]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/gianfar.c
Merge master.kernel.org:/pub/scm/linux/kernel/git/davej/cpufreq
[linux-2.6-omap-h63xx.git] / drivers / net / gianfar.c
1 /*
2  * drivers/net/gianfar.c
3  *
4  * Gianfar Ethernet Driver
5  * This driver is designed for the non-CPM ethernet controllers
6  * on the 85xx and 83xx family of integrated processors
7  * Based on 8260_io/fcc_enet.c
8  *
9  * Author: Andy Fleming
10  * Maintainer: Kumar Gala
11  *
12  * Copyright (c) 2002-2004 Freescale Semiconductor, Inc.
13  *
14  * This program is free software; you can redistribute  it and/or modify it
15  * under  the terms of  the GNU General  Public License as published by the
16  * Free Software Foundation;  either version 2 of the  License, or (at your
17  * option) any later version.
18  *
19  *  Gianfar:  AKA Lambda Draconis, "Dragon"
20  *  RA 11 31 24.2
21  *  Dec +69 19 52
22  *  V 3.84
23  *  B-V +1.62
24  *
25  *  Theory of operation
26  *
27  *  The driver is initialized through platform_device.  Structures which
28  *  define the configuration needed by the board are defined in a
29  *  board structure in arch/ppc/platforms (though I do not
30  *  discount the possibility that other architectures could one
31  *  day be supported.
32  *
33  *  The Gianfar Ethernet Controller uses a ring of buffer
34  *  descriptors.  The beginning is indicated by a register
35  *  pointing to the physical address of the start of the ring.
36  *  The end is determined by a "wrap" bit being set in the
37  *  last descriptor of the ring.
38  *
39  *  When a packet is received, the RXF bit in the
40  *  IEVENT register is set, triggering an interrupt when the
41  *  corresponding bit in the IMASK register is also set (if
42  *  interrupt coalescing is active, then the interrupt may not
43  *  happen immediately, but will wait until either a set number
44  *  of frames or amount of time have passed).  In NAPI, the
45  *  interrupt handler will signal there is work to be done, and
46  *  exit.  Without NAPI, the packet(s) will be handled
47  *  immediately.  Both methods will start at the last known empty
48  *  descriptor, and process every subsequent descriptor until there
49  *  are none left with data (NAPI will stop after a set number of
50  *  packets to give time to other tasks, but will eventually
51  *  process all the packets).  The data arrives inside a
52  *  pre-allocated skb, and so after the skb is passed up to the
53  *  stack, a new skb must be allocated, and the address field in
54  *  the buffer descriptor must be updated to indicate this new
55  *  skb.
56  *
57  *  When the kernel requests that a packet be transmitted, the
58  *  driver starts where it left off last time, and points the
59  *  descriptor at the buffer which was passed in.  The driver
60  *  then informs the DMA engine that there are packets ready to
61  *  be transmitted.  Once the controller is finished transmitting
62  *  the packet, an interrupt may be triggered (under the same
63  *  conditions as for reception, but depending on the TXF bit).
64  *  The driver then cleans up the buffer.
65  */
66
67 #include <linux/config.h>
68 #include <linux/kernel.h>
69 #include <linux/sched.h>
70 #include <linux/string.h>
71 #include <linux/errno.h>
72 #include <linux/unistd.h>
73 #include <linux/slab.h>
74 #include <linux/interrupt.h>
75 #include <linux/init.h>
76 #include <linux/delay.h>
77 #include <linux/netdevice.h>
78 #include <linux/etherdevice.h>
79 #include <linux/skbuff.h>
80 #include <linux/if_vlan.h>
81 #include <linux/spinlock.h>
82 #include <linux/mm.h>
83 #include <linux/platform_device.h>
84 #include <linux/ip.h>
85 #include <linux/tcp.h>
86 #include <linux/udp.h>
87 #include <linux/in.h>
88
89 #include <asm/io.h>
90 #include <asm/irq.h>
91 #include <asm/uaccess.h>
92 #include <linux/module.h>
93 #include <linux/dma-mapping.h>
94 #include <linux/crc32.h>
95 #include <linux/mii.h>
96 #include <linux/phy.h>
97
98 #include "gianfar.h"
99 #include "gianfar_mii.h"
100
101 #define TX_TIMEOUT      (1*HZ)
102 #define SKB_ALLOC_TIMEOUT 1000000
103 #undef BRIEF_GFAR_ERRORS
104 #undef VERBOSE_GFAR_ERRORS
105
106 #ifdef CONFIG_GFAR_NAPI
107 #define RECEIVE(x) netif_receive_skb(x)
108 #else
109 #define RECEIVE(x) netif_rx(x)
110 #endif
111
112 const char gfar_driver_name[] = "Gianfar Ethernet";
113 const char gfar_driver_version[] = "1.3";
114
115 static int gfar_enet_open(struct net_device *dev);
116 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
117 static void gfar_timeout(struct net_device *dev);
118 static int gfar_close(struct net_device *dev);
119 struct sk_buff *gfar_new_skb(struct net_device *dev, struct rxbd8 *bdp);
120 static struct net_device_stats *gfar_get_stats(struct net_device *dev);
121 static int gfar_set_mac_address(struct net_device *dev);
122 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
123 static irqreturn_t gfar_error(int irq, void *dev_id, struct pt_regs *regs);
124 static irqreturn_t gfar_transmit(int irq, void *dev_id, struct pt_regs *regs);
125 static irqreturn_t gfar_interrupt(int irq, void *dev_id, struct pt_regs *regs);
126 static void adjust_link(struct net_device *dev);
127 static void init_registers(struct net_device *dev);
128 static int init_phy(struct net_device *dev);
129 static int gfar_probe(struct platform_device *pdev);
130 static int gfar_remove(struct platform_device *pdev);
131 static void free_skb_resources(struct gfar_private *priv);
132 static void gfar_set_multi(struct net_device *dev);
133 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
134 #ifdef CONFIG_GFAR_NAPI
135 static int gfar_poll(struct net_device *dev, int *budget);
136 #endif
137 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit);
138 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb, int length);
139 static void gfar_vlan_rx_register(struct net_device *netdev,
140                                 struct vlan_group *grp);
141 static void gfar_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
142 void gfar_halt(struct net_device *dev);
143 void gfar_start(struct net_device *dev);
144 static void gfar_clear_exact_match(struct net_device *dev);
145 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
146
147 extern struct ethtool_ops gfar_ethtool_ops;
148
149 MODULE_AUTHOR("Freescale Semiconductor, Inc");
150 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
151 MODULE_LICENSE("GPL");
152
153 /* Returns 1 if incoming frames use an FCB */
154 static inline int gfar_uses_fcb(struct gfar_private *priv)
155 {
156         return (priv->vlan_enable || priv->rx_csum_enable);
157 }
158
159 /* Set up the ethernet device structure, private data,
160  * and anything else we need before we start */
161 static int gfar_probe(struct platform_device *pdev)
162 {
163         u32 tempval;
164         struct net_device *dev = NULL;
165         struct gfar_private *priv = NULL;
166         struct gianfar_platform_data *einfo;
167         struct resource *r;
168         int idx;
169         int err = 0;
170
171         einfo = (struct gianfar_platform_data *) pdev->dev.platform_data;
172
173         if (NULL == einfo) {
174                 printk(KERN_ERR "gfar %d: Missing additional data!\n",
175                        pdev->id);
176
177                 return -ENODEV;
178         }
179
180         /* Create an ethernet device instance */
181         dev = alloc_etherdev(sizeof (*priv));
182
183         if (NULL == dev)
184                 return -ENOMEM;
185
186         priv = netdev_priv(dev);
187
188         /* Set the info in the priv to the current info */
189         priv->einfo = einfo;
190
191         /* fill out IRQ fields */
192         if (einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
193                 priv->interruptTransmit = platform_get_irq_byname(pdev, "tx");
194                 priv->interruptReceive = platform_get_irq_byname(pdev, "rx");
195                 priv->interruptError = platform_get_irq_byname(pdev, "error");
