]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/qlge/qlge_main.c
3af822b6226ec822dc385b7956c25c100170170a
[linux-2.6-omap-h63xx.git] / drivers / net / qlge / qlge_main.c
1 /*
2  * QLogic qlge NIC HBA Driver
3  * Copyright (c)  2003-2008 QLogic Corporation
4  * See LICENSE.qlge for copyright and licensing details.
5  * Author:     Linux qlge network device driver by
6  *                      Ron Mercer <ron.mercer@qlogic.com>
7  */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/types.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/pagemap.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/dmapool.h>
19 #include <linux/mempool.h>
20 #include <linux/spinlock.h>
21 #include <linux/kthread.h>
22 #include <linux/interrupt.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/in.h>
26 #include <linux/ip.h>
27 #include <linux/ipv6.h>
28 #include <net/ipv6.h>
29 #include <linux/tcp.h>
30 #include <linux/udp.h>
31 #include <linux/if_arp.h>
32 #include <linux/if_ether.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/skbuff.h>
37 #include <linux/rtnetlink.h>
38 #include <linux/if_vlan.h>
39 #include <linux/init.h>
40 #include <linux/delay.h>
41 #include <linux/mm.h>
42 #include <linux/vmalloc.h>
43
44 #include "qlge.h"
45
46 char qlge_driver_name[] = DRV_NAME;
47 const char qlge_driver_version[] = DRV_VERSION;
48
49 MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
50 MODULE_DESCRIPTION(DRV_STRING " ");
51 MODULE_LICENSE("GPL");
52 MODULE_VERSION(DRV_VERSION);
53
54 static const u32 default_msg =
55     NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
56 /* NETIF_MSG_TIMER |    */
57     NETIF_MSG_IFDOWN |
58     NETIF_MSG_IFUP |
59     NETIF_MSG_RX_ERR |
60     NETIF_MSG_TX_ERR |
61     NETIF_MSG_TX_QUEUED |
62     NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS |
63 /* NETIF_MSG_PKTDATA | */
64     NETIF_MSG_HW | NETIF_MSG_WOL | 0;
65
66 static int debug = 0x00007fff;  /* defaults above */
67 module_param(debug, int, 0);
68 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
69
70 #define MSIX_IRQ 0
71 #define MSI_IRQ 1
72 #define LEG_IRQ 2
73 static int irq_type = MSIX_IRQ;
74 module_param(irq_type, int, MSIX_IRQ);
75 MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
76
77 static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
78         {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID)},
79         {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID1)},
80         /* required last entry */
81         {0,}
82 };
83
84 MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
85
86 /* This hardware semaphore causes exclusive access to
87  * resources shared between the NIC driver, MPI firmware,
88  * FCOE firmware and the FC driver.
89  */
90 static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
91 {
92         u32 sem_bits = 0;
93
94         switch (sem_mask) {
95         case SEM_XGMAC0_MASK:
96                 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
97                 break;
98         case SEM_XGMAC1_MASK:
99                 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
100                 break;
101         case SEM_ICB_MASK:
102                 sem_bits = SEM_SET << SEM_ICB_SHIFT;
103                 break;
104         case SEM_MAC_ADDR_MASK:
105                 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
106                 break;
107         case SEM_FLASH_MASK:
108                 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
109                 break;
110         case SEM_PROBE_MASK:
111                 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
112                 break;
113         case SEM_RT_IDX_MASK:
114                 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
115                 break;
116         case SEM_PROC_REG_MASK:
117                 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
118                 break;
119         default:
120                 QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
121                 return -EINVAL;
122         }
123
124         ql_write32(qdev, SEM, sem_bits | sem_mask);
125         return !(ql_read32(qdev, SEM) & sem_bits);
126 }
127
128 int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
129 {
130         unsigned int seconds = 3;
131         do {
132                 if (!ql_sem_trylock(qdev, sem_mask))
133                         return 0;
134                 ssleep(1);
135         } while (--seconds);
136         return -ETIMEDOUT;
137 }
138
139 void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
140 {
141         ql_write32(qdev, SEM, sem_mask);
142         ql_read32(qdev, SEM);   /* flush */
143 }
144
145 /* This function waits for a specific bit to come ready
146  * in a given register.  It is used mostly by the initialize
147  * process, but is also used in kernel thread API such as
148  * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
149  */
150 int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
151 {
152         u32 temp;
153         int count = UDELAY_COUNT;
154
155         while (count) {
156                 temp = ql_read32(qdev, reg);
157
158                 /* check for errors */
159                 if (temp & err_bit) {
160                         QPRINTK(qdev, PROBE, ALERT,
161                                 "register 0x%.08x access error, value = 0x%.08x!.\n",
162                                 reg, temp);
163                         return -EIO;
164                 } else if (temp & bit)
165                         return 0;
166                 udelay(UDELAY_DELAY);
167                 count--;
168         }
169         QPRINTK(qdev, PROBE, ALERT,
170                 "Timed out waiting for reg %x to come ready.\n", reg);
171         return -ETIMEDOUT;
172 }
173
174 /* The CFG register is used to download TX and RX control blocks
175  * to the chip. This function waits for an operation to complete.
176  */
177 static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
178 {
179         int count = UDELAY_COUNT;
180         u32 temp;
181
182         while (count) {
183                 temp = ql_read32(qdev, CFG);
184                 if (temp & CFG_LE)
185                         return -EIO;
186                 if (!(temp & bit))
187                         return 0;
188                 udelay(UDELAY_DELAY);
189                 count--;
190         }
191         return -ETIMEDOUT;
192 }
193
194
195 /* Used to issue init control blocks to hw. Maps control block,
196  * sets address, triggers download, waits for completion.
197  */
198 int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
199                  u16 q_id)
200 {
201         u64 map;
202         int status = 0;
203         int direction;
204         u32 mask;
205         u32 value;
206
207         direction =
208             (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
209             PCI_DMA_FROMDEVICE;
210
211         map = pci_map_single(qdev->pdev, ptr, size, direction);
212         if (pci_dma_mapping_error(qdev->pdev, map)) {
213                 QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
214                 return -ENOMEM;
215         }
216
217         status = ql_wait_cfg(qdev, bit);
218         if (status) {
219                 QPRINTK(qdev, IFUP, ERR,
220                         "Timed out waiting for CFG to come ready.\n");
221                 goto exit;
222         }
223
224         status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
225         if (status)
226                 goto exit;
227         ql_write32(qdev, ICB_L, (u32) map);
228         ql_write32(qdev, ICB_H, (u32) (map >> 32));
229         ql_sem_unlock(qdev, SEM_ICB_MASK);      /* does flush too */
230
231         mask = CFG_Q_MASK | (bit << 16);
232         value = bit | (q_id << CFG_Q_SHIFT);
233         ql_write32(qdev, CFG, (mask | value));
234
235         /*
236          * Wait for the bit to clear after signaling hw.
237          */
238         status = ql_wait_cfg(qdev, bit);
239 exit:
240         pci_unmap_single(qdev->pdev, map, size, direction);
241         return status;
242 }
243
244 /* Get a specific MAC address from the CAM.  Used for debug and reg dump. */
245 int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
246                         u32 *value)
247 {
248         u32 offset = 0;
249         int status;
250
251         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
252         if (status)
253                 return status;
254         switch (type) {
255         case MAC_ADDR_TYPE_MULTI_MAC:
256         case MAC_ADDR_TYPE_CAM_MAC:
257                 {
258                         status =
259                             ql_wait_reg_rdy(qdev,
260                                 MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
261                         if (status)
262                                 goto exit;
263                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
264                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
265                                    MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
266                         status =
267                             ql_wait_reg_rdy(qdev,
268                                 MAC_ADDR_IDX, MAC_ADDR_MR, MAC_ADDR_E);
269                         if (status)
270                                 goto exit;
271                         *value++ = ql_read32(qdev, MAC_ADDR_DATA);
272                         status =
273                             ql_wait_reg_rdy(qdev,
274                                 MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
275                         if (status)
276                                 goto exit;
277                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
278                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
279                                    MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
280                         status =
281                             ql_wait_reg_rdy(qdev,
282                                 MAC_ADDR_IDX, MAC_ADDR_MR, MAC_ADDR_E);
283                         if (status)
284                                 goto exit;
285                         *value++ = ql_read32(qdev, MAC_ADDR_DATA);
286                         if (type == MAC_ADDR_TYPE_CAM_MAC) {
287                                 status =
288                                     ql_wait_reg_rdy(qdev,
289                                         MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
290                                 if (status)
291                                         goto exit;
292                                 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
293                                            (index << MAC_ADDR_IDX_SHIFT) | /* index */
294                                            MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
295                                 status =
296                                     ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
297                                                     MAC_ADDR_MR, MAC_ADDR_E);
298                                 if (status)
299                                         goto exit;
300                                 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
301                         }
302                         break;
303                 }
304         case MAC_ADDR_TYPE_VLAN:
305         case MAC_ADDR_TYPE_MULTI_FLTR:
306         default:
307                 QPRINTK(qdev, IFUP, CRIT,
308                         "Address type %d not yet supported.\n", type);
309                 status = -EPERM;
310         }
311 exit:
312         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
313         return status;
314 }
315
316 /* Set up a MAC, multicast or VLAN address for the
317  * inbound frame matching.
318  */
319 static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
320                                u16 index)
321 {
322         u32 offset = 0;
323         int status = 0;
324
325         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
326         if (status)
327                 return status;
328         switch (type) {
329         case MAC_ADDR_TYPE_MULTI_MAC:
330         case MAC_ADDR_TYPE_CAM_MAC:
331                 {
332                         u32 cam_output;
333                         u32 upper = (addr[0] << 8) | addr[1];
334                         u32 lower =
335                             (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
336                             (addr[5]);
337
338                         QPRINTK(qdev, IFUP, INFO,
339                                 "Adding %s address %02x:%02x:%02x:%02x:%02x:%02x"
340                                 " at index %d in the CAM.\n",
341                                 ((type ==
342                                   MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
343                                  "UNICAST"), addr[0], addr[1], addr[2], addr[3],
344                                 addr[4], addr[5], index);
345
346                         status =
347                             ql_wait_reg_rdy(qdev,
348                                 MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
349                         if (status)
350                                 goto exit;
351                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
352                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
353                                    type);       /* type */
354                         ql_write32(qdev, MAC_ADDR_DATA, lower);
355                         status =
356                             ql_wait_reg_rdy(qdev,
357                                 MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
358                         if (status)
359                                 goto exit;
360                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
361                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
362                                    type);       /* type */
363                         ql_write32(qdev, MAC_ADDR_DATA, upper);
364                         status =
365                             ql_wait_reg_rdy(qdev,
366                                 MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
367                         if (status)
368                                 goto exit;
369                         ql_write32(qdev, MAC_ADDR_IDX, (offset) |       /* offset */
370                                    (index << MAC_ADDR_IDX_SHIFT) |      /* index */
371                                    type);       /* type */
372                         /* This field should also include the queue id
373                            and possibly the function id.  Right now we hardcode
374                            the route field to NIC core.
375                          */
376                         if (type == MAC_ADDR_TYPE_CAM_MAC) {
377                                 cam_output = (CAM_OUT_ROUTE_NIC |
378                                               (qdev->
379                                                func << CAM_OUT_FUNC_SHIFT) |
380                                               (qdev->
381                                                rss_ring_first_cq_id <<
382                                                CAM_OUT_CQ_ID_SHIFT));
383                                 if (qdev->vlgrp)
384                                         cam_output |= CAM_OUT_RV;
385                                 /* route to NIC core */
386                                 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
387                         }
388                         break;
389                 }
390         case MAC_ADDR_TYPE_VLAN:
391                 {
392                         u32 enable_bit = *((u32 *) &addr[0]);
393                         /* For VLAN, the addr actually holds a bit that
394                          * either enables or disables the vlan id we are
395                          * addressing. It's either MAC_ADDR_E on or off.
396                          * That's bit-27 we're talking about.
397                          */
398                         QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
399                                 (enable_bit ? "Adding" : "Removing"),
400                                 index, (enable_bit ? "to" : "from"));
401
402                         status =
403                             ql_wait_reg_rdy(qdev,
404                                 MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
405                         if (status)
406                                 goto exit;
407                         ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
408                                    (index << MAC_ADDR_IDX_SHIFT) |      /* index */
409                                    type |       /* type */
410                                    enable_bit); /* enable/disable */
411                         break;
412                 }
413         case MAC_ADDR_TYPE_MULTI_FLTR:
414         default:
415                 QPRINTK(qdev, IFUP, CRIT,
416                         "Address type %d not yet supported.\n", type);
417                 status = -EPERM;
418         }
419 exit:
420         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
421         return status;
422 }
423
424 /* Get a specific frame routing value from the CAM.
425  * Used for debug and reg dump.
426  */
427 int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
428 {
429         int status = 0;
430
431         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
432         if (status)
433                 goto exit;
434
435         status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, RT_IDX_E);
436         if (status)
437                 goto exit;
438
439         ql_write32(qdev, RT_IDX,
440                    RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
441         status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, RT_IDX_E);
442         if (status)
443                 goto exit;
444         *value = ql_read32(qdev, RT_DATA);
445 exit:
446         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
447         return status;
448 }
449
450 /* The NIC function for this chip has 16 routing indexes.  Each one can be used
451  * to route different frame types to various inbound queues.  We send broadcast/
452  * multicast/error frames to the default queue for slow handling,
453  * and CAM hit/RSS frames to the fast handling queues.
454  */
455 static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
456                               int enable)
457 {
458         int status;
459         u32 value = 0;
460
461         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
462         if (status)
463                 return status;
464
465         QPRINTK(qdev, IFUP, DEBUG,
466                 "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
467                 (enable ? "Adding" : "Removing"),
468                 ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
469                 ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
470                 ((index ==
471                   RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
472                 ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
473                 ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
474                 ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
475                 ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
476                 ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
477                 ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
478                 ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
479                 ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
480                 ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
481                 ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
482                 ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
483                 ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
484                 ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
485                 (enable ? "to" : "from"));
486
487         switch (mask) {
488         case RT_IDX_CAM_HIT:
489                 {
490                         value = RT_IDX_DST_CAM_Q |      /* dest */
491                             RT_IDX_TYPE_NICQ |  /* type */
492                             (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
493                         break;
494                 }
495         case RT_IDX_VALID:      /* Promiscuous Mode frames. */
496                 {
497                         value = RT_IDX_DST_DFLT_Q |     /* dest */
498                             RT_IDX_TYPE_NICQ |  /* type */
499                             (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
500                         break;
501                 }
502         case RT_IDX_ERR:        /* Pass up MAC,IP,TCP/UDP error frames. */
503                 {
504                         value = RT_IDX_DST_DFLT_Q |     /* dest */
505                             RT_IDX_TYPE_NICQ |  /* type */
506                             (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
507                         break;
508                 }
509         case RT_IDX_BCAST:      /* Pass up Broadcast frames to default Q. */
510                 {
511                         value = RT_IDX_DST_DFLT_Q |     /* dest */
512                             RT_IDX_TYPE_NICQ |  /* type */
513                             (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
514                         break;
515                 }
516         case RT_IDX_MCAST:      /* Pass up All Multicast frames. */
517                 {
518                         value = RT_IDX_DST_CAM_Q |      /* dest */
519                             RT_IDX_TYPE_NICQ |  /* type */
520                             (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
521                         break;
522                 }
523         case RT_IDX_MCAST_MATCH:        /* Pass up matched Multicast frames. */
524                 {
525                         value = RT_IDX_DST_CAM_Q |      /* dest */
526                             RT_IDX_TYPE_NICQ |  /* type */
527                             (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
528                         break;
529                 }
530         case RT_IDX_RSS_MATCH:  /* Pass up matched RSS frames. */
531                 {
532                         value = RT_IDX_DST_RSS |        /* dest */
533                             RT_IDX_TYPE_NICQ |  /* type */
534                             (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
535                         break;
536                 }
537         case 0:         /* Clear the E-bit on an entry. */
538                 {
539                         value = RT_IDX_DST_DFLT_Q |     /* dest */
540                             RT_IDX_TYPE_NICQ |  /* type */
541                             (index << RT_IDX_IDX_SHIFT);/* index */
542                         break;
543                 }
544         default:
545                 QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
546                         mask);
547                 status = -EPERM;
548                 goto exit;
549         }
550
551         if (value) {
552                 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
553                 if (status)
554                         goto exit;
555                 value |= (enable ? RT_IDX_E : 0);
556                 ql_write32(qdev, RT_IDX, value);
557                 ql_write32(qdev, RT_DATA, enable ? mask : 0);
558         }
559 exit:
560         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
561         return status;
562 }
563
564 static void ql_enable_interrupts(struct ql_adapter *qdev)
565 {
566         ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
567 }
568
569 static void ql_disable_interrupts(struct ql_adapter *qdev)
570 {
571         ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
572 }
573
574 /* If we're running with multiple MSI-X vectors then we enable on the fly.
575  * Otherwise, we may have multiple outstanding workers and don't want to
576  * enable until the last one finishes. In this case, the irq_cnt gets
577  * incremented everytime we queue a worker and decremented everytime
578  * a worker finishes.  Once it hits zero we enable the interrupt.
