SW defined event */
687 void falcon_generate_event(struct efx_channel *channel, efx_qword_t *event)
688 {
689         efx_oword_t drv_ev_reg;
690
691         EFX_POPULATE_OWORD_2(drv_ev_reg,
692                              DRV_EV_QID, channel->channel,
693                              DRV_EV_DATA,
694                              EFX_QWORD_FIELD64(*event, WHOLE_EVENT));
695         falcon_write(channel->efx, &drv_ev_reg, DRV_EV_REG_KER);
696 }
697
698 /* Handle a transmit completion event
699  *
700  * Falcon batches TX completion events; the message we receive is of
701  * the form "complete all TX events up to this index".
702  */
703 static void falcon_handle_tx_event(struct efx_channel *channel,
704                                    efx_qword_t *event)
705 {
706         unsigned int tx_ev_desc_ptr;
707         unsigned int tx_ev_q_label;
708         struct efx_tx_queue *tx_queue;
709         struct efx_nic *efx = channel->efx;
710
711         if (likely(EFX_QWORD_FIELD(*event, TX_EV_COMP))) {
712                 /* Transmit completion */
713                 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, TX_EV_DESC_PTR);
714                 tx_ev_q_label = EFX_QWORD_FIELD(*event, TX_EV_Q_LABEL);
715                 tx_queue = &efx->tx_queue[tx_ev_q_label];
716                 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
717         } else if (EFX_QWORD_FIELD(*event, TX_EV_WQ_FF_FULL)) {
718                 /* Rewrite the FIFO write pointer */
719                 tx_ev_q_label = EFX_QWORD_FIELD(*event, TX_EV_Q_LABEL);
720                 tx_queue = &efx->tx_queue[tx_ev_q_label];
721
722                 if (efx_dev_registered(efx))
723                         netif_tx_lock(efx->net_dev);
724                 falcon_notify_tx_desc(tx_queue);
725                 if (efx_dev_registered(efx))
726                         netif_tx_unlock(efx->net_dev);
727         } else if (EFX_QWORD_FIELD(*event, TX_EV_PKT_ERR) &&
728                    EFX_WORKAROUND_10727(efx)) {
729                 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
730         } else {
731                 EFX_ERR(efx, "channel %d unexpected TX event "
732                         EFX_QWORD_FMT"\n", channel->channel,
733                         EFX_QWORD_VAL(*event));
734         }
735 }
736
737 /* Detect errors included in the rx_evt_pkt_ok bit. */
738 static void falcon_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
739                                     const efx_qword_t *event,
740                                     bool *rx_ev_pkt_ok,
741                                     bool *discard)
742 {
743         struct efx_nic *efx = rx_queue->efx;
744         bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
745         bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
746         bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
747         bool rx_ev_other_err, rx_ev_pause_frm;
748         bool rx_ev_ip_frag_err, rx_ev_hdr_type, rx_ev_mcast_pkt;
749         unsigned rx_ev_pkt_type;
750
751         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, RX_EV_HDR_TYPE);
752         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, RX_EV_MCAST_PKT);
753         rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, RX_EV_TOBE_DISC);
754         rx_ev_pkt_type = EFX_QWORD_FIELD(*event, RX_EV_PKT_TYPE);
755         rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
756                                                  RX_EV_BUF_OWNER_ID_ERR);
757         rx_ev_ip_frag_err = EFX_QWORD_FIELD(*event, RX_EV_IF_FRAG_ERR);
758         rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
759                                                   RX_EV_IP_HDR_CHKSUM_ERR);
760         rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
761                                                    RX_EV_TCP_UDP_CHKSUM_ERR);
762         rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, RX_EV_ETH_CRC_ERR);
763         rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, RX_EV_FRM_TRUNC);
764         rx_ev_drib_nib = ((falcon_rev(efx) >= FALCON_REV_B0) ?
765                           0 : EFX_QWORD_FIELD(*event, RX_EV_DRIB_NIB));
766         rx_ev_pause_frm = EFX_QWORD_FIELD(*event, RX_EV_PAUSE_FRM_ERR);
767
768         /* Every error apart from tobe_disc and pause_frm */
769         rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
770                            rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
771                            rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
772
773         /* Count errors that are not in MAC stats. */
774         if (rx_ev_frm_trunc)
775                 ++rx_queue->channel->n_rx_frm_trunc;
776         else if (rx_ev_tobe_disc)
777                 ++rx_queue->channel->n_rx_tobe_disc;
778         else if (rx_ev_ip_hdr_chksum_err)
779                 ++rx_queue->channel->n_rx_ip_hdr_chksum_err;
780         else if (rx_ev_tcp_udp_chksum_err)
781                 ++rx_queue->channel->n_rx_tcp_udp_chksum_err;
782         if (rx_ev_ip_frag_err)
783                 ++rx_queue->channel->n_rx_ip_frag_err;
784
785         /* The frame must be discarded if any of these are true. */
786         *discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
787                     rx_ev_tobe_disc | rx_ev_pause_frm);
788
789         /* TOBE_DISC is expected on unicast mismatches; don't print out an
790          * error message.  FRM_TRUNC indicates RXDP dropped the packet due
791          * to a FIFO overflow.
792          */
793 #ifdef EFX_ENABLE_DEBUG
794         if (rx_ev_other_err) {
795                 EFX_INFO_RL(efx, " RX queue %d unexpected RX event "
796                             EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
797                             rx_queue->queue, EFX_QWORD_VAL(*event),
798                             rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
799                             rx_ev_ip_hdr_chksum_err ?
800                             " [IP_HDR_CHKSUM_ERR]" : "",
801                             rx_ev_tcp_udp_chksum_err ?
802                             " [TCP_UDP_CHKSUM_ERR]" : "",
803                             rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
804                             rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
805                             rx_ev_drib_nib ? " [DRIB_NIB]" : "",
806                             rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
807                             rx_ev_pause_frm ? " [PAUSE]" : "");
808         }
809 #endif
810
811         if (unlikely(rx_ev_eth_crc_err && EFX_WORKAROUND_10750(efx) &&
812                      efx->phy_type == PHY_TYPE_10XPRESS))
813                 tenxpress_crc_err(efx);
814 }
815
816 /* Handle receive events that are not in-order. */
817 static void falcon_handle_rx_bad_index(struct efx_rx_queue *rx_queue,
818                                        unsigned index)
819 {
820         struct efx_nic *efx = rx_queue->efx;
821         unsigned expected, dropped;
822
823         expected = rx_queue->removed_count & FALCON_RXD_RING_MASK;
824         dropped = ((index + FALCON_RXD_RING_SIZE - expected) &
825                    FALCON_RXD_RING_MASK);
826         EFX_INFO(efx, "dropped %d events (index=%d expected=%d)\n",
827                 dropped, index, expected);
828
829         efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
830                            RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
831 }
832
833 /* Handle a packet received event
834  *
835  * Falcon silicon gives a "discard" flag if it's a unicast packet with the
836  * wrong destination address
837  * Also "is multicast" and "matches multicast filter" flags can be used to
838  * discard non-matching multicast packets.
839  */
840 static void falcon_handle_rx_event(struct efx_channel *channel,
841                                    const efx_qword_t *event)
842 {
843         unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
844         unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
845         unsigned expected_ptr;
846         bool rx_ev_pkt_ok, discard = false, checksummed;
847         struct efx_rx_queue *rx_queue;
848         struct efx_nic *efx = channel->efx;
849
850         /* Basic packet information */
851         rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, RX_EV_BYTE_CNT);
852         rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, RX_EV_PKT_OK);
853         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, RX_EV_HDR_TYPE);
854         WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_JUMBO_CONT));
855         WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_SOP) != 1);
856         WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_Q_LABEL) != channel->channel);
857
858         rx_queue = &efx->rx_queue[channel->channel];
859
860         rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, RX_EV_DESC_PTR);
861         expected_ptr = rx_queue->removed_count & FALCON_RXD_RING_MASK;
862         if (unlikely(rx_ev_desc_ptr != expected_ptr))
863                 falcon_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
864
865         if (likely(rx_ev_pkt_ok)) {
866                 /* If packet is marked as OK and packet type is TCP/IPv4 or
867                  * UDP/IPv4, then we can rely on the hardware checksum.
868                  */
869                 checksummed = RX_EV_HDR_TYPE_HAS_CHECKSUMS(rx_ev_hdr_type);
870         } else {
871                 falcon_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok,
872                                         &discard);
873                 checksummed = false;
874         }
875
876         /* Detect multicast packets that didn't match the filter */
877         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, RX_EV_MCAST_PKT);
878         if (rx_ev_mcast_pkt) {
879                 unsigned int rx_ev_mcast_hash_match =
880                         EFX_QWORD_FIELD(*event, RX_EV_MCAST_HASH_MATCH);
881
882                 if (unlikely(!rx_ev_mcast_hash_match))
883                         discard = true;
884         }
885
886         /* Handle received packet */
887         efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt,
888                       checksummed, discard);
889 }
890
891 /* Global events are basically PHY events */
892 static void falcon_handle_global_event(struct efx_channel *channel,
893                                        efx_qword_t *event)
894 {
895         struct efx_nic *efx = channel->efx;
896         bool is_phy_event = false, handled = false;
897
898         /* Check for interrupt on either port.  Some boards have a
899          * single PHY wired to the interrupt line for port 1. */
900         if (EFX_QWORD_FIELD(*event, G_PHY0_INTR) ||
901             EFX_QWORD_FIELD(*event, G_PHY1_INTR) ||
902             EFX_QWORD_FIELD(*event, XG_PHY_INTR))
903                 is_phy_event = true;
904
905         if ((falcon_rev(efx) >= FALCON_REV_B0) &&
906             EFX_QWORD_FIELD(*event, XG_MNT_INTR_B0))
907                 is_phy_event = true;
908
909         if (is_phy_event) {
910                 efx->phy_op->clear_interrupt(efx);
911                 queue_work(efx->workqueue, &efx->reconfigure_work);
912                 handled = true;
913         }
914
915         if (EFX_QWORD_FIELD_VER(efx, *event, RX_RECOVERY)) {
916                 EFX_ERR(efx, "channel %d seen global RX_RESET "
917                         "event. Resetting.\n", channel->channel);
918
919                 atomic_inc(&efx->rx_reset);
920                 efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
921                                    RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
922                 handled = true;
923         }
924
925         if (!handled)
926                 EFX_ERR(efx, "channel %d unknown global event "
927                         EFX_QWORD_FMT "\n", channel->channel,
928                         EFX_QWORD_VAL(*event));
929 }
930
931 static void falcon_handle_driver_event(struct efx_channel *channel,
932                                        efx_qword_t *event)
933 {
934         struct efx_nic *efx = channel->efx;
935         unsigned int ev_sub_code;
936         unsigned int ev_sub_data;
937
938         ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE);
939         ev_sub_data = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_DATA);
940
941         switch (ev_sub_code) {
942         case TX_DESCQ_FLS_DONE_EV_DECODE:
943                 EFX_TRACE(efx, "channel %d TXQ %d flushed\n",
944                           channel->channel, ev_sub_data);
945                 break;
946         case RX_DESCQ_FLS_DONE_EV_DECODE:
947                 EFX_TRACE(efx, "channel %d RXQ %d flushed\n",
948                           channel->channel, ev_sub_data);
949                 break;
950         case EVQ_INIT_DONE_EV_DECODE:
951                 EFX_LOG(efx, "channel %d EVQ %d initialised\n",
952                         channel->channel, ev_sub_data);
953                 break;
954         case SRM_UPD_DONE_EV_DECODE:
955                 EFX_TRACE(efx, "channel %d SRAM update done\n",
956                           channel->channel);
957                 break;
958         case WAKE_UP_EV_DECODE:
959                 EFX_TRACE(efx, "channel %d RXQ %d wakeup event\n",
960                           channel->channel, ev_sub_data);
961                 break;
962         case TIMER_EV_DECODE:
963                 EFX_TRACE(efx, "channel %d RX queue %d timer expired\n",
964                           channel->channel, ev_sub_data);
965                 break;
966         case RX_RECOVERY_EV_DECODE:
967                 EFX_ERR(efx, "channel %d seen DRIVER RX_RESET event. "
968                         "Resetting.\n", channel->channel);
969                 atomic_inc(&efx->rx_reset);