196                 if (priv->interruptTransmit < 0 || priv->interruptReceive < 0 || priv->interruptError < 0)
197                         goto regs_fail;
198         } else {
199                 priv->interruptTransmit = platform_get_irq(pdev, 0);
200                 if (priv->interruptTransmit < 0)
201                         goto regs_fail;
202         }
203
204         /* get a pointer to the register memory */
205         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
206         priv->regs = ioremap(r->start, sizeof (struct gfar));
207
208         if (NULL == priv->regs) {
209                 err = -ENOMEM;
210                 goto regs_fail;
211         }
212
213         spin_lock_init(&priv->lock);
214
215         platform_set_drvdata(pdev, dev);
216
217         /* Stop the DMA engine now, in case it was running before */
218         /* (The firmware could have used it, and left it running). */
219         /* To do this, we write Graceful Receive Stop and Graceful */
220         /* Transmit Stop, and then wait until the corresponding bits */
221         /* in IEVENT indicate the stops have completed. */
222         tempval = gfar_read(&priv->regs->dmactrl);
223         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
224         gfar_write(&priv->regs->dmactrl, tempval);
225
226         tempval = gfar_read(&priv->regs->dmactrl);
227         tempval |= (DMACTRL_GRS | DMACTRL_GTS);
228         gfar_write(&priv->regs->dmactrl, tempval);
229
230         while (!(gfar_read(&priv->regs->ievent) & (IEVENT_GRSC | IEVENT_GTSC)))
231                 cpu_relax();
232
233         /* Reset MAC layer */
234         gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
235
236         tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
237         gfar_write(&priv->regs->maccfg1, tempval);
238
239         /* Initialize MACCFG2. */
240         gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS);
241
242         /* Initialize ECNTRL */
243         gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS);
244
245         /* Copy the station address into the dev structure, */
246         memcpy(dev->dev_addr, einfo->mac_addr, MAC_ADDR_LEN);
247
248         /* Set the dev->base_addr to the gfar reg region */
249         dev->base_addr = (unsigned long) (priv->regs);
250
251         SET_MODULE_OWNER(dev);
252         SET_NETDEV_DEV(dev, &pdev->dev);
253
254         /* Fill in the dev structure */
255         dev->open = gfar_enet_open;
256         dev->hard_start_xmit = gfar_start_xmit;
257         dev->tx_timeout = gfar_timeout;
258         dev->watchdog_timeo = TX_TIMEOUT;
259 #ifdef CONFIG_GFAR_NAPI
260         dev->poll = gfar_poll;
261         dev->weight = GFAR_DEV_WEIGHT;
262 #endif
263         dev->stop = gfar_close;
264         dev->get_stats = gfar_get_stats;
265         dev->change_mtu = gfar_change_mtu;
266         dev->mtu = 1500;
267         dev->set_multicast_list = gfar_set_multi;
268
269         dev->ethtool_ops = &gfar_ethtool_ops;
270
271         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
272                 priv->rx_csum_enable = 1;
273                 dev->features |= NETIF_F_IP_CSUM;
274         } else
275                 priv->rx_csum_enable = 0;
276
277         priv->vlgrp = NULL;
278
279         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
280                 dev->vlan_rx_register = gfar_vlan_rx_register;
281                 dev->vlan_rx_kill_vid = gfar_vlan_rx_kill_vid;
282
283                 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
284
285                 priv->vlan_enable = 1;
286         }
287
288         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
289                 priv->extended_hash = 1;
290                 priv->hash_width = 9;
291
292                 priv->hash_regs[0] = &priv->regs->igaddr0;
293                 priv->hash_regs[1] = &priv->regs->igaddr1;
294                 priv->hash_regs[2] = &priv->regs->igaddr2;
295                 priv->hash_regs[3] = &priv->regs->igaddr3;
296                 priv->hash_regs[4] = &priv->regs->igaddr4;
297                 priv->hash_regs[5] = &priv->regs->igaddr5;
298                 priv->hash_regs[6] = &priv->regs->igaddr6;
299                 priv->hash_regs[7] = &priv->regs->igaddr7;
300                 priv->hash_regs[8] = &priv->regs->gaddr0;
301                 priv->hash_regs[9] = &priv->regs->gaddr1;
302                 priv->hash_regs[10] = &priv->regs->gaddr2;
303                 priv->hash_regs[11] = &priv->regs->gaddr3;
304                 priv->hash_regs[12] = &priv->regs->gaddr4;
305                 priv->hash_regs[13] = &priv->regs->gaddr5;
306                 priv->hash_regs[14] = &priv->regs->gaddr6;
307                 priv->hash_regs[15] = &priv->regs->gaddr7;
308
309         } else {
310                 priv->extended_hash = 0;
311                 priv->hash_width = 8;
312
313                 priv->hash_regs[0] = &priv->regs->gaddr0;
314                 priv->hash_regs[1] = &priv->regs->gaddr1;
315                 priv->hash_regs[2] = &priv->regs->gaddr2;
316                 priv->hash_regs[3] = &priv->regs->gaddr3;
317                 priv->hash_regs[4] = &priv->regs->gaddr4;
318                 priv->hash_regs[5] = &priv->regs->gaddr5;
319                 priv->hash_regs[6] = &priv->regs->gaddr6;
320                 priv->hash_regs[7] = &priv->regs->gaddr7;
321         }
322
323         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
324                 priv->padding = DEFAULT_PADDING;
325         else
326                 priv->padding = 0;
327
328         if (dev->features & NETIF_F_IP_CSUM)
329                 dev->hard_header_len += GMAC_FCB_LEN;
330
331         priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
332         priv->tx_ring_size = DEFAULT_TX_RING_SIZE;
333         priv->rx_ring_size = DEFAULT_RX_RING_SIZE;
334
335         priv->txcoalescing = DEFAULT_TX_COALESCE;
336         priv->txcount = DEFAULT_TXCOUNT;
337         priv->txtime = DEFAULT_TXTIME;
338         priv->rxcoalescing = DEFAULT_RX_COALESCE;
339         priv->rxcount = DEFAULT_RXCOUNT;
340         priv->rxtime = DEFAULT_RXTIME;
341
342         /* Enable most messages by default */
343         priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
344
345         err = register_netdev(dev);
346
347         if (err) {
348                 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
349                                 dev->name);
350                 goto register_fail;
351         }
352
353         /* Create all the sysfs files */
354         gfar_init_sysfs(dev);
355
356         /* Print out the device info */
357         printk(KERN_INFO DEVICE_NAME, dev->name);
358         for (idx = 0; idx < 6; idx++)
359                 printk("%2.2x%c", dev->dev_addr[idx], idx == 5 ? ' ' : ':');
360         printk("\n");
361
362         /* Even more device info helps when determining which kernel */
363         /* provided which set of benchmarks. */
364 #ifdef CONFIG_GFAR_NAPI
365         printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
366 #else
367         printk(KERN_INFO "%s: Running with NAPI disabled\n", dev->name);
368 #endif
369         printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n",
370                dev->name, priv->rx_ring_size, priv->tx_ring_size);
371
372         return 0;
373
374 register_fail:
375         iounmap(priv->regs);
376 regs_fail:
377         free_netdev(dev);
378         return err;
379 }
380
381 static int gfar_remove(struct platform_device *pdev)
382 {
383         struct net_device *dev = platform_get_drvdata(pdev);
384         struct gfar_private *priv = netdev_priv(dev);
385
386         platform_set_drvdata(pdev, NULL);
387
388         iounmap(priv->regs);
389         free_netdev(dev);
390
391         return 0;
392 }
393
394
395 /* Initializes driver's PHY state, and attaches to the PHY.
396  * Returns 0 on success.