579  */
580 void ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
581 {
582         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags)))
583                 ql_write32(qdev, INTR_EN,
584                            qdev->intr_context[intr].intr_en_mask);
585         else {
586                 if (qdev->legacy_check)
587                         spin_lock(&qdev->legacy_lock);
588                 if (atomic_dec_and_test(&qdev->intr_context[intr].irq_cnt)) {
589                         QPRINTK(qdev, INTR, ERR, "Enabling interrupt %d.\n",
590                                 intr);
591                         ql_write32(qdev, INTR_EN,
592                                    qdev->intr_context[intr].intr_en_mask);
593                 } else {
594                         QPRINTK(qdev, INTR, ERR,
595                                 "Skip enable, other queue(s) are active.\n");
596                 }
597                 if (qdev->legacy_check)
598                         spin_unlock(&qdev->legacy_lock);
599         }
600 }
601
602 static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
603 {
604         u32 var = 0;
605
606         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags)))
607                 goto exit;
608         else if (!atomic_read(&qdev->intr_context[intr].irq_cnt)) {
609                 ql_write32(qdev, INTR_EN,
610                            qdev->intr_context[intr].intr_dis_mask);
611                 var = ql_read32(qdev, STS);
612         }
613         atomic_inc(&qdev->intr_context[intr].irq_cnt);
614 exit:
615         return var;
616 }
617
618 static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
619 {
620         int i;
621         for (i = 0; i < qdev->intr_count; i++) {
622                 /* The enable call does a atomic_dec_and_test
623                  * and enables only if the result is zero.
624                  * So we precharge it here.
625                  */
626                 atomic_set(&qdev->intr_context[i].irq_cnt, 1);
627                 ql_enable_completion_interrupt(qdev, i);
628         }
629
630 }
631
632 int ql_read_flash_word(struct ql_adapter *qdev, int offset, u32 *data)
633 {
634         int status = 0;
635         /* wait for reg to come ready */
636         status = ql_wait_reg_rdy(qdev,
637                         FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
638         if (status)
639                 goto exit;
640         /* set up for reg read */
641         ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
642         /* wait for reg to come ready */
643         status = ql_wait_reg_rdy(qdev,
644                         FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
645         if (status)
646                 goto exit;
647         /* get the data */
648         *data = ql_read32(qdev, FLASH_DATA);
649 exit:
650         return status;
651 }
652
653 static int ql_get_flash_params(struct ql_adapter *qdev)
654 {
655         int i;
656         int status;
657         u32 *p = (u32 *)&qdev->flash;
658
659         if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
660                 return -ETIMEDOUT;
661
662         for (i = 0; i < sizeof(qdev->flash) / sizeof(u32); i++, p++) {
663                 status = ql_read_flash_word(qdev, i, p);
664                 if (status) {
665                         QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
666                         goto exit;
667                 }
668
669         }
670 exit:
671         ql_sem_unlock(qdev, SEM_FLASH_MASK);
672         return status;
673 }
674
675 /* xgmac register are located behind the xgmac_addr and xgmac_data
676  * register pair.  Each read/write requires us to wait for the ready
677  * bit before reading/writing the data.
678  */
679 static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
680 {
681         int status;
682         /* wait for reg to come ready */
683         status = ql_wait_reg_rdy(qdev,
684                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
685         if (status)
686                 return status;
687         /* write the data to the data reg */
688         ql_write32(qdev, XGMAC_DATA, data);
689         /* trigger the write */
690         ql_write32(qdev, XGMAC_ADDR, reg);
691         return status;
692 }
693
694 /* xgmac register are located behind the xgmac_addr and xgmac_data
695  * register pair.  Each read/write requires us to wait for the ready
696  * bit before reading/writing the data.
697  */
698 int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
699 {
700         int status = 0;
701         /* wait for reg to come ready */
702         status = ql_wait_reg_rdy(qdev,
703                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
704         if (status)
705                 goto exit;
706         /* set up for reg read */
707         ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
708         /* wait for reg to come ready */
709         status = ql_wait_reg_rdy(qdev,
710                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
711         if (status)
712                 goto exit;
713         /* get the data */
714         *data = ql_read32(qdev, XGMAC_DATA);
715 exit:
716         return status;
717 }
718
719 /* This is used for reading the 64-bit statistics regs. */
720 int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
721 {
722         int status = 0;
723         u32 hi = 0;
724         u32 lo = 0;
725
726         status = ql_read_xgmac_reg(qdev, reg, &lo);
727         if (status)
728                 goto exit;
729
730         status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
731         if (status)
732                 goto exit;
733
734         *data = (u64) lo | ((u64) hi << 32);
735
736 exit:
737         return status;
738 }
739
740 /* Take the MAC Core out of reset.
741  * Enable statistics counting.
742  * Take the transmitter/receiver out of reset.
743  * This functionality may be done in the MPI firmware at a
744  * later date.
745  */
746 static int ql_port_initialize(struct ql_adapter *qdev)
747 {
748         int status = 0;
749         u32 data;
750
751         if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
752                 /* Another function has the semaphore, so
753                  * wait for the port init bit to come ready.
754                  */
755                 QPRINTK(qdev, LINK, INFO,
756                         "Another function has the semaphore, so wait for the port init bit to come ready.\n");
757                 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
758                 if (status) {
759                         QPRINTK(qdev, LINK, CRIT,
760                                 "Port initialize timed out.\n");
761                 }
762                 return status;
763         }
764
765         QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
766         /* Set the core reset. */
767         status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
768         if (status)
769                 goto end;
770         data |= GLOBAL_CFG_RESET;
771         status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
772         if (status)
773                 goto end;
774
775         /* Clear the core reset and turn on jumbo for receiver. */
776         data &= ~GLOBAL_CFG_RESET;      /* Clear core reset. */
777         data |= GLOBAL_CFG_JUMBO;       /* Turn on jumbo. */
778         data |= GLOBAL_CFG_TX_STAT_EN;
779         data |= GLOBAL_CFG_RX_STAT_EN;
780         status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
781         if (status)
782                 goto end;
783
784         /* Enable transmitter, and clear it's reset. */
785         status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
786         if (status)
787                 goto end;
788         data &= ~TX_CFG_RESET;  /* Clear the TX MAC reset. */
789         data |= TX_CFG_EN;      /* Enable the transmitter. */
790         status = ql_write_xgmac_reg(qdev, TX_CFG, data);
791         if (status)
792                 goto end;
793
794         /* Enable receiver and clear it's reset. */
795         status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
796         if (status)
797                 goto end;
798         data &= ~RX_CFG_RESET;  /* Clear the RX MAC reset. */
799         data |= RX_CFG_EN;      /* Enable the receiver. */
800         status = ql_write_xgmac_reg(qdev, RX_CFG, data);
801         if (status)
802                 goto end;
803
804         /* Turn on jumbo. */
805         status =
806             ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
807         if (status)
808                 goto end;
809         status =
810             ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
811         if (status)
812                 goto end;
813
814         /* Signal to the world that the port is enabled.        */
815         ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
816 end:
817         ql_sem_unlock(qdev, qdev->xg_sem_mask);
818         return status;
819 }
820
821 /* Get the next large buffer. */
822 struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
823 {
824         struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
825         rx_ring->lbq_curr_idx++;
826         if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
827                 rx_ring->lbq_curr_idx = 0;
828         rx_ring->lbq_free_cnt++;
829         return lbq_desc;
830 }
831
832 /* Get the next small buffer. */
833 struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
834 {
835         struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
836         rx_ring->sbq_curr_idx++;
837         if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
838                 rx_ring->sbq_curr_idx = 0;
839         rx_ring->sbq_free_cnt++;
840         return sbq_desc;
841 }
842
843 /* Update an rx ring index. */
844 static void ql_update_cq(struct rx_ring *rx_ring)
845 {
846         rx_ring->cnsmr_idx++;
847         rx_ring->curr_entry++;
848         if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
849                 rx_ring->cnsmr_idx = 0;
850                 rx_ring->curr_entry = rx_ring->cq_base;
851         }
852 }
853
854 static void ql_write_cq_idx(struct rx_ring *rx_ring)
855 {
856         ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
857 }
858
859 /* Process (refill) a large buffer queue. */
860 static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
861 {
862         int clean_idx = rx_ring->lbq_clean_idx;
863         struct bq_desc *lbq_desc;
864         struct bq_element *bq;
865         u64 map;
866         int i;
867
868         while (rx_ring->lbq_free_cnt > 16) {
869                 for (i = 0; i < 16; i++) {
870                         QPRINTK(qdev, RX_STATUS, DEBUG,
871                                 "lbq: try cleaning clean_idx = %d.\n",
872                                 clean_idx);
873                         lbq_desc = &rx_ring->lbq[clean_idx];
874                         bq = lbq_desc->bq;
875                         if (lbq_desc->p.lbq_page == NULL) {
876                                 QPRINTK(qdev, RX_STATUS, DEBUG,
877                                         "lbq: getting new page for index %d.\n",
878                                         lbq_desc->index);
879                                 lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
880                                 if (lbq_desc->p.lbq_page == NULL) {
881                                         QPRINTK(qdev, RX_STATUS, ERR,
882                                                 "Couldn't get a page.\n");
883                                         return;
884                                 }
885                                 map = pci_map_page(qdev->pdev,
886                                                    lbq_desc->p.lbq_page,
887                                                    0, PAGE_SIZE,
888                                                    PCI_DMA_FROMDEVICE);
889                                 if (pci_dma_mapping_error(qdev->pdev, map)) {
890                                         QPRINTK(qdev, RX_STATUS, ERR,
891                                                 "PCI mapping failed.\n");
892                                         return;
893                                 }
894                                 pci_unmap_addr_set(lbq_desc, mapaddr, map);
895                                 pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
896                                 bq->addr_lo =   /*lbq_desc->addr_lo = */
897                                     cpu_to_le32(map);
898                                 bq->addr_hi =   /*lbq_desc->addr_hi = */
899                                     cpu_to_le32(map >> 32);
900                         }
901                         clean_idx++;
902                         if (clean_idx == rx_ring->lbq_len)
903                                 clean_idx = 0;
904                 }
905
906                 rx_ring->lbq_clean_idx = clean_idx;
907                 rx_ring->lbq_prod_idx += 16;
908                 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
909                         rx_ring->lbq_prod_idx = 0;
910                 QPRINTK(qdev, RX_STATUS, DEBUG,
911                         "lbq: updating prod idx = %d.\n",
912                         rx_ring->lbq_prod_idx);
913                 ql_write_db_reg(rx_ring->lbq_prod_idx,
914                                 rx_ring->lbq_prod_idx_db_reg);
915                 rx_ring->lbq_free_cnt -= 16;
916         }
917 }
918
919 /* Process (refill) a small buffer queue. */
920 static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
921 {
922         int clean_idx = rx_ring->sbq_clean_idx;
923         struct bq_desc *sbq_desc;
924         struct bq_element *bq;
925         u64 map;
926         int i;
927
928         while (rx_ring->sbq_free_cnt > 16) {
929                 for (i = 0; i < 16; i++) {
930                         sbq_desc = &rx_ring->sbq[clean_idx];
931                         QPRINTK(qdev, RX_STATUS, DEBUG,
932                                 "sbq: try cleaning clean_idx = %d.\n",
933                                 clean_idx);
934                         bq = sbq_desc->bq;
935                         if (sbq_desc->p.skb == NULL) {
936                                 QPRINTK(qdev, RX_STATUS, DEBUG,
937                                         "sbq: getting new skb for index %d.\n",
938                                         sbq_desc->index);
939                                 sbq_desc->p.skb =
940                                     netdev_alloc_skb(qdev->ndev,
941                                                      rx_ring->sbq_buf_size);
942                                 if (sbq_desc->p.skb == NULL) {
943                                         QPRINTK(qdev, PROBE, ERR,
944                                                 "Couldn't get an skb.\n");
945                                         rx_ring->sbq_clean_idx = clean_idx;
946                                         return;
947                                 }
948                                 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
949                                 map = pci_map_single(qdev->pdev,
950                                                      sbq_desc->p.skb->data,
951                                                      rx_ring->sbq_buf_size /
952                                                      2, PCI_DMA_FROMDEVICE);
953                                 pci_unmap_addr_set(sbq_desc, mapaddr, map);
954                                 pci_unmap_len_set(sbq_desc, maplen,
955                                                   rx_ring->sbq_buf_size / 2);
956                                 bq->addr_lo = cpu_to_le32(map);
957                                 bq->addr_hi = cpu_to_le32(map >> 32);
958                         }
959
960                         clean_idx++;
961                         if (clean_idx == rx_ring->sbq_len)
962                                 clean_idx = 0;
963                 }
964                 rx_ring->sbq_clean_idx = clean_idx;
965                 rx_ring->sbq_prod_idx += 16;
966                 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
967                         rx_ring->sbq_prod_idx = 0;
968                 QPRINTK(qdev, RX_STATUS, DEBUG,
969                         "sbq: updating prod idx = %d.\n",
970                         rx_ring->sbq_prod_idx);
971                 ql_write_db_reg(rx_ring->sbq_prod_idx,
972                                 rx_ring->sbq_prod_idx_db_reg);
973
974                 rx_ring->sbq_free_cnt -= 16;
975         }
976 }
977
978 static void ql_update_buffer_queues(struct ql_adapter *qdev,
979                                     struct rx_ring *rx_ring)
980 {
981         ql_update_sbq(qdev, rx_ring);
982         ql_update_lbq(qdev, rx_ring);
983 }
984
985 /* Unmaps tx buffers.  Can be called from send() if a pci mapping
986  * fails at some stage, or from the interrupt when a tx completes.
987  */
988 static void ql_unmap_send(struct ql_adapter *qdev,
989                           struct tx_ring_desc *tx_ring_desc, int mapped)
990 {
991         int i;
992         for (i = 0; i < mapped; i++) {
993                 if (i == 0 || (i == 7 && mapped > 7)) {
994                         /*
995                          * Unmap the skb->data area, or the
996                          * external sglist (AKA the Outbound
997                          * Address List (OAL)).
998                          * If its the zeroeth element, then it's
999                          * the skb->data area.  If it's the 7th
1000                          * element and there is more than 6 frags,
1001                          * then its an OAL.
1002                          */
1003                         if (i == 7) {
1004                                 QPRINTK(qdev, TX_DONE, DEBUG,
1005                                         "unmapping OAL area.\n");
1006                         }
1007                         pci_unmap_single(qdev->pdev,
1008                                          pci_unmap_addr(&tx_ring_desc->map[i],
1009                                                         mapaddr),
1010                                          pci_unmap_len(&tx_ring_desc->map[i],
1011                                                        maplen),
1012                                          PCI_DMA_TODEVICE);
1013                 } else {
1014                         QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
1015                                 i);
1016                         pci_unmap_page(qdev->pdev,
1017                                        pci_unmap_addr(&tx_ring_desc->map[i],
1018                                                       mapaddr),
1019                                        pci_unmap_len(&tx_ring_desc->map[i],
1020                                                      maplen), PCI_DMA_TODEVICE);
1021                 }
1022         }
1023
1024 }
1025
1026 /* Map the buffers for this transmit.  This will return
1027  * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1028  */
1029 static int ql_map_send(struct ql_adapter *qdev,
1030                        struct ob_mac_iocb_req *mac_iocb_ptr,
1031                        struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1032 {
1033         int len = skb_headlen(skb);
1034         dma_addr_t map;
1035         int frag_idx, err, map_idx = 0;
1036         struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1037         int frag_cnt = skb_shinfo(skb)->nr_frags;
1038
1039         if (frag_cnt) {
1040                 QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
1041         }
1042         /*
1043          * Map the skb buffer first.
1044          */
1045         map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1046
1047         err = pci_dma_mapping_error(qdev->pdev, map);
1048         if (err) {
1049                 QPRINTK(qdev, TX_QUEUED, ERR,
1050                         "PCI mapping failed with error: %d\n", err);
1051
1052                 return NETDEV_TX_BUSY;
1053         }
1054
1055         tbd->len = cpu_to_le32(len);
1056         tbd->addr = cpu_to_le64(map);
1057         pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1058         pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1059         map_idx++;
1060
1061         /*
1062          * This loop fills the remainder of the 8 address descriptors
1063          * in the IOCB.  If there are more than 7 fragments, then the
1064          * eighth address desc will point to an external list (OAL).
1065          * When this happens, the remainder of the frags will be stored
1066          * in this list.
1067          */
1068         for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1069                 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1070                 tbd++;
1071                 if (frag_idx == 6 && frag_cnt > 7) {
1072                         /* Let's tack on an sglist.
1073                          * Our control block will now
1074                          * look like this:
1075                          * iocb->seg[0] = skb->data
1076                          * iocb->seg[1] = frag[0]
1077                          * iocb->seg[2] = frag[1]
1078                          * iocb->seg[3] = frag[2]
1079                          * iocb->seg[4] = frag[3]
1080                          * iocb->seg[5] = frag[4]
1081                          * iocb->seg[6] = frag[5]
1082                          * iocb->seg[7] = ptr to OAL (external sglist)
1083                          * oal->seg[0] = frag[6]
1084                          * oal->seg[1] = frag[7]
1085                          * oal->seg[2] = frag[8]
1086                          * oal->seg[3] = frag[9]
1087                          * oal->seg[4] = frag[10]
1088                          *      etc...