970                 efx_schedule_reset(efx,
971                                    EFX_WORKAROUND_6555(efx) ?
972                                    RESET_TYPE_RX_RECOVERY :
973                                    RESET_TYPE_DISABLE);
974                 break;
975         case RX_DSC_ERROR_EV_DECODE:
976                 EFX_ERR(efx, "RX DMA Q %d reports descriptor fetch error."
977                         " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
978                 efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
979                 break;
980         case TX_DSC_ERROR_EV_DECODE:
981                 EFX_ERR(efx, "TX DMA Q %d reports descriptor fetch error."
982                         " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
983                 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
984                 break;
985         default:
986                 EFX_TRACE(efx, "channel %d unknown driver event code %d "
987                           "data %04x\n", channel->channel, ev_sub_code,
988                           ev_sub_data);
989                 break;
990         }
991 }
992
993 int falcon_process_eventq(struct efx_channel *channel, int rx_quota)
994 {
995         unsigned int read_ptr;
996         efx_qword_t event, *p_event;
997         int ev_code;
998         int rx_packets = 0;
999
1000         read_ptr = channel->eventq_read_ptr;
1001
1002         do {
1003                 p_event = falcon_event(channel, read_ptr);
1004                 event = *p_event;
1005
1006                 if (!falcon_event_present(&event))
1007                         /* End of events */
1008                         break;
1009
1010                 EFX_TRACE(channel->efx, "channel %d event is "EFX_QWORD_FMT"\n",
1011                           channel->channel, EFX_QWORD_VAL(event));
1012
1013                 /* Clear this event by marking it all ones */
1014                 EFX_SET_QWORD(*p_event);
1015
1016                 ev_code = EFX_QWORD_FIELD(event, EV_CODE);
1017
1018                 switch (ev_code) {
1019                 case RX_IP_EV_DECODE:
1020                         falcon_handle_rx_event(channel, &event);
1021                         ++rx_packets;
1022                         break;
1023                 case TX_IP_EV_DECODE:
1024                         falcon_handle_tx_event(channel, &event);
1025                         break;
1026                 case DRV_GEN_EV_DECODE:
1027                         channel->eventq_magic
1028                                 = EFX_QWORD_FIELD(event, EVQ_MAGIC);
1029                         EFX_LOG(channel->efx, "channel %d received generated "
1030                                 "event "EFX_QWORD_FMT"\n", channel->channel,
1031                                 EFX_QWORD_VAL(event));
1032                         break;
1033                 case GLOBAL_EV_DECODE:
1034                         falcon_handle_global_event(channel, &event);
1035                         break;
1036                 case DRIVER_EV_DECODE:
1037                         falcon_handle_driver_event(channel, &event);
1038                         break;
1039                 default:
1040                         EFX_ERR(channel->efx, "channel %d unknown event type %d"
1041                                 " (data " EFX_QWORD_FMT ")\n", channel->channel,
1042                                 ev_code, EFX_QWORD_VAL(event));
1043                 }
1044
1045                 /* Increment read pointer */
1046                 read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK;
1047
1048         } while (rx_packets < rx_quota);
1049
1050         channel->eventq_read_ptr = read_ptr;
1051         return rx_packets;
1052 }
1053
1054 void falcon_set_int_moderation(struct efx_channel *channel)
1055 {
1056         efx_dword_t timer_cmd;
1057         struct efx_nic *efx = channel->efx;
1058
1059         /* Set timer register */
1060         if (channel->irq_moderation) {
1061                 /* Round to resolution supported by hardware.  The value we
1062                  * program is based at 0.  So actual interrupt moderation
1063                  * achieved is ((x + 1) * res).
1064                  */
1065                 unsigned int res = 5;
1066                 channel->irq_moderation -= (channel->irq_moderation % res);
1067                 if (channel->irq_moderation < res)
1068                         channel->irq_moderation = res;
1069                 EFX_POPULATE_DWORD_2(timer_cmd,
1070                                      TIMER_MODE, TIMER_MODE_INT_HLDOFF,
1071                                      TIMER_VAL,
1072                                      (channel->irq_moderation / res) - 1);
1073         } else {
1074                 EFX_POPULATE_DWORD_2(timer_cmd,
1075                                      TIMER_MODE, TIMER_MODE_DIS,
1076                                      TIMER_VAL, 0);
1077         }
1078         falcon_writel_page_locked(efx, &timer_cmd, TIMER_CMD_REG_KER,
1079                                   channel->channel);
1080
1081 }
1082
1083 /* Allocate buffer table entries for event queue */
1084 int falcon_probe_eventq(struct efx_channel *channel)
1085 {
1086         struct efx_nic *efx = channel->efx;
1087         unsigned int evq_size;
1088
1089         evq_size = FALCON_EVQ_SIZE * sizeof(efx_qword_t);
1090         return falcon_alloc_special_buffer(efx, &channel->eventq, evq_size);
1091 }
1092
1093 void falcon_init_eventq(struct efx_channel *channel)
1094 {
1095         efx_oword_t evq_ptr;
1096         struct efx_nic *efx = channel->efx;
1097
1098         EFX_LOG(efx, "channel %d event queue in special buffers %d-%d\n",
1099                 channel->channel, channel->eventq.index,
1100                 channel->eventq.index + channel->eventq.entries - 1);
1101
1102         /* Pin event queue buffer */
1103         falcon_init_special_buffer(efx, &channel->eventq);
1104
1105         /* Fill event queue with all ones (i.e. empty events) */
1106         memset(channel->eventq.addr, 0xff, channel->eventq.len);
1107
1108         /* Push event queue to card */
1109         EFX_POPULATE_OWORD_3(evq_ptr,
1110                              EVQ_EN, 1,
1111                              EVQ_SIZE, FALCON_EVQ_ORDER,
1112                              EVQ_BUF_BASE_ID, channel->eventq.index);
1113         falcon_write_table(efx, &evq_ptr, efx->type->evq_ptr_tbl_base,
1114                            channel->channel);
1115
1116         falcon_set_int_moderation(channel);
1117 }
1118
1119 void falcon_fini_eventq(struct efx_channel *channel)
1120 {
1121         efx_oword_t eventq_ptr;
1122         struct efx_nic *efx = channel->efx;
1123
1124         /* Remove event queue from card */
1125         EFX_ZERO_OWORD(eventq_ptr);
1126         falcon_write_table(efx, &eventq_ptr, efx->type->evq_ptr_tbl_base,
1127                            channel->channel);
1128
1129         /* Unpin event queue */
1130         falcon_fini_special_buffer(efx, &channel->eventq);
1131 }
1132
1133 /* Free buffers backing event queue */
1134 void falcon_remove_eventq(struct efx_channel *channel)
1135 {
1136         falcon_free_special_buffer(channel->efx, &channel->eventq);
1137 }
1138
1139
1140 /* Generates a test event on the event queue.  A subsequent call to
1141  * process_eventq() should pick up the event and place the value of
1142  * "magic" into channel->eventq_magic;
1143  */
1144 void falcon_generate_test_event(struct efx_channel *channel, unsigned int magic)
1145 {
1146         efx_qword_t test_event;
1147
1148         EFX_POPULATE_QWORD_2(test_event,
1149                              EV_CODE, DRV_GEN_EV_DECODE,
1150                              EVQ_MAGIC, magic);
1151         falcon_generate_event(channel, &test_event);
1152 }
1153
1154 /**************************************************************************
1155  *
1156  * Flush handling
1157  *
1158  **************************************************************************/
1159
1160
1161 static void falcon_poll_flush_events(struct efx_nic *efx)
1162 {
1163         struct efx_channel *channel = &efx->channel[0];
1164         struct efx_tx_queue *tx_queue;
1165         struct efx_rx_queue *rx_queue;
1166         unsigned int read_ptr, i;
1167
1168         read_ptr = channel->eventq_read_ptr;
1169         for (i = 0; i < FALCON_EVQ_SIZE; ++i) {
1170                 efx_qword_t *event = falcon_event(channel, read_ptr);
1171                 int ev_code, ev_sub_code, ev_queue;
1172                 bool ev_failed;
1173                 if (!falcon_event_present(event))
1174                         break;
1175
1176                 ev_code = EFX_QWORD_FIELD(*event, EV_CODE);
1177                 if (ev_code != DRIVER_EV_DECODE)
1178                         continue;
1179
1180                 ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE);
1181                 switch (ev_sub_code) {
1182                 case TX_DESCQ_FLS_DONE_EV_DECODE:
1183                         ev_queue = EFX_QWORD_FIELD(*event,
1184                                                    DRIVER_EV_TX_DESCQ_ID);
1185                         if (ev_queue < EFX_TX_QUEUE_COUNT) {
1186                                 tx_queue = efx->tx_queue + ev_queue;
1187                                 tx_queue->flushed = true;
1188                         }
1189                         break;
1190                 case RX_DESCQ_FLS_DONE_EV_DECODE:
1191                         ev_queue = EFX_QWORD_FIELD(*event,
1192                                                    DRIVER_EV_RX_DESCQ_ID);
1193                         ev_failed = EFX_QWORD_FIELD(*event,
1194                                                     DRIVER_EV_RX_FLUSH_FAIL);
1195                         if (ev_queue < efx->n_rx_queues) {
1196                                 rx_queue = efx->rx_queue + ev_queue;
1197
1198                                 /* retry the rx flush */
1199                                 if (ev_failed)
1200                                         falcon_flush_rx_queue(rx_queue);
1201                                 else
1202                                         rx_queue->flushed = true;
1203                         }
1204                         break;
1205                 }
1206
1207                 read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK;
1208         }
1209 }
1210
1211 /* Handle tx and rx flushes at the same time, since they run in
1212  * parallel in the hardware and there's no reason for us to
1213  * serialise them */
1214 int falcon_flush_queues(struct efx_nic *efx)
1215 {
1216         struct efx_rx_queue *rx_queue;
1217         struct efx_tx_queue *tx_queue;
1218         int i;
1219         bool outstanding;
1220
1221         /* Issue flush requests */
1222         efx_for_each_tx_queue(tx_queue, efx) {
1223                 tx_queue->flushed = false;
1224                 falcon_flush_tx_queue(tx_queue);
1225         }
1226         efx_for_each_rx_queue(rx_queue, efx) {
1227                 rx_queue->flushed = false;
1228                 falcon_flush_rx_queue(rx_queue);
1229         }
1230
1231         /* Poll the evq looking for flush completions. Since we're not pushing
1232          * any more rx or tx descriptors at this point, we're in no danger of
1233          * overflowing the evq whilst we wait */
1234         for (i = 0; i < FALCON_FLUSH_POLL_COUNT; ++i) {
1235                 msleep(FALCON_FLUSH_INTERVAL);
1236                 falcon_poll_flush_events(efx);
1237
1238                 /* Check if every queue has been succesfully flushed */
1239                 outstanding = false;
1240                 efx_for_each_tx_queue(tx_queue, efx)
1241                         outstanding |= !tx_queue->flushed;
1242                 efx_for_each_rx_queue(rx_queue, efx)
1243                         outstanding |= !rx_queue->flushed;
1244                 if (!outstanding)
1245                         return 0;
1246         }
1247
1248         /* Mark the queues as all flushed. We're going to return failure
1249          * leading to a reset, or fake up success anyway. "flushed" now
1250          * indicates that we tried to flush. */
1251         efx_for_each_tx_queue(tx_queue, efx) {
1252                 if (!tx_queue->flushed)
1253                         EFX_ERR(efx, "tx queue %d flush command timed out\n",
1254                                 tx_queue->queue);
1255                 tx_queue->flushed = true;
1256         }
1257         efx_for_each_rx_queue(rx_queue, efx) {
1258                 if (!rx_queue->flushed)
1259                         EFX_ERR(efx, "rx queue %d flush command timed out\n",
1260                                 rx_queue->queue);
1261                 rx_queue->flushed = true;
1262         }
1263
1264         if (EFX_WORKAROUND_7803(efx))
1265                 return 0;
1266
1267         return -ETIMEDOUT;
1268 }
1269
1270 /**************************************************************************
1271  *
1272  * Falcon hardware interrupts
1273  * The hardware interrupt handler does very little work; all the event
1274  * queue processing is carried out by per-channel tasklets.
