]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/qlge/qlge_main.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jbarnes...
[linux-2.6-omap-h63xx.git] / drivers / net / qlge / qlge_main.c
1 /*
2  * QLogic qlge NIC HBA Driver
3  * Copyright (c)  2003-2008 QLogic Corporation
4  * See LICENSE.qlge for copyright and licensing details.
5  * Author:     Linux qlge network device driver by
6  *                      Ron Mercer <ron.mercer@qlogic.com>
7  */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/types.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/pagemap.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/dmapool.h>
19 #include <linux/mempool.h>
20 #include <linux/spinlock.h>
21 #include <linux/kthread.h>
22 #include <linux/interrupt.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/in.h>
26 #include <linux/ip.h>
27 #include <linux/ipv6.h>
28 #include <net/ipv6.h>
29 #include <linux/tcp.h>
30 #include <linux/udp.h>
31 #include <linux/if_arp.h>
32 #include <linux/if_ether.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/skbuff.h>
37 #include <linux/rtnetlink.h>
38 #include <linux/if_vlan.h>
39 #include <linux/delay.h>
40 #include <linux/mm.h>
41 #include <linux/vmalloc.h>
42 #include <net/ip6_checksum.h>
43
44 #include "qlge.h"
45
46 char qlge_driver_name[] = DRV_NAME;
47 const char qlge_driver_version[] = DRV_VERSION;
48
49 MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
50 MODULE_DESCRIPTION(DRV_STRING " ");
51 MODULE_LICENSE("GPL");
52 MODULE_VERSION(DRV_VERSION);
53
54 static const u32 default_msg =
55     NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
56 /* NETIF_MSG_TIMER |    */
57     NETIF_MSG_IFDOWN |
58     NETIF_MSG_IFUP |
59     NETIF_MSG_RX_ERR |
60     NETIF_MSG_TX_ERR |
61     NETIF_MSG_TX_QUEUED |
62     NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS |
63 /* NETIF_MSG_PKTDATA | */
64     NETIF_MSG_HW | NETIF_MSG_WOL | 0;
65
66 static int debug = 0x00007fff;  /* defaults above */
67 module_param(debug, int, 0);
68 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
69
70 #define MSIX_IRQ 0
71 #define MSI_IRQ 1
72 #define LEG_IRQ 2
73 static int irq_type = MSIX_IRQ;
74 module_param(irq_type, int, MSIX_IRQ);
75 MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
76
77 static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
78         {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID)},
79         {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID1)},
80         /* required last entry */
81         {0,}
82 };
83
84 MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
85
86 /* This hardware semaphore causes exclusive access to
87  * resources shared between the NIC driver, MPI firmware,
88  * FCOE firmware and the FC driver.
89  */
90 static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
91 {
92         u32 sem_bits = 0;
93
94         switch (sem_mask) {
95         case SEM_XGMAC0_MASK:
96                 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
97                 break;
98         case SEM_XGMAC1_MASK:
99                 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
100                 break;
101         case SEM_ICB_MASK:
102                 sem_bits = SEM_SET << SEM_ICB_SHIFT;
103                 break;
104         case SEM_MAC_ADDR_MASK:
105                 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
106                 break;
107         case SEM_FLASH_MASK:
108                 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
109                 break;
110         case SEM_PROBE_MASK:
111                 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
112                 break;
113         case SEM_RT_IDX_MASK:
114                 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
115                 break;
116         case SEM_PROC_REG_MASK:
117                 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
118                 break;
119         default:
120                 QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
121                 return -EINVAL;
122         }
123
124         ql_write32(qdev, SEM, sem_bits | sem_mask);
125         return !(ql_read32(qdev, SEM) & sem_bits);
126 }
127
128 int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
129 {
130         unsigned int seconds = 3;
131         do {
132                 if (!ql_sem_trylock(qdev, sem_mask))
133                         return 0;
134                 ssleep(1);
135         } while (--seconds);
136         return -ETIMEDOUT;
137 }
138
139 void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
140 {
141         ql_write32(qdev, SEM, sem_mask);
142         ql_read32(qdev, SEM);   /* flush */
143 }
144
145 /* This function waits for a specific bit to come ready
146  * in a given register.  It is used mostly by the initialize
147  * process, but is also used in kernel thread API such as
148  * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
149  */
150 int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
151 {
152         u32 temp;
153         int count = UDELAY_COUNT;
154
155         while (count) {
156                 temp = ql_read32(qdev, reg);
157
158                 /* check for errors */
159                 if (temp & err_bit) {
160                         QPRINTK(qdev, PROBE, ALERT,
161                                 "register 0x%.08x access error, value = 0x%.08x!.\n",
162                                 reg, temp);
163                         return -EIO;
164                 } else if (temp & bit)
165                         return 0;
166                 udelay(UDELAY_DELAY);
167                 count--;
168         }
169         QPRINTK(qdev, PROBE, ALERT,
170                 "Timed out waiting for reg %x to come ready.\n", reg);
171         return -ETIMEDOUT;
172 }
173
174 /* The CFG register is used to download TX and RX control blocks
175  * to the chip. This function waits for an operation to complete.
176  */
177 static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
178 {
179         int count = UDELAY_COUNT;
180         u32 temp;
181
182         while (count) {
183                 temp = ql_read32(qdev, CFG);
184                 if (temp & CFG_LE)
185                         return -EIO;
186                 if (!(temp & bit))
187                         return 0;
188                 udelay(UDELAY_DELAY);
189                 count--;
190         }
191         return -ETIMEDOUT;
192 }
193
194
195 /* Used to issue init control blocks to hw. Maps control block,
196  * sets address, triggers download, waits for completion.
197  */
198 int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
199                  u16 q_id)
200 {
201         u64 map;
202         int status = 0;
203         int direction;
204         u32 mask;
205         u32 value;
206
207         direction =
208             (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
209             PCI_DMA_FROMDEVICE;
210
211         map = pci_map_single(qdev->pdev, ptr, size, direction);
212         if (pci_dma_mapping_error(qdev->pdev, map)) {
213                 QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
214                 return -ENOMEM;
215         }
216
217         status = ql_wait_cfg(qdev, bit);
218         if (status) {
219                 QPRINTK(qdev, IFUP, ERR,
220                         "Timed out waiting for CFG to come ready.\n");
221                 goto exit;
222         }
223
224         status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
225         if (status)
226                 goto exit;
227         ql_write32(qdev, ICB_L, (u32) map);
228         ql_write32(qdev, ICB_H, (u32) (map >> 32));
229         ql_sem_unlock(qdev, SEM_ICB_MASK);      /* does flush too */
230
231         mask = CFG_Q_MASK | (bit << 16);
232         value = bit | (q_id << CFG_Q_SHIFT);
233         ql_write32(qdev, CFG, (mask | value));
234
235         /*
236          * Wait for the bit to clear after signaling hw.
237          */
238         status = ql_wait_cfg(qdev, bit);
239 exit:
240         pci_unmap_single(qdev->pdev, map, size, direction);
241         return status;
242 }
243
244 /* Get a specific MAC address from the CAM.  Used for debug and reg dump. */
245 int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
246                         u32 *value)
247 {
248         u32 offset = 0;
249         int status;
250
251         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
252         if (status)
253                 return status;
254         switch (type) {
255         case MAC_ADDR_TYPE_MULTI_MAC:
256         case MAC_ADDR_TYPE_CAM_MAC:
257                 {
258                         status =
259                             ql_wait_reg_rdy(qdev,
260                                 MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
261                         if (status)
262                                 goto exit;
263                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
264                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
265                                    MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
266                         status =
267                             ql_wait_reg_rdy(qdev,
268                                 MAC_ADDR_IDX, MAC_ADDR_MR, MAC_ADDR_E);
269                         if (status)
270                                 goto exit;
271                         *value++ = ql_read32(qdev, MAC_ADDR_DATA);
272                         status =
273                             ql_wait_reg_rdy(qdev,
274                                 MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
275                         if (status)
276                                 goto exit;
277                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
278                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
279                                    MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
280                         status =
281                             ql_wait_reg_rdy(qdev,
282                                 MAC_ADDR_IDX, MAC_ADDR_MR, MAC_ADDR_E);
283                         if (status)
284                                 goto exit;
285                         *value++ = ql_read32(qdev, MAC_ADDR_DATA);
286                         if (type == MAC_ADDR_TYPE_CAM_MAC) {
287                                 status =
288                                     ql_wait_reg_rdy(qdev,
289                                         MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
290                                 if (status)
291                                         goto exit;
292                                 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
293                                            (index << MAC_ADDR_IDX_SHIFT) | /* index */
294                                            MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
295                                 status =
296                                     ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
297                                                     MAC_ADDR_MR, MAC_ADDR_E);
298                                 if (status)
299                                         goto exit;
300                                 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
301                         }
302                         break;
303                 }
304         case MAC_ADDR_TYPE_VLAN:
305         case MAC_ADDR_TYPE_MULTI_FLTR:
306         default:
307                 QPRINTK(qdev, IFUP, CRIT,
308                         "Address type %d not yet supported.\n", type);
309                 status = -EPERM;
310         }
311 exit:
312         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
313         return status;
314 }
315
316 /* Set up a MAC, multicast or VLAN address for the
317  * inbound frame matching.
318  */
319 static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
320                                u16 index)
321 {
322         u32 offset = 0;
323         int status = 0;
324
325         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
326         if (status)
327                 return status;
328         switch (type) {
329         case MAC_ADDR_TYPE_MULTI_MAC:
330         case MAC_ADDR_TYPE_CAM_MAC:
331                 {
332                         u32 cam_output;
333                         u32 upper = (addr[0] << 8) | addr[1];
334                         u32 lower =
335                             (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
336                             (addr[5]);
337
338                         QPRINTK(qdev, IFUP, INFO,
339                                 "Adding %s address %02x:%02x:%02x:%02x:%02x:%02x"
340                                 " at index %d in the CAM.\n",
341                                 ((type ==
342                                   MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
343                                  "UNICAST"), addr[0], addr[1], addr[2], addr[3],
344                                 addr[4], addr[5], index);
345
346                         status =
347                             ql_wait_reg_rdy(qdev,
348                                 MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
349                         if (status)
350                                 goto exit;
351                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
352                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
353                                    type);       /* type */
354                         ql_write32(qdev, MAC_ADDR_DATA, lower);
355                         status =
356                             ql_wait_reg_rdy(qdev,
357                                 MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
358                         if (status)
359                                 goto exit;
360                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
361                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
362                                    type);       /* type */
363                         ql_write32(qdev, MAC_ADDR_DATA, upper);
364                         status =
365                             ql_wait_reg_rdy(qdev,
366                                 MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
367                         if (status)
368                                 goto exit;
369                         ql_write32(qdev, MAC_ADDR_IDX, (offset) |       /* offset */
370                                    (index << MAC_ADDR_IDX_SHIFT) |      /* index */
371                                    type);       /* type */
372                         /* This field should also include the queue id
373                            and possibly the function id.  Right now we hardcode
374                            the route field to NIC core.
375                          */
376                         if (type == MAC_ADDR_TYPE_CAM_MAC) {
377                                 cam_output = (CAM_OUT_ROUTE_NIC |
378                                               (qdev->
379                                                func << CAM_OUT_FUNC_SHIFT) |
380                                               (qdev->
381                                                rss_ring_first_cq_id <<
382                                                CAM_OUT_CQ_ID_SHIFT));
383                                 if (qdev->vlgrp)
384                                         cam_output |= CAM_OUT_RV;
385                                 /* route to NIC core */
386                                 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
387                         }
388                         break;
389                 }
390         case MAC_ADDR_TYPE_VLAN:
391                 {
392                         u32 enable_bit = *((u32 *) &addr[0]);
393                         /* For VLAN, the addr actually holds a bit that
394                          * either enables or disables the vlan id we are
395                          * addressing. It's either MAC_ADDR_E on or off.
396                          * That's bit-27 we're talking about.
397                          */
398                         QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
399                                 (enable_bit ? "Adding" : "Removing"),
400                                 index, (enable_bit ? "to" : "from"));
401
402                         status =
403                             ql_wait_reg_rdy(qdev,
404                                 MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
405                         if (status)
406                                 goto exit;
407                         ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
408                                    (index << MAC_ADDR_IDX_SHIFT) |      /* index */
409                                    type |       /* type */
410                                    enable_bit); /* enable/disable */
411                         break;
412                 }
413         case MAC_ADDR_TYPE_MULTI_FLTR:
414         default:
415                 QPRINTK(qdev, IFUP, CRIT,
416                         "Address type %d not yet supported.\n", type);
417                 status = -EPERM;
418         }
419 exit:
420         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
421         return status;
422 }
423
424 /* Get a specific frame routing value from the CAM.
425  * Used for debug and reg dump.
426  */
427 int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
428 {
429         int status = 0;
430
431         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
432         if (status)
433                 goto exit;
434
435         status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, RT_IDX_E);
436         if (status)
437                 goto exit;
438
439         ql_write32(qdev, RT_IDX,
440                    RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
441         status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, RT_IDX_E);
442         if (status)
443                 goto exit;
444         *value = ql_read32(qdev, RT_DATA);
445 exit:
446         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
447         return status;
448 }
449
450 /* The NIC function for this chip has 16 routing indexes.  Each one can be used
451  * to route different frame types to various inbound queues.  We send broadcast/
452  * multicast/error frames to the default queue for slow handling,
453  * and CAM hit/RSS frames to the fast handling queues.
454  */
455 static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
456                               int enable)
457 {
458         int status;
459         u32 value = 0;
460
461         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
462         if (status)
463                 return status;
464
465         QPRINTK(qdev, IFUP, DEBUG,
466                 "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
467                 (enable ? "Adding" : "Removing"),
468                 ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
469                 ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
470                 ((index ==
471                   RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
472                 ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
473                 ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
474                 ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
475                 ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
476                 ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
477                 ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
478                 ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
479                 ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
480                 ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
481                 ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
482                 ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
483                 ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
484                 ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
485                 (enable ? "to" : "from"));
486
487         switch (mask) {
488         case RT_IDX_CAM_HIT:
489                 {
490                         value = RT_IDX_DST_CAM_Q |      /* dest */
491                             RT_IDX_TYPE_NICQ |  /* type */
492                             (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
493                         break;
494                 }
495         case RT_IDX_VALID:      /* Promiscuous Mode frames. */
496                 {
497                         value = RT_IDX_DST_DFLT_Q |     /* dest */
498                             RT_IDX_TYPE_NICQ |  /* type */
499                             (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
500                         break;
501                 }
502         case RT_IDX_ERR:        /* Pass up MAC,IP,TCP/UDP error frames. */
503                 {
504                         value = RT_IDX_DST_DFLT_Q |     /* dest */
505                             RT_IDX_TYPE_NICQ |  /* type */
506                             (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
507                         break;
508                 }
509         case RT_IDX_BCAST:      /* Pass up Broadcast frames to default Q. */
510                 {
511                         value = RT_IDX_DST_DFLT_Q |     /* dest */
512                             RT_IDX_TYPE_NICQ |  /* type */
513                             (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
514                         break;
515                 }
516         case RT_IDX_MCAST:      /* Pass up All Multicast frames. */
517                 {
518                         value = RT_IDX_DST_CAM_Q |      /* dest */
519                             RT_IDX_TYPE_NICQ |  /* type */
520                             (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
521                         break;
522                 }
523         case RT_IDX_MCAST_MATCH:        /* Pass up matched Multicast frames. */
524                 {
525                         value = RT_IDX_DST_CAM_Q |      /* dest */
526                             RT_IDX_TYPE_NICQ |  /* type */
527                             (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
528                         break;
529                 }
530         case RT_IDX_RSS_MATCH:  /* Pass up matched RSS frames. */
531                 {
532                         value = RT_IDX_DST_RSS |        /* dest */
533                             RT_IDX_TYPE_NICQ |  /* type */
534                             (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
535                         break;
536                 }
537         case 0:         /* Clear the E-bit on an entry. */
538                 {
539                         value = RT_IDX_DST_DFLT_Q |     /* dest */
540                             RT_IDX_TYPE_NICQ |  /* type */
541                             (index << RT_IDX_IDX_SHIFT);/* index */
542                         break;
543                 }
544         default:
545                 QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
546                         mask);
547                 status = -EPERM;
548                 goto exit;
549         }
550
551         if (value) {
552                 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
553                 if (status)
554                         goto exit;
555                 value |= (enable ? RT_IDX_E : 0);
556                 ql_write32(qdev, RT_IDX, value);
557                 ql_write32(qdev, RT_DATA, enable ? mask : 0);
558         }
559 exit:
560         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
561         return status;
562 }
563
564 static void ql_enable_interrupts(struct ql_adapter *qdev)
565 {
566         ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
567 }
568
569 static void ql_disable_interrupts(struct ql_adapter *qdev)
570 {
571         ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
572 }
573
574 /* If we're running with multiple MSI-X vectors then we enable on the fly.
575  * Otherwise, we may have multiple outstanding workers and don't want to
576  * enable until the last one finishes. In this case, the irq_cnt gets
577  * incremented everytime we queue a worker and decremented everytime
578  * a worker finishes.  Once it hits zero we enable the interrupt.
579  */
580 u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
581 {
582         u32 var = 0;
583         unsigned long hw_flags = 0;
584         struct intr_context *ctx = qdev->intr_context + intr;
585
586         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
587                 /* Always enable if we're MSIX multi interrupts and
588                  * it's not the default (zeroeth) interrupt.