1089                          */
1090                         /* Tack on the OAL in the eighth segment of IOCB. */
1091                         map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1092                                              sizeof(struct oal),
1093                                              PCI_DMA_TODEVICE);
1094                         err = pci_dma_mapping_error(qdev->pdev, map);
1095                         if (err) {
1096                                 QPRINTK(qdev, TX_QUEUED, ERR,
1097                                         "PCI mapping outbound address list with error: %d\n",
1098                                         err);
1099                                 goto map_error;
1100                         }
1101
1102                         tbd->addr = cpu_to_le64(map);
1103                         /*
1104                          * The length is the number of fragments
1105                          * that remain to be mapped times the length
1106                          * of our sglist (OAL).
1107                          */
1108                         tbd->len =
1109                             cpu_to_le32((sizeof(struct tx_buf_desc) *
1110                                          (frag_cnt - frag_idx)) | TX_DESC_C);
1111                         pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1112                                            map);
1113                         pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1114                                           sizeof(struct oal));
1115                         tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1116                         map_idx++;
1117                 }
1118
1119                 map =
1120                     pci_map_page(qdev->pdev, frag->page,
1121                                  frag->page_offset, frag->size,
1122                                  PCI_DMA_TODEVICE);
1123
1124                 err = pci_dma_mapping_error(qdev->pdev, map);
1125                 if (err) {
1126                         QPRINTK(qdev, TX_QUEUED, ERR,
1127                                 "PCI mapping frags failed with error: %d.\n",
1128                                 err);
1129                         goto map_error;
1130                 }
1131
1132                 tbd->addr = cpu_to_le64(map);
1133                 tbd->len = cpu_to_le32(frag->size);
1134                 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1135                 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1136                                   frag->size);
1137
1138         }
1139         /* Save the number of segments we've mapped. */
1140         tx_ring_desc->map_cnt = map_idx;
1141         /* Terminate the last segment. */
1142         tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1143         return NETDEV_TX_OK;
1144
1145 map_error:
1146         /*
1147          * If the first frag mapping failed, then i will be zero.
1148          * This causes the unmap of the skb->data area.  Otherwise
1149          * we pass in the number of frags that mapped successfully
1150          * so they can be umapped.
1151          */
1152         ql_unmap_send(qdev, tx_ring_desc, map_idx);
1153         return NETDEV_TX_BUSY;
1154 }
1155
1156 void ql_realign_skb(struct sk_buff *skb, int len)
1157 {
1158         void *temp_addr = skb->data;
1159
1160         /* Undo the skb_reserve(skb,32) we did before
1161          * giving to hardware, and realign data on
1162          * a 2-byte boundary.
1163          */
1164         skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1165         skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1166         skb_copy_to_linear_data(skb, temp_addr,
1167                 (unsigned int)len);
1168 }
1169
1170 /*
1171  * This function builds an skb for the given inbound
1172  * completion.  It will be rewritten for readability in the near
1173  * future, but for not it works well.
1174  */
1175 static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1176                                        struct rx_ring *rx_ring,
1177                                        struct ib_mac_iocb_rsp *ib_mac_rsp)
1178 {
1179         struct bq_desc *lbq_desc;
1180         struct bq_desc *sbq_desc;
1181         struct sk_buff *skb = NULL;
1182         u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1183        u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1184
1185         /*
1186          * Handle the header buffer if present.
1187          */
1188         if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1189             ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1190                 QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
1191                 /*
1192                  * Headers fit nicely into a small buffer.
1193                  */
1194                 sbq_desc = ql_get_curr_sbuf(rx_ring);
1195                 pci_unmap_single(qdev->pdev,
1196                                 pci_unmap_addr(sbq_desc, mapaddr),
1197                                 pci_unmap_len(sbq_desc, maplen),
1198                                 PCI_DMA_FROMDEVICE);
1199                 skb = sbq_desc->p.skb;
1200                 ql_realign_skb(skb, hdr_len);
1201                 skb_put(skb, hdr_len);
1202                 sbq_desc->p.skb = NULL;
1203         }
1204
1205         /*
1206          * Handle the data buffer(s).
1207          */
1208         if (unlikely(!length)) {        /* Is there data too? */
1209                 QPRINTK(qdev, RX_STATUS, DEBUG,
1210                         "No Data buffer in this packet.\n");
1211                 return skb;
1212         }
1213
1214         if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1215                 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1216                         QPRINTK(qdev, RX_STATUS, DEBUG,
1217                                 "Headers in small, data of %d bytes in small, combine them.\n", length);
1218                         /*
1219                          * Data is less than small buffer size so it's
1220                          * stuffed in a small buffer.
1221                          * For this case we append the data
1222                          * from the "data" small buffer to the "header" small
1223                          * buffer.
1224                          */
1225                         sbq_desc = ql_get_curr_sbuf(rx_ring);
1226                         pci_dma_sync_single_for_cpu(qdev->pdev,
1227                                                     pci_unmap_addr
1228                                                     (sbq_desc, mapaddr),
1229                                                     pci_unmap_len
1230                                                     (sbq_desc, maplen),
1231                                                     PCI_DMA_FROMDEVICE);
1232                         memcpy(skb_put(skb, length),
1233                                sbq_desc->p.skb->data, length);
1234                         pci_dma_sync_single_for_device(qdev->pdev,
1235                                                        pci_unmap_addr
1236                                                        (sbq_desc,
1237                                                         mapaddr),
1238                                                        pci_unmap_len
1239                                                        (sbq_desc,
1240                                                         maplen),
1241                                                        PCI_DMA_FROMDEVICE);
1242                 } else {
1243                         QPRINTK(qdev, RX_STATUS, DEBUG,
1244                                 "%d bytes in a single small buffer.\n", length);
1245                         sbq_desc = ql_get_curr_sbuf(rx_ring);
1246                         skb = sbq_desc->p.skb;
1247                         ql_realign_skb(skb, length);
1248                         skb_put(skb, length);
1249                         pci_unmap_single(qdev->pdev,
1250                                          pci_unmap_addr(sbq_desc,
1251                                                         mapaddr),
1252                                          pci_unmap_len(sbq_desc,
1253                                                        maplen),
1254                                          PCI_DMA_FROMDEVICE);
1255                         sbq_desc->p.skb = NULL;
1256                 }
1257         } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1258                 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1259                         QPRINTK(qdev, RX_STATUS, DEBUG,
1260                                 "Header in small, %d bytes in large. Chain large to small!\n", length);
1261                         /*
1262                          * The data is in a single large buffer.  We
1263                          * chain it to the header buffer's skb and let
1264                          * it rip.
1265                          */
1266                         lbq_desc = ql_get_curr_lbuf(rx_ring);
1267                         pci_unmap_page(qdev->pdev,
1268                                        pci_unmap_addr(lbq_desc,
1269                                                       mapaddr),
1270                                        pci_unmap_len(lbq_desc, maplen),
1271                                        PCI_DMA_FROMDEVICE);
1272                         QPRINTK(qdev, RX_STATUS, DEBUG,
1273                                 "Chaining page to skb.\n");
1274                         skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1275                                            0, length);
1276                         skb->len += length;
1277                         skb->data_len += length;
1278                         skb->truesize += length;
1279                         lbq_desc->p.lbq_page = NULL;
1280                 } else {
1281                         /*
1282                          * The headers and data are in a single large buffer. We
1283                          * copy it to a new skb and let it go. This can happen with
1284                          * jumbo mtu on a non-TCP/UDP frame.
1285                          */
1286                         lbq_desc = ql_get_curr_lbuf(rx_ring);
1287                         skb = netdev_alloc_skb(qdev->ndev, length);
1288                         if (skb == NULL) {
1289                                 QPRINTK(qdev, PROBE, DEBUG,
1290                                         "No skb available, drop the packet.\n");
1291                                 return NULL;
1292                         }
1293                         skb_reserve(skb, NET_IP_ALIGN);
1294                         QPRINTK(qdev, RX_STATUS, DEBUG,
1295                                 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
1296                         skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1297                                            0, length);
1298                         skb->len += length;
1299                         skb->data_len += length;
1300                         skb->truesize += length;
1301                         length -= length;
1302                         lbq_desc->p.lbq_page = NULL;
1303                         __pskb_pull_tail(skb,
1304                                 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1305                                 VLAN_ETH_HLEN : ETH_HLEN);
1306                 }
1307         } else {
1308                 /*
1309                  * The data is in a chain of large buffers
1310                  * pointed to by a small buffer.  We loop
1311                  * thru and chain them to the our small header
1312                  * buffer's skb.
1313                  * frags:  There are 18 max frags and our small
1314                  *         buffer will hold 32 of them. The thing is,
1315                  *         we'll use 3 max for our 9000 byte jumbo
1316                  *         frames.  If the MTU goes up we could
1317                  *          eventually be in trouble.
1318                  */
1319                 int size, offset, i = 0;
1320                 struct bq_element *bq, bq_array[8];
1321                 sbq_desc = ql_get_curr_sbuf(rx_ring);
1322                 pci_unmap_single(qdev->pdev,
1323                                  pci_unmap_addr(sbq_desc, mapaddr),
1324                                  pci_unmap_len(sbq_desc, maplen),
1325                                  PCI_DMA_FROMDEVICE);
1326                 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1327                         /*
1328                          * This is an non TCP/UDP IP frame, so
1329                          * the headers aren't split into a small
1330                          * buffer.  We have to use the small buffer
1331                          * that contains our sg list as our skb to
1332                          * send upstairs. Copy the sg list here to
1333                          * a local buffer and use it to find the
1334                          * pages to chain.
1335                          */
1336                         QPRINTK(qdev, RX_STATUS, DEBUG,
1337                                 "%d bytes of headers & data in chain of large.\n", length);
1338                         skb = sbq_desc->p.skb;
1339                         bq = &bq_array[0];
1340                         memcpy(bq, skb->data, sizeof(bq_array));
1341                         sbq_desc->p.skb = NULL;
1342                         skb_reserve(skb, NET_IP_ALIGN);
1343                 } else {
1344                         QPRINTK(qdev, RX_STATUS, DEBUG,
1345                                 "Headers in small, %d bytes of data in chain of large.\n", length);
1346                         bq = (struct bq_element *)sbq_desc->p.skb->data;
1347                 }
1348                 while (length > 0) {
1349                         lbq_desc = ql_get_curr_lbuf(rx_ring);
1350                         if ((bq->addr_lo & ~BQ_MASK) != lbq_desc->bq->addr_lo) {
1351                                 QPRINTK(qdev, RX_STATUS, ERR,
1352                                         "Panic!!! bad large buffer address, expected 0x%.08x, got 0x%.08x.\n",
1353                                         lbq_desc->bq->addr_lo, bq->addr_lo);
1354                                 return NULL;
1355                         }
1356                         pci_unmap_page(qdev->pdev,
1357                                        pci_unmap_addr(lbq_desc,
1358                                                       mapaddr),
1359                                        pci_unmap_len(lbq_desc,
1360                                                      maplen),
1361                                        PCI_DMA_FROMDEVICE);
1362                         size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
1363                         offset = 0;
1364
1365                         QPRINTK(qdev, RX_STATUS, DEBUG,
1366                                 "Adding page %d to skb for %d bytes.\n",
1367                                 i, size);
1368                         skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
1369                                            offset, size);
1370                         skb->len += size;
1371                         skb->data_len += size;
1372                         skb->truesize += size;
1373                         length -= size;
1374                         lbq_desc->p.lbq_page = NULL;
1375                         bq++;
1376                         i++;
1377                 }
1378                 __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1379                                 VLAN_ETH_HLEN : ETH_HLEN);
1380         }
1381         return skb;
1382 }
1383
1384 /* Process an inbound completion from an rx ring. */
1385 static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
1386                                    struct rx_ring *rx_ring,
1387                                    struct ib_mac_iocb_rsp *ib_mac_rsp)
1388 {
1389         struct net_device *ndev = qdev->ndev;
1390         struct sk_buff *skb = NULL;
1391
1392         QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1393
1394         skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1395         if (unlikely(!skb)) {
1396                 QPRINTK(qdev, RX_STATUS, DEBUG,
1397                         "No skb available, drop packet.\n");
1398                 return;
1399         }
1400
1401         prefetch(skb->data);
1402         skb->dev = ndev;
1403         if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1404                 QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
1405                         (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1406                         IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
1407                         (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1408                         IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
1409                         (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1410                         IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1411         }
1412         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
1413                 QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
1414         }
1415         if (ib_mac_rsp->flags1 & (IB_MAC_IOCB_RSP_IE | IB_MAC_IOCB_RSP_TE)) {
1416                 QPRINTK(qdev, RX_STATUS, ERR,
1417                         "Bad checksum for this %s packet.\n",
1418                         ((ib_mac_rsp->
1419                           flags2 & IB_MAC_IOCB_RSP_T) ? "TCP" : "UDP"));
1420                 skb->ip_summed = CHECKSUM_NONE;
1421         } else if (qdev->rx_csum &&
1422                    ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) ||
1423                     ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1424                      !(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_NU)))) {
1425                 QPRINTK(qdev, RX_STATUS, DEBUG, "RX checksum done!\n");
1426                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1427         }
1428         qdev->stats.rx_packets++;
1429         qdev->stats.rx_bytes += skb->len;
1430         skb->protocol = eth_type_trans(skb, ndev);
1431         if (qdev->vlgrp && (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V)) {
1432                 QPRINTK(qdev, RX_STATUS, DEBUG,
1433                         "Passing a VLAN packet upstream.\n");
1434                 vlan_hwaccel_rx(skb, qdev->vlgrp,
1435                                 le16_to_cpu(ib_mac_rsp->vlan_id));
1436         } else {
1437                 QPRINTK(qdev, RX_STATUS, DEBUG,
1438                         "Passing a normal packet upstream.\n");
1439                 netif_rx(skb);
1440         }
1441         ndev->last_rx = jiffies;
1442 }
1443
1444 /* Process an outbound completion from an rx ring. */
1445 static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
1446                                    struct ob_mac_iocb_rsp *mac_rsp)
1447 {
1448         struct tx_ring *tx_ring;
1449         struct tx_ring_desc *tx_ring_desc;
1450
1451         QL_DUMP_OB_MAC_RSP(mac_rsp);
1452         tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
1453         tx_ring_desc = &tx_ring->q[mac_rsp->tid];
1454         ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
1455         qdev->stats.tx_bytes += tx_ring_desc->map_cnt;
1456         qdev->stats.tx_packets++;
1457         dev_kfree_skb(tx_ring_desc->skb);
1458         tx_ring_desc->skb = NULL;
1459
1460         if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
1461                                         OB_MAC_IOCB_RSP_S |
1462                                         OB_MAC_IOCB_RSP_L |
1463                                         OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
1464                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
1465                         QPRINTK(qdev, TX_DONE, WARNING,
1466                                 "Total descriptor length did not match transfer length.\n");
1467                 }
1468                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
1469                         QPRINTK(qdev, TX_DONE, WARNING,
1470                                 "Frame too short to be legal, not sent.\n");
1471                 }
1472                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
1473                         QPRINTK(qdev, TX_DONE, WARNING,
1474                                 "Frame too long, but sent anyway.\n");
1475                 }
1476                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
1477                         QPRINTK(qdev, TX_DONE, WARNING,
1478                                 "PCI backplane error. Frame not sent.\n");
1479                 }
1480         }
1481         atomic_inc(&tx_ring->tx_count);
1482 }
1483
1484 /* Fire up a handler to reset the MPI processor. */
1485 void ql_queue_fw_error(struct ql_adapter *qdev)
1486 {
1487         netif_stop_queue(qdev->ndev);
1488         netif_carrier_off(qdev->ndev);
1489         queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
1490 }
1491
1492 void ql_queue_asic_error(struct ql_adapter *qdev)
1493 {
1494         netif_stop_queue(qdev->ndev);
1495         netif_carrier_off(qdev->ndev);
1496         ql_disable_interrupts(qdev);
1497         queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
1498 }
1499
1500 static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
1501                                     struct ib_ae_iocb_rsp *ib_ae_rsp)
1502 {
1503         switch (ib_ae_rsp->event) {
1504         case MGMT_ERR_EVENT:
1505                 QPRINTK(qdev, RX_ERR, ERR,
1506                         "Management Processor Fatal Error.\n");
1507                 ql_queue_fw_error(qdev);
1508                 return;
1509
1510         case CAM_LOOKUP_ERR_EVENT:
1511                 QPRINTK(qdev, LINK, ERR,
1512                         "Multiple CAM hits lookup occurred.\n");
1513                 QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
1514                 ql_queue_asic_error(qdev);
1515                 return;
1516
1517         case SOFT_ECC_ERROR_EVENT:
1518                 QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
1519                 ql_queue_asic_error(qdev);
1520                 break;
1521
1522         case PCI_ERR_ANON_BUF_RD:
1523                 QPRINTK(qdev, RX_ERR, ERR,
1524                         "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
1525                         ib_ae_rsp->q_id);
1526                 ql_queue_asic_error(qdev);
1527                 break;
1528
1529         default:
1530                 QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
1531                         ib_ae_rsp->event);
1532                 ql_queue_asic_error(qdev);
1533                 break;
1534         }
1535 }
1536
1537 static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
1538 {
1539         struct ql_adapter *qdev = rx_ring->qdev;
1540         u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1541         struct ob_mac_iocb_rsp *net_rsp = NULL;
1542         int count = 0;
1543
1544         /* While there are entries in the completion queue. */
1545         while (prod != rx_ring->cnsmr_idx) {
1546
1547                 QPRINTK(qdev, RX_STATUS, DEBUG,
1548                         "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1549                         prod, rx_ring->cnsmr_idx);
1550
1551                 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
1552                 rmb();
1553                 switch (net_rsp->opcode) {
1554
1555                 case OPCODE_OB_MAC_TSO_IOCB:
1556                 case OPCODE_OB_MAC_IOCB:
1557                         ql_process_mac_tx_intr(qdev, net_rsp);
1558                         break;
1559                 default:
1560                         QPRINTK(qdev, RX_STATUS, DEBUG,
1561                                 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1562                                 net_rsp->opcode);
1563                 }
1564                 count++;
1565                 ql_update_cq(rx_ring);
1566                 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1567         }
1568         ql_write_cq_idx(rx_ring);
1569         if (netif_queue_stopped(qdev->ndev) && net_rsp != NULL) {
1570                 struct tx_ring *tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
1571                 if (atomic_read(&tx_ring->queue_stopped) &&
1572                     (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
1573                         /*
1574                          * The queue got stopped because the tx_ring was full.
