]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/forcedeth.c
731d0d7b2f37bccf0e99d488be1149ff192661c0
[linux-2.6-omap-h63xx.git] / drivers / net / forcedeth.c
1 /*
2  * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
3  *
4  * Note: This driver is a cleanroom reimplementation based on reverse
5  *      engineered documentation written by Carl-Daniel Hailfinger
6  *      and Andrew de Quincey. It's neither supported nor endorsed
7  *      by NVIDIA Corp. Use at your own risk.
8  *
9  * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
10  * trademarks of NVIDIA Corporation in the United States and other
11  * countries.
12  *
13  * Copyright (C) 2003,4 Manfred Spraul
14  * Copyright (C) 2004 Andrew de Quincey (wol support)
15  * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
16  *              IRQ rate fixes, bigendian fixes, cleanups, verification)
17  * Copyright (c) 2004 NVIDIA Corporation
18  *
19  * This program is free software; you can redistribute it and/or modify
20  * it under the terms of the GNU General Public License as published by
21  * the Free Software Foundation; either version 2 of the License, or
22  * (at your option) any later version.
23  *
24  * This program is distributed in the hope that it will be useful,
25  * but WITHOUT ANY WARRANTY; without even the implied warranty of
26  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
27  * GNU General Public License for more details.
28  *
29  * You should have received a copy of the GNU General Public License
30  * along with this program; if not, write to the Free Software
31  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
32  *
33  * Changelog:
34  *      0.01: 05 Oct 2003: First release that compiles without warnings.
35  *      0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
36  *                         Check all PCI BARs for the register window.
37  *                         udelay added to mii_rw.
38  *      0.03: 06 Oct 2003: Initialize dev->irq.
39  *      0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
40  *      0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
41  *      0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
42  *                         irq mask updated
43  *      0.07: 14 Oct 2003: Further irq mask updates.
44  *      0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
45  *                         added into irq handler, NULL check for drain_ring.
46  *      0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
47  *                         requested interrupt sources.
48  *      0.10: 20 Oct 2003: First cleanup for release.
49  *      0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
50  *                         MAC Address init fix, set_multicast cleanup.
51  *      0.12: 23 Oct 2003: Cleanups for release.
52  *      0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
53  *                         Set link speed correctly. start rx before starting
54  *                         tx (nv_start_rx sets the link speed).
55  *      0.14: 25 Oct 2003: Nic dependant irq mask.
56  *      0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
57  *                         open.
58  *      0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
59  *                         increased to 1628 bytes.
60  *      0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
61  *                         the tx length.
62  *      0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
63  *      0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
64  *                         addresses, really stop rx if already running
65  *                         in nv_start_rx, clean up a bit.
66  *      0.20: 07 Dec 2003: alloc fixes
67  *      0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
68  *      0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
69  *                         on close.
70  *      0.23: 26 Jan 2004: various small cleanups
71  *      0.24: 27 Feb 2004: make driver even less anonymous in backtraces
72  *      0.25: 09 Mar 2004: wol support
73  *      0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
74  *      0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
75  *                         added CK804/MCP04 device IDs, code fixes
76  *                         for registers, link status and other minor fixes.
77  *      0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
78  *      0.29: 31 Aug 2004: Add backup timer for link change notification.
79  *      0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
80  *                         into nv_close, otherwise reenabling for wol can
81  *                         cause DMA to kfree'd memory.
82  *      0.31: 14 Nov 2004: ethtool support for getting/setting link
83  *                         capabilities.
84  *      0.32: 16 Apr 2005: RX_ERROR4 handling added.
85  *      0.33: 16 May 2005: Support for MCP51 added.
86  *      0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics.
87  *      0.35: 26 Jun 2005: Support for MCP55 added.
88  *      0.36: 28 Jun 2005: Add jumbo frame support.
89  *      0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list
90  *      0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of
91  *                         per-packet flags.
92  *      0.39: 18 Jul 2005: Add 64bit descriptor support.
93  *      0.40: 19 Jul 2005: Add support for mac address change.
94  *      0.41: 30 Jul 2005: Write back original MAC in nv_close instead
95  *                         of nv_remove
96  *      0.42: 06 Aug 2005: Fix lack of link speed initialization
97  *                         in the second (and later) nv_open call
98  *      0.43: 10 Aug 2005: Add support for tx checksum.
99  *      0.44: 20 Aug 2005: Add support for scatter gather and segmentation.
100  *      0.45: 18 Sep 2005: Remove nv_stop/start_rx from every link check
101  *      0.46: 20 Oct 2005: Add irq optimization modes.
102  *
103  * Known bugs:
104  * We suspect that on some hardware no TX done interrupts are generated.
105  * This means recovery from netif_stop_queue only happens if the hw timer
106  * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
107  * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
108  * If your hardware reliably generates tx done interrupts, then you can remove
109  * DEV_NEED_TIMERIRQ from the driver_data flags.
110  * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
111  * superfluous timer interrupts from the nic.
112  */
113 #define FORCEDETH_VERSION               "0.46"
114 #define DRV_NAME                        "forcedeth"
115
116 #include <linux/module.h>
117 #include <linux/types.h>
118 #include <linux/pci.h>
119 #include <linux/interrupt.h>
120 #include <linux/netdevice.h>
121 #include <linux/etherdevice.h>
122 #include <linux/delay.h>
123 #include <linux/spinlock.h>
124 #include <linux/ethtool.h>
125 #include <linux/timer.h>
126 #include <linux/skbuff.h>
127 #include <linux/mii.h>
128 #include <linux/random.h>
129 #include <linux/init.h>
130 #include <linux/if_vlan.h>
131
132 #include <asm/irq.h>
133 #include <asm/io.h>
134 #include <asm/uaccess.h>
135 #include <asm/system.h>
136
137 #if 0
138 #define dprintk                 printk
139 #else
140 #define dprintk(x...)           do { } while (0)
141 #endif
142
143
144 /*
145  * Hardware access:
146  */
147
148 #define DEV_NEED_TIMERIRQ       0x0001  /* set the timer irq flag in the irq mask */
149 #define DEV_NEED_LINKTIMER      0x0002  /* poll link settings. Relies on the timer irq */
150 #define DEV_HAS_LARGEDESC       0x0004  /* device supports jumbo frames and needs packet format 2 */
151 #define DEV_HAS_HIGH_DMA        0x0008  /* device supports 64bit dma */
152 #define DEV_HAS_CHECKSUM        0x0010  /* device supports tx and rx checksum offloads */
153
154 enum {
155         NvRegIrqStatus = 0x000,
156 #define NVREG_IRQSTAT_MIIEVENT  0x040
157 #define NVREG_IRQSTAT_MASK              0x1ff
158         NvRegIrqMask = 0x004,
159 #define NVREG_IRQ_RX_ERROR              0x0001
160 #define NVREG_IRQ_RX                    0x0002
161 #define NVREG_IRQ_RX_NOBUF              0x0004
162 #define NVREG_IRQ_TX_ERR                0x0008
163 #define NVREG_IRQ_TX_OK                 0x0010
164 #define NVREG_IRQ_TIMER                 0x0020
165 #define NVREG_IRQ_LINK                  0x0040
166 #define NVREG_IRQ_TX_ERROR              0x0080
167 #define NVREG_IRQ_TX1                   0x0100
168 #define NVREG_IRQMASK_THROUGHPUT        0x00df
169 #define NVREG_IRQMASK_CPU               0x0040
170
171 #define NVREG_IRQ_UNKNOWN       (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
172                                         NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_TX_ERROR| \
173                                         NVREG_IRQ_TX1))
174
175         NvRegUnknownSetupReg6 = 0x008,
176 #define NVREG_UNKSETUP6_VAL             3
177
178 /*
179  * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