397  */
398 static int init_phy(struct net_device *dev)
399 {
400         struct gfar_private *priv = netdev_priv(dev);
401         uint gigabit_support =
402                 priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
403                 SUPPORTED_1000baseT_Full : 0;
404         struct phy_device *phydev;
405         char phy_id[BUS_ID_SIZE];
406
407         priv->oldlink = 0;
408         priv->oldspeed = 0;
409         priv->oldduplex = -1;
410
411         snprintf(phy_id, BUS_ID_SIZE, PHY_ID_FMT, priv->einfo->bus_id, priv->einfo->phy_id);
412
413         phydev = phy_connect(dev, phy_id, &adjust_link, 0);
414
415         if (IS_ERR(phydev)) {
416                 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
417                 return PTR_ERR(phydev);
418         }
419
420         /* Remove any features not supported by the controller */
421         phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
422         phydev->advertising = phydev->supported;
423
424         priv->phydev = phydev;
425
426         return 0;
427 }
428
429 static void init_registers(struct net_device *dev)
430 {
431         struct gfar_private *priv = netdev_priv(dev);
432
433         /* Clear IEVENT */
434         gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR);
435
436         /* Initialize IMASK */
437         gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR);
438
439         /* Init hash registers to zero */
440         gfar_write(&priv->regs->igaddr0, 0);
441         gfar_write(&priv->regs->igaddr1, 0);
442         gfar_write(&priv->regs->igaddr2, 0);
443         gfar_write(&priv->regs->igaddr3, 0);
444         gfar_write(&priv->regs->igaddr4, 0);
445         gfar_write(&priv->regs->igaddr5, 0);
446         gfar_write(&priv->regs->igaddr6, 0);
447         gfar_write(&priv->regs->igaddr7, 0);
448
449         gfar_write(&priv->regs->gaddr0, 0);
450         gfar_write(&priv->regs->gaddr1, 0);
451         gfar_write(&priv->regs->gaddr2, 0);
452         gfar_write(&priv->regs->gaddr3, 0);
453         gfar_write(&priv->regs->gaddr4, 0);
454         gfar_write(&priv->regs->gaddr5, 0);
455         gfar_write(&priv->regs->gaddr6, 0);
456         gfar_write(&priv->regs->gaddr7, 0);
457
458         /* Zero out the rmon mib registers if it has them */
459         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
460                 memset_io(&(priv->regs->rmon), 0, sizeof (struct rmon_mib));
461
462                 /* Mask off the CAM interrupts */
463                 gfar_write(&priv->regs->rmon.cam1, 0xffffffff);
464                 gfar_write(&priv->regs->rmon.cam2, 0xffffffff);
465         }
466
467         /* Initialize the max receive buffer length */
468         gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
469
470         /* Initialize the Minimum Frame Length Register */
471         gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS);
472
473         /* Assign the TBI an address which won't conflict with the PHYs */
474         gfar_write(&priv->regs->tbipa, TBIPA_VALUE);
475 }
476
477
478 /* Halt the receive and transmit queues */
479 void gfar_halt(struct net_device *dev)
480 {
481         struct gfar_private *priv = netdev_priv(dev);
482         struct gfar __iomem *regs = priv->regs;
483         u32 tempval;
484
485         /* Mask all interrupts */
486         gfar_write(&regs->imask, IMASK_INIT_CLEAR);
487
488         /* Clear all interrupts */
489         gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
490
491         /* Stop the DMA, and wait for it to stop */
492         tempval = gfar_read(&priv->regs->dmactrl);
493         if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
494             != (DMACTRL_GRS | DMACTRL_GTS)) {
495                 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
496                 gfar_write(&priv->regs->dmactrl, tempval);
497
498                 while (!(gfar_read(&priv->regs->ievent) &
499                          (IEVENT_GRSC | IEVENT_GTSC)))
500                         cpu_relax();
501         }
502
503         /* Disable Rx and Tx */
504         tempval = gfar_read(&regs->maccfg1);
505         tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
506         gfar_write(&regs->maccfg1, tempval);
507 }
508
509 void stop_gfar(struct net_device *dev)
510 {
511         struct gfar_private *priv = netdev_priv(dev);
512         struct gfar __iomem *regs = priv->regs;
513         unsigned long flags;
514
515         phy_stop(priv->phydev);
516
517         /* Lock it down */
518         spin_lock_irqsave(&priv->lock, flags);
519
520         gfar_halt(dev);
521
522         spin_unlock_irqrestore(&priv->lock, flags);
523
524         /* Free the IRQs */
525         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
526                 free_irq(priv->interruptError, dev);
527                 free_irq(priv->interruptTransmit, dev);
528                 free_irq(priv->interruptReceive, dev);
529         } else {
530                 free_irq(priv->interruptTransmit, dev);
531         }
532
533         free_skb_resources(priv);
534
535         dma_free_coherent(NULL,
536                         sizeof(struct txbd8)*priv->tx_ring_size
537                         + sizeof(struct rxbd8)*priv->rx_ring_size,
538                         priv->tx_bd_base,
539                         gfar_read(&regs->tbase0));
540 }
541
542 /* If there are any tx skbs or rx skbs still around, free them.
543  * Then free tx_skbuff and rx_skbuff */
544 static void free_skb_resources(struct gfar_private *priv)
545 {
546         struct rxbd8 *rxbdp;
547         struct txbd8 *txbdp;
548         int i;
549
550         /* Go through all the buffer descriptors and free their data buffers */
551         txbdp = priv->tx_bd_base;
552
553         for (i = 0; i < priv->tx_ring_size; i++) {
554
555                 if (priv->tx_skbuff[i]) {
556                         dma_unmap_single(NULL, txbdp->bufPtr,
557                                         txbdp->length,
558                                         DMA_TO_DEVICE);
559                         dev_kfree_skb_any(priv->tx_skbuff[i]);
560                         priv->tx_skbuff[i] = NULL;
561                 }
562         }
563
564         kfree(priv->tx_skbuff);
565
566         rxbdp = priv->rx_bd_base;
567
568         /* rx_skbuff is not guaranteed to be allocated, so only
569          * free it and its contents if it is allocated */
570         if(priv->rx_skbuff != NULL) {
571                 for (i = 0; i < priv->rx_ring_size; i++) {
572                         if (priv->rx_skbuff[i]) {
573                                 dma_unmap_single(NULL, rxbdp->bufPtr,
574                                                 priv->rx_buffer_size,
575                                                 DMA_FROM_DEVICE);
576
577                                 dev_kfree_skb_any(priv->rx_skbuff[i]);
578                                 priv->rx_skbuff[i] = NULL;
579                         }
580
581                         rxbdp->status = 0;
582                         rxbdp->length = 0;
583                         rxbdp->bufPtr = 0;
584
585                         rxbdp++;
586                 }
587
588                 kfree(priv->rx_skbuff);
589         }
590 }
591
592 void gfar_start(struct net_device *dev)
593 {
594         struct gfar_private *priv = netdev_priv(dev);
595         struct gfar __iomem *regs = priv->regs;
596         u32 tempval;
597
598         /* Enable Rx and Tx in MACCFG1 */
599         tempval = gfar_read(&regs->maccfg1);
600         tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
601         gfar_write(&regs->maccfg1, tempval);
602
603         /* Initialize DMACTRL to have WWR and WOP */
604         tempval = gfar_read(&priv->regs->dmactrl);
605         tempval |= DMACTRL_INIT_SETTINGS;
606         gfar_write(&priv->regs->dmactrl, tempval);
607
608         /* Clear THLT, so that the DMA starts polling now */
609         gfar_write(&regs->tstat, TSTAT_CLEAR_THALT);
610
611         /* Make sure we aren't stopped */
612         tempval = gfar_read(&priv->regs->dmactrl);
613         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
614         gfar_write(&priv->regs->dmactrl, tempval);
615
616         /* Unmask the interrupts we look for */
617         gfar_write(&regs->imask, IMASK_DEFAULT);
618 }
619
620 /* Bring the controller up and running */
621 int startup_gfar(struct net_device *dev)
622 {
623         struct txbd8 *txbdp;
624         struct rxbd8 *rxbdp;
625         dma_addr_t addr;
626         unsigned long vaddr;
627         int i;
628         struct gfar_private *priv = netdev_priv(dev);
629         struct gfar __iomem *regs = priv->regs;
630         int err = 0;
631         u32 rctrl = 0;
632         u32 attrs = 0;
633
634         gfar_write(&regs->imask, IMASK_INIT_CLEAR);
635
636         /* Allocate memory for the buffer descriptors */
637         vaddr = (unsigned long) dma_alloc_coherent(NULL,
638                         sizeof (struct txbd8) * priv->tx_ring_size +
639                         sizeof (struct rxbd8) * priv->rx_ring_size,
640                         &addr, GFP_KERNEL);
641
642         if (vaddr == 0) {
643                 if (netif_msg_ifup(priv))
644                         printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n",
645                                         dev->name);
646                 return -ENOMEM;
647         }
648
649         priv->tx_bd_base = (struct txbd8 *) vaddr;
650
651         /* enet DMA only understands physical addresses */
652         gfar_write(&regs->tbase0, addr);
653
654         /* Start the rx descriptor ring where the tx ring leaves off */
655         addr = addr + sizeof (struct txbd8) * priv->tx_ring_size;
656         vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size;
657         priv->rx_bd_base = (struct rxbd8 *) vaddr;
658         gfar_write(&regs->rbase0, addr);
659
660         /* Setup the skbuff rings */
661         priv->tx_skbuff =