589                  */
590                 ql_write32(qdev, INTR_EN,
591                            ctx->intr_en_mask);
592                 var = ql_read32(qdev, STS);
593                 return var;
594         }
595
596         spin_lock_irqsave(&qdev->hw_lock, hw_flags);
597         if (atomic_dec_and_test(&ctx->irq_cnt)) {
598                 ql_write32(qdev, INTR_EN,
599                            ctx->intr_en_mask);
600                 var = ql_read32(qdev, STS);
601         }
602         spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
603         return var;
604 }
605
606 static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
607 {
608         u32 var = 0;
609         unsigned long hw_flags;
610         struct intr_context *ctx;
611
612         /* HW disables for us if we're MSIX multi interrupts and
613          * it's not the default (zeroeth) interrupt.
614          */
615         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
616                 return 0;
617
618         ctx = qdev->intr_context + intr;
619         spin_lock_irqsave(&qdev->hw_lock, hw_flags);
620         if (!atomic_read(&ctx->irq_cnt)) {
621                 ql_write32(qdev, INTR_EN,
622                 ctx->intr_dis_mask);
623                 var = ql_read32(qdev, STS);
624         }
625         atomic_inc(&ctx->irq_cnt);
626         spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
627         return var;
628 }
629
630 static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
631 {
632         int i;
633         for (i = 0; i < qdev->intr_count; i++) {
634                 /* The enable call does a atomic_dec_and_test
635                  * and enables only if the result is zero.
636                  * So we precharge it here.
637                  */
638                 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
639                         i == 0))
640                         atomic_set(&qdev->intr_context[i].irq_cnt, 1);
641                 ql_enable_completion_interrupt(qdev, i);
642         }
643
644 }
645
646 int ql_read_flash_word(struct ql_adapter *qdev, int offset, u32 *data)
647 {
648         int status = 0;
649         /* wait for reg to come ready */
650         status = ql_wait_reg_rdy(qdev,
651                         FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
652         if (status)
653                 goto exit;
654         /* set up for reg read */
655         ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
656         /* wait for reg to come ready */
657         status = ql_wait_reg_rdy(qdev,
658                         FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
659         if (status)
660                 goto exit;
661         /* get the data */
662         *data = ql_read32(qdev, FLASH_DATA);
663 exit:
664         return status;
665 }
666
667 static int ql_get_flash_params(struct ql_adapter *qdev)
668 {
669         int i;
670         int status;
671         u32 *p = (u32 *)&qdev->flash;
672
673         if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
674                 return -ETIMEDOUT;
675
676         for (i = 0; i < sizeof(qdev->flash) / sizeof(u32); i++, p++) {
677                 status = ql_read_flash_word(qdev, i, p);
678                 if (status) {
679                         QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
680                         goto exit;
681                 }
682
683         }
684 exit:
685         ql_sem_unlock(qdev, SEM_FLASH_MASK);
686         return status;
687 }
688
689 /* xgmac register are located behind the xgmac_addr and xgmac_data
690  * register pair.  Each read/write requires us to wait for the ready
691  * bit before reading/writing the data.
692  */
693 static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
694 {
695         int status;
696         /* wait for reg to come ready */
697         status = ql_wait_reg_rdy(qdev,
698                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
699         if (status)
700                 return status;
701         /* write the data to the data reg */
702         ql_write32(qdev, XGMAC_DATA, data);
703         /* trigger the write */
704         ql_write32(qdev, XGMAC_ADDR, reg);
705         return status;
706 }
707
708 /* xgmac register are located behind the xgmac_addr and xgmac_data
709  * register pair.  Each read/write requires us to wait for the ready
710  * bit before reading/writing the data.
711  */
712 int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
713 {
714         int status = 0;
715         /* wait for reg to come ready */
716         status = ql_wait_reg_rdy(qdev,
717                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
718         if (status)
719                 goto exit;
720         /* set up for reg read */
721         ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
722         /* wait for reg to come ready */
723         status = ql_wait_reg_rdy(qdev,
724                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
725         if (status)
726                 goto exit;
727         /* get the data */
728         *data = ql_read32(qdev, XGMAC_DATA);
729 exit:
730         return status;
731 }
732
733 /* This is used for reading the 64-bit statistics regs. */
734 int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
735 {
736         int status = 0;
737         u32 hi = 0;
738         u32 lo = 0;
739
740         status = ql_read_xgmac_reg(qdev, reg, &lo);
741         if (status)
742                 goto exit;
743
744         status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
745         if (status)
746                 goto exit;
747
748         *data = (u64) lo | ((u64) hi << 32);
749
750 exit:
751         return status;
752 }
753
754 /* Take the MAC Core out of reset.
755  * Enable statistics counting.
756  * Take the transmitter/receiver out of reset.
757  * This functionality may be done in the MPI firmware at a
758  * later date.
759  */
760 static int ql_port_initialize(struct ql_adapter *qdev)
761 {
762         int status = 0;
763         u32 data;
764
765         if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
766                 /* Another function has the semaphore, so
767                  * wait for the port init bit to come ready.
768                  */
769                 QPRINTK(qdev, LINK, INFO,
770                         "Another function has the semaphore, so wait for the port init bit to come ready.\n");
771                 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
772                 if (status) {
773                         QPRINTK(qdev, LINK, CRIT,
774                                 "Port initialize timed out.\n");
775                 }
776                 return status;
777         }
778
779         QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
780         /* Set the core reset. */
781         status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
782         if (status)
783                 goto end;
784         data |= GLOBAL_CFG_RESET;
785         status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
786         if (status)
787                 goto end;
788
789         /* Clear the core reset and turn on jumbo for receiver. */
790         data &= ~GLOBAL_CFG_RESET;      /* Clear core reset. */
791         data |= GLOBAL_CFG_JUMBO;       /* Turn on jumbo. */
792         data |= GLOBAL_CFG_TX_STAT_EN;
793         data |= GLOBAL_CFG_RX_STAT_EN;
794         status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
795         if (status)
796                 goto end;
797
798         /* Enable transmitter, and clear it's reset. */
799         status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
800         if (status)
801                 goto end;
802         data &= ~TX_CFG_RESET;  /* Clear the TX MAC reset. */
803         data |= TX_CFG_EN;      /* Enable the transmitter. */
804         status = ql_write_xgmac_reg(qdev, TX_CFG, data);
805         if (status)
806                 goto end;
807
808         /* Enable receiver and clear it's reset. */
809         status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
810         if (status)
811                 goto end;
812         data &= ~RX_CFG_RESET;  /* Clear the RX MAC reset. */
813         data |= RX_CFG_EN;      /* Enable the receiver. */
814         status = ql_write_xgmac_reg(qdev, RX_CFG, data);
815         if (status)
816                 goto end;
817
818         /* Turn on jumbo. */
819         status =
820             ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
821         if (status)
822                 goto end;
823         status =
824             ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
825         if (status)
826                 goto end;
827
828         /* Signal to the world that the port is enabled.        */
829         ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
830 end:
831         ql_sem_unlock(qdev, qdev->xg_sem_mask);
832         return status;
833 }
834
835 /* Get the next large buffer. */
836 struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
837 {
838         struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
839         rx_ring->lbq_curr_idx++;
840         if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
841                 rx_ring->lbq_curr_idx = 0;
842         rx_ring->lbq_free_cnt++;
843         return lbq_desc;
844 }
845
846 /* Get the next small buffer. */
847 struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
848 {
849         struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
850         rx_ring->sbq_curr_idx++;
851         if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
852                 rx_ring->sbq_curr_idx = 0;
853         rx_ring->sbq_free_cnt++;
854         return sbq_desc;
855 }
856
857 /* Update an rx ring index. */
858 static void ql_update_cq(struct rx_ring *rx_ring)
859 {
860         rx_ring->cnsmr_idx++;
861         rx_ring->curr_entry++;
862         if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
863                 rx_ring->cnsmr_idx = 0;
864                 rx_ring->curr_entry = rx_ring->cq_base;
865         }
866 }
867
868 static void ql_write_cq_idx(struct rx_ring *rx_ring)
869 {
870         ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
871 }
872
873 /* Process (refill) a large buffer queue. */
874 static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
875 {
876         int clean_idx = rx_ring->lbq_clean_idx;
877         struct bq_desc *lbq_desc;
878         struct bq_element *bq;
879         u64 map;
880         int i;
881
882         while (rx_ring->lbq_free_cnt > 16) {
883                 for (i = 0; i < 16; i++) {
884                         QPRINTK(qdev, RX_STATUS, DEBUG,
885                                 "lbq: try cleaning clean_idx = %d.\n",
886                                 clean_idx);
887                         lbq_desc = &rx_ring->lbq[clean_idx];
888                         bq = lbq_desc->bq;
889                         if (lbq_desc->p.lbq_page == NULL) {
890                                 QPRINTK(qdev, RX_STATUS, DEBUG,
891                                         "lbq: getting new page for index %d.\n",
892                                         lbq_desc->index);
893                                 lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
894                                 if (lbq_desc->p.lbq_page == NULL) {
895                                         QPRINTK(qdev, RX_STATUS, ERR,
896                                                 "Couldn't get a page.\n");
897                                         return;
898                                 }
899                                 map = pci_map_page(qdev->pdev,
900                                                    lbq_desc->p.lbq_page,
901                                                    0, PAGE_SIZE,
902                                                    PCI_DMA_FROMDEVICE);
903                                 if (pci_dma_mapping_error(qdev->pdev, map)) {
904                                         QPRINTK(qdev, RX_STATUS, ERR,
905                                                 "PCI mapping failed.\n");
906                                         return;
907                                 }
908                                 pci_unmap_addr_set(lbq_desc, mapaddr, map);
909                                 pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
910                                 bq->addr_lo =   /*lbq_desc->addr_lo = */
911                                     cpu_to_le32(map);
912                                 bq->addr_hi =   /*lbq_desc->addr_hi = */
913                                     cpu_to_le32(map >> 32);
914                         }
915                         clean_idx++;
916                         if (clean_idx == rx_ring->lbq_len)
917                                 clean_idx = 0;
918                 }
919
920                 rx_ring->lbq_clean_idx = clean_idx;
921                 rx_ring->lbq_prod_idx += 16;
922                 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
923                         rx_ring->lbq_prod_idx = 0;
924                 QPRINTK(qdev, RX_STATUS, DEBUG,
925                         "lbq: updating prod idx = %d.\n",
926                         rx_ring->lbq_prod_idx);
927                 ql_write_db_reg(rx_ring->lbq_prod_idx,
928                                 rx_ring->lbq_prod_idx_db_reg);
929                 rx_ring->lbq_free_cnt -= 16;
930         }
931 }
932
933 /* Process (refill) a small buffer queue. */
934 static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
935 {
936         int clean_idx = rx_ring->sbq_clean_idx;
937         struct bq_desc *sbq_desc;
938         struct bq_element *bq;
939         u64 map;
940         int i;
941
942         while (rx_ring->sbq_free_cnt > 16) {
943                 for (i = 0; i < 16; i++) {
944                         sbq_desc = &rx_ring->sbq[clean_idx];
945                         QPRINTK(qdev, RX_STATUS, DEBUG,
946                                 "sbq: try cleaning clean_idx = %d.\n",
947                                 clean_idx);
948                         bq = sbq_desc->bq;
949                         if (sbq_desc->p.skb == NULL) {
950                                 QPRINTK(qdev, RX_STATUS, DEBUG,
951                                         "sbq: getting new skb for index %d.\n",
952                                         sbq_desc->index);
953                                 sbq_desc->p.skb =
954                                     netdev_alloc_skb(qdev->ndev,
955                                                      rx_ring->sbq_buf_size);
956                                 if (sbq_desc->p.skb == NULL) {
957                                         QPRINTK(qdev, PROBE, ERR,
958                                                 "Couldn't get an skb.\n");
959                                         rx_ring->sbq_clean_idx = clean_idx;
960                                         return;
961                                 }
962                                 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
963                                 map = pci_map_single(qdev->pdev,
964                                                      sbq_desc->p.skb->data,
965                                                      rx_ring->sbq_buf_size /
966                                                      2, PCI_DMA_FROMDEVICE);
967                                 pci_unmap_addr_set(sbq_desc, mapaddr, map);
968                                 pci_unmap_len_set(sbq_desc, maplen,
969                                                   rx_ring->sbq_buf_size / 2);
970                                 bq->addr_lo = cpu_to_le32(map);
971                                 bq->addr_hi = cpu_to_le32(map >> 32);
972                         }
973
974                         clean_idx++;
975                         if (clean_idx == rx_ring->sbq_len)
976                                 clean_idx = 0;
977                 }
978                 rx_ring->sbq_clean_idx = clean_idx;
979                 rx_ring->sbq_prod_idx += 16;
980                 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
981                         rx_ring->sbq_prod_idx = 0;
982                 QPRINTK(qdev, RX_STATUS, DEBUG,
983                         "sbq: updating prod idx = %d.\n",
984                         rx_ring->sbq_prod_idx);
985                 ql_write_db_reg(rx_ring->sbq_prod_idx,
986                                 rx_ring->sbq_prod_idx_db_reg);
987
988                 rx_ring->sbq_free_cnt -= 16;
989         }
990 }
991
992 static void ql_update_buffer_queues(struct ql_adapter *qdev,
993                                     struct rx_ring *rx_ring)
994 {
995         ql_update_sbq(qdev, rx_ring);
996         ql_update_lbq(qdev, rx_ring);
997 }
998
999 /* Unmaps tx buffers.  Can be called from send() if a pci mapping
1000  * fails at some stage, or from the interrupt when a tx completes.
1001  */
1002 static void ql_unmap_send(struct ql_adapter *qdev,
1003                           struct tx_ring_desc *tx_ring_desc, int mapped)
1004 {
1005         int i;
1006         for (i = 0; i < mapped; i++) {
1007                 if (i == 0 || (i == 7 && mapped > 7)) {
1008                         /*
1009                          * Unmap the skb->data area, or the
1010                          * external sglist (AKA the Outbound
1011                          * Address List (OAL)).
1012                          * If its the zeroeth element, then it's
1013                          * the skb->data area.  If it's the 7th
1014                          * element and there is more than 6 frags,
1015                          * then its an OAL.
1016                          */
1017                         if (i == 7) {
1018                                 QPRINTK(qdev, TX_DONE, DEBUG,
1019                                         "unmapping OAL area.\n");
1020                         }
1021                         pci_unmap_single(qdev->pdev,
1022                                          pci_unmap_addr(&tx_ring_desc->map[i],
1023                                                         mapaddr),
1024                                          pci_unmap_len(&tx_ring_desc->map[i],
1025                                                        maplen),
1026                                          PCI_DMA_TODEVICE);
1027                 } else {
1028                         QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
1029                                 i);
1030                         pci_unmap_page(qdev->pdev,
1031                                        pci_unmap_addr(&tx_ring_desc->map[i],
1032                                                       mapaddr),
1033                                        pci_unmap_len(&tx_ring_desc->map[i],
1034                                                      maplen), PCI_DMA_TODEVICE);
1035                 }
1036         }
1037
1038 }
1039
1040 /* Map the buffers for this transmit.  This will return
1041  * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1042  */
1043 static int ql_map_send(struct ql_adapter *qdev,
1044                        struct ob_mac_iocb_req *mac_iocb_ptr,
1045                        struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1046 {
1047         int len = skb_headlen(skb);
1048         dma_addr_t map;
1049         int frag_idx, err, map_idx = 0;
1050         struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1051         int frag_cnt = skb_shinfo(skb)->nr_frags;
1052
1053         if (frag_cnt) {
1054                 QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
1055         }
1056         /*
1057          * Map the skb buffer first.
1058          */
1059         map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1060
1061         err = pci_dma_mapping_error(qdev->pdev, map);
1062         if (err) {
1063                 QPRINTK(qdev, TX_QUEUED, ERR,
1064                         "PCI mapping failed with error: %d\n", err);
1065
1066                 return NETDEV_TX_BUSY;
1067         }
1068
1069         tbd->len = cpu_to_le32(len);
1070         tbd->addr = cpu_to_le64(map);
1071         pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1072         pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1073         map_idx++;
1074
1075         /*
1076          * This loop fills the remainder of the 8 address descriptors
1077          * in the IOCB.  If there are more than 7 fragments, then the
1078          * eighth address desc will point to an external list (OAL).
1079          * When this happens, the remainder of the frags will be stored
1080          * in this list.
1081          */
1082         for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1083                 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1084                 tbd++;
1085                 if (frag_idx == 6 && frag_cnt > 7) {
1086                         /* Let's tack on an sglist.
1087                          * Our control block will now
1088                          * look like this:
1089                          * iocb->seg[0] = skb->data
1090                          * iocb->seg[1] = frag[0]
1091                          * iocb->seg[2] = frag[1]
1092                          * iocb->seg[3] = frag[2]
1093                          * iocb->seg[4] = frag[3]
1094                          * iocb->seg[5] = frag[4]
1095                          * iocb->seg[6] = frag[5]
1096                          * iocb->seg[7] = ptr to OAL (external sglist)
1097                          * oal->seg[0] = frag[6]
1098                          * oal->seg[1] = frag[7]
1099                          * oal->seg[2] = frag[8]
1100                          * oal->seg[3] = frag[9]
1101                          * oal->seg[4] = frag[10]
1102                          *      etc...
