]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/forcedeth.c
[PATCH] forcedeth: Initialize link settings in every nv_open()
[linux-2.6-omap-h63xx.git] / drivers / net / forcedeth.c
1 /*
2  * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
3  *
4  * Note: This driver is a cleanroom reimplementation based on reverse
5  *      engineered documentation written by Carl-Daniel Hailfinger
6  *      and Andrew de Quincey. It's neither supported nor endorsed
7  *      by NVIDIA Corp. Use at your own risk.
8  *
9  * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
10  * trademarks of NVIDIA Corporation in the United States and other
11  * countries.
12  *
13  * Copyright (C) 2003,4 Manfred Spraul
14  * Copyright (C) 2004 Andrew de Quincey (wol support)
15  * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
16  *              IRQ rate fixes, bigendian fixes, cleanups, verification)
17  * Copyright (c) 2004 NVIDIA Corporation
18  *
19  * This program is free software; you can redistribute it and/or modify
20  * it under the terms of the GNU General Public License as published by
21  * the Free Software Foundation; either version 2 of the License, or
22  * (at your option) any later version.
23  *
24  * This program is distributed in the hope that it will be useful,
25  * but WITHOUT ANY WARRANTY; without even the implied warranty of
26  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
27  * GNU General Public License for more details.
28  *
29  * You should have received a copy of the GNU General Public License
30  * along with this program; if not, write to the Free Software
31  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
32  *
33  * Changelog:
34  *      0.01: 05 Oct 2003: First release that compiles without warnings.
35  *      0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
36  *                         Check all PCI BARs for the register window.
37  *                         udelay added to mii_rw.
38  *      0.03: 06 Oct 2003: Initialize dev->irq.
39  *      0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
40  *      0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
41  *      0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
42  *                         irq mask updated
43  *      0.07: 14 Oct 2003: Further irq mask updates.
44  *      0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
45  *                         added into irq handler, NULL check for drain_ring.
46  *      0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
47  *                         requested interrupt sources.
48  *      0.10: 20 Oct 2003: First cleanup for release.
49  *      0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
50  *                         MAC Address init fix, set_multicast cleanup.
51  *      0.12: 23 Oct 2003: Cleanups for release.
52  *      0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
53  *                         Set link speed correctly. start rx before starting
54  *                         tx (nv_start_rx sets the link speed).
55  *      0.14: 25 Oct 2003: Nic dependant irq mask.
56  *      0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
57  *                         open.
58  *      0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
59  *                         increased to 1628 bytes.
60  *      0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
61  *                         the tx length.
62  *      0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
63  *      0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
64  *                         addresses, really stop rx if already running
65  *                         in nv_start_rx, clean up a bit.
66  *      0.20: 07 Dec 2003: alloc fixes
67  *      0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
68  *      0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
69  *                         on close.
70  *      0.23: 26 Jan 2004: various small cleanups
71  *      0.24: 27 Feb 2004: make driver even less anonymous in backtraces
72  *      0.25: 09 Mar 2004: wol support
73  *      0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
74  *      0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
75  *                         added CK804/MCP04 device IDs, code fixes
76  *                         for registers, link status and other minor fixes.
77  *      0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
78  *      0.29: 31 Aug 2004: Add backup timer for link change notification.
79  *      0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
80  *                         into nv_close, otherwise reenabling for wol can
81  *                         cause DMA to kfree'd memory.
82  *      0.31: 14 Nov 2004: ethtool support for getting/setting link
83  *                         capabilities.
84  *      0.32: 16 Apr 2005: RX_ERROR4 handling added.
85  *      0.33: 16 May 2005: Support for MCP51 added.
86  *      0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics.
87  *      0.35: 26 Jun 2005: Support for MCP55 added.
88  *      0.36: 28 Jun 2005: Add jumbo frame support.
89  *      0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list
90  *      0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of
91  *                         per-packet flags.
92  *      0.39: 18 Jul 2005: Add 64bit descriptor support.
93  *      0.40: 19 Jul 2005: Add support for mac address change.
94  *      0.41: 30 Jul 2005: Write back original MAC in nv_close instead
95  *                         of nv_remove
96  *      0.42: 06 Aug 2005: Fix lack of link speed initialization
97  *                         in the second (and later) nv_open call
98  *
99  * Known bugs:
100  * We suspect that on some hardware no TX done interrupts are generated.
101  * This means recovery from netif_stop_queue only happens if the hw timer
102  * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
103  * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
104  * If your hardware reliably generates tx done interrupts, then you can remove
105  * DEV_NEED_TIMERIRQ from the driver_data flags.
106  * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
107  * superfluous timer interrupts from the nic.
108  */
109 #define FORCEDETH_VERSION               "0.41"
110 #define DRV_NAME                        "forcedeth"
111
112 #include <linux/module.h>
113 #include <linux/types.h>
114 #include <linux/pci.h>
115 #include <linux/interrupt.h>
116 #include <linux/netdevice.h>
117 #include <linux/etherdevice.h>
118 #include <linux/delay.h>
119 #include <linux/spinlock.h>
120 #include <linux/ethtool.h>
121 #include <linux/timer.h>
122 #include <linux/skbuff.h>
123 #include <linux/mii.h>
124 #include <linux/random.h>
125 #include <linux/init.h>
126 #include <linux/if_vlan.h>
127
128 #include <asm/irq.h>
129 #include <asm/io.h>
130 #include <asm/uaccess.h>
131 #include <asm/system.h>
132
133 #if 0
134 #define dprintk                 printk
135 #else
136 #define dprintk(x...)           do { } while (0)
137 #endif
138
139
140 /*
141  * Hardware access:
142  */
143
144 #define DEV_NEED_TIMERIRQ       0x0001  /* set the timer irq flag in the irq mask */
145 #define DEV_NEED_LINKTIMER      0x0002  /* poll link settings. Relies on the timer irq */
146 #define DEV_HAS_LARGEDESC       0x0004  /* device supports jumbo frames and needs packet format 2 */
147 #define DEV_HAS_HIGH_DMA        0x0008  /* device supports 64bit dma */
148
149 enum {
150         NvRegIrqStatus = 0x000,
151 #define NVREG_IRQSTAT_MIIEVENT  0x040
152 #define NVREG_IRQSTAT_MASK              0x1ff
153         NvRegIrqMask = 0x004,
154 #define NVREG_IRQ_RX_ERROR              0x0001
155 #define NVREG_IRQ_RX                    0x0002
156 #define NVREG_IRQ_RX_NOBUF              0x0004
157 #define NVREG_IRQ_TX_ERR                0x0008
158 #define NVREG_IRQ_TX_OK                 0x0010
159 #define NVREG_IRQ_TIMER                 0x0020
160 #define NVREG_IRQ_LINK                  0x0040
161 #define NVREG_IRQ_TX_ERROR              0x0080
162 #define NVREG_IRQ_TX1                   0x0100
163 #define NVREG_IRQMASK_WANTED            0x00df
164
165 #define NVREG_IRQ_UNKNOWN       (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
166                                         NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_TX_ERROR| \
167                                         NVREG_IRQ_TX1))
168
169         NvRegUnknownSetupReg6 = 0x008,
170 #define NVREG_UNKSETUP6_VAL             3
171
172 /*
173  * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
174  * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
175  */
176         NvRegPollingInterval = 0x00c,
177 #define NVREG_POLL_DEFAULT      970
178         NvRegMisc1 = 0x080,
179 #define NVREG_MISC1_HD          0x02
180 #define NVREG_MISC1_FORCE       0x3b0f3c
181
182         NvRegTransmitterControl = 0x084,
183 #define NVREG_XMITCTL_START     0x01
184         NvRegTransmitterStatus = 0x088,
185 #define NVREG_XMITSTAT_BUSY     0x01
186
187         NvRegPacketFilterFlags = 0x8c,
188 #define NVREG_PFF_ALWAYS        0x7F0008
189 #define NVREG_PFF_PROMISC       0x80
190 #define NVREG_PFF_MYADDR        0x20
191
192         NvRegOffloadConfig = 0x90,
193 #define NVREG_OFFLOAD_HOMEPHY   0x601
194 #define NVREG_OFFLOAD_NORMAL    RX_NIC_BUFSIZE
195         NvRegReceiverControl = 0x094,
196 #define NVREG_RCVCTL_START      0x01
197         NvRegReceiverStatus = 0x98,
198 #define NVREG_RCVSTAT_BUSY      0x01
199
200         NvRegRandomSeed = 0x9c,
201 #define NVREG_RNDSEED_MASK      0x00ff
202 #define NVREG_RNDSEED_FORCE     0x7f00
203 #define NVREG_RNDSEED_FORCE2    0x2d00
204 #define NVREG_RNDSEED_FORCE3    0x7400
205
206         NvRegUnknownSetupReg1 = 0xA0,
207 #define NVREG_UNKSETUP1_VAL     0x16070f
208         NvRegUnknownSetupReg2 = 0xA4,
209 #define NVREG_UNKSETUP2_VAL     0x16
210         NvRegMacAddrA = 0xA8,
211         NvRegMacAddrB = 0xAC,
212         NvRegMulticastAddrA = 0xB0,
213 #define NVREG_MCASTADDRA_FORCE  0x01
214         NvRegMulticastAddrB = 0xB4,
215         NvRegMulticastMaskA = 0xB8,
216         NvRegMulticastMaskB = 0xBC,
217
218         NvRegPhyInterface = 0xC0,
219 #define PHY_RGMII               0x10000000
220
221         NvRegTxRingPhysAddr = 0x100,
222         NvRegRxRingPhysAddr = 0x104,
223         NvRegRingSizes = 0x108,
224 #define NVREG_RINGSZ_TXSHIFT 0
225 #define NVREG_RINGSZ_RXSHIFT 16
226         NvRegUnknownTransmitterReg = 0x10c,
227         NvRegLinkSpeed = 0x110,
228 #define NVREG_LINKSPEED_FORCE 0x10000
229 #define NVREG_LINKSPEED_10      1000
230 #define NVREG_LINKSPEED_100     100
231 #define NVREG_LINKSPEED_1000    50
232 #define NVREG_LINKSPEED_MASK    (0xFFF)
233         NvRegUnknownSetupReg5 = 0x130,
234 #define NVREG_UNKSETUP5_BIT31   (1<<31)
235         NvRegUnknownSetupReg3 = 0x13c,
236 #define NVREG_UNKSETUP3_VAL1    0x200010
237         NvRegTxRxControl = 0x144,
238 #define NVREG_TXRXCTL_KICK      0x0001
239 #define NVREG_TXRXCTL_BIT1      0x0002
240 #define NVREG_TXRXCTL_BIT2      0x0004
241 #define NVREG_TXRXCTL_IDLE      0x0008
242 #define NVREG_TXRXCTL_RESET     0x0010
243 #define NVREG_TXRXCTL_RXCHECK   0x0400
244         NvRegMIIStatus = 0x180,
245 #define NVREG_MIISTAT_ERROR             0x0001
246 #define NVREG_MIISTAT_LINKCHANGE        0x0008
247 #define NVREG_MIISTAT_MASK              0x000f