662             (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
663                                         priv->tx_ring_size, GFP_KERNEL);
664
665         if (NULL == priv->tx_skbuff) {
666                 if (netif_msg_ifup(priv))
667                         printk(KERN_ERR "%s: Could not allocate tx_skbuff\n",
668                                         dev->name);
669                 err = -ENOMEM;
670                 goto tx_skb_fail;
671         }
672
673         for (i = 0; i < priv->tx_ring_size; i++)
674                 priv->tx_skbuff[i] = NULL;
675
676         priv->rx_skbuff =
677             (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
678                                         priv->rx_ring_size, GFP_KERNEL);
679
680         if (NULL == priv->rx_skbuff) {
681                 if (netif_msg_ifup(priv))
682                         printk(KERN_ERR "%s: Could not allocate rx_skbuff\n",
683                                         dev->name);
684                 err = -ENOMEM;
685                 goto rx_skb_fail;
686         }
687
688         for (i = 0; i < priv->rx_ring_size; i++)
689                 priv->rx_skbuff[i] = NULL;
690
691         /* Initialize some variables in our dev structure */
692         priv->dirty_tx = priv->cur_tx = priv->tx_bd_base;
693         priv->cur_rx = priv->rx_bd_base;
694         priv->skb_curtx = priv->skb_dirtytx = 0;
695         priv->skb_currx = 0;
696
697         /* Initialize Transmit Descriptor Ring */
698         txbdp = priv->tx_bd_base;
699         for (i = 0; i < priv->tx_ring_size; i++) {
700                 txbdp->status = 0;
701                 txbdp->length = 0;
702                 txbdp->bufPtr = 0;
703                 txbdp++;
704         }
705
706         /* Set the last descriptor in the ring to indicate wrap */
707         txbdp--;
708         txbdp->status |= TXBD_WRAP;
709
710         rxbdp = priv->rx_bd_base;
711         for (i = 0; i < priv->rx_ring_size; i++) {
712                 struct sk_buff *skb = NULL;
713
714                 rxbdp->status = 0;
715
716                 skb = gfar_new_skb(dev, rxbdp);
717
718                 priv->rx_skbuff[i] = skb;
719
720                 rxbdp++;
721         }
722
723         /* Set the last descriptor in the ring to wrap */
724         rxbdp--;
725         rxbdp->status |= RXBD_WRAP;
726
727         /* If the device has multiple interrupts, register for
728          * them.  Otherwise, only register for the one */
729         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
730                 /* Install our interrupt handlers for Error,
731                  * Transmit, and Receive */
732                 if (request_irq(priv->interruptError, gfar_error,
733                                 0, "enet_error", dev) < 0) {
734                         if (netif_msg_intr(priv))
735                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
736                                         dev->name, priv->interruptError);
737
738                         err = -1;
739                         goto err_irq_fail;
740                 }
741
742                 if (request_irq(priv->interruptTransmit, gfar_transmit,
743                                 0, "enet_tx", dev) < 0) {
744                         if (netif_msg_intr(priv))
745                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
746                                         dev->name, priv->interruptTransmit);
747
748                         err = -1;
749
750                         goto tx_irq_fail;
751                 }
752
753                 if (request_irq(priv->interruptReceive, gfar_receive,
754                                 0, "enet_rx", dev) < 0) {
755                         if (netif_msg_intr(priv))
756                                 printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n",
757                                                 dev->name, priv->interruptReceive);
758
759                         err = -1;
760                         goto rx_irq_fail;
761                 }
762         } else {
763                 if (request_irq(priv->interruptTransmit, gfar_interrupt,
764                                 0, "gfar_interrupt", dev) < 0) {
765                         if (netif_msg_intr(priv))
766                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
767                                         dev->name, priv->interruptError);
768
769                         err = -1;
770                         goto err_irq_fail;
771                 }
772         }
773
774         phy_start(priv->phydev);
775
776         /* Configure the coalescing support */
777         if (priv->txcoalescing)
778                 gfar_write(&regs->txic,
779                            mk_ic_value(priv->txcount, priv->txtime));
780         else
781                 gfar_write(&regs->txic, 0);
782
783         if (priv->rxcoalescing)
784                 gfar_write(&regs->rxic,
785                            mk_ic_value(priv->rxcount, priv->rxtime));
786         else
787                 gfar_write(&regs->rxic, 0);
788
789         if (priv->rx_csum_enable)
790                 rctrl |= RCTRL_CHECKSUMMING;
791
792         if (priv->extended_hash) {
793                 rctrl |= RCTRL_EXTHASH;
794
795                 gfar_clear_exact_match(dev);
796                 rctrl |= RCTRL_EMEN;
797         }
798
799         if (priv->vlan_enable)
800                 rctrl |= RCTRL_VLAN;
801
802         if (priv->padding) {
803                 rctrl &= ~RCTRL_PAL_MASK;
804                 rctrl |= RCTRL_PADDING(priv->padding);
805         }
806
807         /* Init rctrl based on our settings */
808         gfar_write(&priv->regs->rctrl, rctrl);
809
810         if (dev->features & NETIF_F_IP_CSUM)
811                 gfar_write(&priv->regs->tctrl, TCTRL_INIT_CSUM);
812
813         /* Set the extraction length and index */
814         attrs = ATTRELI_EL(priv->rx_stash_size) |
815                 ATTRELI_EI(priv->rx_stash_index);
816
817         gfar_write(&priv->regs->attreli, attrs);
818
819         /* Start with defaults, and add stashing or locking
820          * depending on the approprate variables */
821         attrs = ATTR_INIT_SETTINGS;
822
823         if (priv->bd_stash_en)
824                 attrs |= ATTR_BDSTASH;
825
826         if (priv->rx_stash_size != 0)
827                 attrs |= ATTR_BUFSTASH;
828
829         gfar_write(&priv->regs->attr, attrs);
830
831         gfar_write(&priv->regs->fifo_tx_thr, priv->fifo_threshold);
832         gfar_write(&priv->regs->fifo_tx_starve, priv->fifo_starve);
833         gfar_write(&priv->regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
834
835         /* Start the controller */
836         gfar_start(dev);
837
838         return 0;
839
840 rx_irq_fail:
841         free_irq(priv->interruptTransmit, dev);
842 tx_irq_fail:
843         free_irq(priv->interruptError, dev);
844 err_irq_fail:
845 rx_skb_fail:
846         free_skb_resources(priv);
847 tx_skb_fail:
848         dma_free_coherent(NULL,
849                         sizeof(struct txbd8)*priv->tx_ring_size
850                         + sizeof(struct rxbd8)*priv->rx_ring_size,
851                         priv->tx_bd_base,
852                         gfar_read(&regs->tbase0));
853
854         return err;
855 }
856
857 /* Called when something needs to use the ethernet device */
858 /* Returns 0 for success. */
859 static int gfar_enet_open(struct net_device *dev)
860 {
861         int err;
862
863         /* Initialize a bunch of registers */
864         init_registers(dev);
865
866         gfar_set_mac_address(dev);
867
868         err = init_phy(dev);
869
870         if(err)
871                 return err;
872
873         err = startup_gfar(dev);
874
875         netif_start_queue(dev);
876
877         return err;
878 }
879
880 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb, struct txbd8 *bdp)
881 {
882         struct txfcb *fcb = (struct txfcb *)skb_push (skb, GMAC_FCB_LEN);
883
884         memset(fcb, 0, GMAC_FCB_LEN);
885
886         return fcb;
887 }
888
889 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
890 {
891         u8 flags = 0;
892
893         /* If we're here, it's a IP packet with a TCP or UDP
894          * payload.  We set it to checksum, using a pseudo-header
895          * we provide
896          */
897         flags = TXFCB_DEFAULT;
898
899         /* Tell the controller what the protocol is */
900         /* And provide the already calculated phcs */
901         if (skb->nh.iph->protocol == IPPROTO_UDP) {
902                 flags |= TXFCB_UDP;
903                 fcb->phcs = skb->h.uh->check;
904         } else
905                 fcb->phcs = skb->h.th->check;
906
907         /* l3os is the distance between the start of the
908          * frame (skb->data) and the start of the IP hdr.
909          * l4os is the distance between the start of the
910          * l3 hdr and the l4 hdr */
911         fcb->l3os = (u16)(skb->nh.raw - skb->data - GMAC_FCB_LEN);
912         fcb->l4os = (u16)(skb->h.raw - skb->nh.raw);
913
914         fcb->flags = flags;
915 }
916
917 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
918 {
919         fcb->flags |= TXFCB_VLN;
920         fcb->vlctl = vlan_tx_tag_get(skb);
921 }
922
923 /* This is called by the kernel when a frame is ready for transmission. */
924 /* It is pointed to by the dev->hard_start_xmit function pointer */
925 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
926 {
927         struct gfar_private *priv = netdev_priv(dev);
928         struct txfcb *fcb = NULL;
929         struct txbd8 *txbdp;
930         u16 status;
931
932         /* Update transmit stats */
933         priv->stats.tx_bytes += skb->len;
934
935         /* Lock priv now */
936         spin_lock_irq(&priv->lock);
937
938         /* Point at the first free tx descriptor */
939         txbdp = priv->cur_tx;
940
941         /* Clear all but the WRAP status flags */