1103                          */
1104                         /* Tack on the OAL in the eighth segment of IOCB. */
1105                         map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1106                                              sizeof(struct oal),
1107                                              PCI_DMA_TODEVICE);
1108                         err = pci_dma_mapping_error(qdev->pdev, map);
1109                         if (err) {
1110                                 QPRINTK(qdev, TX_QUEUED, ERR,
1111                                         "PCI mapping outbound address list with error: %d\n",
1112                                         err);
1113                                 goto map_error;
1114                         }
1115
1116                         tbd->addr = cpu_to_le64(map);
1117                         /*
1118                          * The length is the number of fragments
1119                          * that remain to be mapped times the length
1120                          * of our sglist (OAL).
1121                          */
1122                         tbd->len =
1123                             cpu_to_le32((sizeof(struct tx_buf_desc) *
1124                                          (frag_cnt - frag_idx)) | TX_DESC_C);
1125                         pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1126                                            map);
1127                         pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1128                                           sizeof(struct oal));
1129                         tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1130                         map_idx++;
1131                 }
1132
1133                 map =
1134                     pci_map_page(qdev->pdev, frag->page,
1135                                  frag->page_offset, frag->size,
1136                                  PCI_DMA_TODEVICE);
1137
1138                 err = pci_dma_mapping_error(qdev->pdev, map);
1139                 if (err) {
1140                         QPRINTK(qdev, TX_QUEUED, ERR,
1141                                 "PCI mapping frags failed with error: %d.\n",
1142                                 err);
1143                         goto map_error;
1144                 }
1145
1146                 tbd->addr = cpu_to_le64(map);
1147                 tbd->len = cpu_to_le32(frag->size);
1148                 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1149                 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1150                                   frag->size);
1151
1152         }
1153         /* Save the number of segments we've mapped. */
1154         tx_ring_desc->map_cnt = map_idx;
1155         /* Terminate the last segment. */
1156         tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1157         return NETDEV_TX_OK;
1158
1159 map_error:
1160         /*
1161          * If the first frag mapping failed, then i will be zero.
1162          * This causes the unmap of the skb->data area.  Otherwise
1163          * we pass in the number of frags that mapped successfully
1164          * so they can be umapped.
1165          */
1166         ql_unmap_send(qdev, tx_ring_desc, map_idx);
1167         return NETDEV_TX_BUSY;
1168 }
1169
1170 void ql_realign_skb(struct sk_buff *skb, int len)
1171 {
1172         void *temp_addr = skb->data;
1173
1174         /* Undo the skb_reserve(skb,32) we did before
1175          * giving to hardware, and realign data on
1176          * a 2-byte boundary.
1177          */
1178         skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1179         skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1180         skb_copy_to_linear_data(skb, temp_addr,
1181                 (unsigned int)len);
1182 }
1183
1184 /*
1185  * This function builds an skb for the given inbound
1186  * completion.  It will be rewritten for readability in the near
1187  * future, but for not it works well.
1188  */
1189 static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1190                                        struct rx_ring *rx_ring,
1191                                        struct ib_mac_iocb_rsp *ib_mac_rsp)
1192 {
1193         struct bq_desc *lbq_desc;
1194         struct bq_desc *sbq_desc;
1195         struct sk_buff *skb = NULL;
1196         u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1197        u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1198
1199         /*
1200          * Handle the header buffer if present.
1201          */
1202         if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1203             ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1204                 QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
1205                 /*
1206                  * Headers fit nicely into a small buffer.
1207                  */
1208                 sbq_desc = ql_get_curr_sbuf(rx_ring);
1209                 pci_unmap_single(qdev->pdev,
1210                                 pci_unmap_addr(sbq_desc, mapaddr),
1211                                 pci_unmap_len(sbq_desc, maplen),
1212                                 PCI_DMA_FROMDEVICE);
1213                 skb = sbq_desc->p.skb;
1214                 ql_realign_skb(skb, hdr_len);
1215                 skb_put(skb, hdr_len);
1216                 sbq_desc->p.skb = NULL;
1217         }
1218
1219         /*
1220          * Handle the data buffer(s).
1221          */
1222         if (unlikely(!length)) {        /* Is there data too? */
1223                 QPRINTK(qdev, RX_STATUS, DEBUG,
1224                         "No Data buffer in this packet.\n");
1225                 return skb;
1226         }
1227
1228         if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1229                 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1230                         QPRINTK(qdev, RX_STATUS, DEBUG,
1231                                 "Headers in small, data of %d bytes in small, combine them.\n", length);
1232                         /*
1233                          * Data is less than small buffer size so it's
1234                          * stuffed in a small buffer.
1235                          * For this case we append the data
1236                          * from the "data" small buffer to the "header" small
1237                          * buffer.
1238                          */
1239                         sbq_desc = ql_get_curr_sbuf(rx_ring);
1240                         pci_dma_sync_single_for_cpu(qdev->pdev,
1241                                                     pci_unmap_addr
1242                                                     (sbq_desc, mapaddr),
1243                                                     pci_unmap_len
1244                                                     (sbq_desc, maplen),
1245                                                     PCI_DMA_FROMDEVICE);
1246                         memcpy(skb_put(skb, length),
1247                                sbq_desc->p.skb->data, length);
1248                         pci_dma_sync_single_for_device(qdev->pdev,
1249                                                        pci_unmap_addr
1250                                                        (sbq_desc,
1251                                                         mapaddr),
1252                                                        pci_unmap_len
1253                                                        (sbq_desc,
1254                                                         maplen),
1255                                                        PCI_DMA_FROMDEVICE);
1256                 } else {
1257                         QPRINTK(qdev, RX_STATUS, DEBUG,
1258                                 "%d bytes in a single small buffer.\n", length);
1259                         sbq_desc = ql_get_curr_sbuf(rx_ring);
1260                         skb = sbq_desc->p.skb;
1261                         ql_realign_skb(skb, length);
1262                         skb_put(skb, length);
1263                         pci_unmap_single(qdev->pdev,
1264                                          pci_unmap_addr(sbq_desc,
1265                                                         mapaddr),
1266                                          pci_unmap_len(sbq_desc,
1267                                                        maplen),
1268                                          PCI_DMA_FROMDEVICE);
1269                         sbq_desc->p.skb = NULL;
1270                 }
1271         } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1272                 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1273                         QPRINTK(qdev, RX_STATUS, DEBUG,
1274                                 "Header in small, %d bytes in large. Chain large to small!\n", length);
1275                         /*
1276                          * The data is in a single large buffer.  We
1277                          * chain it to the header buffer's skb and let
1278                          * it rip.
1279                          */
1280                         lbq_desc = ql_get_curr_lbuf(rx_ring);
1281                         pci_unmap_page(qdev->pdev,
1282                                        pci_unmap_addr(lbq_desc,
1283                                                       mapaddr),
1284                                        pci_unmap_len(lbq_desc, maplen),
1285                                        PCI_DMA_FROMDEVICE);
1286                         QPRINTK(qdev, RX_STATUS, DEBUG,
1287                                 "Chaining page to skb.\n");
1288                         skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1289                                            0, length);
1290                         skb->len += length;
1291                         skb->data_len += length;
1292                         skb->truesize += length;
1293                         lbq_desc->p.lbq_page = NULL;
1294                 } else {
1295                         /*
1296                          * The headers and data are in a single large buffer. We
1297                          * copy it to a new skb and let it go. This can happen with
1298                          * jumbo mtu on a non-TCP/UDP frame.
1299                          */
1300                         lbq_desc = ql_get_curr_lbuf(rx_ring);
1301                         skb = netdev_alloc_skb(qdev->ndev, length);
1302                         if (skb == NULL) {
1303                                 QPRINTK(qdev, PROBE, DEBUG,
1304                                         "No skb available, drop the packet.\n");
1305                                 return NULL;
1306                         }
1307                         skb_reserve(skb, NET_IP_ALIGN);
1308                         QPRINTK(qdev, RX_STATUS, DEBUG,
1309                                 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
1310                         skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1311                                            0, length);
1312                         skb->len += length;
1313                         skb->data_len += length;
1314                         skb->truesize += length;
1315                         length -= length;
1316                         lbq_desc->p.lbq_page = NULL;
1317                         __pskb_pull_tail(skb,
1318                                 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1319                                 VLAN_ETH_HLEN : ETH_HLEN);
1320                 }
1321         } else {
1322                 /*
1323                  * The data is in a chain of large buffers
1324                  * pointed to by a small buffer.  We loop
1325                  * thru and chain them to the our small header
1326                  * buffer's skb.
1327                  * frags:  There are 18 max frags and our small
1328                  *         buffer will hold 32 of them. The thing is,
1329                  *         we'll use 3 max for our 9000 byte jumbo
1330                  *         frames.  If the MTU goes up we could
1331                  *          eventually be in trouble.
1332                  */
1333                 int size, offset, i = 0;
1334                 struct bq_element *bq, bq_array[8];
1335                 sbq_desc = ql_get_curr_sbuf(rx_ring);
1336                 pci_unmap_single(qdev->pdev,
1337                                  pci_unmap_addr(sbq_desc, mapaddr),
1338                                  pci_unmap_len(sbq_desc, maplen),
1339                                  PCI_DMA_FROMDEVICE);
1340                 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1341                         /*
1342                          * This is an non TCP/UDP IP frame, so
1343                          * the headers aren't split into a small
1344                          * buffer.  We have to use the small buffer
1345                          * that contains our sg list as our skb to
1346                          * send upstairs. Copy the sg list here to
1347                          * a local buffer and use it to find the
1348                          * pages to chain.
1349                          */
1350                         QPRINTK(qdev, RX_STATUS, DEBUG,
1351                                 "%d bytes of headers & data in chain of large.\n", length);
1352                         skb = sbq_desc->p.skb;
1353                         bq = &bq_array[0];
1354                         memcpy(bq, skb->data, sizeof(bq_array));
1355                         sbq_desc->p.skb = NULL;
1356                         skb_reserve(skb, NET_IP_ALIGN);
1357                 } else {
1358                         QPRINTK(qdev, RX_STATUS, DEBUG,
1359                                 "Headers in small, %d bytes of data in chain of large.\n", length);
1360                         bq = (struct bq_element *)sbq_desc->p.skb->data;
1361                 }
1362                 while (length > 0) {
1363                         lbq_desc = ql_get_curr_lbuf(rx_ring);
1364                         if ((bq->addr_lo & ~BQ_MASK) != lbq_desc->bq->addr_lo) {
1365                                 QPRINTK(qdev, RX_STATUS, ERR,
1366                                         "Panic!!! bad large buffer address, expected 0x%.08x, got 0x%.08x.\n",
1367                                         lbq_desc->bq->addr_lo, bq->addr_lo);
1368                                 return NULL;
1369                         }
1370                         pci_unmap_page(qdev->pdev,
1371                                        pci_unmap_addr(lbq_desc,
1372                                                       mapaddr),
1373                                        pci_unmap_len(lbq_desc,
1374                                                      maplen),
1375                                        PCI_DMA_FROMDEVICE);
1376                         size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
1377                         offset = 0;
1378
1379                         QPRINTK(qdev, RX_STATUS, DEBUG,
1380                                 "Adding page %d to skb for %d bytes.\n",
1381                                 i, size);
1382                         skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
1383                                            offset, size);
1384                         skb->len += size;
1385                         skb->data_len += size;
1386                         skb->truesize += size;
1387                         length -= size;
1388                         lbq_desc->p.lbq_page = NULL;
1389                         bq++;
1390                         i++;
1391                 }
1392                 __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1393                                 VLAN_ETH_HLEN : ETH_HLEN);
1394         }
1395         return skb;
1396 }
1397
1398 /* Process an inbound completion from an rx ring. */
1399 static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
1400                                    struct rx_ring *rx_ring,
1401                                    struct ib_mac_iocb_rsp *ib_mac_rsp)
1402 {
1403         struct net_device *ndev = qdev->ndev;
1404         struct sk_buff *skb = NULL;
1405
1406         QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1407
1408         skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1409         if (unlikely(!skb)) {
1410                 QPRINTK(qdev, RX_STATUS, DEBUG,
1411                         "No skb available, drop packet.\n");
1412                 return;
1413         }
1414
1415         prefetch(skb->data);
1416         skb->dev = ndev;
1417         if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1418                 QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
1419                         (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1420                         IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
1421                         (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1422                         IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
1423                         (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1424                         IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1425         }
1426         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
1427                 QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
1428         }
1429         if (ib_mac_rsp->flags1 & (IB_MAC_IOCB_RSP_IE | IB_MAC_IOCB_RSP_TE)) {
1430                 QPRINTK(qdev, RX_STATUS, ERR,
1431                         "Bad checksum for this %s packet.\n",
1432                         ((ib_mac_rsp->
1433                           flags2 & IB_MAC_IOCB_RSP_T) ? "TCP" : "UDP"));
1434                 skb->ip_summed = CHECKSUM_NONE;
1435         } else if (qdev->rx_csum &&
1436                    ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) ||
1437                     ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1438                      !(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_NU)))) {
1439                 QPRINTK(qdev, RX_STATUS, DEBUG, "RX checksum done!\n");
1440                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1441         }
1442         qdev->stats.rx_packets++;
1443         qdev->stats.rx_bytes += skb->len;
1444         skb->protocol = eth_type_trans(skb, ndev);
1445         if (qdev->vlgrp && (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V)) {
1446                 QPRINTK(qdev, RX_STATUS, DEBUG,
1447                         "Passing a VLAN packet upstream.\n");
1448                 vlan_hwaccel_rx(skb, qdev->vlgrp,
1449                                 le16_to_cpu(ib_mac_rsp->vlan_id));
1450         } else {
1451                 QPRINTK(qdev, RX_STATUS, DEBUG,
1452                         "Passing a normal packet upstream.\n");
1453                 netif_rx(skb);
1454         }
1455         ndev->last_rx = jiffies;
1456 }
1457
1458 /* Process an outbound completion from an rx ring. */
1459 static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
1460                                    struct ob_mac_iocb_rsp *mac_rsp)
1461 {
1462         struct tx_ring *tx_ring;
1463         struct tx_ring_desc *tx_ring_desc;
1464
1465         QL_DUMP_OB_MAC_RSP(mac_rsp);
1466         tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
1467         tx_ring_desc = &tx_ring->q[mac_rsp->tid];
1468         ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
1469         qdev->stats.tx_bytes += tx_ring_desc->map_cnt;
1470         qdev->stats.tx_packets++;
1471         dev_kfree_skb(tx_ring_desc->skb);
1472         tx_ring_desc->skb = NULL;
1473
1474         if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
1475                                         OB_MAC_IOCB_RSP_S |
1476                                         OB_MAC_IOCB_RSP_L |
1477                                         OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
1478                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
1479                         QPRINTK(qdev, TX_DONE, WARNING,
1480                                 "Total descriptor length did not match transfer length.\n");
1481                 }
1482                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
1483                         QPRINTK(qdev, TX_DONE, WARNING,
1484                                 "Frame too short to be legal, not sent.\n");
1485                 }
1486                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
1487                         QPRINTK(qdev, TX_DONE, WARNING,
1488                                 "Frame too long, but sent anyway.\n");
1489                 }
1490                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
1491                         QPRINTK(qdev, TX_DONE, WARNING,
1492                                 "PCI backplane error. Frame not sent.\n");
1493                 }
1494         }
1495         atomic_inc(&tx_ring->tx_count);
1496 }
1497
1498 /* Fire up a handler to reset the MPI processor. */
1499 void ql_queue_fw_error(struct ql_adapter *qdev)
1500 {
1501         netif_stop_queue(qdev->ndev);
1502         netif_carrier_off(qdev->ndev);
1503         queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
1504 }
1505
1506 void ql_queue_asic_error(struct ql_adapter *qdev)
1507 {
1508         netif_stop_queue(qdev->ndev);
1509         netif_carrier_off(qdev->ndev);
1510         ql_disable_interrupts(qdev);
1511         queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
1512 }
1513
1514 static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
1515                                     struct ib_ae_iocb_rsp *ib_ae_rsp)
1516 {
1517         switch (ib_ae_rsp->event) {
1518         case MGMT_ERR_EVENT:
1519                 QPRINTK(qdev, RX_ERR, ERR,
1520                         "Management Processor Fatal Error.\n");
1521                 ql_queue_fw_error(qdev);
1522                 return;
1523
1524         case CAM_LOOKUP_ERR_EVENT:
1525                 QPRINTK(qdev, LINK, ERR,
1526                         "Multiple CAM hits lookup occurred.\n");
1527                 QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
1528                 ql_queue_asic_error(qdev);
1529                 return;
1530
1531         case SOFT_ECC_ERROR_EVENT:
1532                 QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
1533                 ql_queue_asic_error(qdev);
1534                 break;
1535
1536         case PCI_ERR_ANON_BUF_RD:
1537                 QPRINTK(qdev, RX_ERR, ERR,
1538                         "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
1539                         ib_ae_rsp->q_id);
1540                 ql_queue_asic_error(qdev);
1541                 break;
1542
1543         default:
1544                 QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
1545                         ib_ae_rsp->event);
1546                 ql_queue_asic_error(qdev);
1547                 break;
1548         }
1549 }
1550
1551 static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
1552 {
1553         struct ql_adapter *qdev = rx_ring->qdev;
1554         u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1555         struct ob_mac_iocb_rsp *net_rsp = NULL;
1556         int count = 0;
1557
1558         /* While there are entries in the completion queue. */
1559         while (prod != rx_ring->cnsmr_idx) {
1560
1561                 QPRINTK(qdev, RX_STATUS, DEBUG,
1562                         "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1563                         prod, rx_ring->cnsmr_idx);
1564
1565                 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
1566                 rmb();
1567                 switch (net_rsp->opcode) {
1568
1569                 case OPCODE_OB_MAC_TSO_IOCB:
1570                 case OPCODE_OB_MAC_IOCB:
1571                         ql_process_mac_tx_intr(qdev, net_rsp);
1572                         break;
1573                 default:
1574                         QPRINTK(qdev, RX_STATUS, DEBUG,
1575                                 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1576                                 net_rsp->opcode);
1577                 }
1578                 count++;
1579                 ql_update_cq(rx_ring);
1580                 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1581         }
1582         ql_write_cq_idx(rx_ring);
1583         if (netif_queue_stopped(qdev->ndev) && net_rsp != NULL) {
1584                 struct tx_ring *tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
1585                 if (atomic_read(&tx_ring->queue_stopped) &&
1586                     (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
1587                         /*
1588                          * The queue got stopped because the tx_ring was full.
