]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/sfc/falcon.c
sfc: Add check for memory allocation failure in falcon_probe_nic()
[linux-2.6-omap-h63xx.git] / drivers / net / sfc / falcon.c
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2008 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/i2c-algo-bit.h>
18 #include "net_driver.h"
19 #include "bitfield.h"
20 #include "efx.h"
21 #include "mac.h"
22 #include "gmii.h"
23 #include "spi.h"
24 #include "falcon.h"
25 #include "falcon_hwdefs.h"
26 #include "falcon_io.h"
27 #include "mdio_10g.h"
28 #include "phy.h"
29 #include "boards.h"
30 #include "workarounds.h"
31
32 /* Falcon hardware control.
33  * Falcon is the internal codename for the SFC4000 controller that is
34  * present in SFE400X evaluation boards
35  */
36
37 /**
38  * struct falcon_nic_data - Falcon NIC state
39  * @next_buffer_table: First available buffer table id
40  * @pci_dev2: The secondary PCI device if present
41  * @i2c_data: Operations and state for I2C bit-bashing algorithm
42  */
43 struct falcon_nic_data {
44         unsigned next_buffer_table;
45         struct pci_dev *pci_dev2;
46         struct i2c_algo_bit_data i2c_data;
47 };
48
49 /**************************************************************************
50  *
51  * Configurable values
52  *
53  **************************************************************************
54  */
55
56 static int disable_dma_stats;
57
58 /* This is set to 16 for a good reason.  In summary, if larger than
59  * 16, the descriptor cache holds more than a default socket
60  * buffer's worth of packets (for UDP we can only have at most one
61  * socket buffer's worth outstanding).  This combined with the fact
62  * that we only get 1 TX event per descriptor cache means the NIC
63  * goes idle.
64  */
65 #define TX_DC_ENTRIES 16
66 #define TX_DC_ENTRIES_ORDER 0
67 #define TX_DC_BASE 0x130000
68
69 #define RX_DC_ENTRIES 64
70 #define RX_DC_ENTRIES_ORDER 2
71 #define RX_DC_BASE 0x100000
72
73 /* RX FIFO XOFF watermark
74  *
75  * When the amount of the RX FIFO increases used increases past this
76  * watermark send XOFF. Only used if RX flow control is enabled (ethtool -A)
77  * This also has an effect on RX/TX arbitration
78  */
79 static int rx_xoff_thresh_bytes = -1;
80 module_param(rx_xoff_thresh_bytes, int, 0644);
81 MODULE_PARM_DESC(rx_xoff_thresh_bytes, "RX fifo XOFF threshold");
82
83 /* RX FIFO XON watermark
84  *
85  * When the amount of the RX FIFO used decreases below this
86  * watermark send XON. Only used if TX flow control is enabled (ethtool -A)
87  * This also has an effect on RX/TX arbitration
88  */
89 static int rx_xon_thresh_bytes = -1;
90 module_param(rx_xon_thresh_bytes, int, 0644);
91 MODULE_PARM_DESC(rx_xon_thresh_bytes, "RX fifo XON threshold");
92
93 /* TX descriptor ring size - min 512 max 4k */
94 #define FALCON_TXD_RING_ORDER TX_DESCQ_SIZE_1K
95 #define FALCON_TXD_RING_SIZE 1024
96 #define FALCON_TXD_RING_MASK (FALCON_TXD_RING_SIZE - 1)
97
98 /* RX descriptor ring size - min 512 max 4k */
99 #define FALCON_RXD_RING_ORDER RX_DESCQ_SIZE_1K
100 #define FALCON_RXD_RING_SIZE 1024
101 #define FALCON_RXD_RING_MASK (FALCON_RXD_RING_SIZE - 1)
102
103 /* Event queue size - max 32k */
104 #define FALCON_EVQ_ORDER EVQ_SIZE_4K
105 #define FALCON_EVQ_SIZE 4096
106 #define FALCON_EVQ_MASK (FALCON_EVQ_SIZE - 1)
107
108 /* Max number of internal errors. After this resets will not be performed */
109 #define FALCON_MAX_INT_ERRORS 4
110
111 /* Maximum period that we wait for flush events. If the flush event
112  * doesn't arrive in this period of time then we check if the queue
113  * was disabled anyway. */
114 #define FALCON_FLUSH_TIMEOUT 10 /* 10ms */
115
116 /**************************************************************************
117  *
118  * Falcon constants
119  *
120  **************************************************************************
121  */
122
123 /* DMA address mask */
124 #define FALCON_DMA_MASK DMA_BIT_MASK(46)
125
126 /* TX DMA length mask (13-bit) */
127 #define FALCON_TX_DMA_MASK (4096 - 1)
128
129 /* Size and alignment of special buffers (4KB) */
130 #define FALCON_BUF_SIZE 4096
131
132 /* Dummy SRAM size code */
133 #define SRM_NB_BSZ_ONCHIP_ONLY (-1)
134
135 /* Be nice if these (or equiv.) were in linux/pci_regs.h, but they're not. */
136 #define PCI_EXP_DEVCAP_PWR_VAL_LBN      18
137 #define PCI_EXP_DEVCAP_PWR_SCL_LBN      26
138 #define PCI_EXP_DEVCTL_PAYLOAD_LBN      5
139 #define PCI_EXP_LNKSTA_LNK_WID          0x3f0
140 #define PCI_EXP_LNKSTA_LNK_WID_LBN      4
141
142 #define FALCON_IS_DUAL_FUNC(efx)                \
143         (falcon_rev(efx) < FALCON_REV_B0)
144
145 /**************************************************************************
146  *
147  * Falcon hardware access
148  *
149  **************************************************************************/
150
151 /* Read the current event from the event queue */
152 static inline efx_qword_t *falcon_event(struct efx_channel *channel,
153                                         unsigned int index)
154 {
155         return (((efx_qword_t *) (channel->eventq.addr)) + index);
156 }
157
158 /* See if an event is present
159  *
160  * We check both the high and low dword of the event for all ones.  We
161  * wrote all ones when we cleared the event, and no valid event can
162  * have all ones in either its high or low dwords.  This approach is
163  * robust against reordering.
164  *
165  * Note that using a single 64-bit comparison is incorrect; even
166  * though the CPU read will be atomic, the DMA write may not be.
167  */
168 static inline int falcon_event_present(efx_qword_t *event)
169 {
170         return (!(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
171                   EFX_DWORD_IS_ALL_ONES(event->dword[1])));
172 }
173
174 /**************************************************************************
175  *
176  * I2C bus - this is a bit-bashing interface using GPIO pins
177  * Note that it uses the output enables to tristate the outputs
178  * SDA is the data pin and SCL is the clock
179  *
180  **************************************************************************
181  */
182 static void falcon_setsda(void *data, int state)
183 {
184         struct efx_nic *efx = (struct efx_nic *)data;
185         efx_oword_t reg;
186
187         falcon_read(efx, &reg, GPIO_CTL_REG_KER);
188         EFX_SET_OWORD_FIELD(reg, GPIO3_OEN, !state);
189         falcon_write(efx, &reg, GPIO_CTL_REG_KER);
190 }
191
192 static void falcon_setscl(void *data, int state)
193 {
194         struct efx_nic *efx = (struct efx_nic *)data;
195         efx_oword_t reg;
196
197         falcon_read(efx, &reg, GPIO_CTL_REG_KER);
198         EFX_SET_OWORD_FIELD(reg, GPIO0_OEN, !state);
199         falcon_write(efx, &reg, GPIO_CTL_REG_KER);
200 }
201
202 static int falcon_getsda(void *data)
203 {
204         struct efx_nic *efx = (struct efx_nic *)data;
205         efx_oword_t reg;
206
207         falcon_read(efx, &reg, GPIO_CTL_REG_KER);
208         return EFX_OWORD_FIELD(reg, GPIO3_IN);
209 }
210
211 static int falcon_getscl(void *data)
212 {
213         struct efx_nic *efx = (struct efx_nic *)data;
214         efx_oword_t reg;
215
216         falcon_read(efx, &reg, GPIO_CTL_REG_KER);
217         return EFX_OWORD_FIELD(reg, GPIO0_IN);
218 }
219
220 static struct i2c_algo_bit_data falcon_i2c_bit_operations = {
221         .setsda         = falcon_setsda,
222         .setscl         = falcon_setscl,
223         .getsda         = falcon_getsda,
224         .getscl         = falcon_getscl,
225         .udelay         = 5,
226         /* Wait up to 50 ms for slave to let us pull SCL high */
227         .timeout        = DIV_ROUND_UP(HZ, 20),
228 };
229
230 /**************************************************************************
231  *
232  * Falcon special buffer handling
233  * Special buffers are used for event queues and the TX and RX
234  * descriptor rings.
235  *
236  *************************************************************************/
237
238 /*
239  * Initialise a Falcon special buffer
240  *
241  * This will define a buffer (previously allocated via
242  * falcon_alloc_special_buffer()) in Falcon's buffer table, allowing
243  * it to be used for event queues, descriptor rings etc.
244  */
245 static void
246 falcon_init_special_buffer(struct efx_nic *efx,
247                            struct efx_special_buffer *buffer)
248 {
249         efx_qword_t buf_desc;
250         int index;
251         dma_addr_t dma_addr;
252         int i;
253
254         EFX_BUG_ON_PARANOID(!buffer->addr);
255
256         /* Write buffer descriptors to NIC */
257         for (i = 0; i < buffer->entries; i++) {
258                 index = buffer->index + i;
259                 dma_addr = buffer->dma_addr + (i * 4096);
260                 EFX_LOG(efx, "mapping special buffer %d at %llx\n",
261                         index, (unsigned long long)dma_addr);
262                 EFX_POPULATE_QWORD_4(buf_desc,
263                                      IP_DAT_BUF_SIZE, IP_DAT_BUF_SIZE_4K,
264                                      BUF_ADR_REGION, 0,
265                                      BUF_ADR_FBUF, (dma_addr >> 12),
266                                      BUF_OWNER_ID_FBUF, 0);
267                 falcon_write_sram(efx, &buf_desc, index);
268         }
269 }
270
271 /* Unmaps a buffer from Falcon and clears the buffer table entries */
272 static void
273 falcon_fini_special_buffer(struct efx_nic *efx,
274                            struct efx_special_buffer *buffer)
275 {
276         efx_oword_t buf_tbl_upd;
277         unsigned int start = buffer->index;
278         unsigned int end = (buffer->index + buffer->entries - 1);
279
280         if (!buffer->entries)
281                 return;
282
283         EFX_LOG(efx, "unmapping special buffers %d-%d\n",
284                 buffer->index, buffer->index + buffer->entries - 1);
285
286         EFX_POPULATE_OWORD_4(buf_tbl_upd,
287                              BUF_UPD_CMD, 0,
288                              BUF_CLR_CMD, 1,
289                              BUF_CLR_END_ID, end,
290                              BUF_CLR_START_ID, start);
291         falcon_write(efx, &buf_tbl_upd, BUF_TBL_UPD_REG_KER);
292 }
293
294 /*
295  * Allocate a new Falcon special buffer
296  *
297  * This allocates memory for a new buffer, clears it and allocates a
298  * new buffer ID range.  It does not write into Falcon's buffer table.
299  *
300  * This call will allocate 4KB buffers, since Falcon can't use 8KB
301  * buffers for event queues and descriptor rings.
302  */
303 static int falcon_alloc_special_buffer(struct efx_nic *efx,
304                                        struct efx_special_buffer *buffer,
305                                        unsigned int len)
306 {
307         struct falcon_nic_data *nic_data = efx->nic_data;
308
309         len = ALIGN(len, FALCON_BUF_SIZE);
310
311         buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
312                                             &buffer->dma_addr);
313         if (!buffer->addr)
314                 return -ENOMEM;
315         buffer->len = len;
316         buffer->entries = len / FALCON_BUF_SIZE;
317         BUG_ON(buffer->dma_addr & (FALCON_BUF_SIZE - 1));
318
319         /* All zeros is a potentially valid event so memset to 0xff */
320         memset(buffer->addr, 0xff, len);
321
322         /* Select new buffer ID */
323         buffer->index = nic_data->next_buffer_table;
324         nic_data->next_buffer_table += buffer->entries;
325
326         EFX_LOG(efx, "allocating special buffers %d-%d at %llx+%x "
327                 "(virt %p phys %lx)\n", buffer->index,
328                 buffer->index + buffer->entries - 1,
329                 (unsigned long long)buffer->dma_addr, len,
330                 buffer->addr, virt_to_phys(buffer->addr));
331
332         return 0;
333 }
334
335 static void falcon_free_special_buffer(struct efx_nic *efx,
336                                        struct efx_special_buffer *buffer)
337 {
338         if (!buffer->addr)
339                 return;
340
341         EFX_LOG(efx, "deallocating special buffers %d-%d at %llx+%x "
342                 "(virt %p phys %lx)\n", buffer->index,
343                 buffer->index + buffer->entries - 1,
344                 (unsigned long long)buffer->dma_addr, buffer->len,
345                 buffer->addr, virt_to_phys(buffer->addr));
346
347         pci_free_consistent(efx->pci_dev, buffer->len, buffer->addr,
348                             buffer->dma_addr);
349         buffer->addr = NULL;
350         buffer->entries = 0;
351 }
352
353 /**************************************************************************
354  *
355  * Falcon generic buffer handling
356  * These buffers are used for interrupt status and MAC stats
357  *
358  **************************************************************************/
359
360 static int falcon_alloc_buffer(struct efx_nic *efx,
361                                struct efx_buffer *buffer, unsigned int len)
362 {
363         buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
364                                             &buffer->dma_addr);
365         if (!buffer->addr)
366                 return -ENOMEM;
367         buffer->len = len;
368         memset(buffer->addr, 0, len);
369         return 0;
370 }
371
372 static void falcon_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
373 {
374         if (buffer->addr) {
375                 pci_free_consistent(efx->pci_dev, buffer->len,
376                                     buffer->addr, buffer->dma_addr);
377                 buffer->addr = NULL;
378         }
379 }
380
381 /**************************************************************************
382  *
383  * Falcon TX path
384  *
385  **************************************************************************/
386
387 /* Returns a pointer to the specified transmit descriptor in the TX
388  * descriptor queue belonging to the specified channel.
389  */
390 static inline efx_qword_t *falcon_tx_desc(struct efx_tx_queue *tx_queue,
391                                                unsigned int index)
392 {
393         return (((efx_qword_t *) (tx_queue->txd.addr)) + index);
394 }
395
396 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
397 static inline void falcon_notify_tx_desc(struct efx_tx_queue *tx_queue)
398 {
399         unsigned write_ptr;
400         efx_dword_t reg;
401
402         write_ptr = tx_queue->write_count & FALCON_TXD_RING_MASK;
403         EFX_POPULATE_DWORD_1(reg, TX_DESC_WPTR_DWORD, write_ptr);
404         falcon_writel_page(tx_queue->efx, &reg,
405                            TX_DESC_UPD_REG_KER_DWORD, tx_queue->queue);
406 }
407
408
409 /* For each entry inserted into the software descriptor ring, create a
410  * descriptor in the hardware TX descriptor ring (in host memory), and
411  * write a doorbell.