248 #define NVREG_MIISTAT_MASK2             0x000f
249         NvRegUnknownSetupReg4 = 0x184,
250 #define NVREG_UNKSETUP4_VAL     8
251
252         NvRegAdapterControl = 0x188,
253 #define NVREG_ADAPTCTL_START    0x02
254 #define NVREG_ADAPTCTL_LINKUP   0x04
255 #define NVREG_ADAPTCTL_PHYVALID 0x40000
256 #define NVREG_ADAPTCTL_RUNNING  0x100000
257 #define NVREG_ADAPTCTL_PHYSHIFT 24
258         NvRegMIISpeed = 0x18c,
259 #define NVREG_MIISPEED_BIT8     (1<<8)
260 #define NVREG_MIIDELAY  5
261         NvRegMIIControl = 0x190,
262 #define NVREG_MIICTL_INUSE      0x08000
263 #define NVREG_MIICTL_WRITE      0x00400
264 #define NVREG_MIICTL_ADDRSHIFT  5
265         NvRegMIIData = 0x194,
266         NvRegWakeUpFlags = 0x200,
267 #define NVREG_WAKEUPFLAGS_VAL           0x7770
268 #define NVREG_WAKEUPFLAGS_BUSYSHIFT     24
269 #define NVREG_WAKEUPFLAGS_ENABLESHIFT   16
270 #define NVREG_WAKEUPFLAGS_D3SHIFT       12
271 #define NVREG_WAKEUPFLAGS_D2SHIFT       8
272 #define NVREG_WAKEUPFLAGS_D1SHIFT       4
273 #define NVREG_WAKEUPFLAGS_D0SHIFT       0
274 #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT         0x01
275 #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT      0x02
276 #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE     0x04
277 #define NVREG_WAKEUPFLAGS_ENABLE        0x1111
278
279         NvRegPatternCRC = 0x204,
280         NvRegPatternMask = 0x208,
281         NvRegPowerCap = 0x268,
282 #define NVREG_POWERCAP_D3SUPP   (1<<30)
283 #define NVREG_POWERCAP_D2SUPP   (1<<26)
284 #define NVREG_POWERCAP_D1SUPP   (1<<25)
285         NvRegPowerState = 0x26c,
286 #define NVREG_POWERSTATE_POWEREDUP      0x8000
287 #define NVREG_POWERSTATE_VALID          0x0100
288 #define NVREG_POWERSTATE_MASK           0x0003
289 #define NVREG_POWERSTATE_D0             0x0000
290 #define NVREG_POWERSTATE_D1             0x0001
291 #define NVREG_POWERSTATE_D2             0x0002
292 #define NVREG_POWERSTATE_D3             0x0003
293 };
294
295 /* Big endian: should work, but is untested */
296 struct ring_desc {
297         u32 PacketBuffer;
298         u32 FlagLen;
299 };
300
301 struct ring_desc_ex {
302         u32 PacketBufferHigh;
303         u32 PacketBufferLow;
304         u32 Reserved;
305         u32 FlagLen;
306 };
307
308 typedef union _ring_type {
309         struct ring_desc* orig;
310         struct ring_desc_ex* ex;
311 } ring_type;
312
313 #define FLAG_MASK_V1 0xffff0000
314 #define FLAG_MASK_V2 0xffffc000
315 #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
316 #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
317
318 #define NV_TX_LASTPACKET        (1<<16)
319 #define NV_TX_RETRYERROR        (1<<19)
320 #define NV_TX_FORCED_INTERRUPT  (1<<24)
321 #define NV_TX_DEFERRED          (1<<26)
322 #define NV_TX_CARRIERLOST       (1<<27)
323 #define NV_TX_LATECOLLISION     (1<<28)
324 #define NV_TX_UNDERFLOW         (1<<29)
325 #define NV_TX_ERROR             (1<<30)
326 #define NV_TX_VALID             (1<<31)
327
328 #define NV_TX2_LASTPACKET       (1<<29)
329 #define NV_TX2_RETRYERROR       (1<<18)
330 #define NV_TX2_FORCED_INTERRUPT (1<<30)
331 #define NV_TX2_DEFERRED         (1<<25)
332 #define NV_TX2_CARRIERLOST      (1<<26)
333 #define NV_TX2_LATECOLLISION    (1<<27)
334 #define NV_TX2_UNDERFLOW        (1<<28)
335 /* error and valid are the same for both */
336 #define NV_TX2_ERROR            (1<<30)
337 #define NV_TX2_VALID            (1<<31)
338
339 #define NV_RX_DESCRIPTORVALID   (1<<16)
340 #define NV_RX_MISSEDFRAME       (1<<17)
341 #define NV_RX_SUBSTRACT1        (1<<18)
342 #define NV_RX_ERROR1            (1<<23)
343 #define NV_RX_ERROR2            (1<<24)
344 #define NV_RX_ERROR3            (1<<25)
345 #define NV_RX_ERROR4            (1<<26)
346 #define NV_RX_CRCERR            (1<<27)
347 #define NV_RX_OVERFLOW          (1<<28)
348 #define NV_RX_FRAMINGERR        (1<<29)
349 #define NV_RX_ERROR             (1<<30)
350 #define NV_RX_AVAIL             (1<<31)
351
352 #define NV_RX2_CHECKSUMMASK     (0x1C000000)
353 #define NV_RX2_CHECKSUMOK1      (0x10000000)
354 #define NV_RX2_CHECKSUMOK2      (0x14000000)
355 #define NV_RX2_CHECKSUMOK3      (0x18000000)
356 #define NV_RX2_DESCRIPTORVALID  (1<<29)
357 #define NV_RX2_SUBSTRACT1       (1<<25)
358 #define NV_RX2_ERROR1           (1<<18)
359 #define NV_RX2_ERROR2           (1<<19)
360 #define NV_RX2_ERROR3           (1<<20)
361 #define NV_RX2_ERROR4           (1<<21)
362 #define NV_RX2_CRCERR           (1<<22)
363 #define NV_RX2_OVERFLOW         (1<<23)
364 #define NV_RX2_FRAMINGERR       (1<<24)
365 /* error and avail are the same for both */
366 #define NV_RX2_ERROR            (1<<30)
367 #define NV_RX2_AVAIL            (1<<31)
368
369 /* Miscelaneous hardware related defines: */
370 #define NV_PCI_REGSZ            0x270
371
372 /* various timeout delays: all in usec */
373 #define NV_TXRX_RESET_DELAY     4
374 #define NV_TXSTOP_DELAY1        10
375 #define NV_TXSTOP_DELAY1MAX     500000
376 #define NV_TXSTOP_DELAY2        100
377 #define NV_RXSTOP_DELAY1        10
378 #define NV_RXSTOP_DELAY1MAX     500000
379 #define NV_RXSTOP_DELAY2        100
380 #define NV_SETUP5_DELAY         5
381 #define NV_SETUP5_DELAYMAX      50000
382 #define NV_POWERUP_DELAY        5
383 #define NV_POWERUP_DELAYMAX     5000
384 #define NV_MIIBUSY_DELAY        50
385 #define NV_MIIPHY_DELAY 10
386 #define NV_MIIPHY_DELAYMAX      10000
387
388 #define NV_WAKEUPPATTERNS       5
389 #define NV_WAKEUPMASKENTRIES    4
390
391 /* General driver defaults */
392 #define NV_WATCHDOG_TIMEO       (5*HZ)
393
394 #define RX_RING         128
395 #define TX_RING         64
396 /* 
397  * If your nic mysteriously hangs then try to reduce the limits
398  * to 1/0: It might be required to set NV_TX_LASTPACKET in the
399  * last valid ring entry. But this would be impossible to
400  * implement - probably a disassembly error.
401  */
402 #define TX_LIMIT_STOP   63
403 #define TX_LIMIT_START  62
404
405 /* rx/tx mac addr + type + vlan + align + slack*/
406 #define NV_RX_HEADERS           (64)
407 /* even more slack. */
408 #define NV_RX_ALLOC_PAD         (64)
409
410 /* maximum mtu size */
411 #define NV_PKTLIMIT_1   ETH_DATA_LEN    /* hard limit not known */
412 #define NV_PKTLIMIT_2   9100    /* Actual limit according to NVidia: 9202 */
413
414 #define OOM_REFILL      (1+HZ/20)
415 #define POLL_WAIT       (1+HZ/100)
416 #define LINK_TIMEOUT    (3*HZ)
417
418 /* 
419  * desc_ver values:
420  * This field has two purposes:
421  * - Newer nics uses a different ring layout. The layout is selected by
422  *   comparing np->desc_ver with DESC_VER_xy.
423  * - It contains bits that are forced on when writing to NvRegTxRxControl.
424  */
425 #define DESC_VER_1      0x0
426 #define DESC_VER_2      (0x02100|NVREG_TXRXCTL_RXCHECK)
427 #define DESC_VER_3      (0x02200|NVREG_TXRXCTL_RXCHECK)
428
429 /* PHY defines */
430 #define PHY_OUI_MARVELL 0x5043
431 #define PHY_OUI_CICADA  0x03f1
432 #define PHYID1_OUI_MASK 0x03ff
433 #define PHYID1_OUI_SHFT 6
434 #define PHYID2_OUI_MASK 0xfc00
435 #define PHYID2_OUI_SHFT 10
436 #define PHY_INIT1       0x0f000
437 #define PHY_INIT2       0x0e00
438 #define PHY_INIT3       0x01000
439 #define PHY_INIT4       0x0200
440 #define PHY_INIT5       0x0004
441 #define PHY_INIT6       0x02000
442 #define PHY_GIGABIT     0x0100
443
444 #define PHY_TIMEOUT     0x1
445 #define PHY_ERROR       0x2
446
447 #define PHY_100 0x1
448 #define PHY_1000        0x2
449 #define PHY_HALF        0x100
450
451 /* FIXME: MII defines that should be added to <linux/mii.h> */
452 #define MII_1000BT_CR   0x09
453 #define MII_1000BT_SR   0x0a
454 #define ADVERTISE_1000FULL      0x0200
455 #define ADVERTISE_1000HALF      0x0100
456 #define LPA_1000FULL    0x0800
457 #define LPA_1000HALF    0x0400
458
459
460 /*
461  * SMP locking:
462  * All hardware access under dev->priv->lock, except the performance
463  * critical parts:
464  * - rx is (pseudo-) lockless: it relies on the single-threading provided
465  *      by the arch code for interrupts.
466  * - tx setup is lockless: it relies on dev->xmit_lock. Actual submission
467  *      needs dev->priv->lock :-(
468  * - set_multicast_list: preparation lockless, relies on dev->xmit_lock.
469  */
470
471 /* in dev: base, irq */
472 struct fe_priv {
473         spinlock_t lock;
474
475         /* General data:
476          * Locking: spin_lock(&np->lock); */
477         struct net_device_stats stats;
478         int in_shutdown;
479         u32 linkspeed;
480         int duplex;
481         int autoneg;
482         int fixed_mode;
483         int phyaddr;
484         int wolenabled;
485         unsigned int phy_oui;
486         u16 gigabit;
487
488         /* General data: RO fields */
489         dma_addr_t ring_addr;
490         struct pci_dev *pci_dev;
491         u32 orig_mac[2];
492         u32 irqmask;
493         u32 desc_ver;
494
495         void __iomem *base;
496
497         /* rx specific fields.
498          * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
499          */
500         ring_type rx_ring;
501         unsigned int cur_rx, refill_rx;
502         struct sk_buff *rx_skbuff[RX_RING];
503         dma_addr_t rx_dma[RX_RING];
504         unsigned int rx_buf_sz;
505         unsigned int pkt_limit;
506         struct timer_list oom_kick;
507         struct timer_list nic_poll;
508
509         /* media detection workaround.
510          * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
511          */
512         int need_linktimer;
513         unsigned long link_timeout;
514         /*
515          * tx specific fields.
516          */
517         ring_type tx_ring;
518         unsigned int next_tx, nic_tx;
519         struct sk_buff *tx_skbuff[TX_RING];
520         dma_addr_t tx_dma[TX_RING];
521         u32 tx_flags;
522 };
523
524 /*
525  * Maximum number of loops until we assume that a bit in the irq mask
526  * is stuck. Overridable with module param.
527  */
528 static int max_interrupt_work = 5;
529
530 static inline struct fe_priv *get_nvpriv(struct net_device *dev)
531 {
532         return netdev_priv(dev);
533 }
534
535 static inline u8 __iomem *get_hwbase(struct net_device *dev)
536 {
537         return get_nvpriv(dev)->base;
538 }
539
540 static inline void pci_push(u8 __iomem *base)
541 {
542         /* force out pending posted writes */
543         readl(base);
544 }
545
546 static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
547 {
548         return le32_to_cpu(prd->FlagLen)
549                 & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
550 }
551
552 static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
553 {
554         return le32_to_cpu(prd->FlagLen) & LEN_MASK_V2;
555 }
556
557 static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
558                                 int delay, int delaymax, const char *msg)
559 {
560         u8 __iomem *base = get_hwbase(dev);
561
562         pci_push(base);
563         do {
564                 udelay(delay);
565                 delaymax -= delay;
566                 if (delaymax < 0) {
567                         if (msg)
568                                 printk(msg);
569                         return 1;
570                 }
571         } while ((readl(base + offset) & mask) != target);
572         return 0;
573 }
574
575 #define MII_READ        (-1)
576 /* mii_rw: read/write a register on the PHY.