1589                          * Wake it up, because it's now at least 25% empty.
1590                          */
1591                         netif_wake_queue(qdev->ndev);
1592         }
1593
1594         return count;
1595 }
1596
1597 static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
1598 {
1599         struct ql_adapter *qdev = rx_ring->qdev;
1600         u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1601         struct ql_net_rsp_iocb *net_rsp;
1602         int count = 0;
1603
1604         /* While there are entries in the completion queue. */
1605         while (prod != rx_ring->cnsmr_idx) {
1606
1607                 QPRINTK(qdev, RX_STATUS, DEBUG,
1608                         "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1609                         prod, rx_ring->cnsmr_idx);
1610
1611                 net_rsp = rx_ring->curr_entry;
1612                 rmb();
1613                 switch (net_rsp->opcode) {
1614                 case OPCODE_IB_MAC_IOCB:
1615                         ql_process_mac_rx_intr(qdev, rx_ring,
1616                                                (struct ib_mac_iocb_rsp *)
1617                                                net_rsp);
1618                         break;
1619
1620                 case OPCODE_IB_AE_IOCB:
1621                         ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
1622                                                 net_rsp);
1623                         break;
1624                 default:
1625                         {
1626                                 QPRINTK(qdev, RX_STATUS, DEBUG,
1627                                         "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1628                                         net_rsp->opcode);
1629                         }
1630                 }
1631                 count++;
1632                 ql_update_cq(rx_ring);
1633                 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1634                 if (count == budget)
1635                         break;
1636         }
1637         ql_update_buffer_queues(qdev, rx_ring);
1638         ql_write_cq_idx(rx_ring);
1639         return count;
1640 }
1641
1642 static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
1643 {
1644         struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
1645         struct ql_adapter *qdev = rx_ring->qdev;
1646         int work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
1647
1648         QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
1649                 rx_ring->cq_id);
1650
1651         if (work_done < budget) {
1652                 __netif_rx_complete(qdev->ndev, napi);
1653                 ql_enable_completion_interrupt(qdev, rx_ring->irq);
1654         }
1655         return work_done;
1656 }
1657
1658 static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
1659 {
1660         struct ql_adapter *qdev = netdev_priv(ndev);
1661
1662         qdev->vlgrp = grp;
1663         if (grp) {
1664                 QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
1665                 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
1666                            NIC_RCV_CFG_VLAN_MATCH_AND_NON);
1667         } else {
1668                 QPRINTK(qdev, IFUP, DEBUG,
1669                         "Turning off VLAN in NIC_RCV_CFG.\n");
1670                 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
1671         }
1672 }
1673
1674 static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
1675 {
1676         struct ql_adapter *qdev = netdev_priv(ndev);
1677         u32 enable_bit = MAC_ADDR_E;
1678
1679         spin_lock(&qdev->hw_lock);
1680         if (ql_set_mac_addr_reg
1681             (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1682                 QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
1683         }
1684         spin_unlock(&qdev->hw_lock);
1685 }
1686
1687 static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
1688 {
1689         struct ql_adapter *qdev = netdev_priv(ndev);
1690         u32 enable_bit = 0;
1691
1692         spin_lock(&qdev->hw_lock);
1693         if (ql_set_mac_addr_reg
1694             (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1695                 QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
1696         }
1697         spin_unlock(&qdev->hw_lock);
1698
1699 }
1700
1701 /* Worker thread to process a given rx_ring that is dedicated
1702  * to outbound completions.
1703  */
1704 static void ql_tx_clean(struct work_struct *work)
1705 {
1706         struct rx_ring *rx_ring =
1707             container_of(work, struct rx_ring, rx_work.work);
1708         ql_clean_outbound_rx_ring(rx_ring);
1709         ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1710
1711 }
1712
1713 /* Worker thread to process a given rx_ring that is dedicated
1714  * to inbound completions.
1715  */
1716 static void ql_rx_clean(struct work_struct *work)
1717 {
1718         struct rx_ring *rx_ring =
1719             container_of(work, struct rx_ring, rx_work.work);
1720         ql_clean_inbound_rx_ring(rx_ring, 64);
1721         ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1722 }
1723
1724 /* MSI-X Multiple Vector Interrupt Handler for outbound completions. */
1725 static irqreturn_t qlge_msix_tx_isr(int irq, void *dev_id)
1726 {
1727         struct rx_ring *rx_ring = dev_id;
1728         queue_delayed_work_on(rx_ring->cpu, rx_ring->qdev->q_workqueue,
1729                               &rx_ring->rx_work, 0);
1730         return IRQ_HANDLED;
1731 }
1732
1733 /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
1734 static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
1735 {
1736         struct rx_ring *rx_ring = dev_id;
1737         struct ql_adapter *qdev = rx_ring->qdev;
1738         netif_rx_schedule(qdev->ndev, &rx_ring->napi);
1739         return IRQ_HANDLED;
1740 }
1741
1742 /* This handles a fatal error, MPI activity, and the default
1743  * rx_ring in an MSI-X multiple vector environment.
1744  * In MSI/Legacy environment it also process the rest of
1745  * the rx_rings.
1746  */
1747 static irqreturn_t qlge_isr(int irq, void *dev_id)
1748 {
1749         struct rx_ring *rx_ring = dev_id;
1750         struct ql_adapter *qdev = rx_ring->qdev;
1751         struct intr_context *intr_context = &qdev->intr_context[0];
1752         u32 var;
1753         int i;
1754         int work_done = 0;
1755
1756         spin_lock(&qdev->hw_lock);
1757         if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
1758                 QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
1759                 spin_unlock(&qdev->hw_lock);
1760                 return IRQ_NONE;
1761         }
1762         spin_unlock(&qdev->hw_lock);
1763
1764         var = ql_disable_completion_interrupt(qdev, intr_context->intr);
1765
1766         /*
1767          * Check for fatal error.
1768          */
1769         if (var & STS_FE) {
1770                 ql_queue_asic_error(qdev);
1771                 QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
1772                 var = ql_read32(qdev, ERR_STS);
1773                 QPRINTK(qdev, INTR, ERR,
1774                         "Resetting chip. Error Status Register = 0x%x\n", var);
1775                 return IRQ_HANDLED;
1776         }
1777
1778         /*
1779          * Check MPI processor activity.
1780          */
1781         if (var & STS_PI) {
1782                 /*
1783                  * We've got an async event or mailbox completion.
1784                  * Handle it and clear the source of the interrupt.
1785                  */
1786                 QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
1787                 ql_disable_completion_interrupt(qdev, intr_context->intr);
1788                 queue_delayed_work_on(smp_processor_id(), qdev->workqueue,
1789                                       &qdev->mpi_work, 0);
1790                 work_done++;
1791         }
1792
1793         /*
1794          * Check the default queue and wake handler if active.
1795          */
1796         rx_ring = &qdev->rx_ring[0];
1797         if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) {
1798                 QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[0].\n");
1799                 ql_disable_completion_interrupt(qdev, intr_context->intr);
1800                 queue_delayed_work_on(smp_processor_id(), qdev->q_workqueue,
1801                                       &rx_ring->rx_work, 0);
1802                 work_done++;
1803         }
1804
1805         if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
1806                 /*
1807                  * Start the DPC for each active queue.
1808                  */
1809                 for (i = 1; i < qdev->rx_ring_count; i++) {
1810                         rx_ring = &qdev->rx_ring[i];
1811                         if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
1812                             rx_ring->cnsmr_idx) {
1813                                 QPRINTK(qdev, INTR, INFO,
1814                                         "Waking handler for rx_ring[%d].\n", i);
1815                                 ql_disable_completion_interrupt(qdev,
1816                                                                 intr_context->
1817                                                                 intr);
1818                                 if (i < qdev->rss_ring_first_cq_id)
1819                                         queue_delayed_work_on(rx_ring->cpu,
1820                                                               qdev->q_workqueue,
1821                                                               &rx_ring->rx_work,
1822                                                               0);
1823                                 else
1824                                         netif_rx_schedule(qdev->ndev,
1825                                                           &rx_ring->napi);
1826                                 work_done++;
1827                         }
1828                 }
1829         }
1830         ql_enable_completion_interrupt(qdev, intr_context->intr);
1831         return work_done ? IRQ_HANDLED : IRQ_NONE;
1832 }
1833
1834 static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
1835 {
1836
1837         if (skb_is_gso(skb)) {
1838                 int err;
1839                 if (skb_header_cloned(skb)) {
1840                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1841                         if (err)
1842                                 return err;
1843                 }
1844
1845                 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
1846                 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
1847                 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
1848                 mac_iocb_ptr->total_hdrs_len =
1849                     cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
1850                 mac_iocb_ptr->net_trans_offset =
1851                     cpu_to_le16(skb_network_offset(skb) |
1852                                 skb_transport_offset(skb)
1853                                 << OB_MAC_TRANSPORT_HDR_SHIFT);
1854                 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
1855                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
1856                 if (likely(skb->protocol == htons(ETH_P_IP))) {
1857                         struct iphdr *iph = ip_hdr(skb);
1858                         iph->check = 0;
1859                         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
1860                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1861                                                                  iph->daddr, 0,
1862                                                                  IPPROTO_TCP,
1863                                                                  0);
1864                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
1865                         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
1866                         tcp_hdr(skb)->check =
1867                             ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1868                                              &ipv6_hdr(skb)->daddr,
1869                                              0, IPPROTO_TCP, 0);
1870                 }
1871                 return 1;
1872         }
1873         return 0;
1874 }
1875
1876 static void ql_hw_csum_setup(struct sk_buff *skb,
1877                              struct ob_mac_tso_iocb_req *mac_iocb_ptr)
1878 {
1879         int len;
1880         struct iphdr *iph = ip_hdr(skb);
1881         u16 *check;
1882         mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
1883         mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
1884         mac_iocb_ptr->net_trans_offset =
1885                 cpu_to_le16(skb_network_offset(skb) |
1886                 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
1887
1888         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
1889         len = (ntohs(iph->tot_len) - (iph->ihl << 2));
1890         if (likely(iph->protocol == IPPROTO_TCP)) {
1891                 check = &(tcp_hdr(skb)->check);
1892                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
1893                 mac_iocb_ptr->total_hdrs_len =
1894                     cpu_to_le16(skb_transport_offset(skb) +
1895                                 (tcp_hdr(skb)->doff << 2));
1896         } else {
1897                 check = &(udp_hdr(skb)->check);
1898                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
1899                 mac_iocb_ptr->total_hdrs_len =
1900                     cpu_to_le16(skb_transport_offset(skb) +
1901                                 sizeof(struct udphdr));
1902         }
1903         *check = ~csum_tcpudp_magic(iph->saddr,
1904                                     iph->daddr, len, iph->protocol, 0);
1905 }
1906
1907 static int qlge_send(struct sk_buff *skb, struct net_device *ndev)
1908 {
1909         struct tx_ring_desc *tx_ring_desc;
1910         struct ob_mac_iocb_req *mac_iocb_ptr;
1911         struct ql_adapter *qdev = netdev_priv(ndev);
1912         int tso;
1913         struct tx_ring *tx_ring;
1914         u32 tx_ring_idx = (u32) QL_TXQ_IDX(qdev, skb);
1915
1916         tx_ring = &qdev->tx_ring[tx_ring_idx];
1917
1918         if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
1919                 QPRINTK(qdev, TX_QUEUED, INFO,
1920                         "%s: shutting down tx queue %d du to lack of resources.\n",
1921                         __func__, tx_ring_idx);
1922                 netif_stop_queue(ndev);
1923                 atomic_inc(&tx_ring->queue_stopped);
1924                 return NETDEV_TX_BUSY;
1925         }
1926         tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
1927         mac_iocb_ptr = tx_ring_desc->queue_entry;
1928         memset((void *)mac_iocb_ptr, 0, sizeof(mac_iocb_ptr));
1929         if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) != NETDEV_TX_OK) {
1930                 QPRINTK(qdev, TX_QUEUED, ERR, "Could not map the segments.\n");
1931                 return NETDEV_TX_BUSY;
1932         }
1933
1934         mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
1935         mac_iocb_ptr->tid = tx_ring_desc->index;
1936         /* We use the upper 32-bits to store the tx queue for this IO.
1937          * When we get the completion we can use it to establish the context.
1938          */
1939         mac_iocb_ptr->txq_idx = tx_ring_idx;
1940         tx_ring_desc->skb = skb;
1941
1942         mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
1943
1944         if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
1945                 QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
1946                         vlan_tx_tag_get(skb));
1947                 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
1948                 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
1949         }
1950         tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
1951         if (tso < 0) {
1952                 dev_kfree_skb_any(skb);
1953                 return NETDEV_TX_OK;
1954         } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
1955                 ql_hw_csum_setup(skb,
1956                                  (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
1957         }
1958         QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
1959         tx_ring->prod_idx++;
1960         if (tx_ring->prod_idx == tx_ring->wq_len)
1961                 tx_ring->prod_idx = 0;
1962         wmb();
1963
1964         ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
1965         ndev->trans_start = jiffies;
1966         QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
1967                 tx_ring->prod_idx, skb->len);
1968
1969         atomic_dec(&tx_ring->tx_count);
1970         return NETDEV_TX_OK;
1971 }
1972
1973 static void ql_free_shadow_space(struct ql_adapter *qdev)
1974 {
1975         if (qdev->rx_ring_shadow_reg_area) {
1976                 pci_free_consistent(qdev->pdev,
1977                                     PAGE_SIZE,
1978                                     qdev->rx_ring_shadow_reg_area,
1979                                     qdev->rx_ring_shadow_reg_dma);
1980                 qdev->rx_ring_shadow_reg_area = NULL;
1981         }
1982         if (qdev->tx_ring_shadow_reg_area) {
1983                 pci_free_consistent(qdev->pdev,
1984                                     PAGE_SIZE,
1985                                     qdev->tx_ring_shadow_reg_area,
1986                                     qdev->tx_ring_shadow_reg_dma);
1987                 qdev->tx_ring_shadow_reg_area = NULL;
1988         }
1989 }
1990
1991 static int ql_alloc_shadow_space(struct ql_adapter *qdev)
1992 {
1993         qdev->rx_ring_shadow_reg_area =
1994             pci_alloc_consistent(qdev->pdev,
1995                                  PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
1996         if (qdev->rx_ring_shadow_reg_area == NULL) {
1997                 QPRINTK(qdev, IFUP, ERR,
1998                         "Allocation of RX shadow space failed.\n");
1999                 return -ENOMEM;
2000         }
2001         qdev->tx_ring_shadow_reg_area =
2002             pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
2003                                  &qdev->tx_ring_shadow_reg_dma);
2004         if (qdev->tx_ring_shadow_reg_area == NULL) {
2005                 QPRINTK(qdev, IFUP, ERR,
2006                         "Allocation of TX shadow space failed.\n");
2007                 goto err_wqp_sh_area;
2008         }
2009         return 0;
2010
2011 err_wqp_sh_area:
2012         pci_free_consistent(qdev->pdev,
2013                             PAGE_SIZE,
2014                             qdev->rx_ring_shadow_reg_area,
2015                             qdev->rx_ring_shadow_reg_dma);
2016         return -ENOMEM;
2017 }
2018
2019 static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2020 {
2021         struct tx_ring_desc *tx_ring_desc;
2022         int i;
2023         struct ob_mac_iocb_req *mac_iocb_ptr;
2024
2025         mac_iocb_ptr = tx_ring->wq_base;
2026         tx_ring_desc = tx_ring->q;
2027         for (i = 0; i < tx_ring->wq_len; i++) {
2028                 tx_ring_desc->index = i;
2029                 tx_ring_desc->skb = NULL;
2030                 tx_ring_desc->queue_entry = mac_iocb_ptr;
2031                 mac_iocb_ptr++;
2032                 tx_ring_desc++;
2033         }
2034         atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2035         atomic_set(&tx_ring->queue_stopped, 0);
2036 }
2037
2038 static void ql_free_tx_resources(struct ql_adapter *qdev,
2039                                  struct tx_ring *tx_ring)
2040 {
2041         if (tx_ring->wq_base) {
2042                 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2043                                     tx_ring->wq_base, tx_ring->wq_base_dma);
2044                 tx_ring->wq_base = NULL;
2045         }
2046         kfree(tx_ring->q);
2047         tx_ring->q = NULL;
2048 }
2049
2050 static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2051                                  struct tx_ring *tx_ring)
2052 {
2053         tx_ring->wq_base =
2054             pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2055                                  &tx_ring->wq_base_dma);
2056
2057         if ((tx_ring->wq_base == NULL)
2058             || tx_ring->wq_base_dma & (tx_ring->wq_size - 1)) {
2059                 QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
2060                 return -ENOMEM;
2061         }
2062         tx_ring->q =
2063             kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2064         if (tx_ring->q == NULL)
2065                 goto err;
2066
2067         return 0;
2068 err:
2069         pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2070                             tx_ring->wq_base, tx_ring->wq_base_dma);
2071         return -ENOMEM;
2072 }
2073
2074 void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2075 {
2076         int i;
2077         struct bq_desc *lbq_desc;
2078
2079         for (i = 0; i < rx_ring->lbq_len; i++) {
2080                 lbq_desc = &rx_ring->lbq[i];
2081                 if (lbq_desc->p.lbq_page) {
2082                         pci_unmap_page(qdev->pdev,
2083                                        pci_unmap_addr(lbq_desc, mapaddr),
2084                                        pci_unmap_len(lbq_desc, maplen),
2085                                        PCI_DMA_FROMDEVICE);
2086
2087                         put_page(lbq_desc->p.lbq_page);
2088                         lbq_desc->p.lbq_page = NULL;
2089                 }
2090                 lbq_desc->bq->addr_lo = 0;
2091                 lbq_desc->bq->addr_hi = 0;
2092         }
2093 }
2094
2095 /*
2096  * Allocate and map a page for each element of the lbq.