412  */
413 void falcon_push_buffers(struct efx_tx_queue *tx_queue)
414 {
415
416         struct efx_tx_buffer *buffer;
417         efx_qword_t *txd;
418         unsigned write_ptr;
419
420         BUG_ON(tx_queue->write_count == tx_queue->insert_count);
421
422         do {
423                 write_ptr = tx_queue->write_count & FALCON_TXD_RING_MASK;
424                 buffer = &tx_queue->buffer[write_ptr];
425                 txd = falcon_tx_desc(tx_queue, write_ptr);
426                 ++tx_queue->write_count;
427
428                 /* Create TX descriptor ring entry */
429                 EFX_POPULATE_QWORD_5(*txd,
430                                      TX_KER_PORT, 0,
431                                      TX_KER_CONT, buffer->continuation,
432                                      TX_KER_BYTE_CNT, buffer->len,
433                                      TX_KER_BUF_REGION, 0,
434                                      TX_KER_BUF_ADR, buffer->dma_addr);
435         } while (tx_queue->write_count != tx_queue->insert_count);
436
437         wmb(); /* Ensure descriptors are written before they are fetched */
438         falcon_notify_tx_desc(tx_queue);
439 }
440
441 /* Allocate hardware resources for a TX queue */
442 int falcon_probe_tx(struct efx_tx_queue *tx_queue)
443 {
444         struct efx_nic *efx = tx_queue->efx;
445         return falcon_alloc_special_buffer(efx, &tx_queue->txd,
446                                            FALCON_TXD_RING_SIZE *
447                                            sizeof(efx_qword_t));
448 }
449
450 void falcon_init_tx(struct efx_tx_queue *tx_queue)
451 {
452         efx_oword_t tx_desc_ptr;
453         struct efx_nic *efx = tx_queue->efx;
454
455         /* Pin TX descriptor ring */
456         falcon_init_special_buffer(efx, &tx_queue->txd);
457
458         /* Push TX descriptor ring to card */
459         EFX_POPULATE_OWORD_10(tx_desc_ptr,
460                               TX_DESCQ_EN, 1,
461                               TX_ISCSI_DDIG_EN, 0,
462                               TX_ISCSI_HDIG_EN, 0,
463                               TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
464                               TX_DESCQ_EVQ_ID, tx_queue->channel->channel,
465                               TX_DESCQ_OWNER_ID, 0,
466                               TX_DESCQ_LABEL, tx_queue->queue,
467                               TX_DESCQ_SIZE, FALCON_TXD_RING_ORDER,
468                               TX_DESCQ_TYPE, 0,
469                               TX_NON_IP_DROP_DIS_B0, 1);
470
471         if (falcon_rev(efx) >= FALCON_REV_B0) {
472                 int csum = tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM;
473                 EFX_SET_OWORD_FIELD(tx_desc_ptr, TX_IP_CHKSM_DIS_B0, !csum);
474                 EFX_SET_OWORD_FIELD(tx_desc_ptr, TX_TCP_CHKSM_DIS_B0, !csum);
475         }
476
477         falcon_write_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
478                            tx_queue->queue);
479
480         if (falcon_rev(efx) < FALCON_REV_B0) {
481                 efx_oword_t reg;
482
483                 /* Only 128 bits in this register */
484                 BUILD_BUG_ON(EFX_TX_QUEUE_COUNT >= 128);
485
486                 falcon_read(efx, &reg, TX_CHKSM_CFG_REG_KER_A1);
487                 if (tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM)
488                         clear_bit_le(tx_queue->queue, (void *)&reg);
489                 else
490                         set_bit_le(tx_queue->queue, (void *)&reg);
491                 falcon_write(efx, &reg, TX_CHKSM_CFG_REG_KER_A1);
492         }
493 }
494
495 static int falcon_flush_tx_queue(struct efx_tx_queue *tx_queue)
496 {
497         struct efx_nic *efx = tx_queue->efx;
498         struct efx_channel *channel = &efx->channel[0];
499         efx_oword_t tx_flush_descq;
500         unsigned int read_ptr, i;
501
502         /* Post a flush command */
503         EFX_POPULATE_OWORD_2(tx_flush_descq,
504                              TX_FLUSH_DESCQ_CMD, 1,
505                              TX_FLUSH_DESCQ, tx_queue->queue);
506         falcon_write(efx, &tx_flush_descq, TX_FLUSH_DESCQ_REG_KER);
507         msleep(FALCON_FLUSH_TIMEOUT);
508
509         if (EFX_WORKAROUND_7803(efx))
510                 return 0;
511
512         /* Look for a flush completed event */
513         read_ptr = channel->eventq_read_ptr;
514         for (i = 0; i < FALCON_EVQ_SIZE; ++i) {
515                 efx_qword_t *event = falcon_event(channel, read_ptr);
516                 int ev_code, ev_sub_code, ev_queue;
517                 if (!falcon_event_present(event))
518                         break;
519
520                 ev_code = EFX_QWORD_FIELD(*event, EV_CODE);
521                 ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE);
522                 ev_queue = EFX_QWORD_FIELD(*event, DRIVER_EV_TX_DESCQ_ID);
523                 if ((ev_sub_code == TX_DESCQ_FLS_DONE_EV_DECODE) &&
524                     (ev_queue == tx_queue->queue)) {
525                         EFX_LOG(efx, "tx queue %d flush command succesful\n",
526                                 tx_queue->queue);
527                         return 0;
528                 }
529
530                 read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK;
531         }
532
533         if (EFX_WORKAROUND_11557(efx)) {
534                 efx_oword_t reg;
535                 bool enabled;
536
537                 falcon_read_table(efx, &reg, efx->type->txd_ptr_tbl_base,
538                                   tx_queue->queue);
539                 enabled = EFX_OWORD_FIELD(reg, TX_DESCQ_EN);
540                 if (!enabled) {
541                         EFX_LOG(efx, "tx queue %d disabled without a "
542                                 "flush event seen\n", tx_queue->queue);
543                         return 0;
544                 }
545         }
546
547         EFX_ERR(efx, "tx queue %d flush command timed out\n", tx_queue->queue);
548         return -ETIMEDOUT;
549 }
550
551 void falcon_fini_tx(struct efx_tx_queue *tx_queue)
552 {
553         struct efx_nic *efx = tx_queue->efx;
554         efx_oword_t tx_desc_ptr;
555
556         /* Stop the hardware using the queue */
557         if (falcon_flush_tx_queue(tx_queue))
558                 EFX_ERR(efx, "failed to flush tx queue %d\n", tx_queue->queue);
559
560         /* Remove TX descriptor ring from card */
561         EFX_ZERO_OWORD(tx_desc_ptr);
562         falcon_write_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
563                            tx_queue->queue);
564
565         /* Unpin TX descriptor ring */
566         falcon_fini_special_buffer(efx, &tx_queue->txd);
567 }
568
569 /* Free buffers backing TX queue */
570 void falcon_remove_tx(struct efx_tx_queue *tx_queue)
571 {
572         falcon_free_special_buffer(tx_queue->efx, &tx_queue->txd);
573 }
574
575 /**************************************************************************
576  *
577  * Falcon RX path
578  *
579  **************************************************************************/
580
581 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
582 static inline efx_qword_t *falcon_rx_desc(struct efx_rx_queue *rx_queue,
583                                                unsigned int index)
584 {
585         return (((efx_qword_t *) (rx_queue->rxd.addr)) + index);
586 }
587
588 /* This creates an entry in the RX descriptor queue */
589 static inline void falcon_build_rx_desc(struct efx_rx_queue *rx_queue,
590                                         unsigned index)
591 {
592         struct efx_rx_buffer *rx_buf;
593         efx_qword_t *rxd;
594
595         rxd = falcon_rx_desc(rx_queue, index);
596         rx_buf = efx_rx_buffer(rx_queue, index);
597         EFX_POPULATE_QWORD_3(*rxd,
598                              RX_KER_BUF_SIZE,
599                              rx_buf->len -
600                              rx_queue->efx->type->rx_buffer_padding,
601                              RX_KER_BUF_REGION, 0,
602                              RX_KER_BUF_ADR, rx_buf->dma_addr);
603 }
604
605 /* This writes to the RX_DESC_WPTR register for the specified receive
606  * descriptor ring.
607  */
608 void falcon_notify_rx_desc(struct efx_rx_queue *rx_queue)
609 {
610         efx_dword_t reg;
611         unsigned write_ptr;
612
613         while (rx_queue->notified_count != rx_queue->added_count) {
614                 falcon_build_rx_desc(rx_queue,
615                                      rx_queue->notified_count &
616                                      FALCON_RXD_RING_MASK);
617                 ++rx_queue->notified_count;
618         }
619
620         wmb();
621         write_ptr = rx_queue->added_count & FALCON_RXD_RING_MASK;
622         EFX_POPULATE_DWORD_1(reg, RX_DESC_WPTR_DWORD, write_ptr);
623         falcon_writel_page(rx_queue->efx, &reg,
624                            RX_DESC_UPD_REG_KER_DWORD, rx_queue->queue);
625 }
626
627 int falcon_probe_rx(struct efx_rx_queue *rx_queue)
628 {
629         struct efx_nic *efx = rx_queue->efx;
630         return falcon_alloc_special_buffer(efx, &rx_queue->rxd,
631                                            FALCON_RXD_RING_SIZE *
632                                            sizeof(efx_qword_t));
633 }
634
635 void falcon_init_rx(struct efx_rx_queue *rx_queue)
636 {
637         efx_oword_t rx_desc_ptr;
638         struct efx_nic *efx = rx_queue->efx;
639         bool is_b0 = falcon_rev(efx) >= FALCON_REV_B0;
640         bool iscsi_digest_en = is_b0;
641
642         EFX_LOG(efx, "RX queue %d ring in special buffers %d-%d\n",
643                 rx_queue->queue, rx_queue->rxd.index,
644                 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
645
646         /* Pin RX descriptor ring */
647         falcon_init_special_buffer(efx, &rx_queue->rxd);
648
649         /* Push RX descriptor ring to card */
650         EFX_POPULATE_OWORD_10(rx_desc_ptr,
651                               RX_ISCSI_DDIG_EN, iscsi_digest_en,
652                               RX_ISCSI_HDIG_EN, iscsi_digest_en,
653                               RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
654                               RX_DESCQ_EVQ_ID, rx_queue->channel->channel,
655                               RX_DESCQ_OWNER_ID, 0,
656                               RX_DESCQ_LABEL, rx_queue->queue,
657                               RX_DESCQ_SIZE, FALCON_RXD_RING_ORDER,
658                               RX_DESCQ_TYPE, 0 /* kernel queue */ ,
659                               /* For >=B0 this is scatter so disable */
660                               RX_DESCQ_JUMBO, !is_b0,
661                               RX_DESCQ_EN, 1);
662         falcon_write_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
663                            rx_queue->queue);
664 }
665
666 static int falcon_flush_rx_queue(struct efx_rx_queue *rx_queue)
667 {
668         struct efx_nic *efx = rx_queue->efx;
669         struct efx_channel *channel = &efx->channel[0];
670         unsigned int read_ptr, i;
671         efx_oword_t rx_flush_descq;
672
673         /* Post a flush command */
674         EFX_POPULATE_OWORD_2(rx_flush_descq,
675                              RX_FLUSH_DESCQ_CMD, 1,
676                              RX_FLUSH_DESCQ, rx_queue->queue);
677         falcon_write(efx, &rx_flush_descq, RX_FLUSH_DESCQ_REG_KER);
678         msleep(FALCON_FLUSH_TIMEOUT);
679
680         if (EFX_WORKAROUND_7803(efx))
681                 return 0;
682
683         /* Look for a flush completed event */
684         read_ptr = channel->eventq_read_ptr;
685         for (i = 0; i < FALCON_EVQ_SIZE; ++i) {
686                 efx_qword_t *event = falcon_event(channel, read_ptr);
687                 int ev_code, ev_sub_code, ev_queue;
688                 bool ev_failed;
689                 if (!falcon_event_present(event))
690                         break;
691
692                 ev_code = EFX_QWORD_FIELD(*event, EV_CODE);
693                 ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE);
694                 ev_queue = EFX_QWORD_FIELD(*event, DRIVER_EV_RX_DESCQ_ID);
695                 ev_failed = EFX_QWORD_FIELD(*event, DRIVER_EV_RX_FLUSH_FAIL);
696
697                 if ((ev_sub_code == RX_DESCQ_FLS_DONE_EV_DECODE) &&
698                     (ev_queue == rx_queue->queue)) {
699                         if (ev_failed) {
700                                 EFX_INFO(efx, "rx queue %d flush command "
701                                          "failed\n", rx_queue->queue);
702                                 return -EAGAIN;
703                         } else {
704                                 EFX_LOG(efx, "rx queue %d flush command "
705                                         "succesful\n", rx_queue->queue);
706                                 return 0;
707                         }
708                 }
709
710                 read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK;
711         }
712
713         if (EFX_WORKAROUND_11557(efx)) {
714                 efx_oword_t reg;
715                 bool enabled;
716
717                 falcon_read_table(efx, &reg, efx->type->rxd_ptr_tbl_base,
718                                   rx_queue->queue);
719                 enabled = EFX_OWORD_FIELD(reg, RX_DESCQ_EN);
720                 if (!enabled) {
721                         EFX_LOG(efx, "rx queue %d disabled without a "
722                                 "flush event seen\n", rx_queue->queue);
723                         return 0;
724                 }
725         }
726
727         EFX_ERR(efx, "rx queue %d flush command timed out\n", rx_queue->queue);
728         return -ETIMEDOUT;
729 }
730
731 void falcon_fini_rx(struct efx_rx_queue *rx_queue)
732 {
733         efx_oword_t rx_desc_ptr;
734         struct efx_nic *efx = rx_queue->efx;
735         int i, rc;
736
737         /* Try and flush the rx queue. This may need to be repeated */
738         for (i = 0; i < 5; i++) {
739                 rc = falcon_flush_rx_queue(rx_queue);
740                 if (rc == -EAGAIN)
741                         continue;
742                 break;
743         }
744         if (rc) {
745                 EFX_ERR(efx, "failed to flush rx queue %d\n", rx_queue->queue);
746                 efx_schedule_reset(efx, RESET_TYPE_INVISIBLE);
747         }
748
749         /* Remove RX descriptor ring from card */
750         EFX_ZERO_OWORD(rx_desc_ptr);
751         falcon_write_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
752                            rx_queue->queue);
753
754         /* Unpin RX descriptor ring */
755         falcon_fini_special_buffer(efx, &rx_queue->rxd);
756 }
757
758 /* Free buffers backing RX queue */
759 void falcon_remove_rx(struct efx_rx_queue *rx_queue)
760 {
761         falcon_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
762 }
763
764 /**************************************************************************
765  *
766  * Falcon event queue processing
767  * Event queues are processed by per-channel tasklets.
768  *
769  **************************************************************************/
770
771 /* Update a channel's event queue's read pointer (RPTR) register
772  *
773  * This writes the EVQ_RPTR_REG register for the specified channel's
774  * event queue.
775  *
776  * Note that EVQ_RPTR_REG contains the index of the "last read" event,
777  * whereas channel->eventq_read_ptr contains the index of the "next to
778  * read" event.
779  */
780 void falcon_eventq_read_ack(struct efx_channel *channel)
781 {
782         efx_dword_t reg;
783         struct efx_nic *efx = channel->efx;
784
785         EFX_POPULATE_DWORD_1(reg, EVQ_RPTR_DWORD, channel->eventq_read_ptr);
786         falcon_writel_table(efx, &reg, efx->type->evq_rptr_tbl_base,
787                             channel->channel);
788 }
789
790 /* Use HW to insert a SW defined event */
791 void falcon_generate_event(struct efx_channel *channel, efx_qword_t *event)
792 {
793         efx_oword_t drv_ev_reg;
794
795         EFX_POPULATE_OWORD_2(drv_ev_reg,
796                              DRV_EV_QID, channel->channel,
797                              DRV_EV_DATA,
798                              EFX_QWORD_FIELD64(*event, WHOLE_EVENT));
799         falcon_write(channel->efx, &drv_ev_reg, DRV_EV_REG_KER);
800 }
801
802 /* Handle a transmit completion event
803  *
804  * Falcon batches TX completion events; the message we receive is of
805  * the form "complete all TX events up to this index".