577  *
578  * Caller must guarantee serialization
579  */
580 static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
581 {
582         u8 __iomem *base = get_hwbase(dev);
583         u32 reg;
584         int retval;
585
586         writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
587
588         reg = readl(base + NvRegMIIControl);
589         if (reg & NVREG_MIICTL_INUSE) {
590                 writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
591                 udelay(NV_MIIBUSY_DELAY);
592         }
593
594         reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
595         if (value != MII_READ) {
596                 writel(value, base + NvRegMIIData);
597                 reg |= NVREG_MIICTL_WRITE;
598         }
599         writel(reg, base + NvRegMIIControl);
600
601         if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
602                         NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
603                 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
604                                 dev->name, miireg, addr);
605                 retval = -1;
606         } else if (value != MII_READ) {
607                 /* it was a write operation - fewer failures are detectable */
608                 dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
609                                 dev->name, value, miireg, addr);
610                 retval = 0;
611         } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
612                 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
613                                 dev->name, miireg, addr);
614                 retval = -1;
615         } else {
616                 retval = readl(base + NvRegMIIData);
617                 dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
618                                 dev->name, miireg, addr, retval);
619         }
620
621         return retval;
622 }
623
624 static int phy_reset(struct net_device *dev)
625 {
626         struct fe_priv *np = get_nvpriv(dev);
627         u32 miicontrol;
628         unsigned int tries = 0;
629
630         miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
631         miicontrol |= BMCR_RESET;
632         if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
633                 return -1;
634         }
635
636         /* wait for 500ms */
637         msleep(500);
638
639         /* must wait till reset is deasserted */
640         while (miicontrol & BMCR_RESET) {
641                 msleep(10);
642                 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
643                 /* FIXME: 100 tries seem excessive */
644                 if (tries++ > 100)
645                         return -1;
646         }
647         return 0;
648 }
649
650 static int phy_init(struct net_device *dev)
651 {
652         struct fe_priv *np = get_nvpriv(dev);
653         u8 __iomem *base = get_hwbase(dev);
654         u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
655
656         /* set advertise register */
657         reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
658         reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|0x800|0x400);
659         if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
660                 printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
661                 return PHY_ERROR;
662         }
663
664         /* get phy interface type */
665         phyinterface = readl(base + NvRegPhyInterface);
666
667         /* see if gigabit phy */
668         mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
669         if (mii_status & PHY_GIGABIT) {
670                 np->gigabit = PHY_GIGABIT;
671                 mii_control_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
672                 mii_control_1000 &= ~ADVERTISE_1000HALF;
673                 if (phyinterface & PHY_RGMII)
674                         mii_control_1000 |= ADVERTISE_1000FULL;
675                 else
676                         mii_control_1000 &= ~ADVERTISE_1000FULL;
677
678                 if (mii_rw(dev, np->phyaddr, MII_1000BT_CR, mii_control_1000)) {
679                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
680                         return PHY_ERROR;
681                 }
682         }
683         else
684                 np->gigabit = 0;
685
686         /* reset the phy */
687         if (phy_reset(dev)) {
688                 printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
689                 return PHY_ERROR;
690         }
691
692         /* phy vendor specific configuration */
693         if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
694                 phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
695                 phy_reserved &= ~(PHY_INIT1 | PHY_INIT2);
696                 phy_reserved |= (PHY_INIT3 | PHY_INIT4);
697                 if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
698                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
699                         return PHY_ERROR;
700                 }
701                 phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
702                 phy_reserved |= PHY_INIT5;
703                 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
704                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
705                         return PHY_ERROR;
706                 }
707         }
708         if (np->phy_oui == PHY_OUI_CICADA) {
709                 phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
710                 phy_reserved |= PHY_INIT6;
711                 if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
712                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
713                         return PHY_ERROR;
714                 }
715         }
716
717         /* restart auto negotiation */
718         mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
719         mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
720         if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
721                 return PHY_ERROR;
722         }
723
724         return 0;
725 }
726
727 static void nv_start_rx(struct net_device *dev)
728 {
729         struct fe_priv *np = get_nvpriv(dev);
730         u8 __iomem *base = get_hwbase(dev);
731
732         dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
733         /* Already running? Stop it. */
734         if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
735                 writel(0, base + NvRegReceiverControl);
736                 pci_push(base);
737         }
738         writel(np->linkspeed, base + NvRegLinkSpeed);
739         pci_push(base);
740         writel(NVREG_RCVCTL_START, base + NvRegReceiverControl);
741         dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
742                                 dev->name, np->duplex, np->linkspeed);
743         pci_push(base);
744 }
745
746 static void nv_stop_rx(struct net_device *dev)
747 {
748         u8 __iomem *base = get_hwbase(dev);
749
750         dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
751         writel(0, base + NvRegReceiverControl);
752         reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
753                         NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
754                         KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
755
756         udelay(NV_RXSTOP_DELAY2);
757         writel(0, base + NvRegLinkSpeed);
758 }
759
760 static void nv_start_tx(struct net_device *dev)
761 {
762         u8 __iomem *base = get_hwbase(dev);
763
764         dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
765         writel(NVREG_XMITCTL_START, base + NvRegTransmitterControl);
766         pci_push(base);
767 }
768
769 static void nv_stop_tx(struct net_device *dev)
770 {
771         u8 __iomem *base = get_hwbase(dev);
772
773         dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
774         writel(0, base + NvRegTransmitterControl);
775         reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
776                         NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
777                         KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
778
779         udelay(NV_TXSTOP_DELAY2);
780         writel(0, base + NvRegUnknownTransmitterReg);
781 }
782
783 static void nv_txrx_reset(struct net_device *dev)
784 {
785         struct fe_priv *np = get_nvpriv(dev);
786         u8 __iomem *base = get_hwbase(dev);
787
788         dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
789         writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->desc_ver, base + NvRegTxRxControl);
790         pci_push(base);
791         udelay(NV_TXRX_RESET_DELAY);
792         writel(NVREG_TXRXCTL_BIT2 | np->desc_ver, base + NvRegTxRxControl);
793         pci_push(base);
794 }
795
796 /*
797  * nv_get_stats: dev->get_stats function
798  * Get latest stats value from the nic.
799  * Called with read_lock(&dev_base_lock) held for read -
800  * only synchronized against unregister_netdevice.
801  */
802 static struct net_device_stats *nv_get_stats(struct net_device *dev)
803 {
804         struct fe_priv *np = get_nvpriv(dev);
805
806         /* It seems that the nic always generates interrupts and doesn't
807          * accumulate errors internally. Thus the current values in np->stats
808          * are already up to date.
809          */
810         return &np->stats;
811 }
812
813 /*
814  * nv_alloc_rx: fill rx ring entries.
815  * Return 1 if the allocations for the skbs failed and the
816  * rx engine is without Available descriptors
817  */
818 static int nv_alloc_rx(struct net_device *dev)
819 {
820         struct fe_priv *np = get_nvpriv(dev);
821         unsigned int refill_rx = np->refill_rx;
822         int nr;
823
824         while (np->cur_rx != refill_rx) {
825                 struct sk_buff *skb;
826
827                 nr = refill_rx % RX_RING;
828                 if (np->rx_skbuff[nr] == NULL) {
829
830                         skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
831                         if (!skb)
832                                 break;
833
834                         skb->dev = dev;
835                         np->rx_skbuff[nr] = skb;
836                 } else {
837                         skb = np->rx_skbuff[nr];
838                 }
839                 np->rx_dma[nr] = pci_map_single(np->pci_dev, skb->data, skb->len,
840                                                 PCI_DMA_FROMDEVICE);
841                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
842                         np->rx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->rx_dma[nr]);
843                         wmb();
844                         np->rx_ring.orig[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
845                 } else {
846                         np->rx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->rx_dma[nr]) >> 32;
847                         np->rx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->rx_dma[nr]) & 0x0FFFFFFFF;
848                         wmb();
849                         np->rx_ring.ex[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
850                 }
851                 dprintk(KERN_DEBUG "%s: nv_alloc_rx: Packet %d marked as Available\n",
852                                         dev->name, refill_rx);
853                 refill_rx++;
854         }
855         np->refill_rx = refill_rx;
856         if (np->cur_rx - refill_rx == RX_RING)
857                 return 1;
858         return 0;
859 }
860
861 static void nv_do_rx_refill(unsigned long data)
862 {
863         struct net_device *dev = (struct net_device *) data;
864         struct fe_priv *np = get_nvpriv(dev);
865
866         disable_irq(dev->irq);
867         if (nv_alloc_rx(dev)) {
868                 spin_lock(&np->lock);
869                 if (!np->in_shutdown)
870                         mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
871                 spin_unlock(&np->lock);
872         }
873         enable_irq(dev->irq);
874 }
875
876 static void nv_init_rx(struct net_device *dev) 
877 {
878         struct fe_priv *np = get_nvpriv(dev);
879         int i;
880
881         np->cur_rx = RX_RING;
882         np->refill_rx = 0;
883         for (i = 0; i < RX_RING; i++)
884                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
885                         np->rx_ring.orig[i].FlagLen = 0;
886                 else
887                         np->rx_ring.ex[i].FlagLen = 0;
888 }
889
890 static void nv_init_tx(struct net_device *dev)
891 {
892         struct fe_priv *np = get_nvpriv(dev);
893         int i;
894
895         np->next_tx = np->nic_tx = 0;
896         for (i = 0; i < TX_RING; i++)
897                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
898                         np->tx_ring.orig[i].FlagLen = 0;
899                 else
900                         np->tx_ring.ex[i].FlagLen = 0;
901 }
902
903 static int nv_init_ring(struct net_device *dev)
904 {
905         nv_init_tx(dev);
906         nv_init_rx(dev);
907         return nv_alloc_rx(dev);
908 }
909
910 static void nv_drain_tx(struct net_device *dev)
911 {
912         struct fe_priv *np = get_nvpriv(dev);
913         int i;
914         for (i = 0; i < TX_RING; i++) {
915                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
916                         np->tx_ring.orig[i].FlagLen = 0;
917                 else
918                         np->tx_ring.ex[i].FlagLen = 0;
919                 if (np->tx_skbuff[i]) {
920                         pci_unmap_single(np->pci_dev, np->tx_dma[i],
921                                                 np->tx_skbuff[i]->len,
922                                                 PCI_DMA_TODEVICE);
923                         dev_kfree_skb(np->tx_skbuff[i]);
924                         np->tx_skbuff[i] = NULL;
925                         np->stats.tx_dropped++;
926                 }
927         }
928 }
929
930 static void nv_drain_rx(struct net_device *dev)
931 {
932         struct fe_priv *np = get_nvpriv(dev);
933         int i;
934         for (i = 0; i < RX_RING; i++) {
935                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
936                         np->rx_ring.orig[i].FlagLen = 0;
937                 else
938                         np->rx_ring.ex[i].FlagLen = 0;
939                 wmb();
940                 if (np->rx_skbuff[i]) {
941                         pci_unmap_single(np->pci_dev, np->rx_dma[i],
942                                                 np->rx_skbuff[i]->len,
943                                                 PCI_DMA_FROMDEVICE);
944                         dev_kfree_skb(np->rx_skbuff[i]);
945                         np->rx_skbuff[i] = NULL;
946                 }
947         }
948 }
949
950 static void drain_ring(struct net_device *dev)
951 {
952         nv_drain_tx(dev);
953         nv_drain_rx(dev);
954 }
955
956 /*
957  * nv_start_xmit: dev->hard_start_xmit function
958  * Called with dev->xmit_lock held.