1275  *
1276  **************************************************************************/
1277
1278 /* Enable/disable/generate Falcon interrupts */
1279 static inline void falcon_interrupts(struct efx_nic *efx, int enabled,
1280                                      int force)
1281 {
1282         efx_oword_t int_en_reg_ker;
1283
1284         EFX_POPULATE_OWORD_2(int_en_reg_ker,
1285                              KER_INT_KER, force,
1286                              DRV_INT_EN_KER, enabled);
1287         falcon_write(efx, &int_en_reg_ker, INT_EN_REG_KER);
1288 }
1289
1290 void falcon_enable_interrupts(struct efx_nic *efx)
1291 {
1292         efx_oword_t int_adr_reg_ker;
1293         struct efx_channel *channel;
1294
1295         EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1296         wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1297
1298         /* Program address */
1299         EFX_POPULATE_OWORD_2(int_adr_reg_ker,
1300                              NORM_INT_VEC_DIS_KER, EFX_INT_MODE_USE_MSI(efx),
1301                              INT_ADR_KER, efx->irq_status.dma_addr);
1302         falcon_write(efx, &int_adr_reg_ker, INT_ADR_REG_KER);
1303
1304         /* Enable interrupts */
1305         falcon_interrupts(efx, 1, 0);
1306
1307         /* Force processing of all the channels to get the EVQ RPTRs up to
1308            date */
1309         efx_for_each_channel(channel, efx)
1310                 efx_schedule_channel(channel);
1311 }
1312
1313 void falcon_disable_interrupts(struct efx_nic *efx)
1314 {
1315         /* Disable interrupts */
1316         falcon_interrupts(efx, 0, 0);
1317 }
1318
1319 /* Generate a Falcon test interrupt
1320  * Interrupt must already have been enabled, otherwise nasty things
1321  * may happen.
1322  */
1323 void falcon_generate_interrupt(struct efx_nic *efx)
1324 {
1325         falcon_interrupts(efx, 1, 1);
1326 }
1327
1328 /* Acknowledge a legacy interrupt from Falcon
1329  *
1330  * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
1331  *
1332  * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
1333  * BIU. Interrupt acknowledge is read sensitive so must write instead
1334  * (then read to ensure the BIU collector is flushed)
1335  *
1336  * NB most hardware supports MSI interrupts
1337  */
1338 static inline void falcon_irq_ack_a1(struct efx_nic *efx)
1339 {
1340         efx_dword_t reg;
1341
1342         EFX_POPULATE_DWORD_1(reg, INT_ACK_DUMMY_DATA, 0xb7eb7e);
1343         falcon_writel(efx, &reg, INT_ACK_REG_KER_A1);
1344         falcon_readl(efx, &reg, WORK_AROUND_BROKEN_PCI_READS_REG_KER_A1);
1345 }
1346
1347 /* Process a fatal interrupt
1348  * Disable bus mastering ASAP and schedule a reset
1349  */
1350 static irqreturn_t falcon_fatal_interrupt(struct efx_nic *efx)
1351 {
1352         struct falcon_nic_data *nic_data = efx->nic_data;
1353         efx_oword_t *int_ker = efx->irq_status.addr;
1354         efx_oword_t fatal_intr;
1355         int error, mem_perr;
1356         static int n_int_errors;
1357
1358         falcon_read(efx, &fatal_intr, FATAL_INTR_REG_KER);
1359         error = EFX_OWORD_FIELD(fatal_intr, INT_KER_ERROR);
1360
1361         EFX_ERR(efx, "SYSTEM ERROR " EFX_OWORD_FMT " status "
1362                 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1363                 EFX_OWORD_VAL(fatal_intr),
1364                 error ? "disabling bus mastering" : "no recognised error");
1365         if (error == 0)
1366                 goto out;
1367
1368         /* If this is a memory parity error dump which blocks are offending */
1369         mem_perr = EFX_OWORD_FIELD(fatal_intr, MEM_PERR_INT_KER);
1370         if (mem_perr) {
1371                 efx_oword_t reg;
1372                 falcon_read(efx, &reg, MEM_STAT_REG_KER);
1373                 EFX_ERR(efx, "SYSTEM ERROR: memory parity error "
1374                         EFX_OWORD_FMT "\n", EFX_OWORD_VAL(reg));
1375         }
1376
1377         /* Disable DMA bus mastering on both devices */
1378         pci_disable_device(efx->pci_dev);
1379         if (FALCON_IS_DUAL_FUNC(efx))
1380                 pci_disable_device(nic_data->pci_dev2);
1381
1382         if (++n_int_errors < FALCON_MAX_INT_ERRORS) {
1383                 EFX_ERR(efx, "SYSTEM ERROR - reset scheduled\n");
1384                 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1385         } else {
1386                 EFX_ERR(efx, "SYSTEM ERROR - max number of errors seen."
1387                         "NIC will be disabled\n");
1388                 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1389         }
1390 out:
1391         return IRQ_HANDLED;
1392 }
1393
1394 /* Handle a legacy interrupt from Falcon
1395  * Acknowledges the interrupt and schedule event queue processing.
1396  */
1397 static irqreturn_t falcon_legacy_interrupt_b0(int irq, void *dev_id)
1398 {
1399         struct efx_nic *efx = dev_id;
1400         efx_oword_t *int_ker = efx->irq_status.addr;
1401         struct efx_channel *channel;
1402         efx_dword_t reg;
1403         u32 queues;
1404         int syserr;
1405
1406         /* Read the ISR which also ACKs the interrupts */
1407         falcon_readl(efx, &reg, INT_ISR0_B0);
1408         queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1409
1410         /* Check to see if we have a serious error condition */
1411         syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
1412         if (unlikely(syserr))
1413                 return falcon_fatal_interrupt(efx);
1414
1415         if (queues == 0)
1416                 return IRQ_NONE;
1417
1418         efx->last_irq_cpu = raw_smp_processor_id();
1419         EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1420                   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1421
1422         /* Schedule processing of any interrupting queues */
1423         channel = &efx->channel[0];
1424         while (queues) {
1425                 if (queues & 0x01)
1426                         efx_schedule_channel(channel);
1427                 channel++;
1428                 queues >>= 1;
1429         }
1430
1431         return IRQ_HANDLED;
1432 }
1433
1434
1435 static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
1436 {
1437         struct efx_nic *efx = dev_id;
1438         efx_oword_t *int_ker = efx->irq_status.addr;
1439         struct efx_channel *channel;
1440         int syserr;
1441         int queues;
1442
1443         /* Check to see if this is our interrupt.  If it isn't, we
1444          * exit without having touched the hardware.
1445          */
1446         if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
1447                 EFX_TRACE(efx, "IRQ %d on CPU %d not for me\n", irq,
1448                           raw_smp_processor_id());
1449                 return IRQ_NONE;
1450         }
1451         efx->last_irq_cpu = raw_smp_processor_id();
1452         EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1453                   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1454
1455         /* Check to see if we have a serious error condition */
1456         syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
1457         if (unlikely(syserr))
1458                 return falcon_fatal_interrupt(efx);
1459
1460         /* Determine interrupting queues, clear interrupt status
1461          * register and acknowledge the device interrupt.
1462          */
1463         BUILD_BUG_ON(INT_EVQS_WIDTH > EFX_MAX_CHANNELS);
1464         queues = EFX_OWORD_FIELD(*int_ker, INT_EVQS);
1465         EFX_ZERO_OWORD(*int_ker);
1466         wmb(); /* Ensure the vector is cleared before interrupt ack */
1467         falcon_irq_ack_a1(efx);
1468
1469         /* Schedule processing of any interrupting queues */
1470         channel = &efx->channel[0];
1471         while (queues) {
1472                 if (queues & 0x01)
1473                         efx_schedule_channel(channel);
1474                 channel++;
1475                 queues >>= 1;
1476         }
1477
1478         return IRQ_HANDLED;
1479 }
1480
1481 /* Handle an MSI interrupt from Falcon
1482  *
1483  * Handle an MSI hardware interrupt.  This routine schedules event
1484  * queue processing.  No interrupt acknowledgement cycle is necessary.
1485  * Also, we never need to check that the interrupt is for us, since
1486  * MSI interrupts cannot be shared.
1487  */
1488 static irqreturn_t falcon_msi_interrupt(int irq, void *dev_id)
1489 {
1490         struct efx_channel *channel = dev_id;
1491         struct efx_nic *efx = channel->efx;
1492         efx_oword_t *int_ker = efx->irq_status.addr;
1493         int syserr;
1494
1495         efx->last_irq_cpu = raw_smp_processor_id();
1496         EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1497                   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1498
1499         /* Check to see if we have a serious error condition */
1500         syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
1501         if (unlikely(syserr))
1502                 return falcon_fatal_interrupt(efx);
1503
1504         /* Schedule processing of the channel */
1505         efx_schedule_channel(channel);
1506
1507         return IRQ_HANDLED;
1508 }
1509
1510
1511 /* Setup RSS indirection table.
1512  * This maps from the hash value of the packet to RXQ
1513  */
1514 static void falcon_setup_rss_indir_table(struct efx_nic *efx)
1515 {
1516         int i = 0;
1517         unsigned long offset;
1518         efx_dword_t dword;
1519
1520         if (falcon_rev(efx) < FALCON_REV_B0)
1521                 return;
1522
1523         for (offset = RX_RSS_INDIR_TBL_B0;
1524              offset < RX_RSS_INDIR_TBL_B0 + 0x800;
1525              offset += 0x10) {
1526                 EFX_POPULATE_DWORD_1(dword, RX_RSS_INDIR_ENT_B0,
1527                                      i % efx->n_rx_queues);
1528                 falcon_writel(efx, &dword, offset);
1529                 i++;
1530         }
1531 }
1532
1533 /* Hook interrupt handler(s)
1534  * Try MSI and then legacy interrupts.