806  */
807 static void falcon_handle_tx_event(struct efx_channel *channel,
808                                    efx_qword_t *event)
809 {
810         unsigned int tx_ev_desc_ptr;
811         unsigned int tx_ev_q_label;
812         struct efx_tx_queue *tx_queue;
813         struct efx_nic *efx = channel->efx;
814
815         if (likely(EFX_QWORD_FIELD(*event, TX_EV_COMP))) {
816                 /* Transmit completion */
817                 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, TX_EV_DESC_PTR);
818                 tx_ev_q_label = EFX_QWORD_FIELD(*event, TX_EV_Q_LABEL);
819                 tx_queue = &efx->tx_queue[tx_ev_q_label];
820                 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
821         } else if (EFX_QWORD_FIELD(*event, TX_EV_WQ_FF_FULL)) {
822                 /* Rewrite the FIFO write pointer */
823                 tx_ev_q_label = EFX_QWORD_FIELD(*event, TX_EV_Q_LABEL);
824                 tx_queue = &efx->tx_queue[tx_ev_q_label];
825
826                 if (efx_dev_registered(efx))
827                         netif_tx_lock(efx->net_dev);
828                 falcon_notify_tx_desc(tx_queue);
829                 if (efx_dev_registered(efx))
830                         netif_tx_unlock(efx->net_dev);
831         } else if (EFX_QWORD_FIELD(*event, TX_EV_PKT_ERR) &&
832                    EFX_WORKAROUND_10727(efx)) {
833                 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
834         } else {
835                 EFX_ERR(efx, "channel %d unexpected TX event "
836                         EFX_QWORD_FMT"\n", channel->channel,
837                         EFX_QWORD_VAL(*event));
838         }
839 }
840
841 /* Detect errors included in the rx_evt_pkt_ok bit. */
842 static void falcon_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
843                                     const efx_qword_t *event,
844                                     bool *rx_ev_pkt_ok,
845                                     bool *discard)
846 {
847         struct efx_nic *efx = rx_queue->efx;
848         bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
849         bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
850         bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
851         bool rx_ev_other_err, rx_ev_pause_frm;
852         bool rx_ev_ip_frag_err, rx_ev_hdr_type, rx_ev_mcast_pkt;
853         unsigned rx_ev_pkt_type;
854
855         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, RX_EV_HDR_TYPE);
856         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, RX_EV_MCAST_PKT);
857         rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, RX_EV_TOBE_DISC);
858         rx_ev_pkt_type = EFX_QWORD_FIELD(*event, RX_EV_PKT_TYPE);
859         rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
860                                                  RX_EV_BUF_OWNER_ID_ERR);
861         rx_ev_ip_frag_err = EFX_QWORD_FIELD(*event, RX_EV_IF_FRAG_ERR);
862         rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
863                                                   RX_EV_IP_HDR_CHKSUM_ERR);
864         rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
865                                                    RX_EV_TCP_UDP_CHKSUM_ERR);
866         rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, RX_EV_ETH_CRC_ERR);
867         rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, RX_EV_FRM_TRUNC);
868         rx_ev_drib_nib = ((falcon_rev(efx) >= FALCON_REV_B0) ?
869                           0 : EFX_QWORD_FIELD(*event, RX_EV_DRIB_NIB));
870         rx_ev_pause_frm = EFX_QWORD_FIELD(*event, RX_EV_PAUSE_FRM_ERR);
871
872         /* Every error apart from tobe_disc and pause_frm */
873         rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
874                            rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
875                            rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
876
877         /* Count errors that are not in MAC stats. */
878         if (rx_ev_frm_trunc)
879                 ++rx_queue->channel->n_rx_frm_trunc;
880         else if (rx_ev_tobe_disc)
881                 ++rx_queue->channel->n_rx_tobe_disc;
882         else if (rx_ev_ip_hdr_chksum_err)
883                 ++rx_queue->channel->n_rx_ip_hdr_chksum_err;
884         else if (rx_ev_tcp_udp_chksum_err)
885                 ++rx_queue->channel->n_rx_tcp_udp_chksum_err;
886         if (rx_ev_ip_frag_err)
887                 ++rx_queue->channel->n_rx_ip_frag_err;
888
889         /* The frame must be discarded if any of these are true. */
890         *discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
891                     rx_ev_tobe_disc | rx_ev_pause_frm);
892
893         /* TOBE_DISC is expected on unicast mismatches; don't print out an
894          * error message.  FRM_TRUNC indicates RXDP dropped the packet due
895          * to a FIFO overflow.
896          */
897 #ifdef EFX_ENABLE_DEBUG
898         if (rx_ev_other_err) {
899                 EFX_INFO_RL(efx, " RX queue %d unexpected RX event "
900                             EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
901                             rx_queue->queue, EFX_QWORD_VAL(*event),
902                             rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
903                             rx_ev_ip_hdr_chksum_err ?
904                             " [IP_HDR_CHKSUM_ERR]" : "",
905                             rx_ev_tcp_udp_chksum_err ?
906                             " [TCP_UDP_CHKSUM_ERR]" : "",
907                             rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
908                             rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
909                             rx_ev_drib_nib ? " [DRIB_NIB]" : "",
910                             rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
911                             rx_ev_pause_frm ? " [PAUSE]" : "");
912         }
913 #endif
914
915         if (unlikely(rx_ev_eth_crc_err && EFX_WORKAROUND_10750(efx) &&
916                      efx->phy_type == PHY_TYPE_10XPRESS))
917                 tenxpress_crc_err(efx);
918 }
919
920 /* Handle receive events that are not in-order. */
921 static void falcon_handle_rx_bad_index(struct efx_rx_queue *rx_queue,
922                                        unsigned index)
923 {
924         struct efx_nic *efx = rx_queue->efx;
925         unsigned expected, dropped;
926
927         expected = rx_queue->removed_count & FALCON_RXD_RING_MASK;
928         dropped = ((index + FALCON_RXD_RING_SIZE - expected) &
929                    FALCON_RXD_RING_MASK);
930         EFX_INFO(efx, "dropped %d events (index=%d expected=%d)\n",
931                 dropped, index, expected);
932
933         efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
934                            RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
935 }
936
937 /* Handle a packet received event
938  *
939  * Falcon silicon gives a "discard" flag if it's a unicast packet with the
940  * wrong destination address
941  * Also "is multicast" and "matches multicast filter" flags can be used to
942  * discard non-matching multicast packets.
943  */
944 static void falcon_handle_rx_event(struct efx_channel *channel,
945                                    const efx_qword_t *event)
946 {
947         unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
948         unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
949         unsigned expected_ptr;
950         bool rx_ev_pkt_ok, discard = false, checksummed;
951         struct efx_rx_queue *rx_queue;
952         struct efx_nic *efx = channel->efx;
953
954         /* Basic packet information */
955         rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, RX_EV_BYTE_CNT);
956         rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, RX_EV_PKT_OK);
957         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, RX_EV_HDR_TYPE);
958         WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_JUMBO_CONT));
959         WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_SOP) != 1);
960         WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_Q_LABEL) != channel->channel);
961
962         rx_queue = &efx->rx_queue[channel->channel];
963
964         rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, RX_EV_DESC_PTR);
965         expected_ptr = rx_queue->removed_count & FALCON_RXD_RING_MASK;
966         if (unlikely(rx_ev_desc_ptr != expected_ptr))
967                 falcon_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
968
969         if (likely(rx_ev_pkt_ok)) {
970                 /* If packet is marked as OK and packet type is TCP/IPv4 or
971                  * UDP/IPv4, then we can rely on the hardware checksum.
972                  */
973                 checksummed = RX_EV_HDR_TYPE_HAS_CHECKSUMS(rx_ev_hdr_type);
974         } else {
975                 falcon_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok,
976                                         &discard);
977                 checksummed = false;
978         }
979
980         /* Detect multicast packets that didn't match the filter */
981         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, RX_EV_MCAST_PKT);
982         if (rx_ev_mcast_pkt) {
983                 unsigned int rx_ev_mcast_hash_match =
984                         EFX_QWORD_FIELD(*event, RX_EV_MCAST_HASH_MATCH);
985
986                 if (unlikely(!rx_ev_mcast_hash_match))
987                         discard = true;
988         }
989
990         /* Handle received packet */
991         efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt,
992                       checksummed, discard);
993 }
994
995 /* Global events are basically PHY events */
996 static void falcon_handle_global_event(struct efx_channel *channel,
997                                        efx_qword_t *event)
998 {
999         struct efx_nic *efx = channel->efx;
1000         bool is_phy_event = false, handled = false;
1001
1002         /* Check for interrupt on either port.  Some boards have a
1003          * single PHY wired to the interrupt line for port 1. */
1004         if (EFX_QWORD_FIELD(*event, G_PHY0_INTR) ||
1005             EFX_QWORD_FIELD(*event, G_PHY1_INTR) ||
1006             EFX_QWORD_FIELD(*event, XG_PHY_INTR))
1007                 is_phy_event = true;
1008
1009         if ((falcon_rev(efx) >= FALCON_REV_B0) &&
1010             EFX_OWORD_FIELD(*event, XG_MNT_INTR_B0))
1011                 is_phy_event = true;
1012
1013         if (is_phy_event) {
1014                 efx->phy_op->clear_interrupt(efx);
1015                 queue_work(efx->workqueue, &efx->reconfigure_work);
1016                 handled = true;
1017         }
1018
1019         if (EFX_QWORD_FIELD_VER(efx, *event, RX_RECOVERY)) {
1020                 EFX_ERR(efx, "channel %d seen global RX_RESET "
1021                         "event. Resetting.\n", channel->channel);
1022
1023                 atomic_inc(&efx->rx_reset);
1024                 efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
1025                                    RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
1026                 handled = true;
1027         }
1028
1029         if (!handled)
1030                 EFX_ERR(efx, "channel %d unknown global event "
1031                         EFX_QWORD_FMT "\n", channel->channel,
1032                         EFX_QWORD_VAL(*event));
1033 }
1034
1035 static void falcon_handle_driver_event(struct efx_channel *channel,
1036                                        efx_qword_t *event)
1037 {
1038         struct efx_nic *efx = channel->efx;
1039         unsigned int ev_sub_code;
1040         unsigned int ev_sub_data;
1041
1042         ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE);
1043         ev_sub_data = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_DATA);
1044
1045         switch (ev_sub_code) {
1046         case TX_DESCQ_FLS_DONE_EV_DECODE:
1047                 EFX_TRACE(efx, "channel %d TXQ %d flushed\n",
1048                           channel->channel, ev_sub_data);
1049                 break;
1050         case RX_DESCQ_FLS_DONE_EV_DECODE:
1051                 EFX_TRACE(efx, "channel %d RXQ %d flushed\n",
1052                           channel->channel, ev_sub_data);
1053                 break;
1054         case EVQ_INIT_DONE_EV_DECODE:
1055                 EFX_LOG(efx, "channel %d EVQ %d initialised\n",
1056                         channel->channel, ev_sub_data);
1057                 break;
1058         case SRM_UPD_DONE_EV_DECODE:
1059                 EFX_TRACE(efx, "channel %d SRAM update done\n",
1060                           channel->channel);
1061                 break;
1062         case WAKE_UP_EV_DECODE:
1063                 EFX_TRACE(efx, "channel %d RXQ %d wakeup event\n",
1064                           channel->channel, ev_sub_data);
1065                 break;
1066         case TIMER_EV_DECODE:
1067                 EFX_TRACE(efx, "channel %d RX queue %d timer expired\n",
1068                           channel->channel, ev_sub_data);
1069                 break;
1070         case RX_RECOVERY_EV_DECODE:
1071                 EFX_ERR(efx, "channel %d seen DRIVER RX_RESET event. "
1072                         "Resetting.\n", channel->channel);
1073                 atomic_inc(&efx->rx_reset);
1074                 efx_schedule_reset(efx,
1075                                    EFX_WORKAROUND_6555(efx) ?
1076                                    RESET_TYPE_RX_RECOVERY :
1077                                    RESET_TYPE_DISABLE);
1078                 break;
1079         case RX_DSC_ERROR_EV_DECODE:
1080                 EFX_ERR(efx, "RX DMA Q %d reports descriptor fetch error."
1081                         " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
1082                 efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
1083                 break;
1084         case TX_DSC_ERROR_EV_DECODE:
1085                 EFX_ERR(efx, "TX DMA Q %d reports descriptor fetch error."
1086                         " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
1087                 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
1088                 break;
1089         default:
1090                 EFX_TRACE(efx, "channel %d unknown driver event code %d "
1091                           "data %04x\n", channel->channel, ev_sub_code,
1092                           ev_sub_data);
1093                 break;
1094         }
1095 }
1096
1097 int falcon_process_eventq(struct efx_channel *channel, int rx_quota)
1098 {
1099         unsigned int read_ptr;
1100         efx_qword_t event, *p_event;
1101         int ev_code;
1102         int rx_packets = 0;
1103
1104         read_ptr = channel->eventq_read_ptr;
1105
1106         do {
1107                 p_event = falcon_event(channel, read_ptr);
1108                 event = *p_event;
1109
1110                 if (!falcon_event_present(&event))
1111                         /* End of events */
1112                         break;
1113
1114                 EFX_TRACE(channel->efx, "channel %d event is "EFX_QWORD_FMT"\n",
1115                           channel->channel, EFX_QWORD_VAL(event));
1116
1117                 /* Clear this event by marking it all ones */
1118                 EFX_SET_QWORD(*p_event);
1119
1120                 ev_code = EFX_QWORD_FIELD(event, EV_CODE);
1121
1122                 switch (ev_code) {
1123                 case RX_IP_EV_DECODE:
1124                         falcon_handle_rx_event(channel, &event);
1125                         ++rx_packets;
1126                         break;
1127                 case TX_IP_EV_DECODE:
1128                         falcon_handle_tx_event(channel, &event);
1129                         break;
1130                 case DRV_GEN_EV_DECODE:
1131                         channel->eventq_magic
1132                                 = EFX_QWORD_FIELD(event, EVQ_MAGIC);
1133                         EFX_LOG(channel->efx, "channel %d received generated "
1134                                 "event "EFX_QWORD_FMT"\n", channel->channel,
1135                                 EFX_QWORD_VAL(event));
1136                         break;
1137                 case GLOBAL_EV_DECODE:
1138                         falcon_handle_global_event(channel, &event);
1139                         break;
1140                 case DRIVER_EV_DECODE:
1141                         falcon_handle_driver_event(channel, &event);
1142                         break;
1143                 default:
1144                         EFX_ERR(channel->efx, "channel %d unknown event type %d"
1145                                 " (data " EFX_QWORD_FMT ")\n", channel->channel,
1146                                 ev_code, EFX_QWORD_VAL(event));
1147                 }
1148
1149                 /* Increment read pointer */
1150                 read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK;
1151
1152         } while (rx_packets < rx_quota);
1153
1154         channel->eventq_read_ptr = read_ptr;
1155         return rx_packets;
1156 }
1157
1158 void falcon_set_int_moderation(struct efx_channel *channel)
1159 {
1160         efx_dword_t timer_cmd;
1161         struct efx_nic *efx = channel->efx;
1162
1163         /* Set timer register */
1164         if (channel->irq_moderation) {
1165                 /* Round to resolution supported by hardware.  The value we
1166                  * program is based at 0.  So actual interrupt moderation
1167                  * achieved is ((x + 1) * res).