959  */
960 static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
961 {
962         struct fe_priv *np = get_nvpriv(dev);
963         int nr = np->next_tx % TX_RING;
964
965         np->tx_skbuff[nr] = skb;
966         np->tx_dma[nr] = pci_map_single(np->pci_dev, skb->data,skb->len,
967                                         PCI_DMA_TODEVICE);
968
969         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
970                 np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
971         else {
972                 np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
973                 np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
974         }
975
976         spin_lock_irq(&np->lock);
977         wmb();
978         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
979                 np->tx_ring.orig[nr].FlagLen = cpu_to_le32( (skb->len-1) | np->tx_flags );
980         else
981                 np->tx_ring.ex[nr].FlagLen = cpu_to_le32( (skb->len-1) | np->tx_flags );
982         dprintk(KERN_DEBUG "%s: nv_start_xmit: packet packet %d queued for transmission.\n",
983                                 dev->name, np->next_tx);
984         {
985                 int j;
986                 for (j=0; j<64; j++) {
987                         if ((j%16) == 0)
988                                 dprintk("\n%03x:", j);
989                         dprintk(" %02x", ((unsigned char*)skb->data)[j]);
990                 }
991                 dprintk("\n");
992         }
993
994         np->next_tx++;
995
996         dev->trans_start = jiffies;
997         if (np->next_tx - np->nic_tx >= TX_LIMIT_STOP)
998                 netif_stop_queue(dev);
999         spin_unlock_irq(&np->lock);
1000         writel(NVREG_TXRXCTL_KICK|np->desc_ver, get_hwbase(dev) + NvRegTxRxControl);
1001         pci_push(get_hwbase(dev));
1002         return 0;
1003 }
1004
1005 /*
1006  * nv_tx_done: check for completed packets, release the skbs.
1007  *
1008  * Caller must own np->lock.
1009  */
1010 static void nv_tx_done(struct net_device *dev)
1011 {
1012         struct fe_priv *np = get_nvpriv(dev);
1013         u32 Flags;
1014         int i;
1015
1016         while (np->nic_tx != np->next_tx) {
1017                 i = np->nic_tx % TX_RING;
1018
1019                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1020                         Flags = le32_to_cpu(np->tx_ring.orig[i].FlagLen);
1021                 else
1022                         Flags = le32_to_cpu(np->tx_ring.ex[i].FlagLen);
1023
1024                 dprintk(KERN_DEBUG "%s: nv_tx_done: looking at packet %d, Flags 0x%x.\n",
1025                                         dev->name, np->nic_tx, Flags);
1026                 if (Flags & NV_TX_VALID)
1027                         break;
1028                 if (np->desc_ver == DESC_VER_1) {
1029                         if (Flags & (NV_TX_RETRYERROR|NV_TX_CARRIERLOST|NV_TX_LATECOLLISION|
1030                                                         NV_TX_UNDERFLOW|NV_TX_ERROR)) {
1031                                 if (Flags & NV_TX_UNDERFLOW)
1032                                         np->stats.tx_fifo_errors++;
1033                                 if (Flags & NV_TX_CARRIERLOST)
1034                                         np->stats.tx_carrier_errors++;
1035                                 np->stats.tx_errors++;
1036                         } else {
1037                                 np->stats.tx_packets++;
1038                                 np->stats.tx_bytes += np->tx_skbuff[i]->len;
1039                         }
1040                 } else {
1041                         if (Flags & (NV_TX2_RETRYERROR|NV_TX2_CARRIERLOST|NV_TX2_LATECOLLISION|
1042                                                         NV_TX2_UNDERFLOW|NV_TX2_ERROR)) {
1043                                 if (Flags & NV_TX2_UNDERFLOW)
1044                                         np->stats.tx_fifo_errors++;
1045                                 if (Flags & NV_TX2_CARRIERLOST)
1046                                         np->stats.tx_carrier_errors++;
1047                                 np->stats.tx_errors++;
1048                         } else {
1049                                 np->stats.tx_packets++;
1050                                 np->stats.tx_bytes += np->tx_skbuff[i]->len;
1051                         }
1052                 }
1053                 pci_unmap_single(np->pci_dev, np->tx_dma[i],
1054                                         np->tx_skbuff[i]->len,
1055                                         PCI_DMA_TODEVICE);
1056                 dev_kfree_skb_irq(np->tx_skbuff[i]);
1057                 np->tx_skbuff[i] = NULL;
1058                 np->nic_tx++;
1059         }
1060         if (np->next_tx - np->nic_tx < TX_LIMIT_START)
1061                 netif_wake_queue(dev);
1062 }
1063
1064 /*
1065  * nv_tx_timeout: dev->tx_timeout function
1066  * Called with dev->xmit_lock held.
1067  */
1068 static void nv_tx_timeout(struct net_device *dev)
1069 {
1070         struct fe_priv *np = get_nvpriv(dev);
1071         u8 __iomem *base = get_hwbase(dev);
1072
1073         printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name,
1074                         readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK);
1075
1076         {
1077                 int i;
1078
1079                 printk(KERN_INFO "%s: Ring at %lx: next %d nic %d\n",
1080                                 dev->name, (unsigned long)np->ring_addr,
1081                                 np->next_tx, np->nic_tx);
1082                 printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
1083                 for (i=0;i<0x400;i+= 32) {
1084                         printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
1085                                         i,
1086                                         readl(base + i + 0), readl(base + i + 4),
1087                                         readl(base + i + 8), readl(base + i + 12),
1088                                         readl(base + i + 16), readl(base + i + 20),
1089                                         readl(base + i + 24), readl(base + i + 28));
1090                 }
1091                 printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
1092                 for (i=0;i<TX_RING;i+= 4) {
1093                         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1094                                 printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
1095                                        i, 
1096                                        le32_to_cpu(np->tx_ring.orig[i].PacketBuffer),
1097                                        le32_to_cpu(np->tx_ring.orig[i].FlagLen),
1098                                        le32_to_cpu(np->tx_ring.orig[i+1].PacketBuffer),
1099                                        le32_to_cpu(np->tx_ring.orig[i+1].FlagLen),
1100                                        le32_to_cpu(np->tx_ring.orig[i+2].PacketBuffer),
1101                                        le32_to_cpu(np->tx_ring.orig[i+2].FlagLen),
1102                                        le32_to_cpu(np->tx_ring.orig[i+3].PacketBuffer),
1103                                        le32_to_cpu(np->tx_ring.orig[i+3].FlagLen));
1104                         } else {
1105                                 printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
1106                                        i, 
1107                                        le32_to_cpu(np->tx_ring.ex[i].PacketBufferHigh),
1108                                        le32_to_cpu(np->tx_ring.ex[i].PacketBufferLow),
1109                                        le32_to_cpu(np->tx_ring.ex[i].FlagLen),
1110                                        le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferHigh),
1111                                        le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferLow),
1112                                        le32_to_cpu(np->tx_ring.ex[i+1].FlagLen),
1113                                        le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferHigh),
1114                                        le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferLow),
1115                                        le32_to_cpu(np->tx_ring.ex[i+2].FlagLen),
1116                                        le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferHigh),
1117                                        le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferLow),
1118                                        le32_to_cpu(np->tx_ring.ex[i+3].FlagLen));
1119                         }
1120                 }
1121         }
1122
1123         spin_lock_irq(&np->lock);
1124
1125         /* 1) stop tx engine */
1126         nv_stop_tx(dev);
1127
1128         /* 2) check that the packets were not sent already: */
1129         nv_tx_done(dev);
1130
1131         /* 3) if there are dead entries: clear everything */
1132         if (np->next_tx != np->nic_tx) {
1133                 printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
1134                 nv_drain_tx(dev);
1135                 np->next_tx = np->nic_tx = 0;
1136                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1137                         writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
1138                 else
1139                         writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
1140                 netif_wake_queue(dev);
1141         }
1142
1143         /* 4) restart tx engine */
1144         nv_start_tx(dev);
1145         spin_unlock_irq(&np->lock);
1146 }
1147
1148 /*
1149  * Called when the nic notices a mismatch between the actual data len on the
1150  * wire and the len indicated in the 802 header
1151  */
1152 static int nv_getlen(struct net_device *dev, void *packet, int datalen)
1153 {
1154         int hdrlen;     /* length of the 802 header */
1155         int protolen;   /* length as stored in the proto field */
1156
1157         /* 1) calculate len according to header */
1158         if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == __constant_htons(ETH_P_8021Q)) {
1159                 protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
1160                 hdrlen = VLAN_HLEN;
1161         } else {
1162                 protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
1163                 hdrlen = ETH_HLEN;
1164         }
1165         dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
1166                                 dev->name, datalen, protolen, hdrlen);
1167         if (protolen > ETH_DATA_LEN)
1168                 return datalen; /* Value in proto field not a len, no checks possible */
1169
1170         protolen += hdrlen;
1171         /* consistency checks: */
1172         if (datalen > ETH_ZLEN) {
1173                 if (datalen >= protolen) {
1174                         /* more data on wire than in 802 header, trim of
1175                          * additional data.
1176                          */
1177                         dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
1178                                         dev->name, protolen);
1179                         return protolen;
1180                 } else {
1181                         /* less data on wire than mentioned in header.
1182                          * Discard the packet.
1183                          */
1184                         dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
1185                                         dev->name);
1186                         return -1;
1187                 }
1188         } else {
1189                 /* short packet. Accept only if 802 values are also short */
1190                 if (protolen > ETH_ZLEN) {
1191                         dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
1192                                         dev->name);
1193                         return -1;
1194                 }
1195                 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
1196                                 dev->name, datalen);
1197                 return datalen;
1198         }
1199 }
1200
1201 static void nv_rx_process(struct net_device *dev)
1202 {
1203         struct fe_priv *np = get_nvpriv(dev);
1204         u32 Flags;
1205
1206         for (;;) {
1207                 struct sk_buff *skb;
1208                 int len;
1209                 int i;
1210                 if (np->cur_rx - np->refill_rx >= RX_RING)
1211                         break;  /* we scanned the whole ring - do not continue */
1212
1213                 i = np->cur_rx % RX_RING;
1214                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1215                         Flags = le32_to_cpu(np->rx_ring.orig[i].FlagLen);
1216                         len = nv_descr_getlength(&np->rx_ring.orig[i], np->desc_ver);
1217                 } else {
1218                         Flags = le32_to_cpu(np->rx_ring.ex[i].FlagLen);
1219                         len = nv_descr_getlength_ex(&np->rx_ring.ex[i], np->desc_ver);
1220                 }
1221
1222                 dprintk(KERN_DEBUG "%s: nv_rx_process: looking at packet %d, Flags 0x%x.\n",
1223                                         dev->name, np->cur_rx, Flags);
1224
1225                 if (Flags & NV_RX_AVAIL)
1226                         break;  /* still owned by hardware, */
1227
1228                 /*
1229                  * the packet is for us - immediately tear down the pci mapping.
1230                  * TODO: check if a prefetch of the first cacheline improves
1231                  * the performance.