2097  */
2098 static int ql_alloc_lbq_buffers(struct ql_adapter *qdev,
2099                                 struct rx_ring *rx_ring)
2100 {
2101         int i;
2102         struct bq_desc *lbq_desc;
2103         u64 map;
2104         struct bq_element *bq = rx_ring->lbq_base;
2105
2106         for (i = 0; i < rx_ring->lbq_len; i++) {
2107                 lbq_desc = &rx_ring->lbq[i];
2108                 memset(lbq_desc, 0, sizeof(lbq_desc));
2109                 lbq_desc->bq = bq;
2110                 lbq_desc->index = i;
2111                 lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
2112                 if (unlikely(!lbq_desc->p.lbq_page)) {
2113                         QPRINTK(qdev, IFUP, ERR, "failed alloc_page().\n");
2114                         goto mem_error;
2115                 } else {
2116                         map = pci_map_page(qdev->pdev,
2117                                            lbq_desc->p.lbq_page,
2118                                            0, PAGE_SIZE, PCI_DMA_FROMDEVICE);
2119                         if (pci_dma_mapping_error(qdev->pdev, map)) {
2120                                 QPRINTK(qdev, IFUP, ERR,
2121                                         "PCI mapping failed.\n");
2122                                 goto mem_error;
2123                         }
2124                         pci_unmap_addr_set(lbq_desc, mapaddr, map);
2125                         pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
2126                         bq->addr_lo = cpu_to_le32(map);
2127                         bq->addr_hi = cpu_to_le32(map >> 32);
2128                 }
2129                 bq++;
2130         }
2131         return 0;
2132 mem_error:
2133         ql_free_lbq_buffers(qdev, rx_ring);
2134         return -ENOMEM;
2135 }
2136
2137 void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2138 {
2139         int i;
2140         struct bq_desc *sbq_desc;
2141
2142         for (i = 0; i < rx_ring->sbq_len; i++) {
2143                 sbq_desc = &rx_ring->sbq[i];
2144                 if (sbq_desc == NULL) {
2145                         QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
2146                         return;
2147                 }
2148                 if (sbq_desc->p.skb) {
2149                         pci_unmap_single(qdev->pdev,
2150                                          pci_unmap_addr(sbq_desc, mapaddr),
2151                                          pci_unmap_len(sbq_desc, maplen),
2152                                          PCI_DMA_FROMDEVICE);
2153                         dev_kfree_skb(sbq_desc->p.skb);
2154                         sbq_desc->p.skb = NULL;
2155                 }
2156                 if (sbq_desc->bq == NULL) {
2157                         QPRINTK(qdev, IFUP, ERR, "sbq_desc->bq %d is NULL.\n",
2158                                 i);
2159                         return;
2160                 }
2161                 sbq_desc->bq->addr_lo = 0;
2162                 sbq_desc->bq->addr_hi = 0;
2163         }
2164 }
2165
2166 /* Allocate and map an skb for each element of the sbq. */
2167 static int ql_alloc_sbq_buffers(struct ql_adapter *qdev,
2168                                 struct rx_ring *rx_ring)
2169 {
2170         int i;
2171         struct bq_desc *sbq_desc;
2172         struct sk_buff *skb;
2173         u64 map;
2174         struct bq_element *bq = rx_ring->sbq_base;
2175
2176         for (i = 0; i < rx_ring->sbq_len; i++) {
2177                 sbq_desc = &rx_ring->sbq[i];
2178                 memset(sbq_desc, 0, sizeof(sbq_desc));
2179                 sbq_desc->index = i;
2180                 sbq_desc->bq = bq;
2181                 skb = netdev_alloc_skb(qdev->ndev, rx_ring->sbq_buf_size);
2182                 if (unlikely(!skb)) {
2183                         /* Better luck next round */
2184                         QPRINTK(qdev, IFUP, ERR,
2185                                 "small buff alloc failed for %d bytes at index %d.\n",
2186                                 rx_ring->sbq_buf_size, i);
2187                         goto mem_err;
2188                 }
2189                 skb_reserve(skb, QLGE_SB_PAD);
2190                 sbq_desc->p.skb = skb;
2191                 /*
2192                  * Map only half the buffer. Because the
2193                  * other half may get some data copied to it
2194                  * when the completion arrives.
2195                  */
2196                 map = pci_map_single(qdev->pdev,
2197                                      skb->data,
2198                                      rx_ring->sbq_buf_size / 2,
2199                                      PCI_DMA_FROMDEVICE);
2200                 if (pci_dma_mapping_error(qdev->pdev, map)) {
2201                         QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
2202                         goto mem_err;
2203                 }
2204                 pci_unmap_addr_set(sbq_desc, mapaddr, map);
2205                 pci_unmap_len_set(sbq_desc, maplen, rx_ring->sbq_buf_size / 2);
2206                 bq->addr_lo =   /*sbq_desc->addr_lo = */
2207                     cpu_to_le32(map);
2208                 bq->addr_hi =   /*sbq_desc->addr_hi = */
2209                     cpu_to_le32(map >> 32);
2210                 bq++;
2211         }
2212         return 0;
2213 mem_err:
2214         ql_free_sbq_buffers(qdev, rx_ring);
2215         return -ENOMEM;
2216 }
2217
2218 static void ql_free_rx_resources(struct ql_adapter *qdev,
2219                                  struct rx_ring *rx_ring)
2220 {
2221         if (rx_ring->sbq_len)
2222                 ql_free_sbq_buffers(qdev, rx_ring);
2223         if (rx_ring->lbq_len)
2224                 ql_free_lbq_buffers(qdev, rx_ring);
2225
2226         /* Free the small buffer queue. */
2227         if (rx_ring->sbq_base) {
2228                 pci_free_consistent(qdev->pdev,
2229                                     rx_ring->sbq_size,
2230                                     rx_ring->sbq_base, rx_ring->sbq_base_dma);
2231                 rx_ring->sbq_base = NULL;
2232         }
2233
2234         /* Free the small buffer queue control blocks. */
2235         kfree(rx_ring->sbq);
2236         rx_ring->sbq = NULL;
2237
2238         /* Free the large buffer queue. */
2239         if (rx_ring->lbq_base) {
2240                 pci_free_consistent(qdev->pdev,
2241                                     rx_ring->lbq_size,
2242                                     rx_ring->lbq_base, rx_ring->lbq_base_dma);
2243                 rx_ring->lbq_base = NULL;
2244         }
2245
2246         /* Free the large buffer queue control blocks. */
2247         kfree(rx_ring->lbq);
2248         rx_ring->lbq = NULL;
2249
2250         /* Free the rx queue. */
2251         if (rx_ring->cq_base) {
2252                 pci_free_consistent(qdev->pdev,
2253                                     rx_ring->cq_size,
2254                                     rx_ring->cq_base, rx_ring->cq_base_dma);
2255                 rx_ring->cq_base = NULL;
2256         }
2257 }
2258
2259 /* Allocate queues and buffers for this completions queue based
2260  * on the values in the parameter structure. */
2261 static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2262                                  struct rx_ring *rx_ring)
2263 {
2264
2265         /*
2266          * Allocate the completion queue for this rx_ring.
2267          */
2268         rx_ring->cq_base =
2269             pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2270                                  &rx_ring->cq_base_dma);
2271
2272         if (rx_ring->cq_base == NULL) {
2273                 QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
2274                 return -ENOMEM;
2275         }
2276
2277         if (rx_ring->sbq_len) {
2278                 /*
2279                  * Allocate small buffer queue.
2280                  */
2281                 rx_ring->sbq_base =
2282                     pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2283                                          &rx_ring->sbq_base_dma);
2284
2285                 if (rx_ring->sbq_base == NULL) {
2286                         QPRINTK(qdev, IFUP, ERR,
2287                                 "Small buffer queue allocation failed.\n");
2288                         goto err_mem;
2289                 }
2290
2291                 /*
2292                  * Allocate small buffer queue control blocks.
2293                  */
2294                 rx_ring->sbq =
2295                     kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
2296                             GFP_KERNEL);
2297                 if (rx_ring->sbq == NULL) {
2298                         QPRINTK(qdev, IFUP, ERR,
2299                                 "Small buffer queue control block allocation failed.\n");
2300                         goto err_mem;
2301                 }
2302
2303                 if (ql_alloc_sbq_buffers(qdev, rx_ring)) {
2304                         QPRINTK(qdev, IFUP, ERR,
2305                                 "Small buffer allocation failed.\n");
2306                         goto err_mem;
2307                 }
2308         }
2309
2310         if (rx_ring->lbq_len) {
2311                 /*
2312                  * Allocate large buffer queue.
2313                  */
2314                 rx_ring->lbq_base =
2315                     pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
2316                                          &rx_ring->lbq_base_dma);
2317
2318                 if (rx_ring->lbq_base == NULL) {
2319                         QPRINTK(qdev, IFUP, ERR,
2320                                 "Large buffer queue allocation failed.\n");
2321                         goto err_mem;
2322                 }
2323                 /*
2324                  * Allocate large buffer queue control blocks.
2325                  */
2326                 rx_ring->lbq =
2327                     kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
2328                             GFP_KERNEL);
2329                 if (rx_ring->lbq == NULL) {
2330                         QPRINTK(qdev, IFUP, ERR,
2331                                 "Large buffer queue control block allocation failed.\n");
2332                         goto err_mem;
2333                 }
2334
2335                 /*
2336                  * Allocate the buffers.
2337                  */
2338                 if (ql_alloc_lbq_buffers(qdev, rx_ring)) {
2339                         QPRINTK(qdev, IFUP, ERR,
2340                                 "Large buffer allocation failed.\n");
2341                         goto err_mem;
2342                 }
2343         }
2344
2345         return 0;
2346
2347 err_mem:
2348         ql_free_rx_resources(qdev, rx_ring);
2349         return -ENOMEM;
2350 }
2351
2352 static void ql_tx_ring_clean(struct ql_adapter *qdev)
2353 {
2354         struct tx_ring *tx_ring;
2355         struct tx_ring_desc *tx_ring_desc;
2356         int i, j;
2357
2358         /*
2359          * Loop through all queues and free
2360          * any resources.
2361          */
2362         for (j = 0; j < qdev->tx_ring_count; j++) {
2363                 tx_ring = &qdev->tx_ring[j];
2364                 for (i = 0; i < tx_ring->wq_len; i++) {
2365                         tx_ring_desc = &tx_ring->q[i];
2366                         if (tx_ring_desc && tx_ring_desc->skb) {
2367                                 QPRINTK(qdev, IFDOWN, ERR,
2368                                 "Freeing lost SKB %p, from queue %d, index %d.\n",
2369                                         tx_ring_desc->skb, j,
2370                                         tx_ring_desc->index);
2371                                 ql_unmap_send(qdev, tx_ring_desc,
2372                                               tx_ring_desc->map_cnt);
2373                                 dev_kfree_skb(tx_ring_desc->skb);
2374                                 tx_ring_desc->skb = NULL;
2375                         }
2376                 }
2377         }
2378 }
2379
2380 static void ql_free_ring_cb(struct ql_adapter *qdev)
2381 {
2382         kfree(qdev->ring_mem);
2383 }
2384
2385 static int ql_alloc_ring_cb(struct ql_adapter *qdev)
2386 {
2387         /* Allocate space for tx/rx ring control blocks. */
2388         qdev->ring_mem_size =
2389             (qdev->tx_ring_count * sizeof(struct tx_ring)) +
2390             (qdev->rx_ring_count * sizeof(struct rx_ring));
2391         qdev->ring_mem = kmalloc(qdev->ring_mem_size, GFP_KERNEL);
2392         if (qdev->ring_mem == NULL) {
2393                 return -ENOMEM;
2394         } else {
2395                 qdev->rx_ring = qdev->ring_mem;
2396                 qdev->tx_ring = qdev->ring_mem +
2397                     (qdev->rx_ring_count * sizeof(struct rx_ring));
2398         }
2399         return 0;
2400 }
2401
2402 static void ql_free_mem_resources(struct ql_adapter *qdev)
2403 {
2404         int i;
2405
2406         for (i = 0; i < qdev->tx_ring_count; i++)
2407                 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
2408         for (i = 0; i < qdev->rx_ring_count; i++)
2409                 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
2410         ql_free_shadow_space(qdev);
2411 }
2412
2413 static int ql_alloc_mem_resources(struct ql_adapter *qdev)
2414 {
2415         int i;
2416
2417         /* Allocate space for our shadow registers and such. */
2418         if (ql_alloc_shadow_space(qdev))
2419                 return -ENOMEM;
2420
2421         for (i = 0; i < qdev->rx_ring_count; i++) {
2422                 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
2423                         QPRINTK(qdev, IFUP, ERR,
2424                                 "RX resource allocation failed.\n");
2425                         goto err_mem;
2426                 }
2427         }
2428         /* Allocate tx queue resources */
2429         for (i = 0; i < qdev->tx_ring_count; i++) {
2430                 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
2431                         QPRINTK(qdev, IFUP, ERR,
2432                                 "TX resource allocation failed.\n");
2433                         goto err_mem;
2434                 }
2435         }
2436         return 0;
2437
2438 err_mem:
2439         ql_free_mem_resources(qdev);
2440         return -ENOMEM;
2441 }
2442
2443 /* Set up the rx ring control block and pass it to the chip.
2444  * The control block is defined as
2445  * "Completion Queue Initialization Control Block", or cqicb.
2446  */
2447 static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2448 {
2449         struct cqicb *cqicb = &rx_ring->cqicb;
2450         void *shadow_reg = qdev->rx_ring_shadow_reg_area +
2451             (rx_ring->cq_id * sizeof(u64) * 4);
2452         u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
2453             (rx_ring->cq_id * sizeof(u64) * 4);
2454         void __iomem *doorbell_area =
2455             qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
2456         int err = 0;
2457         u16 bq_len;
2458
2459         /* Set up the shadow registers for this ring. */
2460         rx_ring->prod_idx_sh_reg = shadow_reg;
2461         rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
2462         shadow_reg += sizeof(u64);
2463         shadow_reg_dma += sizeof(u64);
2464         rx_ring->lbq_base_indirect = shadow_reg;
2465         rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
2466         shadow_reg += sizeof(u64);
2467         shadow_reg_dma += sizeof(u64);
2468         rx_ring->sbq_base_indirect = shadow_reg;
2469         rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
2470
2471         /* PCI doorbell mem area + 0x00 for consumer index register */
2472         rx_ring->cnsmr_idx_db_reg = (u32 *) doorbell_area;
2473         rx_ring->cnsmr_idx = 0;
2474         rx_ring->curr_entry = rx_ring->cq_base;
2475
2476         /* PCI doorbell mem area + 0x04 for valid register */
2477         rx_ring->valid_db_reg = doorbell_area + 0x04;
2478
2479         /* PCI doorbell mem area + 0x18 for large buffer consumer */
2480         rx_ring->lbq_prod_idx_db_reg = (u32 *) (doorbell_area + 0x18);
2481
2482         /* PCI doorbell mem area + 0x1c */
2483         rx_ring->sbq_prod_idx_db_reg = (u32 *) (doorbell_area + 0x1c);
2484
2485         memset((void *)cqicb, 0, sizeof(struct cqicb));
2486         cqicb->msix_vect = rx_ring->irq;
2487
2488         cqicb->len = cpu_to_le16(rx_ring->cq_len | LEN_V | LEN_CPP_CONT);
2489
2490         cqicb->addr_lo = cpu_to_le32(rx_ring->cq_base_dma);
2491         cqicb->addr_hi = cpu_to_le32((u64) rx_ring->cq_base_dma >> 32);
2492
2493         cqicb->prod_idx_addr_lo = cpu_to_le32(rx_ring->prod_idx_sh_reg_dma);
2494         cqicb->prod_idx_addr_hi =
2495             cpu_to_le32((u64) rx_ring->prod_idx_sh_reg_dma >> 32);
2496
2497         /*
2498          * Set up the control block load flags.