1168                  */
1169                 unsigned int res = 5;
1170                 channel->irq_moderation -= (channel->irq_moderation % res);
1171                 if (channel->irq_moderation < res)
1172                         channel->irq_moderation = res;
1173                 EFX_POPULATE_DWORD_2(timer_cmd,
1174                                      TIMER_MODE, TIMER_MODE_INT_HLDOFF,
1175                                      TIMER_VAL,
1176                                      (channel->irq_moderation / res) - 1);
1177         } else {
1178                 EFX_POPULATE_DWORD_2(timer_cmd,
1179                                      TIMER_MODE, TIMER_MODE_DIS,
1180                                      TIMER_VAL, 0);
1181         }
1182         falcon_writel_page_locked(efx, &timer_cmd, TIMER_CMD_REG_KER,
1183                                   channel->channel);
1184
1185 }
1186
1187 /* Allocate buffer table entries for event queue */
1188 int falcon_probe_eventq(struct efx_channel *channel)
1189 {
1190         struct efx_nic *efx = channel->efx;
1191         unsigned int evq_size;
1192
1193         evq_size = FALCON_EVQ_SIZE * sizeof(efx_qword_t);
1194         return falcon_alloc_special_buffer(efx, &channel->eventq, evq_size);
1195 }
1196
1197 void falcon_init_eventq(struct efx_channel *channel)
1198 {
1199         efx_oword_t evq_ptr;
1200         struct efx_nic *efx = channel->efx;
1201
1202         EFX_LOG(efx, "channel %d event queue in special buffers %d-%d\n",
1203                 channel->channel, channel->eventq.index,
1204                 channel->eventq.index + channel->eventq.entries - 1);
1205
1206         /* Pin event queue buffer */
1207         falcon_init_special_buffer(efx, &channel->eventq);
1208
1209         /* Fill event queue with all ones (i.e. empty events) */
1210         memset(channel->eventq.addr, 0xff, channel->eventq.len);
1211
1212         /* Push event queue to card */
1213         EFX_POPULATE_OWORD_3(evq_ptr,
1214                              EVQ_EN, 1,
1215                              EVQ_SIZE, FALCON_EVQ_ORDER,
1216                              EVQ_BUF_BASE_ID, channel->eventq.index);
1217         falcon_write_table(efx, &evq_ptr, efx->type->evq_ptr_tbl_base,
1218                            channel->channel);
1219
1220         falcon_set_int_moderation(channel);
1221 }
1222
1223 void falcon_fini_eventq(struct efx_channel *channel)
1224 {
1225         efx_oword_t eventq_ptr;
1226         struct efx_nic *efx = channel->efx;
1227
1228         /* Remove event queue from card */
1229         EFX_ZERO_OWORD(eventq_ptr);
1230         falcon_write_table(efx, &eventq_ptr, efx->type->evq_ptr_tbl_base,
1231                            channel->channel);
1232
1233         /* Unpin event queue */
1234         falcon_fini_special_buffer(efx, &channel->eventq);
1235 }
1236
1237 /* Free buffers backing event queue */
1238 void falcon_remove_eventq(struct efx_channel *channel)
1239 {
1240         falcon_free_special_buffer(channel->efx, &channel->eventq);
1241 }
1242
1243
1244 /* Generates a test event on the event queue.  A subsequent call to
1245  * process_eventq() should pick up the event and place the value of
1246  * "magic" into channel->eventq_magic;
1247  */
1248 void falcon_generate_test_event(struct efx_channel *channel, unsigned int magic)
1249 {
1250         efx_qword_t test_event;
1251
1252         EFX_POPULATE_QWORD_2(test_event,
1253                              EV_CODE, DRV_GEN_EV_DECODE,
1254                              EVQ_MAGIC, magic);
1255         falcon_generate_event(channel, &test_event);
1256 }
1257
1258
1259 /**************************************************************************
1260  *
1261  * Falcon hardware interrupts
1262  * The hardware interrupt handler does very little work; all the event
1263  * queue processing is carried out by per-channel tasklets.
1264  *
1265  **************************************************************************/
1266
1267 /* Enable/disable/generate Falcon interrupts */
1268 static inline void falcon_interrupts(struct efx_nic *efx, int enabled,
1269                                      int force)
1270 {
1271         efx_oword_t int_en_reg_ker;
1272
1273         EFX_POPULATE_OWORD_2(int_en_reg_ker,
1274                              KER_INT_KER, force,
1275                              DRV_INT_EN_KER, enabled);
1276         falcon_write(efx, &int_en_reg_ker, INT_EN_REG_KER);
1277 }
1278
1279 void falcon_enable_interrupts(struct efx_nic *efx)
1280 {
1281         efx_oword_t int_adr_reg_ker;
1282         struct efx_channel *channel;
1283
1284         EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1285         wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1286
1287         /* Program address */
1288         EFX_POPULATE_OWORD_2(int_adr_reg_ker,
1289                              NORM_INT_VEC_DIS_KER, EFX_INT_MODE_USE_MSI(efx),
1290                              INT_ADR_KER, efx->irq_status.dma_addr);
1291         falcon_write(efx, &int_adr_reg_ker, INT_ADR_REG_KER);
1292
1293         /* Enable interrupts */
1294         falcon_interrupts(efx, 1, 0);
1295
1296         /* Force processing of all the channels to get the EVQ RPTRs up to
1297            date */
1298         efx_for_each_channel(channel, efx)
1299                 efx_schedule_channel(channel);
1300 }
1301
1302 void falcon_disable_interrupts(struct efx_nic *efx)
1303 {
1304         /* Disable interrupts */
1305         falcon_interrupts(efx, 0, 0);
1306 }
1307
1308 /* Generate a Falcon test interrupt
1309  * Interrupt must already have been enabled, otherwise nasty things
1310  * may happen.
1311  */
1312 void falcon_generate_interrupt(struct efx_nic *efx)
1313 {
1314         falcon_interrupts(efx, 1, 1);
1315 }
1316
1317 /* Acknowledge a legacy interrupt from Falcon
1318  *
1319  * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
1320  *
1321  * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
1322  * BIU. Interrupt acknowledge is read sensitive so must write instead
1323  * (then read to ensure the BIU collector is flushed)
1324  *
1325  * NB most hardware supports MSI interrupts
1326  */
1327 static inline void falcon_irq_ack_a1(struct efx_nic *efx)
1328 {
1329         efx_dword_t reg;
1330
1331         EFX_POPULATE_DWORD_1(reg, INT_ACK_DUMMY_DATA, 0xb7eb7e);
1332         falcon_writel(efx, &reg, INT_ACK_REG_KER_A1);
1333         falcon_readl(efx, &reg, WORK_AROUND_BROKEN_PCI_READS_REG_KER_A1);
1334 }
1335
1336 /* Process a fatal interrupt
1337  * Disable bus mastering ASAP and schedule a reset
1338  */
1339 static irqreturn_t falcon_fatal_interrupt(struct efx_nic *efx)
1340 {
1341         struct falcon_nic_data *nic_data = efx->nic_data;
1342         efx_oword_t *int_ker = efx->irq_status.addr;
1343         efx_oword_t fatal_intr;
1344         int error, mem_perr;
1345         static int n_int_errors;
1346
1347         falcon_read(efx, &fatal_intr, FATAL_INTR_REG_KER);
1348         error = EFX_OWORD_FIELD(fatal_intr, INT_KER_ERROR);
1349
1350         EFX_ERR(efx, "SYSTEM ERROR " EFX_OWORD_FMT " status "
1351                 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1352                 EFX_OWORD_VAL(fatal_intr),
1353                 error ? "disabling bus mastering" : "no recognised error");
1354         if (error == 0)
1355                 goto out;
1356
1357         /* If this is a memory parity error dump which blocks are offending */
1358         mem_perr = EFX_OWORD_FIELD(fatal_intr, MEM_PERR_INT_KER);
1359         if (mem_perr) {
1360                 efx_oword_t reg;
1361                 falcon_read(efx, &reg, MEM_STAT_REG_KER);
1362                 EFX_ERR(efx, "SYSTEM ERROR: memory parity error "
1363                         EFX_OWORD_FMT "\n", EFX_OWORD_VAL(reg));
1364         }
1365
1366         /* Disable DMA bus mastering on both devices */
1367         pci_disable_device(efx->pci_dev);
1368         if (FALCON_IS_DUAL_FUNC(efx))
1369                 pci_disable_device(nic_data->pci_dev2);
1370
1371         if (++n_int_errors < FALCON_MAX_INT_ERRORS) {
1372                 EFX_ERR(efx, "SYSTEM ERROR - reset scheduled\n");
1373                 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1374         } else {
1375                 EFX_ERR(efx, "SYSTEM ERROR - max number of errors seen."
1376                         "NIC will be disabled\n");
1377                 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1378         }
1379 out:
1380         return IRQ_HANDLED;
1381 }
1382
1383 /* Handle a legacy interrupt from Falcon
1384  * Acknowledges the interrupt and schedule event queue processing.
1385  */
1386 static irqreturn_t falcon_legacy_interrupt_b0(int irq, void *dev_id)
1387 {
1388         struct efx_nic *efx = dev_id;
1389         efx_oword_t *int_ker = efx->irq_status.addr;
1390         struct efx_channel *channel;
1391         efx_dword_t reg;
1392         u32 queues;
1393         int syserr;
1394
1395         /* Read the ISR which also ACKs the interrupts */
1396         falcon_readl(efx, &reg, INT_ISR0_B0);
1397         queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1398
1399         /* Check to see if we have a serious error condition */
1400         syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
1401         if (unlikely(syserr))
1402                 return falcon_fatal_interrupt(efx);
1403
1404         if (queues == 0)
1405                 return IRQ_NONE;
1406
1407         efx->last_irq_cpu = raw_smp_processor_id();
1408         EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1409                   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1410
1411         /* Schedule processing of any interrupting queues */
1412         channel = &efx->channel[0];
1413         while (queues) {
1414                 if (queues & 0x01)
1415                         efx_schedule_channel(channel);
1416                 channel++;
1417                 queues >>= 1;
1418         }
1419
1420         return IRQ_HANDLED;
1421 }
1422
1423
1424 static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
1425 {
1426         struct efx_nic *efx = dev_id;
1427         efx_oword_t *int_ker = efx->irq_status.addr;
1428         struct efx_channel *channel;
1429         int syserr;
1430         int queues;
1431
1432         /* Check to see if this is our interrupt.  If it isn't, we
1433          * exit without having touched the hardware.
1434          */
1435         if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
1436                 EFX_TRACE(efx, "IRQ %d on CPU %d not for me\n", irq,
1437                           raw_smp_processor_id());
1438                 return IRQ_NONE;
1439         }
1440         efx->last_irq_cpu = raw_smp_processor_id();
1441         EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1442                   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1443
1444         /* Check to see if we have a serious error condition */
1445         syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
1446         if (unlikely(syserr))
1447                 return falcon_fatal_interrupt(efx);
1448
1449         /* Determine interrupting queues, clear interrupt status
1450          * register and acknowledge the device interrupt.
1451          */
1452         BUILD_BUG_ON(INT_EVQS_WIDTH > EFX_MAX_CHANNELS);
1453         queues = EFX_OWORD_FIELD(*int_ker, INT_EVQS);
1454         EFX_ZERO_OWORD(*int_ker);
1455         wmb(); /* Ensure the vector is cleared before interrupt ack */
1456         falcon_irq_ack_a1(efx);
1457
1458         /* Schedule processing of any interrupting queues */
1459         channel = &efx->channel[0];
1460         while (queues) {
1461                 if (queues & 0x01)
1462                         efx_schedule_channel(channel);
1463                 channel++;
1464                 queues >>= 1;
1465         }
1466
1467         return IRQ_HANDLED;
1468 }
1469
1470 /* Handle an MSI interrupt from Falcon
1471  *
1472  * Handle an MSI hardware interrupt.  This routine schedules event
1473  * queue processing.  No interrupt acknowledgement cycle is necessary.
1474  * Also, we never need to check that the interrupt is for us, since
1475  * MSI interrupts cannot be shared.
1476  */
1477 static irqreturn_t falcon_msi_interrupt(int irq, void *dev_id)
1478 {
1479         struct efx_channel *channel = dev_id;
1480         struct efx_nic *efx = channel->efx;
1481         efx_oword_t *int_ker = efx->irq_status.addr;
1482         int syserr;
1483
1484         efx->last_irq_cpu = raw_smp_processor_id();
1485         EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1486                   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1487
1488         /* Check to see if we have a serious error condition */
1489         syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
1490         if (unlikely(syserr))
1491                 return falcon_fatal_interrupt(efx);
1492
1493         /* Schedule processing of the channel */
1494         efx_schedule_channel(channel);
1495
1496         return IRQ_HANDLED;
1497 }
1498
1499
1500 /* Setup RSS indirection table.
1501  * This maps from the hash value of the packet to RXQ
1502  */
1503 static void falcon_setup_rss_indir_table(struct efx_nic *efx)
1504 {
1505         int i = 0;
1506         unsigned long offset;
1507         efx_dword_t dword;
1508
1509         if (falcon_rev(efx) < FALCON_REV_B0)
1510                 return;
1511
1512         for (offset = RX_RSS_INDIR_TBL_B0;
1513              offset < RX_RSS_INDIR_TBL_B0 + 0x800;
1514              offset += 0x10) {
1515                 EFX_POPULATE_DWORD_1(dword, RX_RSS_INDIR_ENT_B0,
1516                                      i % efx->n_rx_queues);
1517                 falcon_writel(efx, &dword, offset);
1518                 i++;
1519         }
1520 }
1521
1522 /* Hook interrupt handler(s)
1523  * Try MSI and then legacy interrupts.