180  * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
181  */
182         NvRegPollingInterval = 0x00c,
183 #define NVREG_POLL_DEFAULT_THROUGHPUT   970
184 #define NVREG_POLL_DEFAULT_CPU  13
185         NvRegMisc1 = 0x080,
186 #define NVREG_MISC1_HD          0x02
187 #define NVREG_MISC1_FORCE       0x3b0f3c
188
189         NvRegTransmitterControl = 0x084,
190 #define NVREG_XMITCTL_START     0x01
191         NvRegTransmitterStatus = 0x088,
192 #define NVREG_XMITSTAT_BUSY     0x01
193
194         NvRegPacketFilterFlags = 0x8c,
195 #define NVREG_PFF_ALWAYS        0x7F0008
196 #define NVREG_PFF_PROMISC       0x80
197 #define NVREG_PFF_MYADDR        0x20
198
199         NvRegOffloadConfig = 0x90,
200 #define NVREG_OFFLOAD_HOMEPHY   0x601
201 #define NVREG_OFFLOAD_NORMAL    RX_NIC_BUFSIZE
202         NvRegReceiverControl = 0x094,
203 #define NVREG_RCVCTL_START      0x01
204         NvRegReceiverStatus = 0x98,
205 #define NVREG_RCVSTAT_BUSY      0x01
206
207         NvRegRandomSeed = 0x9c,
208 #define NVREG_RNDSEED_MASK      0x00ff
209 #define NVREG_RNDSEED_FORCE     0x7f00
210 #define NVREG_RNDSEED_FORCE2    0x2d00
211 #define NVREG_RNDSEED_FORCE3    0x7400
212
213         NvRegUnknownSetupReg1 = 0xA0,
214 #define NVREG_UNKSETUP1_VAL     0x16070f
215         NvRegUnknownSetupReg2 = 0xA4,
216 #define NVREG_UNKSETUP2_VAL     0x16
217         NvRegMacAddrA = 0xA8,
218         NvRegMacAddrB = 0xAC,
219         NvRegMulticastAddrA = 0xB0,
220 #define NVREG_MCASTADDRA_FORCE  0x01
221         NvRegMulticastAddrB = 0xB4,
222         NvRegMulticastMaskA = 0xB8,
223         NvRegMulticastMaskB = 0xBC,
224
225         NvRegPhyInterface = 0xC0,
226 #define PHY_RGMII               0x10000000
227
228         NvRegTxRingPhysAddr = 0x100,
229         NvRegRxRingPhysAddr = 0x104,
230         NvRegRingSizes = 0x108,
231 #define NVREG_RINGSZ_TXSHIFT 0
232 #define NVREG_RINGSZ_RXSHIFT 16
233         NvRegUnknownTransmitterReg = 0x10c,
234         NvRegLinkSpeed = 0x110,
235 #define NVREG_LINKSPEED_FORCE 0x10000
236 #define NVREG_LINKSPEED_10      1000
237 #define NVREG_LINKSPEED_100     100
238 #define NVREG_LINKSPEED_1000    50
239 #define NVREG_LINKSPEED_MASK    (0xFFF)
240         NvRegUnknownSetupReg5 = 0x130,
241 #define NVREG_UNKSETUP5_BIT31   (1<<31)
242         NvRegUnknownSetupReg3 = 0x13c,
243 #define NVREG_UNKSETUP3_VAL1    0x200010
244         NvRegTxRxControl = 0x144,
245 #define NVREG_TXRXCTL_KICK      0x0001
246 #define NVREG_TXRXCTL_BIT1      0x0002
247 #define NVREG_TXRXCTL_BIT2      0x0004
248 #define NVREG_TXRXCTL_IDLE      0x0008
249 #define NVREG_TXRXCTL_RESET     0x0010
250 #define NVREG_TXRXCTL_RXCHECK   0x0400
251 #define NVREG_TXRXCTL_DESC_1    0
252 #define NVREG_TXRXCTL_DESC_2    0x02100
253 #define NVREG_TXRXCTL_DESC_3    0x02200
254         NvRegMIIStatus = 0x180,
255 #define NVREG_MIISTAT_ERROR             0x0001
256 #define NVREG_MIISTAT_LINKCHANGE        0x0008
257 #define NVREG_MIISTAT_MASK              0x000f
258 #define NVREG_MIISTAT_MASK2             0x000f
259         NvRegUnknownSetupReg4 = 0x184,
260 #define NVREG_UNKSETUP4_VAL     8
261
262         NvRegAdapterControl = 0x188,
263 #define NVREG_ADAPTCTL_START    0x02
264 #define NVREG_ADAPTCTL_LINKUP   0x04
265 #define NVREG_ADAPTCTL_PHYVALID 0x40000
266 #define NVREG_ADAPTCTL_RUNNING  0x100000
267 #define NVREG_ADAPTCTL_PHYSHIFT 24
268         NvRegMIISpeed = 0x18c,
269 #define NVREG_MIISPEED_BIT8     (1<<8)
270 #define NVREG_MIIDELAY  5
271         NvRegMIIControl = 0x190,
272 #define NVREG_MIICTL_INUSE      0x08000
273 #define NVREG_MIICTL_WRITE      0x00400
274 #define NVREG_MIICTL_ADDRSHIFT  5
275         NvRegMIIData = 0x194,
276         NvRegWakeUpFlags = 0x200,
277 #define NVREG_WAKEUPFLAGS_VAL           0x7770
278 #define NVREG_WAKEUPFLAGS_BUSYSHIFT     24
279 #define NVREG_WAKEUPFLAGS_ENABLESHIFT   16
280 #define NVREG_WAKEUPFLAGS_D3SHIFT       12
281 #define NVREG_WAKEUPFLAGS_D2SHIFT       8
282 #define NVREG_WAKEUPFLAGS_D1SHIFT       4
283 #define NVREG_WAKEUPFLAGS_D0SHIFT       0
284 #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT         0x01
285 #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT      0x02
286 #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE     0x04
287 #define NVREG_WAKEUPFLAGS_ENABLE        0x1111
288
289         NvRegPatternCRC = 0x204,
290         NvRegPatternMask = 0x208,
291         NvRegPowerCap = 0x268,
292 #define NVREG_POWERCAP_D3SUPP   (1<<30)
293 #define NVREG_POWERCAP_D2SUPP   (1<<26)
294 #define NVREG_POWERCAP_D1SUPP   (1<<25)
295         NvRegPowerState = 0x26c,
296 #define NVREG_POWERSTATE_POWEREDUP      0x8000
297 #define NVREG_POWERSTATE_VALID          0x0100
298 #define NVREG_POWERSTATE_MASK           0x0003
299 #define NVREG_POWERSTATE_D0             0x0000
300 #define NVREG_POWERSTATE_D1             0x0001
301 #define NVREG_POWERSTATE_D2             0x0002
302 #define NVREG_POWERSTATE_D3             0x0003
303 };
304
305 /* Big endian: should work, but is untested */
306 struct ring_desc {
307         u32 PacketBuffer;
308         u32 FlagLen;
309 };
310
311 struct ring_desc_ex {
312         u32 PacketBufferHigh;
313         u32 PacketBufferLow;
314         u32 Reserved;
315         u32 FlagLen;
316 };
317
318 typedef union _ring_type {
319         struct ring_desc* orig;
320         struct ring_desc_ex* ex;
321 } ring_type;
322
323 #define FLAG_MASK_V1 0xffff0000
324 #define FLAG_MASK_V2 0xffffc000
325 #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
326 #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
327
328 #define NV_TX_LASTPACKET        (1<<16)
329 #define NV_TX_RETRYERROR        (1<<19)
330 #define NV_TX_FORCED_INTERRUPT  (1<<24)
331 #define NV_TX_DEFERRED          (1<<26)
332 #define NV_TX_CARRIERLOST       (1<<27)
333 #define NV_TX_LATECOLLISION     (1<<28)
334 #define NV_TX_UNDERFLOW         (1<<29)
335 #define NV_TX_ERROR             (1<<30)
336 #define NV_TX_VALID             (1<<31)
337
338 #define NV_TX2_LASTPACKET       (1<<29)
339 #define NV_TX2_RETRYERROR       (1<<18)
340 #define NV_TX2_FORCED_INTERRUPT (1<<30)
341 #define NV_TX2_DEFERRED         (1<<25)
342 #define NV_TX2_CARRIERLOST      (1<<26)
343 #define NV_TX2_LATECOLLISION    (1<<27)
344 #define NV_TX2_UNDERFLOW        (1<<28)
345 /* error and valid are the same for both */
346 #define NV_TX2_ERROR            (1<<30)
347 #define NV_TX2_VALID            (1<<31)
348 #define NV_TX2_TSO              (1<<28)
349 #define NV_TX2_TSO_SHIFT        14
350 #define NV_TX2_CHECKSUM_L3      (1<<27)
351 #define NV_TX2_CHECKSUM_L4      (1<<26)
352
353 #define NV_RX_DESCRIPTORVALID   (1<<16)
354 #define NV_RX_MISSEDFRAME       (1<<17)
355 #define NV_RX_SUBSTRACT1        (1<<18)
356 #define NV_RX_ERROR1            (1<<23)
357 #define NV_RX_ERROR2            (1<<24)
358 #define NV_RX_ERROR3            (1<<25)
359 #define NV_RX_ERROR4            (1<<26)
360 #define NV_RX_CRCERR            (1<<27)
361 #define NV_RX_OVERFLOW          (1<<28)
362 #define NV_RX_FRAMINGERR        (1<<29)
363 #define NV_RX_ERROR             (1<<30)
364 #define NV_RX_AVAIL             (1<<31)
365
366 #define NV_RX2_CHECKSUMMASK     (0x1C000000)
367 #define NV_RX2_CHECKSUMOK1      (0x10000000)
368 #define NV_RX2_CHECKSUMOK2      (0x14000000)
369 #define NV_RX2_CHECKSUMOK3      (0x18000000)
370 #define NV_RX2_DESCRIPTORVALID  (1<<29)
371 #define NV_RX2_SUBSTRACT1       (1<<25)
372 #define NV_RX2_ERROR1           (1<<18)
373 #define NV_RX2_ERROR2           (1<<19)
374 #define NV_RX2_ERROR3           (1<<20)
375 #define NV_RX2_ERROR4           (1<<21)
376 #define NV_RX2_CRCERR           (1<<22)
377 #define NV_RX2_OVERFLOW         (1<<23)
378 #define NV_RX2_FRAMINGERR       (1<<24)
379 /* error and avail are the same for both */
380 #define NV_RX2_ERROR            (1<<30)
381 #define NV_RX2_AVAIL            (1<<31)
382
383 /* Miscelaneous hardware related defines: */
384 #define NV_PCI_REGSZ            0x270
385
386 /* various timeout delays: all in usec */
387 #define NV_TXRX_RESET_DELAY     4
388 #define NV_TXSTOP_DELAY1        10
389 #define NV_TXSTOP_DELAY1MAX     500000
390 #define NV_TXSTOP_DELAY2        100
391 #define NV_RXSTOP_DELAY1        10
392 #define NV_RXSTOP_DELAY1MAX     500000
393 #define NV_RXSTOP_DELAY2        100
394 #define NV_SETUP5_DELAY         5
395 #define NV_SETUP5_DELAYMAX      50000
396 #define NV_POWERUP_DELAY        5
397 #define NV_POWERUP_DELAYMAX     5000
398 #define NV_MIIBUSY_DELAY        50
399 #define NV_MIIPHY_DELAY 10
400 #define NV_MIIPHY_DELAYMAX      10000
401
402 #define NV_WAKEUPPATTERNS       5
403 #define NV_WAKEUPMASKENTRIES    4
404
405 /* General driver defaults */
406 #define NV_WATCHDOG_TIMEO       (5*HZ)
407
408 #define RX_RING         128
409 #define TX_RING         64
410 /* 
411  * If your nic mysteriously hangs then try to reduce the limits
412  * to 1/0: It might be required to set NV_TX_LASTPACKET in the
413  * last valid ring entry. But this would be impossible to
414  * implement - probably a disassembly error.