2499          */
2500         cqicb->flags = FLAGS_LC |       /* Load queue base address */
2501             FLAGS_LV |          /* Load MSI-X vector */
2502             FLAGS_LI;           /* Load irq delay values */
2503         if (rx_ring->lbq_len) {
2504                 cqicb->flags |= FLAGS_LL;       /* Load lbq values */
2505                 *((u64 *) rx_ring->lbq_base_indirect) = rx_ring->lbq_base_dma;
2506                 cqicb->lbq_addr_lo =
2507                     cpu_to_le32(rx_ring->lbq_base_indirect_dma);
2508                 cqicb->lbq_addr_hi =
2509                     cpu_to_le32((u64) rx_ring->lbq_base_indirect_dma >> 32);
2510                 cqicb->lbq_buf_size = cpu_to_le32(rx_ring->lbq_buf_size);
2511                 bq_len = (u16) rx_ring->lbq_len;
2512                 cqicb->lbq_len = cpu_to_le16(bq_len);
2513                 rx_ring->lbq_prod_idx = rx_ring->lbq_len - 16;
2514                 rx_ring->lbq_curr_idx = 0;
2515                 rx_ring->lbq_clean_idx = rx_ring->lbq_prod_idx;
2516                 rx_ring->lbq_free_cnt = 16;
2517         }
2518         if (rx_ring->sbq_len) {
2519                 cqicb->flags |= FLAGS_LS;       /* Load sbq values */
2520                 *((u64 *) rx_ring->sbq_base_indirect) = rx_ring->sbq_base_dma;
2521                 cqicb->sbq_addr_lo =
2522                     cpu_to_le32(rx_ring->sbq_base_indirect_dma);
2523                 cqicb->sbq_addr_hi =
2524                     cpu_to_le32((u64) rx_ring->sbq_base_indirect_dma >> 32);
2525                 cqicb->sbq_buf_size =
2526                     cpu_to_le16(((rx_ring->sbq_buf_size / 2) + 8) & 0xfffffff8);
2527                 bq_len = (u16) rx_ring->sbq_len;
2528                 cqicb->sbq_len = cpu_to_le16(bq_len);
2529                 rx_ring->sbq_prod_idx = rx_ring->sbq_len - 16;
2530                 rx_ring->sbq_curr_idx = 0;
2531                 rx_ring->sbq_clean_idx = rx_ring->sbq_prod_idx;
2532                 rx_ring->sbq_free_cnt = 16;
2533         }
2534         switch (rx_ring->type) {
2535         case TX_Q:
2536                 /* If there's only one interrupt, then we use
2537                  * worker threads to process the outbound
2538                  * completion handling rx_rings. We do this so
2539                  * they can be run on multiple CPUs. There is
2540                  * room to play with this more where we would only
2541                  * run in a worker if there are more than x number
2542                  * of outbound completions on the queue and more
2543                  * than one queue active.  Some threshold that
2544                  * would indicate a benefit in spite of the cost
2545                  * of a context switch.
2546                  * If there's more than one interrupt, then the
2547                  * outbound completions are processed in the ISR.
2548                  */
2549                 if (!test_bit(QL_MSIX_ENABLED, &qdev->flags))
2550                         INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2551                 else {
2552                         /* With all debug warnings on we see a WARN_ON message
2553                          * when we free the skb in the interrupt context.
2554                          */
2555                         INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2556                 }
2557                 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
2558                 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
2559                 break;
2560         case DEFAULT_Q:
2561                 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_rx_clean);
2562                 cqicb->irq_delay = 0;
2563                 cqicb->pkt_delay = 0;
2564                 break;
2565         case RX_Q:
2566                 /* Inbound completion handling rx_rings run in
2567                  * separate NAPI contexts.
2568                  */
2569                 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
2570                                64);
2571                 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
2572                 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
2573                 break;
2574         default:
2575                 QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
2576                         rx_ring->type);
2577         }
2578         QPRINTK(qdev, IFUP, INFO, "Initializing rx work queue.\n");
2579         err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
2580                            CFG_LCQ, rx_ring->cq_id);
2581         if (err) {
2582                 QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
2583                 return err;
2584         }
2585         QPRINTK(qdev, IFUP, INFO, "Successfully loaded CQICB.\n");
2586         /*
2587          * Advance the producer index for the buffer queues.
2588          */
2589         wmb();
2590         if (rx_ring->lbq_len)
2591                 ql_write_db_reg(rx_ring->lbq_prod_idx,
2592                                 rx_ring->lbq_prod_idx_db_reg);
2593         if (rx_ring->sbq_len)
2594                 ql_write_db_reg(rx_ring->sbq_prod_idx,
2595                                 rx_ring->sbq_prod_idx_db_reg);
2596         return err;
2597 }
2598
2599 static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2600 {
2601         struct wqicb *wqicb = (struct wqicb *)tx_ring;
2602         void __iomem *doorbell_area =
2603             qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
2604         void *shadow_reg = qdev->tx_ring_shadow_reg_area +
2605             (tx_ring->wq_id * sizeof(u64));
2606         u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
2607             (tx_ring->wq_id * sizeof(u64));
2608         int err = 0;
2609
2610         /*
2611          * Assign doorbell registers for this tx_ring.
2612          */
2613         /* TX PCI doorbell mem area for tx producer index */
2614         tx_ring->prod_idx_db_reg = (u32 *) doorbell_area;
2615         tx_ring->prod_idx = 0;
2616         /* TX PCI doorbell mem area + 0x04 */
2617         tx_ring->valid_db_reg = doorbell_area + 0x04;
2618
2619         /*
2620          * Assign shadow registers for this tx_ring.
2621          */
2622         tx_ring->cnsmr_idx_sh_reg = shadow_reg;
2623         tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
2624
2625         wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
2626         wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
2627                                    Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
2628         wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
2629         wqicb->rid = 0;
2630         wqicb->addr_lo = cpu_to_le32(tx_ring->wq_base_dma);
2631         wqicb->addr_hi = cpu_to_le32((u64) tx_ring->wq_base_dma >> 32);
2632
2633         wqicb->cnsmr_idx_addr_lo = cpu_to_le32(tx_ring->cnsmr_idx_sh_reg_dma);
2634         wqicb->cnsmr_idx_addr_hi =
2635             cpu_to_le32((u64) tx_ring->cnsmr_idx_sh_reg_dma >> 32);
2636
2637         ql_init_tx_ring(qdev, tx_ring);
2638
2639         err = ql_write_cfg(qdev, wqicb, sizeof(wqicb), CFG_LRQ,
2640                            (u16) tx_ring->wq_id);
2641         if (err) {
2642                 QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
2643                 return err;
2644         }
2645         QPRINTK(qdev, IFUP, INFO, "Successfully loaded WQICB.\n");
2646         return err;
2647 }
2648
2649 static void ql_disable_msix(struct ql_adapter *qdev)
2650 {
2651         if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2652                 pci_disable_msix(qdev->pdev);
2653                 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
2654                 kfree(qdev->msi_x_entry);
2655                 qdev->msi_x_entry = NULL;
2656         } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
2657                 pci_disable_msi(qdev->pdev);
2658                 clear_bit(QL_MSI_ENABLED, &qdev->flags);
2659         }
2660 }
2661
2662 static void ql_enable_msix(struct ql_adapter *qdev)
2663 {
2664         int i;
2665
2666         qdev->intr_count = 1;
2667         /* Get the MSIX vectors. */
2668         if (irq_type == MSIX_IRQ) {
2669                 /* Try to alloc space for the msix struct,
2670                  * if it fails then go to MSI/legacy.
2671                  */
2672                 qdev->msi_x_entry = kcalloc(qdev->rx_ring_count,
2673                                             sizeof(struct msix_entry),
2674                                             GFP_KERNEL);
2675                 if (!qdev->msi_x_entry) {
2676                         irq_type = MSI_IRQ;
2677                         goto msi;
2678                 }
2679
2680                 for (i = 0; i < qdev->rx_ring_count; i++)
2681                         qdev->msi_x_entry[i].entry = i;
2682
2683                 if (!pci_enable_msix
2684                     (qdev->pdev, qdev->msi_x_entry, qdev->rx_ring_count)) {
2685                         set_bit(QL_MSIX_ENABLED, &qdev->flags);
2686                         qdev->intr_count = qdev->rx_ring_count;
2687                         QPRINTK(qdev, IFUP, INFO,
2688                                 "MSI-X Enabled, got %d vectors.\n",
2689                                 qdev->intr_count);
2690                         return;
2691                 } else {
2692                         kfree(qdev->msi_x_entry);
2693                         qdev->msi_x_entry = NULL;
2694                         QPRINTK(qdev, IFUP, WARNING,
2695                                 "MSI-X Enable failed, trying MSI.\n");
2696                         irq_type = MSI_IRQ;
2697                 }
2698         }
2699 msi:
2700         if (irq_type == MSI_IRQ) {
2701                 if (!pci_enable_msi(qdev->pdev)) {
2702                         set_bit(QL_MSI_ENABLED, &qdev->flags);
2703                         QPRINTK(qdev, IFUP, INFO,
2704                                 "Running with MSI interrupts.\n");
2705                         return;
2706                 }
2707         }
2708         irq_type = LEG_IRQ;
2709         QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
2710 }
2711
2712 /*
2713  * Here we build the intr_context structures based on
2714  * our rx_ring count and intr vector count.
2715  * The intr_context structure is used to hook each vector
2716  * to possibly different handlers.
2717  */
2718 static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
2719 {
2720         int i = 0;
2721         struct intr_context *intr_context = &qdev->intr_context[0];
2722
2723         ql_enable_msix(qdev);
2724
2725         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
2726                 /* Each rx_ring has it's
2727                  * own intr_context since we have separate
2728                  * vectors for each queue.
2729                  * This only true when MSI-X is enabled.
2730                  */
2731                 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2732                         qdev->rx_ring[i].irq = i;
2733                         intr_context->intr = i;
2734                         intr_context->qdev = qdev;
2735                         /*
2736                          * We set up each vectors enable/disable/read bits so
2737                          * there's no bit/mask calculations in the critical path.
2738                          */
2739                         intr_context->intr_en_mask =
2740                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2741                             INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
2742                             | i;
2743                         intr_context->intr_dis_mask =
2744                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2745                             INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
2746                             INTR_EN_IHD | i;
2747                         intr_context->intr_read_mask =
2748                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2749                             INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
2750                             i;
2751
2752                         if (i == 0) {
2753                                 /*
2754                                  * Default queue handles bcast/mcast plus
2755                                  * async events.  Needs buffers.
2756                                  */
2757                                 intr_context->handler = qlge_isr;
2758                                 sprintf(intr_context->name, "%s-default-queue",
2759                                         qdev->ndev->name);
2760                         } else if (i < qdev->rss_ring_first_cq_id) {
2761                                 /*
2762                                  * Outbound queue is for outbound completions only.
2763                                  */
2764                                 intr_context->handler = qlge_msix_tx_isr;
2765                                 sprintf(intr_context->name, "%s-txq-%d",
2766                                         qdev->ndev->name, i);
2767                         } else {
2768                                 /*
2769                                  * Inbound queues handle unicast frames only.
2770                                  */
2771                                 intr_context->handler = qlge_msix_rx_isr;
2772                                 sprintf(intr_context->name, "%s-rxq-%d",
2773                                         qdev->ndev->name, i);
2774                         }
2775                 }
2776         } else {
2777                 /*
2778                  * All rx_rings use the same intr_context since
2779                  * there is only one vector.
2780                  */
2781                 intr_context->intr = 0;
2782                 intr_context->qdev = qdev;
2783                 /*
2784                  * We set up each vectors enable/disable/read bits so
2785                  * there's no bit/mask calculations in the critical path.
2786                  */
2787                 intr_context->intr_en_mask =
2788                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
2789                 intr_context->intr_dis_mask =
2790                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2791                     INTR_EN_TYPE_DISABLE;
2792                 intr_context->intr_read_mask =
2793                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
2794                 /*
2795                  * Single interrupt means one handler for all rings.
2796                  */
2797                 intr_context->handler = qlge_isr;
2798                 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
2799                 for (i = 0; i < qdev->rx_ring_count; i++)
2800                         qdev->rx_ring[i].irq = 0;
2801         }
2802 }
2803
2804 static void ql_free_irq(struct ql_adapter *qdev)
2805 {
2806         int i;
2807         struct intr_context *intr_context = &qdev->intr_context[0];
2808
2809         for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2810                 if (intr_context->hooked) {
2811                         if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2812                                 free_irq(qdev->msi_x_entry[i].vector,
2813                                          &qdev->rx_ring[i]);
2814                                 QPRINTK(qdev, IFDOWN, ERR,
2815                                         "freeing msix interrupt %d.\n", i);
2816                         } else {
2817                                 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
2818                                 QPRINTK(qdev, IFDOWN, ERR,
2819                                         "freeing msi interrupt %d.\n", i);
2820                         }
2821                 }
2822         }
2823         ql_disable_msix(qdev);
2824 }
2825
2826 static int ql_request_irq(struct ql_adapter *qdev)
2827 {
2828         int i;
2829         int status = 0;
2830         struct pci_dev *pdev = qdev->pdev;
2831         struct intr_context *intr_context = &qdev->intr_context[0];
2832
2833         ql_resolve_queues_to_irqs(qdev);
2834
2835         for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2836                 atomic_set(&intr_context->irq_cnt, 0);
2837                 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2838                         status = request_irq(qdev->msi_x_entry[i].vector,
2839                                              intr_context->handler,
2840                                              0,
2841                                              intr_context->name,
2842                                              &qdev->rx_ring[i]);
2843                         if (status) {
2844                                 QPRINTK(qdev, IFUP, ERR,
2845                                         "Failed request for MSIX interrupt %d.\n",
2846                                         i);
2847                                 goto err_irq;
2848                         } else {
2849                                 QPRINTK(qdev, IFUP, INFO,
2850                                         "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2851                                         i,
2852                                         qdev->rx_ring[i].type ==
2853                                         DEFAULT_Q ? "DEFAULT_Q" : "",
2854                                         qdev->rx_ring[i].type ==
2855                                         TX_Q ? "TX_Q" : "",
2856                                         qdev->rx_ring[i].type ==
2857                                         RX_Q ? "RX_Q" : "", intr_context->name);
2858                         }
2859                 } else {
2860                         QPRINTK(qdev, IFUP, DEBUG,
2861                                 "trying msi or legacy interrupts.\n");
2862                         QPRINTK(qdev, IFUP, DEBUG,
2863                                 "%s: irq = %d.\n", __func__, pdev->irq);
2864                         QPRINTK(qdev, IFUP, DEBUG,
2865                                 "%s: context->name = %s.\n", __func__,
2866                                intr_context->name);
2867                         QPRINTK(qdev, IFUP, DEBUG,
2868                                 "%s: dev_id = 0x%p.\n", __func__,
2869                                &qdev->rx_ring[0]);
2870                         status =
2871                             request_irq(pdev->irq, qlge_isr,
2872                                         test_bit(QL_MSI_ENABLED,
2873                                                  &qdev->
2874                                                  flags) ? 0 : IRQF_SHARED,
2875                                         intr_context->name, &qdev->rx_ring[0]);
2876                         if (status)
2877                                 goto err_irq;
2878
2879                         QPRINTK(qdev, IFUP, ERR,
2880                                 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2881                                 i,
2882                                 qdev->rx_ring[0].type ==
2883                                 DEFAULT_Q ? "DEFAULT_Q" : "",
2884                                 qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
2885                                 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
2886                                 intr_context->name);
2887                 }
2888                 intr_context->hooked = 1;
2889         }
2890         return status;
2891 err_irq:
2892         QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
2893         ql_free_irq(qdev);
2894         return status;
2895 }
2896
2897 static int ql_start_rss(struct ql_adapter *qdev)
2898 {
2899         struct ricb *ricb = &qdev->ricb;
2900         int status = 0;
2901         int i;
2902         u8 *hash_id = (u8 *) ricb->hash_cq_id;
2903
2904         memset((void *)ricb, 0, sizeof(ricb));
2905
2906         ricb->base_cq = qdev->rss_ring_first_cq_id | RSS_L4K;
2907         ricb->flags =
2908             (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
2909              RSS_RT6);
2910         ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1);
2911
2912         /*
2913          * Fill out the Indirection Table.
2914          */
2915         for (i = 0; i < 32; i++)
2916                 hash_id[i] = i & 1;
2917
2918         /*
2919          * Random values for the IPv6 and IPv4 Hash Keys.