1232                  */
1233                 pci_unmap_single(np->pci_dev, np->rx_dma[i],
1234                                 np->rx_skbuff[i]->len,
1235                                 PCI_DMA_FROMDEVICE);
1236
1237                 {
1238                         int j;
1239                         dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",Flags);
1240                         for (j=0; j<64; j++) {
1241                                 if ((j%16) == 0)
1242                                         dprintk("\n%03x:", j);
1243                                 dprintk(" %02x", ((unsigned char*)np->rx_skbuff[i]->data)[j]);
1244                         }
1245                         dprintk("\n");
1246                 }
1247                 /* look at what we actually got: */
1248                 if (np->desc_ver == DESC_VER_1) {
1249                         if (!(Flags & NV_RX_DESCRIPTORVALID))
1250                                 goto next_pkt;
1251
1252                         if (Flags & NV_RX_MISSEDFRAME) {
1253                                 np->stats.rx_missed_errors++;
1254                                 np->stats.rx_errors++;
1255                                 goto next_pkt;
1256                         }
1257                         if (Flags & (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3)) {
1258                                 np->stats.rx_errors++;
1259                                 goto next_pkt;
1260                         }
1261                         if (Flags & NV_RX_CRCERR) {
1262                                 np->stats.rx_crc_errors++;
1263                                 np->stats.rx_errors++;
1264                                 goto next_pkt;
1265                         }
1266                         if (Flags & NV_RX_OVERFLOW) {
1267                                 np->stats.rx_over_errors++;
1268                                 np->stats.rx_errors++;
1269                                 goto next_pkt;
1270                         }
1271                         if (Flags & NV_RX_ERROR4) {
1272                                 len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
1273                                 if (len < 0) {
1274                                         np->stats.rx_errors++;
1275                                         goto next_pkt;
1276                                 }
1277                         }
1278                         /* framing errors are soft errors. */
1279                         if (Flags & NV_RX_FRAMINGERR) {
1280                                 if (Flags & NV_RX_SUBSTRACT1) {
1281                                         len--;
1282                                 }
1283                         }
1284                 } else {
1285                         if (!(Flags & NV_RX2_DESCRIPTORVALID))
1286                                 goto next_pkt;
1287
1288                         if (Flags & (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3)) {
1289                                 np->stats.rx_errors++;
1290                                 goto next_pkt;
1291                         }
1292                         if (Flags & NV_RX2_CRCERR) {
1293                                 np->stats.rx_crc_errors++;
1294                                 np->stats.rx_errors++;
1295                                 goto next_pkt;
1296                         }
1297                         if (Flags & NV_RX2_OVERFLOW) {
1298                                 np->stats.rx_over_errors++;
1299                                 np->stats.rx_errors++;
1300                                 goto next_pkt;
1301                         }
1302                         if (Flags & NV_RX2_ERROR4) {
1303                                 len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
1304                                 if (len < 0) {
1305                                         np->stats.rx_errors++;
1306                                         goto next_pkt;
1307                                 }
1308                         }
1309                         /* framing errors are soft errors */
1310                         if (Flags & NV_RX2_FRAMINGERR) {
1311                                 if (Flags & NV_RX2_SUBSTRACT1) {
1312                                         len--;
1313                                 }
1314                         }
1315                         Flags &= NV_RX2_CHECKSUMMASK;
1316                         if (Flags == NV_RX2_CHECKSUMOK1 ||
1317                                         Flags == NV_RX2_CHECKSUMOK2 ||
1318                                         Flags == NV_RX2_CHECKSUMOK3) {
1319                                 dprintk(KERN_DEBUG "%s: hw checksum hit!.\n", dev->name);
1320                                 np->rx_skbuff[i]->ip_summed = CHECKSUM_UNNECESSARY;
1321                         } else {
1322                                 dprintk(KERN_DEBUG "%s: hwchecksum miss!.\n", dev->name);
1323                         }
1324                 }
1325                 /* got a valid packet - forward it to the network core */
1326                 skb = np->rx_skbuff[i];
1327                 np->rx_skbuff[i] = NULL;
1328
1329                 skb_put(skb, len);
1330                 skb->protocol = eth_type_trans(skb, dev);
1331                 dprintk(KERN_DEBUG "%s: nv_rx_process: packet %d with %d bytes, proto %d accepted.\n",
1332                                         dev->name, np->cur_rx, len, skb->protocol);
1333                 netif_rx(skb);
1334                 dev->last_rx = jiffies;
1335                 np->stats.rx_packets++;
1336                 np->stats.rx_bytes += len;
1337 next_pkt:
1338                 np->cur_rx++;
1339         }
1340 }
1341
1342 static void set_bufsize(struct net_device *dev)
1343 {
1344         struct fe_priv *np = netdev_priv(dev);
1345
1346         if (dev->mtu <= ETH_DATA_LEN)
1347                 np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
1348         else
1349                 np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
1350 }
1351
1352 /*
1353  * nv_change_mtu: dev->change_mtu function
1354  * Called with dev_base_lock held for read.
1355  */
1356 static int nv_change_mtu(struct net_device *dev, int new_mtu)
1357 {
1358         struct fe_priv *np = get_nvpriv(dev);
1359         int old_mtu;
1360
1361         if (new_mtu < 64 || new_mtu > np->pkt_limit)
1362                 return -EINVAL;
1363
1364         old_mtu = dev->mtu;
1365         dev->mtu = new_mtu;
1366
1367         /* return early if the buffer sizes will not change */
1368         if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
1369                 return 0;
1370         if (old_mtu == new_mtu)
1371                 return 0;
1372
1373         /* synchronized against open : rtnl_lock() held by caller */
1374         if (netif_running(dev)) {
1375                 u8 *base = get_hwbase(dev);
1376                 /*
1377                  * It seems that the nic preloads valid ring entries into an
1378                  * internal buffer. The procedure for flushing everything is
1379                  * guessed, there is probably a simpler approach.
1380                  * Changing the MTU is a rare event, it shouldn't matter.
1381                  */
1382                 disable_irq(dev->irq);
1383                 spin_lock_bh(&dev->xmit_lock);
1384                 spin_lock(&np->lock);
1385                 /* stop engines */
1386                 nv_stop_rx(dev);
1387                 nv_stop_tx(dev);
1388                 nv_txrx_reset(dev);
1389                 /* drain rx queue */
1390                 nv_drain_rx(dev);
1391                 nv_drain_tx(dev);
1392                 /* reinit driver view of the rx queue */
1393                 nv_init_rx(dev);
1394                 nv_init_tx(dev);
1395                 /* alloc new rx buffers */
1396                 set_bufsize(dev);
1397                 if (nv_alloc_rx(dev)) {
1398                         if (!np->in_shutdown)
1399                                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1400                 }
1401                 /* reinit nic view of the rx queue */
1402                 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
1403                 writel((u32) np->ring_addr, base + NvRegRxRingPhysAddr);
1404                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1405                         writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
1406                 else
1407                         writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
1408                 writel( ((RX_RING-1) << NVREG_RINGSZ_RXSHIFT) + ((TX_RING-1) << NVREG_RINGSZ_TXSHIFT),
1409                         base + NvRegRingSizes);
1410                 pci_push(base);
1411                 writel(NVREG_TXRXCTL_KICK|np->desc_ver, get_hwbase(dev) + NvRegTxRxControl);
1412                 pci_push(base);
1413
1414                 /* restart rx engine */
1415                 nv_start_rx(dev);
1416                 nv_start_tx(dev);
1417                 spin_unlock(&np->lock);
1418                 spin_unlock_bh(&dev->xmit_lock);
1419                 enable_irq(dev->irq);
1420         }
1421         return 0;
1422 }
1423
1424 static void nv_copy_mac_to_hw(struct net_device *dev)
1425 {
1426         u8 *base = get_hwbase(dev);
1427         u32 mac[2];
1428
1429         mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
1430                         (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
1431         mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
1432
1433         writel(mac[0], base + NvRegMacAddrA);
1434         writel(mac[1], base + NvRegMacAddrB);
1435 }
1436
1437 /*
1438  * nv_set_mac_address: dev->set_mac_address function
1439  * Called with rtnl_lock() held.
1440  */
1441 static int nv_set_mac_address(struct net_device *dev, void *addr)
1442 {
1443         struct fe_priv *np = get_nvpriv(dev);
1444         struct sockaddr *macaddr = (struct sockaddr*)addr;
1445
1446         if(!is_valid_ether_addr(macaddr->sa_data))
1447                 return -EADDRNOTAVAIL;
1448
1449         /* synchronized against open : rtnl_lock() held by caller */
1450         memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
1451
1452         if (netif_running(dev)) {
1453                 spin_lock_bh(&dev->xmit_lock);
1454                 spin_lock_irq(&np->lock);
1455
1456                 /* stop rx engine */
1457                 nv_stop_rx(dev);
1458
1459                 /* set mac address */
1460                 nv_copy_mac_to_hw(dev);
1461
1462                 /* restart rx engine */
1463                 nv_start_rx(dev);
1464                 spin_unlock_irq(&np->lock);
1465                 spin_unlock_bh(&dev->xmit_lock);
1466         } else {
1467                 nv_copy_mac_to_hw(dev);
1468         }
1469         return 0;
1470 }
1471
1472 /*
1473  * nv_set_multicast: dev->set_multicast function
1474  * Called with dev->xmit_lock held.
1475  */
1476 static void nv_set_multicast(struct net_device *dev)
1477 {
1478         struct fe_priv *np = get_nvpriv(dev);
1479         u8 __iomem *base = get_hwbase(dev);
1480         u32 addr[2];
1481         u32 mask[2];
1482         u32 pff;
1483
1484         memset(addr, 0, sizeof(addr));
1485         memset(mask, 0, sizeof(mask));
1486
1487         if (dev->flags & IFF_PROMISC) {
1488                 printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name);
1489                 pff = NVREG_PFF_PROMISC;
1490         } else {
1491                 pff = NVREG_PFF_MYADDR;
1492
1493                 if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
1494                         u32 alwaysOff[2];
1495                         u32 alwaysOn[2];
1496
1497                         alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
1498                         if (dev->flags & IFF_ALLMULTI) {
1499                                 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
1500                         } else {
1501                                 struct dev_mc_list *walk;
1502
1503                                 walk = dev->mc_list;
1504                                 while (walk != NULL) {
1505                                         u32 a, b;
1506                                         a = le32_to_cpu(*(u32 *) walk->dmi_addr);
1507                                         b = le16_to_cpu(*(u16 *) (&walk->dmi_addr[4]));
1508                                         alwaysOn[0] &= a;
1509                                         alwaysOff[0] &= ~a;
1510                                         alwaysOn[1] &= b;
1511                                         alwaysOff[1] &= ~b;
1512                                         walk = walk->next;
1513                                 }
1514                         }
1515                         addr[0] = alwaysOn[0];
1516                         addr[1] = alwaysOn[1];
1517                         mask[0] = alwaysOn[0] | alwaysOff[0];
1518                         mask[1] = alwaysOn[1] | alwaysOff[1];
1519                 }
1520         }
1521         addr[0] |= NVREG_MCASTADDRA_FORCE;
1522         pff |= NVREG_PFF_ALWAYS;
1523         spin_lock_irq(&np->lock);
1524         nv_stop_rx(dev);
1525         writel(addr[0], base + NvRegMulticastAddrA);
1526         writel(addr[1], base + NvRegMulticastAddrB);
1527         writel(mask[0], base + NvRegMulticastMaskA);
1528         writel(mask[1], base + NvRegMulticastMaskB);
1529         writel(pff, base + NvRegPacketFilterFlags);
1530         dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
1531                 dev->name);
1532         nv_start_rx(dev);
1533         spin_unlock_irq(&np->lock);
1534 }
1535
1536 static int nv_update_linkspeed(struct net_device *dev)
1537 {
1538         struct fe_priv *np = get_nvpriv(dev);
1539         u8 __iomem *base = get_hwbase(dev);
1540         int adv, lpa;
1541         int newls = np->linkspeed;
1542         int newdup = np->duplex;
1543         int mii_status;
1544         int retval = 0;
1545         u32 control_1000, status_1000, phyreg;
1546
1547         /* BMSR_LSTATUS is latched, read it twice:
1548          * we want the current value.