415  */
416 #define TX_LIMIT_STOP   63
417 #define TX_LIMIT_START  62
418
419 /* rx/tx mac addr + type + vlan + align + slack*/
420 #define NV_RX_HEADERS           (64)
421 /* even more slack. */
422 #define NV_RX_ALLOC_PAD         (64)
423
424 /* maximum mtu size */
425 #define NV_PKTLIMIT_1   ETH_DATA_LEN    /* hard limit not known */
426 #define NV_PKTLIMIT_2   9100    /* Actual limit according to NVidia: 9202 */
427
428 #define OOM_REFILL      (1+HZ/20)
429 #define POLL_WAIT       (1+HZ/100)
430 #define LINK_TIMEOUT    (3*HZ)
431
432 /* 
433  * desc_ver values:
434  * The nic supports three different descriptor types:
435  * - DESC_VER_1: Original
436  * - DESC_VER_2: support for jumbo frames.
437  * - DESC_VER_3: 64-bit format.
438  */
439 #define DESC_VER_1      1
440 #define DESC_VER_2      2
441 #define DESC_VER_3      3
442
443 /* PHY defines */
444 #define PHY_OUI_MARVELL 0x5043
445 #define PHY_OUI_CICADA  0x03f1
446 #define PHYID1_OUI_MASK 0x03ff
447 #define PHYID1_OUI_SHFT 6
448 #define PHYID2_OUI_MASK 0xfc00
449 #define PHYID2_OUI_SHFT 10
450 #define PHY_INIT1       0x0f000
451 #define PHY_INIT2       0x0e00
452 #define PHY_INIT3       0x01000
453 #define PHY_INIT4       0x0200
454 #define PHY_INIT5       0x0004
455 #define PHY_INIT6       0x02000
456 #define PHY_GIGABIT     0x0100
457
458 #define PHY_TIMEOUT     0x1
459 #define PHY_ERROR       0x2
460
461 #define PHY_100 0x1
462 #define PHY_1000        0x2
463 #define PHY_HALF        0x100
464
465 /* FIXME: MII defines that should be added to <linux/mii.h> */
466 #define MII_1000BT_CR   0x09
467 #define MII_1000BT_SR   0x0a
468 #define ADVERTISE_1000FULL      0x0200
469 #define ADVERTISE_1000HALF      0x0100
470 #define LPA_1000FULL    0x0800
471 #define LPA_1000HALF    0x0400
472
473
474 /*
475  * SMP locking:
476  * All hardware access under dev->priv->lock, except the performance
477  * critical parts:
478  * - rx is (pseudo-) lockless: it relies on the single-threading provided
479  *      by the arch code for interrupts.
480  * - tx setup is lockless: it relies on dev->xmit_lock. Actual submission
481  *      needs dev->priv->lock :-(
482  * - set_multicast_list: preparation lockless, relies on dev->xmit_lock.
483  */
484
485 /* in dev: base, irq */
486 struct fe_priv {
487         spinlock_t lock;
488
489         /* General data:
490          * Locking: spin_lock(&np->lock); */
491         struct net_device_stats stats;
492         int in_shutdown;
493         u32 linkspeed;
494         int duplex;
495         int autoneg;
496         int fixed_mode;
497         int phyaddr;
498         int wolenabled;
499         unsigned int phy_oui;
500         u16 gigabit;
501
502         /* General data: RO fields */
503         dma_addr_t ring_addr;
504         struct pci_dev *pci_dev;
505         u32 orig_mac[2];
506         u32 irqmask;
507         u32 desc_ver;
508         u32 txrxctl_bits;
509
510         void __iomem *base;
511
512         /* rx specific fields.
513          * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
514          */
515         ring_type rx_ring;
516         unsigned int cur_rx, refill_rx;
517         struct sk_buff *rx_skbuff[RX_RING];
518         dma_addr_t rx_dma[RX_RING];
519         unsigned int rx_buf_sz;
520         unsigned int pkt_limit;
521         struct timer_list oom_kick;
522         struct timer_list nic_poll;
523
524         /* media detection workaround.
525          * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
526          */
527         int need_linktimer;
528         unsigned long link_timeout;
529         /*
530          * tx specific fields.
531          */
532         ring_type tx_ring;
533         unsigned int next_tx, nic_tx;
534         struct sk_buff *tx_skbuff[TX_RING];
535         dma_addr_t tx_dma[TX_RING];
536         u32 tx_flags;
537 };
538
539 /*
540  * Maximum number of loops until we assume that a bit in the irq mask
541  * is stuck. Overridable with module param.
542  */
543 static int max_interrupt_work = 5;
544
545 /*
546  * Optimization can be either throuput mode or cpu mode
547  * 
548  * Throughput Mode: Every tx and rx packet will generate an interrupt.
549  * CPU Mode: Interrupts are controlled by a timer.
550  */
551 #define NV_OPTIMIZATION_MODE_THROUGHPUT 0
552 #define NV_OPTIMIZATION_MODE_CPU        1
553 static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
554
555 /*
556  * Poll interval for timer irq
557  *
558  * This interval determines how frequent an interrupt is generated.
559  * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
560  * Min = 0, and Max = 65535
561  */
562 static int poll_interval = -1;
563
564 static inline struct fe_priv *get_nvpriv(struct net_device *dev)
565 {
566         return netdev_priv(dev);
567 }
568
569 static inline u8 __iomem *get_hwbase(struct net_device *dev)
570 {
571         return ((struct fe_priv *)netdev_priv(dev))->base;
572 }
573
574 static inline void pci_push(u8 __iomem *base)
575 {
576         /* force out pending posted writes */
577         readl(base);
578 }
579
580 static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
581 {
582         return le32_to_cpu(prd->FlagLen)
583                 & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
584 }
585
586 static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
587 {
588         return le32_to_cpu(prd->FlagLen) & LEN_MASK_V2;
589 }
590
591 static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
592                                 int delay, int delaymax, const char *msg)
593 {
594         u8 __iomem *base = get_hwbase(dev);
595
596         pci_push(base);
597         do {
598                 udelay(delay);
599                 delaymax -= delay;
600                 if (delaymax < 0) {
601                         if (msg)
602                                 printk(msg);
603                         return 1;
604                 }
605         } while ((readl(base + offset) & mask) != target);
606         return 0;
607 }
608
609 #define MII_READ        (-1)
610 /* mii_rw: read/write a register on the PHY.
611  *
612  * Caller must guarantee serialization
613  */
614 static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
615 {
616         u8 __iomem *base = get_hwbase(dev);
617         u32 reg;
618         int retval;
619
620         writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
621
622         reg = readl(base + NvRegMIIControl);
623         if (reg & NVREG_MIICTL_INUSE) {
624                 writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
625                 udelay(NV_MIIBUSY_DELAY);
626         }
627
628         reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
629         if (value != MII_READ) {
630                 writel(value, base + NvRegMIIData);
631                 reg |= NVREG_MIICTL_WRITE;
632         }
633         writel(reg, base + NvRegMIIControl);
634
635         if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
636                         NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
637                 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
638                                 dev->name, miireg, addr);
639                 retval = -1;
640         } else if (value != MII_READ) {
641                 /* it was a write operation - fewer failures are detectable */
642                 dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
643                                 dev->name, value, miireg, addr);
644                 retval = 0;
645         } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
646                 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
647                                 dev->name, miireg, addr);
648                 retval = -1;
649         } else {
650                 retval = readl(base + NvRegMIIData);
651                 dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
652                                 dev->name, miireg, addr, retval);
653         }
654
655         return retval;
656 }
657
658 static int phy_reset(struct net_device *dev)
659 {
660         struct fe_priv *np = netdev_priv(dev);
661         u32 miicontrol;
662         unsigned int tries = 0;
663
664         miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
665         miicontrol |= BMCR_RESET;
666         if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
667                 return -1;
668         }
669
670         /* wait for 500ms */
671         msleep(500);
672
673         /* must wait till reset is deasserted */
674         while (miicontrol & BMCR_RESET) {
675                 msleep(10);
676                 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
677                 /* FIXME: 100 tries seem excessive */
678                 if (tries++ > 100)
679                         return -1;
680         }
681         return 0;
682 }
683
684 static int phy_init(struct net_device *dev)
685 {
686         struct fe_priv *np = get_nvpriv(dev);
687         u8 __iomem *base = get_hwbase(dev);
688         u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
689
690         /* set advertise register */
691         reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
692         reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|0x800|0x400);
693         if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
694                 printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
695                 return PHY_ERROR;
696         }
697
698         /* get phy interface type */
699         phyinterface = readl(base + NvRegPhyInterface);
700
701         /* see if gigabit phy */
702         mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
703         if (mii_status & PHY_GIGABIT) {
704                 np->gigabit = PHY_GIGABIT;
705                 mii_control_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
706                 mii_control_1000 &= ~ADVERTISE_1000HALF;
707                 if (phyinterface & PHY_RGMII)
708                         mii_control_1000 |= ADVERTISE_1000FULL;
709                 else
710                         mii_control_1000 &= ~ADVERTISE_1000FULL;
711
712                 if (mii_rw(dev, np->phyaddr, MII_1000BT_CR, mii_control_1000)) {
713                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
714                         return PHY_ERROR;
715                 }
716         }
717         else
718                 np->gigabit = 0;
719
720         /* reset the phy */
721         if (phy_reset(dev)) {
722                 printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
723                 return PHY_ERROR;
724         }
725
726         /* phy vendor specific configuration */
727         if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
728                 phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
729                 phy_reserved &= ~(PHY_INIT1 | PHY_INIT2);
730                 phy_reserved |= (PHY_INIT3 | PHY_INIT4);
731                 if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
732                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
