]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/igb/igb_main.c
81bba6983ddea9f7d2779044bb9e41b2401edf1b
[linux-2.6-omap-h63xx.git] / drivers / net / igb / igb_main.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/mii.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/interrupt.h>
43 #include <linux/if_ether.h>
44 #ifdef CONFIG_DCA
45 #include <linux/dca.h>
46 #endif
47 #include "igb.h"
48
49 #define DRV_VERSION "1.2.45-k2"
50 char igb_driver_name[] = "igb";
51 char igb_driver_version[] = DRV_VERSION;
52 static const char igb_driver_string[] =
53                                 "Intel(R) Gigabit Ethernet Network Driver";
54 static const char igb_copyright[] = "Copyright (c) 2008 Intel Corporation.";
55
56 static const struct e1000_info *igb_info_tbl[] = {
57         [board_82575] = &e1000_82575_info,
58 };
59
60 static struct pci_device_id igb_pci_tbl[] = {
61         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
62         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
63         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
64         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
65         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
66         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
67         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
68         /* required last entry */
69         {0, }
70 };
71
72 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
73
74 void igb_reset(struct igb_adapter *);
75 static int igb_setup_all_tx_resources(struct igb_adapter *);
76 static int igb_setup_all_rx_resources(struct igb_adapter *);
77 static void igb_free_all_tx_resources(struct igb_adapter *);
78 static void igb_free_all_rx_resources(struct igb_adapter *);
79 static void igb_free_tx_resources(struct igb_ring *);
80 static void igb_free_rx_resources(struct igb_ring *);
81 void igb_update_stats(struct igb_adapter *);
82 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
83 static void __devexit igb_remove(struct pci_dev *pdev);
84 static int igb_sw_init(struct igb_adapter *);
85 static int igb_open(struct net_device *);
86 static int igb_close(struct net_device *);
87 static void igb_configure_tx(struct igb_adapter *);
88 static void igb_configure_rx(struct igb_adapter *);
89 static void igb_setup_rctl(struct igb_adapter *);
90 static void igb_clean_all_tx_rings(struct igb_adapter *);
91 static void igb_clean_all_rx_rings(struct igb_adapter *);
92 static void igb_clean_tx_ring(struct igb_ring *);
93 static void igb_clean_rx_ring(struct igb_ring *);
94 static void igb_set_multi(struct net_device *);
95 static void igb_update_phy_info(unsigned long);
96 static void igb_watchdog(unsigned long);
97 static void igb_watchdog_task(struct work_struct *);
98 static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
99                                   struct igb_ring *);
100 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
101 static struct net_device_stats *igb_get_stats(struct net_device *);
102 static int igb_change_mtu(struct net_device *, int);
103 static int igb_set_mac(struct net_device *, void *);
104 static irqreturn_t igb_intr(int irq, void *);
105 static irqreturn_t igb_intr_msi(int irq, void *);
106 static irqreturn_t igb_msix_other(int irq, void *);
107 static irqreturn_t igb_msix_rx(int irq, void *);
108 static irqreturn_t igb_msix_tx(int irq, void *);
109 static int igb_clean_rx_ring_msix(struct napi_struct *, int);
110 #ifdef CONFIG_DCA
111 static void igb_update_rx_dca(struct igb_ring *);
112 static void igb_update_tx_dca(struct igb_ring *);
113 static void igb_setup_dca(struct igb_adapter *);
114 #endif /* CONFIG_DCA */
115 static bool igb_clean_tx_irq(struct igb_ring *);
116 static int igb_poll(struct napi_struct *, int);
117 static bool igb_clean_rx_irq_adv(struct igb_ring *, int *, int);
118 static void igb_alloc_rx_buffers_adv(struct igb_ring *, int);
119 #ifdef CONFIG_IGB_LRO
120 static int igb_get_skb_hdr(struct sk_buff *skb, void **, void **, u64 *, void *);
121 #endif
122 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
123 static void igb_tx_timeout(struct net_device *);
124 static void igb_reset_task(struct work_struct *);
125 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
126 static void igb_vlan_rx_add_vid(struct net_device *, u16);
127 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
128 static void igb_restore_vlan(struct igb_adapter *);
129
130 static int igb_suspend(struct pci_dev *, pm_message_t);
131 #ifdef CONFIG_PM
132 static int igb_resume(struct pci_dev *);
133 #endif
134 static void igb_shutdown(struct pci_dev *);
135 #ifdef CONFIG_DCA
136 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
137 static struct notifier_block dca_notifier = {
138         .notifier_call  = igb_notify_dca,
139         .next           = NULL,
140         .priority       = 0
141 };
142 #endif
143
144 #ifdef CONFIG_NET_POLL_CONTROLLER
145 /* for netdump / net console */
146 static void igb_netpoll(struct net_device *);
147 #endif
148
149 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
150                      pci_channel_state_t);
151 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
152 static void igb_io_resume(struct pci_dev *);
153
154 static struct pci_error_handlers igb_err_handler = {
155         .error_detected = igb_io_error_detected,
156         .slot_reset = igb_io_slot_reset,
157         .resume = igb_io_resume,
158 };
159
160
161 static struct pci_driver igb_driver = {
162         .name     = igb_driver_name,
163         .id_table = igb_pci_tbl,
164         .probe    = igb_probe,
165         .remove   = __devexit_p(igb_remove),
166 #ifdef CONFIG_PM
167         /* Power Managment Hooks */
168         .suspend  = igb_suspend,
169         .resume   = igb_resume,
170 #endif
171         .shutdown = igb_shutdown,
172         .err_handler = &igb_err_handler
173 };
174
175 static int global_quad_port_a; /* global quad port a indication */
176
177 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
178 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
179 MODULE_LICENSE("GPL");
180 MODULE_VERSION(DRV_VERSION);
181
182 #ifdef DEBUG
183 /**
184  * igb_get_hw_dev_name - return device name string
185  * used by hardware layer to print debugging information
186  **/
187 char *igb_get_hw_dev_name(struct e1000_hw *hw)
188 {
189         struct igb_adapter *adapter = hw->back;
190         return adapter->netdev->name;
191 }
192 #endif
193
194 /**
195  * igb_init_module - Driver Registration Routine
196  *
197  * igb_init_module is the first routine called when the driver is
198  * loaded. All it does is register with the PCI subsystem.
199  **/
200 static int __init igb_init_module(void)
201 {
202         int ret;
203         printk(KERN_INFO "%s - version %s\n",
204                igb_driver_string, igb_driver_version);
205
206         printk(KERN_INFO "%s\n", igb_copyright);
207
208         global_quad_port_a = 0;
209
210         ret = pci_register_driver(&igb_driver);
211 #ifdef CONFIG_DCA
212         dca_register_notify(&dca_notifier);
213 #endif
214         return ret;
215 }
216
217 module_init(igb_init_module);
218
219 /**
220  * igb_exit_module - Driver Exit Cleanup Routine
221  *
222  * igb_exit_module is called just before the driver is removed
223  * from memory.
224  **/
225 static void __exit igb_exit_module(void)
226 {
227 #ifdef CONFIG_DCA
228         dca_unregister_notify(&dca_notifier);
229 #endif
230         pci_unregister_driver(&igb_driver);
231 }
232
233 module_exit(igb_exit_module);
234
235 /**
236  * igb_alloc_queues - Allocate memory for all rings
237  * @adapter: board private structure to initialize
238  *
239  * We allocate one ring per queue at run-time since we don't know the
240  * number of queues at compile-time.
241  **/
242 static int igb_alloc_queues(struct igb_adapter *adapter)
243 {
244         int i;
245
246         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
247                                    sizeof(struct igb_ring), GFP_KERNEL);
248         if (!adapter->tx_ring)
249                 return -ENOMEM;
250
251         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
252                                    sizeof(struct igb_ring), GFP_KERNEL);
253         if (!adapter->rx_ring) {
254                 kfree(adapter->tx_ring);
255                 return -ENOMEM;
256         }
257
258         adapter->rx_ring->buddy = adapter->tx_ring;
259
260         for (i = 0; i < adapter->num_tx_queues; i++) {
261                 struct igb_ring *ring = &(adapter->tx_ring[i]);
262                 ring->adapter = adapter;
263                 ring->queue_index = i;
264         }
265         for (i = 0; i < adapter->num_rx_queues; i++) {
266                 struct igb_ring *ring = &(adapter->rx_ring[i]);
267                 ring->adapter = adapter;
268                 ring->queue_index = i;
269                 ring->itr_register = E1000_ITR;
270
271                 /* set a default napi handler for each rx_ring */
272                 netif_napi_add(adapter->netdev, &ring->napi, igb_poll, 64);
273         }
274         return 0;
275 }
276
277 static void igb_free_queues(struct igb_adapter *adapter)
278 {
279         int i;
280
281         for (i = 0; i < adapter->num_rx_queues; i++)
282                 netif_napi_del(&adapter->rx_ring[i].napi);
283
284         kfree(adapter->tx_ring);
285         kfree(adapter->rx_ring);
286 }
287
288 #define IGB_N0_QUEUE -1
289 static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
290                               int tx_queue, int msix_vector)
291 {
292         u32 msixbm = 0;
293         struct e1000_hw *hw = &adapter->hw;
294         u32 ivar, index;
295
296         switch (hw->mac.type) {
297         case e1000_82575:
298                 /* The 82575 assigns vectors using a bitmask, which matches the
299                    bitmask for the EICR/EIMS/EIMC registers.  To assign one
300                    or more queues to a vector, we write the appropriate bits
301                    into the MSIXBM register for that vector. */
302                 if (rx_queue > IGB_N0_QUEUE) {
303                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
304                         adapter->rx_ring[rx_queue].eims_value = msixbm;
305                 }
306                 if (tx_queue > IGB_N0_QUEUE) {
307                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
308                         adapter->tx_ring[tx_queue].eims_value =
309                                   E1000_EICR_TX_QUEUE0 << tx_queue;
310                 }
311                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
312                 break;
313         case e1000_82576:
314                 /* Kawela uses a table-based method for assigning vectors.
315                    Each queue has a single entry in the table to which we write
316                    a vector number along with a "valid" bit.  Sadly, the layout
317                    of the table is somewhat counterintuitive. */
318                 if (rx_queue > IGB_N0_QUEUE) {
319                         index = (rx_queue & 0x7);
320                         ivar = array_rd32(E1000_IVAR0, index);
321                         if (rx_queue < 8) {
322                                 /* vector goes into low byte of register */
323                                 ivar = ivar & 0xFFFFFF00;
324                                 ivar |= msix_vector | E1000_IVAR_VALID;
325                         } else {
326                                 /* vector goes into third byte of register */
327                                 ivar = ivar & 0xFF00FFFF;
328                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
329                         }
330                         adapter->rx_ring[rx_queue].eims_value= 1 << msix_vector;
331                         array_wr32(E1000_IVAR0, index, ivar);
332                 }
333                 if (tx_queue > IGB_N0_QUEUE) {
334                         index = (tx_queue & 0x7);
335                         ivar = array_rd32(E1000_IVAR0, index);
336                         if (tx_queue < 8) {
337                                 /* vector goes into second byte of register */
338                                 ivar = ivar & 0xFFFF00FF;
339                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
340                         } else {
341                                 /* vector goes into high byte of register */
342                                 ivar = ivar & 0x00FFFFFF;
343                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
344                         }
345                         adapter->tx_ring[tx_queue].eims_value= 1 << msix_vector;
346                         array_wr32(E1000_IVAR0, index, ivar);
347                 }
348                 break;
349         default:
350                 BUG();
351                 break;
352         }
353 }
354
355 /**
356  * igb_configure_msix - Configure MSI-X hardware
357  *
358  * igb_configure_msix sets up the hardware to properly
359  * generate MSI-X interrupts.
360  **/
361 static void igb_configure_msix(struct igb_adapter *adapter)
362 {
363         u32 tmp;
364         int i, vector = 0;
365         struct e1000_hw *hw = &adapter->hw;
366
367         adapter->eims_enable_mask = 0;
368         if (hw->mac.type == e1000_82576)
369                 /* Turn on MSI-X capability first, or our settings
370                  * won't stick.  And it will take days to debug. */
371                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
372                                    E1000_GPIE_PBA | E1000_GPIE_EIAME | 
373                                    E1000_GPIE_NSICR);
374
375         for (i = 0; i < adapter->num_tx_queues; i++) {
376                 struct igb_ring *tx_ring = &adapter->tx_ring[i];
377                 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
378                 adapter->eims_enable_mask |= tx_ring->eims_value;
379                 if (tx_ring->itr_val)
380                         writel(tx_ring->itr_val,
381                                hw->hw_addr + tx_ring->itr_register);
382                 else
383                         writel(1, hw->hw_addr + tx_ring->itr_register);
384         }
385
386         for (i = 0; i < adapter->num_rx_queues; i++) {
387                 struct igb_ring *rx_ring = &adapter->rx_ring[i];
388                 rx_ring->buddy = 0;
389                 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
390                 adapter->eims_enable_mask |= rx_ring->eims_value;
391                 if (rx_ring->itr_val)
392                         writel(rx_ring->itr_val,
393                                hw->hw_addr + rx_ring->itr_register);
394                 else
395                         writel(1, hw->hw_addr + rx_ring->itr_register);
396         }
397
398
399         /* set vector for other causes, i.e. link changes */
400         switch (hw->mac.type) {
401         case e1000_82575:
402                 array_wr32(E1000_MSIXBM(0), vector++,
403                                       E1000_EIMS_OTHER);
404
405                 tmp = rd32(E1000_CTRL_EXT);
406                 /* enable MSI-X PBA support*/
407                 tmp |= E1000_CTRL_EXT_PBA_CLR;
408
409                 /* Auto-Mask interrupts upon ICR read. */
410                 tmp |= E1000_CTRL_EXT_EIAME;
411                 tmp |= E1000_CTRL_EXT_IRCA;
412
413                 wr32(E1000_CTRL_EXT, tmp);
414                 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
415                 adapter->eims_other = E1000_EIMS_OTHER;
416
417                 break;
418
419         case e1000_82576:
420                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
421                 wr32(E1000_IVAR_MISC, tmp);
422
423                 adapter->eims_enable_mask = (1 << (vector)) - 1;
424                 adapter->eims_other = 1 << (vector - 1);
425                 break;
426         default:
427                 /* do nothing, since nothing else supports MSI-X */
428                 break;
429         } /* switch (hw->mac.type) */
430         wrfl();
431 }
432
433 /**
434  * igb_request_msix - Initialize MSI-X interrupts
435  *
436  * igb_request_msix allocates MSI-X vectors and requests interrupts from the
437  * kernel.
438  **/
439 static int igb_request_msix(struct igb_adapter *adapter)
440 {
441         struct net_device *netdev = adapter->netdev;
442         int i, err = 0, vector = 0;
443
444         vector = 0;
445
446         for (i = 0; i < adapter->num_tx_queues; i++) {
447                 struct igb_ring *ring = &(adapter->tx_ring[i]);
448                 sprintf(ring->name, "%s-tx%d", netdev->name, i);
449                 err = request_irq(adapter->msix_entries[vector].vector,
450                                   &igb_msix_tx, 0, ring->name,
451                                   &(adapter->tx_ring[i]));
452                 if (err)
453                         goto out;
454                 ring->itr_register = E1000_EITR(0) + (vector << 2);
455                 ring->itr_val = 976; /* ~4000 ints/sec */
456                 vector++;
457         }
458         for (i = 0; i < adapter->num_rx_queues; i++) {
459                 struct igb_ring *ring = &(adapter->rx_ring[i]);
460                 if (strlen(netdev->name) < (IFNAMSIZ - 5))
461                         sprintf(ring->name, "%s-rx%d", netdev->name, i);
462                 else
463                         memcpy(ring->name, netdev->name, IFNAMSIZ);
464                 err = request_irq(adapter->msix_entries[vector].vector,
465                                   &igb_msix_rx, 0, ring->name,
466                                   &(adapter->rx_ring[i]));
467                 if (err)
468                         goto out;
469                 ring->itr_register = E1000_EITR(0) + (vector << 2);
470                 ring->itr_val = adapter->itr;
471                 /* overwrite the poll routine for MSIX, we've already done
472                  * netif_napi_add */
473                 ring->napi.poll = &igb_clean_rx_ring_msix;
474                 vector++;
475         }
476
477         err = request_irq(adapter->msix_entries[vector].vector,
478                           &igb_msix_other, 0, netdev->name, netdev);
479         if (err)
480                 goto out;
481
482         igb_configure_msix(adapter);
483         return 0;
484 out:
485         return err;
486 }
487
488 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
489 {
490         if (adapter->msix_entries) {
491                 pci_disable_msix(adapter->pdev);
492                 kfree(adapter->msix_entries);
493                 adapter->msix_entries = NULL;
494         } else if (adapter->flags & IGB_FLAG_HAS_MSI)
495                 pci_disable_msi(adapter->pdev);
496         return;
497 }
498
499
500 /**
501  * igb_set_interrupt_capability - set MSI or MSI-X if supported
502  *
503  * Attempt to configure interrupts using the best available
504  * capabilities of the hardware and kernel.
505  **/
506 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
507 {
508         int err;
509         int numvecs, i;
510
511         numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
512         adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
513                                         GFP_KERNEL);
514         if (!adapter->msix_entries)
515                 goto msi_only;
516
517         for (i = 0; i < numvecs; i++)
518                 adapter->msix_entries[i].entry = i;
519
520         err = pci_enable_msix(adapter->pdev,
521                               adapter->msix_entries,
522                               numvecs);
523         if (err == 0)
524                 return;
525
526         igb_reset_interrupt_capability(adapter);
527
528         /* If we can't do MSI-X, try MSI */
529 msi_only:
530         adapter->num_rx_queues = 1;
531         adapter->num_tx_queues = 1;
532         if (!pci_enable_msi(adapter->pdev))
533                 adapter->flags |= IGB_FLAG_HAS_MSI;
534
535         /* Notify the stack of the (possibly) reduced Tx Queue count. */
536         adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
537         return;
538 }
539
540 /**
541  * igb_request_irq - initialize interrupts
542  *
543  * Attempts to configure interrupts using the best available
544  * capabilities of the hardware and kernel.