1575                          * Wake it up, because it's now at least 25% empty.
1576                          */
1577                         netif_wake_queue(qdev->ndev);
1578         }
1579
1580         return count;
1581 }
1582
1583 static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
1584 {
1585         struct ql_adapter *qdev = rx_ring->qdev;
1586         u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1587         struct ql_net_rsp_iocb *net_rsp;
1588         int count = 0;
1589
1590         /* While there are entries in the completion queue. */
1591         while (prod != rx_ring->cnsmr_idx) {
1592
1593                 QPRINTK(qdev, RX_STATUS, DEBUG,
1594                         "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1595                         prod, rx_ring->cnsmr_idx);
1596
1597                 net_rsp = rx_ring->curr_entry;
1598                 rmb();
1599                 switch (net_rsp->opcode) {
1600                 case OPCODE_IB_MAC_IOCB:
1601                         ql_process_mac_rx_intr(qdev, rx_ring,
1602                                                (struct ib_mac_iocb_rsp *)
1603                                                net_rsp);
1604                         break;
1605
1606                 case OPCODE_IB_AE_IOCB:
1607                         ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
1608                                                 net_rsp);
1609                         break;
1610                 default:
1611                         {
1612                                 QPRINTK(qdev, RX_STATUS, DEBUG,
1613                                         "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1614                                         net_rsp->opcode);
1615                         }
1616                 }
1617                 count++;
1618                 ql_update_cq(rx_ring);
1619                 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1620                 if (count == budget)
1621                         break;
1622         }
1623         ql_update_buffer_queues(qdev, rx_ring);
1624         ql_write_cq_idx(rx_ring);
1625         return count;
1626 }
1627
1628 static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
1629 {
1630         struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
1631         struct ql_adapter *qdev = rx_ring->qdev;
1632         int work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
1633
1634         QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
1635                 rx_ring->cq_id);
1636
1637         if (work_done < budget) {
1638                 __netif_rx_complete(qdev->ndev, napi);
1639                 ql_enable_completion_interrupt(qdev, rx_ring->irq);
1640         }
1641         return work_done;
1642 }
1643
1644 static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
1645 {
1646         struct ql_adapter *qdev = netdev_priv(ndev);
1647
1648         qdev->vlgrp = grp;
1649         if (grp) {
1650                 QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
1651                 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
1652                            NIC_RCV_CFG_VLAN_MATCH_AND_NON);
1653         } else {
1654                 QPRINTK(qdev, IFUP, DEBUG,
1655                         "Turning off VLAN in NIC_RCV_CFG.\n");
1656                 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
1657         }
1658 }
1659
1660 static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
1661 {
1662         struct ql_adapter *qdev = netdev_priv(ndev);
1663         u32 enable_bit = MAC_ADDR_E;
1664
1665         spin_lock(&qdev->hw_lock);
1666         if (ql_set_mac_addr_reg
1667             (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1668                 QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
1669         }
1670         spin_unlock(&qdev->hw_lock);
1671 }
1672
1673 static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
1674 {
1675         struct ql_adapter *qdev = netdev_priv(ndev);
1676         u32 enable_bit = 0;
1677
1678         spin_lock(&qdev->hw_lock);
1679         if (ql_set_mac_addr_reg
1680             (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1681                 QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
1682         }
1683         spin_unlock(&qdev->hw_lock);
1684
1685 }
1686
1687 /* Worker thread to process a given rx_ring that is dedicated
1688  * to outbound completions.
1689  */
1690 static void ql_tx_clean(struct work_struct *work)
1691 {
1692         struct rx_ring *rx_ring =
1693             container_of(work, struct rx_ring, rx_work.work);
1694         ql_clean_outbound_rx_ring(rx_ring);
1695         ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1696
1697 }
1698
1699 /* Worker thread to process a given rx_ring that is dedicated
1700  * to inbound completions.
1701  */
1702 static void ql_rx_clean(struct work_struct *work)
1703 {
1704         struct rx_ring *rx_ring =
1705             container_of(work, struct rx_ring, rx_work.work);
1706         ql_clean_inbound_rx_ring(rx_ring, 64);
1707         ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1708 }
1709
1710 /* MSI-X Multiple Vector Interrupt Handler for outbound completions. */
1711 static irqreturn_t qlge_msix_tx_isr(int irq, void *dev_id)
1712 {
1713         struct rx_ring *rx_ring = dev_id;
1714         queue_delayed_work_on(rx_ring->cpu, rx_ring->qdev->q_workqueue,
1715                               &rx_ring->rx_work, 0);
1716         return IRQ_HANDLED;
1717 }
1718
1719 /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
1720 static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
1721 {
1722         struct rx_ring *rx_ring = dev_id;
1723         struct ql_adapter *qdev = rx_ring->qdev;
1724         netif_rx_schedule(qdev->ndev, &rx_ring->napi);
1725         return IRQ_HANDLED;
1726 }
1727
1728 /* We check here to see if we're already handling a legacy
1729  * interrupt.  If we are, then it must belong to another
1730  * chip with which we're sharing the interrupt line.
1731  */
1732 int ql_legacy_check(struct ql_adapter *qdev)
1733 {
1734         int err;
1735         spin_lock(&qdev->legacy_lock);
1736         err = atomic_read(&qdev->intr_context[0].irq_cnt);
1737         spin_unlock(&qdev->legacy_lock);
1738         return err;
1739 }
1740
1741 /* This handles a fatal error, MPI activity, and the default
1742  * rx_ring in an MSI-X multiple vector environment.
1743  * In MSI/Legacy environment it also process the rest of
1744  * the rx_rings.
1745  */
1746 static irqreturn_t qlge_isr(int irq, void *dev_id)
1747 {
1748         struct rx_ring *rx_ring = dev_id;
1749         struct ql_adapter *qdev = rx_ring->qdev;
1750         struct intr_context *intr_context = &qdev->intr_context[0];
1751         u32 var;
1752         int i;
1753         int work_done = 0;
1754
1755         if (qdev->legacy_check && qdev->legacy_check(qdev)) {
1756                 QPRINTK(qdev, INTR, INFO, "Already busy, not our interrupt.\n");
1757                 return IRQ_NONE;        /* Not our interrupt */
1758         }
1759
1760         var = ql_read32(qdev, STS);
1761
1762         /*
1763          * Check for fatal error.
1764          */
1765         if (var & STS_FE) {
1766                 ql_queue_asic_error(qdev);
1767                 QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
1768                 var = ql_read32(qdev, ERR_STS);
1769                 QPRINTK(qdev, INTR, ERR,
1770                         "Resetting chip. Error Status Register = 0x%x\n", var);
1771                 return IRQ_HANDLED;
1772         }
1773
1774         /*
1775          * Check MPI processor activity.
1776          */
1777         if (var & STS_PI) {
1778                 /*
1779                  * We've got an async event or mailbox completion.
1780                  * Handle it and clear the source of the interrupt.
1781                  */
1782                 QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
1783                 ql_disable_completion_interrupt(qdev, intr_context->intr);
1784                 queue_delayed_work_on(smp_processor_id(), qdev->workqueue,
1785                                       &qdev->mpi_work, 0);
1786                 work_done++;
1787         }
1788
1789         /*
1790          * Check the default queue and wake handler if active.
1791          */
1792         rx_ring = &qdev->rx_ring[0];
1793         if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) {
1794                 QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[0].\n");
1795                 ql_disable_completion_interrupt(qdev, intr_context->intr);
1796                 queue_delayed_work_on(smp_processor_id(), qdev->q_workqueue,
1797                                       &rx_ring->rx_work, 0);
1798                 work_done++;
1799         }
1800
1801         if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
1802                 /*
1803                  * Start the DPC for each active queue.
1804                  */
1805                 for (i = 1; i < qdev->rx_ring_count; i++) {
1806                         rx_ring = &qdev->rx_ring[i];
1807                         if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
1808                             rx_ring->cnsmr_idx) {
1809                                 QPRINTK(qdev, INTR, INFO,
1810                                         "Waking handler for rx_ring[%d].\n", i);
1811                                 ql_disable_completion_interrupt(qdev,
1812                                                                 intr_context->
1813                                                                 intr);
1814                                 if (i < qdev->rss_ring_first_cq_id)
1815                                         queue_delayed_work_on(rx_ring->cpu,
1816                                                               qdev->q_workqueue,
1817                                                               &rx_ring->rx_work,
1818                                                               0);
1819                                 else
1820                                         netif_rx_schedule(qdev->ndev,
1821                                                           &rx_ring->napi);
1822                                 work_done++;
1823                         }
1824                 }
1825         }
1826         return work_done ? IRQ_HANDLED : IRQ_NONE;
1827 }
1828
1829 static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
1830 {
1831
1832         if (skb_is_gso(skb)) {
1833                 int err;
1834                 if (skb_header_cloned(skb)) {
1835                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1836                         if (err)
1837                                 return err;
1838                 }
1839
1840                 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
1841                 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
1842                 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
1843                 mac_iocb_ptr->total_hdrs_len =
1844                     cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
1845                 mac_iocb_ptr->net_trans_offset =
1846                     cpu_to_le16(skb_network_offset(skb) |
1847                                 skb_transport_offset(skb)
1848                                 << OB_MAC_TRANSPORT_HDR_SHIFT);
1849                 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
1850                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
1851                 if (likely(skb->protocol == htons(ETH_P_IP))) {
1852                         struct iphdr *iph = ip_hdr(skb);
1853                         iph->check = 0;
1854                         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
1855                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1856                                                                  iph->daddr, 0,
1857                                                                  IPPROTO_TCP,
1858                                                                  0);
1859                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
1860                         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
1861                         tcp_hdr(skb)->check =
1862                             ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1863                                              &ipv6_hdr(skb)->daddr,
1864                                              0, IPPROTO_TCP, 0);
1865                 }
1866                 return 1;
1867         }
1868         return 0;
1869 }
1870
1871 static void ql_hw_csum_setup(struct sk_buff *skb,
1872                              struct ob_mac_tso_iocb_req *mac_iocb_ptr)
1873 {
1874         int len;
1875         struct iphdr *iph = ip_hdr(skb);
1876         u16 *check;
1877         mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
1878         mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
1879         mac_iocb_ptr->net_trans_offset =
1880                 cpu_to_le16(skb_network_offset(skb) |
1881                 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
1882
1883         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
1884         len = (ntohs(iph->tot_len) - (iph->ihl << 2));
1885         if (likely(iph->protocol == IPPROTO_TCP)) {
1886                 check = &(tcp_hdr(skb)->check);
1887                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
1888                 mac_iocb_ptr->total_hdrs_len =
1889                     cpu_to_le16(skb_transport_offset(skb) +
1890                                 (tcp_hdr(skb)->doff << 2));
1891         } else {
1892                 check = &(udp_hdr(skb)->check);
1893                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
1894                 mac_iocb_ptr->total_hdrs_len =
1895                     cpu_to_le16(skb_transport_offset(skb) +
1896                                 sizeof(struct udphdr));
1897         }
1898         *check = ~csum_tcpudp_magic(iph->saddr,
1899                                     iph->daddr, len, iph->protocol, 0);
1900 }
1901
1902 static int qlge_send(struct sk_buff *skb, struct net_device *ndev)
1903 {
1904         struct tx_ring_desc *tx_ring_desc;
1905         struct ob_mac_iocb_req *mac_iocb_ptr;
1906         struct ql_adapter *qdev = netdev_priv(ndev);
1907         int tso;
1908         struct tx_ring *tx_ring;
1909         u32 tx_ring_idx = (u32) QL_TXQ_IDX(qdev, skb);
1910
1911         tx_ring = &qdev->tx_ring[tx_ring_idx];
1912
1913         if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
1914                 QPRINTK(qdev, TX_QUEUED, INFO,
1915                         "%s: shutting down tx queue %d du to lack of resources.\n",
1916                         __func__, tx_ring_idx);
1917                 netif_stop_queue(ndev);
1918                 atomic_inc(&tx_ring->queue_stopped);
1919                 return NETDEV_TX_BUSY;
1920         }
1921         tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
1922         mac_iocb_ptr = tx_ring_desc->queue_entry;
1923         memset((void *)mac_iocb_ptr, 0, sizeof(mac_iocb_ptr));
1924         if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) != NETDEV_TX_OK) {
1925                 QPRINTK(qdev, TX_QUEUED, ERR, "Could not map the segments.\n");
1926                 return NETDEV_TX_BUSY;
1927         }
1928
1929         mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
1930         mac_iocb_ptr->tid = tx_ring_desc->index;
1931         /* We use the upper 32-bits to store the tx queue for this IO.
1932          * When we get the completion we can use it to establish the context.
1933          */
1934         mac_iocb_ptr->txq_idx = tx_ring_idx;
1935         tx_ring_desc->skb = skb;
1936
1937         mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
1938
1939         if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
1940                 QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
1941                         vlan_tx_tag_get(skb));
1942                 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
1943                 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
1944         }
1945         tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
1946         if (tso < 0) {
1947                 dev_kfree_skb_any(skb);
1948                 return NETDEV_TX_OK;
1949         } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
1950                 ql_hw_csum_setup(skb,
1951                                  (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
1952         }
1953         QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
1954         tx_ring->prod_idx++;
1955         if (tx_ring->prod_idx == tx_ring->wq_len)
1956                 tx_ring->prod_idx = 0;
1957         wmb();
1958
1959         ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
1960         ndev->trans_start = jiffies;
1961         QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
1962                 tx_ring->prod_idx, skb->len);
1963
1964         atomic_dec(&tx_ring->tx_count);
1965         return NETDEV_TX_OK;
1966 }
1967
1968 static void ql_free_shadow_space(struct ql_adapter *qdev)
1969 {
1970         if (qdev->rx_ring_shadow_reg_area) {
1971                 pci_free_consistent(qdev->pdev,
1972                                     PAGE_SIZE,
1973                                     qdev->rx_ring_shadow_reg_area,
1974                                     qdev->rx_ring_shadow_reg_dma);
1975                 qdev->rx_ring_shadow_reg_area = NULL;
1976         }
1977         if (qdev->tx_ring_shadow_reg_area) {
1978                 pci_free_consistent(qdev->pdev,
1979                                     PAGE_SIZE,
1980                                     qdev->tx_ring_shadow_reg_area,
1981                                     qdev->tx_ring_shadow_reg_dma);
1982                 qdev->tx_ring_shadow_reg_area = NULL;
1983         }
1984 }
1985
1986 static int ql_alloc_shadow_space(struct ql_adapter *qdev)
1987 {
1988         qdev->rx_ring_shadow_reg_area =
1989             pci_alloc_consistent(qdev->pdev,
1990                                  PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
1991         if (qdev->rx_ring_shadow_reg_area == NULL) {
1992                 QPRINTK(qdev, IFUP, ERR,
1993                         "Allocation of RX shadow space failed.\n");
1994                 return -ENOMEM;
1995         }
1996         qdev->tx_ring_shadow_reg_area =
1997             pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
1998                                  &qdev->tx_ring_shadow_reg_dma);
1999         if (qdev->tx_ring_shadow_reg_area == NULL) {
2000                 QPRINTK(qdev, IFUP, ERR,
2001                         "Allocation of TX shadow space failed.\n");
2002                 goto err_wqp_sh_area;
2003         }
2004         return 0;
2005
2006 err_wqp_sh_area:
2007         pci_free_consistent(qdev->pdev,
2008                             PAGE_SIZE,
2009                             qdev->rx_ring_shadow_reg_area,
2010                             qdev->rx_ring_shadow_reg_dma);
2011         return -ENOMEM;
2012 }
2013
2014 static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2015 {
2016         struct tx_ring_desc *tx_ring_desc;
2017         int i;
2018         struct ob_mac_iocb_req *mac_iocb_ptr;
2019
2020         mac_iocb_ptr = tx_ring->wq_base;
2021         tx_ring_desc = tx_ring->q;
2022         for (i = 0; i < tx_ring->wq_len; i++) {
2023                 tx_ring_desc->index = i;
2024                 tx_ring_desc->skb = NULL;
2025                 tx_ring_desc->queue_entry = mac_iocb_ptr;
2026                 mac_iocb_ptr++;
2027                 tx_ring_desc++;
2028         }
2029         atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2030         atomic_set(&tx_ring->queue_stopped, 0);
2031 }
2032
2033 static void ql_free_tx_resources(struct ql_adapter *qdev,
2034                                  struct tx_ring *tx_ring)
2035 {
2036         if (tx_ring->wq_base) {
2037                 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2038                                     tx_ring->wq_base, tx_ring->wq_base_dma);
2039                 tx_ring->wq_base = NULL;
2040         }
2041         kfree(tx_ring->q);
2042         tx_ring->q = NULL;
2043 }
2044
2045 static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2046                                  struct tx_ring *tx_ring)
2047 {
2048         tx_ring->wq_base =
2049             pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2050                                  &tx_ring->wq_base_dma);
2051
2052         if ((tx_ring->wq_base == NULL)
2053             || tx_ring->wq_base_dma & (tx_ring->wq_size - 1)) {
2054                 QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
2055                 return -ENOMEM;
2056         }
2057         tx_ring->q =
2058             kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2059         if (tx_ring->q == NULL)
2060                 goto err;
2061
2062         return 0;
2063 err:
2064         pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2065                             tx_ring->wq_base, tx_ring->wq_base_dma);
2066         return -ENOMEM;
2067 }
2068
2069 void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2070 {
2071         int i;
2072         struct bq_desc *lbq_desc;
2073
2074         for (i = 0; i < rx_ring->lbq_len; i++) {
2075                 lbq_desc = &rx_ring->lbq[i];
2076                 if (lbq_desc->p.lbq_page) {
2077                         pci_unmap_page(qdev->pdev,
2078                                        pci_unmap_addr(lbq_desc, mapaddr),
2079                                        pci_unmap_len(lbq_desc, maplen),
2080                                        PCI_DMA_FROMDEVICE);
2081
2082                         put_page(lbq_desc->p.lbq_page);
2083                         lbq_desc->p.lbq_page = NULL;
2084                 }
2085                 lbq_desc->bq->addr_lo = 0;
2086                 lbq_desc->bq->addr_hi = 0;
2087         }
2088 }
2089
2090 /*
2091  * Allocate and map a page for each element of the lbq.