1535  */
1536 int falcon_init_interrupt(struct efx_nic *efx)
1537 {
1538         struct efx_channel *channel;
1539         int rc;
1540
1541         if (!EFX_INT_MODE_USE_MSI(efx)) {
1542                 irq_handler_t handler;
1543                 if (falcon_rev(efx) >= FALCON_REV_B0)
1544                         handler = falcon_legacy_interrupt_b0;
1545                 else
1546                         handler = falcon_legacy_interrupt_a1;
1547
1548                 rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1549                                  efx->name, efx);
1550                 if (rc) {
1551                         EFX_ERR(efx, "failed to hook legacy IRQ %d\n",
1552                                 efx->pci_dev->irq);
1553                         goto fail1;
1554                 }
1555                 return 0;
1556         }
1557
1558         /* Hook MSI or MSI-X interrupt */
1559         efx_for_each_channel(channel, efx) {
1560                 rc = request_irq(channel->irq, falcon_msi_interrupt,
1561                                  IRQF_PROBE_SHARED, /* Not shared */
1562                                  efx->name, channel);
1563                 if (rc) {
1564                         EFX_ERR(efx, "failed to hook IRQ %d\n", channel->irq);
1565                         goto fail2;
1566                 }
1567         }
1568
1569         return 0;
1570
1571  fail2:
1572         efx_for_each_channel(channel, efx)
1573                 free_irq(channel->irq, channel);
1574  fail1:
1575         return rc;
1576 }
1577
1578 void falcon_fini_interrupt(struct efx_nic *efx)
1579 {
1580         struct efx_channel *channel;
1581         efx_oword_t reg;
1582
1583         /* Disable MSI/MSI-X interrupts */
1584         efx_for_each_channel(channel, efx) {
1585                 if (channel->irq)
1586                         free_irq(channel->irq, channel);
1587         }
1588
1589         /* ACK legacy interrupt */
1590         if (falcon_rev(efx) >= FALCON_REV_B0)
1591                 falcon_read(efx, &reg, INT_ISR0_B0);
1592         else
1593                 falcon_irq_ack_a1(efx);
1594
1595         /* Disable legacy interrupt */
1596         if (efx->legacy_irq)
1597                 free_irq(efx->legacy_irq, efx);
1598 }
1599
1600 /**************************************************************************
1601  *
1602  * EEPROM/flash
1603  *
1604  **************************************************************************
1605  */
1606
1607 #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
1608
1609 /* Wait for SPI command completion */
1610 static int falcon_spi_wait(struct efx_nic *efx)
1611 {
1612         unsigned long timeout = jiffies + DIV_ROUND_UP(HZ, 10);
1613         efx_oword_t reg;
1614         bool cmd_en, timer_active;
1615
1616         for (;;) {
1617                 falcon_read(efx, &reg, EE_SPI_HCMD_REG_KER);
1618                 cmd_en = EFX_OWORD_FIELD(reg, EE_SPI_HCMD_CMD_EN);
1619                 timer_active = EFX_OWORD_FIELD(reg, EE_WR_TIMER_ACTIVE);
1620                 if (!cmd_en && !timer_active)
1621                         return 0;
1622                 if (time_after_eq(jiffies, timeout)) {
1623                         EFX_ERR(efx, "timed out waiting for SPI\n");
1624                         return -ETIMEDOUT;
1625                 }
1626                 cpu_relax();
1627         }
1628 }
1629
1630 static int falcon_spi_cmd(const struct efx_spi_device *spi,
1631                           unsigned int command, int address,
1632                           const void *in, void *out, unsigned int len)
1633 {
1634         struct efx_nic *efx = spi->efx;
1635         bool addressed = (address >= 0);
1636         bool reading = (out != NULL);
1637         efx_oword_t reg;
1638         int rc;
1639
1640         /* Input validation */
1641         if (len > FALCON_SPI_MAX_LEN)
1642                 return -EINVAL;
1643
1644         /* Check SPI not currently being accessed */
1645         rc = falcon_spi_wait(efx);
1646         if (rc)
1647                 return rc;
1648
1649         /* Program address register, if we have an address */
1650         if (addressed) {
1651                 EFX_POPULATE_OWORD_1(reg, EE_SPI_HADR_ADR, address);
1652                 falcon_write(efx, &reg, EE_SPI_HADR_REG_KER);
1653         }
1654
1655         /* Program data register, if we have data */
1656         if (in != NULL) {
1657                 memcpy(&reg, in, len);
1658                 falcon_write(efx, &reg, EE_SPI_HDATA_REG_KER);
1659         }
1660
1661         /* Issue read/write command */
1662         EFX_POPULATE_OWORD_7(reg,
1663                              EE_SPI_HCMD_CMD_EN, 1,
1664                              EE_SPI_HCMD_SF_SEL, spi->device_id,
1665                              EE_SPI_HCMD_DABCNT, len,
1666                              EE_SPI_HCMD_READ, reading,
1667                              EE_SPI_HCMD_DUBCNT, 0,
1668                              EE_SPI_HCMD_ADBCNT,
1669                              (addressed ? spi->addr_len : 0),
1670                              EE_SPI_HCMD_ENC, command);
1671         falcon_write(efx, &reg, EE_SPI_HCMD_REG_KER);
1672
1673         /* Wait for read/write to complete */
1674         rc = falcon_spi_wait(efx);
1675         if (rc)
1676                 return rc;
1677
1678         /* Read data */
1679         if (out != NULL) {
1680                 falcon_read(efx, &reg, EE_SPI_HDATA_REG_KER);
1681                 memcpy(out, &reg, len);
1682         }
1683
1684         return 0;
1685 }
1686
1687 static unsigned int
1688 falcon_spi_write_limit(const struct efx_spi_device *spi, unsigned int start)
1689 {
1690         return min(FALCON_SPI_MAX_LEN,
1691                    (spi->block_size - (start & (spi->block_size - 1))));
1692 }
1693
1694 static inline u8
1695 efx_spi_munge_command(const struct efx_spi_device *spi,
1696                       const u8 command, const unsigned int address)
1697 {
1698         return command | (((address >> 8) & spi->munge_address) << 3);
1699 }
1700
1701
1702 static int falcon_spi_fast_wait(const struct efx_spi_device *spi)
1703 {
1704         u8 status;
1705         int i, rc;
1706
1707         /* Wait up to 1000us for flash/EEPROM to finish a fast operation. */
1708         for (i = 0; i < 50; i++) {
1709                 udelay(20);
1710
1711                 rc = falcon_spi_cmd(spi, SPI_RDSR, -1, NULL,
1712                                     &status, sizeof(status));
1713                 if (rc)
1714                         return rc;
1715                 if (!(status & SPI_STATUS_NRDY))
1716                         return 0;
1717         }
1718         EFX_ERR(spi->efx,
1719                 "timed out waiting for device %d last status=0x%02x\n",
1720                 spi->device_id, status);
1721         return -ETIMEDOUT;
1722 }
1723
1724 int falcon_spi_read(const struct efx_spi_device *spi, loff_t start,
1725                     size_t len, size_t *retlen, u8 *buffer)
1726 {
1727         unsigned int command, block_len, pos = 0;
1728         int rc = 0;
1729
1730         while (pos < len) {
1731                 block_len = min((unsigned int)len - pos,
1732                                 FALCON_SPI_MAX_LEN);
1733
1734                 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
1735                 rc = falcon_spi_cmd(spi, command, start + pos, NULL,
1736                                     buffer + pos, block_len);
1737                 if (rc)
1738                         break;
1739                 pos += block_len;
1740
1741                 /* Avoid locking up the system */
1742                 cond_resched();
1743                 if (signal_pending(current)) {
1744                         rc = -EINTR;
1745                         break;
1746                 }
1747         }
1748
1749         if (retlen)
1750                 *retlen = pos;
1751         return rc;
1752 }
1753
1754 int falcon_spi_write(const struct efx_spi_device *spi, loff_t start,
1755                      size_t len, size_t *retlen, const u8 *buffer)
1756 {
1757         u8 verify_buffer[FALCON_SPI_MAX_LEN];
1758         unsigned int command, block_len, pos = 0;
1759         int rc = 0;
1760
1761         while (pos < len) {
1762                 rc = falcon_spi_cmd(spi, SPI_WREN, -1, NULL, NULL, 0);
1763                 if (rc)
1764                         break;
1765
1766                 block_len = min((unsigned int)len - pos,
1767                                 falcon_spi_write_limit(spi, start + pos));
1768                 command = efx_spi_munge_command(spi, SPI_WRITE, start + pos);
1769                 rc = falcon_spi_cmd(spi, command, start + pos,
1770                                     buffer + pos, NULL, block_len);
1771                 if (rc)
1772                         break;
1773
1774                 rc = falcon_spi_fast_wait(spi);
1775                 if (rc)
1776                         break;
1777
1778                 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
1779                 rc = falcon_spi_cmd(spi, command, start + pos,
1780                                     NULL, verify_buffer, block_len);
1781                 if (memcmp(verify_buffer, buffer + pos, block_len)) {
1782                         rc = -EIO;
1783                         break;
1784                 }
1785
1786                 pos += block_len;
1787
1788                 /* Avoid locking up the system */
1789                 cond_resched();
1790                 if (signal_pending(current)) {
1791                         rc = -EINTR;
1792                         break;
1793                 }
1794         }
1795
1796         if (retlen)
1797                 *retlen = pos;
1798         return rc;
1799 }
1800
1801 /**************************************************************************
1802  *
1803  * MAC wrapper
1804  *
1805  **************************************************************************
1806  */
1807 void falcon_drain_tx_fifo(struct efx_nic *efx)
1808 {
1809         efx_oword_t temp;
1810         int count;
1811
1812         if ((falcon_rev(efx) < FALCON_REV_B0) ||
1813             (efx->loopback_mode != LOOPBACK_NONE))
1814                 return;
1815
1816         falcon_read(efx, &temp, MAC0_CTRL_REG_KER);
1817         /* There is no point in draining more than once */
1818         if (EFX_OWORD_FIELD(temp, TXFIFO_DRAIN_EN_B0))
1819                 return;
1820
1821         /* MAC stats will fail whilst the TX fifo is draining. Serialise
1822          * the drain sequence with the statistics fetch */
1823         spin_lock(&efx->stats_lock);
1824
1825         EFX_SET_OWORD_FIELD(temp, TXFIFO_DRAIN_EN_B0, 1);
1826         falcon_write(efx, &temp, MAC0_CTRL_REG_KER);
1827
1828         /* Reset the MAC and EM block. */
1829         falcon_read(efx, &temp, GLB_CTL_REG_KER);
1830         EFX_SET_OWORD_FIELD(temp, RST_XGTX, 1);
1831         EFX_SET_OWORD_FIELD(temp, RST_XGRX, 1);
1832         EFX_SET_OWORD_FIELD(temp, RST_EM, 1);
1833         falcon_write(efx, &temp, GLB_CTL_REG_KER);
1834
1835         count = 0;
1836         while (1) {
1837                 falcon_read(efx, &temp, GLB_CTL_REG_KER);
1838                 if (!EFX_OWORD_FIELD(temp, RST_XGTX) &&
1839                     !EFX_OWORD_FIELD(temp, RST_XGRX) &&
1840                     !EFX_OWORD_FIELD(temp, RST_EM)) {
1841                         EFX_LOG(efx, "Completed MAC reset after %d loops\n",
1842                                 count);
1843                         break;
1844                 }
1845                 if (count > 20) {
1846                         EFX_ERR(efx, "MAC reset failed\n");
1847                         break;
1848                 }
1849                 count++;
1850                 udelay(10);
1851         }
1852
1853         spin_unlock(&efx->stats_lock);
1854
1855         /* If we've reset the EM block and the link is up, then
1856          * we'll have to kick the XAUI link so the PHY can recover */
1857         if (efx->link_up && EFX_WORKAROUND_5147(efx))
1858                 falcon_reset_xaui(efx);
1859 }
1860
1861 void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
1862 {
1863         efx_oword_t temp;
1864
1865         if (falcon_rev(efx) < FALCON_REV_B0)
1866                 return;
1867
1868         /* Isolate the MAC -> RX */
1869         falcon_read(efx, &temp, RX_CFG_REG_KER);
1870         EFX_SET_OWORD_FIELD(temp, RX_INGR_EN_B0, 0);
1871         falcon_write(efx, &temp, RX_CFG_REG_KER);
1872
1873         if (!efx->link_up)
1874                 falcon_drain_tx_fifo(efx);
1875 }
1876
1877 void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
1878 {
1879         efx_oword_t reg;
1880         int link_speed;
1881         bool tx_fc;
1882
1883         if (efx->link_options & GM_LPA_10000)
1884                 link_speed = 0x3;
1885         else if (efx->link_options & GM_LPA_1000)
1886                 link_speed = 0x2;
1887         else if (efx->link_options & GM_LPA_100)
1888                 link_speed = 0x1;
1889         else
1890                 link_speed = 0x0;
1891         /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
1892          * as advertised.  Disable to ensure packets are not
1893          * indefinitely held and TX queue can be flushed at any point
1894          * while the link is down. */
1895         EFX_POPULATE_OWORD_5(reg,
1896                              MAC_XOFF_VAL, 0xffff /* max pause time */,
1897                              MAC_BCAD_ACPT, 1,
1898                              MAC_UC_PROM, efx->promiscuous,
1899                              MAC_LINK_STATUS, 1, /* always set */
1900                              MAC_SPEED, link_speed);
1901         /* On B0, MAC backpressure can be disabled and packets get
1902          * discarded. */
1903         if (falcon_rev(efx) >= FALCON_REV_B0) {
1904                 EFX_SET_OWORD_FIELD(reg, TXFIFO_DRAIN_EN_B0,
1905                                     !efx->link_up);
1906         }
1907
1908         falcon_write(efx, &reg, MAC0_CTRL_REG_KER);
1909
1910         /* Restore the multicast hash registers. */
1911         falcon_set_multicast_hash(efx);
1912
1913         /* Transmission of pause frames when RX crosses the threshold is
1914          * covered by RX_XOFF_MAC_EN and XM_TX_CFG_REG:XM_FCNTL.
1915          * Action on receipt of pause frames is controller by XM_DIS_FCNTL */
1916         tx_fc = !!(efx->flow_control & EFX_FC_TX);
1917         falcon_read(efx, &reg, RX_CFG_REG_KER);
1918         EFX_SET_OWORD_FIELD_VER(efx, reg, RX_XOFF_MAC_EN, tx_fc);
1919
1920         /* Unisolate the MAC -> RX */
1921         if (falcon_rev(efx) >= FALCON_REV_B0)
1922                 EFX_SET_OWORD_FIELD(reg, RX_INGR_EN_B0, 1);
1923         falcon_write(efx, &reg, RX_CFG_REG_KER);
1924 }
1925
1926 int falcon_dma_stats(struct efx_nic *efx, unsigned int done_offset)
1927 {
1928         efx_oword_t reg;
1929         u32 *dma_done;
1930         int i;
1931
1932         if (disable_dma_stats)
1933                 return 0;
1934
1935         /* Statistics fetch will fail if the MAC is in TX drain */
1936         if (falcon_rev(efx) >= FALCON_REV_B0) {
1937                 efx_oword_t temp;
1938                 falcon_read(efx, &temp, MAC0_CTRL_REG_KER);
1939                 if (EFX_OWORD_FIELD(temp, TXFIFO_DRAIN_EN_B0))
1940                         return 0;
1941         }
1942
1943         dma_done = (efx->stats_buffer.addr + done_offset);
1944         *dma_done = FALCON_STATS_NOT_DONE;
1945         wmb(); /* ensure done flag is clear */
1946
1947         /* Initiate DMA transfer of stats */
1948         EFX_POPULATE_OWORD_2(reg,
1949                              MAC_STAT_DMA_CMD, 1,
1950                              MAC_STAT_DMA_ADR,
1951                              efx->stats_buffer.dma_addr);
1952         falcon_write(efx, &reg, MAC0_STAT_DMA_REG_KER);
1953
1954         /* Wait for transfer to complete */
1955         for (i = 0; i < 400; i++) {
1956                 if (*(volatile u32 *)dma_done == FALCON_STATS_DONE)
1957                         return 0;
1958                 udelay(10);
1959         }
1960
1961         EFX_ERR(efx, "timed out waiting for statistics\n");
1962         return -ETIMEDOUT;
1963 }
1964
1965 /**************************************************************************
1966  *
1967  * PHY access via GMII
1968  *
1969  **************************************************************************
1970  */
1971
1972 /* Use the top bit of the MII PHY id to indicate the PHY type
1973  * (1G/10G), with the remaining bits as the actual PHY id.