545  **/
546 static int igb_request_irq(struct igb_adapter *adapter)
547 {
548         struct net_device *netdev = adapter->netdev;
549         struct e1000_hw *hw = &adapter->hw;
550         int err = 0;
551
552         if (adapter->msix_entries) {
553                 err = igb_request_msix(adapter);
554                 if (!err)
555                         goto request_done;
556                 /* fall back to MSI */
557                 igb_reset_interrupt_capability(adapter);
558                 if (!pci_enable_msi(adapter->pdev))
559                         adapter->flags |= IGB_FLAG_HAS_MSI;
560                 igb_free_all_tx_resources(adapter);
561                 igb_free_all_rx_resources(adapter);
562                 adapter->num_rx_queues = 1;
563                 igb_alloc_queues(adapter);
564         } else {
565                 switch (hw->mac.type) {
566                 case e1000_82575:
567                         wr32(E1000_MSIXBM(0),
568                              (E1000_EICR_RX_QUEUE0 | E1000_EIMS_OTHER));
569                         break;
570                 case e1000_82576:
571                         wr32(E1000_IVAR0, E1000_IVAR_VALID);
572                         break;
573                 default:
574                         break;
575                 }
576         }
577
578         if (adapter->flags & IGB_FLAG_HAS_MSI) {
579                 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
580                                   netdev->name, netdev);
581                 if (!err)
582                         goto request_done;
583                 /* fall back to legacy interrupts */
584                 igb_reset_interrupt_capability(adapter);
585                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
586         }
587
588         err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
589                           netdev->name, netdev);
590
591         if (err)
592                 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
593                         err);
594
595 request_done:
596         return err;
597 }
598
599 static void igb_free_irq(struct igb_adapter *adapter)
600 {
601         struct net_device *netdev = adapter->netdev;
602
603         if (adapter->msix_entries) {
604                 int vector = 0, i;
605
606                 for (i = 0; i < adapter->num_tx_queues; i++)
607                         free_irq(adapter->msix_entries[vector++].vector,
608                                 &(adapter->tx_ring[i]));
609                 for (i = 0; i < adapter->num_rx_queues; i++)
610                         free_irq(adapter->msix_entries[vector++].vector,
611                                 &(adapter->rx_ring[i]));
612
613                 free_irq(adapter->msix_entries[vector++].vector, netdev);
614                 return;
615         }
616
617         free_irq(adapter->pdev->irq, netdev);
618 }
619
620 /**
621  * igb_irq_disable - Mask off interrupt generation on the NIC
622  * @adapter: board private structure
623  **/
624 static void igb_irq_disable(struct igb_adapter *adapter)
625 {
626         struct e1000_hw *hw = &adapter->hw;
627
628         if (adapter->msix_entries) {
629                 wr32(E1000_EIAM, 0);
630                 wr32(E1000_EIMC, ~0);
631                 wr32(E1000_EIAC, 0);
632         }
633
634         wr32(E1000_IAM, 0);
635         wr32(E1000_IMC, ~0);
636         wrfl();
637         synchronize_irq(adapter->pdev->irq);
638 }
639
640 /**
641  * igb_irq_enable - Enable default interrupt generation settings
642  * @adapter: board private structure
643  **/
644 static void igb_irq_enable(struct igb_adapter *adapter)
645 {
646         struct e1000_hw *hw = &adapter->hw;
647
648         if (adapter->msix_entries) {
649                 wr32(E1000_EIAC, adapter->eims_enable_mask);
650                 wr32(E1000_EIAM, adapter->eims_enable_mask);
651                 wr32(E1000_EIMS, adapter->eims_enable_mask);
652                 wr32(E1000_IMS, E1000_IMS_LSC);
653         } else {
654                 wr32(E1000_IMS, IMS_ENABLE_MASK);
655                 wr32(E1000_IAM, IMS_ENABLE_MASK);
656         }
657 }
658
659 static void igb_update_mng_vlan(struct igb_adapter *adapter)
660 {
661         struct net_device *netdev = adapter->netdev;
662         u16 vid = adapter->hw.mng_cookie.vlan_id;
663         u16 old_vid = adapter->mng_vlan_id;
664         if (adapter->vlgrp) {
665                 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
666                         if (adapter->hw.mng_cookie.status &
667                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
668                                 igb_vlan_rx_add_vid(netdev, vid);
669                                 adapter->mng_vlan_id = vid;
670                         } else
671                                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
672
673                         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
674                                         (vid != old_vid) &&
675                             !vlan_group_get_device(adapter->vlgrp, old_vid))
676                                 igb_vlan_rx_kill_vid(netdev, old_vid);
677                 } else
678                         adapter->mng_vlan_id = vid;
679         }
680 }
681
682 /**
683  * igb_release_hw_control - release control of the h/w to f/w
684  * @adapter: address of board private structure
685  *
686  * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
687  * For ASF and Pass Through versions of f/w this means that the
688  * driver is no longer loaded.
689  *
690  **/
691 static void igb_release_hw_control(struct igb_adapter *adapter)
692 {
693         struct e1000_hw *hw = &adapter->hw;
694         u32 ctrl_ext;
695
696         /* Let firmware take over control of h/w */
697         ctrl_ext = rd32(E1000_CTRL_EXT);
698         wr32(E1000_CTRL_EXT,
699                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
700 }
701
702
703 /**
704  * igb_get_hw_control - get control of the h/w from f/w
705  * @adapter: address of board private structure
706  *
707  * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
708  * For ASF and Pass Through versions of f/w this means that
709  * the driver is loaded.
710  *
711  **/
712 static void igb_get_hw_control(struct igb_adapter *adapter)
713 {
714         struct e1000_hw *hw = &adapter->hw;
715         u32 ctrl_ext;
716
717         /* Let firmware know the driver has taken over */
718         ctrl_ext = rd32(E1000_CTRL_EXT);
719         wr32(E1000_CTRL_EXT,
720                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
721 }
722
723 static void igb_init_manageability(struct igb_adapter *adapter)
724 {
725         struct e1000_hw *hw = &adapter->hw;
726
727         if (adapter->en_mng_pt) {
728                 u32 manc2h = rd32(E1000_MANC2H);
729                 u32 manc = rd32(E1000_MANC);
730
731                 /* enable receiving management packets to the host */
732                 /* this will probably generate destination unreachable messages
733                  * from the host OS, but the packets will be handled on SMBUS */
734                 manc |= E1000_MANC_EN_MNG2HOST;
735 #define E1000_MNG2HOST_PORT_623 (1 << 5)
736 #define E1000_MNG2HOST_PORT_664 (1 << 6)
737                 manc2h |= E1000_MNG2HOST_PORT_623;
738                 manc2h |= E1000_MNG2HOST_PORT_664;
739                 wr32(E1000_MANC2H, manc2h);
740
741                 wr32(E1000_MANC, manc);
742         }
743 }
744
745 /**
746  * igb_configure - configure the hardware for RX and TX
747  * @adapter: private board structure
748  **/
749 static void igb_configure(struct igb_adapter *adapter)
750 {
751         struct net_device *netdev = adapter->netdev;
752         int i;
753
754         igb_get_hw_control(adapter);
755         igb_set_multi(netdev);
756
757         igb_restore_vlan(adapter);
758         igb_init_manageability(adapter);
759
760         igb_configure_tx(adapter);
761         igb_setup_rctl(adapter);
762         igb_configure_rx(adapter);
763
764         igb_rx_fifo_flush_82575(&adapter->hw);
765
766         /* call IGB_DESC_UNUSED which always leaves
767          * at least 1 descriptor unused to make sure
768          * next_to_use != next_to_clean */
769         for (i = 0; i < adapter->num_rx_queues; i++) {
770                 struct igb_ring *ring = &adapter->rx_ring[i];
771                 igb_alloc_rx_buffers_adv(ring, IGB_DESC_UNUSED(ring));
772         }
773
774
775         adapter->tx_queue_len = netdev->tx_queue_len;
776 }
777
778
779 /**
780  * igb_up - Open the interface and prepare it to handle traffic
781  * @adapter: board private structure
782  **/
783
784 int igb_up(struct igb_adapter *adapter)
785 {
786         struct e1000_hw *hw = &adapter->hw;
787         int i;
788
789         /* hardware has been reset, we need to reload some things */
790         igb_configure(adapter);
791
792         clear_bit(__IGB_DOWN, &adapter->state);
793
794         for (i = 0; i < adapter->num_rx_queues; i++)
795                 napi_enable(&adapter->rx_ring[i].napi);
796         if (adapter->msix_entries)
797                 igb_configure_msix(adapter);
798
799         /* Clear any pending interrupts. */
800         rd32(E1000_ICR);
801         igb_irq_enable(adapter);
802
803         /* Fire a link change interrupt to start the watchdog. */
804         wr32(E1000_ICS, E1000_ICS_LSC);
805         return 0;
806 }
807
808 void igb_down(struct igb_adapter *adapter)
809 {
810         struct e1000_hw *hw = &adapter->hw;
811         struct net_device *netdev = adapter->netdev;
812         u32 tctl, rctl;
813         int i;
814
815         /* signal that we're down so the interrupt handler does not
816          * reschedule our watchdog timer */
817         set_bit(__IGB_DOWN, &adapter->state);
818
819         /* disable receives in the hardware */
820         rctl = rd32(E1000_RCTL);
821         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
822         /* flush and sleep below */
823
824         netif_tx_stop_all_queues(netdev);
825
826         /* disable transmits in the hardware */
827         tctl = rd32(E1000_TCTL);
828         tctl &= ~E1000_TCTL_EN;
829         wr32(E1000_TCTL, tctl);
830         /* flush both disables and wait for them to finish */
831         wrfl();
832         msleep(10);
833
834         for (i = 0; i < adapter->num_rx_queues; i++)
835                 napi_disable(&adapter->rx_ring[i].napi);
836
837         igb_irq_disable(adapter);
838
839         del_timer_sync(&adapter->watchdog_timer);
840         del_timer_sync(&adapter->phy_info_timer);
841
842         netdev->tx_queue_len = adapter->tx_queue_len;
843         netif_carrier_off(netdev);
844         adapter->link_speed = 0;
845         adapter->link_duplex = 0;
846
847         if (!pci_channel_offline(adapter->pdev))
848                 igb_reset(adapter);
849         igb_clean_all_tx_rings(adapter);
850         igb_clean_all_rx_rings(adapter);
851 }
852
853 void igb_reinit_locked(struct igb_adapter *adapter)
854 {
855         WARN_ON(in_interrupt());
856         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
857                 msleep(1);
858         igb_down(adapter);
859         igb_up(adapter);
860         clear_bit(__IGB_RESETTING, &adapter->state);
861 }
862
863 void igb_reset(struct igb_adapter *adapter)
864 {
865         struct e1000_hw *hw = &adapter->hw;
866         struct e1000_mac_info *mac = &hw->mac;
867         struct e1000_fc_info *fc = &hw->fc;
868         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
869         u16 hwm;
870
871         /* Repartition Pba for greater than 9k mtu
872          * To take effect CTRL.RST is required.
873          */
874         if (mac->type != e1000_82576) {
875         pba = E1000_PBA_34K;
876         }
877         else {
878                 pba = E1000_PBA_64K;
879         }
880
881         if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
882             (mac->type < e1000_82576)) {
883                 /* adjust PBA for jumbo frames */
884                 wr32(E1000_PBA, pba);
885
886                 /* To maintain wire speed transmits, the Tx FIFO should be
887                  * large enough to accommodate two full transmit packets,
888                  * rounded up to the next 1KB and expressed in KB.  Likewise,
889                  * the Rx FIFO should be large enough to accommodate at least
890                  * one full receive packet and is similarly rounded up and
891                  * expressed in KB. */
892                 pba = rd32(E1000_PBA);
893                 /* upper 16 bits has Tx packet buffer allocation size in KB */
894                 tx_space = pba >> 16;
895                 /* lower 16 bits has Rx packet buffer allocation size in KB */
896                 pba &= 0xffff;
897                 /* the tx fifo also stores 16 bytes of information about the tx
898                  * but don't include ethernet FCS because hardware appends it */
899                 min_tx_space = (adapter->max_frame_size +
900                                 sizeof(struct e1000_tx_desc) -
901                                 ETH_FCS_LEN) * 2;
902                 min_tx_space = ALIGN(min_tx_space, 1024);
903                 min_tx_space >>= 10;
904                 /* software strips receive CRC, so leave room for it */
905                 min_rx_space = adapter->max_frame_size;
906                 min_rx_space = ALIGN(min_rx_space, 1024);
907                 min_rx_space >>= 10;
908
909                 /* If current Tx allocation is less than the min Tx FIFO size,
910                  * and the min Tx FIFO size is less than the current Rx FIFO
911                  * allocation, take space away from current Rx allocation */
912                 if (tx_space < min_tx_space &&
913                     ((min_tx_space - tx_space) < pba)) {
914                         pba = pba - (min_tx_space - tx_space);
915
916                         /* if short on rx space, rx wins and must trump tx
917                          * adjustment */
918                         if (pba < min_rx_space)
919                                 pba = min_rx_space;
920                 }
921                 wr32(E1000_PBA, pba);
922         }
923
924         /* flow control settings */
925         /* The high water mark must be low enough to fit one full frame
926          * (or the size used for early receive) above it in the Rx FIFO.
927          * Set it to the lower of:
928          * - 90% of the Rx FIFO size, or
929          * - the full Rx FIFO size minus one full frame */
930         hwm = min(((pba << 10) * 9 / 10),
931                         ((pba << 10) - 2 * adapter->max_frame_size));
932
933         if (mac->type < e1000_82576) {
934                 fc->high_water = hwm & 0xFFF8;  /* 8-byte granularity */
935                 fc->low_water = fc->high_water - 8;
936         } else {
937                 fc->high_water = hwm & 0xFFF0;  /* 16-byte granularity */
938                 fc->low_water = fc->high_water - 16;
939         }
940         fc->pause_time = 0xFFFF;
941         fc->send_xon = 1;
942         fc->type = fc->original_type;
943
944         /* Allow time for pending master requests to run */
945         adapter->hw.mac.ops.reset_hw(&adapter->hw);
946         wr32(E1000_WUC, 0);
947
948         if (adapter->hw.mac.ops.init_hw(&adapter->hw))
949                 dev_err(&adapter->pdev->dev, "Hardware Error\n");
950
951         igb_update_mng_vlan(adapter);
952
953         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
954         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
955
956         igb_reset_adaptive(&adapter->hw);
957         if (adapter->hw.phy.ops.get_phy_info)
958                 adapter->hw.phy.ops.get_phy_info(&adapter->hw);
959 }
960
961 /**
962  * igb_is_need_ioport - determine if an adapter needs ioport resources or not
963  * @pdev: PCI device information struct
964  *
965  * Returns true if an adapter needs ioport resources
966  **/
967 static int igb_is_need_ioport(struct pci_dev *pdev)
968 {
969         switch (pdev->device) {
970         /* Currently there are no adapters that need ioport resources */
971         default:
972                 return false;
973         }
974 }
975
976 /**
977  * igb_probe - Device Initialization Routine
978  * @pdev: PCI device information struct
979  * @ent: entry in igb_pci_tbl
980  *
981  * Returns 0 on success, negative on failure
982  *
983  * igb_probe initializes an adapter identified by a pci_dev structure.
984  * The OS initialization, configuring of the adapter private structure,
985  * and a hardware reset occur.
986  **/
987 static int __devinit igb_probe(struct pci_dev *pdev,
988                                const struct pci_device_id *ent)
989 {
990         struct net_device *netdev;
991         struct igb_adapter *adapter;
992         struct e1000_hw *hw;
993         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
994         unsigned long mmio_start, mmio_len;
995         int i, err, pci_using_dac;
996         u16 eeprom_data = 0;
997         u16 eeprom_apme_mask = IGB_EEPROM_APME;
998         u32 part_num;
999         int bars, need_ioport;
1000
1001         /* do not allocate ioport bars when not needed */
1002         need_ioport = igb_is_need_ioport(pdev);
1003         if (need_ioport) {
1004                 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
1005                 err = pci_enable_device(pdev);
1006         } else {
1007                 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1008                 err = pci_enable_device_mem(pdev);
1009         }
1010         if (err)
1011                 return err;
1012
1013         pci_using_dac = 0;
1014         err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
1015         if (!err) {
1016                 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
1017                 if (!err)
1018                         pci_using_dac = 1;
1019         } else {
1020                 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
1021                 if (err) {
1022                         err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
1023                         if (err) {
1024                                 dev_err(&pdev->dev, "No usable DMA "
1025                                         "configuration, aborting\n");
1026                                 goto err_dma;
1027                         }
1028                 }
1029         }
1030
1031         err = pci_request_selected_regions(pdev, bars, igb_driver_name);
1032         if (err)
1033                 goto err_pci_reg;
1034
1035         pci_set_master(pdev);
1036         pci_save_state(pdev);
1037
1038         err = -ENOMEM;
1039         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), IGB_MAX_TX_QUEUES);
1040         if (!netdev)
1041                 goto err_alloc_etherdev;
1042
1043         SET_NETDEV_DEV(netdev, &pdev->dev);
1044
1045         pci_set_drvdata(pdev, netdev);
1046         adapter = netdev_priv(netdev);
1047         adapter->netdev = netdev;
1048         adapter->pdev = pdev;
1049         hw = &adapter->hw;
1050         hw->back = adapter;
1051         adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1052         adapter->bars = bars;
1053         adapter->need_ioport = need_ioport;
1054
1055         mmio_start = pci_resource_start(pdev, 0);
1056         mmio_len = pci_resource_len(pdev, 0);
1057
1058         err = -EIO;
1059         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
1060         if (!adapter->hw.hw_addr)
1061                 goto err_ioremap;
1062
1063         netdev->open = &igb_open;
1064         netdev->stop = &igb_close;
1065         netdev->get_stats = &igb_get_stats;
1066         netdev->set_multicast_list = &igb_set_multi;
1067         netdev->set_mac_address = &igb_set_mac;
1068         netdev->change_mtu = &igb_change_mtu;
1069         netdev->do_ioctl = &igb_ioctl;
1070         igb_set_ethtool_ops(netdev);
1071         netdev->tx_timeout = &igb_tx_timeout;
1072         netdev->watchdog_timeo = 5 * HZ;
1073         netdev->vlan_rx_register = igb_vlan_rx_register;
1074         netdev->vlan_rx_add_vid = igb_vlan_rx_add_vid;
1075         netdev->vlan_rx_kill_vid = igb_vlan_rx_kill_vid;
1076 #ifdef CONFIG_NET_POLL_CONTROLLER
1077         netdev->poll_controller = igb_netpoll;
1078 #endif
1079         netdev->hard_start_xmit = &igb_xmit_frame_adv;
1080
1081         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1082
1083         netdev->mem_start = mmio_start;
1084         netdev->mem_end = mmio_start + mmio_len;
1085
1086         /* PCI config space info */
1087         hw->vendor_id = pdev->vendor;
1088         hw->device_id = pdev->device;
1089         hw->revision_id = pdev->revision;
1090         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1091         hw->subsystem_device_id = pdev->subsystem_device;
1092
1093         /* setup the private structure */
1094         hw->back = adapter;
1095         /* Copy the default MAC, PHY and NVM function pointers */
1096         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1097         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1098         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1099         /* Initialize skew-specific constants */
1100         err = ei->get_invariants(hw);
1101         if (err)
1102                 goto err_hw_init;
1103
1104         err = igb_sw_init(adapter);
1105         if (err)
1106                 goto err_sw_init;
1107
1108         igb_get_bus_info_pcie(hw);
1109
1110         /* set flags */
1111         switch (hw->mac.type) {
1112         case e1000_82576:
1113         case e1000_82575:
1114                 adapter->flags |= IGB_FLAG_HAS_DCA;
1115                 adapter->flags |= IGB_FLAG_NEED_CTX_IDX;
1116                 break;
1117         default:
1118                 break;
1119         }
1120
1121         hw->phy.autoneg_wait_to_complete = false;
1122         hw->mac.adaptive_ifs = true;
1123
1124         /* Copper options */
1125         if (hw->phy.media_type == e1000_media_type_copper) {
1126                 hw->phy.mdix = AUTO_ALL_MODES;
1127                 hw->phy.disable_polarity_correction = false;
1128                 hw->phy.ms_type = e1000_ms_hw_default;
1129         }
1130
1131         if (igb_check_reset_block(hw))
1132                 dev_info(&pdev->dev,
1133                         "PHY reset is blocked due to SOL/IDER session.\n");
1134
1135         netdev->features = NETIF_F_SG |
1136                            NETIF_F_HW_CSUM |
1137                            NETIF_F_HW_VLAN_TX |
1138                            NETIF_F_HW_VLAN_RX |
1139                            NETIF_F_HW_VLAN_FILTER;
1140
1141         netdev->features |= NETIF_F_TSO;
1142         netdev->features |= NETIF_F_TSO6;
1143
1144 #ifdef CONFIG_IGB_LRO
1145         netdev->features |= NETIF_F_LRO;
1146 #endif
1147
1148         netdev->vlan_features |= NETIF_F_TSO;
1149         netdev->vlan_features |= NETIF_F_TSO6;
1150         netdev->vlan_features |= NETIF_F_HW_CSUM;
1151         netdev->vlan_features |= NETIF_F_SG;
1152
1153         if (pci_using_dac)
1154                 netdev->features |= NETIF_F_HIGHDMA;
1155
1156         netdev->features |= NETIF_F_LLTX;
1157         adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1158
1159         /* before reading the NVM, reset the controller to put the device in a
1160          * known good starting state */
1161         hw->mac.ops.reset_hw(hw);
1162
1163         /* make sure the NVM is good */
1164         if (igb_validate_nvm_checksum(hw) < 0) {
1165                 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1166                 err = -EIO;
1167                 goto err_eeprom;
1168         }
1169
1170         /* copy the MAC address out of the NVM */