942         status = txbdp->status & TXBD_WRAP;
943
944         /* Set up checksumming */
945         if (likely((dev->features & NETIF_F_IP_CSUM)
946                         && (CHECKSUM_HW == skb->ip_summed))) {
947                 fcb = gfar_add_fcb(skb, txbdp);
948                 status |= TXBD_TOE;
949                 gfar_tx_checksum(skb, fcb);
950         }
951
952         if (priv->vlan_enable &&
953                         unlikely(priv->vlgrp && vlan_tx_tag_present(skb))) {
954                 if (unlikely(NULL == fcb)) {
955                         fcb = gfar_add_fcb(skb, txbdp);
956                         status |= TXBD_TOE;
957                 }
958
959                 gfar_tx_vlan(skb, fcb);
960         }
961
962         /* Set buffer length and pointer */
963         txbdp->length = skb->len;
964         txbdp->bufPtr = dma_map_single(NULL, skb->data,
965                         skb->len, DMA_TO_DEVICE);
966
967         /* Save the skb pointer so we can free it later */
968         priv->tx_skbuff[priv->skb_curtx] = skb;
969
970         /* Update the current skb pointer (wrapping if this was the last) */
971         priv->skb_curtx =
972             (priv->skb_curtx + 1) & TX_RING_MOD_MASK(priv->tx_ring_size);
973
974         /* Flag the BD as interrupt-causing */
975         status |= TXBD_INTERRUPT;
976
977         /* Flag the BD as ready to go, last in frame, and  */
978         /* in need of CRC */
979         status |= (TXBD_READY | TXBD_LAST | TXBD_CRC);
980
981         dev->trans_start = jiffies;
982
983         txbdp->status = status;
984
985         /* If this was the last BD in the ring, the next one */
986         /* is at the beginning of the ring */
987         if (txbdp->status & TXBD_WRAP)
988                 txbdp = priv->tx_bd_base;
989         else
990                 txbdp++;
991
992         /* If the next BD still needs to be cleaned up, then the bds
993            are full.  We need to tell the kernel to stop sending us stuff. */
994         if (txbdp == priv->dirty_tx) {
995                 netif_stop_queue(dev);
996
997                 priv->stats.tx_fifo_errors++;
998         }
999
1000         /* Update the current txbd to the next one */
1001         priv->cur_tx = txbdp;
1002
1003         /* Tell the DMA to go go go */
1004         gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1005
1006         /* Unlock priv */
1007         spin_unlock_irq(&priv->lock);
1008
1009         return 0;
1010 }
1011
1012 /* Stops the kernel queue, and halts the controller */
1013 static int gfar_close(struct net_device *dev)
1014 {
1015         struct gfar_private *priv = netdev_priv(dev);
1016         stop_gfar(dev);
1017
1018         /* Disconnect from the PHY */
1019         phy_disconnect(priv->phydev);
1020         priv->phydev = NULL;
1021
1022         netif_stop_queue(dev);
1023
1024         return 0;
1025 }
1026
1027 /* returns a net_device_stats structure pointer */
1028 static struct net_device_stats * gfar_get_stats(struct net_device *dev)
1029 {
1030         struct gfar_private *priv = netdev_priv(dev);
1031
1032         return &(priv->stats);
1033 }
1034
1035 /* Changes the mac address if the controller is not running. */
1036 int gfar_set_mac_address(struct net_device *dev)
1037 {
1038         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
1039
1040         return 0;
1041 }
1042
1043
1044 /* Enables and disables VLAN insertion/extraction */
1045 static void gfar_vlan_rx_register(struct net_device *dev,
1046                 struct vlan_group *grp)
1047 {
1048         struct gfar_private *priv = netdev_priv(dev);
1049         unsigned long flags;
1050         u32 tempval;
1051
1052         spin_lock_irqsave(&priv->lock, flags);
1053
1054         priv->vlgrp = grp;
1055
1056         if (grp) {
1057                 /* Enable VLAN tag insertion */
1058                 tempval = gfar_read(&priv->regs->tctrl);
1059                 tempval |= TCTRL_VLINS;
1060
1061                 gfar_write(&priv->regs->tctrl, tempval);
1062                 
1063                 /* Enable VLAN tag extraction */
1064                 tempval = gfar_read(&priv->regs->rctrl);
1065                 tempval |= RCTRL_VLEX;
1066                 gfar_write(&priv->regs->rctrl, tempval);
1067         } else {
1068                 /* Disable VLAN tag insertion */
1069                 tempval = gfar_read(&priv->regs->tctrl);
1070                 tempval &= ~TCTRL_VLINS;
1071                 gfar_write(&priv->regs->tctrl, tempval);
1072
1073                 /* Disable VLAN tag extraction */
1074                 tempval = gfar_read(&priv->regs->rctrl);
1075                 tempval &= ~RCTRL_VLEX;
1076                 gfar_write(&priv->regs->rctrl, tempval);
1077         }
1078
1079         spin_unlock_irqrestore(&priv->lock, flags);
1080 }
1081
1082
1083 static void gfar_vlan_rx_kill_vid(struct net_device *dev, uint16_t vid)
1084 {
1085         struct gfar_private *priv = netdev_priv(dev);
1086         unsigned long flags;
1087
1088         spin_lock_irqsave(&priv->lock, flags);
1089
1090         if (priv->vlgrp)
1091                 priv->vlgrp->vlan_devices[vid] = NULL;
1092
1093         spin_unlock_irqrestore(&priv->lock, flags);
1094 }
1095
1096
1097 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
1098 {
1099         int tempsize, tempval;
1100         struct gfar_private *priv = netdev_priv(dev);
1101         int oldsize = priv->rx_buffer_size;
1102         int frame_size = new_mtu + ETH_HLEN;
1103
1104         if (priv->vlan_enable)
1105                 frame_size += VLAN_ETH_HLEN;
1106
1107         if (gfar_uses_fcb(priv))
1108                 frame_size += GMAC_FCB_LEN;
1109
1110         frame_size += priv->padding;
1111
1112         if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
1113                 if (netif_msg_drv(priv))
1114                         printk(KERN_ERR "%s: Invalid MTU setting\n",
1115                                         dev->name);
1116                 return -EINVAL;
1117         }
1118
1119         tempsize =
1120             (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
1121             INCREMENTAL_BUFFER_SIZE;
1122
1123         /* Only stop and start the controller if it isn't already
1124          * stopped, and we changed something */
1125         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1126                 stop_gfar(dev);
1127
1128         priv->rx_buffer_size = tempsize;
1129
1130         dev->mtu = new_mtu;
1131
1132         gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
1133         gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size);
1134
1135         /* If the mtu is larger than the max size for standard
1136          * ethernet frames (ie, a jumbo frame), then set maccfg2
1137          * to allow huge frames, and to check the length */
1138         tempval = gfar_read(&priv->regs->maccfg2);
1139
1140         if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
1141                 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1142         else
1143                 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1144
1145         gfar_write(&priv->regs->maccfg2, tempval);
1146
1147         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1148                 startup_gfar(dev);
1149
1150         return 0;
1151 }
1152
1153 /* gfar_timeout gets called when a packet has not been
1154  * transmitted after a set amount of time.
1155  * For now, assume that clearing out all the structures, and
1156  * starting over will fix the problem. */
1157 static void gfar_timeout(struct net_device *dev)
1158 {
1159         struct gfar_private *priv = netdev_priv(dev);
1160
1161         priv->stats.tx_errors++;
1162
1163         if (dev->flags & IFF_UP) {
1164                 stop_gfar(dev);
1165                 startup_gfar(dev);
1166         }
1167
1168         netif_schedule(dev);
1169 }
1170
1171 /* Interrupt Handler for Transmit complete */
1172 static irqreturn_t gfar_transmit(int irq, void *dev_id, struct pt_regs *regs)
1173 {
1174         struct net_device *dev = (struct net_device *) dev_id;
1175         struct gfar_private *priv = netdev_priv(dev);
1176         struct txbd8 *bdp;
1177
1178         /* Clear IEVENT */
1179         gfar_write(&priv->regs->ievent, IEVENT_TX_MASK);
1180
1181         /* Lock priv */
1182         spin_lock(&priv->lock);
1183         bdp = priv->dirty_tx;
1184         while ((bdp->status & TXBD_READY) == 0) {
1185                 /* If dirty_tx and cur_tx are the same, then either the */
1186                 /* ring is empty or full now (it could only be full in the beginning, */
1187                 /* obviously).  If it is empty, we are done. */
1188                 if ((bdp == priv->cur_tx) && (netif_queue_stopped(dev) == 0))
1189                         break;
1190
1191                 priv->stats.tx_packets++;
1192
1193                 /* Deferred means some collisions occurred during transmit, */
1194                 /* but we eventually sent the packet. */
1195                 if (bdp->status & TXBD_DEF)
1196                         priv->stats.collisions++;
1197
1198                 /* Free the sk buffer associated with this TxBD */
1199                 dev_kfree_skb_irq(priv->tx_skbuff[priv->skb_dirtytx]);
1200                 priv->tx_skbuff[priv->skb_dirtytx] = NULL;
1201                 priv->skb_dirtytx =
1202                     (priv->skb_dirtytx +
1203                      1) & TX_RING_MOD_MASK(priv->tx_ring_size);
1204
1205                 /* update bdp to point at next bd in the ring (wrapping if necessary) */
1206                 if (bdp->status & TXBD_WRAP)
1207                         bdp = priv->tx_bd_base;
1208                 else
1209                         bdp++;
1210
1211                 /* Move dirty_tx to be the next bd */
1212                 priv->dirty_tx = bdp;
1213
1214                 /* We freed a buffer, so now we can restart transmission */