1974  *
1975  * This allows us to avoid leaking information from the mii_if_info
1976  * structure into other data structures.
1977  */
1978 #define FALCON_PHY_ID_ID_WIDTH  EFX_WIDTH(MD_PRT_DEV_ADR)
1979 #define FALCON_PHY_ID_ID_MASK   ((1 << FALCON_PHY_ID_ID_WIDTH) - 1)
1980 #define FALCON_PHY_ID_WIDTH     (FALCON_PHY_ID_ID_WIDTH + 1)
1981 #define FALCON_PHY_ID_MASK      ((1 << FALCON_PHY_ID_WIDTH) - 1)
1982 #define FALCON_PHY_ID_10G       (1 << (FALCON_PHY_ID_WIDTH - 1))
1983
1984
1985 /* Packing the clause 45 port and device fields into a single value */
1986 #define MD_PRT_ADR_COMP_LBN   (MD_PRT_ADR_LBN - MD_DEV_ADR_LBN)
1987 #define MD_PRT_ADR_COMP_WIDTH  MD_PRT_ADR_WIDTH
1988 #define MD_DEV_ADR_COMP_LBN    0
1989 #define MD_DEV_ADR_COMP_WIDTH  MD_DEV_ADR_WIDTH
1990
1991
1992 /* Wait for GMII access to complete */
1993 static int falcon_gmii_wait(struct efx_nic *efx)
1994 {
1995         efx_dword_t md_stat;
1996         int count;
1997
1998         for (count = 0; count < 1000; count++) {        /* wait upto 10ms */
1999                 falcon_readl(efx, &md_stat, MD_STAT_REG_KER);
2000                 if (EFX_DWORD_FIELD(md_stat, MD_BSY) == 0) {
2001                         if (EFX_DWORD_FIELD(md_stat, MD_LNFL) != 0 ||
2002                             EFX_DWORD_FIELD(md_stat, MD_BSERR) != 0) {
2003                                 EFX_ERR(efx, "error from GMII access "
2004                                         EFX_DWORD_FMT"\n",
2005                                         EFX_DWORD_VAL(md_stat));
2006                                 return -EIO;
2007                         }
2008                         return 0;
2009                 }
2010                 udelay(10);
2011         }
2012         EFX_ERR(efx, "timed out waiting for GMII\n");
2013         return -ETIMEDOUT;
2014 }
2015
2016 /* Writes a GMII register of a PHY connected to Falcon using MDIO. */
2017 static void falcon_mdio_write(struct net_device *net_dev, int phy_id,
2018                               int addr, int value)
2019 {
2020         struct efx_nic *efx = netdev_priv(net_dev);
2021         unsigned int phy_id2 = phy_id & FALCON_PHY_ID_ID_MASK;
2022         efx_oword_t reg;
2023
2024         /* The 'generic' prt/dev packing in mdio_10g.h is conveniently
2025          * chosen so that the only current user, Falcon, can take the
2026          * packed value and use them directly.
2027          * Fail to build if this assumption is broken.
2028          */
2029         BUILD_BUG_ON(FALCON_PHY_ID_10G != MDIO45_XPRT_ID_IS10G);
2030         BUILD_BUG_ON(FALCON_PHY_ID_ID_WIDTH != MDIO45_PRT_DEV_WIDTH);
2031         BUILD_BUG_ON(MD_PRT_ADR_COMP_LBN != MDIO45_PRT_ID_COMP_LBN);
2032         BUILD_BUG_ON(MD_DEV_ADR_COMP_LBN != MDIO45_DEV_ID_COMP_LBN);
2033
2034         if (phy_id2 == PHY_ADDR_INVALID)
2035                 return;
2036
2037         /* See falcon_mdio_read for an explanation. */
2038         if (!(phy_id & FALCON_PHY_ID_10G)) {
2039                 int mmd = ffs(efx->phy_op->mmds) - 1;
2040                 EFX_TRACE(efx, "Fixing erroneous clause22 write\n");
2041                 phy_id2 = mdio_clause45_pack(phy_id2, mmd)
2042                         & FALCON_PHY_ID_ID_MASK;
2043         }
2044
2045         EFX_REGDUMP(efx, "writing GMII %d register %02x with %04x\n", phy_id,
2046                     addr, value);
2047
2048         spin_lock_bh(&efx->phy_lock);
2049
2050         /* Check MII not currently being accessed */
2051         if (falcon_gmii_wait(efx) != 0)
2052                 goto out;
2053
2054         /* Write the address/ID register */
2055         EFX_POPULATE_OWORD_1(reg, MD_PHY_ADR, addr);
2056         falcon_write(efx, &reg, MD_PHY_ADR_REG_KER);
2057
2058         EFX_POPULATE_OWORD_1(reg, MD_PRT_DEV_ADR, phy_id2);
2059         falcon_write(efx, &reg, MD_ID_REG_KER);
2060
2061         /* Write data */
2062         EFX_POPULATE_OWORD_1(reg, MD_TXD, value);
2063         falcon_write(efx, &reg, MD_TXD_REG_KER);
2064
2065         EFX_POPULATE_OWORD_2(reg,
2066                              MD_WRC, 1,
2067                              MD_GC, 0);
2068         falcon_write(efx, &reg, MD_CS_REG_KER);
2069
2070         /* Wait for data to be written */
2071         if (falcon_gmii_wait(efx) != 0) {
2072                 /* Abort the write operation */
2073                 EFX_POPULATE_OWORD_2(reg,
2074                                      MD_WRC, 0,
2075                                      MD_GC, 1);
2076                 falcon_write(efx, &reg, MD_CS_REG_KER);
2077                 udelay(10);
2078         }
2079
2080  out:
2081         spin_unlock_bh(&efx->phy_lock);
2082 }
2083
2084 /* Reads a GMII register from a PHY connected to Falcon.  If no value
2085  * could be read, -1 will be returned. */
2086 static int falcon_mdio_read(struct net_device *net_dev, int phy_id, int addr)
2087 {
2088         struct efx_nic *efx = netdev_priv(net_dev);
2089         unsigned int phy_addr = phy_id & FALCON_PHY_ID_ID_MASK;
2090         efx_oword_t reg;
2091         int value = -1;
2092
2093         if (phy_addr == PHY_ADDR_INVALID)
2094                 return -1;
2095
2096         /* Our PHY code knows whether it needs to talk clause 22(1G) or 45(10G)
2097          * but the generic Linux code does not make any distinction or have
2098          * any state for this.
2099          * We spot the case where someone tried to talk 22 to a 45 PHY and
2100          * redirect the request to the lowest numbered MMD as a clause45
2101          * request. This is enough to allow simple queries like id and link
2102          * state to succeed. TODO: We may need to do more in future.
2103          */
2104         if (!(phy_id & FALCON_PHY_ID_10G)) {
2105                 int mmd = ffs(efx->phy_op->mmds) - 1;
2106                 EFX_TRACE(efx, "Fixing erroneous clause22 read\n");
2107                 phy_addr = mdio_clause45_pack(phy_addr, mmd)
2108                         & FALCON_PHY_ID_ID_MASK;
2109         }
2110
2111         spin_lock_bh(&efx->phy_lock);
2112
2113         /* Check MII not currently being accessed */
2114         if (falcon_gmii_wait(efx) != 0)
2115                 goto out;
2116
2117         EFX_POPULATE_OWORD_1(reg, MD_PHY_ADR, addr);
2118         falcon_write(efx, &reg, MD_PHY_ADR_REG_KER);
2119
2120         EFX_POPULATE_OWORD_1(reg, MD_PRT_DEV_ADR, phy_addr);
2121         falcon_write(efx, &reg, MD_ID_REG_KER);
2122
2123         /* Request data to be read */
2124         EFX_POPULATE_OWORD_2(reg, MD_RDC, 1, MD_GC, 0);
2125         falcon_write(efx, &reg, MD_CS_REG_KER);
2126
2127         /* Wait for data to become available */
2128         value = falcon_gmii_wait(efx);
2129         if (value == 0) {
2130                 falcon_read(efx, &reg, MD_RXD_REG_KER);
2131                 value = EFX_OWORD_FIELD(reg, MD_RXD);
2132                 EFX_REGDUMP(efx, "read from GMII %d register %02x, got %04x\n",
2133                             phy_id, addr, value);
2134         } else {
2135                 /* Abort the read operation */
2136                 EFX_POPULATE_OWORD_2(reg,
2137                                      MD_RIC, 0,
2138                                      MD_GC, 1);
2139                 falcon_write(efx, &reg, MD_CS_REG_KER);
2140
2141                 EFX_LOG(efx, "read from GMII 0x%x register %02x, got "
2142                         "error %d\n", phy_id, addr, value);
2143         }
2144
2145  out:
2146         spin_unlock_bh(&efx->phy_lock);
2147
2148         return value;
2149 }
2150
2151 static void falcon_init_mdio(struct mii_if_info *gmii)
2152 {
2153         gmii->mdio_read = falcon_mdio_read;
2154         gmii->mdio_write = falcon_mdio_write;
2155         gmii->phy_id_mask = FALCON_PHY_ID_MASK;
2156         gmii->reg_num_mask = ((1 << EFX_WIDTH(MD_PHY_ADR)) - 1);
2157 }
2158
2159 static int falcon_probe_phy(struct efx_nic *efx)
2160 {
2161         switch (efx->phy_type) {
2162         case PHY_TYPE_10XPRESS:
2163                 efx->phy_op = &falcon_tenxpress_phy_ops;
2164                 break;
2165         case PHY_TYPE_XFP:
2166                 efx->phy_op = &falcon_xfp_phy_ops;
2167                 break;
2168         default:
2169                 EFX_ERR(efx, "Unknown PHY type %d\n",
2170                         efx->phy_type);
2171                 return -1;
2172         }
2173
2174         efx->loopback_modes = LOOPBACKS_10G_INTERNAL | efx->phy_op->loopbacks;
2175         return 0;
2176 }
2177
2178 /* This call is responsible for hooking in the MAC and PHY operations */
2179 int falcon_probe_port(struct efx_nic *efx)
2180 {
2181         int rc;
2182
2183         /* Hook in PHY operations table */
2184         rc = falcon_probe_phy(efx);
2185         if (rc)
2186                 return rc;
2187
2188         /* Set up GMII structure for PHY */
2189         efx->mii.supports_gmii = true;
2190         falcon_init_mdio(&efx->mii);
2191
2192         /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
2193         if (falcon_rev(efx) >= FALCON_REV_B0)
2194                 efx->flow_control = EFX_FC_RX | EFX_FC_TX;
2195         else
2196                 efx->flow_control = EFX_FC_RX;
2197
2198         /* Allocate buffer for stats */
2199         rc = falcon_alloc_buffer(efx, &efx->stats_buffer,
2200                                  FALCON_MAC_STATS_SIZE);
2201         if (rc)
2202                 return rc;
2203         EFX_LOG(efx, "stats buffer at %llx (virt %p phys %lx)\n",
2204                 (unsigned long long)efx->stats_buffer.dma_addr,
2205                 efx->stats_buffer.addr,
2206                 virt_to_phys(efx->stats_buffer.addr));
2207
2208         return 0;
2209 }
2210
2211 void falcon_remove_port(struct efx_nic *efx)
2212 {
2213         falcon_free_buffer(efx, &efx->stats_buffer);
2214 }
2215
2216 /**************************************************************************
2217  *
2218  * Multicast filtering
2219  *
2220  **************************************************************************
2221  */
2222
2223 void falcon_set_multicast_hash(struct efx_nic *efx)
2224 {
2225         union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2226
2227         /* Broadcast packets go through the multicast hash filter.