1171         if (hw->mac.ops.read_mac_addr(hw))
1172                 dev_err(&pdev->dev, "NVM Read Error\n");
1173
1174         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1175         memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1176
1177         if (!is_valid_ether_addr(netdev->perm_addr)) {
1178                 dev_err(&pdev->dev, "Invalid MAC Address\n");
1179                 err = -EIO;
1180                 goto err_eeprom;
1181         }
1182
1183         init_timer(&adapter->watchdog_timer);
1184         adapter->watchdog_timer.function = &igb_watchdog;
1185         adapter->watchdog_timer.data = (unsigned long) adapter;
1186
1187         init_timer(&adapter->phy_info_timer);
1188         adapter->phy_info_timer.function = &igb_update_phy_info;
1189         adapter->phy_info_timer.data = (unsigned long) adapter;
1190
1191         INIT_WORK(&adapter->reset_task, igb_reset_task);
1192         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1193
1194         /* Initialize link & ring properties that are user-changeable */
1195         adapter->tx_ring->count = 256;
1196         for (i = 0; i < adapter->num_tx_queues; i++)
1197                 adapter->tx_ring[i].count = adapter->tx_ring->count;
1198         adapter->rx_ring->count = 256;
1199         for (i = 0; i < adapter->num_rx_queues; i++)
1200                 adapter->rx_ring[i].count = adapter->rx_ring->count;
1201
1202         adapter->fc_autoneg = true;
1203         hw->mac.autoneg = true;
1204         hw->phy.autoneg_advertised = 0x2f;
1205
1206         hw->fc.original_type = e1000_fc_default;
1207         hw->fc.type = e1000_fc_default;
1208
1209         adapter->itr_setting = 3;
1210         adapter->itr = IGB_START_ITR;
1211
1212         igb_validate_mdi_setting(hw);
1213
1214         adapter->rx_csum = 1;
1215
1216         /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1217          * enable the ACPI Magic Packet filter
1218          */
1219
1220         if (hw->bus.func == 0 ||
1221             hw->device_id == E1000_DEV_ID_82575EB_COPPER)
1222                 hw->nvm.ops.read_nvm(hw, NVM_INIT_CONTROL3_PORT_A, 1,
1223                                      &eeprom_data);
1224
1225         if (eeprom_data & eeprom_apme_mask)
1226                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1227
1228         /* now that we have the eeprom settings, apply the special cases where
1229          * the eeprom may be wrong or the board simply won't support wake on
1230          * lan on a particular port */
1231         switch (pdev->device) {
1232         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1233                 adapter->eeprom_wol = 0;
1234                 break;
1235         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1236         case E1000_DEV_ID_82576_FIBER:
1237         case E1000_DEV_ID_82576_SERDES:
1238                 /* Wake events only supported on port A for dual fiber
1239                  * regardless of eeprom setting */
1240                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1241                         adapter->eeprom_wol = 0;
1242                 break;
1243         case E1000_DEV_ID_82576_QUAD_COPPER:
1244                 /* if quad port adapter, disable WoL on all but port A */
1245                 if (global_quad_port_a != 0)
1246                         adapter->eeprom_wol = 0;
1247                 else
1248                         adapter->flags |= IGB_FLAG_QUAD_PORT_A;
1249                 /* Reset for multiple quad port adapters */
1250                 if (++global_quad_port_a == 4)
1251                         global_quad_port_a = 0;
1252                 break;
1253         }
1254
1255         /* initialize the wol settings based on the eeprom settings */
1256         adapter->wol = adapter->eeprom_wol;
1257
1258         /* reset the hardware with the new settings */
1259         igb_reset(adapter);
1260
1261         /* let the f/w know that the h/w is now under the control of the
1262          * driver. */
1263         igb_get_hw_control(adapter);
1264
1265         /* tell the stack to leave us alone until igb_open() is called */
1266         netif_carrier_off(netdev);
1267         netif_tx_stop_all_queues(netdev);
1268
1269         strcpy(netdev->name, "eth%d");
1270         err = register_netdev(netdev);
1271         if (err)
1272                 goto err_register;
1273
1274 #ifdef CONFIG_DCA
1275         if ((adapter->flags & IGB_FLAG_HAS_DCA) &&
1276             (dca_add_requester(&pdev->dev) == 0)) {
1277                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1278                 dev_info(&pdev->dev, "DCA enabled\n");
1279                 /* Always use CB2 mode, difference is masked
1280                  * in the CB driver. */
1281                 wr32(E1000_DCA_CTRL, 2);
1282                 igb_setup_dca(adapter);
1283         }
1284 #endif
1285
1286         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1287         /* print bus type/speed/width info */
1288         dev_info(&pdev->dev,
1289                  "%s: (PCIe:%s:%s) %02x:%02x:%02x:%02x:%02x:%02x\n",
1290                  netdev->name,
1291                  ((hw->bus.speed == e1000_bus_speed_2500)
1292                   ? "2.5Gb/s" : "unknown"),
1293                  ((hw->bus.width == e1000_bus_width_pcie_x4)
1294                   ? "Width x4" : (hw->bus.width == e1000_bus_width_pcie_x1)
1295                   ? "Width x1" : "unknown"),
1296                  netdev->dev_addr[0], netdev->dev_addr[1], netdev->dev_addr[2],
1297                  netdev->dev_addr[3], netdev->dev_addr[4], netdev->dev_addr[5]);
1298
1299         igb_read_part_num(hw, &part_num);
1300         dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1301                 (part_num >> 8), (part_num & 0xff));
1302
1303         dev_info(&pdev->dev,
1304                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1305                 adapter->msix_entries ? "MSI-X" :
1306                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1307                 adapter->num_rx_queues, adapter->num_tx_queues);
1308
1309         return 0;
1310
1311 err_register:
1312         igb_release_hw_control(adapter);
1313 err_eeprom:
1314         if (!igb_check_reset_block(hw))
1315                 hw->phy.ops.reset_phy(hw);
1316
1317         if (hw->flash_address)
1318                 iounmap(hw->flash_address);
1319
1320         igb_remove_device(hw);
1321         igb_free_queues(adapter);
1322 err_sw_init:
1323 err_hw_init:
1324         iounmap(hw->hw_addr);
1325 err_ioremap:
1326         free_netdev(netdev);
1327 err_alloc_etherdev:
1328         pci_release_selected_regions(pdev, bars);
1329 err_pci_reg:
1330 err_dma:
1331         pci_disable_device(pdev);
1332         return err;
1333 }
1334
1335 /**
1336  * igb_remove - Device Removal Routine
1337  * @pdev: PCI device information struct
1338  *
1339  * igb_remove is called by the PCI subsystem to alert the driver
1340  * that it should release a PCI device.  The could be caused by a
1341  * Hot-Plug event, or because the driver is going to be removed from
1342  * memory.
1343  **/
1344 static void __devexit igb_remove(struct pci_dev *pdev)
1345 {
1346         struct net_device *netdev = pci_get_drvdata(pdev);
1347         struct igb_adapter *adapter = netdev_priv(netdev);
1348 #ifdef CONFIG_DCA
1349         struct e1000_hw *hw = &adapter->hw;
1350 #endif
1351
1352         /* flush_scheduled work may reschedule our watchdog task, so
1353          * explicitly disable watchdog tasks from being rescheduled  */
1354         set_bit(__IGB_DOWN, &adapter->state);
1355         del_timer_sync(&adapter->watchdog_timer);
1356         del_timer_sync(&adapter->phy_info_timer);
1357
1358         flush_scheduled_work();
1359
1360 #ifdef CONFIG_DCA
1361         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
1362                 dev_info(&pdev->dev, "DCA disabled\n");
1363                 dca_remove_requester(&pdev->dev);
1364                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
1365                 wr32(E1000_DCA_CTRL, 1);
1366         }
1367 #endif
1368
1369         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1370          * would have already happened in close and is redundant. */
1371         igb_release_hw_control(adapter);
1372
1373         unregister_netdev(netdev);
1374
1375         if (!igb_check_reset_block(&adapter->hw))
1376                 adapter->hw.phy.ops.reset_phy(&adapter->hw);
1377
1378         igb_remove_device(&adapter->hw);
1379         igb_reset_interrupt_capability(adapter);
1380
1381         igb_free_queues(adapter);
1382
1383         iounmap(adapter->hw.hw_addr);
1384         if (adapter->hw.flash_address)
1385                 iounmap(adapter->hw.flash_address);
1386         pci_release_selected_regions(pdev, adapter->bars);
1387
1388         free_netdev(netdev);
1389
1390         pci_disable_device(pdev);
1391 }
1392
1393 /**
1394  * igb_sw_init - Initialize general software structures (struct igb_adapter)
1395  * @adapter: board private structure to initialize
1396  *
1397  * igb_sw_init initializes the Adapter private data structure.
1398  * Fields are initialized based on PCI device information and
1399  * OS network device settings (MTU size).
1400  **/
1401 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1402 {
1403         struct e1000_hw *hw = &adapter->hw;
1404         struct net_device *netdev = adapter->netdev;
1405         struct pci_dev *pdev = adapter->pdev;
1406
1407         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1408
1409         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1410         adapter->rx_ps_hdr_size = 0; /* disable packet split */
1411         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1412         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1413
1414         /* Number of supported queues. */
1415         /* Having more queues than CPUs doesn't make sense. */
1416         adapter->num_rx_queues = min((u32)IGB_MAX_RX_QUEUES, (u32)num_online_cpus());
1417         adapter->num_tx_queues = min(IGB_MAX_TX_QUEUES, num_online_cpus());
1418
1419         /* This call may decrease the number of queues depending on
1420          * interrupt mode. */
1421         igb_set_interrupt_capability(adapter);
1422
1423         if (igb_alloc_queues(adapter)) {
1424                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1425                 return -ENOMEM;
1426         }
1427
1428         /* Explicitly disable IRQ since the NIC can be in any state. */
1429         igb_irq_disable(adapter);
1430
1431         set_bit(__IGB_DOWN, &adapter->state);
1432         return 0;
1433 }
1434
1435 /**
1436  * igb_open - Called when a network interface is made active
1437  * @netdev: network interface device structure
1438  *
1439  * Returns 0 on success, negative value on failure
1440  *
1441  * The open entry point is called when a network interface is made
1442  * active by the system (IFF_UP).  At this point all resources needed
1443  * for transmit and receive operations are allocated, the interrupt
1444  * handler is registered with the OS, the watchdog timer is started,
1445  * and the stack is notified that the interface is ready.
1446  **/
1447 static int igb_open(struct net_device *netdev)
1448 {
1449         struct igb_adapter *adapter = netdev_priv(netdev);
1450         struct e1000_hw *hw = &adapter->hw;
1451         int err;
1452         int i;
1453
1454         /* disallow open during test */
1455         if (test_bit(__IGB_TESTING, &adapter->state))
1456                 return -EBUSY;
1457
1458         /* allocate transmit descriptors */
1459         err = igb_setup_all_tx_resources(adapter);
1460         if (err)
1461                 goto err_setup_tx;
1462
1463         /* allocate receive descriptors */
1464         err = igb_setup_all_rx_resources(adapter);
1465         if (err)
1466                 goto err_setup_rx;
1467
1468         /* e1000_power_up_phy(adapter); */
1469
1470         adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1471         if ((adapter->hw.mng_cookie.status &
1472              E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1473                 igb_update_mng_vlan(adapter);
1474
1475         /* before we allocate an interrupt, we must be ready to handle it.
1476          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1477          * as soon as we call pci_request_irq, so we have to setup our
1478          * clean_rx handler before we do so.  */
1479         igb_configure(adapter);
1480
1481         err = igb_request_irq(adapter);
1482         if (err)
1483                 goto err_req_irq;
1484
1485         /* From here on the code is the same as igb_up() */
1486         clear_bit(__IGB_DOWN, &adapter->state);
1487
1488         for (i = 0; i < adapter->num_rx_queues; i++)
1489                 napi_enable(&adapter->rx_ring[i].napi);
1490
1491         /* Clear any pending interrupts. */
1492         rd32(E1000_ICR);
1493
1494         igb_irq_enable(adapter);
1495
1496         /* Fire a link status change interrupt to start the watchdog. */
1497         wr32(E1000_ICS, E1000_ICS_LSC);
1498
1499         return 0;
1500
1501 err_req_irq:
1502         igb_release_hw_control(adapter);
1503         /* e1000_power_down_phy(adapter); */
1504         igb_free_all_rx_resources(adapter);
1505 err_setup_rx:
1506         igb_free_all_tx_resources(adapter);
1507 err_setup_tx:
1508         igb_reset(adapter);
1509
1510         return err;
1511 }
1512
1513 /**
1514  * igb_close - Disables a network interface
1515  * @netdev: network interface device structure
1516  *
1517  * Returns 0, this is not allowed to fail
1518  *
1519  * The close entry point is called when an interface is de-activated
1520  * by the OS.  The hardware is still under the driver's control, but
1521  * needs to be disabled.  A global MAC reset is issued to stop the
1522  * hardware, and all transmit and receive resources are freed.
1523  **/
1524 static int igb_close(struct net_device *netdev)
1525 {
1526         struct igb_adapter *adapter = netdev_priv(netdev);
1527
1528         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1529         igb_down(adapter);
1530
1531         igb_free_irq(adapter);
1532
1533         igb_free_all_tx_resources(adapter);
1534         igb_free_all_rx_resources(adapter);
1535
1536         /* kill manageability vlan ID if supported, but not if a vlan with
1537          * the same ID is registered on the host OS (let 8021q kill it) */
1538         if ((adapter->hw.mng_cookie.status &
1539                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1540              !(adapter->vlgrp &&
1541                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1542                 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1543
1544         return 0;
1545 }
1546
1547 /**
1548  * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1549  * @adapter: board private structure
1550  * @tx_ring: tx descriptor ring (for a specific queue) to setup
1551  *
1552  * Return 0 on success, negative on failure
1553  **/
1554
1555 int igb_setup_tx_resources(struct igb_adapter *adapter,
1556                            struct igb_ring *tx_ring)
1557 {
1558         struct pci_dev *pdev = adapter->pdev;
1559         int size;
1560
1561         size = sizeof(struct igb_buffer) * tx_ring->count;
1562         tx_ring->buffer_info = vmalloc(size);
1563         if (!tx_ring->buffer_info)
1564                 goto err;
1565         memset(tx_ring->buffer_info, 0, size);
1566
1567         /* round up to nearest 4K */
1568         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc)
1569                         + sizeof(u32);
1570         tx_ring->size = ALIGN(tx_ring->size, 4096);
1571
1572         tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1573                                              &tx_ring->dma);
1574
1575         if (!tx_ring->desc)
1576                 goto err;
1577
1578         tx_ring->adapter = adapter;
1579         tx_ring->next_to_use = 0;
1580         tx_ring->next_to_clean = 0;
1581         return 0;
1582
1583 err:
1584         vfree(tx_ring->buffer_info);
1585         dev_err(&adapter->pdev->dev,
1586                 "Unable to allocate memory for the transmit descriptor ring\n");
1587         return -ENOMEM;
1588 }
1589
1590 /**
1591  * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1592  *                                (Descriptors) for all queues
1593  * @adapter: board private structure
1594  *
1595  * Return 0 on success, negative on failure
1596  **/
1597 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1598 {
1599         int i, err = 0;
1600         int r_idx;
1601
1602         for (i = 0; i < adapter->num_tx_queues; i++) {
1603                 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1604                 if (err) {
1605                         dev_err(&adapter->pdev->dev,
1606                                 "Allocation for Tx Queue %u failed\n", i);
1607                         for (i--; i >= 0; i--)
1608                                 igb_free_tx_resources(&adapter->tx_ring[i]);
1609                         break;
1610                 }
1611         }
1612
1613         for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
1614                 r_idx = i % adapter->num_tx_queues;
1615                 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
1616         }       
1617         return err;
1618 }
1619
1620 /**
1621  * igb_configure_tx - Configure transmit Unit after Reset
1622  * @adapter: board private structure
1623  *
1624  * Configure the Tx unit of the MAC after a reset.
1625  **/
1626 static void igb_configure_tx(struct igb_adapter *adapter)
1627 {
1628         u64 tdba, tdwba;
1629         struct e1000_hw *hw = &adapter->hw;
1630         u32 tctl;
1631         u32 txdctl, txctrl;
1632         int i;
1633
1634         for (i = 0; i < adapter->num_tx_queues; i++) {
1635                 struct igb_ring *ring = &(adapter->tx_ring[i]);
1636
1637                 wr32(E1000_TDLEN(i),
1638                                 ring->count * sizeof(struct e1000_tx_desc));
1639                 tdba = ring->dma;
1640                 wr32(E1000_TDBAL(i),
1641                                 tdba & 0x00000000ffffffffULL);
1642                 wr32(E1000_TDBAH(i), tdba >> 32);
1643
1644                 tdwba = ring->dma + ring->count * sizeof(struct e1000_tx_desc);
1645                 tdwba |= 1; /* enable head wb */
1646                 wr32(E1000_TDWBAL(i),
1647                                 tdwba & 0x00000000ffffffffULL);
1648                 wr32(E1000_TDWBAH(i), tdwba >> 32);
1649
1650                 ring->head = E1000_TDH(i);
1651                 ring->tail = E1000_TDT(i);
1652                 writel(0, hw->hw_addr + ring->tail);
1653                 writel(0, hw->hw_addr + ring->head);
1654                 txdctl = rd32(E1000_TXDCTL(i));
1655                 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1656                 wr32(E1000_TXDCTL(i), txdctl);
1657
1658                 /* Turn off Relaxed Ordering on head write-backs.  The
1659                  * writebacks MUST be delivered in order or it will
1660                  * completely screw up our bookeeping.
1661                  */
1662                 txctrl = rd32(E1000_DCA_TXCTRL(i));
1663                 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1664                 wr32(E1000_DCA_TXCTRL(i), txctrl);
1665         }
1666
1667
1668
1669         /* Use the default values for the Tx Inter Packet Gap (IPG) timer */
1670
1671         /* Program the Transmit Control Register */
1672
1673         tctl = rd32(E1000_TCTL);
1674         tctl &= ~E1000_TCTL_CT;
1675         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1676                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1677
1678         igb_config_collision_dist(hw);
1679
1680         /* Setup Transmit Descriptor Settings for eop descriptor */
1681         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1682
1683         /* Enable transmits */
1684         tctl |= E1000_TCTL_EN;
1685
1686         wr32(E1000_TCTL, tctl);
1687 }
1688
1689 /**
1690  * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1691  * @adapter: board private structure
1692  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
1693  *
1694  * Returns 0 on success, negative on failure
1695  **/
1696
1697 int igb_setup_rx_resources(struct igb_adapter *adapter,
1698                            struct igb_ring *rx_ring)
1699 {
1700         struct pci_dev *pdev = adapter->pdev;
1701         int size, desc_len;
1702
1703 #ifdef CONFIG_IGB_LRO
1704         size = sizeof(struct net_lro_desc) * MAX_LRO_DESCRIPTORS;
1705         rx_ring->lro_mgr.lro_arr = vmalloc(size);
1706         if (!rx_ring->lro_mgr.lro_arr)
1707                 goto err;
1708         memset(rx_ring->lro_mgr.lro_arr, 0, size);
1709 #endif
1710
1711         size = sizeof(struct igb_buffer) * rx_ring->count;
1712         rx_ring->buffer_info = vmalloc(size);
1713         if (!rx_ring->buffer_info)
1714                 goto err;
1715         memset(rx_ring->buffer_info, 0, size);
1716
1717         desc_len = sizeof(union e1000_adv_rx_desc);
1718
1719         /* Round up to nearest 4K */
1720         rx_ring->size = rx_ring->count * desc_len;
1721         rx_ring->size = ALIGN(rx_ring->size, 4096);
1722
1723         rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1724                                              &rx_ring->dma);
1725
1726         if (!rx_ring->desc)
1727                 goto err;
1728
1729         rx_ring->next_to_clean = 0;
1730         rx_ring->next_to_use = 0;
1731
1732         rx_ring->adapter = adapter;
1733
1734         return 0;
1735
1736 err:
1737 #ifdef CONFIG_IGB_LRO
1738         vfree(rx_ring->lro_mgr.lro_arr);
1739         rx_ring->lro_mgr.lro_arr = NULL;
1740 #endif
1741         vfree(rx_ring->buffer_info);
1742         dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
1743                 "the receive descriptor ring\n");
1744         return -ENOMEM;
1745 }
1746
1747 /**
1748  * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1749  *                                (Descriptors) for all queues
1750  * @adapter: board private structure
1751  *
1752  * Return 0 on success, negative on failure
1753  **/
1754 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
1755 {
1756         int i, err = 0;
1757
1758         for (i = 0; i < adapter->num_rx_queues; i++) {
1759                 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1760                 if (err) {
1761                         dev_err(&adapter->pdev->dev,
1762                                 "Allocation for Rx Queue %u failed\n", i);
1763                         for (i--; i >= 0; i--)
1764                                 igb_free_rx_resources(&adapter->rx_ring[i]);
1765                         break;
1766                 }
1767         }
1768
1769         return err;
1770 }
1771
1772 /**
1773  * igb_setup_rctl - configure the receive control registers
1774  * @adapter: Board private structure
1775  **/
1776 static void igb_setup_rctl(struct igb_adapter *adapter)
1777 {
1778         struct e1000_hw *hw = &adapter->hw;
1779         u32 rctl;
1780         u32 srrctl = 0;
1781         int i;
1782
1783         rctl = rd32(E1000_RCTL);
1784
1785         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1786
1787         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1788                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1789                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1790
1791         /*
1792          * enable stripping of CRC. It's unlikely this will break BMC
1793          * redirection as it did with e1000. Newer features require
1794          * that the HW strips the CRC.