1549          */
1550         mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
1551         mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
1552
1553         if (!(mii_status & BMSR_LSTATUS)) {
1554                 dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
1555                                 dev->name);
1556                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1557                 newdup = 0;
1558                 retval = 0;
1559                 goto set_speed;
1560         }
1561
1562         if (np->autoneg == 0) {
1563                 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
1564                                 dev->name, np->fixed_mode);
1565                 if (np->fixed_mode & LPA_100FULL) {
1566                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
1567                         newdup = 1;
1568                 } else if (np->fixed_mode & LPA_100HALF) {
1569                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
1570                         newdup = 0;
1571                 } else if (np->fixed_mode & LPA_10FULL) {
1572                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1573                         newdup = 1;
1574                 } else {
1575                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1576                         newdup = 0;
1577                 }
1578                 retval = 1;
1579                 goto set_speed;
1580         }
1581         /* check auto negotiation is complete */
1582         if (!(mii_status & BMSR_ANEGCOMPLETE)) {
1583                 /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
1584                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1585                 newdup = 0;
1586                 retval = 0;
1587                 dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
1588                 goto set_speed;
1589         }
1590
1591         retval = 1;
1592         if (np->gigabit == PHY_GIGABIT) {
1593                 control_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
1594                 status_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_SR, MII_READ);
1595
1596                 if ((control_1000 & ADVERTISE_1000FULL) &&
1597                         (status_1000 & LPA_1000FULL)) {
1598                         dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
1599                                 dev->name);
1600                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
1601                         newdup = 1;
1602                         goto set_speed;
1603                 }
1604         }
1605
1606         adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
1607         lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
1608         dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
1609                                 dev->name, adv, lpa);
1610
1611         /* FIXME: handle parallel detection properly */
1612         lpa = lpa & adv;
1613         if (lpa & LPA_100FULL) {
1614                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
1615                 newdup = 1;
1616         } else if (lpa & LPA_100HALF) {
1617                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
1618                 newdup = 0;
1619         } else if (lpa & LPA_10FULL) {
1620                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1621                 newdup = 1;
1622         } else if (lpa & LPA_10HALF) {
1623                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1624                 newdup = 0;
1625         } else {
1626                 dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, lpa);
1627                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1628                 newdup = 0;
1629         }
1630
1631 set_speed:
1632         if (np->duplex == newdup && np->linkspeed == newls)
1633                 return retval;
1634
1635         dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
1636                         dev->name, np->linkspeed, np->duplex, newls, newdup);
1637
1638         np->duplex = newdup;
1639         np->linkspeed = newls;
1640
1641         if (np->gigabit == PHY_GIGABIT) {
1642                 phyreg = readl(base + NvRegRandomSeed);
1643                 phyreg &= ~(0x3FF00);
1644                 if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
1645                         phyreg |= NVREG_RNDSEED_FORCE3;
1646                 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
1647                         phyreg |= NVREG_RNDSEED_FORCE2;
1648                 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
1649                         phyreg |= NVREG_RNDSEED_FORCE;
1650                 writel(phyreg, base + NvRegRandomSeed);
1651         }
1652
1653         phyreg = readl(base + NvRegPhyInterface);
1654         phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
1655         if (np->duplex == 0)
1656                 phyreg |= PHY_HALF;
1657         if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
1658                 phyreg |= PHY_100;
1659         else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
1660                 phyreg |= PHY_1000;
1661         writel(phyreg, base + NvRegPhyInterface);
1662
1663         writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
1664                 base + NvRegMisc1);
1665         pci_push(base);
1666         writel(np->linkspeed, base + NvRegLinkSpeed);
1667         pci_push(base);
1668
1669         return retval;
1670 }
1671
1672 static void nv_linkchange(struct net_device *dev)
1673 {
1674         if (nv_update_linkspeed(dev)) {
1675                 if (netif_carrier_ok(dev)) {
1676                         nv_stop_rx(dev);
1677                 } else {
1678                         netif_carrier_on(dev);
1679                         printk(KERN_INFO "%s: link up.\n", dev->name);
1680                 }
1681                 nv_start_rx(dev);
1682         } else {
1683                 if (netif_carrier_ok(dev)) {
1684                         netif_carrier_off(dev);
1685                         printk(KERN_INFO "%s: link down.\n", dev->name);
1686                         nv_stop_rx(dev);
1687                 }
1688         }
1689 }
1690
1691 static void nv_link_irq(struct net_device *dev)
1692 {
1693         u8 __iomem *base = get_hwbase(dev);
1694         u32 miistat;
1695
1696         miistat = readl(base + NvRegMIIStatus);
1697         writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
1698         dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
1699
1700         if (miistat & (NVREG_MIISTAT_LINKCHANGE))
1701                 nv_linkchange(dev);
1702         dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
1703 }
1704
1705 static irqreturn_t nv_nic_irq(int foo, void *data, struct pt_regs *regs)
1706 {
1707         struct net_device *dev = (struct net_device *) data;
1708         struct fe_priv *np = get_nvpriv(dev);
1709         u8 __iomem *base = get_hwbase(dev);
1710         u32 events;
1711         int i;
1712
1713         dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
1714
1715         for (i=0; ; i++) {
1716                 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
1717                 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
1718                 pci_push(base);
1719                 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
1720                 if (!(events & np->irqmask))
1721                         break;
1722
1723                 if (events & (NVREG_IRQ_TX1|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_ERROR|NVREG_IRQ_TX_ERR)) {
1724                         spin_lock(&np->lock);
1725                         nv_tx_done(dev);
1726                         spin_unlock(&np->lock);
1727                 }
1728
1729                 if (events & (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF)) {
1730                         nv_rx_process(dev);
1731                         if (nv_alloc_rx(dev)) {
1732                                 spin_lock(&np->lock);
1733                                 if (!np->in_shutdown)
1734                                         mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1735                                 spin_unlock(&np->lock);
1736                         }
1737                 }
1738
1739                 if (events & NVREG_IRQ_LINK) {
1740                         spin_lock(&np->lock);
1741                         nv_link_irq(dev);
1742                         spin_unlock(&np->lock);
1743                 }
1744                 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
1745                         spin_lock(&np->lock);
1746                         nv_linkchange(dev);
1747                         spin_unlock(&np->lock);
1748                         np->link_timeout = jiffies + LINK_TIMEOUT;
1749                 }
1750                 if (events & (NVREG_IRQ_TX_ERR)) {
1751                         dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
1752                                                 dev->name, events);
1753                 }
1754                 if (events & (NVREG_IRQ_UNKNOWN)) {
1755                         printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
1756                                                 dev->name, events);
1757                 }
1758                 if (i > max_interrupt_work) {
1759                         spin_lock(&np->lock);
1760                         /* disable interrupts on the nic */
1761                         writel(0, base + NvRegIrqMask);
1762                         pci_push(base);
1763
1764                         if (!np->in_shutdown)
1765                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
1766                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
1767                         spin_unlock(&np->lock);
1768                         break;
1769                 }
1770
1771         }
1772         dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
1773
1774         return IRQ_RETVAL(i);
1775 }
1776
1777 static void nv_do_nic_poll(unsigned long data)
1778 {
1779         struct net_device *dev = (struct net_device *) data;
1780         struct fe_priv *np = get_nvpriv(dev);
1781         u8 __iomem *base = get_hwbase(dev);
1782
1783         disable_irq(dev->irq);
1784         /* FIXME: Do we need synchronize_irq(dev->irq) here? */
1785         /*
1786          * reenable interrupts on the nic, we have to do this before calling
1787          * nv_nic_irq because that may decide to do otherwise
1788          */
1789         writel(np->irqmask, base + NvRegIrqMask);
1790         pci_push(base);
1791         nv_nic_irq((int) 0, (void *) data, (struct pt_regs *) NULL);
1792         enable_irq(dev->irq);
1793 }
1794
1795 #ifdef CONFIG_NET_POLL_CONTROLLER
1796 static void nv_poll_controller(struct net_device *dev)
1797 {
1798         nv_do_nic_poll((unsigned long) dev);
1799 }
1800 #endif
1801
1802 static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1803 {
1804         struct fe_priv *np = get_nvpriv(dev);
1805         strcpy(info->driver, "forcedeth");
1806         strcpy(info->version, FORCEDETH_VERSION);
1807         strcpy(info->bus_info, pci_name(np->pci_dev));
1808 }
1809
1810 static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
1811 {
1812         struct fe_priv *np = get_nvpriv(dev);
1813         wolinfo->supported = WAKE_MAGIC;
1814
1815         spin_lock_irq(&np->lock);
1816         if (np->wolenabled)
1817                 wolinfo->wolopts = WAKE_MAGIC;
1818         spin_unlock_irq(&np->lock);
1819 }
1820
1821 static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
1822 {
1823         struct fe_priv *np = get_nvpriv(dev);
1824         u8 __iomem *base = get_hwbase(dev);
1825
1826         spin_lock_irq(&np->lock);
1827         if (wolinfo->wolopts == 0) {
1828                 writel(0, base + NvRegWakeUpFlags);
1829                 np->wolenabled = 0;
1830         }
1831         if (wolinfo->wolopts & WAKE_MAGIC) {
1832                 writel(NVREG_WAKEUPFLAGS_ENABLE, base + NvRegWakeUpFlags);
1833                 np->wolenabled = 1;
1834         }
1835         spin_unlock_irq(&np->lock);
1836         return 0;
1837 }
1838
1839 static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1840 {
1841         struct fe_priv *np = netdev_priv(dev);
1842         int adv;
1843
1844         spin_lock_irq(&np->lock);
1845         ecmd->port = PORT_MII;
1846         if (!netif_running(dev)) {
1847                 /* We do not track link speed / duplex setting if the
1848                  * interface is disabled. Force a link check */
1849                 nv_update_linkspeed(dev);
1850         }
1851         switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
1852                 case NVREG_LINKSPEED_10:
1853                         ecmd->speed = SPEED_10;
1854                         break;
1855                 case NVREG_LINKSPEED_100:
1856                         ecmd->speed = SPEED_100;
1857                         break;
1858                 case NVREG_LINKSPEED_1000:
1859                         ecmd->speed = SPEED_1000;
1860                         break;
1861         }
1862         ecmd->duplex = DUPLEX_HALF;
1863         if (np->duplex)
1864                 ecmd->duplex = DUPLEX_FULL;
1865
1866         ecmd->autoneg = np->autoneg;
1867
1868         ecmd->advertising = ADVERTISED_MII;
1869         if (np->autoneg) {
1870                 ecmd->advertising |= ADVERTISED_Autoneg;
1871                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
1872         } else {
1873                 adv = np->fixed_mode;
1874         }
1875         if (adv & ADVERTISE_10HALF)
1876                 ecmd->advertising |= ADVERTISED_10baseT_Half;
1877         if (adv & ADVERTISE_10FULL)
1878                 ecmd->advertising |= ADVERTISED_10baseT_Full;
1879         if (adv & ADVERTISE_100HALF)
1880                 ecmd->advertising |= ADVERTISED_100baseT_Half;
1881         if (adv & ADVERTISE_100FULL)
1882                 ecmd->advertising |= ADVERTISED_100baseT_Full;
1883         if (np->autoneg && np->gigabit == PHY_GIGABIT) {
1884                 adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
1885                 if (adv & ADVERTISE_1000FULL)
1886                         ecmd->advertising |= ADVERTISED_1000baseT_Full;
1887         }
1888
1889         ecmd->supported = (SUPPORTED_Autoneg |
1890                 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