1215                 if (netif_queue_stopped(dev))
1216                         netif_wake_queue(dev);
1217         } /* while ((bdp->status & TXBD_READY) == 0) */
1218
1219         /* If we are coalescing the interrupts, reset the timer */
1220         /* Otherwise, clear it */
1221         if (priv->txcoalescing)
1222                 gfar_write(&priv->regs->txic,
1223                            mk_ic_value(priv->txcount, priv->txtime));
1224         else
1225                 gfar_write(&priv->regs->txic, 0);
1226
1227         spin_unlock(&priv->lock);
1228
1229         return IRQ_HANDLED;
1230 }
1231
1232 struct sk_buff * gfar_new_skb(struct net_device *dev, struct rxbd8 *bdp)
1233 {
1234         unsigned int alignamount;
1235         struct gfar_private *priv = netdev_priv(dev);
1236         struct sk_buff *skb = NULL;
1237         unsigned int timeout = SKB_ALLOC_TIMEOUT;
1238
1239         /* We have to allocate the skb, so keep trying till we succeed */
1240         while ((!skb) && timeout--)
1241                 skb = dev_alloc_skb(priv->rx_buffer_size + RXBUF_ALIGNMENT);
1242
1243         if (NULL == skb)
1244                 return NULL;
1245
1246         alignamount = RXBUF_ALIGNMENT -
1247                 (((unsigned) skb->data) & (RXBUF_ALIGNMENT - 1));
1248
1249         /* We need the data buffer to be aligned properly.  We will reserve
1250          * as many bytes as needed to align the data properly
1251          */
1252         skb_reserve(skb, alignamount);
1253
1254         skb->dev = dev;
1255
1256         bdp->bufPtr = dma_map_single(NULL, skb->data,
1257                         priv->rx_buffer_size, DMA_FROM_DEVICE);
1258
1259         bdp->length = 0;
1260
1261         /* Mark the buffer empty */
1262         bdp->status |= (RXBD_EMPTY | RXBD_INTERRUPT);
1263
1264         return skb;
1265 }
1266
1267 static inline void count_errors(unsigned short status, struct gfar_private *priv)
1268 {
1269         struct net_device_stats *stats = &priv->stats;
1270         struct gfar_extra_stats *estats = &priv->extra_stats;
1271
1272         /* If the packet was truncated, none of the other errors
1273          * matter */
1274         if (status & RXBD_TRUNCATED) {
1275                 stats->rx_length_errors++;
1276
1277                 estats->rx_trunc++;
1278
1279                 return;
1280         }
1281         /* Count the errors, if there were any */
1282         if (status & (RXBD_LARGE | RXBD_SHORT)) {
1283                 stats->rx_length_errors++;
1284
1285                 if (status & RXBD_LARGE)
1286                         estats->rx_large++;
1287                 else
1288                         estats->rx_short++;
1289         }
1290         if (status & RXBD_NONOCTET) {
1291                 stats->rx_frame_errors++;
1292                 estats->rx_nonoctet++;
1293         }
1294         if (status & RXBD_CRCERR) {
1295                 estats->rx_crcerr++;
1296                 stats->rx_crc_errors++;
1297         }
1298         if (status & RXBD_OVERRUN) {
1299                 estats->rx_overrun++;
1300                 stats->rx_crc_errors++;
1301         }
1302 }
1303
1304 irqreturn_t gfar_receive(int irq, void *dev_id, struct pt_regs *regs)
1305 {
1306         struct net_device *dev = (struct net_device *) dev_id;
1307         struct gfar_private *priv = netdev_priv(dev);
1308
1309 #ifdef CONFIG_GFAR_NAPI
1310         u32 tempval;
1311 #endif
1312
1313         /* Clear IEVENT, so rx interrupt isn't called again
1314          * because of this interrupt */
1315         gfar_write(&priv->regs->ievent, IEVENT_RX_MASK);
1316
1317         /* support NAPI */
1318 #ifdef CONFIG_GFAR_NAPI
1319         if (netif_rx_schedule_prep(dev)) {
1320                 tempval = gfar_read(&priv->regs->imask);
1321                 tempval &= IMASK_RX_DISABLED;
1322                 gfar_write(&priv->regs->imask, tempval);
1323
1324                 __netif_rx_schedule(dev);
1325         } else {
1326                 if (netif_msg_rx_err(priv))
1327                         printk(KERN_DEBUG "%s: receive called twice (%x)[%x]\n",
1328                                 dev->name, gfar_read(&priv->regs->ievent),
1329                                 gfar_read(&priv->regs->imask));
1330         }
1331 #else
1332
1333         spin_lock(&priv->lock);
1334         gfar_clean_rx_ring(dev, priv->rx_ring_size);
1335
1336         /* If we are coalescing interrupts, update the timer */
1337         /* Otherwise, clear it */
1338         if (priv->rxcoalescing)
1339                 gfar_write(&priv->regs->rxic,
1340                            mk_ic_value(priv->rxcount, priv->rxtime));
1341         else
1342                 gfar_write(&priv->regs->rxic, 0);
1343
1344         spin_unlock(&priv->lock);
1345 #endif
1346
1347         return IRQ_HANDLED;
1348 }
1349
1350 static inline int gfar_rx_vlan(struct sk_buff *skb,
1351                 struct vlan_group *vlgrp, unsigned short vlctl)
1352 {
1353 #ifdef CONFIG_GFAR_NAPI
1354         return vlan_hwaccel_receive_skb(skb, vlgrp, vlctl);
1355 #else
1356         return vlan_hwaccel_rx(skb, vlgrp, vlctl);
1357 #endif
1358 }
1359
1360 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
1361 {
1362         /* If valid headers were found, and valid sums
1363          * were verified, then we tell the kernel that no
1364          * checksumming is necessary.  Otherwise, it is */
1365         if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
1366                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1367         else
1368                 skb->ip_summed = CHECKSUM_NONE;
1369 }
1370
1371
1372 static inline struct rxfcb *gfar_get_fcb(struct sk_buff *skb)
1373 {
1374         struct rxfcb *fcb = (struct rxfcb *)skb->data;
1375
1376         /* Remove the FCB from the skb */
1377         skb_pull(skb, GMAC_FCB_LEN);
1378
1379         return fcb;
1380 }
1381
1382 /* gfar_process_frame() -- handle one incoming packet if skb
1383  * isn't NULL.  */
1384 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
1385                 int length)
1386 {
1387         struct gfar_private *priv = netdev_priv(dev);
1388         struct rxfcb *fcb = NULL;
1389
1390         if (NULL == skb) {
1391                 if (netif_msg_rx_err(priv))
1392                         printk(KERN_WARNING "%s: Missing skb!!.\n", dev->name);
1393                 priv->stats.rx_dropped++;
1394                 priv->extra_stats.rx_skbmissing++;
1395         } else {
1396                 int ret;
1397
1398                 /* Prep the skb for the packet */
1399                 skb_put(skb, length);
1400
1401                 /* Grab the FCB if there is one */
1402                 if (gfar_uses_fcb(priv))
1403                         fcb = gfar_get_fcb(skb);
1404
1405                 /* Remove the padded bytes, if there are any */
1406                 if (priv->padding)
1407                         skb_pull(skb, priv->padding);
1408
1409                 if (priv->rx_csum_enable)
1410                         gfar_rx_checksum(skb, fcb);
1411
1412                 /* Tell the skb what kind of packet this is */
1413                 skb->protocol = eth_type_trans(skb, dev);
1414
1415                 /* Send the packet up the stack */
1416                 if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
1417                         ret = gfar_rx_vlan(skb, priv->vlgrp, fcb->vlctl);
1418                 else
1419                         ret = RECEIVE(skb);
1420
1421                 if (NET_RX_DROP == ret)
1422                         priv->extra_stats.kernel_dropped++;
1423         }
1424
1425         return 0;
1426 }
1427
1428 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1429  *   until the budget/quota has been reached. Returns the number
1430  *   of frames handled
1431  */
1432 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit)
1433 {
1434         struct rxbd8 *bdp;
1435         struct sk_buff *skb;
1436         u16 pkt_len;
1437         int howmany = 0;
1438         struct gfar_private *priv = netdev_priv(dev);
1439
1440         /* Get the first full descriptor */
1441         bdp = priv->cur_rx;
1442
1443         while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
1444                 skb = priv->rx_skbuff[priv->skb_currx];
1445
1446                 if (!(bdp->status &
1447                       (RXBD_LARGE | RXBD_SHORT | RXBD_NONOCTET
1448                        | RXBD_CRCERR | RXBD_OVERRUN | RXBD_TRUNCATED))) {
1449                         /* Increment the number of packets */
1450                         priv->stats.rx_packets++;
1451                         howmany++;
1452
1453                         /* Remove the FCS from the packet length */
1454                         pkt_len = bdp->length - 4;
1455
1456                         gfar_process_frame(dev, skb, pkt_len);
1457
1458                         priv->stats.rx_bytes += pkt_len;
1459                 } else {
1460                         count_errors(bdp->status, priv);
1461
1462                         if (skb)
1463                                 dev_kfree_skb_any(skb);
1464
1465                         priv->rx_skbuff[priv->skb_currx] = NULL;
1466                 }
1467
1468                 dev->last_rx = jiffies;
1469
1470                 /* Clear the status flags for this buffer */
1471                 bdp->status &= ~RXBD_STATS;
1472
1473                 /* Add another skb for the future */
1474                 skb = gfar_new_skb(dev, bdp);
1475                 priv->rx_skbuff[priv->skb_currx] = skb;
1476
1477                 /* Update to the next pointer */
1478                 if (bdp->status & RXBD_WRAP)
1479                         bdp = priv->rx_bd_base;
1480                 else
1481                         bdp++;
1482
1483                 /* update to point at the next skb */
1484                 priv->skb_currx =
1485                     (priv->skb_currx +
1486                      1) & RX_RING_MOD_MASK(priv->rx_ring_size);
1487
1488         }
1489