1795         */
1796         rctl |= E1000_RCTL_SECRC;
1797
1798         rctl &= ~E1000_RCTL_SBP;
1799
1800         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1801                 rctl &= ~E1000_RCTL_LPE;
1802         else
1803                 rctl |= E1000_RCTL_LPE;
1804         if (adapter->rx_buffer_len <= IGB_RXBUFFER_2048) {
1805                 /* Setup buffer sizes */
1806                 rctl &= ~E1000_RCTL_SZ_4096;
1807                 rctl |= E1000_RCTL_BSEX;
1808                 switch (adapter->rx_buffer_len) {
1809                 case IGB_RXBUFFER_256:
1810                         rctl |= E1000_RCTL_SZ_256;
1811                         rctl &= ~E1000_RCTL_BSEX;
1812                         break;
1813                 case IGB_RXBUFFER_512:
1814                         rctl |= E1000_RCTL_SZ_512;
1815                         rctl &= ~E1000_RCTL_BSEX;
1816                         break;
1817                 case IGB_RXBUFFER_1024:
1818                         rctl |= E1000_RCTL_SZ_1024;
1819                         rctl &= ~E1000_RCTL_BSEX;
1820                         break;
1821                 case IGB_RXBUFFER_2048:
1822                 default:
1823                         rctl |= E1000_RCTL_SZ_2048;
1824                         rctl &= ~E1000_RCTL_BSEX;
1825                         break;
1826                 }
1827         } else {
1828                 rctl &= ~E1000_RCTL_BSEX;
1829                 srrctl = adapter->rx_buffer_len >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1830         }
1831
1832         /* 82575 and greater support packet-split where the protocol
1833          * header is placed in skb->data and the packet data is
1834          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1835          * In the case of a non-split, skb->data is linearly filled,
1836          * followed by the page buffers.  Therefore, skb->data is
1837          * sized to hold the largest protocol header.
1838          */
1839         /* allocations using alloc_page take too long for regular MTU
1840          * so only enable packet split for jumbo frames */
1841         if (rctl & E1000_RCTL_LPE) {
1842                 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
1843                 srrctl |= adapter->rx_ps_hdr_size <<
1844                          E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1845                 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1846         } else {
1847                 adapter->rx_ps_hdr_size = 0;
1848                 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1849         }
1850
1851         for (i = 0; i < adapter->num_rx_queues; i++)
1852                 wr32(E1000_SRRCTL(i), srrctl);
1853
1854         wr32(E1000_RCTL, rctl);
1855 }
1856
1857 /**
1858  * igb_configure_rx - Configure receive Unit after Reset
1859  * @adapter: board private structure
1860  *
1861  * Configure the Rx unit of the MAC after a reset.
1862  **/
1863 static void igb_configure_rx(struct igb_adapter *adapter)
1864 {
1865         u64 rdba;
1866         struct e1000_hw *hw = &adapter->hw;
1867         u32 rctl, rxcsum;
1868         u32 rxdctl;
1869         int i;
1870
1871         /* disable receives while setting up the descriptors */
1872         rctl = rd32(E1000_RCTL);
1873         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1874         wrfl();
1875         mdelay(10);
1876
1877         if (adapter->itr_setting > 3)
1878                 wr32(E1000_ITR, adapter->itr);
1879
1880         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1881          * the Base and Length of the Rx Descriptor Ring */
1882         for (i = 0; i < adapter->num_rx_queues; i++) {
1883                 struct igb_ring *ring = &(adapter->rx_ring[i]);
1884                 rdba = ring->dma;
1885                 wr32(E1000_RDBAL(i),
1886                                 rdba & 0x00000000ffffffffULL);
1887                 wr32(E1000_RDBAH(i), rdba >> 32);
1888                 wr32(E1000_RDLEN(i),
1889                                ring->count * sizeof(union e1000_adv_rx_desc));
1890
1891                 ring->head = E1000_RDH(i);
1892                 ring->tail = E1000_RDT(i);
1893                 writel(0, hw->hw_addr + ring->tail);
1894                 writel(0, hw->hw_addr + ring->head);
1895
1896                 rxdctl = rd32(E1000_RXDCTL(i));
1897                 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1898                 rxdctl &= 0xFFF00000;
1899                 rxdctl |= IGB_RX_PTHRESH;
1900                 rxdctl |= IGB_RX_HTHRESH << 8;
1901                 rxdctl |= IGB_RX_WTHRESH << 16;
1902                 wr32(E1000_RXDCTL(i), rxdctl);
1903 #ifdef CONFIG_IGB_LRO
1904                 /* Intitial LRO Settings */
1905                 ring->lro_mgr.max_aggr = MAX_LRO_AGGR;
1906                 ring->lro_mgr.max_desc = MAX_LRO_DESCRIPTORS;
1907                 ring->lro_mgr.get_skb_header = igb_get_skb_hdr;
1908                 ring->lro_mgr.features = LRO_F_NAPI | LRO_F_EXTRACT_VLAN_ID;
1909                 ring->lro_mgr.dev = adapter->netdev;
1910                 ring->lro_mgr.ip_summed = CHECKSUM_UNNECESSARY;
1911                 ring->lro_mgr.ip_summed_aggr = CHECKSUM_UNNECESSARY;
1912 #endif
1913         }
1914
1915         if (adapter->num_rx_queues > 1) {
1916                 u32 random[10];
1917                 u32 mrqc;
1918                 u32 j, shift;
1919                 union e1000_reta {
1920                         u32 dword;
1921                         u8  bytes[4];
1922                 } reta;
1923
1924                 get_random_bytes(&random[0], 40);
1925
1926                 if (hw->mac.type >= e1000_82576)
1927                         shift = 0;
1928                 else
1929                         shift = 6;
1930                 for (j = 0; j < (32 * 4); j++) {
1931                         reta.bytes[j & 3] =
1932                                 (j % adapter->num_rx_queues) << shift;
1933                         if ((j & 3) == 3)
1934                                 writel(reta.dword,
1935                                        hw->hw_addr + E1000_RETA(0) + (j & ~3));
1936                 }
1937                 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
1938
1939                 /* Fill out hash function seeds */
1940                 for (j = 0; j < 10; j++)
1941                         array_wr32(E1000_RSSRK(0), j, random[j]);
1942
1943                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
1944                          E1000_MRQC_RSS_FIELD_IPV4_TCP);
1945                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
1946                          E1000_MRQC_RSS_FIELD_IPV6_TCP);
1947                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
1948                          E1000_MRQC_RSS_FIELD_IPV6_UDP);
1949                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
1950                          E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
1951
1952
1953                 wr32(E1000_MRQC, mrqc);
1954
1955                 /* Multiqueue and raw packet checksumming are mutually
1956                  * exclusive.  Note that this not the same as TCP/IP
1957                  * checksumming, which works fine. */
1958                 rxcsum = rd32(E1000_RXCSUM);
1959                 rxcsum |= E1000_RXCSUM_PCSD;
1960                 wr32(E1000_RXCSUM, rxcsum);
1961         } else {
1962                 /* Enable Receive Checksum Offload for TCP and UDP */
1963                 rxcsum = rd32(E1000_RXCSUM);
1964                 if (adapter->rx_csum) {
1965                         rxcsum |= E1000_RXCSUM_TUOFL;
1966
1967                         /* Enable IPv4 payload checksum for UDP fragments
1968                          * Must be used in conjunction with packet-split. */
1969                         if (adapter->rx_ps_hdr_size)
1970                                 rxcsum |= E1000_RXCSUM_IPPCSE;
1971                 } else {
1972                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1973                         /* don't need to clear IPPCSE as it defaults to 0 */
1974                 }
1975                 wr32(E1000_RXCSUM, rxcsum);
1976         }
1977
1978         if (adapter->vlgrp)
1979                 wr32(E1000_RLPML,
1980                                 adapter->max_frame_size + VLAN_TAG_SIZE);
1981         else
1982                 wr32(E1000_RLPML, adapter->max_frame_size);
1983
1984         /* Enable Receives */
1985         wr32(E1000_RCTL, rctl);
1986 }
1987
1988 /**
1989  * igb_free_tx_resources - Free Tx Resources per Queue
1990  * @adapter: board private structure
1991  * @tx_ring: Tx descriptor ring for a specific queue
1992  *
1993  * Free all transmit software resources
1994  **/
1995 static void igb_free_tx_resources(struct igb_ring *tx_ring)
1996 {
1997         struct pci_dev *pdev = tx_ring->adapter->pdev;
1998
1999         igb_clean_tx_ring(tx_ring);
2000
2001         vfree(tx_ring->buffer_info);
2002         tx_ring->buffer_info = NULL;
2003
2004         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2005
2006         tx_ring->desc = NULL;
2007 }
2008
2009 /**
2010  * igb_free_all_tx_resources - Free Tx Resources for All Queues
2011  * @adapter: board private structure
2012  *
2013  * Free all transmit software resources
2014  **/
2015 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2016 {
2017         int i;
2018
2019         for (i = 0; i < adapter->num_tx_queues; i++)
2020                 igb_free_tx_resources(&adapter->tx_ring[i]);
2021 }
2022
2023 static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
2024                                            struct igb_buffer *buffer_info)
2025 {
2026         if (buffer_info->dma) {
2027                 pci_unmap_page(adapter->pdev,
2028                                 buffer_info->dma,
2029                                 buffer_info->length,
2030                                 PCI_DMA_TODEVICE);
2031                 buffer_info->dma = 0;
2032         }
2033         if (buffer_info->skb) {
2034                 dev_kfree_skb_any(buffer_info->skb);
2035                 buffer_info->skb = NULL;
2036         }
2037         buffer_info->time_stamp = 0;
2038         /* buffer_info must be completely set up in the transmit path */
2039 }
2040
2041 /**
2042  * igb_clean_tx_ring - Free Tx Buffers
2043  * @adapter: board private structure
2044  * @tx_ring: ring to be cleaned
2045  **/
2046 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2047 {
2048         struct igb_adapter *adapter = tx_ring->adapter;
2049         struct igb_buffer *buffer_info;
2050         unsigned long size;
2051         unsigned int i;
2052
2053         if (!tx_ring->buffer_info)
2054                 return;
2055         /* Free all the Tx ring sk_buffs */
2056
2057         for (i = 0; i < tx_ring->count; i++) {
2058                 buffer_info = &tx_ring->buffer_info[i];
2059                 igb_unmap_and_free_tx_resource(adapter, buffer_info);
2060         }
2061
2062         size = sizeof(struct igb_buffer) * tx_ring->count;
2063         memset(tx_ring->buffer_info, 0, size);
2064
2065         /* Zero out the descriptor ring */
2066
2067         memset(tx_ring->desc, 0, tx_ring->size);
2068
2069         tx_ring->next_to_use = 0;
2070         tx_ring->next_to_clean = 0;
2071
2072         writel(0, adapter->hw.hw_addr + tx_ring->head);
2073         writel(0, adapter->hw.hw_addr + tx_ring->tail);
2074 }
2075
2076 /**
2077  * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2078  * @adapter: board private structure
2079  **/
2080 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2081 {
2082         int i;
2083
2084         for (i = 0; i < adapter->num_tx_queues; i++)
2085                 igb_clean_tx_ring(&adapter->tx_ring[i]);
2086 }
2087
2088 /**
2089  * igb_free_rx_resources - Free Rx Resources
2090  * @adapter: board private structure
2091  * @rx_ring: ring to clean the resources from
2092  *
2093  * Free all receive software resources
2094  **/
2095 static void igb_free_rx_resources(struct igb_ring *rx_ring)
2096 {
2097         struct pci_dev *pdev = rx_ring->adapter->pdev;
2098
2099         igb_clean_rx_ring(rx_ring);
2100
2101         vfree(rx_ring->buffer_info);
2102         rx_ring->buffer_info = NULL;
2103
2104 #ifdef CONFIG_IGB_LRO
2105         vfree(rx_ring->lro_mgr.lro_arr);
2106         rx_ring->lro_mgr.lro_arr = NULL;
2107 #endif 
2108
2109         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2110
2111         rx_ring->desc = NULL;
2112 }
2113
2114 /**
2115  * igb_free_all_rx_resources - Free Rx Resources for All Queues
2116  * @adapter: board private structure
2117  *
2118  * Free all receive software resources
2119  **/
2120 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2121 {
2122         int i;
2123
2124         for (i = 0; i < adapter->num_rx_queues; i++)
2125                 igb_free_rx_resources(&adapter->rx_ring[i]);
2126 }
2127
2128 /**
2129  * igb_clean_rx_ring - Free Rx Buffers per Queue
2130  * @adapter: board private structure
2131  * @rx_ring: ring to free buffers from
2132  **/
2133 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2134 {
2135         struct igb_adapter *adapter = rx_ring->adapter;
2136         struct igb_buffer *buffer_info;
2137         struct pci_dev *pdev = adapter->pdev;
2138         unsigned long size;
2139         unsigned int i;
2140
2141         if (!rx_ring->buffer_info)
2142                 return;
2143         /* Free all the Rx ring sk_buffs */
2144         for (i = 0; i < rx_ring->count; i++) {
2145                 buffer_info = &rx_ring->buffer_info[i];
2146                 if (buffer_info->dma) {
2147                         if (adapter->rx_ps_hdr_size)
2148                                 pci_unmap_single(pdev, buffer_info->dma,
2149                                                  adapter->rx_ps_hdr_size,
2150                                                  PCI_DMA_FROMDEVICE);
2151                         else
2152                                 pci_unmap_single(pdev, buffer_info->dma,
2153                                                  adapter->rx_buffer_len,
2154                                                  PCI_DMA_FROMDEVICE);
2155                         buffer_info->dma = 0;
2156                 }
2157
2158                 if (buffer_info->skb) {
2159                         dev_kfree_skb(buffer_info->skb);
2160                         buffer_info->skb = NULL;
2161                 }
2162                 if (buffer_info->page) {
2163                         if (buffer_info->page_dma)
2164                                 pci_unmap_page(pdev, buffer_info->page_dma,
2165                                                PAGE_SIZE / 2,
2166                                                PCI_DMA_FROMDEVICE);
2167                         put_page(buffer_info->page);
2168                         buffer_info->page = NULL;
2169                         buffer_info->page_dma = 0;
2170                         buffer_info->page_offset = 0;
2171                 }
2172         }
2173
2174         size = sizeof(struct igb_buffer) * rx_ring->count;
2175         memset(rx_ring->buffer_info, 0, size);
2176
2177         /* Zero out the descriptor ring */
2178         memset(rx_ring->desc, 0, rx_ring->size);
2179
2180         rx_ring->next_to_clean = 0;
2181         rx_ring->next_to_use = 0;
2182
2183         writel(0, adapter->hw.hw_addr + rx_ring->head);
2184         writel(0, adapter->hw.hw_addr + rx_ring->tail);
2185 }
2186
2187 /**
2188  * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2189  * @adapter: board private structure
2190  **/
2191 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2192 {
2193         int i;
2194
2195         for (i = 0; i < adapter->num_rx_queues; i++)
2196                 igb_clean_rx_ring(&adapter->rx_ring[i]);
2197 }
2198
2199 /**
2200  * igb_set_mac - Change the Ethernet Address of the NIC
2201  * @netdev: network interface device structure
2202  * @p: pointer to an address structure
2203  *
2204  * Returns 0 on success, negative on failure
2205  **/
2206 static int igb_set_mac(struct net_device *netdev, void *p)
2207 {
2208         struct igb_adapter *adapter = netdev_priv(netdev);
2209         struct sockaddr *addr = p;
2210
2211         if (!is_valid_ether_addr(addr->sa_data))
2212                 return -EADDRNOTAVAIL;
2213
2214         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2215         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
2216
2217         adapter->hw.mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2218
2219         return 0;
2220 }
2221
2222 /**
2223  * igb_set_multi - Multicast and Promiscuous mode set
2224  * @netdev: network interface device structure
2225  *
2226  * The set_multi entry point is called whenever the multicast address
2227  * list or the network interface flags are updated.  This routine is
2228  * responsible for configuring the hardware for proper multicast,
2229  * promiscuous mode, and all-multi behavior.