1524  */
1525 int falcon_init_interrupt(struct efx_nic *efx)
1526 {
1527         struct efx_channel *channel;
1528         int rc;
1529
1530         if (!EFX_INT_MODE_USE_MSI(efx)) {
1531                 irq_handler_t handler;
1532                 if (falcon_rev(efx) >= FALCON_REV_B0)
1533                         handler = falcon_legacy_interrupt_b0;
1534                 else
1535                         handler = falcon_legacy_interrupt_a1;
1536
1537                 rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1538                                  efx->name, efx);
1539                 if (rc) {
1540                         EFX_ERR(efx, "failed to hook legacy IRQ %d\n",
1541                                 efx->pci_dev->irq);
1542                         goto fail1;
1543                 }
1544                 return 0;
1545         }
1546
1547         /* Hook MSI or MSI-X interrupt */
1548         efx_for_each_channel(channel, efx) {
1549                 rc = request_irq(channel->irq, falcon_msi_interrupt,
1550                                  IRQF_PROBE_SHARED, /* Not shared */
1551                                  efx->name, channel);
1552                 if (rc) {
1553                         EFX_ERR(efx, "failed to hook IRQ %d\n", channel->irq);
1554                         goto fail2;
1555                 }
1556         }
1557
1558         return 0;
1559
1560  fail2:
1561         efx_for_each_channel(channel, efx)
1562                 free_irq(channel->irq, channel);
1563  fail1:
1564         return rc;
1565 }
1566
1567 void falcon_fini_interrupt(struct efx_nic *efx)
1568 {
1569         struct efx_channel *channel;
1570         efx_oword_t reg;
1571
1572         /* Disable MSI/MSI-X interrupts */
1573         efx_for_each_channel(channel, efx) {
1574                 if (channel->irq)
1575                         free_irq(channel->irq, channel);
1576         }
1577
1578         /* ACK legacy interrupt */
1579         if (falcon_rev(efx) >= FALCON_REV_B0)
1580                 falcon_read(efx, &reg, INT_ISR0_B0);
1581         else
1582                 falcon_irq_ack_a1(efx);
1583
1584         /* Disable legacy interrupt */
1585         if (efx->legacy_irq)
1586                 free_irq(efx->legacy_irq, efx);
1587 }
1588
1589 /**************************************************************************
1590  *
1591  * EEPROM/flash
1592  *
1593  **************************************************************************
1594  */
1595
1596 #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
1597
1598 /* Wait for SPI command completion */
1599 static int falcon_spi_wait(struct efx_nic *efx)
1600 {
1601         unsigned long timeout = jiffies + DIV_ROUND_UP(HZ, 10);
1602         efx_oword_t reg;
1603         bool cmd_en, timer_active;
1604
1605         for (;;) {
1606                 falcon_read(efx, &reg, EE_SPI_HCMD_REG_KER);
1607                 cmd_en = EFX_OWORD_FIELD(reg, EE_SPI_HCMD_CMD_EN);
1608                 timer_active = EFX_OWORD_FIELD(reg, EE_WR_TIMER_ACTIVE);
1609                 if (!cmd_en && !timer_active)
1610                         return 0;
1611                 if (time_after_eq(jiffies, timeout)) {
1612                         EFX_ERR(efx, "timed out waiting for SPI\n");
1613                         return -ETIMEDOUT;
1614                 }
1615                 cpu_relax();
1616         }
1617 }
1618
1619 static int falcon_spi_cmd(const struct efx_spi_device *spi,
1620                           unsigned int command, int address,
1621                           const void *in, void *out, unsigned int len)
1622 {
1623         struct efx_nic *efx = spi->efx;
1624         bool addressed = (address >= 0);
1625         bool reading = (out != NULL);
1626         efx_oword_t reg;
1627         int rc;
1628
1629         /* Input validation */
1630         if (len > FALCON_SPI_MAX_LEN)
1631                 return -EINVAL;
1632
1633         /* Check SPI not currently being accessed */
1634         rc = falcon_spi_wait(efx);
1635         if (rc)
1636                 return rc;
1637
1638         /* Program address register, if we have an address */
1639         if (addressed) {
1640                 EFX_POPULATE_OWORD_1(reg, EE_SPI_HADR_ADR, address);
1641                 falcon_write(efx, &reg, EE_SPI_HADR_REG_KER);
1642         }
1643
1644         /* Program data register, if we have data */
1645         if (in != NULL) {
1646                 memcpy(&reg, in, len);
1647                 falcon_write(efx, &reg, EE_SPI_HDATA_REG_KER);
1648         }
1649
1650         /* Issue read/write command */
1651         EFX_POPULATE_OWORD_7(reg,
1652                              EE_SPI_HCMD_CMD_EN, 1,
1653                              EE_SPI_HCMD_SF_SEL, spi->device_id,
1654                              EE_SPI_HCMD_DABCNT, len,
1655                              EE_SPI_HCMD_READ, reading,
1656                              EE_SPI_HCMD_DUBCNT, 0,
1657                              EE_SPI_HCMD_ADBCNT,
1658                              (addressed ? spi->addr_len : 0),
1659                              EE_SPI_HCMD_ENC, command);
1660         falcon_write(efx, &reg, EE_SPI_HCMD_REG_KER);
1661
1662         /* Wait for read/write to complete */
1663         rc = falcon_spi_wait(efx);
1664         if (rc)
1665                 return rc;
1666
1667         /* Read data */
1668         if (out != NULL) {
1669                 falcon_read(efx, &reg, EE_SPI_HDATA_REG_KER);
1670                 memcpy(out, &reg, len);
1671         }
1672
1673         return 0;
1674 }
1675
1676 static unsigned int
1677 falcon_spi_write_limit(const struct efx_spi_device *spi, unsigned int start)
1678 {
1679         return min(FALCON_SPI_MAX_LEN,
1680                    (spi->block_size - (start & (spi->block_size - 1))));
1681 }
1682
1683 static inline u8
1684 efx_spi_munge_command(const struct efx_spi_device *spi,
1685                       const u8 command, const unsigned int address)
1686 {
1687         return command | (((address >> 8) & spi->munge_address) << 3);
1688 }
1689
1690
1691 static int falcon_spi_fast_wait(const struct efx_spi_device *spi)
1692 {
1693         u8 status;
1694         int i, rc;
1695
1696         /* Wait up to 1000us for flash/EEPROM to finish a fast operation. */
1697         for (i = 0; i < 50; i++) {
1698                 udelay(20);
1699
1700                 rc = falcon_spi_cmd(spi, SPI_RDSR, -1, NULL,
1701                                     &status, sizeof(status));
1702                 if (rc)
1703                         return rc;
1704                 if (!(status & SPI_STATUS_NRDY))
1705                         return 0;
1706         }
1707         EFX_ERR(spi->efx,
1708                 "timed out waiting for device %d last status=0x%02x\n",
1709                 spi->device_id, status);
1710         return -ETIMEDOUT;
1711 }
1712
1713 int falcon_spi_read(const struct efx_spi_device *spi, loff_t start,
1714                     size_t len, size_t *retlen, u8 *buffer)
1715 {
1716         unsigned int command, block_len, pos = 0;
1717         int rc = 0;
1718
1719         while (pos < len) {
1720                 block_len = min((unsigned int)len - pos,
1721                                 FALCON_SPI_MAX_LEN);
1722
1723                 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
1724                 rc = falcon_spi_cmd(spi, command, start + pos, NULL,
1725                                     buffer + pos, block_len);
1726                 if (rc)
1727                         break;
1728                 pos += block_len;
1729
1730                 /* Avoid locking up the system */
1731                 cond_resched();
1732                 if (signal_pending(current)) {
1733                         rc = -EINTR;
1734                         break;
1735                 }
1736         }
1737
1738         if (retlen)
1739                 *retlen = pos;
1740         return rc;
1741 }
1742
1743 int falcon_spi_write(const struct efx_spi_device *spi, loff_t start,
1744                      size_t len, size_t *retlen, const u8 *buffer)
1745 {
1746         u8 verify_buffer[FALCON_SPI_MAX_LEN];
1747         unsigned int command, block_len, pos = 0;
1748         int rc = 0;
1749
1750         while (pos < len) {
1751                 rc = falcon_spi_cmd(spi, SPI_WREN, -1, NULL, NULL, 0);
1752                 if (rc)
1753                         break;
1754
1755                 block_len = min((unsigned int)len - pos,
1756                                 falcon_spi_write_limit(spi, start + pos));
1757                 command = efx_spi_munge_command(spi, SPI_WRITE, start + pos);
1758                 rc = falcon_spi_cmd(spi, command, start + pos,
1759                                     buffer + pos, NULL, block_len);
1760                 if (rc)
1761                         break;
1762
1763                 rc = falcon_spi_fast_wait(spi);
1764                 if (rc)
1765                         break;
1766
1767                 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
1768                 rc = falcon_spi_cmd(spi, command, start + pos,
1769                                     NULL, verify_buffer, block_len);
1770                 if (memcmp(verify_buffer, buffer + pos, block_len)) {
1771                         rc = -EIO;
1772                         break;
1773                 }
1774
1775                 pos += block_len;
1776
1777                 /* Avoid locking up the system */
1778                 cond_resched();
1779                 if (signal_pending(current)) {
1780                         rc = -EINTR;
1781                         break;
1782                 }
1783         }
1784
1785         if (retlen)
1786                 *retlen = pos;
1787         return rc;
1788 }
1789
1790 /**************************************************************************
1791  *
1792  * MAC wrapper
1793  *
1794  **************************************************************************
1795  */
1796 void falcon_drain_tx_fifo(struct efx_nic *efx)
1797 {
1798         efx_oword_t temp;
1799         int count;
1800
1801         if ((falcon_rev(efx) < FALCON_REV_B0) ||
1802             (efx->loopback_mode != LOOPBACK_NONE))
1803                 return;
1804
1805         falcon_read(efx, &temp, MAC0_CTRL_REG_KER);
1806         /* There is no point in draining more than once */
1807         if (EFX_OWORD_FIELD(temp, TXFIFO_DRAIN_EN_B0))
1808                 return;
1809
1810         /* MAC stats will fail whilst the TX fifo is draining. Serialise
1811          * the drain sequence with the statistics fetch */
1812         spin_lock(&efx->stats_lock);
1813
1814         EFX_SET_OWORD_FIELD(temp, TXFIFO_DRAIN_EN_B0, 1);
1815         falcon_write(efx, &temp, MAC0_CTRL_REG_KER);
1816
1817         /* Reset the MAC and EM block. */
1818         falcon_read(efx, &temp, GLB_CTL_REG_KER);
1819         EFX_SET_OWORD_FIELD(temp, RST_XGTX, 1);
1820         EFX_SET_OWORD_FIELD(temp, RST_XGRX, 1);
1821         EFX_SET_OWORD_FIELD(temp, RST_EM, 1);
1822         falcon_write(efx, &temp, GLB_CTL_REG_KER);
1823
1824         count = 0;
1825         while (1) {
1826                 falcon_read(efx, &temp, GLB_CTL_REG_KER);
1827                 if (!EFX_OWORD_FIELD(temp, RST_XGTX) &&
1828                     !EFX_OWORD_FIELD(temp, RST_XGRX) &&
1829                     !EFX_OWORD_FIELD(temp, RST_EM)) {
1830                         EFX_LOG(efx, "Completed MAC reset after %d loops\n",
1831                                 count);
1832                         break;
1833                 }
1834                 if (count > 20) {
1835                         EFX_ERR(efx, "MAC reset failed\n");
1836                         break;
1837                 }
1838                 count++;
1839                 udelay(10);
1840         }
1841
1842         spin_unlock(&efx->stats_lock);
1843
1844         /* If we've reset the EM block and the link is up, then
1845          * we'll have to kick the XAUI link so the PHY can recover */
1846         if (efx->link_up && EFX_WORKAROUND_5147(efx))
1847                 falcon_reset_xaui(efx);
1848 }
1849
1850 void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
1851 {
1852         efx_oword_t temp;
1853
1854         if (falcon_rev(efx) < FALCON_REV_B0)
1855                 return;
1856
1857         /* Isolate the MAC -> RX */
1858         falcon_read(efx, &temp, RX_CFG_REG_KER);
1859         EFX_SET_OWORD_FIELD(temp, RX_INGR_EN_B0, 0);
1860         falcon_write(efx, &temp, RX_CFG_REG_KER);
1861
1862         if (!efx->link_up)
1863                 falcon_drain_tx_fifo(efx);
1864 }
1865
1866 void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
1867 {
1868         efx_oword_t reg;
1869         int link_speed;
1870         bool tx_fc;
1871
1872         if (efx->link_options & GM_LPA_10000)
1873                 link_speed = 0x3;
1874         else if (efx->link_options & GM_LPA_1000)
1875                 link_speed = 0x2;
1876         else if (efx->link_options & GM_LPA_100)
1877                 link_speed = 0x1;
1878         else
1879                 link_speed = 0x0;
1880         /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
1881          * as advertised.  Disable to ensure packets are not
1882          * indefinitely held and TX queue can be flushed at any point
1883          * while the link is down. */
1884         EFX_POPULATE_OWORD_5(reg,
1885                              MAC_XOFF_VAL, 0xffff /* max pause time */,
1886                              MAC_BCAD_ACPT, 1,
1887                              MAC_UC_PROM, efx->promiscuous,
1888                              MAC_LINK_STATUS, 1, /* always set */
1889                              MAC_SPEED, link_speed);
1890         /* On B0, MAC backpressure can be disabled and packets get
1891          * discarded. */
1892         if (falcon_rev(efx) >= FALCON_REV_B0) {
1893                 EFX_SET_OWORD_FIELD(reg, TXFIFO_DRAIN_EN_B0,
1894                                     !efx->link_up);
1895         }
1896
1897         falcon_write(efx, &reg, MAC0_CTRL_REG_KER);
1898
1899         /* Restore the multicast hash registers. */
1900         falcon_set_multicast_hash(efx);
1901
1902         /* Transmission of pause frames when RX crosses the threshold is
1903          * covered by RX_XOFF_MAC_EN and XM_TX_CFG_REG:XM_FCNTL.
1904          * Action on receipt of pause frames is controller by XM_DIS_FCNTL */
1905         tx_fc = !!(efx->flow_control & EFX_FC_TX);
1906         falcon_read(efx, &reg, RX_CFG_REG_KER);
1907         EFX_SET_OWORD_FIELD_VER(efx, reg, RX_XOFF_MAC_EN, tx_fc);
1908
1909         /* Unisolate the MAC -> RX */
1910         if (falcon_rev(efx) >= FALCON_REV_B0)
1911                 EFX_SET_OWORD_FIELD(reg, RX_INGR_EN_B0, 1);
1912         falcon_write(efx, &reg, RX_CFG_REG_KER);
1913 }
1914
1915 int falcon_dma_stats(struct efx_nic *efx, unsigned int done_offset)
1916 {
1917         efx_oword_t reg;
1918         u32 *dma_done;
1919         int i;
1920
1921         if (disable_dma_stats)
1922                 return 0;
1923
1924         /* Statistics fetch will fail if the MAC is in TX drain */
1925         if (falcon_rev(efx) >= FALCON_REV_B0) {
1926                 efx_oword_t temp;
1927                 falcon_read(efx, &temp, MAC0_CTRL_REG_KER);
1928                 if (EFX_OWORD_FIELD(temp, TXFIFO_DRAIN_EN_B0))
1929                         return 0;
1930         }
1931
1932         dma_done = (efx->stats_buffer.addr + done_offset);
1933         *dma_done = FALCON_STATS_NOT_DONE;
1934         wmb(); /* ensure done flag is clear */
1935
1936         /* Initiate DMA transfer of stats */
1937         EFX_POPULATE_OWORD_2(reg,
1938                              MAC_STAT_DMA_CMD, 1,
1939                              MAC_STAT_DMA_ADR,
1940                              efx->stats_buffer.dma_addr);
1941         falcon_write(efx, &reg, MAC0_STAT_DMA_REG_KER);
1942
1943         /* Wait for transfer to complete */
1944         for (i = 0; i < 400; i++) {
1945                 if (*(volatile u32 *)dma_done == FALCON_STATS_DONE)
1946                         return 0;
1947                 udelay(10);
1948         }
1949
1950         EFX_ERR(efx, "timed out waiting for statistics\n");
1951         return -ETIMEDOUT;
1952 }
1953
1954 /**************************************************************************
1955  *
1956  * PHY access via GMII
1957  *
1958  **************************************************************************
1959  */
1960
1961 /* Use the top bit of the MII PHY id to indicate the PHY type
1962  * (1G/10G), with the remaining bits as the actual PHY id.
1963  *
1964  * This allows us to avoid leaking information from the mii_if_info
1965  * structure into other data structures.