2092  */
2093 static int ql_alloc_lbq_buffers(struct ql_adapter *qdev,
2094                                 struct rx_ring *rx_ring)
2095 {
2096         int i;
2097         struct bq_desc *lbq_desc;
2098         u64 map;
2099         struct bq_element *bq = rx_ring->lbq_base;
2100
2101         for (i = 0; i < rx_ring->lbq_len; i++) {
2102                 lbq_desc = &rx_ring->lbq[i];
2103                 memset(lbq_desc, 0, sizeof(lbq_desc));
2104                 lbq_desc->bq = bq;
2105                 lbq_desc->index = i;
2106                 lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
2107                 if (unlikely(!lbq_desc->p.lbq_page)) {
2108                         QPRINTK(qdev, IFUP, ERR, "failed alloc_page().\n");
2109                         goto mem_error;
2110                 } else {
2111                         map = pci_map_page(qdev->pdev,
2112                                            lbq_desc->p.lbq_page,
2113                                            0, PAGE_SIZE, PCI_DMA_FROMDEVICE);
2114                         if (pci_dma_mapping_error(qdev->pdev, map)) {
2115                                 QPRINTK(qdev, IFUP, ERR,
2116                                         "PCI mapping failed.\n");
2117                                 goto mem_error;
2118                         }
2119                         pci_unmap_addr_set(lbq_desc, mapaddr, map);
2120                         pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
2121                         bq->addr_lo = cpu_to_le32(map);
2122                         bq->addr_hi = cpu_to_le32(map >> 32);
2123                 }
2124                 bq++;
2125         }
2126         return 0;
2127 mem_error:
2128         ql_free_lbq_buffers(qdev, rx_ring);
2129         return -ENOMEM;
2130 }
2131
2132 void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2133 {
2134         int i;
2135         struct bq_desc *sbq_desc;
2136
2137         for (i = 0; i < rx_ring->sbq_len; i++) {
2138                 sbq_desc = &rx_ring->sbq[i];
2139                 if (sbq_desc == NULL) {
2140                         QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
2141                         return;
2142                 }
2143                 if (sbq_desc->p.skb) {
2144                         pci_unmap_single(qdev->pdev,
2145                                          pci_unmap_addr(sbq_desc, mapaddr),
2146                                          pci_unmap_len(sbq_desc, maplen),
2147                                          PCI_DMA_FROMDEVICE);
2148                         dev_kfree_skb(sbq_desc->p.skb);
2149                         sbq_desc->p.skb = NULL;
2150                 }
2151                 if (sbq_desc->bq == NULL) {
2152                         QPRINTK(qdev, IFUP, ERR, "sbq_desc->bq %d is NULL.\n",
2153                                 i);
2154                         return;
2155                 }
2156                 sbq_desc->bq->addr_lo = 0;
2157                 sbq_desc->bq->addr_hi = 0;
2158         }
2159 }
2160
2161 /* Allocate and map an skb for each element of the sbq. */
2162 static int ql_alloc_sbq_buffers(struct ql_adapter *qdev,
2163                                 struct rx_ring *rx_ring)
2164 {
2165         int i;
2166         struct bq_desc *sbq_desc;
2167         struct sk_buff *skb;
2168         u64 map;
2169         struct bq_element *bq = rx_ring->sbq_base;
2170
2171         for (i = 0; i < rx_ring->sbq_len; i++) {
2172                 sbq_desc = &rx_ring->sbq[i];
2173                 memset(sbq_desc, 0, sizeof(sbq_desc));
2174                 sbq_desc->index = i;
2175                 sbq_desc->bq = bq;
2176                 skb = netdev_alloc_skb(qdev->ndev, rx_ring->sbq_buf_size);
2177                 if (unlikely(!skb)) {
2178                         /* Better luck next round */
2179                         QPRINTK(qdev, IFUP, ERR,
2180                                 "small buff alloc failed for %d bytes at index %d.\n",
2181                                 rx_ring->sbq_buf_size, i);
2182                         goto mem_err;
2183                 }
2184                 skb_reserve(skb, QLGE_SB_PAD);
2185                 sbq_desc->p.skb = skb;
2186                 /*
2187                  * Map only half the buffer. Because the
2188                  * other half may get some data copied to it
2189                  * when the completion arrives.
2190                  */
2191                 map = pci_map_single(qdev->pdev,
2192                                      skb->data,
2193                                      rx_ring->sbq_buf_size / 2,
2194                                      PCI_DMA_FROMDEVICE);
2195                 if (pci_dma_mapping_error(qdev->pdev, map)) {
2196                         QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
2197                         goto mem_err;
2198                 }
2199                 pci_unmap_addr_set(sbq_desc, mapaddr, map);
2200                 pci_unmap_len_set(sbq_desc, maplen, rx_ring->sbq_buf_size / 2);
2201                 bq->addr_lo =   /*sbq_desc->addr_lo = */
2202                     cpu_to_le32(map);
2203                 bq->addr_hi =   /*sbq_desc->addr_hi = */
2204                     cpu_to_le32(map >> 32);
2205                 bq++;
2206         }
2207         return 0;
2208 mem_err:
2209         ql_free_sbq_buffers(qdev, rx_ring);
2210         return -ENOMEM;
2211 }
2212
2213 static void ql_free_rx_resources(struct ql_adapter *qdev,
2214                                  struct rx_ring *rx_ring)
2215 {
2216         if (rx_ring->sbq_len)
2217                 ql_free_sbq_buffers(qdev, rx_ring);
2218         if (rx_ring->lbq_len)
2219                 ql_free_lbq_buffers(qdev, rx_ring);
2220
2221         /* Free the small buffer queue. */
2222         if (rx_ring->sbq_base) {
2223                 pci_free_consistent(qdev->pdev,
2224                                     rx_ring->sbq_size,
2225                                     rx_ring->sbq_base, rx_ring->sbq_base_dma);
2226                 rx_ring->sbq_base = NULL;
2227         }
2228
2229         /* Free the small buffer queue control blocks. */
2230         kfree(rx_ring->sbq);
2231         rx_ring->sbq = NULL;
2232
2233         /* Free the large buffer queue. */
2234         if (rx_ring->lbq_base) {
2235                 pci_free_consistent(qdev->pdev,
2236                                     rx_ring->lbq_size,
2237                                     rx_ring->lbq_base, rx_ring->lbq_base_dma);
2238                 rx_ring->lbq_base = NULL;
2239         }
2240
2241         /* Free the large buffer queue control blocks. */
2242         kfree(rx_ring->lbq);
2243         rx_ring->lbq = NULL;
2244
2245         /* Free the rx queue. */
2246         if (rx_ring->cq_base) {
2247                 pci_free_consistent(qdev->pdev,
2248                                     rx_ring->cq_size,
2249                                     rx_ring->cq_base, rx_ring->cq_base_dma);
2250                 rx_ring->cq_base = NULL;
2251         }
2252 }
2253
2254 /* Allocate queues and buffers for this completions queue based
2255  * on the values in the parameter structure. */
2256 static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2257                                  struct rx_ring *rx_ring)
2258 {
2259
2260         /*
2261          * Allocate the completion queue for this rx_ring.
2262          */
2263         rx_ring->cq_base =
2264             pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2265                                  &rx_ring->cq_base_dma);
2266
2267         if (rx_ring->cq_base == NULL) {
2268                 QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
2269                 return -ENOMEM;
2270         }
2271
2272         if (rx_ring->sbq_len) {
2273                 /*
2274                  * Allocate small buffer queue.
2275                  */
2276                 rx_ring->sbq_base =
2277                     pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2278                                          &rx_ring->sbq_base_dma);
2279
2280                 if (rx_ring->sbq_base == NULL) {
2281                         QPRINTK(qdev, IFUP, ERR,
2282                                 "Small buffer queue allocation failed.\n");
2283                         goto err_mem;
2284                 }
2285
2286                 /*
2287                  * Allocate small buffer queue control blocks.
2288                  */
2289                 rx_ring->sbq =
2290                     kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
2291                             GFP_KERNEL);
2292                 if (rx_ring->sbq == NULL) {
2293                         QPRINTK(qdev, IFUP, ERR,
2294                                 "Small buffer queue control block allocation failed.\n");
2295                         goto err_mem;
2296                 }
2297
2298                 if (ql_alloc_sbq_buffers(qdev, rx_ring)) {
2299                         QPRINTK(qdev, IFUP, ERR,
2300                                 "Small buffer allocation failed.\n");
2301                         goto err_mem;
2302                 }
2303         }
2304
2305         if (rx_ring->lbq_len) {
2306                 /*
2307                  * Allocate large buffer queue.
2308                  */
2309                 rx_ring->lbq_base =
2310                     pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
2311                                          &rx_ring->lbq_base_dma);
2312
2313                 if (rx_ring->lbq_base == NULL) {
2314                         QPRINTK(qdev, IFUP, ERR,
2315                                 "Large buffer queue allocation failed.\n");
2316                         goto err_mem;
2317                 }
2318                 /*
2319                  * Allocate large buffer queue control blocks.
2320                  */
2321                 rx_ring->lbq =
2322                     kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
2323                             GFP_KERNEL);
2324                 if (rx_ring->lbq == NULL) {
2325                         QPRINTK(qdev, IFUP, ERR,
2326                                 "Large buffer queue control block allocation failed.\n");
2327                         goto err_mem;
2328                 }
2329
2330                 /*
2331                  * Allocate the buffers.
2332                  */
2333                 if (ql_alloc_lbq_buffers(qdev, rx_ring)) {
2334                         QPRINTK(qdev, IFUP, ERR,
2335                                 "Large buffer allocation failed.\n");
2336                         goto err_mem;
2337                 }
2338         }
2339
2340         return 0;
2341
2342 err_mem:
2343         ql_free_rx_resources(qdev, rx_ring);
2344         return -ENOMEM;
2345 }
2346
2347 static void ql_tx_ring_clean(struct ql_adapter *qdev)
2348 {
2349         struct tx_ring *tx_ring;
2350         struct tx_ring_desc *tx_ring_desc;
2351         int i, j;
2352
2353         /*
2354          * Loop through all queues and free
2355          * any resources.
2356          */
2357         for (j = 0; j < qdev->tx_ring_count; j++) {
2358                 tx_ring = &qdev->tx_ring[j];
2359                 for (i = 0; i < tx_ring->wq_len; i++) {
2360                         tx_ring_desc = &tx_ring->q[i];
2361                         if (tx_ring_desc && tx_ring_desc->skb) {
2362                                 QPRINTK(qdev, IFDOWN, ERR,
2363                                 "Freeing lost SKB %p, from queue %d, index %d.\n",
2364                                         tx_ring_desc->skb, j,
2365                                         tx_ring_desc->index);
2366                                 ql_unmap_send(qdev, tx_ring_desc,
2367                                               tx_ring_desc->map_cnt);
2368                                 dev_kfree_skb(tx_ring_desc->skb);
2369                                 tx_ring_desc->skb = NULL;
2370                         }
2371                 }
2372         }
2373 }
2374
2375 static void ql_free_ring_cb(struct ql_adapter *qdev)
2376 {
2377         kfree(qdev->ring_mem);
2378 }
2379
2380 static int ql_alloc_ring_cb(struct ql_adapter *qdev)
2381 {
2382         /* Allocate space for tx/rx ring control blocks. */
2383         qdev->ring_mem_size =
2384             (qdev->tx_ring_count * sizeof(struct tx_ring)) +
2385             (qdev->rx_ring_count * sizeof(struct rx_ring));
2386         qdev->ring_mem = kmalloc(qdev->ring_mem_size, GFP_KERNEL);
2387         if (qdev->ring_mem == NULL) {
2388                 return -ENOMEM;
2389         } else {
2390                 qdev->rx_ring = qdev->ring_mem;
2391                 qdev->tx_ring = qdev->ring_mem +
2392                     (qdev->rx_ring_count * sizeof(struct rx_ring));
2393         }
2394         return 0;
2395 }
2396
2397 static void ql_free_mem_resources(struct ql_adapter *qdev)
2398 {
2399         int i;
2400
2401         for (i = 0; i < qdev->tx_ring_count; i++)
2402                 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
2403         for (i = 0; i < qdev->rx_ring_count; i++)
2404                 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
2405         ql_free_shadow_space(qdev);
2406 }
2407
2408 static int ql_alloc_mem_resources(struct ql_adapter *qdev)
2409 {
2410         int i;
2411
2412         /* Allocate space for our shadow registers and such. */
2413         if (ql_alloc_shadow_space(qdev))
2414                 return -ENOMEM;
2415
2416         for (i = 0; i < qdev->rx_ring_count; i++) {
2417                 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
2418                         QPRINTK(qdev, IFUP, ERR,
2419                                 "RX resource allocation failed.\n");
2420                         goto err_mem;
2421                 }
2422         }
2423         /* Allocate tx queue resources */
2424         for (i = 0; i < qdev->tx_ring_count; i++) {
2425                 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
2426                         QPRINTK(qdev, IFUP, ERR,
2427                                 "TX resource allocation failed.\n");
2428                         goto err_mem;
2429                 }
2430         }
2431         return 0;
2432
2433 err_mem:
2434         ql_free_mem_resources(qdev);
2435         return -ENOMEM;
2436 }
2437
2438 /* Set up the rx ring control block and pass it to the chip.
2439  * The control block is defined as
2440  * "Completion Queue Initialization Control Block", or cqicb.
2441  */
2442 static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2443 {
2444         struct cqicb *cqicb = &rx_ring->cqicb;
2445         void *shadow_reg = qdev->rx_ring_shadow_reg_area +
2446             (rx_ring->cq_id * sizeof(u64) * 4);
2447         u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
2448             (rx_ring->cq_id * sizeof(u64) * 4);
2449         void __iomem *doorbell_area =
2450             qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
2451         int err = 0;
2452         u16 bq_len;
2453
2454         /* Set up the shadow registers for this ring. */
2455         rx_ring->prod_idx_sh_reg = shadow_reg;
2456         rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
2457         shadow_reg += sizeof(u64);
2458         shadow_reg_dma += sizeof(u64);
2459         rx_ring->lbq_base_indirect = shadow_reg;
2460         rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
2461         shadow_reg += sizeof(u64);
2462         shadow_reg_dma += sizeof(u64);
2463         rx_ring->sbq_base_indirect = shadow_reg;
2464         rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
2465
2466         /* PCI doorbell mem area + 0x00 for consumer index register */
2467         rx_ring->cnsmr_idx_db_reg = (u32 *) doorbell_area;
2468         rx_ring->cnsmr_idx = 0;
2469         rx_ring->curr_entry = rx_ring->cq_base;
2470
2471         /* PCI doorbell mem area + 0x04 for valid register */
2472         rx_ring->valid_db_reg = doorbell_area + 0x04;
2473
2474         /* PCI doorbell mem area + 0x18 for large buffer consumer */
2475         rx_ring->lbq_prod_idx_db_reg = (u32 *) (doorbell_area + 0x18);
2476
2477         /* PCI doorbell mem area + 0x1c */
2478         rx_ring->sbq_prod_idx_db_reg = (u32 *) (doorbell_area + 0x1c);
2479
2480         memset((void *)cqicb, 0, sizeof(struct cqicb));
2481         cqicb->msix_vect = rx_ring->irq;
2482
2483         cqicb->len = cpu_to_le16(rx_ring->cq_len | LEN_V | LEN_CPP_CONT);
2484
2485         cqicb->addr_lo = cpu_to_le32(rx_ring->cq_base_dma);
2486         cqicb->addr_hi = cpu_to_le32((u64) rx_ring->cq_base_dma >> 32);
2487
2488         cqicb->prod_idx_addr_lo = cpu_to_le32(rx_ring->prod_idx_sh_reg_dma);
2489         cqicb->prod_idx_addr_hi =
2490             cpu_to_le32((u64) rx_ring->prod_idx_sh_reg_dma >> 32);
2491
2492         /*
2493          * Set up the control block load flags.