2230  **/
2231 static void igb_set_multi(struct net_device *netdev)
2232 {
2233         struct igb_adapter *adapter = netdev_priv(netdev);
2234         struct e1000_hw *hw = &adapter->hw;
2235         struct e1000_mac_info *mac = &hw->mac;
2236         struct dev_mc_list *mc_ptr;
2237         u8  *mta_list;
2238         u32 rctl;
2239         int i;
2240
2241         /* Check for Promiscuous and All Multicast modes */
2242
2243         rctl = rd32(E1000_RCTL);
2244
2245         if (netdev->flags & IFF_PROMISC) {
2246                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2247                 rctl &= ~E1000_RCTL_VFE;
2248         } else {
2249                 if (netdev->flags & IFF_ALLMULTI) {
2250                         rctl |= E1000_RCTL_MPE;
2251                         rctl &= ~E1000_RCTL_UPE;
2252                 } else
2253                         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2254                 rctl |= E1000_RCTL_VFE;
2255         }
2256         wr32(E1000_RCTL, rctl);
2257
2258         if (!netdev->mc_count) {
2259                 /* nothing to program, so clear mc list */
2260                 igb_update_mc_addr_list_82575(hw, NULL, 0, 1,
2261                                           mac->rar_entry_count);
2262                 return;
2263         }
2264
2265         mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2266         if (!mta_list)
2267                 return;
2268
2269         /* The shared function expects a packed array of only addresses. */
2270         mc_ptr = netdev->mc_list;
2271
2272         for (i = 0; i < netdev->mc_count; i++) {
2273                 if (!mc_ptr)
2274                         break;
2275                 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2276                 mc_ptr = mc_ptr->next;
2277         }
2278         igb_update_mc_addr_list_82575(hw, mta_list, i, 1,
2279                                       mac->rar_entry_count);
2280         kfree(mta_list);
2281 }
2282
2283 /* Need to wait a few seconds after link up to get diagnostic information from
2284  * the phy */
2285 static void igb_update_phy_info(unsigned long data)
2286 {
2287         struct igb_adapter *adapter = (struct igb_adapter *) data;
2288         if (adapter->hw.phy.ops.get_phy_info)
2289                 adapter->hw.phy.ops.get_phy_info(&adapter->hw);
2290 }
2291
2292 /**
2293  * igb_watchdog - Timer Call-back
2294  * @data: pointer to adapter cast into an unsigned long
2295  **/
2296 static void igb_watchdog(unsigned long data)
2297 {
2298         struct igb_adapter *adapter = (struct igb_adapter *)data;
2299         /* Do the rest outside of interrupt context */
2300         schedule_work(&adapter->watchdog_task);
2301 }
2302
2303 static void igb_watchdog_task(struct work_struct *work)
2304 {
2305         struct igb_adapter *adapter = container_of(work,
2306                                         struct igb_adapter, watchdog_task);
2307         struct e1000_hw *hw = &adapter->hw;
2308
2309         struct net_device *netdev = adapter->netdev;
2310         struct igb_ring *tx_ring = adapter->tx_ring;
2311         struct e1000_mac_info *mac = &adapter->hw.mac;
2312         u32 link;
2313         s32 ret_val;
2314
2315         if ((netif_carrier_ok(netdev)) &&
2316             (rd32(E1000_STATUS) & E1000_STATUS_LU))
2317                 goto link_up;
2318
2319         ret_val = hw->mac.ops.check_for_link(&adapter->hw);
2320         if ((ret_val == E1000_ERR_PHY) &&
2321             (hw->phy.type == e1000_phy_igp_3) &&
2322             (rd32(E1000_CTRL) &
2323              E1000_PHY_CTRL_GBE_DISABLE))
2324                 dev_info(&adapter->pdev->dev,
2325                          "Gigabit has been disabled, downgrading speed\n");
2326
2327         if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
2328             !(rd32(E1000_TXCW) & E1000_TXCW_ANE))
2329                 link = mac->serdes_has_link;
2330         else
2331                 link = rd32(E1000_STATUS) &
2332                                       E1000_STATUS_LU;
2333
2334         if (link) {
2335                 if (!netif_carrier_ok(netdev)) {
2336                         u32 ctrl;
2337                         hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2338                                                    &adapter->link_speed,
2339                                                    &adapter->link_duplex);
2340
2341                         ctrl = rd32(E1000_CTRL);
2342                         dev_info(&adapter->pdev->dev,
2343                                  "NIC Link is Up %d Mbps %s, "
2344                                  "Flow Control: %s\n",
2345                                  adapter->link_speed,
2346                                  adapter->link_duplex == FULL_DUPLEX ?
2347                                  "Full Duplex" : "Half Duplex",
2348                                  ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2349                                  E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2350                                  E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2351                                  E1000_CTRL_TFCE) ? "TX" : "None")));
2352
2353                         /* tweak tx_queue_len according to speed/duplex and
2354                          * adjust the timeout factor */
2355                         netdev->tx_queue_len = adapter->tx_queue_len;
2356                         adapter->tx_timeout_factor = 1;
2357                         switch (adapter->link_speed) {
2358                         case SPEED_10:
2359                                 netdev->tx_queue_len = 10;
2360                                 adapter->tx_timeout_factor = 14;
2361                                 break;
2362                         case SPEED_100:
2363                                 netdev->tx_queue_len = 100;
2364                                 /* maybe add some timeout factor ? */
2365                                 break;
2366                         }
2367
2368                         netif_carrier_on(netdev);
2369                         netif_tx_wake_all_queues(netdev);
2370
2371                         if (!test_bit(__IGB_DOWN, &adapter->state))
2372                                 mod_timer(&adapter->phy_info_timer,
2373                                           round_jiffies(jiffies + 2 * HZ));
2374                 }
2375         } else {
2376                 if (netif_carrier_ok(netdev)) {
2377                         adapter->link_speed = 0;
2378                         adapter->link_duplex = 0;
2379                         dev_info(&adapter->pdev->dev, "NIC Link is Down\n");
2380                         netif_carrier_off(netdev);
2381                         netif_tx_stop_all_queues(netdev);
2382                         if (!test_bit(__IGB_DOWN, &adapter->state))
2383                                 mod_timer(&adapter->phy_info_timer,
2384                                           round_jiffies(jiffies + 2 * HZ));
2385                 }
2386         }
2387
2388 link_up:
2389         igb_update_stats(adapter);
2390
2391         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2392         adapter->tpt_old = adapter->stats.tpt;
2393         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
2394         adapter->colc_old = adapter->stats.colc;
2395
2396         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2397         adapter->gorc_old = adapter->stats.gorc;
2398         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2399         adapter->gotc_old = adapter->stats.gotc;
2400
2401         igb_update_adaptive(&adapter->hw);
2402
2403         if (!netif_carrier_ok(netdev)) {
2404                 if (IGB_DESC_UNUSED(tx_ring) + 1 < tx_ring->count) {
2405                         /* We've lost link, so the controller stops DMA,
2406                          * but we've got queued Tx work that's never going
2407                          * to get done, so reset controller to flush Tx.
2408                          * (Do the reset outside of interrupt context). */
2409                         adapter->tx_timeout_count++;
2410                         schedule_work(&adapter->reset_task);
2411                 }
2412         }
2413
2414         /* Cause software interrupt to ensure rx ring is cleaned */
2415         wr32(E1000_ICS, E1000_ICS_RXDMT0);
2416
2417         /* Force detection of hung controller every watchdog period */
2418         tx_ring->detect_tx_hung = true;
2419
2420         /* Reset the timer */
2421         if (!test_bit(__IGB_DOWN, &adapter->state))
2422                 mod_timer(&adapter->watchdog_timer,
2423                           round_jiffies(jiffies + 2 * HZ));
2424 }
2425
2426 enum latency_range {
2427         lowest_latency = 0,
2428         low_latency = 1,
2429         bulk_latency = 2,
2430         latency_invalid = 255
2431 };
2432
2433
2434 /**
2435  * igb_update_ring_itr - update the dynamic ITR value based on packet size
2436  *
2437  *      Stores a new ITR value based on strictly on packet size.  This
2438  *      algorithm is less sophisticated than that used in igb_update_itr,
2439  *      due to the difficulty of synchronizing statistics across multiple
2440  *      receive rings.  The divisors and thresholds used by this fuction
2441  *      were determined based on theoretical maximum wire speed and testing
2442  *      data, in order to minimize response time while increasing bulk
2443  *      throughput.
2444  *      This functionality is controlled by the InterruptThrottleRate module
2445  *      parameter (see igb_param.c)
2446  *      NOTE:  This function is called only when operating in a multiqueue
2447  *             receive environment.
2448  * @rx_ring: pointer to ring
2449  **/
2450 static void igb_update_ring_itr(struct igb_ring *rx_ring)
2451 {
2452         int new_val = rx_ring->itr_val;
2453         int avg_wire_size = 0;
2454         struct igb_adapter *adapter = rx_ring->adapter;
2455
2456         if (!rx_ring->total_packets)
2457                 goto clear_counts; /* no packets, so don't do anything */
2458
2459         /* For non-gigabit speeds, just fix the interrupt rate at 4000
2460          * ints/sec - ITR timer value of 120 ticks.
2461          */
2462         if (adapter->link_speed != SPEED_1000) {
2463                 new_val = 120;
2464                 goto set_itr_val;
2465         }
2466         avg_wire_size = rx_ring->total_bytes / rx_ring->total_packets;
2467
2468         /* Add 24 bytes to size to account for CRC, preamble, and gap */
2469         avg_wire_size += 24;
2470
2471         /* Don't starve jumbo frames */
2472         avg_wire_size = min(avg_wire_size, 3000);
2473
2474         /* Give a little boost to mid-size frames */
2475         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
2476                 new_val = avg_wire_size / 3;
2477         else
2478                 new_val = avg_wire_size / 2;
2479
2480 set_itr_val:
2481         if (new_val != rx_ring->itr_val) {
2482                 rx_ring->itr_val = new_val;
2483                 rx_ring->set_itr = 1;
2484         }
2485 clear_counts:
2486         rx_ring->total_bytes = 0;
2487         rx_ring->total_packets = 0;
2488 }
2489
2490 /**
2491  * igb_update_itr - update the dynamic ITR value based on statistics
2492  *      Stores a new ITR value based on packets and byte
2493  *      counts during the last interrupt.  The advantage of per interrupt
2494  *      computation is faster updates and more accurate ITR for the current
2495  *      traffic pattern.  Constants in this function were computed
2496  *      based on theoretical maximum wire speed and thresholds were set based
2497  *      on testing data as well as attempting to minimize response time
2498  *      while increasing bulk throughput.
2499  *      this functionality is controlled by the InterruptThrottleRate module
2500  *      parameter (see igb_param.c)
2501  *      NOTE:  These calculations are only valid when operating in a single-
2502  *             queue environment.
2503  * @adapter: pointer to adapter
2504  * @itr_setting: current adapter->itr
2505  * @packets: the number of packets during this measurement interval
2506  * @bytes: the number of bytes during this measurement interval
2507  **/
2508 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2509                                    int packets, int bytes)
2510 {
2511         unsigned int retval = itr_setting;
2512
2513         if (packets == 0)
2514                 goto update_itr_done;
2515
2516         switch (itr_setting) {
2517         case lowest_latency:
2518                 /* handle TSO and jumbo frames */
2519                 if (bytes/packets > 8000)
2520                         retval = bulk_latency;
2521                 else if ((packets < 5) && (bytes > 512))
2522                         retval = low_latency;
2523                 break;
2524         case low_latency:  /* 50 usec aka 20000 ints/s */
2525                 if (bytes > 10000) {
2526                         /* this if handles the TSO accounting */
2527                         if (bytes/packets > 8000) {
2528                                 retval = bulk_latency;
2529                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2530                                 retval = bulk_latency;
2531                         } else if ((packets > 35)) {
2532                                 retval = lowest_latency;
2533                         }
2534                 } else if (bytes/packets > 2000) {
2535                         retval = bulk_latency;
2536                 } else if (packets <= 2 && bytes < 512) {
2537                         retval = lowest_latency;
2538                 }
2539                 break;
2540         case bulk_latency: /* 250 usec aka 4000 ints/s */
2541                 if (bytes > 25000) {
2542                         if (packets > 35)
2543                                 retval = low_latency;
2544                 } else if (bytes < 6000) {
2545                         retval = low_latency;
2546                 }
2547                 break;
2548         }
2549
2550 update_itr_done:
2551         return retval;
2552 }
2553
2554 static void igb_set_itr(struct igb_adapter *adapter)
2555 {
2556         u16 current_itr;
2557         u32 new_itr = adapter->itr;
2558
2559         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2560         if (adapter->link_speed != SPEED_1000) {
2561                 current_itr = 0;
2562                 new_itr = 4000;
2563                 goto set_itr_now;
2564         }
2565
2566         adapter->rx_itr = igb_update_itr(adapter,
2567                                     adapter->rx_itr,
2568                                     adapter->rx_ring->total_packets,
2569                                     adapter->rx_ring->total_bytes);
2570
2571         if (adapter->rx_ring->buddy) {
2572                 adapter->tx_itr = igb_update_itr(adapter,
2573                                             adapter->tx_itr,
2574                                             adapter->tx_ring->total_packets,
2575                                             adapter->tx_ring->total_bytes);
2576
2577                 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2578         } else {
2579                 current_itr = adapter->rx_itr;
2580         }
2581
2582         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2583         if (adapter->itr_setting == 3 &&
2584             current_itr == lowest_latency)
2585                 current_itr = low_latency;
2586
2587         switch (current_itr) {
2588         /* counts and packets in update_itr are dependent on these numbers */
2589         case lowest_latency:
2590                 new_itr = 70000;
2591                 break;
2592         case low_latency:
2593                 new_itr = 20000; /* aka hwitr = ~200 */
2594                 break;
2595         case bulk_latency:
2596                 new_itr = 4000;
2597                 break;
2598         default:
2599                 break;
2600         }
2601
2602 set_itr_now:
2603         adapter->rx_ring->total_bytes = 0;
2604         adapter->rx_ring->total_packets = 0;
2605         if (adapter->rx_ring->buddy) {
2606                 adapter->rx_ring->buddy->total_bytes = 0;
2607                 adapter->rx_ring->buddy->total_packets = 0;
2608         }
2609
2610         if (new_itr != adapter->itr) {
2611                 /* this attempts to bias the interrupt rate towards Bulk
2612                  * by adding intermediate steps when interrupt rate is
2613                  * increasing */
2614                 new_itr = new_itr > adapter->itr ?
2615                              min(adapter->itr + (new_itr >> 2), new_itr) :
2616                              new_itr;
2617                 /* Don't write the value here; it resets the adapter's
2618                  * internal timer, and causes us to delay far longer than
2619                  * we should between interrupts.  Instead, we write the ITR
2620                  * value at the beginning of the next interrupt so the timing
2621                  * ends up being correct.
2622                  */
2623                 adapter->itr = new_itr;
2624                 adapter->rx_ring->itr_val = 1000000000 / (new_itr * 256);
2625                 adapter->rx_ring->set_itr = 1;
2626         }
2627
2628         return;
2629 }
2630
2631
2632 #define IGB_TX_FLAGS_CSUM               0x00000001
2633 #define IGB_TX_FLAGS_VLAN               0x00000002
2634 #define IGB_TX_FLAGS_TSO                0x00000004
2635 #define IGB_TX_FLAGS_IPV4               0x00000008
2636 #define IGB_TX_FLAGS_VLAN_MASK  0xffff0000
2637 #define IGB_TX_FLAGS_VLAN_SHIFT 16
2638
2639 static inline int igb_tso_adv(struct igb_adapter *adapter,
2640                               struct igb_ring *tx_ring,
2641                               struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2642 {
2643         struct e1000_adv_tx_context_desc *context_desc;
2644         unsigned int i;
2645         int err;
2646         struct igb_buffer *buffer_info;
2647         u32 info = 0, tu_cmd = 0;
2648         u32 mss_l4len_idx, l4len;
2649         *hdr_len = 0;
2650
2651         if (skb_header_cloned(skb)) {
2652                 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2653                 if (err)
2654                         return err;
2655         }
2656
2657         l4len = tcp_hdrlen(skb);
2658         *hdr_len += l4len;
2659
2660         if (skb->protocol == htons(ETH_P_IP)) {
2661                 struct iphdr *iph = ip_hdr(skb);
2662                 iph->tot_len = 0;
2663                 iph->check = 0;
2664                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2665                                                          iph->daddr, 0,
2666                                                          IPPROTO_TCP,
2667                                                          0);
2668         } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2669                 ipv6_hdr(skb)->payload_len = 0;
2670                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2671                                                        &ipv6_hdr(skb)->daddr,
2672                                                        0, IPPROTO_TCP, 0);
2673         }
2674
2675         i = tx_ring->next_to_use;
2676
2677         buffer_info = &tx_ring->buffer_info[i];
2678         context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2679         /* VLAN MACLEN IPLEN */
2680         if (tx_flags & IGB_TX_FLAGS_VLAN)
2681                 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2682         info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2683         *hdr_len += skb_network_offset(skb);
2684         info |= skb_network_header_len(skb);
2685         *hdr_len += skb_network_header_len(skb);
2686         context_desc->vlan_macip_lens = cpu_to_le32(info);
2687
2688         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2689         tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2690
2691         if (skb->protocol == htons(ETH_P_IP))
2692                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2693         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2694
2695         context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2696
2697         /* MSS L4LEN IDX */
2698         mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
2699         mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
2700
2701         /* Context index must be unique per ring. */
2702         if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2703                 mss_l4len_idx |= tx_ring->queue_index << 4;
2704
2705         context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2706         context_desc->seqnum_seed = 0;
2707
2708         buffer_info->time_stamp = jiffies;
2709         buffer_info->dma = 0;
2710         i++;
2711         if (i == tx_ring->count)
2712                 i = 0;
2713
2714         tx_ring->next_to_use = i;
2715
2716         return true;
2717 }
2718
2719 static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
2720                                         struct igb_ring *tx_ring,
2721                                         struct sk_buff *skb, u32 tx_flags)
2722 {
2723         struct e1000_adv_tx_context_desc *context_desc;
2724         unsigned int i;
2725         struct igb_buffer *buffer_info;
2726         u32 info = 0, tu_cmd = 0;
2727
2728         if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2729             (tx_flags & IGB_TX_FLAGS_VLAN)) {
2730                 i = tx_ring->next_to_use;
2731                 buffer_info = &tx_ring->buffer_info[i];
2732                 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2733
2734                 if (tx_flags & IGB_TX_FLAGS_VLAN)
2735                         info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2736                 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2737                 if (skb->ip_summed == CHECKSUM_PARTIAL)
2738                         info |= skb_network_header_len(skb);
2739
2740                 context_desc->vlan_macip_lens = cpu_to_le32(info);
2741
2742                 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2743
2744                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2745                         switch (skb->protocol) {
2746                         case __constant_htons(ETH_P_IP):
2747                                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2748                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2749                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2750                                 break;
2751                         case __constant_htons(ETH_P_IPV6):
2752                                 /* XXX what about other V6 headers?? */
2753                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2754                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2755                                 break;
2756                         default:
2757                                 if (unlikely(net_ratelimit()))
2758                                         dev_warn(&adapter->pdev->dev,
2759                                             "partial checksum but proto=%x!\n",
2760                                             skb->protocol);
2761                                 break;
2762                         }
2763                 }
2764