1891                 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
1892                 SUPPORTED_MII);
1893         if (np->gigabit == PHY_GIGABIT)
1894                 ecmd->supported |= SUPPORTED_1000baseT_Full;
1895
1896         ecmd->phy_address = np->phyaddr;
1897         ecmd->transceiver = XCVR_EXTERNAL;
1898
1899         /* ignore maxtxpkt, maxrxpkt for now */
1900         spin_unlock_irq(&np->lock);
1901         return 0;
1902 }
1903
1904 static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1905 {
1906         struct fe_priv *np = netdev_priv(dev);
1907
1908         if (ecmd->port != PORT_MII)
1909                 return -EINVAL;
1910         if (ecmd->transceiver != XCVR_EXTERNAL)
1911                 return -EINVAL;
1912         if (ecmd->phy_address != np->phyaddr) {
1913                 /* TODO: support switching between multiple phys. Should be
1914                  * trivial, but not enabled due to lack of test hardware. */
1915                 return -EINVAL;
1916         }
1917         if (ecmd->autoneg == AUTONEG_ENABLE) {
1918                 u32 mask;
1919
1920                 mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
1921                           ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
1922                 if (np->gigabit == PHY_GIGABIT)
1923                         mask |= ADVERTISED_1000baseT_Full;
1924
1925                 if ((ecmd->advertising & mask) == 0)
1926                         return -EINVAL;
1927
1928         } else if (ecmd->autoneg == AUTONEG_DISABLE) {
1929                 /* Note: autonegotiation disable, speed 1000 intentionally
1930                  * forbidden - noone should need that. */
1931
1932                 if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
1933                         return -EINVAL;
1934                 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
1935                         return -EINVAL;
1936         } else {
1937                 return -EINVAL;
1938         }
1939
1940         spin_lock_irq(&np->lock);
1941         if (ecmd->autoneg == AUTONEG_ENABLE) {
1942                 int adv, bmcr;
1943
1944                 np->autoneg = 1;
1945
1946                 /* advertise only what has been requested */
1947                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
1948                 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
1949                 if (ecmd->advertising & ADVERTISED_10baseT_Half)
1950                         adv |= ADVERTISE_10HALF;
1951                 if (ecmd->advertising & ADVERTISED_10baseT_Full)
1952                         adv |= ADVERTISE_10FULL;
1953                 if (ecmd->advertising & ADVERTISED_100baseT_Half)
1954                         adv |= ADVERTISE_100HALF;
1955                 if (ecmd->advertising & ADVERTISED_100baseT_Full)
1956                         adv |= ADVERTISE_100FULL;
1957                 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
1958
1959                 if (np->gigabit == PHY_GIGABIT) {
1960                         adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
1961                         adv &= ~ADVERTISE_1000FULL;
1962                         if (ecmd->advertising & ADVERTISED_1000baseT_Full)
1963                                 adv |= ADVERTISE_1000FULL;
1964                         mii_rw(dev, np->phyaddr, MII_1000BT_CR, adv);
1965                 }
1966
1967                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1968                 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
1969                 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
1970
1971         } else {
1972                 int adv, bmcr;
1973
1974                 np->autoneg = 0;
1975
1976                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
1977                 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
1978                 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
1979                         adv |= ADVERTISE_10HALF;
1980                 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
1981                         adv |= ADVERTISE_10FULL;
1982                 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
1983                         adv |= ADVERTISE_100HALF;
1984                 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
1985                         adv |= ADVERTISE_100FULL;
1986                 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
1987                 np->fixed_mode = adv;
1988
1989                 if (np->gigabit == PHY_GIGABIT) {
1990                         adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
1991                         adv &= ~ADVERTISE_1000FULL;
1992                         mii_rw(dev, np->phyaddr, MII_1000BT_CR, adv);
1993                 }
1994
1995                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1996                 bmcr |= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_FULLDPLX);
1997                 if (adv & (ADVERTISE_10FULL|ADVERTISE_100FULL))
1998                         bmcr |= BMCR_FULLDPLX;
1999                 if (adv & (ADVERTISE_100HALF|ADVERTISE_100FULL))
2000                         bmcr |= BMCR_SPEED100;
2001                 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
2002
2003                 if (netif_running(dev)) {
2004                         /* Wait a bit and then reconfigure the nic. */
2005                         udelay(10);
2006                         nv_linkchange(dev);
2007                 }
2008         }
2009         spin_unlock_irq(&np->lock);
2010
2011         return 0;
2012 }
2013
2014 #define FORCEDETH_REGS_VER      1
2015 #define FORCEDETH_REGS_SIZE     0x400 /* 256 32-bit registers */
2016
2017 static int nv_get_regs_len(struct net_device *dev)
2018 {
2019         return FORCEDETH_REGS_SIZE;
2020 }
2021
2022 static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
2023 {
2024         struct fe_priv *np = get_nvpriv(dev);
2025         u8 __iomem *base = get_hwbase(dev);
2026         u32 *rbuf = buf;
2027         int i;
2028
2029         regs->version = FORCEDETH_REGS_VER;
2030         spin_lock_irq(&np->lock);
2031         for (i=0;i<FORCEDETH_REGS_SIZE/sizeof(u32);i++)
2032                 rbuf[i] = readl(base + i*sizeof(u32));
2033         spin_unlock_irq(&np->lock);
2034 }
2035
2036 static int nv_nway_reset(struct net_device *dev)
2037 {
2038         struct fe_priv *np = get_nvpriv(dev);
2039         int ret;
2040
2041         spin_lock_irq(&np->lock);
2042         if (np->autoneg) {
2043                 int bmcr;
2044
2045                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
2046                 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
2047                 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
2048
2049                 ret = 0;
2050         } else {
2051                 ret = -EINVAL;
2052         }
2053         spin_unlock_irq(&np->lock);
2054
2055         return ret;
2056 }
2057
2058 static struct ethtool_ops ops = {
2059         .get_drvinfo = nv_get_drvinfo,
2060         .get_link = ethtool_op_get_link,
2061         .get_wol = nv_get_wol,
2062         .set_wol = nv_set_wol,
2063         .get_settings = nv_get_settings,
2064         .set_settings = nv_set_settings,
2065         .get_regs_len = nv_get_regs_len,
2066         .get_regs = nv_get_regs,
2067         .nway_reset = nv_nway_reset,
2068 };
2069
2070 static int nv_open(struct net_device *dev)
2071 {
2072         struct fe_priv *np = get_nvpriv(dev);
2073         u8 __iomem *base = get_hwbase(dev);
2074         int ret, oom, i;
2075
2076         dprintk(KERN_DEBUG "nv_open: begin\n");
2077
2078         /* 1) erase previous misconfiguration */
2079         /* 4.1-1: stop adapter: ignored, 4.3 seems to be overkill */
2080         writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
2081         writel(0, base + NvRegMulticastAddrB);
2082         writel(0, base + NvRegMulticastMaskA);
2083         writel(0, base + NvRegMulticastMaskB);
2084         writel(0, base + NvRegPacketFilterFlags);
2085
2086         writel(0, base + NvRegTransmitterControl);
2087         writel(0, base + NvRegReceiverControl);
2088
2089         writel(0, base + NvRegAdapterControl);
2090
2091         /* 2) initialize descriptor rings */
2092         set_bufsize(dev);
2093         oom = nv_init_ring(dev);
2094
2095         writel(0, base + NvRegLinkSpeed);
2096         writel(0, base + NvRegUnknownTransmitterReg);
2097         nv_txrx_reset(dev);
2098         writel(0, base + NvRegUnknownSetupReg6);
2099
2100         np->in_shutdown = 0;
2101
2102         /* 3) set mac address */
2103         nv_copy_mac_to_hw(dev);
2104
2105         /* 4) give hw rings */
2106         writel((u32) np->ring_addr, base + NvRegRxRingPhysAddr);
2107         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
2108                 writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
2109         else
2110                 writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
2111         writel( ((RX_RING-1) << NVREG_RINGSZ_RXSHIFT) + ((TX_RING-1) << NVREG_RINGSZ_TXSHIFT),
2112                 base + NvRegRingSizes);
2113
2114         /* 5) continue setup */
2115         writel(np->linkspeed, base + NvRegLinkSpeed);
2116         writel(NVREG_UNKSETUP3_VAL1, base + NvRegUnknownSetupReg3);
2117         writel(np->desc_ver, base + NvRegTxRxControl);
2118         pci_push(base);
2119         writel(NVREG_TXRXCTL_BIT1|np->desc_ver, base + NvRegTxRxControl);
2120         reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
2121                         NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
2122                         KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
2123
2124         writel(0, base + NvRegUnknownSetupReg4);
2125         writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
2126         writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
2127
2128         /* 6) continue setup */
2129         writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
2130         writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
2131         writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
2132         writel(np->rx_buf_sz, base + NvRegOffloadConfig);
2133
2134         writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
2135         get_random_bytes(&i, sizeof(i));
2136         writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
2137         writel(NVREG_UNKSETUP1_VAL, base + NvRegUnknownSetupReg1);
2138         writel(NVREG_UNKSETUP2_VAL, base + NvRegUnknownSetupReg2);
2139         writel(NVREG_POLL_DEFAULT, base + NvRegPollingInterval);
2140         writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
2141         writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
2142                         base + NvRegAdapterControl);
2143         writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
2144         writel(NVREG_UNKSETUP4_VAL, base + NvRegUnknownSetupReg4);
2145         writel(NVREG_WAKEUPFLAGS_VAL, base + NvRegWakeUpFlags);
2146
2147         i = readl(base + NvRegPowerState);
2148         if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
2149                 writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
2150
2151         pci_push(base);
2152         udelay(10);
2153         writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
2154
2155         writel(0, base + NvRegIrqMask);
2156         pci_push(base);
2157         writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
2158         writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
2159         pci_push(base);
2160
2161         ret = request_irq(dev->irq, &nv_nic_irq, SA_SHIRQ, dev->name, dev);
2162         if (ret)
2163                 goto out_drain;
2164
2165         /* ask for interrupts */
2166         writel(np->irqmask, base + NvRegIrqMask);
2167
2168         spin_lock_irq(&np->lock);
2169         writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
2170         writel(0, base + NvRegMulticastAddrB);
2171         writel(0, base + NvRegMulticastMaskA);
2172         writel(0, base + NvRegMulticastMaskB);
2173         writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
2174         /* One manual link speed update: Interrupts are enabled, future link
2175          * speed changes cause interrupts and are handled by nv_link_irq().
2176          */
2177         {
2178                 u32 miistat;
2179                 miistat = readl(base + NvRegMIIStatus);
2180                 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
2181                 dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
2182         }
2183         /* set linkspeed to invalid value, thus force nv_update_linkspeed
2184          * to init hw */
2185         np->linkspeed = 0;
2186         ret = nv_update_linkspeed(dev);
2187         nv_start_rx(dev);
2188         nv_start_tx(dev);
2189         netif_start_queue(dev);
2190         if (ret) {
2191                 netif_carrier_on(dev);
2192         } else {
2193                 printk("%s: no link during initialization.\n", dev->name);
2194                 netif_carrier_off(dev);
2195         }
2196         if (oom)
2197                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2198         spin_unlock_irq(&np->lock);
2199
2200         return 0;
2201 out_drain:
2202         drain_ring(dev);
2203         return ret;
2204 }
2205
2206 static int nv_close(struct net_device *dev)
2207 {
2208         struct fe_priv *np = get_nvpriv(dev);
2209         u8 __iomem *base;
2210
2211         spin_lock_irq(&np->lock);
2212         np->in_shutdown = 1;
2213         spin_unlock_irq(&np->lock);
2214         synchronize_irq(dev->irq);
2215
2216         del_timer_sync(&np->oom_kick);
2217         del_timer_sync(&np->nic_poll);
2218
2219         netif_stop_queue(dev);
2220         spin_lock_irq(&np->lock);
2221         nv_stop_tx(dev);
2222         nv_stop_rx(dev);
2223         nv_txrx_reset(dev);
2224
2225         /* disable interrupts on the nic or we will lock up */
2226         base = get_hwbase(dev);
2227         writel(0, base + NvRegIrqMask);
2228         pci_push(base);
2229         dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
2230
2231         spin_unlock_irq(&np->lock);
2232
2233         free_irq(dev->irq, dev);
2234
2235         drain_ring(dev);
2236
2237         if (np->wolenabled)
2238                 nv_start_rx(dev);
2239
2240         /* special op: write back the misordered MAC address - otherwise
2241          * the next nv_probe would see a wrong address.