733                         return PHY_ERROR;
734                 }
735                 phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
736                 phy_reserved |= PHY_INIT5;
737                 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
738                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
739                         return PHY_ERROR;
740                 }
741         }
742         if (np->phy_oui == PHY_OUI_CICADA) {
743                 phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
744                 phy_reserved |= PHY_INIT6;
745                 if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
746                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
747                         return PHY_ERROR;
748                 }
749         }
750
751         /* restart auto negotiation */
752         mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
753         mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
754         if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
755                 return PHY_ERROR;
756         }
757
758         return 0;
759 }
760
761 static void nv_start_rx(struct net_device *dev)
762 {
763         struct fe_priv *np = netdev_priv(dev);
764         u8 __iomem *base = get_hwbase(dev);
765
766         dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
767         /* Already running? Stop it. */
768         if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
769                 writel(0, base + NvRegReceiverControl);
770                 pci_push(base);
771         }
772         writel(np->linkspeed, base + NvRegLinkSpeed);
773         pci_push(base);
774         writel(NVREG_RCVCTL_START, base + NvRegReceiverControl);
775         dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
776                                 dev->name, np->duplex, np->linkspeed);
777         pci_push(base);
778 }
779
780 static void nv_stop_rx(struct net_device *dev)
781 {
782         u8 __iomem *base = get_hwbase(dev);
783
784         dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
785         writel(0, base + NvRegReceiverControl);
786         reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
787                         NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
788                         KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
789
790         udelay(NV_RXSTOP_DELAY2);
791         writel(0, base + NvRegLinkSpeed);
792 }
793
794 static void nv_start_tx(struct net_device *dev)
795 {
796         u8 __iomem *base = get_hwbase(dev);
797
798         dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
799         writel(NVREG_XMITCTL_START, base + NvRegTransmitterControl);
800         pci_push(base);
801 }
802
803 static void nv_stop_tx(struct net_device *dev)
804 {
805         u8 __iomem *base = get_hwbase(dev);
806
807         dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
808         writel(0, base + NvRegTransmitterControl);
809         reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
810                         NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
811                         KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
812
813         udelay(NV_TXSTOP_DELAY2);
814         writel(0, base + NvRegUnknownTransmitterReg);
815 }
816
817 static void nv_txrx_reset(struct net_device *dev)
818 {
819         struct fe_priv *np = netdev_priv(dev);
820         u8 __iomem *base = get_hwbase(dev);
821
822         dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
823         writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
824         pci_push(base);
825         udelay(NV_TXRX_RESET_DELAY);
826         writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
827         pci_push(base);
828 }
829
830 /*
831  * nv_get_stats: dev->get_stats function
832  * Get latest stats value from the nic.
833  * Called with read_lock(&dev_base_lock) held for read -
834  * only synchronized against unregister_netdevice.
835  */
836 static struct net_device_stats *nv_get_stats(struct net_device *dev)
837 {
838         struct fe_priv *np = netdev_priv(dev);
839
840         /* It seems that the nic always generates interrupts and doesn't
841          * accumulate errors internally. Thus the current values in np->stats
842          * are already up to date.
843          */
844         return &np->stats;
845 }
846
847 /*
848  * nv_alloc_rx: fill rx ring entries.
849  * Return 1 if the allocations for the skbs failed and the
850  * rx engine is without Available descriptors
851  */
852 static int nv_alloc_rx(struct net_device *dev)
853 {
854         struct fe_priv *np = netdev_priv(dev);
855         unsigned int refill_rx = np->refill_rx;
856         int nr;
857
858         while (np->cur_rx != refill_rx) {
859                 struct sk_buff *skb;
860
861                 nr = refill_rx % RX_RING;
862                 if (np->rx_skbuff[nr] == NULL) {
863
864                         skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
865                         if (!skb)
866                                 break;
867
868                         skb->dev = dev;
869                         np->rx_skbuff[nr] = skb;
870                 } else {
871                         skb = np->rx_skbuff[nr];
872                 }
873                 np->rx_dma[nr] = pci_map_single(np->pci_dev, skb->data, skb->len,
874                                                 PCI_DMA_FROMDEVICE);
875                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
876                         np->rx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->rx_dma[nr]);
877                         wmb();
878                         np->rx_ring.orig[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
879                 } else {
880                         np->rx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->rx_dma[nr]) >> 32;
881                         np->rx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->rx_dma[nr]) & 0x0FFFFFFFF;
882                         wmb();
883                         np->rx_ring.ex[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
884                 }
885                 dprintk(KERN_DEBUG "%s: nv_alloc_rx: Packet %d marked as Available\n",
886                                         dev->name, refill_rx);
887                 refill_rx++;
888         }
889         np->refill_rx = refill_rx;
890         if (np->cur_rx - refill_rx == RX_RING)
891                 return 1;
892         return 0;
893 }
894
895 static void nv_do_rx_refill(unsigned long data)
896 {
897         struct net_device *dev = (struct net_device *) data;
898         struct fe_priv *np = netdev_priv(dev);
899
900         disable_irq(dev->irq);
901         if (nv_alloc_rx(dev)) {
902                 spin_lock(&np->lock);
903                 if (!np->in_shutdown)
904                         mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
905                 spin_unlock(&np->lock);
906         }
907         enable_irq(dev->irq);
908 }
909
910 static void nv_init_rx(struct net_device *dev) 
911 {
912         struct fe_priv *np = netdev_priv(dev);
913         int i;
914
915         np->cur_rx = RX_RING;
916         np->refill_rx = 0;
917         for (i = 0; i < RX_RING; i++)
918                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
919                         np->rx_ring.orig[i].FlagLen = 0;
920                 else
921                         np->rx_ring.ex[i].FlagLen = 0;
922 }
923
924 static void nv_init_tx(struct net_device *dev)
925 {
926         struct fe_priv *np = netdev_priv(dev);
927         int i;
928
929         np->next_tx = np->nic_tx = 0;
930         for (i = 0; i < TX_RING; i++) {
931                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
932                         np->tx_ring.orig[i].FlagLen = 0;
933                 else
934                         np->tx_ring.ex[i].FlagLen = 0;
935                 np->tx_skbuff[i] = NULL;
936         }
937 }
938
939 static int nv_init_ring(struct net_device *dev)
940 {
941         nv_init_tx(dev);
942         nv_init_rx(dev);
943         return nv_alloc_rx(dev);
944 }
945
946 static void nv_release_txskb(struct net_device *dev, unsigned int skbnr)
947 {
948         struct fe_priv *np = netdev_priv(dev);
949         struct sk_buff *skb = np->tx_skbuff[skbnr];
950         unsigned int j, entry, fragments;
951                         
952         dprintk(KERN_INFO "%s: nv_release_txskb for skbnr %d, skb %p\n",
953                 dev->name, skbnr, np->tx_skbuff[skbnr]);
954         
955         entry = skbnr;
956         if ((fragments = skb_shinfo(skb)->nr_frags) != 0) {
957                 for (j = fragments; j >= 1; j--) {
958                         skb_frag_t *frag = &skb_shinfo(skb)->frags[j-1];
959                         pci_unmap_page(np->pci_dev, np->tx_dma[entry],
960                                        frag->size,
961                                        PCI_DMA_TODEVICE);
962                         entry = (entry - 1) % TX_RING;
963                 }
964         }
965         pci_unmap_single(np->pci_dev, np->tx_dma[entry],
966                          skb->len - skb->data_len,
967                          PCI_DMA_TODEVICE);
968         dev_kfree_skb_irq(skb);
969         np->tx_skbuff[skbnr] = NULL;
970 }
971
972 static void nv_drain_tx(struct net_device *dev)
973 {
974         struct fe_priv *np = netdev_priv(dev);
975         unsigned int i;
976         
977         for (i = 0; i < TX_RING; i++) {
978                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
979                         np->tx_ring.orig[i].FlagLen = 0;
980                 else
981                         np->tx_ring.ex[i].FlagLen = 0;
982                 if (np->tx_skbuff[i]) {
983                         nv_release_txskb(dev, i);
984                         np->stats.tx_dropped++;
985                 }
986         }
987 }
988
989 static void nv_drain_rx(struct net_device *dev)
990 {
991         struct fe_priv *np = netdev_priv(dev);
992         int i;
993         for (i = 0; i < RX_RING; i++) {
994                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
995                         np->rx_ring.orig[i].FlagLen = 0;
996                 else
997                         np->rx_ring.ex[i].FlagLen = 0;
998                 wmb();
999                 if (np->rx_skbuff[i]) {
1000                         pci_unmap_single(np->pci_dev, np->rx_dma[i],
1001                                                 np->rx_skbuff[i]->len,
1002                                                 PCI_DMA_FROMDEVICE);
1003                         dev_kfree_skb(np->rx_skbuff[i]);
1004                         np->rx_skbuff[i] = NULL;
1005                 }
1006         }
1007 }
1008
1009 static void drain_ring(struct net_device *dev)
1010 {
1011         nv_drain_tx(dev);
1012         nv_drain_rx(dev);
1013 }
1014
1015 /*
1016  * nv_start_xmit: dev->hard_start_xmit function
1017  * Called with dev->xmit_lock held.