2765                 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2766                 context_desc->seqnum_seed = 0;
2767                 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2768                         context_desc->mss_l4len_idx =
2769                                 cpu_to_le32(tx_ring->queue_index << 4);
2770
2771                 buffer_info->time_stamp = jiffies;
2772                 buffer_info->dma = 0;
2773
2774                 i++;
2775                 if (i == tx_ring->count)
2776                         i = 0;
2777                 tx_ring->next_to_use = i;
2778
2779                 return true;
2780         }
2781
2782
2783         return false;
2784 }
2785
2786 #define IGB_MAX_TXD_PWR 16
2787 #define IGB_MAX_DATA_PER_TXD    (1<<IGB_MAX_TXD_PWR)
2788
2789 static inline int igb_tx_map_adv(struct igb_adapter *adapter,
2790                                  struct igb_ring *tx_ring,
2791                                  struct sk_buff *skb)
2792 {
2793         struct igb_buffer *buffer_info;
2794         unsigned int len = skb_headlen(skb);
2795         unsigned int count = 0, i;
2796         unsigned int f;
2797
2798         i = tx_ring->next_to_use;
2799
2800         buffer_info = &tx_ring->buffer_info[i];
2801         BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2802         buffer_info->length = len;
2803         /* set time_stamp *before* dma to help avoid a possible race */
2804         buffer_info->time_stamp = jiffies;
2805         buffer_info->dma = pci_map_single(adapter->pdev, skb->data, len,
2806                                           PCI_DMA_TODEVICE);
2807         count++;
2808         i++;
2809         if (i == tx_ring->count)
2810                 i = 0;
2811
2812         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2813                 struct skb_frag_struct *frag;
2814
2815                 frag = &skb_shinfo(skb)->frags[f];
2816                 len = frag->size;
2817
2818                 buffer_info = &tx_ring->buffer_info[i];
2819                 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2820                 buffer_info->length = len;
2821                 buffer_info->time_stamp = jiffies;
2822                 buffer_info->dma = pci_map_page(adapter->pdev,
2823                                                 frag->page,
2824                                                 frag->page_offset,
2825                                                 len,
2826                                                 PCI_DMA_TODEVICE);
2827
2828                 count++;
2829                 i++;
2830                 if (i == tx_ring->count)
2831                         i = 0;
2832         }
2833
2834         i = (i == 0) ? tx_ring->count - 1 : i - 1;
2835         tx_ring->buffer_info[i].skb = skb;
2836
2837         return count;
2838 }
2839
2840 static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
2841                                     struct igb_ring *tx_ring,
2842                                     int tx_flags, int count, u32 paylen,
2843                                     u8 hdr_len)
2844 {
2845         union e1000_adv_tx_desc *tx_desc = NULL;
2846         struct igb_buffer *buffer_info;
2847         u32 olinfo_status = 0, cmd_type_len;
2848         unsigned int i;
2849
2850         cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2851                         E1000_ADVTXD_DCMD_DEXT);
2852
2853         if (tx_flags & IGB_TX_FLAGS_VLAN)
2854                 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2855
2856         if (tx_flags & IGB_TX_FLAGS_TSO) {
2857                 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2858
2859                 /* insert tcp checksum */
2860                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2861
2862                 /* insert ip checksum */
2863                 if (tx_flags & IGB_TX_FLAGS_IPV4)
2864                         olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2865
2866         } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
2867                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2868         }
2869
2870         if ((adapter->flags & IGB_FLAG_NEED_CTX_IDX) &&
2871             (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
2872                          IGB_TX_FLAGS_VLAN)))
2873                 olinfo_status |= tx_ring->queue_index << 4;
2874
2875         olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2876
2877         i = tx_ring->next_to_use;
2878         while (count--) {
2879                 buffer_info = &tx_ring->buffer_info[i];
2880                 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
2881                 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2882                 tx_desc->read.cmd_type_len =
2883                         cpu_to_le32(cmd_type_len | buffer_info->length);
2884                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2885                 i++;
2886                 if (i == tx_ring->count)
2887                         i = 0;
2888         }
2889
2890         tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2891         /* Force memory writes to complete before letting h/w
2892          * know there are new descriptors to fetch.  (Only
2893          * applicable for weak-ordered memory model archs,
2894          * such as IA-64). */
2895         wmb();
2896
2897         tx_ring->next_to_use = i;
2898         writel(i, adapter->hw.hw_addr + tx_ring->tail);
2899         /* we need this if more than one processor can write to our tail
2900          * at a time, it syncronizes IO on IA64/Altix systems */
2901         mmiowb();
2902 }
2903
2904 static int __igb_maybe_stop_tx(struct net_device *netdev,
2905                                struct igb_ring *tx_ring, int size)
2906 {
2907         struct igb_adapter *adapter = netdev_priv(netdev);
2908
2909         netif_stop_subqueue(netdev, tx_ring->queue_index);
2910
2911         /* Herbert's original patch had:
2912          *  smp_mb__after_netif_stop_queue();
2913          * but since that doesn't exist yet, just open code it. */
2914         smp_mb();
2915
2916         /* We need to check again in a case another CPU has just
2917          * made room available. */
2918         if (IGB_DESC_UNUSED(tx_ring) < size)
2919                 return -EBUSY;
2920
2921         /* A reprieve! */
2922         netif_wake_subqueue(netdev, tx_ring->queue_index);
2923         ++adapter->restart_queue;
2924         return 0;
2925 }
2926
2927 static int igb_maybe_stop_tx(struct net_device *netdev,
2928                              struct igb_ring *tx_ring, int size)
2929 {
2930         if (IGB_DESC_UNUSED(tx_ring) >= size)
2931                 return 0;
2932         return __igb_maybe_stop_tx(netdev, tx_ring, size);
2933 }
2934
2935 #define TXD_USE_COUNT(S) (((S) >> (IGB_MAX_TXD_PWR)) + 1)
2936
2937 static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
2938                                    struct net_device *netdev,
2939                                    struct igb_ring *tx_ring)
2940 {
2941         struct igb_adapter *adapter = netdev_priv(netdev);
2942         unsigned int tx_flags = 0;
2943         unsigned int len;
2944         u8 hdr_len = 0;
2945         int tso = 0;
2946
2947         len = skb_headlen(skb);
2948
2949         if (test_bit(__IGB_DOWN, &adapter->state)) {
2950                 dev_kfree_skb_any(skb);
2951                 return NETDEV_TX_OK;
2952         }
2953
2954         if (skb->len <= 0) {
2955                 dev_kfree_skb_any(skb);
2956                 return NETDEV_TX_OK;
2957         }
2958
2959         /* need: 1 descriptor per page,
2960          *       + 2 desc gap to keep tail from touching head,
2961          *       + 1 desc for skb->data,
2962          *       + 1 desc for context descriptor,
2963          * otherwise try next time */
2964         if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
2965                 /* this is a hard error */
2966                 return NETDEV_TX_BUSY;
2967         }
2968         skb_orphan(skb);
2969
2970         if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2971                 tx_flags |= IGB_TX_FLAGS_VLAN;
2972                 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
2973         }
2974
2975         if (skb->protocol == htons(ETH_P_IP))
2976                 tx_flags |= IGB_TX_FLAGS_IPV4;
2977
2978         tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
2979                                               &hdr_len) : 0;
2980
2981         if (tso < 0) {
2982                 dev_kfree_skb_any(skb);
2983                 return NETDEV_TX_OK;
2984         }
2985
2986         if (tso)
2987                 tx_flags |= IGB_TX_FLAGS_TSO;
2988         else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags))
2989                         if (skb->ip_summed == CHECKSUM_PARTIAL)
2990                                 tx_flags |= IGB_TX_FLAGS_CSUM;
2991
2992         igb_tx_queue_adv(adapter, tx_ring, tx_flags,
2993                          igb_tx_map_adv(adapter, tx_ring, skb),
2994                          skb->len, hdr_len);
2995
2996         netdev->trans_start = jiffies;
2997
2998         /* Make sure there is space in the ring for the next send. */
2999         igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
3000
3001         return NETDEV_TX_OK;
3002 }
3003
3004 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
3005 {
3006         struct igb_adapter *adapter = netdev_priv(netdev);
3007         struct igb_ring *tx_ring;
3008
3009         int r_idx = 0;
3010         r_idx = skb->queue_mapping & (IGB_MAX_TX_QUEUES - 1);
3011         tx_ring = adapter->multi_tx_table[r_idx];
3012
3013         /* This goes back to the question of how to logically map a tx queue
3014          * to a flow.  Right now, performance is impacted slightly negatively
3015          * if using multiple tx queues.  If the stack breaks away from a
3016          * single qdisc implementation, we can look at this again. */
3017         return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
3018 }
3019
3020 /**
3021  * igb_tx_timeout - Respond to a Tx Hang
3022  * @netdev: network interface device structure
3023  **/
3024 static void igb_tx_timeout(struct net_device *netdev)
3025 {
3026         struct igb_adapter *adapter = netdev_priv(netdev);
3027         struct e1000_hw *hw = &adapter->hw;
3028
3029         /* Do the reset outside of interrupt context */
3030         adapter->tx_timeout_count++;
3031         schedule_work(&adapter->reset_task);
3032         wr32(E1000_EICS, adapter->eims_enable_mask &
3033                 ~(E1000_EIMS_TCP_TIMER | E1000_EIMS_OTHER));
3034 }
3035
3036 static void igb_reset_task(struct work_struct *work)
3037 {
3038         struct igb_adapter *adapter;
3039         adapter = container_of(work, struct igb_adapter, reset_task);
3040
3041         igb_reinit_locked(adapter);
3042 }
3043
3044 /**
3045  * igb_get_stats - Get System Network Statistics
3046  * @netdev: network interface device structure
3047  *
3048  * Returns the address of the device statistics structure.
3049  * The statistics are actually updated from the timer callback.
3050  **/
3051 static struct net_device_stats *
3052 igb_get_stats(struct net_device *netdev)
3053 {
3054         struct igb_adapter *adapter = netdev_priv(netdev);
3055
3056         /* only return the current stats */
3057         return &adapter->net_stats;
3058 }
3059
3060 /**
3061  * igb_change_mtu - Change the Maximum Transfer Unit
3062  * @netdev: network interface device structure
3063  * @new_mtu: new value for maximum frame size
3064  *
3065  * Returns 0 on success, negative on failure
3066  **/
3067 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3068 {
3069         struct igb_adapter *adapter = netdev_priv(netdev);
3070         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3071
3072         if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3073             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3074                 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
3075                 return -EINVAL;
3076         }
3077
3078 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3079         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3080                 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
3081                 return -EINVAL;
3082         }
3083
3084         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3085                 msleep(1);
3086         /* igb_down has a dependency on max_frame_size */
3087         adapter->max_frame_size = max_frame;
3088         if (netif_running(netdev))
3089                 igb_down(adapter);
3090
3091         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3092          * means we reserve 2 more, this pushes us to allocate from the next
3093          * larger slab size.
3094          * i.e. RXBUFFER_2048 --> size-4096 slab
3095          */
3096
3097         if (max_frame <= IGB_RXBUFFER_256)
3098                 adapter->rx_buffer_len = IGB_RXBUFFER_256;
3099         else if (max_frame <= IGB_RXBUFFER_512)
3100                 adapter->rx_buffer_len = IGB_RXBUFFER_512;
3101         else if (max_frame <= IGB_RXBUFFER_1024)
3102                 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3103         else if (max_frame <= IGB_RXBUFFER_2048)
3104                 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
3105         else
3106 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3107                 adapter->rx_buffer_len = IGB_RXBUFFER_16384;
3108 #else
3109                 adapter->rx_buffer_len = PAGE_SIZE / 2;
3110 #endif
3111         /* adjust allocation if LPE protects us, and we aren't using SBP */
3112         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3113              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
3114                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3115
3116         dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
3117                  netdev->mtu, new_mtu);
3118         netdev->mtu = new_mtu;
3119
3120         if (netif_running(netdev))
3121                 igb_up(adapter);
3122         else
3123                 igb_reset(adapter);
3124
3125         clear_bit(__IGB_RESETTING, &adapter->state);
3126
3127         return 0;
3128 }
3129
3130 /**
3131  * igb_update_stats - Update the board statistics counters
3132  * @adapter: board private structure
3133  **/
3134
3135 void igb_update_stats(struct igb_adapter *adapter)
3136 {
3137         struct e1000_hw *hw = &adapter->hw;
3138         struct pci_dev *pdev = adapter->pdev;
3139         u16 phy_tmp;
3140
3141 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3142
3143         /*
3144          * Prevent stats update while adapter is being reset, or if the pci
3145          * connection is down.
3146          */
3147         if (adapter->link_speed == 0)
3148                 return;
3149         if (pci_channel_offline(pdev))
3150                 return;
3151
3152         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3153         adapter->stats.gprc += rd32(E1000_GPRC);
3154         adapter->stats.gorc += rd32(E1000_GORCL);
3155         rd32(E1000_GORCH); /* clear GORCL */
3156         adapter->stats.bprc += rd32(E1000_BPRC);
3157         adapter->stats.mprc += rd32(E1000_MPRC);
3158         adapter->stats.roc += rd32(E1000_ROC);
3159
3160         adapter->stats.prc64 += rd32(E1000_PRC64);
3161         adapter->stats.prc127 += rd32(E1000_PRC127);
3162         adapter->stats.prc255 += rd32(E1000_PRC255);
3163         adapter->stats.prc511 += rd32(E1000_PRC511);
3164         adapter->stats.prc1023 += rd32(E1000_PRC1023);
3165         adapter->stats.prc1522 += rd32(E1000_PRC1522);
3166         adapter->stats.symerrs += rd32(E1000_SYMERRS);
3167         adapter->stats.sec += rd32(E1000_SEC);
3168
3169         adapter->stats.mpc += rd32(E1000_MPC);
3170         adapter->stats.scc += rd32(E1000_SCC);
3171         adapter->stats.ecol += rd32(E1000_ECOL);
3172         adapter->stats.mcc += rd32(E1000_MCC);
3173         adapter->stats.latecol += rd32(E1000_LATECOL);
3174         adapter->stats.dc += rd32(E1000_DC);
3175         adapter->stats.rlec += rd32(E1000_RLEC);
3176         adapter->stats.xonrxc += rd32(E1000_XONRXC);
3177         adapter->stats.xontxc += rd32(E1000_XONTXC);
3178         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3179         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3180         adapter->stats.fcruc += rd32(E1000_FCRUC);
3181         adapter->stats.gptc += rd32(E1000_GPTC);
3182         adapter->stats.gotc += rd32(E1000_GOTCL);
3183         rd32(E1000_GOTCH); /* clear GOTCL */
3184         adapter->stats.rnbc += rd32(E1000_RNBC);
3185         adapter->stats.ruc += rd32(E1000_RUC);
3186         adapter->stats.rfc += rd32(E1000_RFC);
3187         adapter->stats.rjc += rd32(E1000_RJC);
3188         adapter->stats.tor += rd32(E1000_TORH);
3189         adapter->stats.tot += rd32(E1000_TOTH);
3190         adapter->stats.tpr += rd32(E1000_TPR);
3191
3192         adapter->stats.ptc64 += rd32(E1000_PTC64);
3193         adapter->stats.ptc127 += rd32(E1000_PTC127);
3194         adapter->stats.ptc255 += rd32(E1000_PTC255);
3195         adapter->stats.ptc511 += rd32(E1000_PTC511);
3196         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3197         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3198
3199         adapter->stats.mptc += rd32(E1000_MPTC);
3200         adapter->stats.bptc += rd32(E1000_BPTC);
3201
3202         /* used for adaptive IFS */
3203
3204         hw->mac.tx_packet_delta = rd32(E1000_TPT);
3205         adapter->stats.tpt += hw->mac.tx_packet_delta;
3206         hw->mac.collision_delta = rd32(E1000_COLC);
3207         adapter->stats.colc += hw->mac.collision_delta;
3208
3209         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3210         adapter->stats.rxerrc += rd32(E1000_RXERRC);
3211         adapter->stats.tncrs += rd32(E1000_TNCRS);
3212         adapter->stats.tsctc += rd32(E1000_TSCTC);
3213         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3214
3215         adapter->stats.iac += rd32(E1000_IAC);
3216         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3217         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3218         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3219         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3220         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3221         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3222         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3223         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3224
3225         /* Fill out the OS statistics structure */
3226         adapter->net_stats.multicast = adapter->stats.mprc;
3227         adapter->net_stats.collisions = adapter->stats.colc;
3228
3229         /* Rx Errors */
3230
3231         /* RLEC on some newer hardware can be incorrect so build
3232         * our own version based on RUC and ROC */
3233         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3234                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3235                 adapter->stats.ruc + adapter->stats.roc +
3236                 adapter->stats.cexterr;
3237         adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3238                                               adapter->stats.roc;
3239         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3240         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3241         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3242
3243         /* Tx Errors */
3244         adapter->net_stats.tx_errors = adapter->stats.ecol +
3245                                        adapter->stats.latecol;
3246         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3247         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3248         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3249
3250         /* Tx Dropped needs to be maintained elsewhere */
3251
3252         /* Phy Stats */
3253         if (hw->phy.media_type == e1000_media_type_copper) {
3254                 if ((adapter->link_speed == SPEED_1000) &&
3255                    (!hw->phy.ops.read_phy_reg(hw, PHY_1000T_STATUS,
3256                                               &phy_tmp))) {
3257                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3258                         adapter->phy_stats.idle_errors += phy_tmp;
3259                 }
3260         }
3261
3262         /* Management Stats */
3263         adapter->stats.mgptc += rd32(E1000_MGTPTC);
3264         adapter->stats.mgprc += rd32(E1000_MGTPRC);
3265         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3266 }
3267
3268
3269 static irqreturn_t igb_msix_other(int irq, void *data)
3270 {
3271         struct net_device *netdev = data;
3272         struct igb_adapter *adapter = netdev_priv(netdev);
3273         struct e1000_hw *hw = &adapter->hw;
3274         u32 icr = rd32(E1000_ICR);
3275
3276         /* reading ICR causes bit 31 of EICR to be cleared */
3277         if (!(icr & E1000_ICR_LSC))
3278                 goto no_link_interrupt;
3279         hw->mac.get_link_status = 1;
3280         /* guard against interrupt when we're going down */
3281         if (!test_bit(__IGB_DOWN, &adapter->state))
3282                 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3283         
3284 no_link_interrupt:
3285         wr32(E1000_IMS, E1000_IMS_LSC);
3286         wr32(E1000_EIMS, adapter->eims_other);
3287
3288         return IRQ_HANDLED;
3289 }
3290
3291 static irqreturn_t igb_msix_tx(int irq, void *data)
3292 {
3293         struct igb_ring *tx_ring = data;
3294         struct igb_adapter *adapter = tx_ring->adapter;
3295         struct e1000_hw *hw = &adapter->hw;
3296
3297 #ifdef CONFIG_DCA
3298         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3299                 igb_update_tx_dca(tx_ring);
3300 #endif
3301         tx_ring->total_bytes = 0;
3302         tx_ring->total_packets = 0;
3303
3304         /* auto mask will automatically reenable the interrupt when we write
3305          * EICS */
3306         if (!igb_clean_tx_irq(tx_ring))
3307                 /* Ring was not completely cleaned, so fire another interrupt */
3308                 wr32(E1000_EICS, tx_ring->eims_value);
3309         else
3310                 wr32(E1000_EIMS, tx_ring->eims_value);
3311
3312         return IRQ_HANDLED;
3313 }
3314
3315 static void igb_write_itr(struct igb_ring *ring)
3316 {
3317         struct e1000_hw *hw = &ring->adapter->hw;
3318         if ((ring->adapter->itr_setting & 3) && ring->set_itr) {
3319                 switch (hw->mac.type) {
3320                 case e1000_82576:
3321                         wr32(ring->itr_register,
3322                              ring->itr_val |
3323                              0x80000000);
3324                         break;
3325                 default:
3326                         wr32(ring->itr_register,
3327                              ring->itr_val |
3328                              (ring->itr_val << 16));
3329                         break;
3330                 }
3331                 ring->set_itr = 0;
3332         }
3333 }
3334
3335 static irqreturn_t igb_msix_rx(int irq, void *data)
3336 {
3337         struct igb_ring *rx_ring = data;
3338         struct igb_adapter *adapter = rx_ring->adapter;
3339
3340         /* Write the ITR value calculated at the end of the
3341          * previous interrupt.