2494          */
2495         cqicb->flags = FLAGS_LC |       /* Load queue base address */
2496             FLAGS_LV |          /* Load MSI-X vector */
2497             FLAGS_LI;           /* Load irq delay values */
2498         if (rx_ring->lbq_len) {
2499                 cqicb->flags |= FLAGS_LL;       /* Load lbq values */
2500                 *((u64 *) rx_ring->lbq_base_indirect) = rx_ring->lbq_base_dma;
2501                 cqicb->lbq_addr_lo =
2502                     cpu_to_le32(rx_ring->lbq_base_indirect_dma);
2503                 cqicb->lbq_addr_hi =
2504                     cpu_to_le32((u64) rx_ring->lbq_base_indirect_dma >> 32);
2505                 cqicb->lbq_buf_size = cpu_to_le32(rx_ring->lbq_buf_size);
2506                 bq_len = (u16) rx_ring->lbq_len;
2507                 cqicb->lbq_len = cpu_to_le16(bq_len);
2508                 rx_ring->lbq_prod_idx = rx_ring->lbq_len - 16;
2509                 rx_ring->lbq_curr_idx = 0;
2510                 rx_ring->lbq_clean_idx = rx_ring->lbq_prod_idx;
2511                 rx_ring->lbq_free_cnt = 16;
2512         }
2513         if (rx_ring->sbq_len) {
2514                 cqicb->flags |= FLAGS_LS;       /* Load sbq values */
2515                 *((u64 *) rx_ring->sbq_base_indirect) = rx_ring->sbq_base_dma;
2516                 cqicb->sbq_addr_lo =
2517                     cpu_to_le32(rx_ring->sbq_base_indirect_dma);
2518                 cqicb->sbq_addr_hi =
2519                     cpu_to_le32((u64) rx_ring->sbq_base_indirect_dma >> 32);
2520                 cqicb->sbq_buf_size =
2521                     cpu_to_le16(((rx_ring->sbq_buf_size / 2) + 8) & 0xfffffff8);
2522                 bq_len = (u16) rx_ring->sbq_len;
2523                 cqicb->sbq_len = cpu_to_le16(bq_len);
2524                 rx_ring->sbq_prod_idx = rx_ring->sbq_len - 16;
2525                 rx_ring->sbq_curr_idx = 0;
2526                 rx_ring->sbq_clean_idx = rx_ring->sbq_prod_idx;
2527                 rx_ring->sbq_free_cnt = 16;
2528         }
2529         switch (rx_ring->type) {
2530         case TX_Q:
2531                 /* If there's only one interrupt, then we use
2532                  * worker threads to process the outbound
2533                  * completion handling rx_rings. We do this so
2534                  * they can be run on multiple CPUs. There is
2535                  * room to play with this more where we would only
2536                  * run in a worker if there are more than x number
2537                  * of outbound completions on the queue and more
2538                  * than one queue active.  Some threshold that
2539                  * would indicate a benefit in spite of the cost
2540                  * of a context switch.
2541                  * If there's more than one interrupt, then the
2542                  * outbound completions are processed in the ISR.
2543                  */
2544                 if (!test_bit(QL_MSIX_ENABLED, &qdev->flags))
2545                         INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2546                 else {
2547                         /* With all debug warnings on we see a WARN_ON message
2548                          * when we free the skb in the interrupt context.
2549                          */
2550                         INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2551                 }
2552                 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
2553                 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
2554                 break;
2555         case DEFAULT_Q:
2556                 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_rx_clean);
2557                 cqicb->irq_delay = 0;
2558                 cqicb->pkt_delay = 0;
2559                 break;
2560         case RX_Q:
2561                 /* Inbound completion handling rx_rings run in
2562                  * separate NAPI contexts.
2563                  */
2564                 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
2565                                64);
2566                 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
2567                 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
2568                 break;
2569         default:
2570                 QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
2571                         rx_ring->type);
2572         }
2573         QPRINTK(qdev, IFUP, INFO, "Initializing rx work queue.\n");
2574         err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
2575                            CFG_LCQ, rx_ring->cq_id);
2576         if (err) {
2577                 QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
2578                 return err;
2579         }
2580         QPRINTK(qdev, IFUP, INFO, "Successfully loaded CQICB.\n");
2581         /*
2582          * Advance the producer index for the buffer queues.
2583          */
2584         wmb();
2585         if (rx_ring->lbq_len)
2586                 ql_write_db_reg(rx_ring->lbq_prod_idx,
2587                                 rx_ring->lbq_prod_idx_db_reg);
2588         if (rx_ring->sbq_len)
2589                 ql_write_db_reg(rx_ring->sbq_prod_idx,
2590                                 rx_ring->sbq_prod_idx_db_reg);
2591         return err;
2592 }
2593
2594 static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2595 {
2596         struct wqicb *wqicb = (struct wqicb *)tx_ring;
2597         void __iomem *doorbell_area =
2598             qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
2599         void *shadow_reg = qdev->tx_ring_shadow_reg_area +
2600             (tx_ring->wq_id * sizeof(u64));
2601         u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
2602             (tx_ring->wq_id * sizeof(u64));
2603         int err = 0;
2604
2605         /*
2606          * Assign doorbell registers for this tx_ring.
2607          */
2608         /* TX PCI doorbell mem area for tx producer index */
2609         tx_ring->prod_idx_db_reg = (u32 *) doorbell_area;
2610         tx_ring->prod_idx = 0;
2611         /* TX PCI doorbell mem area + 0x04 */
2612         tx_ring->valid_db_reg = doorbell_area + 0x04;
2613
2614         /*
2615          * Assign shadow registers for this tx_ring.
2616          */
2617         tx_ring->cnsmr_idx_sh_reg = shadow_reg;
2618         tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
2619
2620         wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
2621         wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
2622                                    Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
2623         wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
2624         wqicb->rid = 0;
2625         wqicb->addr_lo = cpu_to_le32(tx_ring->wq_base_dma);
2626         wqicb->addr_hi = cpu_to_le32((u64) tx_ring->wq_base_dma >> 32);
2627
2628         wqicb->cnsmr_idx_addr_lo = cpu_to_le32(tx_ring->cnsmr_idx_sh_reg_dma);
2629         wqicb->cnsmr_idx_addr_hi =
2630             cpu_to_le32((u64) tx_ring->cnsmr_idx_sh_reg_dma >> 32);
2631
2632         ql_init_tx_ring(qdev, tx_ring);
2633
2634         err = ql_write_cfg(qdev, wqicb, sizeof(wqicb), CFG_LRQ,
2635                            (u16) tx_ring->wq_id);
2636         if (err) {
2637                 QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
2638                 return err;
2639         }
2640         QPRINTK(qdev, IFUP, INFO, "Successfully loaded WQICB.\n");
2641         return err;
2642 }
2643
2644 static void ql_disable_msix(struct ql_adapter *qdev)
2645 {
2646         if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2647                 pci_disable_msix(qdev->pdev);
2648                 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
2649                 kfree(qdev->msi_x_entry);
2650                 qdev->msi_x_entry = NULL;
2651         } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
2652                 pci_disable_msi(qdev->pdev);
2653                 clear_bit(QL_MSI_ENABLED, &qdev->flags);
2654         }
2655 }
2656
2657 static void ql_enable_msix(struct ql_adapter *qdev)
2658 {
2659         int i;
2660
2661         qdev->intr_count = 1;
2662         /* Get the MSIX vectors. */
2663         if (irq_type == MSIX_IRQ) {
2664                 /* Try to alloc space for the msix struct,
2665                  * if it fails then go to MSI/legacy.
2666                  */
2667                 qdev->msi_x_entry = kcalloc(qdev->rx_ring_count,
2668                                             sizeof(struct msix_entry),
2669                                             GFP_KERNEL);
2670                 if (!qdev->msi_x_entry) {
2671                         irq_type = MSI_IRQ;
2672                         goto msi;
2673                 }
2674
2675                 for (i = 0; i < qdev->rx_ring_count; i++)
2676                         qdev->msi_x_entry[i].entry = i;
2677
2678                 if (!pci_enable_msix
2679                     (qdev->pdev, qdev->msi_x_entry, qdev->rx_ring_count)) {
2680                         set_bit(QL_MSIX_ENABLED, &qdev->flags);
2681                         qdev->intr_count = qdev->rx_ring_count;
2682                         QPRINTK(qdev, IFUP, INFO,
2683                                 "MSI-X Enabled, got %d vectors.\n",
2684                                 qdev->intr_count);
2685                         return;
2686                 } else {
2687                         kfree(qdev->msi_x_entry);
2688                         qdev->msi_x_entry = NULL;
2689                         QPRINTK(qdev, IFUP, WARNING,
2690                                 "MSI-X Enable failed, trying MSI.\n");
2691                         irq_type = MSI_IRQ;
2692                 }
2693         }
2694 msi:
2695         if (irq_type == MSI_IRQ) {
2696                 if (!pci_enable_msi(qdev->pdev)) {
2697                         set_bit(QL_MSI_ENABLED, &qdev->flags);
2698                         QPRINTK(qdev, IFUP, INFO,
2699                                 "Running with MSI interrupts.\n");
2700                         return;
2701                 }
2702         }
2703         irq_type = LEG_IRQ;
2704         spin_lock_init(&qdev->legacy_lock);
2705         qdev->legacy_check = ql_legacy_check;
2706         QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
2707 }
2708
2709 /*
2710  * Here we build the intr_context structures based on
2711  * our rx_ring count and intr vector count.
2712  * The intr_context structure is used to hook each vector
2713  * to possibly different handlers.
2714  */
2715 static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
2716 {
2717         int i = 0;
2718         struct intr_context *intr_context = &qdev->intr_context[0];
2719
2720         ql_enable_msix(qdev);
2721
2722         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
2723                 /* Each rx_ring has it's
2724                  * own intr_context since we have separate
2725                  * vectors for each queue.
2726                  * This only true when MSI-X is enabled.
2727                  */
2728                 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2729                         qdev->rx_ring[i].irq = i;
2730                         intr_context->intr = i;
2731                         intr_context->qdev = qdev;
2732                         /*
2733                          * We set up each vectors enable/disable/read bits so
2734                          * there's no bit/mask calculations in the critical path.
2735                          */
2736                         intr_context->intr_en_mask =
2737                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2738                             INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
2739                             | i;
2740                         intr_context->intr_dis_mask =
2741                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2742                             INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
2743                             INTR_EN_IHD | i;
2744                         intr_context->intr_read_mask =
2745                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2746                             INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
2747                             i;
2748
2749                         if (i == 0) {
2750                                 /*
2751                                  * Default queue handles bcast/mcast plus
2752                                  * async events.  Needs buffers.
2753                                  */
2754                                 intr_context->handler = qlge_isr;
2755                                 sprintf(intr_context->name, "%s-default-queue",
2756                                         qdev->ndev->name);
2757                         } else if (i < qdev->rss_ring_first_cq_id) {
2758                                 /*
2759                                  * Outbound queue is for outbound completions only.
2760                                  */
2761                                 intr_context->handler = qlge_msix_tx_isr;
2762                                 sprintf(intr_context->name, "%s-txq-%d",
2763                                         qdev->ndev->name, i);
2764                         } else {
2765                                 /*
2766                                  * Inbound queues handle unicast frames only.
2767                                  */
2768                                 intr_context->handler = qlge_msix_rx_isr;
2769                                 sprintf(intr_context->name, "%s-rxq-%d",
2770                                         qdev->ndev->name, i);
2771                         }
2772                 }
2773         } else {
2774                 /*
2775                  * All rx_rings use the same intr_context since
2776                  * there is only one vector.
2777                  */
2778                 intr_context->intr = 0;
2779                 intr_context->qdev = qdev;
2780                 /*
2781                  * We set up each vectors enable/disable/read bits so
2782                  * there's no bit/mask calculations in the critical path.
2783                  */
2784                 intr_context->intr_en_mask =
2785                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
2786                 intr_context->intr_dis_mask =
2787                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2788                     INTR_EN_TYPE_DISABLE;
2789                 intr_context->intr_read_mask =
2790                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
2791                 /*
2792                  * Single interrupt means one handler for all rings.
2793                  */
2794                 intr_context->handler = qlge_isr;
2795                 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
2796                 for (i = 0; i < qdev->rx_ring_count; i++)
2797                         qdev->rx_ring[i].irq = 0;
2798         }
2799 }
2800
2801 static void ql_free_irq(struct ql_adapter *qdev)
2802 {
2803         int i;
2804         struct intr_context *intr_context = &qdev->intr_context[0];
2805
2806         for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2807                 if (intr_context->hooked) {
2808                         if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2809                                 free_irq(qdev->msi_x_entry[i].vector,
2810                                          &qdev->rx_ring[i]);
2811                                 QPRINTK(qdev, IFDOWN, ERR,
2812                                         "freeing msix interrupt %d.\n", i);
2813                         } else {
2814                                 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
2815                                 QPRINTK(qdev, IFDOWN, ERR,
2816                                         "freeing msi interrupt %d.\n", i);
2817                         }
2818                 }
2819         }
2820         ql_disable_msix(qdev);
2821 }
2822
2823 static int ql_request_irq(struct ql_adapter *qdev)
2824 {
2825         int i;
2826         int status = 0;
2827         struct pci_dev *pdev = qdev->pdev;
2828         struct intr_context *intr_context = &qdev->intr_context[0];
2829
2830         ql_resolve_queues_to_irqs(qdev);
2831
2832         for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2833                 atomic_set(&intr_context->irq_cnt, 0);
2834                 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2835                         status = request_irq(qdev->msi_x_entry[i].vector,
2836                                              intr_context->handler,
2837                                              0,
2838                                              intr_context->name,
2839                                              &qdev->rx_ring[i]);
2840                         if (status) {
2841                                 QPRINTK(qdev, IFUP, ERR,
2842                                         "Failed request for MSIX interrupt %d.\n",
2843                                         i);
2844                                 goto err_irq;
2845                         } else {
2846                                 QPRINTK(qdev, IFUP, INFO,
2847                                         "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2848                                         i,
2849                                         qdev->rx_ring[i].type ==
2850                                         DEFAULT_Q ? "DEFAULT_Q" : "",
2851                                         qdev->rx_ring[i].type ==
2852                                         TX_Q ? "TX_Q" : "",
2853                                         qdev->rx_ring[i].type ==
2854                                         RX_Q ? "RX_Q" : "", intr_context->name);
2855                         }
2856                 } else {
2857                         QPRINTK(qdev, IFUP, DEBUG,
2858                                 "trying msi or legacy interrupts.\n");
2859                         QPRINTK(qdev, IFUP, DEBUG,
2860                                 "%s: irq = %d.\n", __func__, pdev->irq);
2861                         QPRINTK(qdev, IFUP, DEBUG,
2862                                 "%s: context->name = %s.\n", __func__,
2863                                intr_context->name);
2864                         QPRINTK(qdev, IFUP, DEBUG,
2865                                 "%s: dev_id = 0x%p.\n", __func__,
2866                                &qdev->rx_ring[0]);
2867                         status =
2868                             request_irq(pdev->irq, qlge_isr,
2869                                         test_bit(QL_MSI_ENABLED,
2870                                                  &qdev->
2871                                                  flags) ? 0 : IRQF_SHARED,
2872                                         intr_context->name, &qdev->rx_ring[0]);
2873                         if (status)
2874                                 goto err_irq;
2875
2876                         QPRINTK(qdev, IFUP, ERR,
2877                                 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2878                                 i,
2879                                 qdev->rx_ring[0].type ==
2880                                 DEFAULT_Q ? "DEFAULT_Q" : "",
2881                                 qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
2882                                 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
2883                                 intr_context->name);
2884                 }
2885                 intr_context->hooked = 1;
2886         }
2887         return status;
2888 err_irq:
2889         QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
2890         ql_free_irq(qdev);
2891         return status;
2892 }
2893
2894 static int ql_start_rss(struct ql_adapter *qdev)
2895 {
2896         struct ricb *ricb = &qdev->ricb;
2897         int status = 0;
2898         int i;
2899         u8 *hash_id = (u8 *) ricb->hash_cq_id;
2900
2901         memset((void *)ricb, 0, sizeof(ricb));
2902
2903         ricb->base_cq = qdev->rss_ring_first_cq_id | RSS_L4K;
2904         ricb->flags =
2905             (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
2906              RSS_RT6);
2907         ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1);
2908
2909         /*
2910          * Fill out the Indirection Table.
2911          */
2912         for (i = 0; i < 32; i++)
2913                 hash_id[i] = i & 1;
2914
2915         /*
2916          * Random values for the IPv6 and IPv4 Hash Keys.