1966  */
1967 #define FALCON_PHY_ID_ID_WIDTH  EFX_WIDTH(MD_PRT_DEV_ADR)
1968 #define FALCON_PHY_ID_ID_MASK   ((1 << FALCON_PHY_ID_ID_WIDTH) - 1)
1969 #define FALCON_PHY_ID_WIDTH     (FALCON_PHY_ID_ID_WIDTH + 1)
1970 #define FALCON_PHY_ID_MASK      ((1 << FALCON_PHY_ID_WIDTH) - 1)
1971 #define FALCON_PHY_ID_10G       (1 << (FALCON_PHY_ID_WIDTH - 1))
1972
1973
1974 /* Packing the clause 45 port and device fields into a single value */
1975 #define MD_PRT_ADR_COMP_LBN   (MD_PRT_ADR_LBN - MD_DEV_ADR_LBN)
1976 #define MD_PRT_ADR_COMP_WIDTH  MD_PRT_ADR_WIDTH
1977 #define MD_DEV_ADR_COMP_LBN    0
1978 #define MD_DEV_ADR_COMP_WIDTH  MD_DEV_ADR_WIDTH
1979
1980
1981 /* Wait for GMII access to complete */
1982 static int falcon_gmii_wait(struct efx_nic *efx)
1983 {
1984         efx_dword_t md_stat;
1985         int count;
1986
1987         for (count = 0; count < 1000; count++) {        /* wait upto 10ms */
1988                 falcon_readl(efx, &md_stat, MD_STAT_REG_KER);
1989                 if (EFX_DWORD_FIELD(md_stat, MD_BSY) == 0) {
1990                         if (EFX_DWORD_FIELD(md_stat, MD_LNFL) != 0 ||
1991                             EFX_DWORD_FIELD(md_stat, MD_BSERR) != 0) {
1992                                 EFX_ERR(efx, "error from GMII access "
1993                                         EFX_DWORD_FMT"\n",
1994                                         EFX_DWORD_VAL(md_stat));
1995                                 return -EIO;
1996                         }
1997                         return 0;
1998                 }
1999                 udelay(10);
2000         }
2001         EFX_ERR(efx, "timed out waiting for GMII\n");
2002         return -ETIMEDOUT;
2003 }
2004
2005 /* Writes a GMII register of a PHY connected to Falcon using MDIO. */
2006 static void falcon_mdio_write(struct net_device *net_dev, int phy_id,
2007                               int addr, int value)
2008 {
2009         struct efx_nic *efx = netdev_priv(net_dev);
2010         unsigned int phy_id2 = phy_id & FALCON_PHY_ID_ID_MASK;
2011         efx_oword_t reg;
2012
2013         /* The 'generic' prt/dev packing in mdio_10g.h is conveniently
2014          * chosen so that the only current user, Falcon, can take the
2015          * packed value and use them directly.
2016          * Fail to build if this assumption is broken.
2017          */
2018         BUILD_BUG_ON(FALCON_PHY_ID_10G != MDIO45_XPRT_ID_IS10G);
2019         BUILD_BUG_ON(FALCON_PHY_ID_ID_WIDTH != MDIO45_PRT_DEV_WIDTH);
2020         BUILD_BUG_ON(MD_PRT_ADR_COMP_LBN != MDIO45_PRT_ID_COMP_LBN);
2021         BUILD_BUG_ON(MD_DEV_ADR_COMP_LBN != MDIO45_DEV_ID_COMP_LBN);
2022
2023         if (phy_id2 == PHY_ADDR_INVALID)
2024                 return;
2025
2026         /* See falcon_mdio_read for an explanation. */
2027         if (!(phy_id & FALCON_PHY_ID_10G)) {
2028                 int mmd = ffs(efx->phy_op->mmds) - 1;
2029                 EFX_TRACE(efx, "Fixing erroneous clause22 write\n");
2030                 phy_id2 = mdio_clause45_pack(phy_id2, mmd)
2031                         & FALCON_PHY_ID_ID_MASK;
2032         }
2033
2034         EFX_REGDUMP(efx, "writing GMII %d register %02x with %04x\n", phy_id,
2035                     addr, value);
2036
2037         spin_lock_bh(&efx->phy_lock);
2038
2039         /* Check MII not currently being accessed */
2040         if (falcon_gmii_wait(efx) != 0)
2041                 goto out;
2042
2043         /* Write the address/ID register */
2044         EFX_POPULATE_OWORD_1(reg, MD_PHY_ADR, addr);
2045         falcon_write(efx, &reg, MD_PHY_ADR_REG_KER);
2046
2047         EFX_POPULATE_OWORD_1(reg, MD_PRT_DEV_ADR, phy_id2);
2048         falcon_write(efx, &reg, MD_ID_REG_KER);
2049
2050         /* Write data */
2051         EFX_POPULATE_OWORD_1(reg, MD_TXD, value);
2052         falcon_write(efx, &reg, MD_TXD_REG_KER);
2053
2054         EFX_POPULATE_OWORD_2(reg,
2055                              MD_WRC, 1,
2056                              MD_GC, 0);
2057         falcon_write(efx, &reg, MD_CS_REG_KER);
2058
2059         /* Wait for data to be written */
2060         if (falcon_gmii_wait(efx) != 0) {
2061                 /* Abort the write operation */
2062                 EFX_POPULATE_OWORD_2(reg,
2063                                      MD_WRC, 0,
2064                                      MD_GC, 1);
2065                 falcon_write(efx, &reg, MD_CS_REG_KER);
2066                 udelay(10);
2067         }
2068
2069  out:
2070         spin_unlock_bh(&efx->phy_lock);
2071 }
2072
2073 /* Reads a GMII register from a PHY connected to Falcon.  If no value
2074  * could be read, -1 will be returned. */
2075 static int falcon_mdio_read(struct net_device *net_dev, int phy_id, int addr)
2076 {
2077         struct efx_nic *efx = netdev_priv(net_dev);
2078         unsigned int phy_addr = phy_id & FALCON_PHY_ID_ID_MASK;
2079         efx_oword_t reg;
2080         int value = -1;
2081
2082         if (phy_addr == PHY_ADDR_INVALID)
2083                 return -1;
2084
2085         /* Our PHY code knows whether it needs to talk clause 22(1G) or 45(10G)
2086          * but the generic Linux code does not make any distinction or have
2087          * any state for this.
2088          * We spot the case where someone tried to talk 22 to a 45 PHY and
2089          * redirect the request to the lowest numbered MMD as a clause45
2090          * request. This is enough to allow simple queries like id and link
2091          * state to succeed. TODO: We may need to do more in future.
2092          */
2093         if (!(phy_id & FALCON_PHY_ID_10G)) {
2094                 int mmd = ffs(efx->phy_op->mmds) - 1;
2095                 EFX_TRACE(efx, "Fixing erroneous clause22 read\n");
2096                 phy_addr = mdio_clause45_pack(phy_addr, mmd)
2097                         & FALCON_PHY_ID_ID_MASK;
2098         }
2099
2100         spin_lock_bh(&efx->phy_lock);
2101
2102         /* Check MII not currently being accessed */
2103         if (falcon_gmii_wait(efx) != 0)
2104                 goto out;
2105
2106         EFX_POPULATE_OWORD_1(reg, MD_PHY_ADR, addr);
2107         falcon_write(efx, &reg, MD_PHY_ADR_REG_KER);
2108
2109         EFX_POPULATE_OWORD_1(reg, MD_PRT_DEV_ADR, phy_addr);
2110         falcon_write(efx, &reg, MD_ID_REG_KER);
2111
2112         /* Request data to be read */
2113         EFX_POPULATE_OWORD_2(reg, MD_RDC, 1, MD_GC, 0);
2114         falcon_write(efx, &reg, MD_CS_REG_KER);
2115
2116         /* Wait for data to become available */
2117         value = falcon_gmii_wait(efx);
2118         if (value == 0) {
2119                 falcon_read(efx, &reg, MD_RXD_REG_KER);
2120                 value = EFX_OWORD_FIELD(reg, MD_RXD);
2121                 EFX_REGDUMP(efx, "read from GMII %d register %02x, got %04x\n",
2122                             phy_id, addr, value);
2123         } else {
2124                 /* Abort the read operation */
2125                 EFX_POPULATE_OWORD_2(reg,
2126                                      MD_RIC, 0,
2127                                      MD_GC, 1);
2128                 falcon_write(efx, &reg, MD_CS_REG_KER);
2129
2130                 EFX_LOG(efx, "read from GMII 0x%x register %02x, got "
2131                         "error %d\n", phy_id, addr, value);
2132         }
2133
2134  out:
2135         spin_unlock_bh(&efx->phy_lock);
2136
2137         return value;
2138 }
2139
2140 static void falcon_init_mdio(struct mii_if_info *gmii)
2141 {
2142         gmii->mdio_read = falcon_mdio_read;
2143         gmii->mdio_write = falcon_mdio_write;
2144         gmii->phy_id_mask = FALCON_PHY_ID_MASK;
2145         gmii->reg_num_mask = ((1 << EFX_WIDTH(MD_PHY_ADR)) - 1);
2146 }
2147
2148 static int falcon_probe_phy(struct efx_nic *efx)
2149 {
2150         switch (efx->phy_type) {
2151         case PHY_TYPE_10XPRESS:
2152                 efx->phy_op = &falcon_tenxpress_phy_ops;
2153                 break;
2154         case PHY_TYPE_XFP:
2155                 efx->phy_op = &falcon_xfp_phy_ops;
2156                 break;
2157         default:
2158                 EFX_ERR(efx, "Unknown PHY type %d\n",
2159                         efx->phy_type);
2160                 return -1;
2161         }
2162
2163         efx->loopback_modes = LOOPBACKS_10G_INTERNAL | efx->phy_op->loopbacks;
2164         return 0;
2165 }
2166
2167 /* This call is responsible for hooking in the MAC and PHY operations */
2168 int falcon_probe_port(struct efx_nic *efx)
2169 {
2170         int rc;
2171
2172         /* Hook in PHY operations table */
2173         rc = falcon_probe_phy(efx);
2174         if (rc)
2175                 return rc;
2176
2177         /* Set up GMII structure for PHY */
2178         efx->mii.supports_gmii = true;
2179         falcon_init_mdio(&efx->mii);
2180
2181         /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
2182         if (falcon_rev(efx) >= FALCON_REV_B0)
2183                 efx->flow_control = EFX_FC_RX | EFX_FC_TX;
2184         else
2185                 efx->flow_control = EFX_FC_RX;
2186
2187         /* Allocate buffer for stats */
2188         rc = falcon_alloc_buffer(efx, &efx->stats_buffer,
2189                                  FALCON_MAC_STATS_SIZE);
2190         if (rc)
2191                 return rc;
2192         EFX_LOG(efx, "stats buffer at %llx (virt %p phys %lx)\n",
2193                 (unsigned long long)efx->stats_buffer.dma_addr,
2194                 efx->stats_buffer.addr,
2195                 virt_to_phys(efx->stats_buffer.addr));
2196
2197         return 0;
2198 }
2199
2200 void falcon_remove_port(struct efx_nic *efx)
2201 {
2202         falcon_free_buffer(efx, &efx->stats_buffer);
2203 }
2204
2205 /**************************************************************************
2206  *
2207  * Multicast filtering
2208  *
2209  **************************************************************************
2210  */
2211
2212 void falcon_set_multicast_hash(struct efx_nic *efx)
2213 {
2214         union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2215
2216         /* Broadcast packets go through the multicast hash filter.
2217          * ether_crc_le() of the broadcast address is 0xbe2612ff
2218          * so we always add bit 0xff to the mask.
2219          */
2220         set_bit_le(0xff, mc_hash->byte);
2221
2222         falcon_write(efx, &mc_hash->oword[0], MAC_MCAST_HASH_REG0_KER);
2223         falcon_write(efx, &mc_hash->oword[1], MAC_MCAST_HASH_REG1_KER);
2224 }
2225
2226
2227 /**************************************************************************
2228  *
2229  * Falcon test code
2230  *
2231  **************************************************************************/
2232
2233 int falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
2234 {
2235         struct falcon_nvconfig *nvconfig;
2236         struct efx_spi_device *spi;
2237         void *region;
2238         int rc, magic_num, struct_ver;
2239         __le16 *word, *limit;
2240         u32 csum;
2241
2242         region = kmalloc(NVCONFIG_END, GFP_KERNEL);
2243         if (!region)
2244                 return -ENOMEM;
2245         nvconfig = region + NVCONFIG_OFFSET;
2246
2247         spi = efx->spi_flash ? efx->spi_flash : efx->spi_eeprom;
2248         rc = falcon_spi_read(spi, 0, NVCONFIG_END, NULL, region);
2249         if (rc) {
2250                 EFX_ERR(efx, "Failed to read %s\n",
2251                         efx->spi_flash ? "flash" : "EEPROM");
2252                 rc = -EIO;
2253                 goto out;
2254         }
2255
2256         magic_num = le16_to_cpu(nvconfig->board_magic_num);
2257         struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
2258
2259         rc = -EINVAL;
2260         if (magic_num != NVCONFIG_BOARD_MAGIC_NUM) {
2261                 EFX_ERR(efx, "NVRAM bad magic 0x%x\n", magic_num);
2262                 goto out;
2263         }
2264         if (struct_ver < 2) {
2265                 EFX_ERR(efx, "NVRAM has ancient version 0x%x\n", struct_ver);
2266                 goto out;
2267         } else if (struct_ver < 4) {
2268                 word = &nvconfig->board_magic_num;
2269                 limit = (__le16 *) (nvconfig + 1);
2270         } else {
2271                 word = region;
2272                 limit = region + NVCONFIG_END;
2273         }
2274         for (csum = 0; word < limit; ++word)
2275                 csum += le16_to_cpu(*word);
2276
2277         if (~csum & 0xffff) {
2278                 EFX_ERR(efx, "NVRAM has incorrect checksum\n");
2279                 goto out;
2280         }
2281
2282         rc = 0;
2283         if (nvconfig_out)
2284                 memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
2285
2286  out:
2287         kfree(region);
2288         return rc;
2289 }
2290
2291 /* Registers tested in the falcon register test */
2292 static struct {
2293         unsigned address;
2294         efx_oword_t mask;
2295 } efx_test_registers[] = {
2296         { ADR_REGION_REG_KER,
2297           EFX_OWORD32(0x0001FFFF, 0x0001FFFF, 0x0001FFFF, 0x0001FFFF) },
2298         { RX_CFG_REG_KER,
2299           EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
2300         { TX_CFG_REG_KER,
2301           EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
2302         { TX_CFG2_REG_KER,
2303           EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
2304         { MAC0_CTRL_REG_KER,
2305           EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
2306         { SRM_TX_DC_CFG_REG_KER,
2307           EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
2308         { RX_DC_CFG_REG_KER,
2309           EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
2310         { RX_DC_PF_WM_REG_KER,
2311           EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
2312         { DP_CTRL_REG,
2313           EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
2314         { XM_GLB_CFG_REG,
2315           EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
2316         { XM_TX_CFG_REG,
2317           EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
2318         { XM_RX_CFG_REG,
2319           EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
2320         { XM_RX_PARAM_REG,
2321           EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
2322         { XM_FC_REG,
2323           EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
2324         { XM_ADR_LO_REG,
2325           EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
2326         { XX_SD_CTL_REG,
2327           EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
2328 };
2329
2330 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
2331                                      const efx_oword_t *mask)
2332 {
2333         return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
2334                 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
2335 }
2336
2337 int falcon_test_registers(struct efx_nic *efx)
2338 {
2339         unsigned address = 0, i, j;
2340         efx_oword_t mask, imask, original, reg, buf;
2341
2342         /* Falcon should be in loopback to isolate the XMAC from the PHY */
2343         WARN_ON(!LOOPBACK_INTERNAL(efx));
2344
2345         for (i = 0; i < ARRAY_SIZE(efx_test_registers); ++i) {
2346                 address = efx_test_registers[i].address;
2347                 mask = imask = efx_test_registers[i].mask;
2348                 EFX_INVERT_OWORD(imask);
2349
2350                 falcon_read(efx, &original, address);
2351
2352                 /* bit sweep on and off */
2353                 for (j = 0; j < 128; j++) {
2354                         if (!EFX_EXTRACT_OWORD32(mask, j, j))
2355                                 continue;
2356
2357                         /* Test this testable bit can be set in isolation */
2358                         EFX_AND_OWORD(reg, original, mask);
2359                         EFX_SET_OWORD32(reg, j, j, 1);
2360
2361                         falcon_write(efx, &reg, address);
2362                         falcon_read(efx, &buf, address);
2363
2364                         if (efx_masked_compare_oword(&reg, &buf, &mask))
2365                                 goto fail;
2366
2367                         /* Test this testable bit can be cleared in isolation */
2368                         EFX_OR_OWORD(reg, original, mask);
2369                         EFX_SET_OWORD32(reg, j, j, 0);
2370
2371                         falcon_write(efx, &reg, address);
2372                         falcon_read(efx, &buf, address);
2373
2374                         if (efx_masked_compare_oword(&reg, &buf, &mask))
2375                                 goto fail;
2376                 }
2377
2378                 falcon_write(efx, &original, address);
2379         }
2380
2381         return 0;
2382
2383 fail:
2384         EFX_ERR(efx, "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
2385                 " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
2386                 EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
2387         return -EIO;
2388 }
2389
2390 /**************************************************************************
2391  *
2392  * Device reset
2393  *
2394  **************************************************************************
2395  */
2396
2397 /* Resets NIC to known state.  This routine must be called in process
2398  * context and is allowed to sleep. */
2399 int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
2400 {
2401         struct falcon_nic_data *nic_data = efx->nic_data;
2402         efx_oword_t glb_ctl_reg_ker;
2403         int rc;
2404
2405         EFX_LOG(efx, "performing hardware reset (%d)\n", method);
2406
2407         /* Initiate device reset */
2408         if (method == RESET_TYPE_WORLD) {
2409                 rc = pci_save_state(efx->pci_dev);
2410                 if (rc) {
2411                         EFX_ERR(efx, "failed to backup PCI state of primary "
2412                                 "function prior to hardware reset\n");
2413                         goto fail1;
2414                 }
2415                 if (FALCON_IS_DUAL_FUNC(efx)) {
2416                         rc = pci_save_state(nic_data->pci_dev2);
2417                         if (rc) {
2418                                 EFX_ERR(efx, "failed to backup PCI state of "
2419                                         "secondary function prior to "
2420                                         "hardware reset\n");
2421                                 goto fail2;
2422                         }
2423                 }
2424
2425                 EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
2426                                      EXT_PHY_RST_DUR, 0x7,
2427                                      SWRST, 1);
2428         } else {
2429                 int reset_phy = (method == RESET_TYPE_INVISIBLE ?