3342          */
3343
3344         igb_write_itr(rx_ring);
3345
3346         if (netif_rx_schedule_prep(adapter->netdev, &rx_ring->napi))
3347                 __netif_rx_schedule(adapter->netdev, &rx_ring->napi);
3348
3349 #ifdef CONFIG_DCA
3350         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3351                 igb_update_rx_dca(rx_ring);
3352 #endif
3353                 return IRQ_HANDLED;
3354 }
3355
3356 #ifdef CONFIG_DCA
3357 static void igb_update_rx_dca(struct igb_ring *rx_ring)
3358 {
3359         u32 dca_rxctrl;
3360         struct igb_adapter *adapter = rx_ring->adapter;
3361         struct e1000_hw *hw = &adapter->hw;
3362         int cpu = get_cpu();
3363         int q = rx_ring - adapter->rx_ring;
3364
3365         if (rx_ring->cpu != cpu) {
3366                 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
3367                 if (hw->mac.type == e1000_82576) {
3368                         dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
3369                         dca_rxctrl |= dca_get_tag(cpu) <<
3370                                       E1000_DCA_RXCTRL_CPUID_SHIFT;
3371                 } else {
3372                         dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
3373                         dca_rxctrl |= dca_get_tag(cpu);
3374                 }
3375                 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
3376                 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
3377                 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
3378                 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
3379                 rx_ring->cpu = cpu;
3380         }
3381         put_cpu();
3382 }
3383
3384 static void igb_update_tx_dca(struct igb_ring *tx_ring)
3385 {
3386         u32 dca_txctrl;
3387         struct igb_adapter *adapter = tx_ring->adapter;
3388         struct e1000_hw *hw = &adapter->hw;
3389         int cpu = get_cpu();
3390         int q = tx_ring - adapter->tx_ring;
3391
3392         if (tx_ring->cpu != cpu) {
3393                 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
3394                 if (hw->mac.type == e1000_82576) {
3395                         dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
3396                         dca_txctrl |= dca_get_tag(cpu) <<
3397                                       E1000_DCA_TXCTRL_CPUID_SHIFT;
3398                 } else {
3399                         dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
3400                         dca_txctrl |= dca_get_tag(cpu);
3401                 }
3402                 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
3403                 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
3404                 tx_ring->cpu = cpu;
3405         }
3406         put_cpu();
3407 }
3408
3409 static void igb_setup_dca(struct igb_adapter *adapter)
3410 {
3411         int i;
3412
3413         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
3414                 return;
3415
3416         for (i = 0; i < adapter->num_tx_queues; i++) {
3417                 adapter->tx_ring[i].cpu = -1;
3418                 igb_update_tx_dca(&adapter->tx_ring[i]);
3419         }
3420         for (i = 0; i < adapter->num_rx_queues; i++) {
3421                 adapter->rx_ring[i].cpu = -1;
3422                 igb_update_rx_dca(&adapter->rx_ring[i]);
3423         }
3424 }
3425
3426 static int __igb_notify_dca(struct device *dev, void *data)
3427 {
3428         struct net_device *netdev = dev_get_drvdata(dev);
3429         struct igb_adapter *adapter = netdev_priv(netdev);
3430         struct e1000_hw *hw = &adapter->hw;
3431         unsigned long event = *(unsigned long *)data;
3432
3433         if (!(adapter->flags & IGB_FLAG_HAS_DCA))
3434                 goto out;
3435
3436         switch (event) {
3437         case DCA_PROVIDER_ADD:
3438                 /* if already enabled, don't do it again */
3439                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3440                         break;
3441                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3442                 /* Always use CB2 mode, difference is masked
3443                  * in the CB driver. */
3444                 wr32(E1000_DCA_CTRL, 2);
3445                 if (dca_add_requester(dev) == 0) {
3446                         dev_info(&adapter->pdev->dev, "DCA enabled\n");
3447                         igb_setup_dca(adapter);
3448                         break;
3449                 }
3450                 /* Fall Through since DCA is disabled. */
3451         case DCA_PROVIDER_REMOVE:
3452                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3453                         /* without this a class_device is left
3454                          * hanging around in the sysfs model */
3455                         dca_remove_requester(dev);
3456                         dev_info(&adapter->pdev->dev, "DCA disabled\n");
3457                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3458                         wr32(E1000_DCA_CTRL, 1);
3459                 }
3460                 break;
3461         }
3462 out:
3463         return 0;
3464 }
3465
3466 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
3467                           void *p)
3468 {
3469         int ret_val;
3470
3471         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
3472                                          __igb_notify_dca);
3473
3474         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
3475 }
3476 #endif /* CONFIG_DCA */
3477
3478 /**
3479  * igb_intr_msi - Interrupt Handler
3480  * @irq: interrupt number
3481  * @data: pointer to a network interface device structure
3482  **/
3483 static irqreturn_t igb_intr_msi(int irq, void *data)
3484 {
3485         struct net_device *netdev = data;
3486         struct igb_adapter *adapter = netdev_priv(netdev);
3487         struct e1000_hw *hw = &adapter->hw;
3488         /* read ICR disables interrupts using IAM */
3489         u32 icr = rd32(E1000_ICR);
3490
3491         igb_write_itr(adapter->rx_ring);
3492
3493         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3494                 hw->mac.get_link_status = 1;
3495                 if (!test_bit(__IGB_DOWN, &adapter->state))
3496                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3497         }
3498
3499         netif_rx_schedule(netdev, &adapter->rx_ring[0].napi);
3500
3501         return IRQ_HANDLED;
3502 }
3503
3504 /**
3505  * igb_intr - Interrupt Handler
3506  * @irq: interrupt number
3507  * @data: pointer to a network interface device structure
3508  **/
3509 static irqreturn_t igb_intr(int irq, void *data)
3510 {
3511         struct net_device *netdev = data;
3512         struct igb_adapter *adapter = netdev_priv(netdev);
3513         struct e1000_hw *hw = &adapter->hw;
3514         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
3515          * need for the IMC write */
3516         u32 icr = rd32(E1000_ICR);
3517         u32 eicr = 0;
3518         if (!icr)
3519                 return IRQ_NONE;  /* Not our interrupt */
3520
3521         igb_write_itr(adapter->rx_ring);
3522
3523         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3524          * not set, then the adapter didn't send an interrupt */
3525         if (!(icr & E1000_ICR_INT_ASSERTED))
3526                 return IRQ_NONE;
3527
3528         eicr = rd32(E1000_EICR);
3529
3530         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3531                 hw->mac.get_link_status = 1;
3532                 /* guard against interrupt when we're going down */
3533                 if (!test_bit(__IGB_DOWN, &adapter->state))
3534                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3535         }
3536
3537         netif_rx_schedule(netdev, &adapter->rx_ring[0].napi);
3538
3539         return IRQ_HANDLED;
3540 }
3541
3542 /**
3543  * igb_poll - NAPI Rx polling callback
3544  * @napi: napi polling structure
3545  * @budget: count of how many packets we should handle
3546  **/
3547 static int igb_poll(struct napi_struct *napi, int budget)
3548 {
3549         struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3550         struct igb_adapter *adapter = rx_ring->adapter;
3551         struct net_device *netdev = adapter->netdev;
3552         int tx_clean_complete, work_done = 0;
3553
3554         /* this poll routine only supports one tx and one rx queue */
3555 #ifdef CONFIG_DCA
3556         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3557                 igb_update_tx_dca(&adapter->tx_ring[0]);
3558 #endif
3559         tx_clean_complete = igb_clean_tx_irq(&adapter->tx_ring[0]);
3560
3561 #ifdef CONFIG_DCA
3562         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3563                 igb_update_rx_dca(&adapter->rx_ring[0]);
3564 #endif
3565         igb_clean_rx_irq_adv(&adapter->rx_ring[0], &work_done, budget);
3566
3567         /* If no Tx and not enough Rx work done, exit the polling mode */
3568         if ((tx_clean_complete && (work_done < budget)) ||
3569             !netif_running(netdev)) {
3570                 if (adapter->itr_setting & 3)
3571                         igb_set_itr(adapter);
3572                 netif_rx_complete(netdev, napi);
3573                 if (!test_bit(__IGB_DOWN, &adapter->state))
3574                         igb_irq_enable(adapter);
3575                 return 0;
3576         }
3577
3578         return 1;
3579 }
3580
3581 static int igb_clean_rx_ring_msix(struct napi_struct *napi, int budget)
3582 {
3583         struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3584         struct igb_adapter *adapter = rx_ring->adapter;
3585         struct e1000_hw *hw = &adapter->hw;
3586         struct net_device *netdev = adapter->netdev;
3587         int work_done = 0;
3588
3589         /* Keep link state information with original netdev */
3590         if (!netif_carrier_ok(netdev))
3591                 goto quit_polling;
3592
3593 #ifdef CONFIG_DCA
3594         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3595                 igb_update_rx_dca(rx_ring);
3596 #endif
3597         igb_clean_rx_irq_adv(rx_ring, &work_done, budget);
3598
3599
3600         /* If not enough Rx work done, exit the polling mode */
3601         if ((work_done == 0) || !netif_running(netdev)) {
3602 quit_polling:
3603                 netif_rx_complete(netdev, napi);
3604
3605                 if (adapter->itr_setting & 3) {
3606                         if (adapter->num_rx_queues == 1)
3607                                 igb_set_itr(adapter);
3608                         else
3609                                 igb_update_ring_itr(rx_ring);
3610                 }
3611
3612                 if (!test_bit(__IGB_DOWN, &adapter->state))
3613                         wr32(E1000_EIMS, rx_ring->eims_value);
3614
3615                 return 0;
3616         }
3617
3618         return 1;
3619 }
3620
3621 static inline u32 get_head(struct igb_ring *tx_ring)
3622 {
3623         void *end = (struct e1000_tx_desc *)tx_ring->desc + tx_ring->count;
3624         return le32_to_cpu(*(volatile __le32 *)end);
3625 }
3626
3627 /**
3628  * igb_clean_tx_irq - Reclaim resources after transmit completes
3629  * @adapter: board private structure
3630  * returns true if ring is completely cleaned
3631  **/
3632 static bool igb_clean_tx_irq(struct igb_ring *tx_ring)
3633 {
3634         struct igb_adapter *adapter = tx_ring->adapter;
3635         struct e1000_hw *hw = &adapter->hw;
3636         struct net_device *netdev = adapter->netdev;
3637         struct e1000_tx_desc *tx_desc;
3638         struct igb_buffer *buffer_info;
3639         struct sk_buff *skb;
3640         unsigned int i;
3641         u32 head, oldhead;
3642         unsigned int count = 0;
3643         bool cleaned = false;
3644         bool retval = true;
3645         unsigned int total_bytes = 0, total_packets = 0;
3646
3647         rmb();
3648         head = get_head(tx_ring);
3649         i = tx_ring->next_to_clean;
3650         while (1) {
3651                 while (i != head) {
3652                         cleaned = true;
3653                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3654                         buffer_info = &tx_ring->buffer_info[i];
3655                         skb = buffer_info->skb;
3656
3657                         if (skb) {
3658                                 unsigned int segs, bytecount;
3659                                 /* gso_segs is currently only valid for tcp */
3660                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
3661                                 /* multiply data chunks by size of headers */
3662                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
3663                                             skb->len;
3664                                 total_packets += segs;
3665                                 total_bytes += bytecount;
3666                         }
3667
3668                         igb_unmap_and_free_tx_resource(adapter, buffer_info);
3669                         tx_desc->upper.data = 0;
3670
3671                         i++;
3672                         if (i == tx_ring->count)
3673                                 i = 0;
3674
3675                         count++;
3676                         if (count == IGB_MAX_TX_CLEAN) {
3677                                 retval = false;
3678                                 goto done_cleaning;
3679                         }
3680                 }
3681                 oldhead = head;
3682                 rmb();
3683                 head = get_head(tx_ring);
3684                 if (head == oldhead)
3685                         goto done_cleaning;
3686         }  /* while (1) */
3687
3688 done_cleaning:
3689         tx_ring->next_to_clean = i;
3690
3691         if (unlikely(cleaned &&
3692                      netif_carrier_ok(netdev) &&
3693                      IGB_DESC_UNUSED(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
3694                 /* Make sure that anybody stopping the queue after this
3695                  * sees the new next_to_clean.
3696                  */
3697                 smp_mb();
3698                 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
3699                     !(test_bit(__IGB_DOWN, &adapter->state))) {
3700                         netif_wake_subqueue(netdev, tx_ring->queue_index);
3701                         ++adapter->restart_queue;
3702                 }
3703         }
3704
3705         if (tx_ring->detect_tx_hung) {
3706                 /* Detect a transmit hang in hardware, this serializes the
3707                  * check with the clearing of time_stamp and movement of i */
3708                 tx_ring->detect_tx_hung = false;
3709                 if (tx_ring->buffer_info[i].time_stamp &&
3710                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
3711                                (adapter->tx_timeout_factor * HZ))
3712                     && !(rd32(E1000_STATUS) &
3713                          E1000_STATUS_TXOFF)) {
3714
3715                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3716                         /* detected Tx unit hang */
3717                         dev_err(&adapter->pdev->dev,
3718                                 "Detected Tx Unit Hang\n"
3719                                 "  Tx Queue             <%d>\n"
3720                                 "  TDH                  <%x>\n"
3721                                 "  TDT                  <%x>\n"
3722                                 "  next_to_use          <%x>\n"
3723                                 "  next_to_clean        <%x>\n"
3724                                 "  head (WB)            <%x>\n"
3725                                 "buffer_info[next_to_clean]\n"
3726                                 "  time_stamp           <%lx>\n"
3727                                 "  jiffies              <%lx>\n"
3728                                 "  desc.status          <%x>\n",
3729                                 tx_ring->queue_index,
3730                                 readl(adapter->hw.hw_addr + tx_ring->head),
3731                                 readl(adapter->hw.hw_addr + tx_ring->tail),
3732                                 tx_ring->next_to_use,
3733                                 tx_ring->next_to_clean,
3734                                 head,
3735                                 tx_ring->buffer_info[i].time_stamp,
3736                                 jiffies,
3737                                 tx_desc->upper.fields.status);
3738                         netif_stop_subqueue(netdev, tx_ring->queue_index);
3739                 }
3740         }
3741         tx_ring->total_bytes += total_bytes;
3742         tx_ring->total_packets += total_packets;
3743         tx_ring->tx_stats.bytes += total_bytes;
3744         tx_ring->tx_stats.packets += total_packets;
3745         adapter->net_stats.tx_bytes += total_bytes;
3746         adapter->net_stats.tx_packets += total_packets;
3747         return retval;
3748 }
3749
3750 #ifdef CONFIG_IGB_LRO
3751  /**
3752  * igb_get_skb_hdr - helper function for LRO header processing
3753  * @skb: pointer to sk_buff to be added to LRO packet
3754  * @iphdr: pointer to ip header structure
3755  * @tcph: pointer to tcp header structure
3756  * @hdr_flags: pointer to header flags
3757  * @priv: pointer to the receive descriptor for the current sk_buff
3758  **/
3759 static int igb_get_skb_hdr(struct sk_buff *skb, void **iphdr, void **tcph,
3760                            u64 *hdr_flags, void *priv)
3761 {
3762         union e1000_adv_rx_desc *rx_desc = priv;
3763         u16 pkt_type = rx_desc->wb.lower.lo_dword.pkt_info &
3764                        (E1000_RXDADV_PKTTYPE_IPV4 | E1000_RXDADV_PKTTYPE_TCP);
3765
3766         /* Verify that this is a valid IPv4 TCP packet */
3767         if (pkt_type != (E1000_RXDADV_PKTTYPE_IPV4 |
3768                           E1000_RXDADV_PKTTYPE_TCP))
3769                 return -1;
3770
3771         /* Set network headers */
3772         skb_reset_network_header(skb);
3773         skb_set_transport_header(skb, ip_hdrlen(skb));
3774         *iphdr = ip_hdr(skb);
3775         *tcph = tcp_hdr(skb);
3776         *hdr_flags = LRO_IPV4 | LRO_TCP;
3777
3778         return 0;
3779
3780 }
3781 #endif /* CONFIG_IGB_LRO */
3782
3783 /**
3784  * igb_receive_skb - helper function to handle rx indications
3785  * @ring: pointer to receive ring receving this packet 
3786  * @status: descriptor status field as written by hardware
3787  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3788  * @skb: pointer to sk_buff to be indicated to stack
3789  **/
3790 static void igb_receive_skb(struct igb_ring *ring, u8 status,
3791                             union e1000_adv_rx_desc * rx_desc,
3792                             struct sk_buff *skb)
3793 {
3794         struct igb_adapter * adapter = ring->adapter;
3795         bool vlan_extracted = (adapter->vlgrp && (status & E1000_RXD_STAT_VP));
3796
3797 #ifdef CONFIG_IGB_LRO
3798         if (adapter->netdev->features & NETIF_F_LRO &&
3799             skb->ip_summed == CHECKSUM_UNNECESSARY) {
3800                 if (vlan_extracted)
3801                         lro_vlan_hwaccel_receive_skb(&ring->lro_mgr, skb,
3802                                            adapter->vlgrp,
3803                                            le16_to_cpu(rx_desc->wb.upper.vlan),
3804                                            rx_desc);
3805                 else
3806                         lro_receive_skb(&ring->lro_mgr,skb, rx_desc);
3807                 ring->lro_used = 1;
3808         } else {
3809 #endif
3810                 if (vlan_extracted)
3811                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3812                                           le16_to_cpu(rx_desc->wb.upper.vlan));
3813                 else
3814
3815                         netif_receive_skb(skb);
3816 #ifdef CONFIG_IGB_LRO
3817         }
3818 #endif
3819 }
3820
3821
3822 static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
3823                                        u32 status_err, struct sk_buff *skb)
3824 {
3825         skb->ip_summed = CHECKSUM_NONE;
3826
3827         /* Ignore Checksum bit is set or checksum is disabled through ethtool */
3828         if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum)
3829                 return;
3830         /* TCP/UDP checksum error bit is set */
3831         if (status_err &
3832             (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
3833                 /* let the stack verify checksum errors */
3834                 adapter->hw_csum_err++;
3835                 return;
3836         }
3837         /* It must be a TCP or UDP packet with a valid checksum */
3838         if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
3839                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3840
3841         adapter->hw_csum_good++;
3842 }
3843
3844 static bool igb_clean_rx_irq_adv(struct igb_ring *rx_ring,
3845                                  int *work_done, int budget)
3846 {
3847         struct igb_adapter *adapter = rx_ring->adapter;
3848         struct net_device *netdev = adapter->netdev;
3849         struct pci_dev *pdev = adapter->pdev;
3850         union e1000_adv_rx_desc *rx_desc , *next_rxd;
3851         struct igb_buffer *buffer_info , *next_buffer;
3852         struct sk_buff *skb;
3853         unsigned int i;
3854         u32 length, hlen, staterr;
3855         bool cleaned = false;
3856         int cleaned_count = 0;
3857         unsigned int total_bytes = 0, total_packets = 0;
3858
3859         i = rx_ring->next_to_clean;
3860         rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3861         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3862
3863         while (staterr & E1000_RXD_STAT_DD) {
3864                 if (*work_done >= budget)
3865                         break;
3866                 (*work_done)++;
3867                 buffer_info = &rx_ring->buffer_info[i];
3868
3869                 /* HW will not DMA in data larger than the given buffer, even
3870                  * if it parses the (NFS, of course) header to be larger.  In
3871                  * that case, it fills the header buffer and spills the rest
3872                  * into the page.