1018  */
1019 static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
1020 {
1021         struct fe_priv *np = netdev_priv(dev);
1022         u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
1023         unsigned int fragments = skb_shinfo(skb)->nr_frags;
1024         unsigned int nr = (np->next_tx + fragments) % TX_RING;
1025         unsigned int i;
1026
1027         spin_lock_irq(&np->lock);
1028
1029         if ((np->next_tx - np->nic_tx + fragments) > TX_LIMIT_STOP) {
1030                 spin_unlock_irq(&np->lock);
1031                 netif_stop_queue(dev);
1032                 return NETDEV_TX_BUSY;
1033         }
1034
1035         np->tx_skbuff[nr] = skb;
1036         
1037         if (fragments) {
1038                 dprintk(KERN_DEBUG "%s: nv_start_xmit: buffer contains %d fragments\n", dev->name, fragments);
1039                 /* setup descriptors in reverse order */
1040                 for (i = fragments; i >= 1; i--) {
1041                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i-1];
1042                         np->tx_dma[nr] = pci_map_page(np->pci_dev, frag->page, frag->page_offset, frag->size,
1043                                                         PCI_DMA_TODEVICE);
1044
1045                         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1046                                 np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
1047                                 np->tx_ring.orig[nr].FlagLen = cpu_to_le32( (frag->size-1) | np->tx_flags | tx_flags_extra);
1048                         } else {
1049                                 np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
1050                                 np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
1051                                 np->tx_ring.ex[nr].FlagLen = cpu_to_le32( (frag->size-1) | np->tx_flags | tx_flags_extra);
1052                         }
1053                         
1054                         nr = (nr - 1) % TX_RING;
1055
1056                         if (np->desc_ver == DESC_VER_1)
1057                                 tx_flags_extra &= ~NV_TX_LASTPACKET;
1058                         else
1059                                 tx_flags_extra &= ~NV_TX2_LASTPACKET;           
1060                 }
1061         }
1062
1063 #ifdef NETIF_F_TSO
1064         if (skb_shinfo(skb)->tso_size)
1065                 tx_flags_extra |= NV_TX2_TSO | (skb_shinfo(skb)->tso_size << NV_TX2_TSO_SHIFT);
1066         else
1067 #endif
1068         tx_flags_extra |= (skb->ip_summed == CHECKSUM_HW ? (NV_TX2_CHECKSUM_L3|NV_TX2_CHECKSUM_L4) : 0);
1069
1070         np->tx_dma[nr] = pci_map_single(np->pci_dev, skb->data, skb->len-skb->data_len,
1071                                         PCI_DMA_TODEVICE);
1072         
1073         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1074                 np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
1075                 np->tx_ring.orig[nr].FlagLen = cpu_to_le32( (skb->len-skb->data_len-1) | np->tx_flags | tx_flags_extra);
1076         } else {
1077                 np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
1078                 np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
1079                 np->tx_ring.ex[nr].FlagLen = cpu_to_le32( (skb->len-skb->data_len-1) | np->tx_flags | tx_flags_extra);
1080         }       
1081
1082         dprintk(KERN_DEBUG "%s: nv_start_xmit: packet packet %d queued for transmission. tx_flags_extra: %x\n",
1083                                 dev->name, np->next_tx, tx_flags_extra);
1084         {
1085                 int j;
1086                 for (j=0; j<64; j++) {
1087                         if ((j%16) == 0)
1088                                 dprintk("\n%03x:", j);
1089                         dprintk(" %02x", ((unsigned char*)skb->data)[j]);
1090                 }
1091                 dprintk("\n");
1092         }
1093
1094         np->next_tx += 1 + fragments;
1095
1096         dev->trans_start = jiffies;
1097         spin_unlock_irq(&np->lock);
1098         writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
1099         pci_push(get_hwbase(dev));
1100         return NETDEV_TX_OK;
1101 }
1102
1103 /*
1104  * nv_tx_done: check for completed packets, release the skbs.
1105  *
1106  * Caller must own np->lock.
1107  */
1108 static void nv_tx_done(struct net_device *dev)
1109 {
1110         struct fe_priv *np = netdev_priv(dev);
1111         u32 Flags;
1112         unsigned int i;
1113         struct sk_buff *skb;
1114
1115         while (np->nic_tx != np->next_tx) {
1116                 i = np->nic_tx % TX_RING;
1117
1118                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1119                         Flags = le32_to_cpu(np->tx_ring.orig[i].FlagLen);
1120                 else
1121                         Flags = le32_to_cpu(np->tx_ring.ex[i].FlagLen);
1122
1123                 dprintk(KERN_DEBUG "%s: nv_tx_done: looking at packet %d, Flags 0x%x.\n",
1124                                         dev->name, np->nic_tx, Flags);
1125                 if (Flags & NV_TX_VALID)
1126                         break;
1127                 if (np->desc_ver == DESC_VER_1) {
1128                         if (Flags & NV_TX_LASTPACKET) {
1129                                 skb = np->tx_skbuff[i];
1130                                 if (Flags & (NV_TX_RETRYERROR|NV_TX_CARRIERLOST|NV_TX_LATECOLLISION|
1131                                              NV_TX_UNDERFLOW|NV_TX_ERROR)) {
1132                                         if (Flags & NV_TX_UNDERFLOW)
1133                                                 np->stats.tx_fifo_errors++;
1134                                         if (Flags & NV_TX_CARRIERLOST)
1135                                                 np->stats.tx_carrier_errors++;
1136                                         np->stats.tx_errors++;
1137                                 } else {
1138                                         np->stats.tx_packets++;
1139                                         np->stats.tx_bytes += skb->len;
1140                                 }
1141                                 nv_release_txskb(dev, i);
1142                         }
1143                 } else {
1144                         if (Flags & NV_TX2_LASTPACKET) {
1145                                 skb = np->tx_skbuff[i];
1146                                 if (Flags & (NV_TX2_RETRYERROR|NV_TX2_CARRIERLOST|NV_TX2_LATECOLLISION|
1147                                              NV_TX2_UNDERFLOW|NV_TX2_ERROR)) {
1148                                         if (Flags & NV_TX2_UNDERFLOW)
1149                                                 np->stats.tx_fifo_errors++;
1150                                         if (Flags & NV_TX2_CARRIERLOST)
1151                                                 np->stats.tx_carrier_errors++;
1152                                         np->stats.tx_errors++;
1153                                 } else {
1154                                         np->stats.tx_packets++;
1155                                         np->stats.tx_bytes += skb->len;
1156                                 }                               
1157                                 nv_release_txskb(dev, i);
1158                         }
1159                 }
1160                 np->nic_tx++;
1161         }
1162         if (np->next_tx - np->nic_tx < TX_LIMIT_START)
1163                 netif_wake_queue(dev);
1164 }
1165
1166 /*
1167  * nv_tx_timeout: dev->tx_timeout function
1168  * Called with dev->xmit_lock held.
1169  */
1170 static void nv_tx_timeout(struct net_device *dev)
1171 {
1172         struct fe_priv *np = netdev_priv(dev);
1173         u8 __iomem *base = get_hwbase(dev);
1174
1175         printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name,
1176                         readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK);
1177
1178         {
1179                 int i;
1180
1181                 printk(KERN_INFO "%s: Ring at %lx: next %d nic %d\n",
1182                                 dev->name, (unsigned long)np->ring_addr,
1183                                 np->next_tx, np->nic_tx);
1184                 printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
1185                 for (i=0;i<0x400;i+= 32) {
1186                         printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
1187                                         i,
1188                                         readl(base + i + 0), readl(base + i + 4),
1189                                         readl(base + i + 8), readl(base + i + 12),
1190                                         readl(base + i + 16), readl(base + i + 20),
1191                                         readl(base + i + 24), readl(base + i + 28));
1192                 }
1193                 printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
1194                 for (i=0;i<TX_RING;i+= 4) {
1195                         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1196                                 printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
1197                                        i, 
1198                                        le32_to_cpu(np->tx_ring.orig[i].PacketBuffer),
1199                                        le32_to_cpu(np->tx_ring.orig[i].FlagLen),
1200                                        le32_to_cpu(np->tx_ring.orig[i+1].PacketBuffer),
1201                                        le32_to_cpu(np->tx_ring.orig[i+1].FlagLen),
1202                                        le32_to_cpu(np->tx_ring.orig[i+2].PacketBuffer),
1203                                        le32_to_cpu(np->tx_ring.orig[i+2].FlagLen),
1204                                        le32_to_cpu(np->tx_ring.orig[i+3].PacketBuffer),
1205                                        le32_to_cpu(np->tx_ring.orig[i+3].FlagLen));
1206                         } else {
1207                                 printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
1208                                        i, 
1209                                        le32_to_cpu(np->tx_ring.ex[i].PacketBufferHigh),
1210                                        le32_to_cpu(np->tx_ring.ex[i].PacketBufferLow),
1211                                        le32_to_cpu(np->tx_ring.ex[i].FlagLen),
1212                                        le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferHigh),
1213                                        le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferLow),
1214                                        le32_to_cpu(np->tx_ring.ex[i+1].FlagLen),
1215                                        le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferHigh),
1216                                        le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferLow),
1217                                        le32_to_cpu(np->tx_ring.ex[i+2].FlagLen),
1218                                        le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferHigh),
1219                                        le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferLow),
1220                                        le32_to_cpu(np->tx_ring.ex[i+3].FlagLen));
1221                         }
1222                 }
1223         }
1224
1225         spin_lock_irq(&np->lock);
1226
1227         /* 1) stop tx engine */
1228         nv_stop_tx(dev);
1229
1230         /* 2) check that the packets were not sent already: */
1231         nv_tx_done(dev);
1232
1233         /* 3) if there are dead entries: clear everything */
1234         if (np->next_tx != np->nic_tx) {
1235                 printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
1236                 nv_drain_tx(dev);
1237                 np->next_tx = np->nic_tx = 0;
1238                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1239                         writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
1240                 else
1241                         writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
1242                 netif_wake_queue(dev);
1243         }
1244
1245         /* 4) restart tx engine */
1246         nv_start_tx(dev);
1247         spin_unlock_irq(&np->lock);
1248 }
1249
1250 /*
1251  * Called when the nic notices a mismatch between the actual data len on the
1252  * wire and the len indicated in the 802 header
1253  */
1254 static int nv_getlen(struct net_device *dev, void *packet, int datalen)
1255 {
1256         int hdrlen;     /* length of the 802 header */
1257         int protolen;   /* length as stored in the proto field */
1258
1259         /* 1) calculate len according to header */
1260         if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == __constant_htons(ETH_P_8021Q)) {
1261                 protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
1262                 hdrlen = VLAN_HLEN;
1263         } else {
1264                 protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
1265                 hdrlen = ETH_HLEN;
1266         }
1267         dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
1268                                 dev->name, datalen, protolen, hdrlen);
1269         if (protolen > ETH_DATA_LEN)
1270                 return datalen; /* Value in proto field not a len, no checks possible */
1271
1272         protolen += hdrlen;
1273         /* consistency checks: */
1274         if (datalen > ETH_ZLEN) {
1275                 if (datalen >= protolen) {
1276                         /* more data on wire than in 802 header, trim of
1277                          * additional data.