2228          * ether_crc_le() of the broadcast address is 0xbe2612ff
2229          * so we always add bit 0xff to the mask.
2230          */
2231         set_bit_le(0xff, mc_hash->byte);
2232
2233         falcon_write(efx, &mc_hash->oword[0], MAC_MCAST_HASH_REG0_KER);
2234         falcon_write(efx, &mc_hash->oword[1], MAC_MCAST_HASH_REG1_KER);
2235 }
2236
2237
2238 /**************************************************************************
2239  *
2240  * Falcon test code
2241  *
2242  **************************************************************************/
2243
2244 int falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
2245 {
2246         struct falcon_nvconfig *nvconfig;
2247         struct efx_spi_device *spi;
2248         void *region;
2249         int rc, magic_num, struct_ver;
2250         __le16 *word, *limit;
2251         u32 csum;
2252
2253         region = kmalloc(NVCONFIG_END, GFP_KERNEL);
2254         if (!region)
2255                 return -ENOMEM;
2256         nvconfig = region + NVCONFIG_OFFSET;
2257
2258         spi = efx->spi_flash ? efx->spi_flash : efx->spi_eeprom;
2259         rc = falcon_spi_read(spi, 0, NVCONFIG_END, NULL, region);
2260         if (rc) {
2261                 EFX_ERR(efx, "Failed to read %s\n",
2262                         efx->spi_flash ? "flash" : "EEPROM");
2263                 rc = -EIO;
2264                 goto out;
2265         }
2266
2267         magic_num = le16_to_cpu(nvconfig->board_magic_num);
2268         struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
2269
2270         rc = -EINVAL;
2271         if (magic_num != NVCONFIG_BOARD_MAGIC_NUM) {
2272                 EFX_ERR(efx, "NVRAM bad magic 0x%x\n", magic_num);
2273                 goto out;
2274         }
2275         if (struct_ver < 2) {
2276                 EFX_ERR(efx, "NVRAM has ancient version 0x%x\n", struct_ver);
2277                 goto out;
2278         } else if (struct_ver < 4) {
2279                 word = &nvconfig->board_magic_num;
2280                 limit = (__le16 *) (nvconfig + 1);
2281         } else {
2282                 word = region;
2283                 limit = region + NVCONFIG_END;
2284         }
2285         for (csum = 0; word < limit; ++word)
2286                 csum += le16_to_cpu(*word);
2287
2288         if (~csum & 0xffff) {
2289                 EFX_ERR(efx, "NVRAM has incorrect checksum\n");
2290                 goto out;
2291         }
2292
2293         rc = 0;
2294         if (nvconfig_out)
2295                 memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
2296
2297  out:
2298         kfree(region);
2299         return rc;
2300 }
2301
2302 /* Registers tested in the falcon register test */
2303 static struct {
2304         unsigned address;
2305         efx_oword_t mask;
2306 } efx_test_registers[] = {
2307         { ADR_REGION_REG_KER,
2308           EFX_OWORD32(0x0001FFFF, 0x0001FFFF, 0x0001FFFF, 0x0001FFFF) },
2309         { RX_CFG_REG_KER,
2310           EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
2311         { TX_CFG_REG_KER,
2312           EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
2313         { TX_CFG2_REG_KER,
2314           EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
2315         { MAC0_CTRL_REG_KER,
2316           EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
2317         { SRM_TX_DC_CFG_REG_KER,
2318           EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
2319         { RX_DC_CFG_REG_KER,
2320           EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
2321         { RX_DC_PF_WM_REG_KER,
2322           EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
2323         { DP_CTRL_REG,
2324           EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
2325         { XM_GLB_CFG_REG,
2326           EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
2327         { XM_TX_CFG_REG,
2328           EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
2329         { XM_RX_CFG_REG,
2330           EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
2331         { XM_RX_PARAM_REG,
2332           EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
2333         { XM_FC_REG,
2334           EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
2335         { XM_ADR_LO_REG,
2336           EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
2337         { XX_SD_CTL_REG,
2338           EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
2339 };
2340
2341 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
2342                                      const efx_oword_t *mask)
2343 {
2344         return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
2345                 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
2346 }
2347
2348 int falcon_test_registers(struct efx_nic *efx)
2349 {
2350         unsigned address = 0, i, j;
2351         efx_oword_t mask, imask, original, reg, buf;
2352
2353         /* Falcon should be in loopback to isolate the XMAC from the PHY */
2354         WARN_ON(!LOOPBACK_INTERNAL(efx));
2355
2356         for (i = 0; i < ARRAY_SIZE(efx_test_registers); ++i) {
2357                 address = efx_test_registers[i].address;
2358                 mask = imask = efx_test_registers[i].mask;
2359                 EFX_INVERT_OWORD(imask);
2360
2361                 falcon_read(efx, &original, address);
2362
2363                 /* bit sweep on and off */
2364                 for (j = 0; j < 128; j++) {
2365                         if (!EFX_EXTRACT_OWORD32(mask, j, j))
2366                                 continue;
2367
2368                         /* Test this testable bit can be set in isolation */
2369                         EFX_AND_OWORD(reg, original, mask);
2370                         EFX_SET_OWORD32(reg, j, j, 1);
2371
2372                         falcon_write(efx, &reg, address);
2373                         falcon_read(efx, &buf, address);
2374
2375                         if (efx_masked_compare_oword(&reg, &buf, &mask))
2376                                 goto fail;
2377
2378                         /* Test this testable bit can be cleared in isolation */
2379                         EFX_OR_OWORD(reg, original, mask);
2380                         EFX_SET_OWORD32(reg, j, j, 0);
2381
2382                         falcon_write(efx, &reg, address);
2383                         falcon_read(efx, &buf, address);
2384
2385                         if (efx_masked_compare_oword(&reg, &buf, &mask))
2386                                 goto fail;
2387                 }
2388
2389                 falcon_write(efx, &original, address);
2390         }
2391
2392         return 0;
2393
2394 fail:
2395         EFX_ERR(efx, "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
2396                 " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
2397                 EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
2398         return -EIO;
2399 }
2400
2401 /**************************************************************************
2402  *
2403  * Device reset
2404  *
2405  **************************************************************************
2406  */
2407
2408 /* Resets NIC to known state.  This routine must be called in process
2409  * context and is allowed to sleep. */
2410 int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
2411 {
2412         struct falcon_nic_data *nic_data = efx->nic_data;
2413         efx_oword_t glb_ctl_reg_ker;
2414         int rc;
2415
2416         EFX_LOG(efx, "performing hardware reset (%d)\n", method);
2417
2418         /* Initiate device reset */
2419         if (method == RESET_TYPE_WORLD) {
2420                 rc = pci_save_state(efx->pci_dev);
2421                 if (rc) {
2422                         EFX_ERR(efx, "failed to backup PCI state of primary "
2423                                 "function prior to hardware reset\n");
2424                         goto fail1;
2425                 }
2426                 if (FALCON_IS_DUAL_FUNC(efx)) {
2427                         rc = pci_save_state(nic_data->pci_dev2);
2428                         if (rc) {
2429                                 EFX_ERR(efx, "failed to backup PCI state of "
2430                                         "secondary function prior to "
2431                                         "hardware reset\n");
2432                                 goto fail2;
2433                         }
2434                 }
2435
2436                 EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
2437                                      EXT_PHY_RST_DUR, 0x7,
2438                                      SWRST, 1);
2439         } else {
2440                 int reset_phy = (method == RESET_TYPE_INVISIBLE ?
2441                                  EXCLUDE_FROM_RESET : 0);
2442
2443                 EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
2444                                      EXT_PHY_RST_CTL, reset_phy,
2445                                      PCIE_CORE_RST_CTL, EXCLUDE_FROM_RESET,
2446                                      PCIE_NSTCK_RST_CTL, EXCLUDE_FROM_RESET,
2447                                      PCIE_SD_RST_CTL, EXCLUDE_FROM_RESET,
2448                                      EE_RST_CTL, EXCLUDE_FROM_RESET,
2449                                      EXT_PHY_RST_DUR, 0x7 /* 10ms */,
2450                                      SWRST, 1);
2451         }
2452         falcon_write(efx, &glb_ctl_reg_ker, GLB_CTL_REG_KER);
2453
2454         EFX_LOG(efx, "waiting for hardware reset\n");
2455         schedule_timeout_uninterruptible(HZ / 20);
2456
2457         /* Restore PCI configuration if needed */
2458         if (method == RESET_TYPE_WORLD) {
2459                 if (FALCON_IS_DUAL_FUNC(efx)) {
2460                         rc = pci_restore_state(nic_data->pci_dev2);
2461                         if (rc) {
2462                                 EFX_ERR(efx, "failed to restore PCI config for "
2463                                         "the secondary function\n");
2464                                 goto fail3;
2465                         }
2466                 }
2467                 rc = pci_restore_state(efx->pci_dev);
2468                 if (rc) {
2469                         EFX_ERR(efx, "failed to restore PCI config for the "
2470                                 "primary function\n");
2471                         goto fail4;
2472                 }
2473                 EFX_LOG(efx, "successfully restored PCI config\n");
2474         }
2475
2476         /* Assert that reset complete */
2477         falcon_read(efx, &glb_ctl_reg_ker, GLB_CTL_REG_KER);
2478         if (EFX_OWORD_FIELD(glb_ctl_reg_ker, SWRST) != 0) {
2479                 rc = -ETIMEDOUT;
2480                 EFX_ERR(efx, "timed out waiting for hardware reset\n");
2481                 goto fail5;
2482         }
2483         EFX_LOG(efx, "hardware reset complete\n");
2484
2485         return 0;
2486
2487         /* pci_save_state() and pci_restore_state() MUST be called in pairs */
2488 fail2:
2489 fail3:
2490         pci_restore_state(efx->pci_dev);
2491 fail1:
2492 fail4:
2493 fail5:
2494         return rc;
2495 }
2496
2497 /* Zeroes out the SRAM contents.  This routine must be called in
2498  * process context and is allowed to sleep.