3873                  */
3874                 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
3875                   E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
3876                 if (hlen > adapter->rx_ps_hdr_size)
3877                         hlen = adapter->rx_ps_hdr_size;
3878
3879                 length = le16_to_cpu(rx_desc->wb.upper.length);
3880                 cleaned = true;
3881                 cleaned_count++;
3882
3883                 skb = buffer_info->skb;
3884                 prefetch(skb->data - NET_IP_ALIGN);
3885                 buffer_info->skb = NULL;
3886                 if (!adapter->rx_ps_hdr_size) {
3887                         pci_unmap_single(pdev, buffer_info->dma,
3888                                          adapter->rx_buffer_len +
3889                                            NET_IP_ALIGN,
3890                                          PCI_DMA_FROMDEVICE);
3891                         skb_put(skb, length);
3892                         goto send_up;
3893                 }
3894
3895                 if (!skb_shinfo(skb)->nr_frags) {
3896                         pci_unmap_single(pdev, buffer_info->dma,
3897                                          adapter->rx_ps_hdr_size +
3898                                            NET_IP_ALIGN,
3899                                          PCI_DMA_FROMDEVICE);
3900                         skb_put(skb, hlen);
3901                 }
3902
3903                 if (length) {
3904                         pci_unmap_page(pdev, buffer_info->page_dma,
3905                                        PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
3906                         buffer_info->page_dma = 0;
3907
3908                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
3909                                                 buffer_info->page,
3910                                                 buffer_info->page_offset,
3911                                                 length);
3912
3913                         if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
3914                             (page_count(buffer_info->page) != 1))
3915                                 buffer_info->page = NULL;
3916                         else
3917                                 get_page(buffer_info->page);
3918
3919                         skb->len += length;
3920                         skb->data_len += length;
3921
3922                         skb->truesize += length;
3923                 }
3924 send_up:
3925                 i++;
3926                 if (i == rx_ring->count)
3927                         i = 0;
3928                 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
3929                 prefetch(next_rxd);
3930                 next_buffer = &rx_ring->buffer_info[i];
3931
3932                 if (!(staterr & E1000_RXD_STAT_EOP)) {
3933                         buffer_info->skb = xchg(&next_buffer->skb, skb);
3934                         buffer_info->dma = xchg(&next_buffer->dma, 0);
3935                         goto next_desc;
3936                 }
3937
3938                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
3939                         dev_kfree_skb_irq(skb);
3940                         goto next_desc;
3941                 }
3942
3943                 total_bytes += skb->len;
3944                 total_packets++;
3945
3946                 igb_rx_checksum_adv(adapter, staterr, skb);
3947
3948                 skb->protocol = eth_type_trans(skb, netdev);
3949
3950                 igb_receive_skb(rx_ring, staterr, rx_desc, skb);
3951
3952                 netdev->last_rx = jiffies;
3953
3954 next_desc:
3955                 rx_desc->wb.upper.status_error = 0;
3956
3957                 /* return some buffers to hardware, one at a time is too slow */
3958                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
3959                         igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
3960                         cleaned_count = 0;
3961                 }
3962
3963                 /* use prefetched values */
3964                 rx_desc = next_rxd;
3965                 buffer_info = next_buffer;
3966
3967                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3968         }
3969
3970         rx_ring->next_to_clean = i;
3971         cleaned_count = IGB_DESC_UNUSED(rx_ring);
3972
3973 #ifdef CONFIG_IGB_LRO
3974         if (rx_ring->lro_used) {
3975                 lro_flush_all(&rx_ring->lro_mgr);
3976                 rx_ring->lro_used = 0;
3977         }
3978 #endif
3979
3980         if (cleaned_count)
3981                 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
3982
3983         rx_ring->total_packets += total_packets;
3984         rx_ring->total_bytes += total_bytes;
3985         rx_ring->rx_stats.packets += total_packets;
3986         rx_ring->rx_stats.bytes += total_bytes;
3987         adapter->net_stats.rx_bytes += total_bytes;
3988         adapter->net_stats.rx_packets += total_packets;
3989         return cleaned;
3990 }
3991
3992
3993 /**
3994  * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
3995  * @adapter: address of board private structure
3996  **/
3997 static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring,
3998                                      int cleaned_count)
3999 {
4000         struct igb_adapter *adapter = rx_ring->adapter;
4001         struct net_device *netdev = adapter->netdev;
4002         struct pci_dev *pdev = adapter->pdev;
4003         union e1000_adv_rx_desc *rx_desc;
4004         struct igb_buffer *buffer_info;
4005         struct sk_buff *skb;
4006         unsigned int i;
4007
4008         i = rx_ring->next_to_use;
4009         buffer_info = &rx_ring->buffer_info[i];
4010
4011         while (cleaned_count--) {
4012                 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4013
4014                 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
4015                         if (!buffer_info->page) {
4016                                 buffer_info->page = alloc_page(GFP_ATOMIC);
4017                                 if (!buffer_info->page) {
4018                                         adapter->alloc_rx_buff_failed++;
4019                                         goto no_buffers;
4020                                 }
4021                                 buffer_info->page_offset = 0;
4022                         } else {
4023                                 buffer_info->page_offset ^= PAGE_SIZE / 2;
4024                         }
4025                         buffer_info->page_dma =
4026                                 pci_map_page(pdev,
4027                                              buffer_info->page,
4028                                              buffer_info->page_offset,
4029                                              PAGE_SIZE / 2,
4030                                              PCI_DMA_FROMDEVICE);
4031                 }
4032
4033                 if (!buffer_info->skb) {
4034                         int bufsz;
4035
4036                         if (adapter->rx_ps_hdr_size)
4037                                 bufsz = adapter->rx_ps_hdr_size;
4038                         else
4039                                 bufsz = adapter->rx_buffer_len;
4040                         bufsz += NET_IP_ALIGN;
4041                         skb = netdev_alloc_skb(netdev, bufsz);
4042
4043                         if (!skb) {
4044                                 adapter->alloc_rx_buff_failed++;
4045                                 goto no_buffers;
4046                         }
4047
4048                         /* Make buffer alignment 2 beyond a 16 byte boundary
4049                          * this will result in a 16 byte aligned IP header after
4050                          * the 14 byte MAC header is removed
4051                          */
4052                         skb_reserve(skb, NET_IP_ALIGN);
4053
4054                         buffer_info->skb = skb;
4055                         buffer_info->dma = pci_map_single(pdev, skb->data,
4056                                                           bufsz,
4057                                                           PCI_DMA_FROMDEVICE);
4058
4059                 }
4060                 /* Refresh the desc even if buffer_addrs didn't change because
4061                  * each write-back erases this info. */
4062                 if (adapter->rx_ps_hdr_size) {
4063                         rx_desc->read.pkt_addr =
4064                              cpu_to_le64(buffer_info->page_dma);
4065                         rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
4066                 } else {
4067                         rx_desc->read.pkt_addr =
4068                              cpu_to_le64(buffer_info->dma);
4069                         rx_desc->read.hdr_addr = 0;
4070                 }
4071
4072                 i++;
4073                 if (i == rx_ring->count)
4074                         i = 0;
4075                 buffer_info = &rx_ring->buffer_info[i];
4076         }
4077
4078 no_buffers:
4079         if (rx_ring->next_to_use != i) {
4080                 rx_ring->next_to_use = i;
4081                 if (i == 0)
4082                         i = (rx_ring->count - 1);
4083                 else
4084                         i--;
4085
4086                 /* Force memory writes to complete before letting h/w
4087                  * know there are new descriptors to fetch.  (Only
4088                  * applicable for weak-ordered memory model archs,
4089                  * such as IA-64). */
4090                 wmb();
4091                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
4092         }
4093 }
4094
4095 /**
4096  * igb_mii_ioctl -
4097  * @netdev:
4098  * @ifreq:
4099  * @cmd:
4100  **/
4101 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4102 {
4103         struct igb_adapter *adapter = netdev_priv(netdev);
4104         struct mii_ioctl_data *data = if_mii(ifr);
4105
4106         if (adapter->hw.phy.media_type != e1000_media_type_copper)
4107                 return -EOPNOTSUPP;
4108
4109         switch (cmd) {
4110         case SIOCGMIIPHY:
4111                 data->phy_id = adapter->hw.phy.addr;
4112                 break;
4113         case SIOCGMIIREG:
4114                 if (!capable(CAP_NET_ADMIN))
4115                         return -EPERM;
4116                 if (adapter->hw.phy.ops.read_phy_reg(&adapter->hw,
4117                                                      data->reg_num
4118                                                      & 0x1F, &data->val_out))
4119                         return -EIO;
4120                 break;
4121         case SIOCSMIIREG:
4122         default:
4123                 return -EOPNOTSUPP;
4124         }
4125         return 0;
4126 }
4127
4128 /**
4129  * igb_ioctl -
4130  * @netdev:
4131  * @ifreq:
4132  * @cmd:
4133  **/
4134 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4135 {
4136         switch (cmd) {
4137         case SIOCGMIIPHY:
4138         case SIOCGMIIREG:
4139         case SIOCSMIIREG:
4140                 return igb_mii_ioctl(netdev, ifr, cmd);
4141         default:
4142                 return -EOPNOTSUPP;
4143         }
4144 }
4145
4146 static void igb_vlan_rx_register(struct net_device *netdev,
4147                                  struct vlan_group *grp)
4148 {
4149         struct igb_adapter *adapter = netdev_priv(netdev);
4150         struct e1000_hw *hw = &adapter->hw;
4151         u32 ctrl, rctl;
4152
4153         igb_irq_disable(adapter);
4154         adapter->vlgrp = grp;
4155
4156         if (grp) {
4157                 /* enable VLAN tag insert/strip */
4158                 ctrl = rd32(E1000_CTRL);
4159                 ctrl |= E1000_CTRL_VME;
4160                 wr32(E1000_CTRL, ctrl);
4161
4162                 /* enable VLAN receive filtering */
4163                 rctl = rd32(E1000_RCTL);
4164                 rctl &= ~E1000_RCTL_CFIEN;
4165                 wr32(E1000_RCTL, rctl);
4166                 igb_update_mng_vlan(adapter);
4167                 wr32(E1000_RLPML,
4168                                 adapter->max_frame_size + VLAN_TAG_SIZE);
4169         } else {
4170                 /* disable VLAN tag insert/strip */
4171                 ctrl = rd32(E1000_CTRL);
4172                 ctrl &= ~E1000_CTRL_VME;
4173                 wr32(E1000_CTRL, ctrl);
4174
4175                 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
4176                         igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4177                         adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
4178                 }
4179                 wr32(E1000_RLPML,
4180                                 adapter->max_frame_size);
4181         }
4182
4183         if (!test_bit(__IGB_DOWN, &adapter->state))
4184                 igb_irq_enable(adapter);
4185 }
4186
4187 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4188 {
4189         struct igb_adapter *adapter = netdev_priv(netdev);
4190         struct e1000_hw *hw = &adapter->hw;
4191         u32 vfta, index;
4192
4193         if ((adapter->hw.mng_cookie.status &
4194              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4195             (vid == adapter->mng_vlan_id))
4196                 return;
4197         /* add VID to filter table */
4198         index = (vid >> 5) & 0x7F;
4199         vfta = array_rd32(E1000_VFTA, index);
4200         vfta |= (1 << (vid & 0x1F));
4201         igb_write_vfta(&adapter->hw, index, vfta);
4202 }
4203
4204 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4205 {
4206         struct igb_adapter *adapter = netdev_priv(netdev);
4207         struct e1000_hw *hw = &adapter->hw;
4208         u32 vfta, index;
4209
4210         igb_irq_disable(adapter);
4211         vlan_group_set_device(adapter->vlgrp, vid, NULL);
4212
4213         if (!test_bit(__IGB_DOWN, &adapter->state))
4214                 igb_irq_enable(adapter);
4215
4216         if ((adapter->hw.mng_cookie.status &
4217              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4218             (vid == adapter->mng_vlan_id)) {
4219                 /* release control to f/w */
4220                 igb_release_hw_control(adapter);
4221                 return;
4222         }
4223
4224         /* remove VID from filter table */
4225         index = (vid >> 5) & 0x7F;
4226         vfta = array_rd32(E1000_VFTA, index);
4227         vfta &= ~(1 << (vid & 0x1F));
4228         igb_write_vfta(&adapter->hw, index, vfta);
4229 }
4230
4231 static void igb_restore_vlan(struct igb_adapter *adapter)
4232 {
4233         igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4234
4235         if (adapter->vlgrp) {
4236                 u16 vid;
4237                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4238                         if (!vlan_group_get_device(adapter->vlgrp, vid))
4239                                 continue;
4240                         igb_vlan_rx_add_vid(adapter->netdev, vid);
4241                 }
4242         }
4243 }
4244
4245 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
4246 {
4247         struct e1000_mac_info *mac = &adapter->hw.mac;
4248
4249         mac->autoneg = 0;
4250
4251         /* Fiber NICs only allow 1000 gbps Full duplex */
4252         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
4253                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4254                 dev_err(&adapter->pdev->dev,
4255                         "Unsupported Speed/Duplex configuration\n");
4256                 return -EINVAL;
4257         }
4258
4259         switch (spddplx) {
4260         case SPEED_10 + DUPLEX_HALF:
4261                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
4262                 break;
4263         case SPEED_10 + DUPLEX_FULL:
4264                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
4265                 break;
4266         case SPEED_100 + DUPLEX_HALF:
4267                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
4268                 break;
4269         case SPEED_100 + DUPLEX_FULL:
4270                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
4271                 break;
4272         case SPEED_1000 + DUPLEX_FULL:
4273                 mac->autoneg = 1;
4274                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
4275                 break;
4276         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4277         default:
4278                 dev_err(&adapter->pdev->dev,
4279                         "Unsupported Speed/Duplex configuration\n");
4280                 return -EINVAL;
4281         }
4282         return 0;
4283 }
4284
4285
4286 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
4287 {
4288         struct net_device *netdev = pci_get_drvdata(pdev);
4289         struct igb_adapter *adapter = netdev_priv(netdev);
4290         struct e1000_hw *hw = &adapter->hw;
4291         u32 ctrl, rctl, status;
4292         u32 wufc = adapter->wol;
4293 #ifdef CONFIG_PM
4294         int retval = 0;
4295 #endif
4296
4297         netif_device_detach(netdev);
4298
4299         if (netif_running(netdev))
4300                 igb_close(netdev);
4301
4302         igb_reset_interrupt_capability(adapter);
4303
4304         igb_free_queues(adapter);
4305
4306 #ifdef CONFIG_PM
4307         retval = pci_save_state(pdev);
4308         if (retval)
4309                 return retval;
4310 #endif
4311
4312         status = rd32(E1000_STATUS);
4313         if (status & E1000_STATUS_LU)
4314                 wufc &= ~E1000_WUFC_LNKC;
4315
4316         if (wufc) {
4317                 igb_setup_rctl(adapter);
4318                 igb_set_multi(netdev);
4319
4320                 /* turn on all-multi mode if wake on multicast is enabled */
4321                 if (wufc & E1000_WUFC_MC) {
4322                         rctl = rd32(E1000_RCTL);
4323                         rctl |= E1000_RCTL_MPE;
4324                         wr32(E1000_RCTL, rctl);
4325                 }
4326
4327                 ctrl = rd32(E1000_CTRL);
4328                 /* advertise wake from D3Cold */
4329                 #define E1000_CTRL_ADVD3WUC 0x00100000
4330                 /* phy power management enable */
4331                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4332                 ctrl |= E1000_CTRL_ADVD3WUC;
4333                 wr32(E1000_CTRL, ctrl);
4334
4335                 /* Allow time for pending master requests to run */
4336                 igb_disable_pcie_master(&adapter->hw);
4337
4338                 wr32(E1000_WUC, E1000_WUC_PME_EN);
4339                 wr32(E1000_WUFC, wufc);
4340         } else {
4341                 wr32(E1000_WUC, 0);
4342                 wr32(E1000_WUFC, 0);
4343         }
4344
4345         /* make sure adapter isn't asleep if manageability/wol is enabled */
4346         if (wufc || adapter->en_mng_pt) {
4347                 pci_enable_wake(pdev, PCI_D3hot, 1);
4348                 pci_enable_wake(pdev, PCI_D3cold, 1);
4349         } else {
4350                 igb_shutdown_fiber_serdes_link_82575(hw);
4351                 pci_enable_wake(pdev, PCI_D3hot, 0);
4352                 pci_enable_wake(pdev, PCI_D3cold, 0);
4353         }
4354
4355         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
4356          * would have already happened in close and is redundant. */
4357         igb_release_hw_control(adapter);
4358
4359         pci_disable_device(pdev);
4360
4361         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4362
4363         return 0;
4364 }
4365
4366 #ifdef CONFIG_PM
4367 static int igb_resume(struct pci_dev *pdev)
4368 {
4369         struct net_device *netdev = pci_get_drvdata(pdev);
4370         struct igb_adapter *adapter = netdev_priv(netdev);
4371         struct e1000_hw *hw = &adapter->hw;
4372         u32 err;
4373
4374         pci_set_power_state(pdev, PCI_D0);
4375         pci_restore_state(pdev);
4376
4377         if (adapter->need_ioport)
4378                 err = pci_enable_device(pdev);
4379         else
4380                 err = pci_enable_device_mem(pdev);
4381         if (err) {
4382                 dev_err(&pdev->dev,
4383                         "igb: Cannot enable PCI device from suspend\n");
4384                 return err;
4385         }
4386         pci_set_master(pdev);
4387
4388         pci_enable_wake(pdev, PCI_D3hot, 0);
4389         pci_enable_wake(pdev, PCI_D3cold, 0);
4390
4391         igb_set_interrupt_capability(adapter);
4392
4393         if (igb_alloc_queues(adapter)) {
4394                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4395                 return -ENOMEM;
4396         }
4397
4398         /* e1000_power_up_phy(adapter); */
4399
4400         igb_reset(adapter);
4401         wr32(E1000_WUS, ~0);
4402
4403         if (netif_running(netdev)) {
4404                 err = igb_open(netdev);
4405                 if (err)
4406                         return err;
4407         }
4408
4409         netif_device_attach(netdev);
4410
4411         /* let the f/w know that the h/w is now under the control of the
4412          * driver. */
4413         igb_get_hw_control(adapter);
4414
4415         return 0;
4416 }
4417 #endif
4418
4419 static void igb_shutdown(struct pci_dev *pdev)
4420 {
4421         igb_suspend(pdev, PMSG_SUSPEND);
4422 }
4423
4424 #ifdef CONFIG_NET_POLL_CONTROLLER
4425 /*
4426  * Polling 'interrupt' - used by things like netconsole to send skbs
4427  * without having to re-enable interrupts. It's not called while
4428  * the interrupt routine is executing.
4429  */
4430 static void igb_netpoll(struct net_device *netdev)
4431 {
4432         struct igb_adapter *adapter = netdev_priv(netdev);
4433         int i;
4434         int work_done = 0;
4435
4436         igb_irq_disable(adapter);
4437         adapter->flags |= IGB_FLAG_IN_NETPOLL;
4438
4439         for (i = 0; i < adapter->num_tx_queues; i++)
4440                 igb_clean_tx_irq(&adapter->tx_ring[i]);
4441
4442         for (i = 0; i < adapter->num_rx_queues; i++)
4443                 igb_clean_rx_irq_adv(&adapter->rx_ring[i],
4444                                      &work_done,
4445                                      adapter->rx_ring[i].napi.weight);
4446
4447         adapter->flags &= ~IGB_FLAG_IN_NETPOLL;
4448         igb_irq_enable(adapter);
4449 }
4450 #endif /* CONFIG_NET_POLL_CONTROLLER */
4451
4452 /**
4453  * igb_io_error_detected - called when PCI error is detected
4454  * @pdev: Pointer to PCI device
4455  * @state: The current pci connection state
4456  *
4457  * This function is called after a PCI bus error affecting
4458  * this device has been detected.
4459  */
4460 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
4461                                               pci_channel_state_t state)
4462 {
4463         struct net_device *netdev = pci_get_drvdata(pdev);
4464         struct igb_adapter *adapter = netdev_priv(netdev);
4465
4466         netif_device_detach(netdev);
4467
4468         if (netif_running(netdev))
4469                 igb_down(adapter);
4470         pci_disable_device(pdev);
4471
4472         /* Request a slot slot reset. */
4473         return PCI_ERS_RESULT_NEED_RESET;
4474 }
4475
4476 /**
4477  * igb_io_slot_reset - called after the pci bus has been reset.
4478  * @pdev: Pointer to PCI device
4479  *
4480  * Restart the card from scratch, as if from a cold-boot. Implementation
4481  * resembles the first-half of the igb_resume routine.
4482  */
4483 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
4484 {
4485         struct net_device *netdev = pci_get_drvdata(pdev);
4486         struct igb_adapter *adapter = netdev_priv(netdev);
4487         struct e1000_hw *hw = &adapter->hw;
4488         int err;
4489
4490         if (adapter->need_ioport)
4491                 err = pci_enable_device(pdev);
4492         else
4493                 err = pci_enable_device_mem(pdev);
4494         if (err) {
4495                 dev_err(&pdev->dev,
4496                         "Cannot re-enable PCI device after reset.\n");
4497                 return PCI_ERS_RESULT_DISCONNECT;
4498         }
4499         pci_set_master(pdev);
4500         pci_restore_state(pdev);
4501
4502         pci_enable_wake(pdev, PCI_D3hot, 0);
4503         pci_enable_wake(pdev, PCI_D3cold, 0);
4504
4505         igb_reset(adapter);
4506         wr32(E1000_WUS, ~0);
4507
4508         return PCI_ERS_RESULT_RECOVERED;
4509 }
4510
4511 /**
4512  * igb_io_resume - called when traffic can start flowing again.
4513  * @pdev: Pointer to PCI device
4514  *
4515  * This callback is called when the error recovery driver tells us that
4516  * its OK to resume normal operation. Implementation resembles the
4517  * second-half of the igb_resume routine.
4518  */
4519 static void igb_io_resume(struct pci_dev *pdev)
4520 {
4521         struct net_device *netdev = pci_get_drvdata(pdev);
4522         struct igb_adapter *adapter = netdev_priv(netdev);
4523
4524         igb_init_manageability(adapter);
4525
4526         if (netif_running(netdev)) {
4527                 if (igb_up(adapter)) {
4528                         dev_err(&pdev->dev, "igb_up failed after reset\n");
4529                         return;
4530                 }
4531         }
4532
4533         netif_device_attach(netdev);
4534
4535         /* let the f/w know that the h/w is now under the control of the
4536          * driver. */
4537         igb_get_hw_control(adapter);
4538
4539 }
4540
4541 /* igb_main.c */