1278                          */
1279                         dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
1280                                         dev->name, protolen);
1281                         return protolen;
1282                 } else {
1283                         /* less data on wire than mentioned in header.
1284                          * Discard the packet.
1285                          */
1286                         dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
1287                                         dev->name);
1288                         return -1;
1289                 }
1290         } else {
1291                 /* short packet. Accept only if 802 values are also short */
1292                 if (protolen > ETH_ZLEN) {
1293                         dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
1294                                         dev->name);
1295                         return -1;
1296                 }
1297                 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
1298                                 dev->name, datalen);
1299                 return datalen;
1300         }
1301 }
1302
1303 static void nv_rx_process(struct net_device *dev)
1304 {
1305         struct fe_priv *np = netdev_priv(dev);
1306         u32 Flags;
1307
1308         for (;;) {
1309                 struct sk_buff *skb;
1310                 int len;
1311                 int i;
1312                 if (np->cur_rx - np->refill_rx >= RX_RING)
1313                         break;  /* we scanned the whole ring - do not continue */
1314
1315                 i = np->cur_rx % RX_RING;
1316                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1317                         Flags = le32_to_cpu(np->rx_ring.orig[i].FlagLen);
1318                         len = nv_descr_getlength(&np->rx_ring.orig[i], np->desc_ver);
1319                 } else {
1320                         Flags = le32_to_cpu(np->rx_ring.ex[i].FlagLen);
1321                         len = nv_descr_getlength_ex(&np->rx_ring.ex[i], np->desc_ver);
1322                 }
1323
1324                 dprintk(KERN_DEBUG "%s: nv_rx_process: looking at packet %d, Flags 0x%x.\n",
1325                                         dev->name, np->cur_rx, Flags);
1326
1327                 if (Flags & NV_RX_AVAIL)
1328                         break;  /* still owned by hardware, */
1329
1330                 /*
1331                  * the packet is for us - immediately tear down the pci mapping.
1332                  * TODO: check if a prefetch of the first cacheline improves
1333                  * the performance.
1334                  */
1335                 pci_unmap_single(np->pci_dev, np->rx_dma[i],
1336                                 np->rx_skbuff[i]->len,
1337                                 PCI_DMA_FROMDEVICE);
1338
1339                 {
1340                         int j;
1341                         dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",Flags);
1342                         for (j=0; j<64; j++) {
1343                                 if ((j%16) == 0)
1344                                         dprintk("\n%03x:", j);
1345                                 dprintk(" %02x", ((unsigned char*)np->rx_skbuff[i]->data)[j]);
1346                         }
1347                         dprintk("\n");
1348                 }
1349                 /* look at what we actually got: */
1350                 if (np->desc_ver == DESC_VER_1) {
1351                         if (!(Flags & NV_RX_DESCRIPTORVALID))
1352                                 goto next_pkt;
1353
1354                         if (Flags & NV_RX_ERROR) {
1355                                 if (Flags & NV_RX_MISSEDFRAME) {
1356                                         np->stats.rx_missed_errors++;
1357                                         np->stats.rx_errors++;
1358                                         goto next_pkt;
1359                                 }
1360                                 if (Flags & (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3)) {
1361                                         np->stats.rx_errors++;
1362                                         goto next_pkt;
1363                                 }
1364                                 if (Flags & NV_RX_CRCERR) {
1365                                         np->stats.rx_crc_errors++;
1366                                         np->stats.rx_errors++;
1367                                         goto next_pkt;
1368                                 }
1369                                 if (Flags & NV_RX_OVERFLOW) {
1370                                         np->stats.rx_over_errors++;
1371                                         np->stats.rx_errors++;
1372                                         goto next_pkt;
1373                                 }
1374                                 if (Flags & NV_RX_ERROR4) {
1375                                         len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
1376                                         if (len < 0) {
1377                                                 np->stats.rx_errors++;
1378                                                 goto next_pkt;
1379                                         }
1380                                 }
1381                                 /* framing errors are soft errors. */
1382                                 if (Flags & NV_RX_FRAMINGERR) {
1383                                         if (Flags & NV_RX_SUBSTRACT1) {
1384                                                 len--;
1385                                         }
1386                                 }
1387                         }
1388                 } else {
1389                         if (!(Flags & NV_RX2_DESCRIPTORVALID))
1390                                 goto next_pkt;
1391
1392                         if (Flags & NV_RX2_ERROR) {
1393                                 if (Flags & (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3)) {
1394                                         np->stats.rx_errors++;
1395                                         goto next_pkt;
1396                                 }
1397                                 if (Flags & NV_RX2_CRCERR) {
1398                                         np->stats.rx_crc_errors++;
1399                                         np->stats.rx_errors++;
1400                                         goto next_pkt;
1401                                 }
1402                                 if (Flags & NV_RX2_OVERFLOW) {
1403                                         np->stats.rx_over_errors++;
1404                                         np->stats.rx_errors++;
1405                                         goto next_pkt;
1406                                 }
1407                                 if (Flags & NV_RX2_ERROR4) {
1408                                         len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
1409                                         if (len < 0) {
1410                                                 np->stats.rx_errors++;
1411                                                 goto next_pkt;
1412                                         }
1413                                 }
1414                                 /* framing errors are soft errors */
1415                                 if (Flags & NV_RX2_FRAMINGERR) {
1416                                         if (Flags & NV_RX2_SUBSTRACT1) {
1417                                                 len--;
1418                                         }
1419                                 }
1420                         }
1421                         Flags &= NV_RX2_CHECKSUMMASK;
1422                         if (Flags == NV_RX2_CHECKSUMOK1 ||
1423                                         Flags == NV_RX2_CHECKSUMOK2 ||
1424                                         Flags == NV_RX2_CHECKSUMOK3) {
1425                                 dprintk(KERN_DEBUG "%s: hw checksum hit!.\n", dev->name);
1426                                 np->rx_skbuff[i]->ip_summed = CHECKSUM_UNNECESSARY;
1427                         } else {
1428                                 dprintk(KERN_DEBUG "%s: hwchecksum miss!.\n", dev->name);
1429                         }
1430                 }
1431                 /* got a valid packet - forward it to the network core */
1432                 skb = np->rx_skbuff[i];
1433                 np->rx_skbuff[i] = NULL;
1434
1435                 skb_put(skb, len);
1436                 skb->protocol = eth_type_trans(skb, dev);
1437                 dprintk(KERN_DEBUG "%s: nv_rx_process: packet %d with %d bytes, proto %d accepted.\n",
1438                                         dev->name, np->cur_rx, len, skb->protocol);
1439                 netif_rx(skb);
1440                 dev->last_rx = jiffies;
1441                 np->stats.rx_packets++;
1442                 np->stats.rx_bytes += len;
1443 next_pkt:
1444                 np->cur_rx++;
1445         }
1446 }
1447
1448 static void set_bufsize(struct net_device *dev)
1449 {
1450         struct fe_priv *np = netdev_priv(dev);
1451
1452         if (dev->mtu <= ETH_DATA_LEN)
1453                 np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
1454         else
1455                 np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
1456 }
1457
1458 /*
1459  * nv_change_mtu: dev->change_mtu function
1460  * Called with dev_base_lock held for read.
1461  */
1462 static int nv_change_mtu(struct net_device *dev, int new_mtu)
1463 {
1464         struct fe_priv *np = netdev_priv(dev);
1465         int old_mtu;
1466
1467         if (new_mtu < 64 || new_mtu > np->pkt_limit)
1468                 return -EINVAL;
1469
1470         old_mtu = dev->mtu;
1471         dev->mtu = new_mtu;
1472
1473         /* return early if the buffer sizes will not change */
1474         if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
1475                 return 0;
1476         if (old_mtu == new_mtu)
1477                 return 0;
1478
1479         /* synchronized against open : rtnl_lock() held by caller */
1480         if (netif_running(dev)) {
1481                 u8 __iomem *base = get_hwbase(dev);
1482                 /*
1483                  * It seems that the nic preloads valid ring entries into an
1484                  * internal buffer. The procedure for flushing everything is
1485                  * guessed, there is probably a simpler approach.
1486                  * Changing the MTU is a rare event, it shouldn't matter.