2430                                  EXCLUDE_FROM_RESET : 0);
2431
2432                 EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
2433                                      EXT_PHY_RST_CTL, reset_phy,
2434                                      PCIE_CORE_RST_CTL, EXCLUDE_FROM_RESET,
2435                                      PCIE_NSTCK_RST_CTL, EXCLUDE_FROM_RESET,
2436                                      PCIE_SD_RST_CTL, EXCLUDE_FROM_RESET,
2437                                      EE_RST_CTL, EXCLUDE_FROM_RESET,
2438                                      EXT_PHY_RST_DUR, 0x7 /* 10ms */,
2439                                      SWRST, 1);
2440         }
2441         falcon_write(efx, &glb_ctl_reg_ker, GLB_CTL_REG_KER);
2442
2443         EFX_LOG(efx, "waiting for hardware reset\n");
2444         schedule_timeout_uninterruptible(HZ / 20);
2445
2446         /* Restore PCI configuration if needed */
2447         if (method == RESET_TYPE_WORLD) {
2448                 if (FALCON_IS_DUAL_FUNC(efx)) {
2449                         rc = pci_restore_state(nic_data->pci_dev2);
2450                         if (rc) {
2451                                 EFX_ERR(efx, "failed to restore PCI config for "
2452                                         "the secondary function\n");
2453                                 goto fail3;
2454                         }
2455                 }
2456                 rc = pci_restore_state(efx->pci_dev);
2457                 if (rc) {
2458                         EFX_ERR(efx, "failed to restore PCI config for the "
2459                                 "primary function\n");
2460                         goto fail4;
2461                 }
2462                 EFX_LOG(efx, "successfully restored PCI config\n");
2463         }
2464
2465         /* Assert that reset complete */
2466         falcon_read(efx, &glb_ctl_reg_ker, GLB_CTL_REG_KER);
2467         if (EFX_OWORD_FIELD(glb_ctl_reg_ker, SWRST) != 0) {
2468                 rc = -ETIMEDOUT;
2469                 EFX_ERR(efx, "timed out waiting for hardware reset\n");
2470                 goto fail5;
2471         }
2472         EFX_LOG(efx, "hardware reset complete\n");
2473
2474         return 0;
2475
2476         /* pci_save_state() and pci_restore_state() MUST be called in pairs */
2477 fail2:
2478 fail3:
2479         pci_restore_state(efx->pci_dev);
2480 fail1:
2481 fail4:
2482 fail5:
2483         return rc;
2484 }
2485
2486 /* Zeroes out the SRAM contents.  This routine must be called in
2487  * process context and is allowed to sleep.
2488  */
2489 static int falcon_reset_sram(struct efx_nic *efx)
2490 {
2491         efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
2492         int count;
2493
2494         /* Set the SRAM wake/sleep GPIO appropriately. */
2495         falcon_read(efx, &gpio_cfg_reg_ker, GPIO_CTL_REG_KER);
2496         EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, GPIO1_OEN, 1);
2497         EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, GPIO1_OUT, 1);
2498         falcon_write(efx, &gpio_cfg_reg_ker, GPIO_CTL_REG_KER);
2499
2500         /* Initiate SRAM reset */
2501         EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
2502                              SRAM_OOB_BT_INIT_EN, 1,
2503                              SRM_NUM_BANKS_AND_BANK_SIZE, 0);
2504         falcon_write(efx, &srm_cfg_reg_ker, SRM_CFG_REG_KER);
2505
2506         /* Wait for SRAM reset to complete */
2507         count = 0;
2508         do {
2509                 EFX_LOG(efx, "waiting for SRAM reset (attempt %d)...\n", count);
2510
2511                 /* SRAM reset is slow; expect around 16ms */
2512                 schedule_timeout_uninterruptible(HZ / 50);
2513
2514                 /* Check for reset complete */
2515                 falcon_read(efx, &srm_cfg_reg_ker, SRM_CFG_REG_KER);
2516                 if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, SRAM_OOB_BT_INIT_EN)) {
2517                         EFX_LOG(efx, "SRAM reset complete\n");
2518
2519                         return 0;
2520                 }
2521         } while (++count < 20); /* wait upto 0.4 sec */
2522
2523         EFX_ERR(efx, "timed out waiting for SRAM reset\n");
2524         return -ETIMEDOUT;
2525 }
2526
2527 static int falcon_spi_device_init(struct efx_nic *efx,
2528                                   struct efx_spi_device **spi_device_ret,
2529                                   unsigned int device_id, u32 device_type)
2530 {
2531         struct efx_spi_device *spi_device;
2532
2533         if (device_type != 0) {
2534                 spi_device = kmalloc(sizeof(*spi_device), GFP_KERNEL);
2535                 if (!spi_device)
2536                         return -ENOMEM;
2537                 spi_device->device_id = device_id;
2538                 spi_device->size =
2539                         1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
2540                 spi_device->addr_len =
2541                         SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
2542                 spi_device->munge_address = (spi_device->size == 1 << 9 &&
2543                                              spi_device->addr_len == 1);
2544                 spi_device->block_size =
2545                         1 << SPI_DEV_TYPE_FIELD(device_type,
2546                                                 SPI_DEV_TYPE_BLOCK_SIZE);
2547
2548                 spi_device->efx = efx;
2549         } else {
2550                 spi_device = NULL;
2551         }
2552
2553         kfree(*spi_device_ret);
2554         *spi_device_ret = spi_device;
2555         return 0;
2556 }
2557
2558
2559 static void falcon_remove_spi_devices(struct efx_nic *efx)
2560 {
2561         kfree(efx->spi_eeprom);
2562         efx->spi_eeprom = NULL;
2563         kfree(efx->spi_flash);
2564         efx->spi_flash = NULL;
2565 }
2566
2567 /* Extract non-volatile configuration */
2568 static int falcon_probe_nvconfig(struct efx_nic *efx)
2569 {
2570         struct falcon_nvconfig *nvconfig;
2571         int board_rev;
2572         int rc;
2573
2574         nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
2575         if (!nvconfig)
2576                 return -ENOMEM;
2577
2578         rc = falcon_read_nvram(efx, nvconfig);
2579         if (rc == -EINVAL) {
2580                 EFX_ERR(efx, "NVRAM is invalid therefore using defaults\n");
2581                 efx->phy_type = PHY_TYPE_NONE;
2582                 efx->mii.phy_id = PHY_ADDR_INVALID;
2583                 board_rev = 0;
2584                 rc = 0;
2585         } else if (rc) {
2586                 goto fail1;
2587         } else {
2588                 struct falcon_nvconfig_board_v2 *v2 = &nvconfig->board_v2;
2589                 struct falcon_nvconfig_board_v3 *v3 = &nvconfig->board_v3;
2590
2591                 efx->phy_type = v2->port0_phy_type;
2592                 efx->mii.phy_id = v2->port0_phy_addr;
2593                 board_rev = le16_to_cpu(v2->board_revision);
2594
2595                 if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
2596                         __le32 fl = v3->spi_device_type[EE_SPI_FLASH];
2597                         __le32 ee = v3->spi_device_type[EE_SPI_EEPROM];
2598                         rc = falcon_spi_device_init(efx, &efx->spi_flash,
2599                                                     EE_SPI_FLASH,
2600                                                     le32_to_cpu(fl));
2601                         if (rc)
2602                                 goto fail2;
2603                         rc = falcon_spi_device_init(efx, &efx->spi_eeprom,
2604                                                     EE_SPI_EEPROM,
2605                                                     le32_to_cpu(ee));
2606                         if (rc)
2607                                 goto fail2;
2608                 }
2609         }
2610
2611         /* Read the MAC addresses */
2612         memcpy(efx->mac_address, nvconfig->mac_address[0], ETH_ALEN);
2613
2614         EFX_LOG(efx, "PHY is %d phy_id %d\n", efx->phy_type, efx->mii.phy_id);
2615
2616         efx_set_board_info(efx, board_rev);
2617
2618         kfree(nvconfig);
2619         return 0;
2620
2621  fail2:
2622         falcon_remove_spi_devices(efx);
2623  fail1:
2624         kfree(nvconfig);
2625         return rc;
2626 }
2627
2628 /* Probe the NIC variant (revision, ASIC vs FPGA, function count, port
2629  * count, port speed).  Set workaround and feature flags accordingly.
2630  */
2631 static int falcon_probe_nic_variant(struct efx_nic *efx)
2632 {
2633         efx_oword_t altera_build;
2634
2635         falcon_read(efx, &altera_build, ALTERA_BUILD_REG_KER);
2636         if (EFX_OWORD_FIELD(altera_build, VER_ALL)) {
2637                 EFX_ERR(efx, "Falcon FPGA not supported\n");
2638                 return -ENODEV;
2639         }
2640
2641         switch (falcon_rev(efx)) {
2642         case FALCON_REV_A0:
2643         case 0xff:
2644                 EFX_ERR(efx, "Falcon rev A0 not supported\n");
2645                 return -ENODEV;
2646
2647         case FALCON_REV_A1:{
2648                 efx_oword_t nic_stat;
2649
2650                 falcon_read(efx, &nic_stat, NIC_STAT_REG);
2651
2652                 if (EFX_OWORD_FIELD(nic_stat, STRAP_PCIE) == 0) {
2653                         EFX_ERR(efx, "Falcon rev A1 PCI-X not supported\n");
2654                         return -ENODEV;
2655                 }
2656                 if (!EFX_OWORD_FIELD(nic_stat, STRAP_10G)) {
2657                         EFX_ERR(efx, "1G mode not supported\n");
2658                         return -ENODEV;
2659                 }
2660                 break;
2661         }
2662
2663         case FALCON_REV_B0:
2664                 break;
2665
2666         default:
2667                 EFX_ERR(efx, "Unknown Falcon rev %d\n", falcon_rev(efx));
2668                 return -ENODEV;
2669         }
2670
2671         return 0;
2672 }
2673
2674 /* Probe all SPI devices on the NIC */
2675 static void falcon_probe_spi_devices(struct efx_nic *efx)
2676 {
2677         efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
2678         bool has_flash, has_eeprom, boot_is_external;
2679
2680         falcon_read(efx, &gpio_ctl, GPIO_CTL_REG_KER);
2681         falcon_read(efx, &nic_stat, NIC_STAT_REG);
2682         falcon_read(efx, &ee_vpd_cfg, EE_VPD_CFG_REG_KER);
2683
2684         has_flash = EFX_OWORD_FIELD(nic_stat, SF_PRST);
2685         has_eeprom = EFX_OWORD_FIELD(nic_stat, EE_PRST);
2686         boot_is_external = EFX_OWORD_FIELD(gpio_ctl, BOOTED_USING_NVDEVICE);
2687
2688         if (has_flash) {
2689                 /* Default flash SPI device: Atmel AT25F1024
2690                  * 128 KB, 24-bit address, 32 KB erase block,
2691                  * 256 B write block
2692                  */
2693                 u32 flash_device_type =
2694                         (17 << SPI_DEV_TYPE_SIZE_LBN)
2695                         | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
2696                         | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
2697                         | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
2698                         | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN);
2699
2700                 falcon_spi_device_init(efx, &efx->spi_flash,
2701                                        EE_SPI_FLASH, flash_device_type);
2702
2703                 if (!boot_is_external) {
2704                         /* Disable VPD and set clock dividers to safe
2705                          * values for initial programming.