1490         /* Update the current rxbd pointer to be the next one */
1491         priv->cur_rx = bdp;
1492
1493         /* If no packets have arrived since the
1494          * last one we processed, clear the IEVENT RX and
1495          * BSY bits so that another interrupt won't be
1496          * generated when we set IMASK */
1497         if (bdp->status & RXBD_EMPTY)
1498                 gfar_write(&priv->regs->ievent, IEVENT_RX_MASK);
1499
1500         return howmany;
1501 }
1502
1503 #ifdef CONFIG_GFAR_NAPI
1504 static int gfar_poll(struct net_device *dev, int *budget)
1505 {
1506         int howmany;
1507         struct gfar_private *priv = netdev_priv(dev);
1508         int rx_work_limit = *budget;
1509
1510         if (rx_work_limit > dev->quota)
1511                 rx_work_limit = dev->quota;
1512
1513         howmany = gfar_clean_rx_ring(dev, rx_work_limit);
1514
1515         dev->quota -= howmany;
1516         rx_work_limit -= howmany;
1517         *budget -= howmany;
1518
1519         if (rx_work_limit >= 0) {
1520                 netif_rx_complete(dev);
1521
1522                 /* Clear the halt bit in RSTAT */
1523                 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1524
1525                 gfar_write(&priv->regs->imask, IMASK_DEFAULT);
1526
1527                 /* If we are coalescing interrupts, update the timer */
1528                 /* Otherwise, clear it */
1529                 if (priv->rxcoalescing)
1530                         gfar_write(&priv->regs->rxic,
1531                                    mk_ic_value(priv->rxcount, priv->rxtime));
1532                 else
1533                         gfar_write(&priv->regs->rxic, 0);
1534         }
1535
1536         return (rx_work_limit < 0) ? 1 : 0;
1537 }
1538 #endif
1539
1540 /* The interrupt handler for devices with one interrupt */
1541 static irqreturn_t gfar_interrupt(int irq, void *dev_id, struct pt_regs *regs)
1542 {
1543         struct net_device *dev = dev_id;
1544         struct gfar_private *priv = netdev_priv(dev);
1545
1546         /* Save ievent for future reference */
1547         u32 events = gfar_read(&priv->regs->ievent);
1548
1549         /* Clear IEVENT */
1550         gfar_write(&priv->regs->ievent, events);
1551
1552         /* Check for reception */
1553         if ((events & IEVENT_RXF0) || (events & IEVENT_RXB0))
1554                 gfar_receive(irq, dev_id, regs);
1555
1556         /* Check for transmit completion */
1557         if ((events & IEVENT_TXF) || (events & IEVENT_TXB))
1558                 gfar_transmit(irq, dev_id, regs);
1559
1560         /* Update error statistics */
1561         if (events & IEVENT_TXE) {
1562                 priv->stats.tx_errors++;
1563
1564                 if (events & IEVENT_LC)
1565                         priv->stats.tx_window_errors++;
1566                 if (events & IEVENT_CRL)
1567                         priv->stats.tx_aborted_errors++;
1568                 if (events & IEVENT_XFUN) {
1569                         if (netif_msg_tx_err(priv))
1570                                 printk(KERN_WARNING "%s: tx underrun. dropped packet\n", dev->name);
1571                         priv->stats.tx_dropped++;
1572                         priv->extra_stats.tx_underrun++;
1573
1574                         /* Reactivate the Tx Queues */
1575                         gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1576                 }
1577         }
1578         if (events & IEVENT_BSY) {
1579                 priv->stats.rx_errors++;
1580                 priv->extra_stats.rx_bsy++;
1581
1582                 gfar_receive(irq, dev_id, regs);
1583
1584 #ifndef CONFIG_GFAR_NAPI
1585                 /* Clear the halt bit in RSTAT */
1586                 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1587 #endif
1588
1589                 if (netif_msg_rx_err(priv))
1590                         printk(KERN_DEBUG "%s: busy error (rhalt: %x)\n",
1591                                         dev->name,
1592                                         gfar_read(&priv->regs->rstat));
1593         }
1594         if (events & IEVENT_BABR) {
1595                 priv->stats.rx_errors++;
1596                 priv->extra_stats.rx_babr++;
1597
1598                 if (netif_msg_rx_err(priv))
1599                         printk(KERN_DEBUG "%s: babbling error\n", dev->name);
1600         }
1601         if (events & IEVENT_EBERR) {
1602                 priv->extra_stats.eberr++;
1603                 if (netif_msg_rx_err(priv))
1604                         printk(KERN_DEBUG "%s: EBERR\n", dev->name);
1605         }
1606         if ((events & IEVENT_RXC) && (netif_msg_rx_err(priv)))
1607                         printk(KERN_DEBUG "%s: control frame\n", dev->name);
1608
1609         if (events & IEVENT_BABT) {
1610                 priv->extra_stats.tx_babt++;
1611                 if (netif_msg_rx_err(priv))
1612                         printk(KERN_DEBUG "%s: babt error\n", dev->name);
1613         }
1614
1615         return IRQ_HANDLED;
1616 }
1617
1618 /* Called every time the controller might need to be made
1619  * aware of new link state.  The PHY code conveys this
1620  * information through variables in the phydev structure, and this
1621  * function converts those variables into the appropriate
1622  * register values, and can bring down the device if needed.
1623  */
1624 static void adjust_link(struct net_device *dev)
1625 {
1626         struct gfar_private *priv = netdev_priv(dev);
1627         struct gfar __iomem *regs = priv->regs;
1628         unsigned long flags;
1629         struct phy_device *phydev = priv->phydev;
1630         int new_state = 0;
1631
1632         spin_lock_irqsave(&priv->lock, flags);
1633         if (phydev->link) {
1634                 u32 tempval = gfar_read(&regs->maccfg2);
1635                 u32 ecntrl = gfar_read(&regs->ecntrl);
1636
1637                 /* Now we make sure that we can be in full duplex mode.
1638                  * If not, we operate in half-duplex mode. */
1639                 if (phydev->duplex != priv->oldduplex) {
1640                         new_state = 1;
1641                         if (!(phydev->duplex))
1642                                 tempval &= ~(MACCFG2_FULL_DUPLEX);
1643                         else
1644                                 tempval |= MACCFG2_FULL_DUPLEX;
1645
1646                         priv->oldduplex = phydev->duplex;
1647                 }
1648
1649                 if (phydev->speed != priv->oldspeed) {
1650                         new_state = 1;
1651                         switch (phydev->speed) {
1652                         case 1000:
1653                                 tempval =
1654                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1655                                 break;
1656                         case 100:
1657                         case 10:
1658                                 tempval =
1659                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1660
1661                                 /* Reduced mode distinguishes
1662                                  * between 10 and 100 */
1663                                 if (phydev->speed == SPEED_100)
1664                                         ecntrl |= ECNTRL_R100;
1665                                 else
1666                                         ecntrl &= ~(ECNTRL_R100);
1667                                 break;
1668                         default:
1669                                 if (netif_msg_link(priv))
1670                                         printk(KERN_WARNING
1671                                                 "%s: Ack!  Speed (%d) is not 10/100/1000!\n",
1672                                                 dev->name, phydev->speed);
1673                                 break;
1674                         }
1675
1676                         priv->oldspeed = phydev->speed;
1677                 }
1678
1679                 gfar_write(&regs->maccfg2, tempval);
1680                 gfar_write(&regs->ecntrl, ecntrl);
1681
1682                 if (!priv->oldlink) {
1683                         new_state = 1;
1684                         priv->oldlink = 1;
1685                         netif_schedule(dev);
1686                 }
1687         } else if (priv->oldlink) {
1688                 new_state = 1;
1689                 priv->oldlink = 0;
1690                 priv->oldspeed = 0;
1691                 priv->oldduplex = -1;
1692         }
1693
1694         if (new_state && netif_msg_link(priv))
1695                 phy_print_status(phydev);
1696
1697         spin_unlock_irqrestore(&priv->lock, flags);
1698 }
1699
1700 /* Update the hash table based on the current list of multicast
1701  * addresses we subscribe to.  Also, change the promiscuity of
1702  * the device based on the flags (this function is called
1703  * whenever dev->flags is changed */
1704 static void gfar_set_multi(struct net_device *dev)
1705 {
1706         struct dev_mc_list *mc_ptr;
1707         struct gfar_private *priv = netdev_priv(dev);
1708         struct gfar __iomem *regs = priv->regs;
1709         u32 tempval;
1710
1711         if(dev->flags & IFF_PROMISC) {
1712                 if (netif_msg_drv(priv))
1713                         printk(KERN_INFO "%s: Entering promiscuous mode.\n",
1714                                         dev->name);
1715                 /* Set RCTRL to PROM */
1716                 tempval = gfar_read(&regs->rctrl);
1717                 tempval |= RCTRL_PROM;
1718                 gfar_write(&regs->rctrl, tempval);
1719         } else {
1720                 /* Set RCTRL to not PROM */
1721                 tempval = gfar_read(&regs->rctrl);
1722                 tempval &= ~(RCTRL_PROM);
1723                 gfar_write(&regs->rctrl, tempval);
1724         }
1725         
1726         if(dev->flags & IFF_ALLMULTI) {
1727                 /* Set the hash to rx all multicast frames */