1487                  */
1488                 disable_irq(dev->irq);
1489                 spin_lock_bh(&dev->xmit_lock);
1490                 spin_lock(&np->lock);
1491                 /* stop engines */
1492                 nv_stop_rx(dev);
1493                 nv_stop_tx(dev);
1494                 nv_txrx_reset(dev);
1495                 /* drain rx queue */
1496                 nv_drain_rx(dev);
1497                 nv_drain_tx(dev);
1498                 /* reinit driver view of the rx queue */
1499                 nv_init_rx(dev);
1500                 nv_init_tx(dev);
1501                 /* alloc new rx buffers */
1502                 set_bufsize(dev);
1503                 if (nv_alloc_rx(dev)) {
1504                         if (!np->in_shutdown)
1505                                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1506                 }
1507                 /* reinit nic view of the rx queue */
1508                 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
1509                 writel((u32) np->ring_addr, base + NvRegRxRingPhysAddr);
1510                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1511                         writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
1512                 else
1513                         writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
1514                 writel( ((RX_RING-1) << NVREG_RINGSZ_RXSHIFT) + ((TX_RING-1) << NVREG_RINGSZ_TXSHIFT),
1515                         base + NvRegRingSizes);
1516                 pci_push(base);
1517                 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
1518                 pci_push(base);
1519
1520                 /* restart rx engine */
1521                 nv_start_rx(dev);
1522                 nv_start_tx(dev);
1523                 spin_unlock(&np->lock);
1524                 spin_unlock_bh(&dev->xmit_lock);
1525                 enable_irq(dev->irq);
1526         }
1527         return 0;
1528 }
1529
1530 static void nv_copy_mac_to_hw(struct net_device *dev)
1531 {
1532         u8 __iomem *base = get_hwbase(dev);
1533         u32 mac[2];
1534
1535         mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
1536                         (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
1537         mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
1538
1539         writel(mac[0], base + NvRegMacAddrA);
1540         writel(mac[1], base + NvRegMacAddrB);
1541 }
1542
1543 /*
1544  * nv_set_mac_address: dev->set_mac_address function
1545  * Called with rtnl_lock() held.
1546  */
1547 static int nv_set_mac_address(struct net_device *dev, void *addr)
1548 {
1549         struct fe_priv *np = netdev_priv(dev);
1550         struct sockaddr *macaddr = (struct sockaddr*)addr;
1551
1552         if(!is_valid_ether_addr(macaddr->sa_data))
1553                 return -EADDRNOTAVAIL;
1554
1555         /* synchronized against open : rtnl_lock() held by caller */
1556         memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
1557
1558         if (netif_running(dev)) {
1559                 spin_lock_bh(&dev->xmit_lock);
1560                 spin_lock_irq(&np->lock);
1561
1562                 /* stop rx engine */
1563                 nv_stop_rx(dev);
1564
1565                 /* set mac address */
1566                 nv_copy_mac_to_hw(dev);
1567
1568                 /* restart rx engine */
1569                 nv_start_rx(dev);
1570                 spin_unlock_irq(&np->lock);
1571                 spin_unlock_bh(&dev->xmit_lock);
1572         } else {
1573                 nv_copy_mac_to_hw(dev);
1574         }
1575         return 0;
1576 }
1577
1578 /*
1579  * nv_set_multicast: dev->set_multicast function
1580  * Called with dev->xmit_lock held.
1581  */
1582 static void nv_set_multicast(struct net_device *dev)
1583 {
1584         struct fe_priv *np = netdev_priv(dev);
1585         u8 __iomem *base = get_hwbase(dev);
1586         u32 addr[2];
1587         u32 mask[2];
1588         u32 pff;
1589
1590         memset(addr, 0, sizeof(addr));
1591         memset(mask, 0, sizeof(mask));
1592
1593         if (dev->flags & IFF_PROMISC) {
1594                 printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name);
1595                 pff = NVREG_PFF_PROMISC;
1596         } else {
1597                 pff = NVREG_PFF_MYADDR;
1598
1599                 if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
1600                         u32 alwaysOff[2];
1601                         u32 alwaysOn[2];
1602
1603                         alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
1604                         if (dev->flags & IFF_ALLMULTI) {
1605                                 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
1606                         } else {
1607                                 struct dev_mc_list *walk;
1608
1609                                 walk = dev->mc_list;
1610                                 while (walk != NULL) {
1611                                         u32 a, b;
1612                                         a = le32_to_cpu(*(u32 *) walk->dmi_addr);
1613                                         b = le16_to_cpu(*(u16 *) (&walk->dmi_addr[4]));
1614                                         alwaysOn[0] &= a;
1615                                         alwaysOff[0] &= ~a;
1616                                         alwaysOn[1] &= b;
1617                                         alwaysOff[1] &= ~b;
1618                                         walk = walk->next;
1619                                 }
1620                         }
1621                         addr[0] = alwaysOn[0];
1622                         addr[1] = alwaysOn[1];
1623                         mask[0] = alwaysOn[0] | alwaysOff[0];
1624                         mask[1] = alwaysOn[1] | alwaysOff[1];
1625                 }
1626         }
1627         addr[0] |= NVREG_MCASTADDRA_FORCE;
1628         pff |= NVREG_PFF_ALWAYS;
1629         spin_lock_irq(&np->lock);
1630         nv_stop_rx(dev);
1631         writel(addr[0], base + NvRegMulticastAddrA);
1632         writel(addr[1], base + NvRegMulticastAddrB);
1633         writel(mask[0], base + NvRegMulticastMaskA);
1634         writel(mask[1], base + NvRegMulticastMaskB);
1635         writel(pff, base + NvRegPacketFilterFlags);
1636         dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
1637                 dev->name);
1638         nv_start_rx(dev);
1639         spin_unlock_irq(&np->lock);
1640 }
1641
1642 /**
1643  * nv_update_linkspeed: Setup the MAC according to the link partner
1644  * @dev: Network device to be configured
1645  *
1646  * The function queries the PHY and checks if there is a link partner.
1647  * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
1648  * set to 10 MBit HD.
1649  *
1650  * The function returns 0 if there is no link partner and 1 if there is
1651  * a good link partner.
1652  */
1653 static int nv_update_linkspeed(struct net_device *dev)
1654 {
1655         struct fe_priv *np = netdev_priv(dev);
1656         u8 __iomem *base = get_hwbase(dev);
1657         int adv, lpa;
1658         int newls = np->linkspeed;
1659         int newdup = np->duplex;
1660         int mii_status;
1661         int retval = 0;
1662         u32 control_1000, status_1000, phyreg;
1663
1664         /* BMSR_LSTATUS is latched, read it twice:
1665          * we want the current value.
1666          */
1667         mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
1668         mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
1669
1670         if (!(mii_status & BMSR_LSTATUS)) {
1671                 dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
1672                                 dev->name);
1673                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1674                 newdup = 0;
1675                 retval = 0;
1676                 goto set_speed;
1677         }
1678
1679         if (np->autoneg == 0) {
1680                 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
1681                                 dev->name, np->fixed_mode);
1682                 if (np->fixed_mode & LPA_100FULL) {
1683                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
1684                         newdup = 1;
1685                 } else if (np->fixed_mode & LPA_100HALF) {
1686                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
1687                         newdup = 0;
1688                 } else if (np->fixed_mode & LPA_10FULL) {
1689                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1690                         newdup = 1;
1691                 } else {
1692                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1693                         newdup = 0;
1694                 }
1695                 retval = 1;
1696                 goto set_speed;
1697         }
1698         /* check auto negotiation is complete */
1699         if (!(mii_status & BMSR_ANEGCOMPLETE)) {
1700                 /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
1701                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1702                 newdup = 0;
1703                 retval = 0;
1704                 dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
1705                 goto set_speed;
1706         }
1707
1708         retval = 1;
1709         if (np->gigabit == PHY_GIGABIT) {
1710                 control_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
1711                 status_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_SR, MII_READ);
1712
1713                 if ((control_1000 & ADVERTISE_1000FULL) &&
1714                         (status_1000 & LPA_1000FULL)) {
1715                         dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
1716                                 dev->name);
1717                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
1718                         newdup = 1;
1719                         goto set_speed;
1720                 }
1721         }
1722
1723         adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
1724         lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
1725         dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
1726                                 dev->name, adv, lpa);
1727
1728         /* FIXME: handle parallel detection properly */
1729         lpa = lpa & adv;
1730         if (lpa & LPA_100FULL) {
1731                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
1732                 newdup = 1;
1733         } else if (lpa & LPA_100HALF) {
1734                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
1735                 newdup = 0;
1736         } else if (lpa & LPA_10FULL) {
1737                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1738                 newdup = 1;
1739         } else if (lpa & LPA_10HALF) {
1740                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1741                 newdup = 0;
1742         } else {
1743                 dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, lpa);
1744                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1745                 newdup = 0;
1746         }
1747
1748 set_speed:
1749         if (np->duplex == newdup && np->linkspeed == newls)
1750                 return retval;
1751
1752         dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
1753                         dev->name, np->linkspeed, np->duplex, newls, newdup);
1754
1755         np->duplex = newdup;
1756         np->linkspeed = newls;
1757
1758         if (np->gigabit == PHY_GIGABIT) {
1759                 phyreg = readl(base + NvRegRandomSeed);