2499  */
2500 static int falcon_reset_sram(struct efx_nic *efx)
2501 {
2502         efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
2503         int count;
2504
2505         /* Set the SRAM wake/sleep GPIO appropriately. */
2506         falcon_read(efx, &gpio_cfg_reg_ker, GPIO_CTL_REG_KER);
2507         EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, GPIO1_OEN, 1);
2508         EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, GPIO1_OUT, 1);
2509         falcon_write(efx, &gpio_cfg_reg_ker, GPIO_CTL_REG_KER);
2510
2511         /* Initiate SRAM reset */
2512         EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
2513                              SRAM_OOB_BT_INIT_EN, 1,
2514                              SRM_NUM_BANKS_AND_BANK_SIZE, 0);
2515         falcon_write(efx, &srm_cfg_reg_ker, SRM_CFG_REG_KER);
2516
2517         /* Wait for SRAM reset to complete */
2518         count = 0;
2519         do {
2520                 EFX_LOG(efx, "waiting for SRAM reset (attempt %d)...\n", count);
2521
2522                 /* SRAM reset is slow; expect around 16ms */
2523                 schedule_timeout_uninterruptible(HZ / 50);
2524
2525                 /* Check for reset complete */
2526                 falcon_read(efx, &srm_cfg_reg_ker, SRM_CFG_REG_KER);
2527                 if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, SRAM_OOB_BT_INIT_EN)) {
2528                         EFX_LOG(efx, "SRAM reset complete\n");
2529
2530                         return 0;
2531                 }
2532         } while (++count < 20); /* wait upto 0.4 sec */
2533
2534         EFX_ERR(efx, "timed out waiting for SRAM reset\n");
2535         return -ETIMEDOUT;
2536 }
2537
2538 static int falcon_spi_device_init(struct efx_nic *efx,
2539                                   struct efx_spi_device **spi_device_ret,
2540                                   unsigned int device_id, u32 device_type)
2541 {
2542         struct efx_spi_device *spi_device;
2543
2544         if (device_type != 0) {
2545                 spi_device = kmalloc(sizeof(*spi_device), GFP_KERNEL);
2546                 if (!spi_device)
2547                         return -ENOMEM;
2548                 spi_device->device_id = device_id;
2549                 spi_device->size =
2550                         1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
2551                 spi_device->addr_len =
2552                         SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
2553                 spi_device->munge_address = (spi_device->size == 1 << 9 &&
2554                                              spi_device->addr_len == 1);
2555                 spi_device->block_size =
2556                         1 << SPI_DEV_TYPE_FIELD(device_type,
2557                                                 SPI_DEV_TYPE_BLOCK_SIZE);
2558
2559                 spi_device->efx = efx;
2560         } else {
2561                 spi_device = NULL;
2562         }
2563
2564         kfree(*spi_device_ret);
2565         *spi_device_ret = spi_device;
2566         return 0;
2567 }
2568
2569
2570 static void falcon_remove_spi_devices(struct efx_nic *efx)
2571 {
2572         kfree(efx->spi_eeprom);
2573         efx->spi_eeprom = NULL;
2574         kfree(efx->spi_flash);
2575         efx->spi_flash = NULL;
2576 }
2577
2578 /* Extract non-volatile configuration */
2579 static int falcon_probe_nvconfig(struct efx_nic *efx)
2580 {
2581         struct falcon_nvconfig *nvconfig;
2582         int board_rev;
2583         int rc;
2584
2585         nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
2586         if (!nvconfig)
2587                 return -ENOMEM;
2588
2589         rc = falcon_read_nvram(efx, nvconfig);
2590         if (rc == -EINVAL) {
2591                 EFX_ERR(efx, "NVRAM is invalid therefore using defaults\n");
2592                 efx->phy_type = PHY_TYPE_NONE;
2593                 efx->mii.phy_id = PHY_ADDR_INVALID;
2594                 board_rev = 0;
2595                 rc = 0;
2596         } else if (rc) {
2597                 goto fail1;
2598         } else {
2599                 struct falcon_nvconfig_board_v2 *v2 = &nvconfig->board_v2;
2600                 struct falcon_nvconfig_board_v3 *v3 = &nvconfig->board_v3;
2601
2602                 efx->phy_type = v2->port0_phy_type;
2603                 efx->mii.phy_id = v2->port0_phy_addr;
2604                 board_rev = le16_to_cpu(v2->board_revision);
2605
2606                 if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
2607                         __le32 fl = v3->spi_device_type[EE_SPI_FLASH];
2608                         __le32 ee = v3->spi_device_type[EE_SPI_EEPROM];
2609                         rc = falcon_spi_device_init(efx, &efx->spi_flash,
2610                                                     EE_SPI_FLASH,
2611                                                     le32_to_cpu(fl));
2612                         if (rc)
2613                                 goto fail2;
2614                         rc = falcon_spi_device_init(efx, &efx->spi_eeprom,
2615                                                     EE_SPI_EEPROM,
2616                                                     le32_to_cpu(ee));
2617                         if (rc)
2618                                 goto fail2;
2619                 }
2620         }
2621
2622         /* Read the MAC addresses */
2623         memcpy(efx->mac_address, nvconfig->mac_address[0], ETH_ALEN);
2624
2625         EFX_LOG(efx, "PHY is %d phy_id %d\n", efx->phy_type, efx->mii.phy_id);
2626
2627         efx_set_board_info(efx, board_rev);
2628
2629         kfree(nvconfig);
2630         return 0;
2631
2632  fail2:
2633         falcon_remove_spi_devices(efx);
2634  fail1:
2635         kfree(nvconfig);
2636         return rc;
2637 }
2638
2639 /* Probe the NIC variant (revision, ASIC vs FPGA, function count, port
2640  * count, port speed).  Set workaround and feature flags accordingly.
2641  */
2642 static int falcon_probe_nic_variant(struct efx_nic *efx)
2643 {
2644         efx_oword_t altera_build;
2645
2646         falcon_read(efx, &altera_build, ALTERA_BUILD_REG_KER);
2647         if (EFX_OWORD_FIELD(altera_build, VER_ALL)) {
2648                 EFX_ERR(efx, "Falcon FPGA not supported\n");
2649                 return -ENODEV;
2650         }
2651
2652         switch (falcon_rev(efx)) {
2653         case FALCON_REV_A0:
2654         case 0xff:
2655                 EFX_ERR(efx, "Falcon rev A0 not supported\n");
2656                 return -ENODEV;
2657
2658         case FALCON_REV_A1:{
2659                 efx_oword_t nic_stat;
2660
2661                 falcon_read(efx, &nic_stat, NIC_STAT_REG);
2662
2663                 if (EFX_OWORD_FIELD(nic_stat, STRAP_PCIE) == 0) {
2664                         EFX_ERR(efx, "Falcon rev A1 PCI-X not supported\n");
2665                         return -ENODEV;
2666                 }
2667                 if (!EFX_OWORD_FIELD(nic_stat, STRAP_10G)) {
2668                         EFX_ERR(efx, "1G mode not supported\n");
2669                         return -ENODEV;
2670                 }
2671                 break;
2672         }
2673
2674         case FALCON_REV_B0:
2675                 break;
2676
2677         default:
2678                 EFX_ERR(efx, "Unknown Falcon rev %d\n", falcon_rev(efx));
2679                 return -ENODEV;
2680         }
2681
2682         return 0;
2683 }
2684
2685 /* Probe all SPI devices on the NIC */
2686 static void falcon_probe_spi_devices(struct efx_nic *efx)
2687 {
2688         efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
2689         bool has_flash, has_eeprom, boot_is_external;
2690
2691         falcon_read(efx, &gpio_ctl, GPIO_CTL_REG_KER);
2692         falcon_read(efx, &nic_stat, NIC_STAT_REG);
2693         falcon_read(efx, &ee_vpd_cfg, EE_VPD_CFG_REG_KER);
2694
2695         has_flash = EFX_OWORD_FIELD(nic_stat, SF_PRST);
2696         has_eeprom = EFX_OWORD_FIELD(nic_stat, EE_PRST);
2697         boot_is_external = EFX_OWORD_FIELD(gpio_ctl, BOOTED_USING_NVDEVICE);
2698
2699         if (has_flash) {
2700                 /* Default flash SPI device: Atmel AT25F1024
2701                  * 128 KB, 24-bit address, 32 KB erase block,
2702                  * 256 B write block
2703                  */
2704                 u32 flash_device_type =
2705                         (17 << SPI_DEV_TYPE_SIZE_LBN)
2706                         | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
2707                         | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
2708                         | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
2709                         | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN);
2710
2711                 falcon_spi_device_init(efx, &efx->spi_flash,
2712                                        EE_SPI_FLASH, flash_device_type);
2713
2714                 if (!boot_is_external) {
2715                         /* Disable VPD and set clock dividers to safe
2716                          * values for initial programming.
2717                          */
2718                         EFX_LOG(efx, "Booted from internal ASIC settings;"
2719                                 " setting SPI config\n");
2720                         EFX_POPULATE_OWORD_3(ee_vpd_cfg, EE_VPD_EN, 0,
2721                                              /* 125 MHz / 7 ~= 20 MHz */
2722                                              EE_SF_CLOCK_DIV, 7,
2723                                              /* 125 MHz / 63 ~= 2 MHz */
2724                                              EE_EE_CLOCK_DIV, 63);
2725                         falcon_write(efx, &ee_vpd_cfg, EE_VPD_CFG_REG_KER);
2726                 }
2727         }
2728
2729         if (has_eeprom) {
2730                 u32 eeprom_device_type;
2731
2732                 /* If it has no flash, it must have a large EEPROM
2733                  * for chip config; otherwise check whether 9-bit
2734                  * addressing is used for VPD configuration
2735                  */
2736                 if (has_flash &&
2737                     (!boot_is_external ||
2738                      EFX_OWORD_FIELD(ee_vpd_cfg, EE_VPD_EN_AD9_MODE))) {
2739                         /* Default SPI device: Atmel AT25040 or similar
2740                          * 512 B, 9-bit address, 8 B write block
2741                          */
2742                         eeprom_device_type =
2743                                 (9 << SPI_DEV_TYPE_SIZE_LBN)
2744                                 | (1 << SPI_DEV_TYPE_ADDR_LEN_LBN)
2745                                 | (3 << SPI_DEV_TYPE_BLOCK_SIZE_LBN);
2746                 } else {
2747                         /* "Large" SPI device: Atmel AT25640 or similar
2748                          * 8 KB, 16-bit address, 32 B write block
2749                          */
2750                         eeprom_device_type =
2751                                 (13 << SPI_DEV_TYPE_SIZE_LBN)
2752                                 | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
2753                                 | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN);
2754                 }
2755
2756                 falcon_spi_device_init(efx, &efx->spi_eeprom,
2757                                        EE_SPI_EEPROM, eeprom_device_type);
2758         }
2759
2760         EFX_LOG(efx, "flash is %s, EEPROM is %s\n",
2761                 (has_flash ? "present" : "absent"),
2762                 (has_eeprom ? "present" : "absent"));
2763 }
2764
2765 int falcon_probe_nic(struct efx_nic *efx)
2766 {
2767         struct falcon_nic_data *nic_data;
2768         int rc;
2769
2770         /* Allocate storage for hardware specific data */
2771         nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
2772         if (!nic_data)
2773                 return -ENOMEM;
2774         efx->nic_data = nic_data;
2775
2776         /* Determine number of ports etc. */
2777         rc = falcon_probe_nic_variant(efx);
2778         if (rc)
2779                 goto fail1;
2780
2781         /* Probe secondary function if expected */
2782         if (FALCON_IS_DUAL_FUNC(efx)) {
2783                 struct pci_dev *dev = pci_dev_get(efx->pci_dev);
2784
2785                 while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID,
2786                                              dev))) {
2787                         if (dev->bus == efx->pci_dev->bus &&
2788                             dev->devfn == efx->pci_dev->devfn + 1) {
2789                                 nic_data->pci_dev2 = dev;
2790                                 break;
2791                         }
2792                 }
2793                 if (!nic_data->pci_dev2) {
2794                         EFX_ERR(efx, "failed to find secondary function\n");
2795                         rc = -ENODEV;
2796                         goto fail2;
2797                 }
2798         }
2799
2800         /* Now we can reset the NIC */
2801         rc = falcon_reset_hw(efx, RESET_TYPE_ALL);
2802         if (rc) {
2803                 EFX_ERR(efx, "failed to reset NIC\n");
2804                 goto fail3;
2805         }
2806
2807         /* Allocate memory for INT_KER */
2808         rc = falcon_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
2809         if (rc)
2810                 goto fail4;
2811         BUG_ON(efx->irq_status.dma_addr & 0x0f);
2812
2813         EFX_LOG(efx, "INT_KER at %llx (virt %p phys %lx)\n",
2814                 (unsigned long long)efx->irq_status.dma_addr,
2815                 efx->irq_status.addr, virt_to_phys(efx->irq_status.addr));
2816
2817         falcon_probe_spi_devices(efx);
2818
2819         /* Read in the non-volatile configuration */
2820         rc = falcon_probe_nvconfig(efx);
2821         if (rc)
2822                 goto fail5;
2823
2824         /* Initialise I2C adapter */
2825         efx->i2c_adap.owner = THIS_MODULE;
2826         nic_data->i2c_data = falcon_i2c_bit_operations;
2827         nic_data->i2c_data.data = efx;
2828         efx->i2c_adap.algo_data = &nic_data->i2c_data;
2829         efx->i2c_adap.dev.parent = &efx->pci_dev->dev;
2830         strlcpy(efx->i2c_adap.name, "SFC4000 GPIO", sizeof(efx->i2c_adap.name));
2831         rc = i2c_bit_add_bus(&efx->i2c_adap);
2832         if (rc)
2833                 goto fail5;
2834
2835         return 0;
2836
2837  fail5:
2838         falcon_remove_spi_devices(efx);
2839         falcon_free_buffer(efx, &efx->irq_status);
2840  fail4:
2841  fail3:
2842         if (nic_data->pci_dev2) {
2843                 pci_dev_put(nic_data->pci_dev2);
2844                 nic_data->pci_dev2 = NULL;
2845         }
2846  fail2:
2847  fail1:
2848         kfree(efx->nic_data);
2849         return rc;
2850 }
2851
2852 /* This call performs hardware-specific global initialisation, such as
2853  * defining the descriptor cache sizes and number of RSS channels.
2854  * It does not set up any buffers, descriptor rings or event queues.