2917          */
2918         get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40);
2919         get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16);
2920
2921         QPRINTK(qdev, IFUP, INFO, "Initializing RSS.\n");
2922
2923         status = ql_write_cfg(qdev, ricb, sizeof(ricb), CFG_LR, 0);
2924         if (status) {
2925                 QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
2926                 return status;
2927         }
2928         QPRINTK(qdev, IFUP, INFO, "Successfully loaded RICB.\n");
2929         return status;
2930 }
2931
2932 /* Initialize the frame-to-queue routing. */
2933 static int ql_route_initialize(struct ql_adapter *qdev)
2934 {
2935         int status = 0;
2936         int i;
2937
2938         /* Clear all the entries in the routing table. */
2939         for (i = 0; i < 16; i++) {
2940                 status = ql_set_routing_reg(qdev, i, 0, 0);
2941                 if (status) {
2942                         QPRINTK(qdev, IFUP, ERR,
2943                                 "Failed to init routing register for CAM packets.\n");
2944                         return status;
2945                 }
2946         }
2947
2948         status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
2949         if (status) {
2950                 QPRINTK(qdev, IFUP, ERR,
2951                         "Failed to init routing register for error packets.\n");
2952                 return status;
2953         }
2954         status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
2955         if (status) {
2956                 QPRINTK(qdev, IFUP, ERR,
2957                         "Failed to init routing register for broadcast packets.\n");
2958                 return status;
2959         }
2960         /* If we have more than one inbound queue, then turn on RSS in the
2961          * routing block.
2962          */
2963         if (qdev->rss_ring_count > 1) {
2964                 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
2965                                         RT_IDX_RSS_MATCH, 1);
2966                 if (status) {
2967                         QPRINTK(qdev, IFUP, ERR,
2968                                 "Failed to init routing register for MATCH RSS packets.\n");
2969                         return status;
2970                 }
2971         }
2972
2973         status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
2974                                     RT_IDX_CAM_HIT, 1);
2975         if (status) {
2976                 QPRINTK(qdev, IFUP, ERR,
2977                         "Failed to init routing register for CAM packets.\n");
2978                 return status;
2979         }
2980         return status;
2981 }
2982
2983 static int ql_adapter_initialize(struct ql_adapter *qdev)
2984 {
2985         u32 value, mask;
2986         int i;
2987         int status = 0;
2988
2989         /*
2990          * Set up the System register to halt on errors.
2991          */
2992         value = SYS_EFE | SYS_FAE;
2993         mask = value << 16;
2994         ql_write32(qdev, SYS, mask | value);
2995
2996         /* Set the default queue. */
2997         value = NIC_RCV_CFG_DFQ;
2998         mask = NIC_RCV_CFG_DFQ_MASK;
2999         ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3000
3001         /* Set the MPI interrupt to enabled. */
3002         ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3003
3004         /* Enable the function, set pagesize, enable error checking. */
3005         value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
3006             FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
3007
3008         /* Set/clear header splitting. */
3009         mask = FSC_VM_PAGESIZE_MASK |
3010             FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3011         ql_write32(qdev, FSC, mask | value);
3012
3013         ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
3014                 min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
3015
3016         /* Start up the rx queues. */
3017         for (i = 0; i < qdev->rx_ring_count; i++) {
3018                 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3019                 if (status) {
3020                         QPRINTK(qdev, IFUP, ERR,
3021                                 "Failed to start rx ring[%d].\n", i);
3022                         return status;
3023                 }
3024         }
3025
3026         /* If there is more than one inbound completion queue
3027          * then download a RICB to configure RSS.
3028          */
3029         if (qdev->rss_ring_count > 1) {
3030                 status = ql_start_rss(qdev);
3031                 if (status) {
3032                         QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
3033                         return status;
3034                 }
3035         }
3036
3037         /* Start up the tx queues. */
3038         for (i = 0; i < qdev->tx_ring_count; i++) {
3039                 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3040                 if (status) {
3041                         QPRINTK(qdev, IFUP, ERR,
3042                                 "Failed to start tx ring[%d].\n", i);
3043                         return status;
3044                 }
3045         }
3046
3047         status = ql_port_initialize(qdev);
3048         if (status) {
3049                 QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
3050                 return status;
3051         }
3052
3053         status = ql_set_mac_addr_reg(qdev, (u8 *) qdev->ndev->perm_addr,
3054                                      MAC_ADDR_TYPE_CAM_MAC, qdev->func);
3055         if (status) {
3056                 QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
3057                 return status;
3058         }
3059
3060         status = ql_route_initialize(qdev);
3061         if (status) {
3062                 QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
3063                 return status;
3064         }
3065
3066         /* Start NAPI for the RSS queues. */
3067         for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++) {
3068                 QPRINTK(qdev, IFUP, INFO, "Enabling NAPI for rx_ring[%d].\n",
3069                         i);
3070                 napi_enable(&qdev->rx_ring[i].napi);
3071         }
3072
3073         return status;
3074 }
3075
3076 /* Issue soft reset to chip. */
3077 static int ql_adapter_reset(struct ql_adapter *qdev)
3078 {
3079         u32 value;
3080         int max_wait_time;
3081         int status = 0;
3082         int resetCnt = 0;
3083
3084 #define MAX_RESET_CNT   1
3085 issueReset:
3086         resetCnt++;
3087         QPRINTK(qdev, IFDOWN, DEBUG, "Issue soft reset to chip.\n");
3088         ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3089         /* Wait for reset to complete. */
3090         max_wait_time = 3;
3091         QPRINTK(qdev, IFDOWN, DEBUG, "Wait %d seconds for reset to complete.\n",
3092                 max_wait_time);
3093         do {
3094                 value = ql_read32(qdev, RST_FO);
3095                 if ((value & RST_FO_FR) == 0)
3096                         break;
3097
3098                 ssleep(1);
3099         } while ((--max_wait_time));
3100         if (value & RST_FO_FR) {
3101                 QPRINTK(qdev, IFDOWN, ERR,
3102                         "Stuck in SoftReset:  FSC_SR:0x%08x\n", value);
3103                 if (resetCnt < MAX_RESET_CNT)
3104                         goto issueReset;
3105         }
3106         if (max_wait_time == 0) {
3107                 status = -ETIMEDOUT;
3108                 QPRINTK(qdev, IFDOWN, ERR,
3109                         "ETIMEOUT!!! errored out of resetting the chip!\n");
3110         }
3111
3112         return status;
3113 }
3114
3115 static void ql_display_dev_info(struct net_device *ndev)
3116 {
3117         struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3118
3119         QPRINTK(qdev, PROBE, INFO,
3120                 "Function #%d, NIC Roll %d, NIC Rev = %d, "
3121                 "XG Roll = %d, XG Rev = %d.\n",
3122                 qdev->func,
3123                 qdev->chip_rev_id & 0x0000000f,
3124                 qdev->chip_rev_id >> 4 & 0x0000000f,
3125                 qdev->chip_rev_id >> 8 & 0x0000000f,
3126                 qdev->chip_rev_id >> 12 & 0x0000000f);
3127         QPRINTK(qdev, PROBE, INFO,
3128                 "MAC address %02x:%02x:%02x:%02x:%02x:%02x\n",
3129                 ndev->dev_addr[0], ndev->dev_addr[1],
3130                 ndev->dev_addr[2], ndev->dev_addr[3], ndev->dev_addr[4],
3131                 ndev->dev_addr[5]);
3132 }
3133
3134 static int ql_adapter_down(struct ql_adapter *qdev)
3135 {
3136         struct net_device *ndev = qdev->ndev;
3137         int i, status = 0;
3138         struct rx_ring *rx_ring;
3139
3140         netif_stop_queue(ndev);
3141         netif_carrier_off(ndev);
3142
3143         cancel_delayed_work_sync(&qdev->asic_reset_work);
3144         cancel_delayed_work_sync(&qdev->mpi_reset_work);
3145         cancel_delayed_work_sync(&qdev->mpi_work);
3146
3147         /* The default queue at index 0 is always processed in
3148          * a workqueue.
3149          */
3150         cancel_delayed_work_sync(&qdev->rx_ring[0].rx_work);
3151
3152         /* The rest of the rx_rings are processed in
3153          * a workqueue only if it's a single interrupt
3154          * environment (MSI/Legacy).
3155          */
3156         for (i = 1; i > qdev->rx_ring_count; i++) {
3157                 rx_ring = &qdev->rx_ring[i];
3158                 /* Only the RSS rings use NAPI on multi irq
3159                  * environment.  Outbound completion processing
3160                  * is done in interrupt context.
3161                  */
3162                 if (i >= qdev->rss_ring_first_cq_id) {
3163                         napi_disable(&rx_ring->napi);
3164                 } else {
3165                         cancel_delayed_work_sync(&rx_ring->rx_work);
3166                 }
3167         }
3168
3169         clear_bit(QL_ADAPTER_UP, &qdev->flags);
3170
3171         ql_disable_interrupts(qdev);
3172
3173         ql_tx_ring_clean(qdev);
3174
3175         spin_lock(&qdev->hw_lock);
3176         status = ql_adapter_reset(qdev);
3177         if (status)
3178                 QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
3179                         qdev->func);
3180         spin_unlock(&qdev->hw_lock);
3181         return status;
3182 }
3183
3184 static int ql_adapter_up(struct ql_adapter *qdev)
3185 {
3186         int err = 0;
3187
3188         spin_lock(&qdev->hw_lock);
3189         err = ql_adapter_initialize(qdev);
3190         if (err) {
3191                 QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
3192                 spin_unlock(&qdev->hw_lock);
3193                 goto err_init;
3194         }
3195         spin_unlock(&qdev->hw_lock);
3196         set_bit(QL_ADAPTER_UP, &qdev->flags);
3197         ql_enable_interrupts(qdev);
3198         ql_enable_all_completion_interrupts(qdev);
3199         if ((ql_read32(qdev, STS) & qdev->port_init)) {
3200                 netif_carrier_on(qdev->ndev);
3201                 netif_start_queue(qdev->ndev);
3202         }
3203
3204         return 0;
3205 err_init:
3206         ql_adapter_reset(qdev);
3207         return err;
3208 }
3209
3210 static int ql_cycle_adapter(struct ql_adapter *qdev)
3211 {
3212         int status;
3213
3214         status = ql_adapter_down(qdev);
3215         if (status)
3216                 goto error;
3217
3218         status = ql_adapter_up(qdev);
3219         if (status)
3220                 goto error;
3221
3222         return status;
3223 error:
3224         QPRINTK(qdev, IFUP, ALERT,
3225                 "Driver up/down cycle failed, closing device\n");
3226         rtnl_lock();
3227         dev_close(qdev->ndev);
3228         rtnl_unlock();
3229         return status;
3230 }
3231
3232 static void ql_release_adapter_resources(struct ql_adapter *qdev)
3233 {
3234         ql_free_mem_resources(qdev);
3235         ql_free_irq(qdev);
3236 }
3237
3238 static int ql_get_adapter_resources(struct ql_adapter *qdev)
3239 {
3240         int status = 0;
3241
3242         if (ql_alloc_mem_resources(qdev)) {
3243                 QPRINTK(qdev, IFUP, ERR, "Unable to  allocate memory.\n");
3244                 return -ENOMEM;
3245         }
3246         status = ql_request_irq(qdev);
3247         if (status)
3248                 goto err_irq;
3249         return status;
3250 err_irq:
3251         ql_free_mem_resources(qdev);
3252         return status;
3253 }
3254
3255 static int qlge_close(struct net_device *ndev)
3256 {
3257         struct ql_adapter *qdev = netdev_priv(ndev);
3258
3259         /*
3260          * Wait for device to recover from a reset.
3261          * (Rarely happens, but possible.)
3262          */
3263         while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
3264                 msleep(1);
3265         ql_adapter_down(qdev);
3266         ql_release_adapter_resources(qdev);
3267         ql_free_ring_cb(qdev);
3268         return 0;
3269 }
3270
3271 static int ql_configure_rings(struct ql_adapter *qdev)
3272 {
3273         int i;
3274         struct rx_ring *rx_ring;
3275         struct tx_ring *tx_ring;
3276         int cpu_cnt = num_online_cpus();
3277
3278         /*
3279          * For each processor present we allocate one
3280          * rx_ring for outbound completions, and one
3281          * rx_ring for inbound completions.  Plus there is
3282          * always the one default queue.  For the CPU
3283          * counts we end up with the following rx_rings:
3284          * rx_ring count =
3285          *  one default queue +
3286          *  (CPU count * outbound completion rx_ring) +
3287          *  (CPU count * inbound (RSS) completion rx_ring)
3288          * To keep it simple we limit the total number of
3289          * queues to < 32, so we truncate CPU to 8.
3290          * This limitation can be removed when requested.
3291          */
3292
3293         if (cpu_cnt > 8)
3294                 cpu_cnt = 8;
3295
3296         /*
3297          * rx_ring[0] is always the default queue.
3298          */
3299         /* Allocate outbound completion ring for each CPU. */
3300         qdev->tx_ring_count = cpu_cnt;
3301         /* Allocate inbound completion (RSS) ring for each CPU. */
3302         qdev->rss_ring_count = cpu_cnt;
3303         /* cq_id for the first inbound ring handler. */
3304         qdev->rss_ring_first_cq_id = cpu_cnt + 1;
3305         /*
3306          * qdev->rx_ring_count:
3307          * Total number of rx_rings.  This includes the one
3308          * default queue, a number of outbound completion
3309          * handler rx_rings, and the number of inbound
3310          * completion handler rx_rings.
3311          */
3312         qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count + 1;
3313
3314         if (ql_alloc_ring_cb(qdev))
3315                 return -ENOMEM;
3316
3317         for (i = 0; i < qdev->tx_ring_count; i++) {
3318                 tx_ring = &qdev->tx_ring[i];
3319                 memset((void *)tx_ring, 0, sizeof(tx_ring));
3320                 tx_ring->qdev = qdev;
3321                 tx_ring->wq_id = i;
3322                 tx_ring->wq_len = qdev->tx_ring_size;
3323                 tx_ring->wq_size =
3324                     tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
3325
3326                 /*
3327                  * The completion queue ID for the tx rings start
3328                  * immediately after the default Q ID, which is zero.
3329                  */
3330                 tx_ring->cq_id = i + 1;
3331         }
3332
3333         for (i = 0; i < qdev->rx_ring_count; i++) {
3334                 rx_ring = &qdev->rx_ring[i];
3335                 memset((void *)rx_ring, 0, sizeof(rx_ring));
3336                 rx_ring->qdev = qdev;
3337                 rx_ring->cq_id = i;
3338                 rx_ring->cpu = i % cpu_cnt;     /* CPU to run handler on. */
3339                 if (i == 0) {   /* Default queue at index 0. */
3340                         /*
3341                          * Default queue handles bcast/mcast plus
3342                          * async events.  Needs buffers.
3343                          */
3344                         rx_ring->cq_len = qdev->rx_ring_size;
3345                         rx_ring->cq_size =
3346                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3347                         rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3348                         rx_ring->lbq_size =
3349                             rx_ring->lbq_len * sizeof(struct bq_element);
3350                         rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3351                         rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3352                         rx_ring->sbq_size =
3353                             rx_ring->sbq_len * sizeof(struct bq_element);
3354                         rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3355                         rx_ring->type = DEFAULT_Q;
3356                 } else if (i < qdev->rss_ring_first_cq_id) {
3357                         /*
3358                          * Outbound queue handles outbound completions only.
3359                          */
3360                         /* outbound cq is same size as tx_ring it services. */
3361                         rx_ring->cq_len = qdev->tx_ring_size;
3362                         rx_ring->cq_size =
3363                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3364                         rx_ring->lbq_len = 0;
3365                         rx_ring->lbq_size = 0;
3366                         rx_ring->lbq_buf_size = 0;
3367                         rx_ring->sbq_len = 0;
3368                         rx_ring->sbq_size = 0;
3369                         rx_ring->sbq_buf_size = 0;
3370                         rx_ring->type = TX_Q;
3371                 } else {        /* Inbound completions (RSS) queues */
3372                         /*
3373                          * Inbound queues handle unicast frames only.
3374                          */
3375                         rx_ring->cq_len = qdev->rx_ring_size;
3376                         rx_ring->cq_size =
3377                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3378                         rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3379                         rx_ring->lbq_size =
3380                             rx_ring->lbq_len * sizeof(struct bq_element);
3381                         rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3382                         rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3383                         rx_ring->sbq_size =
3384                             rx_ring->sbq_len * sizeof(struct bq_element);
3385                         rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3386                         rx_ring->type = RX_Q;
3387                 }
3388         }
3389         return 0;
3390 }
3391
3392 static int qlge_open(struct net_device *ndev)
3393 {
3394         int err = 0;
3395         struct ql_adapter *qdev = netdev_priv(ndev);
3396
3397         err = ql_configure_rings(qdev);
3398         if (err)
3399                 return err;
3400
3401         err = ql_get_adapter_resources(qdev);
3402         if (err)
3403                 goto error_up;
3404
3405         err = ql_adapter_up(qdev);
3406         if (err)
3407                 goto error_up;
3408
3409         return err;
3410
3411 error_up:
3412         ql_release_adapter_resources(qdev);
3413         ql_free_ring_cb(qdev);
3414         return err;
3415 }
3416
3417 static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
3418 {
3419         struct ql_adapter *qdev = netdev_priv(ndev);
3420
3421         if (ndev->mtu == 1500 && new_mtu == 9000) {
3422                 QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
3423         } else if (ndev->mtu == 9000 && new_mtu == 1500) {
3424                 QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
3425         } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
3426                    (ndev->mtu == 9000 && new_mtu == 9000)) {
3427                 return 0;
3428         } else
3429                 return -EINVAL;
3430         ndev->mtu = new_mtu;
3431         return 0;
3432 }
3433
3434 static struct net_device_stats *qlge_get_stats(struct net_device
3435                                                *ndev)
3436 {
3437         struct ql_adapter *qdev = netdev_priv(ndev);
3438         return &qdev->stats;
3439 }
3440
3441 static void qlge_set_multicast_list(struct net_device *ndev)
3442 {
3443         struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3444         struct dev_mc_list *mc_ptr;
3445         int i;
3446
3447         spin_lock(&qdev->hw_lock);
3448         /*
3449          * Set or clear promiscuous mode if a
3450          * transition is taking place.