2706                          */
2707                         EFX_LOG(efx, "Booted from internal ASIC settings;"
2708                                 " setting SPI config\n");
2709                         EFX_POPULATE_OWORD_3(ee_vpd_cfg, EE_VPD_EN, 0,
2710                                              /* 125 MHz / 7 ~= 20 MHz */
2711                                              EE_SF_CLOCK_DIV, 7,
2712                                              /* 125 MHz / 63 ~= 2 MHz */
2713                                              EE_EE_CLOCK_DIV, 63);
2714                         falcon_write(efx, &ee_vpd_cfg, EE_VPD_CFG_REG_KER);
2715                 }
2716         }
2717
2718         if (has_eeprom) {
2719                 u32 eeprom_device_type;
2720
2721                 /* If it has no flash, it must have a large EEPROM
2722                  * for chip config; otherwise check whether 9-bit
2723                  * addressing is used for VPD configuration
2724                  */
2725                 if (has_flash &&
2726                     (!boot_is_external ||
2727                      EFX_OWORD_FIELD(ee_vpd_cfg, EE_VPD_EN_AD9_MODE))) {
2728                         /* Default SPI device: Atmel AT25040 or similar
2729                          * 512 B, 9-bit address, 8 B write block
2730                          */
2731                         eeprom_device_type =
2732                                 (9 << SPI_DEV_TYPE_SIZE_LBN)
2733                                 | (1 << SPI_DEV_TYPE_ADDR_LEN_LBN)
2734                                 | (3 << SPI_DEV_TYPE_BLOCK_SIZE_LBN);
2735                 } else {
2736                         /* "Large" SPI device: Atmel AT25640 or similar
2737                          * 8 KB, 16-bit address, 32 B write block
2738                          */
2739                         eeprom_device_type =
2740                                 (13 << SPI_DEV_TYPE_SIZE_LBN)
2741                                 | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
2742                                 | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN);
2743                 }
2744
2745                 falcon_spi_device_init(efx, &efx->spi_eeprom,
2746                                        EE_SPI_EEPROM, eeprom_device_type);
2747         }
2748
2749         EFX_LOG(efx, "flash is %s, EEPROM is %s\n",
2750                 (has_flash ? "present" : "absent"),
2751                 (has_eeprom ? "present" : "absent"));
2752 }
2753
2754 int falcon_probe_nic(struct efx_nic *efx)
2755 {
2756         struct falcon_nic_data *nic_data;
2757         int rc;
2758
2759         /* Allocate storage for hardware specific data */
2760         nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
2761         if (!nic_data)
2762                 return -ENOMEM;
2763         efx->nic_data = nic_data;
2764
2765         /* Determine number of ports etc. */
2766         rc = falcon_probe_nic_variant(efx);
2767         if (rc)
2768                 goto fail1;
2769
2770         /* Probe secondary function if expected */
2771         if (FALCON_IS_DUAL_FUNC(efx)) {
2772                 struct pci_dev *dev = pci_dev_get(efx->pci_dev);
2773
2774                 while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID,
2775                                              dev))) {
2776                         if (dev->bus == efx->pci_dev->bus &&
2777                             dev->devfn == efx->pci_dev->devfn + 1) {
2778                                 nic_data->pci_dev2 = dev;
2779                                 break;
2780                         }
2781                 }
2782                 if (!nic_data->pci_dev2) {
2783                         EFX_ERR(efx, "failed to find secondary function\n");
2784                         rc = -ENODEV;
2785                         goto fail2;
2786                 }
2787         }
2788
2789         /* Now we can reset the NIC */
2790         rc = falcon_reset_hw(efx, RESET_TYPE_ALL);
2791         if (rc) {
2792                 EFX_ERR(efx, "failed to reset NIC\n");
2793                 goto fail3;
2794         }
2795
2796         /* Allocate memory for INT_KER */
2797         rc = falcon_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
2798         if (rc)
2799                 goto fail4;
2800         BUG_ON(efx->irq_status.dma_addr & 0x0f);
2801
2802         EFX_LOG(efx, "INT_KER at %llx (virt %p phys %lx)\n",
2803                 (unsigned long long)efx->irq_status.dma_addr,
2804                 efx->irq_status.addr, virt_to_phys(efx->irq_status.addr));
2805
2806         falcon_probe_spi_devices(efx);
2807
2808         /* Read in the non-volatile configuration */
2809         rc = falcon_probe_nvconfig(efx);
2810         if (rc)
2811                 goto fail5;
2812
2813         /* Initialise I2C adapter */
2814         efx->i2c_adap.owner = THIS_MODULE;
2815         nic_data->i2c_data = falcon_i2c_bit_operations;
2816         nic_data->i2c_data.data = efx;
2817         efx->i2c_adap.algo_data = &nic_data->i2c_data;
2818         efx->i2c_adap.dev.parent = &efx->pci_dev->dev;
2819         strlcpy(efx->i2c_adap.name, "SFC4000 GPIO", sizeof(efx->i2c_adap.name));
2820         rc = i2c_bit_add_bus(&efx->i2c_adap);
2821         if (rc)
2822                 goto fail5;
2823
2824         return 0;
2825
2826  fail5:
2827         falcon_remove_spi_devices(efx);
2828         falcon_free_buffer(efx, &efx->irq_status);
2829  fail4:
2830  fail3:
2831         if (nic_data->pci_dev2) {
2832                 pci_dev_put(nic_data->pci_dev2);
2833                 nic_data->pci_dev2 = NULL;
2834         }
2835  fail2:
2836  fail1:
2837         kfree(efx->nic_data);
2838         return rc;
2839 }
2840
2841 /* This call performs hardware-specific global initialisation, such as
2842  * defining the descriptor cache sizes and number of RSS channels.
2843  * It does not set up any buffers, descriptor rings or event queues.
2844  */
2845 int falcon_init_nic(struct efx_nic *efx)
2846 {
2847         efx_oword_t temp;
2848         unsigned thresh;
2849         int rc;
2850
2851         /* Set up the address region register. This is only needed
2852          * for the B0 FPGA, but since we are just pushing in the
2853          * reset defaults this may as well be unconditional. */
2854         EFX_POPULATE_OWORD_4(temp, ADR_REGION0, 0,
2855                                    ADR_REGION1, (1 << 16),
2856                                    ADR_REGION2, (2 << 16),
2857                                    ADR_REGION3, (3 << 16));
2858         falcon_write(efx, &temp, ADR_REGION_REG_KER);
2859
2860         /* Use on-chip SRAM */
2861         falcon_read(efx, &temp, NIC_STAT_REG);
2862         EFX_SET_OWORD_FIELD(temp, ONCHIP_SRAM, 1);
2863         falcon_write(efx, &temp, NIC_STAT_REG);
2864
2865         /* Set buffer table mode */
2866         EFX_POPULATE_OWORD_1(temp, BUF_TBL_MODE, BUF_TBL_MODE_FULL);
2867         falcon_write(efx, &temp, BUF_TBL_CFG_REG_KER);
2868
2869         rc = falcon_reset_sram(efx);
2870         if (rc)
2871                 return rc;
2872
2873         /* Set positions of descriptor caches in SRAM. */
2874         EFX_POPULATE_OWORD_1(temp, SRM_TX_DC_BASE_ADR, TX_DC_BASE / 8);
2875         falcon_write(efx, &temp, SRM_TX_DC_CFG_REG_KER);
2876         EFX_POPULATE_OWORD_1(temp, SRM_RX_DC_BASE_ADR, RX_DC_BASE / 8);
2877         falcon_write(efx, &temp, SRM_RX_DC_CFG_REG_KER);
2878
2879         /* Set TX descriptor cache size. */
2880         BUILD_BUG_ON(TX_DC_ENTRIES != (16 << TX_DC_ENTRIES_ORDER));
2881         EFX_POPULATE_OWORD_1(temp, TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
2882         falcon_write(efx, &temp, TX_DC_CFG_REG_KER);
2883
2884         /* Set RX descriptor cache size.  Set low watermark to size-8, as
2885          * this allows most efficient prefetching.
2886          */
2887         BUILD_BUG_ON(RX_DC_ENTRIES != (16 << RX_DC_ENTRIES_ORDER));
2888         EFX_POPULATE_OWORD_1(temp, RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
2889         falcon_write(efx, &temp, RX_DC_CFG_REG_KER);
2890         EFX_POPULATE_OWORD_1(temp, RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
2891         falcon_write(efx, &temp, RX_DC_PF_WM_REG_KER);
2892
2893         /* Clear the parity enables on the TX data fifos as
2894          * they produce false parity errors because of timing issues
2895          */
2896         if (EFX_WORKAROUND_5129(efx)) {
2897                 falcon_read(efx, &temp, SPARE_REG_KER);
2898                 EFX_SET_OWORD_FIELD(temp, MEM_PERR_EN_TX_DATA, 0);
2899                 falcon_write(efx, &temp, SPARE_REG_KER);
2900         }
2901
2902         /* Enable all the genuinely fatal interrupts.  (They are still
2903          * masked by the overall interrupt mask, controlled by
2904          * falcon_interrupts()).
2905          *
2906          * Note: All other fatal interrupts are enabled
2907          */
2908         EFX_POPULATE_OWORD_3(temp,
2909                              ILL_ADR_INT_KER_EN, 1,
2910                              RBUF_OWN_INT_KER_EN, 1,
2911                              TBUF_OWN_INT_KER_EN, 1);
2912         EFX_INVERT_OWORD(temp);
2913         falcon_write(efx, &temp, FATAL_INTR_REG_KER);
2914
2915         if (EFX_WORKAROUND_7244(efx)) {
2916                 falcon_read(efx, &temp, RX_FILTER_CTL_REG);
2917                 EFX_SET_OWORD_FIELD(temp, UDP_FULL_SRCH_LIMIT, 8);
2918                 EFX_SET_OWORD_FIELD(temp, UDP_WILD_SRCH_LIMIT, 8);
2919                 EFX_SET_OWORD_FIELD(temp, TCP_FULL_SRCH_LIMIT, 8);
2920                 EFX_SET_OWORD_FIELD(temp, TCP_WILD_SRCH_LIMIT, 8);
2921                 falcon_write(efx, &temp, RX_FILTER_CTL_REG);
2922         }
2923
2924         falcon_setup_rss_indir_table(efx);
2925
2926         /* Setup RX.  Wait for descriptor is broken and must
2927          * be disabled.  RXDP recovery shouldn't be needed, but is.
2928          */
2929         falcon_read(efx, &temp, RX_SELF_RST_REG_KER);
2930         EFX_SET_OWORD_FIELD(temp, RX_NODESC_WAIT_DIS, 1);
2931         EFX_SET_OWORD_FIELD(temp, RX_RECOVERY_EN, 1);
2932         if (EFX_WORKAROUND_5583(efx))
2933                 EFX_SET_OWORD_FIELD(temp, RX_ISCSI_DIS, 1);
2934         falcon_write(efx, &temp, RX_SELF_RST_REG_KER);
2935
2936         /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
2937          * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
2938          */
2939         falcon_read(efx, &temp, TX_CFG2_REG_KER);
2940         EFX_SET_OWORD_FIELD(temp, TX_RX_SPACER, 0xfe);
2941         EFX_SET_OWORD_FIELD(temp, TX_RX_SPACER_EN, 1);
2942         EFX_SET_OWORD_FIELD(temp, TX_ONE_PKT_PER_Q, 1);
2943         EFX_SET_OWORD_FIELD(temp, TX_CSR_PUSH_EN, 0);
2944         EFX_SET_OWORD_FIELD(temp, TX_DIS_NON_IP_EV, 1);
2945         /* Enable SW_EV to inherit in char driver - assume harmless here */
2946         EFX_SET_OWORD_FIELD(temp, TX_SW_EV_EN, 1);
2947         /* Prefetch threshold 2 => fetch when descriptor cache half empty */
2948         EFX_SET_OWORD_FIELD(temp, TX_PREF_THRESHOLD, 2);
2949         /* Squash TX of packets of 16 bytes or less */
2950         if (falcon_rev(efx) >= FALCON_REV_B0 && EFX_WORKAROUND_9141(efx))
2951                 EFX_SET_OWORD_FIELD(temp, TX_FLUSH_MIN_LEN_EN_B0, 1);
2952         falcon_write(efx, &temp, TX_CFG2_REG_KER);
2953
2954         /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
2955          * descriptors (which is bad).
2956          */
2957         falcon_read(efx, &temp, TX_CFG_REG_KER);
2958         EFX_SET_OWORD_FIELD(temp, TX_NO_EOP_DISC_EN, 0);
2959         falcon_write(efx, &temp, TX_CFG_REG_KER);
2960
2961         /* RX config */
2962         falcon_read(efx, &temp, RX_CFG_REG_KER);
2963         EFX_SET_OWORD_FIELD_VER(efx, temp, RX_DESC_PUSH_EN, 0);
2964         if (EFX_WORKAROUND_7575(efx))
2965                 EFX_SET_OWORD_FIELD_VER(efx, temp, RX_USR_BUF_SIZE,
2966                                         (3 * 4096) / 32);
2967         if (falcon_rev(efx) >= FALCON_REV_B0)
2968                 EFX_SET_OWORD_FIELD(temp, RX_INGR_EN_B0, 1);
2969
2970         /* RX FIFO flow control thresholds */
2971         thresh = ((rx_xon_thresh_bytes >= 0) ?
2972                   rx_xon_thresh_bytes : efx->type->rx_xon_thresh);
2973         EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XON_MAC_TH, thresh / 256);
2974         thresh = ((rx_xoff_thresh_bytes >= 0) ?
2975                   rx_xoff_thresh_bytes : efx->type->rx_xoff_thresh);
2976         EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XOFF_MAC_TH, thresh / 256);
2977         /* RX control FIFO thresholds [32 entries] */
2978         EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XON_TX_TH, 20);
2979         EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XOFF_TX_TH, 25);
2980         falcon_write(efx, &temp, RX_CFG_REG_KER);
2981
2982         /* Set destination of both TX and RX Flush events */
2983         if (falcon_rev(efx) >= FALCON_REV_B0) {
2984                 EFX_POPULATE_OWORD_1(temp, FLS_EVQ_ID, 0);
2985                 falcon_write(efx, &temp, DP_CTRL_REG);
2986         }
2987
2988         return 0;
2989 }
2990
2991 void falcon_remove_nic(struct efx_nic *efx)
2992 {
2993         struct falcon_nic_data *nic_data = efx->nic_data;
2994         int rc;
2995
2996         rc = i2c_del_adapter(&efx->i2c_adap);
2997         BUG_ON(rc);
2998
2999         falcon_remove_spi_devices(efx);
3000         falcon_free_buffer(efx, &efx->irq_status);
3001
3002         falcon_reset_hw(efx, RESET_TYPE_ALL);
3003
3004         /* Release the second function after the reset */
3005         if (nic_data->pci_dev2) {
3006                 pci_dev_put(nic_data->pci_dev2);
3007                 nic_data->pci_dev2 = NULL;
3008         }
3009
3010         /* Tear down the private nic state */
3011         kfree(efx->nic_data);
3012         efx->nic_data = NULL;
3013 }
3014
3015 void falcon_update_nic_stats(struct efx_nic *efx)
3016 {
3017         efx_oword_t cnt;
3018
3019         falcon_read(efx, &cnt, RX_NODESC_DROP_REG_KER);
3020         efx->n_rx_nodesc_drop_cnt += EFX_OWORD_FIELD(cnt, RX_NODESC_DROP_CNT);
3021 }
3022
3023 /**************************************************************************
3024  *
3025  * Revision-dependent attributes used by efx.c
3026  *
3027  **************************************************************************
3028  */
3029
3030 struct efx_nic_type falcon_a_nic_type = {
3031         .mem_bar = 2,
3032         .mem_map_size = 0x20000,
3033         .txd_ptr_tbl_base = TX_DESC_PTR_TBL_KER_A1,
3034         .rxd_ptr_tbl_base = RX_DESC_PTR_TBL_KER_A1,
3035         .buf_tbl_base = BUF_TBL_KER_A1,
3036         .evq_ptr_tbl_base = EVQ_PTR_TBL_KER_A1,
3037         .evq_rptr_tbl_base = EVQ_RPTR_REG_KER_A1,
3038         .txd_ring_mask = FALCON_TXD_RING_MASK,
3039         .rxd_ring_mask = FALCON_RXD_RING_MASK,
3040         .evq_size = FALCON_EVQ_SIZE,
3041         .max_dma_mask = FALCON_DMA_MASK,
3042         .tx_dma_mask = FALCON_TX_DMA_MASK,
3043         .bug5391_mask = 0xf,
3044         .rx_xoff_thresh = 2048,
3045         .rx_xon_thresh = 512,
3046         .rx_buffer_padding = 0x24,
3047         .max_interrupt_mode = EFX_INT_MODE_MSI,
3048         .phys_addr_channels = 4,
3049 };
3050
3051 struct efx_nic_type falcon_b_nic_type = {
3052         .mem_bar = 2,
3053         /* Map everything up to and including the RSS indirection
3054          * table.  Don't map MSI-X table, MSI-X PBA since Linux
3055          * requires that they not be mapped.  */
3056         .mem_map_size = RX_RSS_INDIR_TBL_B0 + 0x800,
3057         .txd_ptr_tbl_base = TX_DESC_PTR_TBL_KER_B0,
3058         .rxd_ptr_tbl_base = RX_DESC_PTR_TBL_KER_B0,
3059         .buf_tbl_base = BUF_TBL_KER_B0,
3060         .evq_ptr_tbl_base = EVQ_PTR_TBL_KER_B0,
3061         .evq_rptr_tbl_base = EVQ_RPTR_REG_KER_B0,
3062         .txd_ring_mask = FALCON_TXD_RING_MASK,
3063         .rxd_ring_mask = FALCON_RXD_RING_MASK,
3064         .evq_size = FALCON_EVQ_SIZE,
3065         .max_dma_mask = FALCON_DMA_MASK,
3066         .tx_dma_mask = FALCON_TX_DMA_MASK,
3067         .bug5391_mask = 0,
3068         .rx_xoff_thresh = 54272, /* ~80Kb - 3*max MTU */
3069         .rx_xon_thresh = 27648,  /* ~3*max MTU */
3070         .rx_buffer_padding = 0,
3071         .max_interrupt_mode = EFX_INT_MODE_MSIX,
3072         .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
3073                                    * interrupt handler only supports 32
3074                                    * channels */
3075 };
3076