2855  */
2856 int falcon_init_nic(struct efx_nic *efx)
2857 {
2858         efx_oword_t temp;
2859         unsigned thresh;
2860         int rc;
2861
2862         /* Set up the address region register. This is only needed
2863          * for the B0 FPGA, but since we are just pushing in the
2864          * reset defaults this may as well be unconditional. */
2865         EFX_POPULATE_OWORD_4(temp, ADR_REGION0, 0,
2866                                    ADR_REGION1, (1 << 16),
2867                                    ADR_REGION2, (2 << 16),
2868                                    ADR_REGION3, (3 << 16));
2869         falcon_write(efx, &temp, ADR_REGION_REG_KER);
2870
2871         /* Use on-chip SRAM */
2872         falcon_read(efx, &temp, NIC_STAT_REG);
2873         EFX_SET_OWORD_FIELD(temp, ONCHIP_SRAM, 1);
2874         falcon_write(efx, &temp, NIC_STAT_REG);
2875
2876         /* Set buffer table mode */
2877         EFX_POPULATE_OWORD_1(temp, BUF_TBL_MODE, BUF_TBL_MODE_FULL);
2878         falcon_write(efx, &temp, BUF_TBL_CFG_REG_KER);
2879
2880         rc = falcon_reset_sram(efx);
2881         if (rc)
2882                 return rc;
2883
2884         /* Set positions of descriptor caches in SRAM. */
2885         EFX_POPULATE_OWORD_1(temp, SRM_TX_DC_BASE_ADR, TX_DC_BASE / 8);
2886         falcon_write(efx, &temp, SRM_TX_DC_CFG_REG_KER);
2887         EFX_POPULATE_OWORD_1(temp, SRM_RX_DC_BASE_ADR, RX_DC_BASE / 8);
2888         falcon_write(efx, &temp, SRM_RX_DC_CFG_REG_KER);
2889
2890         /* Set TX descriptor cache size. */
2891         BUILD_BUG_ON(TX_DC_ENTRIES != (16 << TX_DC_ENTRIES_ORDER));
2892         EFX_POPULATE_OWORD_1(temp, TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
2893         falcon_write(efx, &temp, TX_DC_CFG_REG_KER);
2894
2895         /* Set RX descriptor cache size.  Set low watermark to size-8, as
2896          * this allows most efficient prefetching.
2897          */
2898         BUILD_BUG_ON(RX_DC_ENTRIES != (16 << RX_DC_ENTRIES_ORDER));
2899         EFX_POPULATE_OWORD_1(temp, RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
2900         falcon_write(efx, &temp, RX_DC_CFG_REG_KER);
2901         EFX_POPULATE_OWORD_1(temp, RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
2902         falcon_write(efx, &temp, RX_DC_PF_WM_REG_KER);
2903
2904         /* Clear the parity enables on the TX data fifos as
2905          * they produce false parity errors because of timing issues
2906          */
2907         if (EFX_WORKAROUND_5129(efx)) {
2908                 falcon_read(efx, &temp, SPARE_REG_KER);
2909                 EFX_SET_OWORD_FIELD(temp, MEM_PERR_EN_TX_DATA, 0);
2910                 falcon_write(efx, &temp, SPARE_REG_KER);
2911         }
2912
2913         /* Enable all the genuinely fatal interrupts.  (They are still
2914          * masked by the overall interrupt mask, controlled by
2915          * falcon_interrupts()).
2916          *
2917          * Note: All other fatal interrupts are enabled
2918          */
2919         EFX_POPULATE_OWORD_3(temp,
2920                              ILL_ADR_INT_KER_EN, 1,
2921                              RBUF_OWN_INT_KER_EN, 1,
2922                              TBUF_OWN_INT_KER_EN, 1);
2923         EFX_INVERT_OWORD(temp);
2924         falcon_write(efx, &temp, FATAL_INTR_REG_KER);
2925
2926         if (EFX_WORKAROUND_7244(efx)) {
2927                 falcon_read(efx, &temp, RX_FILTER_CTL_REG);
2928                 EFX_SET_OWORD_FIELD(temp, UDP_FULL_SRCH_LIMIT, 8);
2929                 EFX_SET_OWORD_FIELD(temp, UDP_WILD_SRCH_LIMIT, 8);
2930                 EFX_SET_OWORD_FIELD(temp, TCP_FULL_SRCH_LIMIT, 8);
2931                 EFX_SET_OWORD_FIELD(temp, TCP_WILD_SRCH_LIMIT, 8);
2932                 falcon_write(efx, &temp, RX_FILTER_CTL_REG);
2933         }
2934
2935         falcon_setup_rss_indir_table(efx);
2936
2937         /* Setup RX.  Wait for descriptor is broken and must
2938          * be disabled.  RXDP recovery shouldn't be needed, but is.
2939          */
2940         falcon_read(efx, &temp, RX_SELF_RST_REG_KER);
2941         EFX_SET_OWORD_FIELD(temp, RX_NODESC_WAIT_DIS, 1);
2942         EFX_SET_OWORD_FIELD(temp, RX_RECOVERY_EN, 1);
2943         if (EFX_WORKAROUND_5583(efx))
2944                 EFX_SET_OWORD_FIELD(temp, RX_ISCSI_DIS, 1);
2945         falcon_write(efx, &temp, RX_SELF_RST_REG_KER);
2946
2947         /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
2948          * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
2949          */
2950         falcon_read(efx, &temp, TX_CFG2_REG_KER);
2951         EFX_SET_OWORD_FIELD(temp, TX_RX_SPACER, 0xfe);
2952         EFX_SET_OWORD_FIELD(temp, TX_RX_SPACER_EN, 1);
2953         EFX_SET_OWORD_FIELD(temp, TX_ONE_PKT_PER_Q, 1);
2954         EFX_SET_OWORD_FIELD(temp, TX_CSR_PUSH_EN, 0);
2955         EFX_SET_OWORD_FIELD(temp, TX_DIS_NON_IP_EV, 1);
2956         /* Enable SW_EV to inherit in char driver - assume harmless here */
2957         EFX_SET_OWORD_FIELD(temp, TX_SW_EV_EN, 1);
2958         /* Prefetch threshold 2 => fetch when descriptor cache half empty */
2959         EFX_SET_OWORD_FIELD(temp, TX_PREF_THRESHOLD, 2);
2960         /* Squash TX of packets of 16 bytes or less */
2961         if (falcon_rev(efx) >= FALCON_REV_B0 && EFX_WORKAROUND_9141(efx))
2962                 EFX_SET_OWORD_FIELD(temp, TX_FLUSH_MIN_LEN_EN_B0, 1);
2963         falcon_write(efx, &temp, TX_CFG2_REG_KER);
2964
2965         /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
2966          * descriptors (which is bad).
2967          */
2968         falcon_read(efx, &temp, TX_CFG_REG_KER);
2969         EFX_SET_OWORD_FIELD(temp, TX_NO_EOP_DISC_EN, 0);
2970         falcon_write(efx, &temp, TX_CFG_REG_KER);
2971
2972         /* RX config */
2973         falcon_read(efx, &temp, RX_CFG_REG_KER);
2974         EFX_SET_OWORD_FIELD_VER(efx, temp, RX_DESC_PUSH_EN, 0);
2975         if (EFX_WORKAROUND_7575(efx))
2976                 EFX_SET_OWORD_FIELD_VER(efx, temp, RX_USR_BUF_SIZE,
2977                                         (3 * 4096) / 32);
2978         if (falcon_rev(efx) >= FALCON_REV_B0)
2979                 EFX_SET_OWORD_FIELD(temp, RX_INGR_EN_B0, 1);
2980
2981         /* RX FIFO flow control thresholds */
2982         thresh = ((rx_xon_thresh_bytes >= 0) ?
2983                   rx_xon_thresh_bytes : efx->type->rx_xon_thresh);
2984         EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XON_MAC_TH, thresh / 256);
2985         thresh = ((rx_xoff_thresh_bytes >= 0) ?
2986                   rx_xoff_thresh_bytes : efx->type->rx_xoff_thresh);
2987         EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XOFF_MAC_TH, thresh / 256);
2988         /* RX control FIFO thresholds [32 entries] */
2989         EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XON_TX_TH, 20);
2990         EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XOFF_TX_TH, 25);
2991         falcon_write(efx, &temp, RX_CFG_REG_KER);
2992
2993         /* Set destination of both TX and RX Flush events */
2994         if (falcon_rev(efx) >= FALCON_REV_B0) {
2995                 EFX_POPULATE_OWORD_1(temp, FLS_EVQ_ID, 0);
2996                 falcon_write(efx, &temp, DP_CTRL_REG);
2997         }
2998
2999         return 0;
3000 }
3001
3002 void falcon_remove_nic(struct efx_nic *efx)
3003 {
3004         struct falcon_nic_data *nic_data = efx->nic_data;
3005         int rc;
3006
3007         rc = i2c_del_adapter(&efx->i2c_adap);
3008         BUG_ON(rc);
3009
3010         falcon_remove_spi_devices(efx);
3011         falcon_free_buffer(efx, &efx->irq_status);
3012
3013         falcon_reset_hw(efx, RESET_TYPE_ALL);
3014
3015         /* Release the second function after the reset */
3016         if (nic_data->pci_dev2) {
3017                 pci_dev_put(nic_data->pci_dev2);
3018                 nic_data->pci_dev2 = NULL;
3019         }
3020
3021         /* Tear down the private nic state */
3022         kfree(efx->nic_data);
3023         efx->nic_data = NULL;
3024 }
3025
3026 void falcon_update_nic_stats(struct efx_nic *efx)
3027 {
3028         efx_oword_t cnt;
3029
3030         falcon_read(efx, &cnt, RX_NODESC_DROP_REG_KER);
3031         efx->n_rx_nodesc_drop_cnt += EFX_OWORD_FIELD(cnt, RX_NODESC_DROP_CNT);
3032 }
3033
3034 /**************************************************************************
3035  *
3036  * Revision-dependent attributes used by efx.c
3037  *
3038  **************************************************************************
3039  */
3040
3041 struct efx_nic_type falcon_a_nic_type = {
3042         .mem_bar = 2,
3043         .mem_map_size = 0x20000,
3044         .txd_ptr_tbl_base = TX_DESC_PTR_TBL_KER_A1,
3045         .rxd_ptr_tbl_base = RX_DESC_PTR_TBL_KER_A1,
3046         .buf_tbl_base = BUF_TBL_KER_A1,
3047         .evq_ptr_tbl_base = EVQ_PTR_TBL_KER_A1,
3048         .evq_rptr_tbl_base = EVQ_RPTR_REG_KER_A1,
3049         .txd_ring_mask = FALCON_TXD_RING_MASK,
3050         .rxd_ring_mask = FALCON_RXD_RING_MASK,
3051         .evq_size = FALCON_EVQ_SIZE,
3052         .max_dma_mask = FALCON_DMA_MASK,
3053         .tx_dma_mask = FALCON_TX_DMA_MASK,
3054         .bug5391_mask = 0xf,
3055         .rx_xoff_thresh = 2048,
3056         .rx_xon_thresh = 512,
3057         .rx_buffer_padding = 0x24,
3058         .max_interrupt_mode = EFX_INT_MODE_MSI,
3059         .phys_addr_channels = 4,
3060 };
3061
3062 struct efx_nic_type falcon_b_nic_type = {
3063         .mem_bar = 2,
3064         /* Map everything up to and including the RSS indirection
3065          * table.  Don't map MSI-X table, MSI-X PBA since Linux
3066          * requires that they not be mapped.  */
3067         .mem_map_size = RX_RSS_INDIR_TBL_B0 + 0x800,
3068         .txd_ptr_tbl_base = TX_DESC_PTR_TBL_KER_B0,
3069         .rxd_ptr_tbl_base = RX_DESC_PTR_TBL_KER_B0,
3070         .buf_tbl_base = BUF_TBL_KER_B0,
3071         .evq_ptr_tbl_base = EVQ_PTR_TBL_KER_B0,
3072         .evq_rptr_tbl_base = EVQ_RPTR_REG_KER_B0,
3073         .txd_ring_mask = FALCON_TXD_RING_MASK,
3074         .rxd_ring_mask = FALCON_RXD_RING_MASK,
3075         .evq_size = FALCON_EVQ_SIZE,
3076         .max_dma_mask = FALCON_DMA_MASK,
3077         .tx_dma_mask = FALCON_TX_DMA_MASK,
3078         .bug5391_mask = 0,
3079         .rx_xoff_thresh = 54272, /* ~80Kb - 3*max MTU */
3080         .rx_xon_thresh = 27648,  /* ~3*max MTU */
3081         .rx_buffer_padding = 0,
3082         .max_interrupt_mode = EFX_INT_MODE_MSIX,
3083         .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
3084                                    * interrupt handler only supports 32
3085                                    * channels */
3086 };
3087