2920          */
2921         get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40);
2922         get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16);
2923
2924         QPRINTK(qdev, IFUP, INFO, "Initializing RSS.\n");
2925
2926         status = ql_write_cfg(qdev, ricb, sizeof(ricb), CFG_LR, 0);
2927         if (status) {
2928                 QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
2929                 return status;
2930         }
2931         QPRINTK(qdev, IFUP, INFO, "Successfully loaded RICB.\n");
2932         return status;
2933 }
2934
2935 /* Initialize the frame-to-queue routing. */
2936 static int ql_route_initialize(struct ql_adapter *qdev)
2937 {
2938         int status = 0;
2939         int i;
2940
2941         /* Clear all the entries in the routing table. */
2942         for (i = 0; i < 16; i++) {
2943                 status = ql_set_routing_reg(qdev, i, 0, 0);
2944                 if (status) {
2945                         QPRINTK(qdev, IFUP, ERR,
2946                                 "Failed to init routing register for CAM packets.\n");
2947                         return status;
2948                 }
2949         }
2950
2951         status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
2952         if (status) {
2953                 QPRINTK(qdev, IFUP, ERR,
2954                         "Failed to init routing register for error packets.\n");
2955                 return status;
2956         }
2957         status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
2958         if (status) {
2959                 QPRINTK(qdev, IFUP, ERR,
2960                         "Failed to init routing register for broadcast packets.\n");
2961                 return status;
2962         }
2963         /* If we have more than one inbound queue, then turn on RSS in the
2964          * routing block.
2965          */
2966         if (qdev->rss_ring_count > 1) {
2967                 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
2968                                         RT_IDX_RSS_MATCH, 1);
2969                 if (status) {
2970                         QPRINTK(qdev, IFUP, ERR,
2971                                 "Failed to init routing register for MATCH RSS packets.\n");
2972                         return status;
2973                 }
2974         }
2975
2976         status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
2977                                     RT_IDX_CAM_HIT, 1);
2978         if (status) {
2979                 QPRINTK(qdev, IFUP, ERR,
2980                         "Failed to init routing register for CAM packets.\n");
2981                 return status;
2982         }
2983         return status;
2984 }
2985
2986 static int ql_adapter_initialize(struct ql_adapter *qdev)
2987 {
2988         u32 value, mask;
2989         int i;
2990         int status = 0;
2991
2992         /*
2993          * Set up the System register to halt on errors.
2994          */
2995         value = SYS_EFE | SYS_FAE;
2996         mask = value << 16;
2997         ql_write32(qdev, SYS, mask | value);
2998
2999         /* Set the default queue. */
3000         value = NIC_RCV_CFG_DFQ;
3001         mask = NIC_RCV_CFG_DFQ_MASK;
3002         ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3003
3004         /* Set the MPI interrupt to enabled. */
3005         ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3006
3007         /* Enable the function, set pagesize, enable error checking. */
3008         value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
3009             FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
3010
3011         /* Set/clear header splitting. */
3012         mask = FSC_VM_PAGESIZE_MASK |
3013             FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3014         ql_write32(qdev, FSC, mask | value);
3015
3016         ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
3017                 min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
3018
3019         /* Start up the rx queues. */
3020         for (i = 0; i < qdev->rx_ring_count; i++) {
3021                 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3022                 if (status) {
3023                         QPRINTK(qdev, IFUP, ERR,
3024                                 "Failed to start rx ring[%d].\n", i);
3025                         return status;
3026                 }
3027         }
3028
3029         /* If there is more than one inbound completion queue
3030          * then download a RICB to configure RSS.
3031          */
3032         if (qdev->rss_ring_count > 1) {
3033                 status = ql_start_rss(qdev);
3034                 if (status) {
3035                         QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
3036                         return status;
3037                 }
3038         }
3039
3040         /* Start up the tx queues. */
3041         for (i = 0; i < qdev->tx_ring_count; i++) {
3042                 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3043                 if (status) {
3044                         QPRINTK(qdev, IFUP, ERR,
3045                                 "Failed to start tx ring[%d].\n", i);
3046                         return status;
3047                 }
3048         }
3049
3050         status = ql_port_initialize(qdev);
3051         if (status) {
3052                 QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
3053                 return status;
3054         }
3055
3056         status = ql_set_mac_addr_reg(qdev, (u8 *) qdev->ndev->perm_addr,
3057                                      MAC_ADDR_TYPE_CAM_MAC, qdev->func);
3058         if (status) {
3059                 QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
3060                 return status;
3061         }
3062
3063         status = ql_route_initialize(qdev);
3064         if (status) {
3065                 QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
3066                 return status;
3067         }
3068
3069         /* Start NAPI for the RSS queues. */
3070         for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++) {
3071                 QPRINTK(qdev, IFUP, INFO, "Enabling NAPI for rx_ring[%d].\n",
3072                         i);
3073                 napi_enable(&qdev->rx_ring[i].napi);
3074         }
3075
3076         return status;
3077 }
3078
3079 /* Issue soft reset to chip. */
3080 static int ql_adapter_reset(struct ql_adapter *qdev)
3081 {
3082         u32 value;
3083         int max_wait_time;
3084         int status = 0;
3085         int resetCnt = 0;
3086
3087 #define MAX_RESET_CNT   1
3088 issueReset:
3089         resetCnt++;
3090         QPRINTK(qdev, IFDOWN, DEBUG, "Issue soft reset to chip.\n");
3091         ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3092         /* Wait for reset to complete. */
3093         max_wait_time = 3;
3094         QPRINTK(qdev, IFDOWN, DEBUG, "Wait %d seconds for reset to complete.\n",
3095                 max_wait_time);
3096         do {
3097                 value = ql_read32(qdev, RST_FO);
3098                 if ((value & RST_FO_FR) == 0)
3099                         break;
3100
3101                 ssleep(1);
3102         } while ((--max_wait_time));
3103         if (value & RST_FO_FR) {
3104                 QPRINTK(qdev, IFDOWN, ERR,
3105                         "Stuck in SoftReset:  FSC_SR:0x%08x\n", value);
3106                 if (resetCnt < MAX_RESET_CNT)
3107                         goto issueReset;
3108         }
3109         if (max_wait_time == 0) {
3110                 status = -ETIMEDOUT;
3111                 QPRINTK(qdev, IFDOWN, ERR,
3112                         "ETIMEOUT!!! errored out of resetting the chip!\n");
3113         }
3114
3115         return status;
3116 }
3117
3118 static void ql_display_dev_info(struct net_device *ndev)
3119 {
3120         struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3121
3122         QPRINTK(qdev, PROBE, INFO,
3123                 "Function #%d, NIC Roll %d, NIC Rev = %d, "
3124                 "XG Roll = %d, XG Rev = %d.\n",
3125                 qdev->func,
3126                 qdev->chip_rev_id & 0x0000000f,
3127                 qdev->chip_rev_id >> 4 & 0x0000000f,
3128                 qdev->chip_rev_id >> 8 & 0x0000000f,
3129                 qdev->chip_rev_id >> 12 & 0x0000000f);
3130         QPRINTK(qdev, PROBE, INFO,
3131                 "MAC address %02x:%02x:%02x:%02x:%02x:%02x\n",
3132                 ndev->dev_addr[0], ndev->dev_addr[1],
3133                 ndev->dev_addr[2], ndev->dev_addr[3], ndev->dev_addr[4],
3134                 ndev->dev_addr[5]);
3135 }
3136
3137 static int ql_adapter_down(struct ql_adapter *qdev)
3138 {
3139         struct net_device *ndev = qdev->ndev;
3140         int i, status = 0;
3141         struct rx_ring *rx_ring;
3142
3143         netif_stop_queue(ndev);
3144         netif_carrier_off(ndev);
3145
3146         cancel_delayed_work_sync(&qdev->asic_reset_work);
3147         cancel_delayed_work_sync(&qdev->mpi_reset_work);
3148         cancel_delayed_work_sync(&qdev->mpi_work);
3149
3150         /* The default queue at index 0 is always processed in
3151          * a workqueue.
3152          */
3153         cancel_delayed_work_sync(&qdev->rx_ring[0].rx_work);
3154
3155         /* The rest of the rx_rings are processed in
3156          * a workqueue only if it's a single interrupt
3157          * environment (MSI/Legacy).
3158          */
3159         for (i = 1; i > qdev->rx_ring_count; i++) {
3160                 rx_ring = &qdev->rx_ring[i];
3161                 /* Only the RSS rings use NAPI on multi irq
3162                  * environment.  Outbound completion processing
3163                  * is done in interrupt context.
3164                  */
3165                 if (i >= qdev->rss_ring_first_cq_id) {
3166                         napi_disable(&rx_ring->napi);
3167                 } else {
3168                         cancel_delayed_work_sync(&rx_ring->rx_work);
3169                 }
3170         }
3171
3172         clear_bit(QL_ADAPTER_UP, &qdev->flags);
3173
3174         ql_disable_interrupts(qdev);
3175
3176         ql_tx_ring_clean(qdev);
3177
3178         spin_lock(&qdev->hw_lock);
3179         status = ql_adapter_reset(qdev);
3180         if (status)
3181                 QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
3182                         qdev->func);
3183         spin_unlock(&qdev->hw_lock);
3184         return status;
3185 }
3186
3187 static int ql_adapter_up(struct ql_adapter *qdev)
3188 {
3189         int err = 0;
3190
3191         spin_lock(&qdev->hw_lock);
3192         err = ql_adapter_initialize(qdev);
3193         if (err) {
3194                 QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
3195                 spin_unlock(&qdev->hw_lock);
3196                 goto err_init;
3197         }
3198         spin_unlock(&qdev->hw_lock);
3199         set_bit(QL_ADAPTER_UP, &qdev->flags);
3200         ql_enable_interrupts(qdev);
3201         ql_enable_all_completion_interrupts(qdev);
3202         if ((ql_read32(qdev, STS) & qdev->port_init)) {
3203                 netif_carrier_on(qdev->ndev);
3204                 netif_start_queue(qdev->ndev);
3205         }
3206
3207         return 0;
3208 err_init:
3209         ql_adapter_reset(qdev);
3210         return err;
3211 }
3212
3213 static int ql_cycle_adapter(struct ql_adapter *qdev)
3214 {
3215         int status;
3216
3217         status = ql_adapter_down(qdev);
3218         if (status)
3219                 goto error;
3220
3221         status = ql_adapter_up(qdev);
3222         if (status)
3223                 goto error;
3224
3225         return status;
3226 error:
3227         QPRINTK(qdev, IFUP, ALERT,
3228                 "Driver up/down cycle failed, closing device\n");
3229         rtnl_lock();
3230         dev_close(qdev->ndev);
3231         rtnl_unlock();
3232         return status;
3233 }
3234
3235 static void ql_release_adapter_resources(struct ql_adapter *qdev)
3236 {
3237         ql_free_mem_resources(qdev);
3238         ql_free_irq(qdev);
3239 }
3240
3241 static int ql_get_adapter_resources(struct ql_adapter *qdev)
3242 {
3243         int status = 0;
3244
3245         if (ql_alloc_mem_resources(qdev)) {
3246                 QPRINTK(qdev, IFUP, ERR, "Unable to  allocate memory.\n");
3247                 return -ENOMEM;
3248         }
3249         status = ql_request_irq(qdev);
3250         if (status)
3251                 goto err_irq;
3252         return status;
3253 err_irq:
3254         ql_free_mem_resources(qdev);
3255         return status;
3256 }
3257
3258 static int qlge_close(struct net_device *ndev)
3259 {
3260         struct ql_adapter *qdev = netdev_priv(ndev);
3261
3262         /*
3263          * Wait for device to recover from a reset.
3264          * (Rarely happens, but possible.)
3265          */
3266         while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
3267                 msleep(1);
3268         ql_adapter_down(qdev);
3269         ql_release_adapter_resources(qdev);
3270         ql_free_ring_cb(qdev);
3271         return 0;
3272 }
3273
3274 static int ql_configure_rings(struct ql_adapter *qdev)
3275 {
3276         int i;
3277         struct rx_ring *rx_ring;
3278         struct tx_ring *tx_ring;
3279         int cpu_cnt = num_online_cpus();
3280
3281         /*
3282          * For each processor present we allocate one
3283          * rx_ring for outbound completions, and one
3284          * rx_ring for inbound completions.  Plus there is
3285          * always the one default queue.  For the CPU
3286          * counts we end up with the following rx_rings:
3287          * rx_ring count =
3288          *  one default queue +
3289          *  (CPU count * outbound completion rx_ring) +
3290          *  (CPU count * inbound (RSS) completion rx_ring)
3291          * To keep it simple we limit the total number of
3292          * queues to < 32, so we truncate CPU to 8.
3293          * This limitation can be removed when requested.
3294          */
3295
3296         if (cpu_cnt > 8)
3297                 cpu_cnt = 8;
3298
3299         /*
3300          * rx_ring[0] is always the default queue.
3301          */
3302         /* Allocate outbound completion ring for each CPU. */
3303         qdev->tx_ring_count = cpu_cnt;
3304         /* Allocate inbound completion (RSS) ring for each CPU. */
3305         qdev->rss_ring_count = cpu_cnt;
3306         /* cq_id for the first inbound ring handler. */
3307         qdev->rss_ring_first_cq_id = cpu_cnt + 1;
3308         /*
3309          * qdev->rx_ring_count:
3310          * Total number of rx_rings.  This includes the one
3311          * default queue, a number of outbound completion
3312          * handler rx_rings, and the number of inbound
3313          * completion handler rx_rings.
3314          */
3315         qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count + 1;
3316
3317         if (ql_alloc_ring_cb(qdev))
3318                 return -ENOMEM;
3319
3320         for (i = 0; i < qdev->tx_ring_count; i++) {
3321                 tx_ring = &qdev->tx_ring[i];
3322                 memset((void *)tx_ring, 0, sizeof(tx_ring));
3323                 tx_ring->qdev = qdev;
3324                 tx_ring->wq_id = i;
3325                 tx_ring->wq_len = qdev->tx_ring_size;
3326                 tx_ring->wq_size =
3327                     tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
3328
3329                 /*
3330                  * The completion queue ID for the tx rings start
3331                  * immediately after the default Q ID, which is zero.
3332                  */
3333                 tx_ring->cq_id = i + 1;
3334         }
3335
3336         for (i = 0; i < qdev->rx_ring_count; i++) {
3337                 rx_ring = &qdev->rx_ring[i];
3338                 memset((void *)rx_ring, 0, sizeof(rx_ring));
3339                 rx_ring->qdev = qdev;
3340                 rx_ring->cq_id = i;
3341                 rx_ring->cpu = i % cpu_cnt;     /* CPU to run handler on. */
3342                 if (i == 0) {   /* Default queue at index 0. */
3343                         /*
3344                          * Default queue handles bcast/mcast plus
3345                          * async events.  Needs buffers.
3346                          */
3347                         rx_ring->cq_len = qdev->rx_ring_size;
3348                         rx_ring->cq_size =
3349                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3350                         rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3351                         rx_ring->lbq_size =
3352                             rx_ring->lbq_len * sizeof(struct bq_element);
3353                         rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3354                         rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3355                         rx_ring->sbq_size =
3356                             rx_ring->sbq_len * sizeof(struct bq_element);
3357                         rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3358                         rx_ring->type = DEFAULT_Q;
3359                 } else if (i < qdev->rss_ring_first_cq_id) {
3360                         /*
3361                          * Outbound queue handles outbound completions only.
3362                          */
3363                         /* outbound cq is same size as tx_ring it services. */
3364                         rx_ring->cq_len = qdev->tx_ring_size;
3365                         rx_ring->cq_size =
3366                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3367                         rx_ring->lbq_len = 0;
3368                         rx_ring->lbq_size = 0;
3369                         rx_ring->lbq_buf_size = 0;
3370                         rx_ring->sbq_len = 0;
3371                         rx_ring->sbq_size = 0;
3372                         rx_ring->sbq_buf_size = 0;
3373                         rx_ring->type = TX_Q;
3374                 } else {        /* Inbound completions (RSS) queues */
3375                         /*
3376                          * Inbound queues handle unicast frames only.
3377                          */
3378                         rx_ring->cq_len = qdev->rx_ring_size;
3379                         rx_ring->cq_size =
3380                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3381                         rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3382                         rx_ring->lbq_size =
3383                             rx_ring->lbq_len * sizeof(struct bq_element);
3384                         rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3385                         rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3386                         rx_ring->sbq_size =
3387                             rx_ring->sbq_len * sizeof(struct bq_element);
3388                         rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3389                         rx_ring->type = RX_Q;
3390                 }
3391         }
3392         return 0;
3393 }
3394
3395 static int qlge_open(struct net_device *ndev)
3396 {
3397         int err = 0;
3398         struct ql_adapter *qdev = netdev_priv(ndev);
3399
3400         err = ql_configure_rings(qdev);
3401         if (err)
3402                 return err;
3403
3404         err = ql_get_adapter_resources(qdev);
3405         if (err)
3406                 goto error_up;
3407
3408         err = ql_adapter_up(qdev);
3409         if (err)
3410                 goto error_up;
3411
3412         return err;
3413
3414 error_up:
3415         ql_release_adapter_resources(qdev);
3416         ql_free_ring_cb(qdev);
3417         return err;
3418 }
3419
3420 static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
3421 {
3422         struct ql_adapter *qdev = netdev_priv(ndev);
3423
3424         if (ndev->mtu == 1500 && new_mtu == 9000) {
3425                 QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
3426         } else if (ndev->mtu == 9000 && new_mtu == 1500) {
3427                 QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
3428         } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
3429                    (ndev->mtu == 9000 && new_mtu == 9000)) {
3430                 return 0;
3431         } else
3432                 return -EINVAL;
3433         ndev->mtu = new_mtu;
3434         return 0;
3435 }
3436
3437 static struct net_device_stats *qlge_get_stats(struct net_device
3438                                                *ndev)
3439 {
3440         struct ql_adapter *qdev = netdev_priv(ndev);
3441         return &qdev->stats;
3442 }
3443
3444 static void qlge_set_multicast_list(struct net_device *ndev)
3445 {
3446         struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3447         struct dev_mc_list *mc_ptr;
3448         int i;
3449
3450         spin_lock(&qdev->hw_lock);
3451         /*
3452          * Set or clear promiscuous mode if a
3453          * transition is taking place.