3451          */
3452         if (ndev->flags & IFF_PROMISC) {
3453                 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3454                         if (ql_set_routing_reg
3455                             (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
3456                                 QPRINTK(qdev, HW, ERR,
3457                                         "Failed to set promiscous mode.\n");
3458                         } else {
3459                                 set_bit(QL_PROMISCUOUS, &qdev->flags);
3460                         }
3461                 }
3462         } else {
3463                 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3464                         if (ql_set_routing_reg
3465                             (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
3466                                 QPRINTK(qdev, HW, ERR,
3467                                         "Failed to clear promiscous mode.\n");
3468                         } else {
3469                                 clear_bit(QL_PROMISCUOUS, &qdev->flags);
3470                         }
3471                 }
3472         }
3473
3474         /*
3475          * Set or clear all multicast mode if a
3476          * transition is taking place.
3477          */
3478         if ((ndev->flags & IFF_ALLMULTI) ||
3479             (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
3480                 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
3481                         if (ql_set_routing_reg
3482                             (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
3483                                 QPRINTK(qdev, HW, ERR,
3484                                         "Failed to set all-multi mode.\n");
3485                         } else {
3486                                 set_bit(QL_ALLMULTI, &qdev->flags);
3487                         }
3488                 }
3489         } else {
3490                 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
3491                         if (ql_set_routing_reg
3492                             (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
3493                                 QPRINTK(qdev, HW, ERR,
3494                                         "Failed to clear all-multi mode.\n");
3495                         } else {
3496                                 clear_bit(QL_ALLMULTI, &qdev->flags);
3497                         }
3498                 }
3499         }
3500
3501         if (ndev->mc_count) {
3502                 for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
3503                      i++, mc_ptr = mc_ptr->next)
3504                         if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
3505                                                 MAC_ADDR_TYPE_MULTI_MAC, i)) {
3506                                 QPRINTK(qdev, HW, ERR,
3507                                         "Failed to loadmulticast address.\n");
3508                                 goto exit;
3509                         }
3510                 if (ql_set_routing_reg
3511                     (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
3512                         QPRINTK(qdev, HW, ERR,
3513                                 "Failed to set multicast match mode.\n");
3514                 } else {
3515                         set_bit(QL_ALLMULTI, &qdev->flags);
3516                 }
3517         }
3518 exit:
3519         spin_unlock(&qdev->hw_lock);
3520 }
3521
3522 static int qlge_set_mac_address(struct net_device *ndev, void *p)
3523 {
3524         struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3525         struct sockaddr *addr = p;
3526
3527         if (netif_running(ndev))
3528                 return -EBUSY;
3529
3530         if (!is_valid_ether_addr(addr->sa_data))
3531                 return -EADDRNOTAVAIL;
3532         memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3533
3534         spin_lock(&qdev->hw_lock);
3535         if (ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
3536                         MAC_ADDR_TYPE_CAM_MAC, qdev->func)) {/* Unicast */
3537                 QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
3538                 return -1;
3539         }
3540         spin_unlock(&qdev->hw_lock);
3541
3542         return 0;
3543 }
3544
3545 static void qlge_tx_timeout(struct net_device *ndev)
3546 {
3547         struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3548         queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
3549 }
3550
3551 static void ql_asic_reset_work(struct work_struct *work)
3552 {
3553         struct ql_adapter *qdev =
3554             container_of(work, struct ql_adapter, asic_reset_work.work);
3555         ql_cycle_adapter(qdev);
3556 }
3557
3558 static void ql_get_board_info(struct ql_adapter *qdev)
3559 {
3560         qdev->func =
3561             (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
3562         if (qdev->func) {
3563                 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
3564                 qdev->port_link_up = STS_PL1;
3565                 qdev->port_init = STS_PI1;
3566                 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
3567                 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
3568         } else {
3569                 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
3570                 qdev->port_link_up = STS_PL0;
3571                 qdev->port_init = STS_PI0;
3572                 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
3573                 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
3574         }
3575         qdev->chip_rev_id = ql_read32(qdev, REV_ID);
3576 }
3577
3578 static void ql_release_all(struct pci_dev *pdev)
3579 {
3580         struct net_device *ndev = pci_get_drvdata(pdev);
3581         struct ql_adapter *qdev = netdev_priv(ndev);
3582
3583         if (qdev->workqueue) {
3584                 destroy_workqueue(qdev->workqueue);
3585                 qdev->workqueue = NULL;
3586         }
3587         if (qdev->q_workqueue) {
3588                 destroy_workqueue(qdev->q_workqueue);
3589                 qdev->q_workqueue = NULL;
3590         }
3591         if (qdev->reg_base)
3592                 iounmap((void *)qdev->reg_base);
3593         if (qdev->doorbell_area)
3594                 iounmap(qdev->doorbell_area);
3595         pci_release_regions(pdev);
3596         pci_set_drvdata(pdev, NULL);
3597 }
3598
3599 static int __devinit ql_init_device(struct pci_dev *pdev,
3600                                     struct net_device *ndev, int cards_found)
3601 {
3602         struct ql_adapter *qdev = netdev_priv(ndev);
3603         int pos, err = 0;
3604         u16 val16;
3605
3606         memset((void *)qdev, 0, sizeof(qdev));
3607         err = pci_enable_device(pdev);
3608         if (err) {
3609                 dev_err(&pdev->dev, "PCI device enable failed.\n");
3610                 return err;
3611         }
3612
3613         pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
3614         if (pos <= 0) {
3615                 dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
3616                         "aborting.\n");
3617                 goto err_out;
3618         } else {
3619                 pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
3620                 val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
3621                 val16 |= (PCI_EXP_DEVCTL_CERE |
3622                           PCI_EXP_DEVCTL_NFERE |
3623                           PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
3624                 pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
3625         }
3626
3627         err = pci_request_regions(pdev, DRV_NAME);
3628         if (err) {
3629                 dev_err(&pdev->dev, "PCI region request failed.\n");
3630                 goto err_out;
3631         }
3632
3633         pci_set_master(pdev);
3634         if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3635                 set_bit(QL_DMA64, &qdev->flags);
3636                 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3637         } else {
3638                 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
3639                 if (!err)
3640                        err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3641         }
3642
3643         if (err) {
3644                 dev_err(&pdev->dev, "No usable DMA configuration.\n");
3645                 goto err_out;
3646         }
3647
3648         pci_set_drvdata(pdev, ndev);
3649         qdev->reg_base =
3650             ioremap_nocache(pci_resource_start(pdev, 1),
3651                             pci_resource_len(pdev, 1));
3652         if (!qdev->reg_base) {
3653                 dev_err(&pdev->dev, "Register mapping failed.\n");
3654                 err = -ENOMEM;
3655                 goto err_out;
3656         }
3657
3658         qdev->doorbell_area_size = pci_resource_len(pdev, 3);
3659         qdev->doorbell_area =
3660             ioremap_nocache(pci_resource_start(pdev, 3),
3661                             pci_resource_len(pdev, 3));
3662         if (!qdev->doorbell_area) {
3663                 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
3664                 err = -ENOMEM;
3665                 goto err_out;
3666         }
3667
3668         ql_get_board_info(qdev);
3669         qdev->ndev = ndev;
3670         qdev->pdev = pdev;
3671         qdev->msg_enable = netif_msg_init(debug, default_msg);
3672         spin_lock_init(&qdev->hw_lock);
3673         spin_lock_init(&qdev->stats_lock);
3674
3675         /* make sure the EEPROM is good */
3676         err = ql_get_flash_params(qdev);
3677         if (err) {
3678                 dev_err(&pdev->dev, "Invalid FLASH.\n");
3679                 goto err_out;
3680         }
3681
3682         if (!is_valid_ether_addr(qdev->flash.mac_addr))
3683                 goto err_out;
3684
3685         memcpy(ndev->dev_addr, qdev->flash.mac_addr, ndev->addr_len);
3686         memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3687
3688         /* Set up the default ring sizes. */
3689         qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
3690         qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
3691
3692         /* Set up the coalescing parameters. */
3693         qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
3694         qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
3695         qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3696         qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3697
3698         /*
3699          * Set up the operating parameters.
3700          */
3701         qdev->rx_csum = 1;
3702
3703         qdev->q_workqueue = create_workqueue(ndev->name);
3704         qdev->workqueue = create_singlethread_workqueue(ndev->name);
3705         INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
3706         INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
3707         INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
3708
3709         if (!cards_found) {
3710                 dev_info(&pdev->dev, "%s\n", DRV_STRING);
3711                 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
3712                          DRV_NAME, DRV_VERSION);
3713         }
3714         return 0;
3715 err_out:
3716         ql_release_all(pdev);
3717         pci_disable_device(pdev);
3718         return err;
3719 }
3720
3721 static int __devinit qlge_probe(struct pci_dev *pdev,
3722                                 const struct pci_device_id *pci_entry)
3723 {
3724         struct net_device *ndev = NULL;
3725         struct ql_adapter *qdev = NULL;
3726         static int cards_found = 0;
3727         int err = 0;
3728
3729         ndev = alloc_etherdev(sizeof(struct ql_adapter));
3730         if (!ndev)
3731                 return -ENOMEM;
3732
3733         err = ql_init_device(pdev, ndev, cards_found);
3734         if (err < 0) {
3735                 free_netdev(ndev);
3736                 return err;
3737         }
3738
3739         qdev = netdev_priv(ndev);
3740         SET_NETDEV_DEV(ndev, &pdev->dev);
3741         ndev->features = (0
3742                           | NETIF_F_IP_CSUM
3743                           | NETIF_F_SG
3744                           | NETIF_F_TSO
3745                           | NETIF_F_TSO6
3746                           | NETIF_F_TSO_ECN
3747                           | NETIF_F_HW_VLAN_TX
3748                           | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
3749
3750         if (test_bit(QL_DMA64, &qdev->flags))
3751                 ndev->features |= NETIF_F_HIGHDMA;
3752
3753         /*
3754          * Set up net_device structure.
3755          */
3756         ndev->tx_queue_len = qdev->tx_ring_size;
3757         ndev->irq = pdev->irq;
3758         ndev->open = qlge_open;
3759         ndev->stop = qlge_close;
3760         ndev->hard_start_xmit = qlge_send;
3761         SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
3762         ndev->change_mtu = qlge_change_mtu;
3763         ndev->get_stats = qlge_get_stats;
3764         ndev->set_multicast_list = qlge_set_multicast_list;
3765         ndev->set_mac_address = qlge_set_mac_address;
3766         ndev->tx_timeout = qlge_tx_timeout;
3767         ndev->watchdog_timeo = 10 * HZ;
3768         ndev->vlan_rx_register = ql_vlan_rx_register;
3769         ndev->vlan_rx_add_vid = ql_vlan_rx_add_vid;
3770         ndev->vlan_rx_kill_vid = ql_vlan_rx_kill_vid;
3771         err = register_netdev(ndev);
3772         if (err) {
3773                 dev_err(&pdev->dev, "net device registration failed.\n");
3774                 ql_release_all(pdev);
3775                 pci_disable_device(pdev);
3776                 return err;
3777         }
3778         netif_carrier_off(ndev);
3779         netif_stop_queue(ndev);
3780         ql_display_dev_info(ndev);
3781         cards_found++;
3782         return 0;
3783 }
3784
3785 static void __devexit qlge_remove(struct pci_dev *pdev)
3786 {
3787         struct net_device *ndev = pci_get_drvdata(pdev);
3788         unregister_netdev(ndev);
3789         ql_release_all(pdev);
3790         pci_disable_device(pdev);
3791         free_netdev(ndev);
3792 }
3793
3794 /*
3795  * This callback is called by the PCI subsystem whenever
3796  * a PCI bus error is detected.
3797  */
3798 static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
3799                                                enum pci_channel_state state)
3800 {
3801         struct net_device *ndev = pci_get_drvdata(pdev);
3802         struct ql_adapter *qdev = netdev_priv(ndev);
3803
3804         if (netif_running(ndev))
3805                 ql_adapter_down(qdev);
3806
3807         pci_disable_device(pdev);
3808
3809         /* Request a slot reset. */
3810         return PCI_ERS_RESULT_NEED_RESET;
3811 }
3812
3813 /*
3814  * This callback is called after the PCI buss has been reset.
3815  * Basically, this tries to restart the card from scratch.
3816  * This is a shortened version of the device probe/discovery code,
3817  * it resembles the first-half of the () routine.
3818  */
3819 static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
3820 {
3821         struct net_device *ndev = pci_get_drvdata(pdev);
3822         struct ql_adapter *qdev = netdev_priv(ndev);
3823
3824         if (pci_enable_device(pdev)) {
3825                 QPRINTK(qdev, IFUP, ERR,
3826                         "Cannot re-enable PCI device after reset.\n");
3827                 return PCI_ERS_RESULT_DISCONNECT;
3828         }
3829
3830         pci_set_master(pdev);
3831
3832         netif_carrier_off(ndev);
3833         netif_stop_queue(ndev);
3834         ql_adapter_reset(qdev);
3835
3836         /* Make sure the EEPROM is good */
3837         memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3838
3839         if (!is_valid_ether_addr(ndev->perm_addr)) {
3840                 QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
3841                 return PCI_ERS_RESULT_DISCONNECT;
3842         }
3843
3844         return PCI_ERS_RESULT_RECOVERED;
3845 }
3846
3847 static void qlge_io_resume(struct pci_dev *pdev)
3848 {
3849         struct net_device *ndev = pci_get_drvdata(pdev);
3850         struct ql_adapter *qdev = netdev_priv(ndev);
3851
3852         pci_set_master(pdev);
3853
3854         if (netif_running(ndev)) {
3855                 if (ql_adapter_up(qdev)) {
3856                         QPRINTK(qdev, IFUP, ERR,
3857                                 "Device initialization failed after reset.\n");
3858                         return;
3859                 }
3860         }
3861
3862         netif_device_attach(ndev);
3863 }
3864
3865 static struct pci_error_handlers qlge_err_handler = {
3866         .error_detected = qlge_io_error_detected,
3867         .slot_reset = qlge_io_slot_reset,
3868         .resume = qlge_io_resume,
3869 };
3870
3871 static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
3872 {
3873         struct net_device *ndev = pci_get_drvdata(pdev);
3874         struct ql_adapter *qdev = netdev_priv(ndev);
3875         int err;
3876
3877         netif_device_detach(ndev);
3878
3879         if (netif_running(ndev)) {
3880                 err = ql_adapter_down(qdev);
3881                 if (!err)
3882                         return err;
3883         }
3884
3885         err = pci_save_state(pdev);
3886         if (err)
3887                 return err;
3888
3889         pci_disable_device(pdev);
3890
3891         pci_set_power_state(pdev, pci_choose_state(pdev, state));
3892
3893         return 0;
3894 }
3895
3896 #ifdef CONFIG_PM
3897 static int qlge_resume(struct pci_dev *pdev)
3898 {
3899         struct net_device *ndev = pci_get_drvdata(pdev);
3900         struct ql_adapter *qdev = netdev_priv(ndev);
3901         int err;
3902
3903         pci_set_power_state(pdev, PCI_D0);
3904         pci_restore_state(pdev);
3905         err = pci_enable_device(pdev);
3906         if (err) {
3907                 QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
3908                 return err;
3909         }
3910         pci_set_master(pdev);
3911
3912         pci_enable_wake(pdev, PCI_D3hot, 0);
3913         pci_enable_wake(pdev, PCI_D3cold, 0);
3914
3915         if (netif_running(ndev)) {
3916                 err = ql_adapter_up(qdev);
3917                 if (err)
3918                         return err;
3919         }
3920
3921         netif_device_attach(ndev);
3922
3923         return 0;
3924 }
3925 #endif /* CONFIG_PM */
3926
3927 static void qlge_shutdown(struct pci_dev *pdev)
3928 {
3929         qlge_suspend(pdev, PMSG_SUSPEND);
3930 }
3931
3932 static struct pci_driver qlge_driver = {
3933         .name = DRV_NAME,
3934         .id_table = qlge_pci_tbl,
3935         .probe = qlge_probe,
3936         .remove = __devexit_p(qlge_remove),
3937 #ifdef CONFIG_PM
3938         .suspend = qlge_suspend,
3939         .resume = qlge_resume,
3940 #endif
3941         .shutdown = qlge_shutdown,
3942         .err_handler = &qlge_err_handler
3943 };
3944
3945 static int __init qlge_init_module(void)
3946 {
3947         return pci_register_driver(&qlge_driver);
3948 }
3949
3950 static void __exit qlge_exit(void)
3951 {
3952         pci_unregister_driver(&qlge_driver);
3953 }
3954
3955 module_init(qlge_init_module);
3956 module_exit(qlge_exit);