2242          */
2243         writel(np->orig_mac[0], base + NvRegMacAddrA);
2244         writel(np->orig_mac[1], base + NvRegMacAddrB);
2245
2246         /* FIXME: power down nic */
2247
2248         return 0;
2249 }
2250
2251 static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
2252 {
2253         struct net_device *dev;
2254         struct fe_priv *np;
2255         unsigned long addr;
2256         u8 __iomem *base;
2257         int err, i;
2258
2259         dev = alloc_etherdev(sizeof(struct fe_priv));
2260         err = -ENOMEM;
2261         if (!dev)
2262                 goto out;
2263
2264         np = get_nvpriv(dev);
2265         np->pci_dev = pci_dev;
2266         spin_lock_init(&np->lock);
2267         SET_MODULE_OWNER(dev);
2268         SET_NETDEV_DEV(dev, &pci_dev->dev);
2269
2270         init_timer(&np->oom_kick);
2271         np->oom_kick.data = (unsigned long) dev;
2272         np->oom_kick.function = &nv_do_rx_refill;       /* timer handler */
2273         init_timer(&np->nic_poll);
2274         np->nic_poll.data = (unsigned long) dev;
2275         np->nic_poll.function = &nv_do_nic_poll;        /* timer handler */
2276
2277         err = pci_enable_device(pci_dev);
2278         if (err) {
2279                 printk(KERN_INFO "forcedeth: pci_enable_dev failed (%d) for device %s\n",
2280                                 err, pci_name(pci_dev));
2281                 goto out_free;
2282         }
2283
2284         pci_set_master(pci_dev);
2285
2286         err = pci_request_regions(pci_dev, DRV_NAME);
2287         if (err < 0)
2288                 goto out_disable;
2289
2290         err = -EINVAL;
2291         addr = 0;
2292         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
2293                 dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
2294                                 pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
2295                                 pci_resource_len(pci_dev, i),
2296                                 pci_resource_flags(pci_dev, i));
2297                 if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
2298                                 pci_resource_len(pci_dev, i) >= NV_PCI_REGSZ) {
2299                         addr = pci_resource_start(pci_dev, i);
2300                         break;
2301                 }
2302         }
2303         if (i == DEVICE_COUNT_RESOURCE) {
2304                 printk(KERN_INFO "forcedeth: Couldn't find register window for device %s.\n",
2305                                         pci_name(pci_dev));
2306                 goto out_relreg;
2307         }
2308
2309         /* handle different descriptor versions */
2310         if (id->driver_data & DEV_HAS_HIGH_DMA) {
2311                 /* packet format 3: supports 40-bit addressing */
2312                 np->desc_ver = DESC_VER_3;
2313                 if (pci_set_dma_mask(pci_dev, 0x0000007fffffffffULL)) {
2314                         printk(KERN_INFO "forcedeth: 64-bit DMA failed, using 32-bit addressing for device %s.\n",
2315                                         pci_name(pci_dev));
2316                 }
2317         } else if (id->driver_data & DEV_HAS_LARGEDESC) {
2318                 /* packet format 2: supports jumbo frames */
2319                 np->desc_ver = DESC_VER_2;
2320         } else {
2321                 /* original packet format */
2322                 np->desc_ver = DESC_VER_1;
2323         }
2324
2325         np->pkt_limit = NV_PKTLIMIT_1;
2326         if (id->driver_data & DEV_HAS_LARGEDESC)
2327                 np->pkt_limit = NV_PKTLIMIT_2;
2328
2329         err = -ENOMEM;
2330         np->base = ioremap(addr, NV_PCI_REGSZ);
2331         if (!np->base)
2332                 goto out_relreg;
2333         dev->base_addr = (unsigned long)np->base;
2334
2335         dev->irq = pci_dev->irq;
2336
2337         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
2338                 np->rx_ring.orig = pci_alloc_consistent(pci_dev,
2339                                         sizeof(struct ring_desc) * (RX_RING + TX_RING),
2340                                         &np->ring_addr);
2341                 if (!np->rx_ring.orig)
2342                         goto out_unmap;
2343                 np->tx_ring.orig = &np->rx_ring.orig[RX_RING];
2344         } else {
2345                 np->rx_ring.ex = pci_alloc_consistent(pci_dev,
2346                                         sizeof(struct ring_desc_ex) * (RX_RING + TX_RING),
2347                                         &np->ring_addr);
2348                 if (!np->rx_ring.ex)
2349                         goto out_unmap;
2350                 np->tx_ring.ex = &np->rx_ring.ex[RX_RING];
2351         }
2352
2353         dev->open = nv_open;
2354         dev->stop = nv_close;
2355         dev->hard_start_xmit = nv_start_xmit;
2356         dev->get_stats = nv_get_stats;
2357         dev->change_mtu = nv_change_mtu;
2358         dev->set_mac_address = nv_set_mac_address;
2359         dev->set_multicast_list = nv_set_multicast;
2360 #ifdef CONFIG_NET_POLL_CONTROLLER
2361         dev->poll_controller = nv_poll_controller;
2362 #endif
2363         SET_ETHTOOL_OPS(dev, &ops);
2364         dev->tx_timeout = nv_tx_timeout;
2365         dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
2366
2367         pci_set_drvdata(pci_dev, dev);
2368
2369         /* read the mac address */
2370         base = get_hwbase(dev);
2371         np->orig_mac[0] = readl(base + NvRegMacAddrA);
2372         np->orig_mac[1] = readl(base + NvRegMacAddrB);
2373
2374         dev->dev_addr[0] = (np->orig_mac[1] >>  8) & 0xff;
2375         dev->dev_addr[1] = (np->orig_mac[1] >>  0) & 0xff;
2376         dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
2377         dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
2378         dev->dev_addr[4] = (np->orig_mac[0] >>  8) & 0xff;
2379         dev->dev_addr[5] = (np->orig_mac[0] >>  0) & 0xff;
2380
2381         if (!is_valid_ether_addr(dev->dev_addr)) {
2382                 /*
2383                  * Bad mac address. At least one bios sets the mac address
2384                  * to 01:23:45:67:89:ab
2385                  */
2386                 printk(KERN_ERR "%s: Invalid Mac address detected: %02x:%02x:%02x:%02x:%02x:%02x\n",
2387                         pci_name(pci_dev),
2388                         dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
2389                         dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
2390                 printk(KERN_ERR "Please complain to your hardware vendor. Switching to a random MAC.\n");
2391                 dev->dev_addr[0] = 0x00;
2392                 dev->dev_addr[1] = 0x00;
2393                 dev->dev_addr[2] = 0x6c;
2394                 get_random_bytes(&dev->dev_addr[3], 3);
2395         }
2396
2397         dprintk(KERN_DEBUG "%s: MAC Address %02x:%02x:%02x:%02x:%02x:%02x\n", pci_name(pci_dev),
2398                         dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
2399                         dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
2400
2401         /* disable WOL */
2402         writel(0, base + NvRegWakeUpFlags);
2403         np->wolenabled = 0;
2404
2405         if (np->desc_ver == DESC_VER_1) {
2406                 np->tx_flags = NV_TX_LASTPACKET|NV_TX_VALID;
2407         } else {
2408                 np->tx_flags = NV_TX2_LASTPACKET|NV_TX2_VALID;
2409         }
2410         np->irqmask = NVREG_IRQMASK_WANTED;
2411         if (id->driver_data & DEV_NEED_TIMERIRQ)
2412                 np->irqmask |= NVREG_IRQ_TIMER;
2413         if (id->driver_data & DEV_NEED_LINKTIMER) {
2414                 dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
2415                 np->need_linktimer = 1;
2416                 np->link_timeout = jiffies + LINK_TIMEOUT;
2417         } else {
2418                 dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
2419                 np->need_linktimer = 0;
2420         }
2421
2422         /* find a suitable phy */
2423         for (i = 1; i < 32; i++) {
2424                 int id1, id2;
2425
2426                 spin_lock_irq(&np->lock);
2427                 id1 = mii_rw(dev, i, MII_PHYSID1, MII_READ);
2428                 spin_unlock_irq(&np->lock);
2429                 if (id1 < 0 || id1 == 0xffff)
2430                         continue;
2431                 spin_lock_irq(&np->lock);
2432                 id2 = mii_rw(dev, i, MII_PHYSID2, MII_READ);
2433                 spin_unlock_irq(&np->lock);
2434                 if (id2 < 0 || id2 == 0xffff)
2435                         continue;
2436
2437                 id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
2438                 id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
2439                 dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
2440                                 pci_name(pci_dev), id1, id2, i);
2441                 np->phyaddr = i;
2442                 np->phy_oui = id1 | id2;
2443                 break;
2444         }
2445         if (i == 32) {
2446                 /* PHY in isolate mode? No phy attached and user wants to
2447                  * test loopback? Very odd, but can be correct.
2448                  */
2449                 printk(KERN_INFO "%s: open: Could not find a valid PHY.\n",
2450                                 pci_name(pci_dev));
2451         }
2452
2453         if (i != 32) {
2454                 /* reset it */
2455                 phy_init(dev);
2456         }
2457
2458         /* set default link speed settings */
2459         np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2460         np->duplex = 0;
2461         np->autoneg = 1;
2462
2463         err = register_netdev(dev);
2464         if (err) {
2465                 printk(KERN_INFO "forcedeth: unable to register netdev: %d\n", err);
2466                 goto out_freering;
2467         }
2468         printk(KERN_INFO "%s: forcedeth.c: subsystem: %05x:%04x bound to %s\n",
2469                         dev->name, pci_dev->subsystem_vendor, pci_dev->subsystem_device,
2470                         pci_name(pci_dev));
2471
2472         return 0;
2473
2474 out_freering:
2475         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
2476                 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (RX_RING + TX_RING),
2477                                     np->rx_ring.orig, np->ring_addr);
2478         else
2479                 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (RX_RING + TX_RING),
2480                                     np->rx_ring.ex, np->ring_addr);
2481         pci_set_drvdata(pci_dev, NULL);
2482 out_unmap:
2483         iounmap(get_hwbase(dev));
2484 out_relreg:
2485         pci_release_regions(pci_dev);
2486 out_disable:
2487         pci_disable_device(pci_dev);
2488 out_free:
2489         free_netdev(dev);
2490 out:
2491         return err;
2492 }
2493
2494 static void __devexit nv_remove(struct pci_dev *pci_dev)
2495 {
2496         struct net_device *dev = pci_get_drvdata(pci_dev);
2497         struct fe_priv *np = get_nvpriv(dev);
2498
2499         unregister_netdev(dev);
2500
2501         /* free all structures */
2502         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
2503                 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (RX_RING + TX_RING), np->rx_ring.orig, np->ring_addr);
2504         else
2505                 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (RX_RING + TX_RING), np->rx_ring.ex, np->ring_addr);
2506         iounmap(get_hwbase(dev));
2507         pci_release_regions(pci_dev);
2508         pci_disable_device(pci_dev);
2509         free_netdev(dev);
2510         pci_set_drvdata(pci_dev, NULL);
2511 }
2512
2513 static struct pci_device_id pci_tbl[] = {
2514         {       /* nForce Ethernet Controller */
2515                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
2516                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
2517         },
2518         {       /* nForce2 Ethernet Controller */
2519                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
2520                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
2521         },
2522         {       /* nForce3 Ethernet Controller */
2523                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
2524                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
2525         },
2526         {       /* nForce3 Ethernet Controller */
2527                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
2528                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC,
2529         },
2530         {       /* nForce3 Ethernet Controller */
2531                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
2532                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC,
2533         },
2534         {       /* nForce3 Ethernet Controller */
2535                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
2536                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC,
2537         },
2538         {       /* nForce3 Ethernet Controller */
2539                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
2540                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC,
2541         },
2542         {       /* CK804 Ethernet Controller */
2543                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
2544                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA,
2545         },
2546         {       /* CK804 Ethernet Controller */
2547                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
2548                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA,
2549         },
2550         {       /* MCP04 Ethernet Controller */
2551                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
2552                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA,
2553         },
2554         {       /* MCP04 Ethernet Controller */
2555                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
2556                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA,
2557         },
2558         {       /* MCP51 Ethernet Controller */
2559                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
2560                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA,
2561         },
2562         {       /* MCP51 Ethernet Controller */
2563                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
2564                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA,
2565         },
2566         {       /* MCP55 Ethernet Controller */
2567                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
2568                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA,
2569         },
2570         {       /* MCP55 Ethernet Controller */
2571                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
2572                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA,
2573         },
2574         {0,},
2575 };
2576
2577 static struct pci_driver driver = {
2578         .name = "forcedeth",
2579         .id_table = pci_tbl,
2580         .probe = nv_probe,
2581         .remove = __devexit_p(nv_remove),
2582 };
2583
2584
2585 static int __init init_nic(void)
2586 {
2587         printk(KERN_INFO "forcedeth.c: Reverse Engineered nForce ethernet driver. Version %s.\n", FORCEDETH_VERSION);
2588         return pci_module_init(&driver);
2589 }
2590
2591 static void __exit exit_nic(void)
2592 {
2593         pci_unregister_driver(&driver);
2594 }
2595
2596 module_param(max_interrupt_work, int, 0);
2597 MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
2598
2599 MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
2600 MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
2601 MODULE_LICENSE("GPL");
2602
2603 MODULE_DEVICE_TABLE(pci, pci_tbl);
2604
2605 module_init(init_nic);
2606 module_exit(exit_nic);