1728                 gfar_write(&regs->igaddr0, 0xffffffff);
1729                 gfar_write(&regs->igaddr1, 0xffffffff);
1730                 gfar_write(&regs->igaddr2, 0xffffffff);
1731                 gfar_write(&regs->igaddr3, 0xffffffff);
1732                 gfar_write(&regs->igaddr4, 0xffffffff);
1733                 gfar_write(&regs->igaddr5, 0xffffffff);
1734                 gfar_write(&regs->igaddr6, 0xffffffff);
1735                 gfar_write(&regs->igaddr7, 0xffffffff);
1736                 gfar_write(&regs->gaddr0, 0xffffffff);
1737                 gfar_write(&regs->gaddr1, 0xffffffff);
1738                 gfar_write(&regs->gaddr2, 0xffffffff);
1739                 gfar_write(&regs->gaddr3, 0xffffffff);
1740                 gfar_write(&regs->gaddr4, 0xffffffff);
1741                 gfar_write(&regs->gaddr5, 0xffffffff);
1742                 gfar_write(&regs->gaddr6, 0xffffffff);
1743                 gfar_write(&regs->gaddr7, 0xffffffff);
1744         } else {
1745                 int em_num;
1746                 int idx;
1747
1748                 /* zero out the hash */
1749                 gfar_write(&regs->igaddr0, 0x0);
1750                 gfar_write(&regs->igaddr1, 0x0);
1751                 gfar_write(&regs->igaddr2, 0x0);
1752                 gfar_write(&regs->igaddr3, 0x0);
1753                 gfar_write(&regs->igaddr4, 0x0);
1754                 gfar_write(&regs->igaddr5, 0x0);
1755                 gfar_write(&regs->igaddr6, 0x0);
1756                 gfar_write(&regs->igaddr7, 0x0);
1757                 gfar_write(&regs->gaddr0, 0x0);
1758                 gfar_write(&regs->gaddr1, 0x0);
1759                 gfar_write(&regs->gaddr2, 0x0);
1760                 gfar_write(&regs->gaddr3, 0x0);
1761                 gfar_write(&regs->gaddr4, 0x0);
1762                 gfar_write(&regs->gaddr5, 0x0);
1763                 gfar_write(&regs->gaddr6, 0x0);
1764                 gfar_write(&regs->gaddr7, 0x0);
1765
1766                 /* If we have extended hash tables, we need to
1767                  * clear the exact match registers to prepare for
1768                  * setting them */
1769                 if (priv->extended_hash) {
1770                         em_num = GFAR_EM_NUM + 1;
1771                         gfar_clear_exact_match(dev);
1772                         idx = 1;
1773                 } else {
1774                         idx = 0;
1775                         em_num = 0;
1776                 }
1777
1778                 if(dev->mc_count == 0)
1779                         return;
1780
1781                 /* Parse the list, and set the appropriate bits */
1782                 for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
1783                         if (idx < em_num) {
1784                                 gfar_set_mac_for_addr(dev, idx,
1785                                                 mc_ptr->dmi_addr);
1786                                 idx++;
1787                         } else
1788                                 gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
1789                 }
1790         }
1791
1792         return;
1793 }
1794
1795
1796 /* Clears each of the exact match registers to zero, so they
1797  * don't interfere with normal reception */
1798 static void gfar_clear_exact_match(struct net_device *dev)
1799 {
1800         int idx;
1801         u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
1802
1803         for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
1804                 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
1805 }
1806
1807 /* Set the appropriate hash bit for the given addr */
1808 /* The algorithm works like so:
1809  * 1) Take the Destination Address (ie the multicast address), and
1810  * do a CRC on it (little endian), and reverse the bits of the
1811  * result.
1812  * 2) Use the 8 most significant bits as a hash into a 256-entry
1813  * table.  The table is controlled through 8 32-bit registers:
1814  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
1815  * gaddr7.  This means that the 3 most significant bits in the
1816  * hash index which gaddr register to use, and the 5 other bits
1817  * indicate which bit (assuming an IBM numbering scheme, which
1818  * for PowerPC (tm) is usually the case) in the register holds
1819  * the entry. */
1820 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
1821 {
1822         u32 tempval;
1823         struct gfar_private *priv = netdev_priv(dev);
1824         u32 result = ether_crc(MAC_ADDR_LEN, addr);
1825         int width = priv->hash_width;
1826         u8 whichbit = (result >> (32 - width)) & 0x1f;
1827         u8 whichreg = result >> (32 - width + 5);
1828         u32 value = (1 << (31-whichbit));
1829
1830         tempval = gfar_read(priv->hash_regs[whichreg]);
1831         tempval |= value;
1832         gfar_write(priv->hash_regs[whichreg], tempval);
1833
1834         return;
1835 }
1836
1837
1838 /* There are multiple MAC Address register pairs on some controllers
1839  * This function sets the numth pair to a given address
1840  */
1841 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
1842 {
1843         struct gfar_private *priv = netdev_priv(dev);
1844         int idx;
1845         char tmpbuf[MAC_ADDR_LEN];
1846         u32 tempval;
1847         u32 __iomem *macptr = &priv->regs->macstnaddr1;
1848
1849         macptr += num*2;
1850
1851         /* Now copy it into the mac registers backwards, cuz */
1852         /* little endian is silly */
1853         for (idx = 0; idx < MAC_ADDR_LEN; idx++)
1854                 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
1855
1856         gfar_write(macptr, *((u32 *) (tmpbuf)));
1857
1858         tempval = *((u32 *) (tmpbuf + 4));
1859
1860         gfar_write(macptr+1, tempval);
1861 }
1862
1863 /* GFAR error interrupt handler */
1864 static irqreturn_t gfar_error(int irq, void *dev_id, struct pt_regs *regs)
1865 {
1866         struct net_device *dev = dev_id;
1867         struct gfar_private *priv = netdev_priv(dev);
1868
1869         /* Save ievent for future reference */
1870         u32 events = gfar_read(&priv->regs->ievent);
1871
1872         /* Clear IEVENT */
1873         gfar_write(&priv->regs->ievent, IEVENT_ERR_MASK);
1874
1875         /* Hmm... */
1876         if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
1877                 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
1878                                 dev->name, events, gfar_read(&priv->regs->imask));
1879
1880         /* Update the error counters */
1881         if (events & IEVENT_TXE) {
1882                 priv->stats.tx_errors++;
1883
1884                 if (events & IEVENT_LC)
1885                         priv->stats.tx_window_errors++;
1886                 if (events & IEVENT_CRL)
1887                         priv->stats.tx_aborted_errors++;
1888                 if (events & IEVENT_XFUN) {
1889                         if (netif_msg_tx_err(priv))
1890                                 printk(KERN_DEBUG "%s: underrun.  packet dropped.\n",
1891                                                 dev->name);
1892                         priv->stats.tx_dropped++;
1893                         priv->extra_stats.tx_underrun++;
1894
1895                         /* Reactivate the Tx Queues */
1896                         gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1897                 }
1898                 if (netif_msg_tx_err(priv))
1899                         printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
1900         }
1901         if (events & IEVENT_BSY) {
1902                 priv->stats.rx_errors++;
1903                 priv->extra_stats.rx_bsy++;
1904
1905                 gfar_receive(irq, dev_id, regs);
1906
1907 #ifndef CONFIG_GFAR_NAPI
1908                 /* Clear the halt bit in RSTAT */
1909                 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1910 #endif
1911
1912                 if (netif_msg_rx_err(priv))
1913                         printk(KERN_DEBUG "%s: busy error (rhalt: %x)\n",
1914                                         dev->name,
1915                                         gfar_read(&priv->regs->rstat));
1916         }
1917         if (events & IEVENT_BABR) {
1918                 priv->stats.rx_errors++;
1919                 priv->extra_stats.rx_babr++;
1920
1921                 if (netif_msg_rx_err(priv))
1922                         printk(KERN_DEBUG "%s: babbling error\n", dev->name);
1923         }
1924         if (events & IEVENT_EBERR) {
1925                 priv->extra_stats.eberr++;
1926                 if (netif_msg_rx_err(priv))
1927                         printk(KERN_DEBUG "%s: EBERR\n", dev->name);
1928         }
1929         if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
1930                 if (netif_msg_rx_status(priv))
1931                         printk(KERN_DEBUG "%s: control frame\n", dev->name);
1932
1933         if (events & IEVENT_BABT) {
1934                 priv->extra_stats.tx_babt++;
1935                 if (netif_msg_tx_err(priv))
1936                         printk(KERN_DEBUG "%s: babt error\n", dev->name);
1937         }
1938         return IRQ_HANDLED;
1939 }
1940
1941 /* Structure for a device driver */
1942 static struct platform_driver gfar_driver = {
1943         .probe = gfar_probe,
1944         .remove = gfar_remove,
1945         .driver = {
1946                 .name = "fsl-gianfar",
1947         },
1948 };
1949
1950 static int __init gfar_init(void)
1951 {
1952         int err = gfar_mdio_init();
1953
1954         if (err)
1955                 return err;
1956
1957         err = platform_driver_register(&gfar_driver);
1958
1959         if (err)
1960                 gfar_mdio_exit();
1961         
1962         return err;
1963 }
1964
1965 static void __exit gfar_exit(void)
1966 {
1967         platform_driver_unregister(&gfar_driver);
1968         gfar_mdio_exit();
1969 }
1970
1971 module_init(gfar_init);
1972 module_exit(gfar_exit);
1973