3454          */
3455         if (ndev->flags & IFF_PROMISC) {
3456                 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3457                         if (ql_set_routing_reg
3458                             (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
3459                                 QPRINTK(qdev, HW, ERR,
3460                                         "Failed to set promiscous mode.\n");
3461                         } else {
3462                                 set_bit(QL_PROMISCUOUS, &qdev->flags);
3463                         }
3464                 }
3465         } else {
3466                 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3467                         if (ql_set_routing_reg
3468                             (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
3469                                 QPRINTK(qdev, HW, ERR,
3470                                         "Failed to clear promiscous mode.\n");
3471                         } else {
3472                                 clear_bit(QL_PROMISCUOUS, &qdev->flags);
3473                         }
3474                 }
3475         }
3476
3477         /*
3478          * Set or clear all multicast mode if a
3479          * transition is taking place.
3480          */
3481         if ((ndev->flags & IFF_ALLMULTI) ||
3482             (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
3483                 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
3484                         if (ql_set_routing_reg
3485                             (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
3486                                 QPRINTK(qdev, HW, ERR,
3487                                         "Failed to set all-multi mode.\n");
3488                         } else {
3489                                 set_bit(QL_ALLMULTI, &qdev->flags);
3490                         }
3491                 }
3492         } else {
3493                 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
3494                         if (ql_set_routing_reg
3495                             (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
3496                                 QPRINTK(qdev, HW, ERR,
3497                                         "Failed to clear all-multi mode.\n");
3498                         } else {
3499                                 clear_bit(QL_ALLMULTI, &qdev->flags);
3500                         }
3501                 }
3502         }
3503
3504         if (ndev->mc_count) {
3505                 for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
3506                      i++, mc_ptr = mc_ptr->next)
3507                         if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
3508                                                 MAC_ADDR_TYPE_MULTI_MAC, i)) {
3509                                 QPRINTK(qdev, HW, ERR,
3510                                         "Failed to loadmulticast address.\n");
3511                                 goto exit;
3512                         }
3513                 if (ql_set_routing_reg
3514                     (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
3515                         QPRINTK(qdev, HW, ERR,
3516                                 "Failed to set multicast match mode.\n");
3517                 } else {
3518                         set_bit(QL_ALLMULTI, &qdev->flags);
3519                 }
3520         }
3521 exit:
3522         spin_unlock(&qdev->hw_lock);
3523 }
3524
3525 static int qlge_set_mac_address(struct net_device *ndev, void *p)
3526 {
3527         struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3528         struct sockaddr *addr = p;
3529
3530         if (netif_running(ndev))
3531                 return -EBUSY;
3532
3533         if (!is_valid_ether_addr(addr->sa_data))
3534                 return -EADDRNOTAVAIL;
3535         memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3536
3537         spin_lock(&qdev->hw_lock);
3538         if (ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
3539                         MAC_ADDR_TYPE_CAM_MAC, qdev->func)) {/* Unicast */
3540                 QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
3541                 return -1;
3542         }
3543         spin_unlock(&qdev->hw_lock);
3544
3545         return 0;
3546 }
3547
3548 static void qlge_tx_timeout(struct net_device *ndev)
3549 {
3550         struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3551         queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
3552 }
3553
3554 static void ql_asic_reset_work(struct work_struct *work)
3555 {
3556         struct ql_adapter *qdev =
3557             container_of(work, struct ql_adapter, asic_reset_work.work);
3558         ql_cycle_adapter(qdev);
3559 }
3560
3561 static void ql_get_board_info(struct ql_adapter *qdev)
3562 {
3563         qdev->func =
3564             (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
3565         if (qdev->func) {
3566                 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
3567                 qdev->port_link_up = STS_PL1;
3568                 qdev->port_init = STS_PI1;
3569                 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
3570                 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
3571         } else {
3572                 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
3573                 qdev->port_link_up = STS_PL0;
3574                 qdev->port_init = STS_PI0;
3575                 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
3576                 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
3577         }
3578         qdev->chip_rev_id = ql_read32(qdev, REV_ID);
3579 }
3580
3581 static void ql_release_all(struct pci_dev *pdev)
3582 {
3583         struct net_device *ndev = pci_get_drvdata(pdev);
3584         struct ql_adapter *qdev = netdev_priv(ndev);
3585
3586         if (qdev->workqueue) {
3587                 destroy_workqueue(qdev->workqueue);
3588                 qdev->workqueue = NULL;
3589         }
3590         if (qdev->q_workqueue) {
3591                 destroy_workqueue(qdev->q_workqueue);
3592                 qdev->q_workqueue = NULL;
3593         }
3594         if (qdev->reg_base)
3595                 iounmap((void *)qdev->reg_base);
3596         if (qdev->doorbell_area)
3597                 iounmap(qdev->doorbell_area);
3598         pci_release_regions(pdev);
3599         pci_set_drvdata(pdev, NULL);
3600 }
3601
3602 static int __devinit ql_init_device(struct pci_dev *pdev,
3603                                     struct net_device *ndev, int cards_found)
3604 {
3605         struct ql_adapter *qdev = netdev_priv(ndev);
3606         int pos, err = 0;
3607         u16 val16;
3608
3609         memset((void *)qdev, 0, sizeof(qdev));
3610         err = pci_enable_device(pdev);
3611         if (err) {
3612                 dev_err(&pdev->dev, "PCI device enable failed.\n");
3613                 return err;
3614         }
3615
3616         pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
3617         if (pos <= 0) {
3618                 dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
3619                         "aborting.\n");
3620                 goto err_out;
3621         } else {
3622                 pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
3623                 val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
3624                 val16 |= (PCI_EXP_DEVCTL_CERE |
3625                           PCI_EXP_DEVCTL_NFERE |
3626                           PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
3627                 pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
3628         }
3629
3630         err = pci_request_regions(pdev, DRV_NAME);
3631         if (err) {
3632                 dev_err(&pdev->dev, "PCI region request failed.\n");
3633                 goto err_out;
3634         }
3635
3636         pci_set_master(pdev);
3637         if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3638                 set_bit(QL_DMA64, &qdev->flags);
3639                 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3640         } else {
3641                 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
3642                 if (!err)
3643                        err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3644         }
3645
3646         if (err) {
3647                 dev_err(&pdev->dev, "No usable DMA configuration.\n");
3648                 goto err_out;
3649         }
3650
3651         pci_set_drvdata(pdev, ndev);
3652         qdev->reg_base =
3653             ioremap_nocache(pci_resource_start(pdev, 1),
3654                             pci_resource_len(pdev, 1));
3655         if (!qdev->reg_base) {
3656                 dev_err(&pdev->dev, "Register mapping failed.\n");
3657                 err = -ENOMEM;
3658                 goto err_out;
3659         }
3660
3661         qdev->doorbell_area_size = pci_resource_len(pdev, 3);
3662         qdev->doorbell_area =
3663             ioremap_nocache(pci_resource_start(pdev, 3),
3664                             pci_resource_len(pdev, 3));
3665         if (!qdev->doorbell_area) {
3666                 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
3667                 err = -ENOMEM;
3668                 goto err_out;
3669         }
3670
3671         ql_get_board_info(qdev);
3672         qdev->ndev = ndev;
3673         qdev->pdev = pdev;
3674         qdev->msg_enable = netif_msg_init(debug, default_msg);
3675         spin_lock_init(&qdev->hw_lock);
3676         spin_lock_init(&qdev->stats_lock);
3677
3678         /* make sure the EEPROM is good */
3679         err = ql_get_flash_params(qdev);
3680         if (err) {
3681                 dev_err(&pdev->dev, "Invalid FLASH.\n");
3682                 goto err_out;
3683         }
3684
3685         if (!is_valid_ether_addr(qdev->flash.mac_addr))
3686                 goto err_out;
3687
3688         memcpy(ndev->dev_addr, qdev->flash.mac_addr, ndev->addr_len);
3689         memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3690
3691         /* Set up the default ring sizes. */
3692         qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
3693         qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
3694
3695         /* Set up the coalescing parameters. */
3696         qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
3697         qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
3698         qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3699         qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3700
3701         /*
3702          * Set up the operating parameters.
3703          */
3704         qdev->rx_csum = 1;
3705
3706         qdev->q_workqueue = create_workqueue(ndev->name);
3707         qdev->workqueue = create_singlethread_workqueue(ndev->name);
3708         INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
3709         INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
3710         INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
3711
3712         if (!cards_found) {
3713                 dev_info(&pdev->dev, "%s\n", DRV_STRING);
3714                 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
3715                          DRV_NAME, DRV_VERSION);
3716         }
3717         return 0;
3718 err_out:
3719         ql_release_all(pdev);
3720         pci_disable_device(pdev);
3721         return err;
3722 }
3723
3724 static int __devinit qlge_probe(struct pci_dev *pdev,
3725                                 const struct pci_device_id *pci_entry)
3726 {
3727         struct net_device *ndev = NULL;
3728         struct ql_adapter *qdev = NULL;
3729         static int cards_found = 0;
3730         int err = 0;
3731
3732         ndev = alloc_etherdev(sizeof(struct ql_adapter));
3733         if (!ndev)
3734                 return -ENOMEM;
3735
3736         err = ql_init_device(pdev, ndev, cards_found);
3737         if (err < 0) {
3738                 free_netdev(ndev);
3739                 return err;
3740         }
3741
3742         qdev = netdev_priv(ndev);
3743         SET_NETDEV_DEV(ndev, &pdev->dev);
3744         ndev->features = (0
3745                           | NETIF_F_IP_CSUM
3746                           | NETIF_F_SG
3747                           | NETIF_F_TSO
3748                           | NETIF_F_TSO6
3749                           | NETIF_F_TSO_ECN
3750                           | NETIF_F_HW_VLAN_TX
3751                           | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
3752
3753         if (test_bit(QL_DMA64, &qdev->flags))
3754                 ndev->features |= NETIF_F_HIGHDMA;
3755
3756         /*
3757          * Set up net_device structure.
3758          */
3759         ndev->tx_queue_len = qdev->tx_ring_size;
3760         ndev->irq = pdev->irq;
3761         ndev->open = qlge_open;
3762         ndev->stop = qlge_close;
3763         ndev->hard_start_xmit = qlge_send;
3764         SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
3765         ndev->change_mtu = qlge_change_mtu;
3766         ndev->get_stats = qlge_get_stats;
3767         ndev->set_multicast_list = qlge_set_multicast_list;
3768         ndev->set_mac_address = qlge_set_mac_address;
3769         ndev->tx_timeout = qlge_tx_timeout;
3770         ndev->watchdog_timeo = 10 * HZ;
3771         ndev->vlan_rx_register = ql_vlan_rx_register;
3772         ndev->vlan_rx_add_vid = ql_vlan_rx_add_vid;
3773         ndev->vlan_rx_kill_vid = ql_vlan_rx_kill_vid;
3774         err = register_netdev(ndev);
3775         if (err) {
3776                 dev_err(&pdev->dev, "net device registration failed.\n");
3777                 ql_release_all(pdev);
3778                 pci_disable_device(pdev);
3779                 return err;
3780         }
3781         netif_carrier_off(ndev);
3782         netif_stop_queue(ndev);
3783         ql_display_dev_info(ndev);
3784         cards_found++;
3785         return 0;
3786 }
3787
3788 static void __devexit qlge_remove(struct pci_dev *pdev)
3789 {
3790         struct net_device *ndev = pci_get_drvdata(pdev);
3791         unregister_netdev(ndev);
3792         ql_release_all(pdev);
3793         pci_disable_device(pdev);
3794         free_netdev(ndev);
3795 }
3796
3797 /*
3798  * This callback is called by the PCI subsystem whenever
3799  * a PCI bus error is detected.
3800  */
3801 static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
3802                                                enum pci_channel_state state)
3803 {
3804         struct net_device *ndev = pci_get_drvdata(pdev);
3805         struct ql_adapter *qdev = netdev_priv(ndev);
3806
3807         if (netif_running(ndev))
3808                 ql_adapter_down(qdev);
3809
3810         pci_disable_device(pdev);
3811
3812         /* Request a slot reset. */
3813         return PCI_ERS_RESULT_NEED_RESET;
3814 }
3815
3816 /*
3817  * This callback is called after the PCI buss has been reset.
3818  * Basically, this tries to restart the card from scratch.
3819  * This is a shortened version of the device probe/discovery code,
3820  * it resembles the first-half of the () routine.
3821  */
3822 static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
3823 {
3824         struct net_device *ndev = pci_get_drvdata(pdev);
3825         struct ql_adapter *qdev = netdev_priv(ndev);
3826
3827         if (pci_enable_device(pdev)) {
3828                 QPRINTK(qdev, IFUP, ERR,
3829                         "Cannot re-enable PCI device after reset.\n");
3830                 return PCI_ERS_RESULT_DISCONNECT;
3831         }
3832
3833         pci_set_master(pdev);
3834
3835         netif_carrier_off(ndev);
3836         netif_stop_queue(ndev);
3837         ql_adapter_reset(qdev);
3838
3839         /* Make sure the EEPROM is good */
3840         memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3841
3842         if (!is_valid_ether_addr(ndev->perm_addr)) {
3843                 QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
3844                 return PCI_ERS_RESULT_DISCONNECT;
3845         }
3846
3847         return PCI_ERS_RESULT_RECOVERED;
3848 }
3849
3850 static void qlge_io_resume(struct pci_dev *pdev)
3851 {
3852         struct net_device *ndev = pci_get_drvdata(pdev);
3853         struct ql_adapter *qdev = netdev_priv(ndev);
3854
3855         pci_set_master(pdev);
3856
3857         if (netif_running(ndev)) {
3858                 if (ql_adapter_up(qdev)) {
3859                         QPRINTK(qdev, IFUP, ERR,
3860                                 "Device initialization failed after reset.\n");
3861                         return;
3862                 }
3863         }
3864
3865         netif_device_attach(ndev);
3866 }
3867
3868 static struct pci_error_handlers qlge_err_handler = {
3869         .error_detected = qlge_io_error_detected,
3870         .slot_reset = qlge_io_slot_reset,
3871         .resume = qlge_io_resume,
3872 };
3873
3874 static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
3875 {
3876         struct net_device *ndev = pci_get_drvdata(pdev);
3877         struct ql_adapter *qdev = netdev_priv(ndev);
3878         int err;
3879
3880         netif_device_detach(ndev);
3881
3882         if (netif_running(ndev)) {
3883                 err = ql_adapter_down(qdev);
3884                 if (!err)
3885                         return err;
3886         }
3887
3888         err = pci_save_state(pdev);
3889         if (err)
3890                 return err;
3891
3892         pci_disable_device(pdev);
3893
3894         pci_set_power_state(pdev, pci_choose_state(pdev, state));
3895
3896         return 0;
3897 }
3898
3899 #ifdef CONFIG_PM
3900 static int qlge_resume(struct pci_dev *pdev)
3901 {
3902         struct net_device *ndev = pci_get_drvdata(pdev);
3903         struct ql_adapter *qdev = netdev_priv(ndev);
3904         int err;
3905
3906         pci_set_power_state(pdev, PCI_D0);
3907         pci_restore_state(pdev);
3908         err = pci_enable_device(pdev);
3909         if (err) {
3910                 QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
3911                 return err;
3912         }
3913         pci_set_master(pdev);
3914
3915         pci_enable_wake(pdev, PCI_D3hot, 0);
3916         pci_enable_wake(pdev, PCI_D3cold, 0);
3917
3918         if (netif_running(ndev)) {
3919                 err = ql_adapter_up(qdev);
3920                 if (err)
3921                         return err;
3922         }
3923
3924         netif_device_attach(ndev);
3925
3926         return 0;
3927 }
3928 #endif /* CONFIG_PM */
3929
3930 static void qlge_shutdown(struct pci_dev *pdev)
3931 {
3932         qlge_suspend(pdev, PMSG_SUSPEND);
3933 }
3934
3935 static struct pci_driver qlge_driver = {
3936         .name = DRV_NAME,
3937         .id_table = qlge_pci_tbl,
3938         .probe = qlge_probe,
3939         .remove = __devexit_p(qlge_remove),
3940 #ifdef CONFIG_PM
3941         .suspend = qlge_suspend,
3942         .resume = qlge_resume,
3943 #endif
3944         .shutdown = qlge_shutdown,
3945         .err_handler = &qlge_err_handler
3946 };
3947
3948 static int __init qlge_init_module(void)
3949 {
3950         return pci_register_driver(&qlge_driver);
3951 }
3952
3953 static void __exit qlge_exit(void)
3954 {
3955         pci_unregister_driver(&qlge_driver);
3956 }
3957
3958 module_init(qlge_init_module);
3959 module_exit(qlge_exit);