1760                 phyreg &= ~(0x3FF00);
1761                 if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
1762                         phyreg |= NVREG_RNDSEED_FORCE3;
1763                 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
1764                         phyreg |= NVREG_RNDSEED_FORCE2;
1765                 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
1766                         phyreg |= NVREG_RNDSEED_FORCE;
1767                 writel(phyreg, base + NvRegRandomSeed);
1768         }
1769
1770         phyreg = readl(base + NvRegPhyInterface);
1771         phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
1772         if (np->duplex == 0)
1773                 phyreg |= PHY_HALF;
1774         if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
1775                 phyreg |= PHY_100;
1776         else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
1777                 phyreg |= PHY_1000;
1778         writel(phyreg, base + NvRegPhyInterface);
1779
1780         writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
1781                 base + NvRegMisc1);
1782         pci_push(base);
1783         writel(np->linkspeed, base + NvRegLinkSpeed);
1784         pci_push(base);
1785
1786         return retval;
1787 }
1788
1789 static void nv_linkchange(struct net_device *dev)
1790 {
1791         if (nv_update_linkspeed(dev)) {
1792                 if (!netif_carrier_ok(dev)) {
1793                         netif_carrier_on(dev);
1794                         printk(KERN_INFO "%s: link up.\n", dev->name);
1795                         nv_start_rx(dev);
1796                 }
1797         } else {
1798                 if (netif_carrier_ok(dev)) {
1799                         netif_carrier_off(dev);
1800                         printk(KERN_INFO "%s: link down.\n", dev->name);
1801                         nv_stop_rx(dev);
1802                 }
1803         }
1804 }
1805
1806 static void nv_link_irq(struct net_device *dev)
1807 {
1808         u8 __iomem *base = get_hwbase(dev);
1809         u32 miistat;
1810
1811         miistat = readl(base + NvRegMIIStatus);
1812         writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
1813         dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
1814
1815         if (miistat & (NVREG_MIISTAT_LINKCHANGE))
1816                 nv_linkchange(dev);
1817         dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
1818 }
1819
1820 static irqreturn_t nv_nic_irq(int foo, void *data, struct pt_regs *regs)
1821 {
1822         struct net_device *dev = (struct net_device *) data;
1823         struct fe_priv *np = netdev_priv(dev);
1824         u8 __iomem *base = get_hwbase(dev);
1825         u32 events;
1826         int i;
1827
1828         dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
1829
1830         for (i=0; ; i++) {
1831                 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
1832                 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
1833                 pci_push(base);
1834                 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
1835                 if (!(events & np->irqmask))
1836                         break;
1837
1838                 spin_lock(&np->lock);
1839                 nv_tx_done(dev);
1840                 spin_unlock(&np->lock);
1841                 
1842                 nv_rx_process(dev);
1843                 if (nv_alloc_rx(dev)) {
1844                         spin_lock(&np->lock);
1845                         if (!np->in_shutdown)
1846                                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1847                         spin_unlock(&np->lock);
1848                 }
1849                 
1850                 if (events & NVREG_IRQ_LINK) {
1851                         spin_lock(&np->lock);
1852                         nv_link_irq(dev);
1853                         spin_unlock(&np->lock);
1854                 }
1855                 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
1856                         spin_lock(&np->lock);
1857                         nv_linkchange(dev);
1858                         spin_unlock(&np->lock);
1859                         np->link_timeout = jiffies + LINK_TIMEOUT;
1860                 }
1861                 if (events & (NVREG_IRQ_TX_ERR)) {
1862                         dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
1863                                                 dev->name, events);
1864                 }
1865                 if (events & (NVREG_IRQ_UNKNOWN)) {
1866                         printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
1867                                                 dev->name, events);
1868                 }
1869                 if (i > max_interrupt_work) {
1870                         spin_lock(&np->lock);
1871                         /* disable interrupts on the nic */
1872                         writel(0, base + NvRegIrqMask);
1873                         pci_push(base);
1874
1875                         if (!np->in_shutdown)
1876                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
1877                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
1878                         spin_unlock(&np->lock);
1879                         break;
1880                 }
1881
1882         }
1883         dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
1884
1885         return IRQ_RETVAL(i);
1886 }
1887
1888 static void nv_do_nic_poll(unsigned long data)
1889 {
1890         struct net_device *dev = (struct net_device *) data;
1891         struct fe_priv *np = netdev_priv(dev);
1892         u8 __iomem *base = get_hwbase(dev);
1893
1894         disable_irq(dev->irq);
1895         /* FIXME: Do we need synchronize_irq(dev->irq) here? */
1896         /*
1897          * reenable interrupts on the nic, we have to do this before calling
1898          * nv_nic_irq because that may decide to do otherwise
1899          */
1900         writel(np->irqmask, base + NvRegIrqMask);
1901         pci_push(base);
1902         nv_nic_irq((int) 0, (void *) data, (struct pt_regs *) NULL);
1903         enable_irq(dev->irq);
1904 }
1905
1906 #ifdef CONFIG_NET_POLL_CONTROLLER
1907 static void nv_poll_controller(struct net_device *dev)
1908 {
1909         nv_do_nic_poll((unsigned long) dev);
1910 }
1911 #endif
1912
1913 static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1914 {
1915         struct fe_priv *np = netdev_priv(dev);
1916         strcpy(info->driver, "forcedeth");
1917         strcpy(info->version, FORCEDETH_VERSION);
1918         strcpy(info->bus_info, pci_name(np->pci_dev));
1919 }
1920
1921 static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
1922 {
1923         struct fe_priv *np = netdev_priv(dev);
1924         wolinfo->supported = WAKE_MAGIC;
1925
1926         spin_lock_irq(&np->lock);
1927         if (np->wolenabled)
1928                 wolinfo->wolopts = WAKE_MAGIC;
1929         spin_unlock_irq(&np->lock);
1930 }
1931
1932 static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
1933 {
1934         struct fe_priv *np = netdev_priv(dev);
1935         u8 __iomem *base = get_hwbase(dev);
1936
1937         spin_lock_irq(&np->lock);
1938         if (wolinfo->wolopts == 0) {
1939                 writel(0, base + NvRegWakeUpFlags);
1940                 np->wolenabled = 0;
1941         }
1942         if (wolinfo->wolopts & WAKE_MAGIC) {
1943                 writel(NVREG_WAKEUPFLAGS_ENABLE, base + NvRegWakeUpFlags);
1944                 np->wolenabled = 1;
1945         }
1946         spin_unlock_irq(&np->lock);
1947         return 0;
1948 }
1949
1950 static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1951 {
1952         struct fe_priv *np = netdev_priv(dev);
1953         int adv;
1954
1955         spin_lock_irq(&np->lock);
1956         ecmd->port = PORT_MII;
1957         if (!netif_running(dev)) {
1958                 /* We do not track link speed / duplex setting if the
1959                  * interface is disabled. Force a link check */
1960                 nv_update_linkspeed(dev);
1961         }
1962         switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
1963                 case NVREG_LINKSPEED_10:
1964                         ecmd->speed = SPEED_10;
1965                         break;
1966                 case NVREG_LINKSPEED_100:
1967                         ecmd->speed = SPEED_100;
1968                         break;
1969                 case NVREG_LINKSPEED_1000:
1970                         ecmd->speed = SPEED_1000;
1971                         break;
1972         }
1973         ecmd->duplex = DUPLEX_HALF;
1974         if (np->duplex)
1975                 ecmd->duplex = DUPLEX_FULL;
1976
1977         ecmd->autoneg = np->autoneg;
1978
1979         ecmd->advertising = ADVERTISED_MII;
1980         if (np->autoneg) {
1981                 ecmd->advertising |= ADVERTISED_Autoneg;
1982                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
1983         } else {
1984                 adv = np->fixed_mode;
1985         }
1986         if (adv & ADVERTISE_10HALF)
1987                 ecmd->advertising |= ADVERTISED_10baseT_Half;
1988         if (adv & ADVERTISE_10FULL)
1989                 ecmd->advertising |= ADVERTISED_10baseT_Full;
1990         if (adv & ADVERTISE_100HALF)
1991                 ecmd->advertising |= ADVERTISED_100baseT_Half;
1992         if (adv & ADVERTISE_100FULL)
1993                 ecmd->advertising |= ADVERTISED_100baseT_Full;
1994         if (np->autoneg && np->gigabit == PHY_GIGABIT) {
1995                 adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
1996                 if (adv & ADVERTISE_1000FULL)
1997                         ecmd->advertising |= ADVERTISED_1000baseT_Full;
1998         }
1999
2000         ecmd->supported = (SUPPORTED_Autoneg |
2001                 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2002                 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2003                 SUPPORTED_MII);
2004         if (np->gigabit == PHY_GIGABIT)
2005                 ecmd->supported |= SUPPORTED_1000baseT_Full;
2006
2007         ecmd->phy_address = np->phyaddr;
2008         ecmd->transceiver = XCVR_EXTERNAL;
2009
2010         /* ignore maxtxpkt, maxrxpkt for now */
2011         spin_unlock_irq(&np->lock);
2012         return 0;
2013 }
2014
2015 static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2016 {
2017         struct fe_priv *np = netdev_priv(dev);
2018
2019         if (ecmd->port != PORT_MII)
2020                 return -EINVAL;
2021         if (ecmd->transceiver != XCVR_EXTERNAL)
2022                 return -EINVAL;
2023         if (ecmd->phy_address != np->phyaddr) {
2024                 /* TODO: support switching between multiple phys. Should be
2025                  * trivial, but not enabled due to lack of test hardware. */
2026                 return -EINVAL;
2027         }
2028         if (ecmd->autoneg == AUTONEG_ENABLE) {
2029                 u32 mask;
2030
2031                 mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
2032                           ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
2033                 if (np->gigabit == PHY_GIGABIT)
2034                         mask |= ADVERTISED_1000baseT_Full;
2035
2036                 if ((ecmd->advertising & mask) == 0)
2037                         return -EINVAL;
2038
2039         } else if (ecmd->autoneg == AUTONEG_DISABLE) {
2040                 /* Note: autonegotiation disable, speed 1000 intentionally
2041                  * forbidden - noone should need that. */
2042
2043                 if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
2044                         return -EINVAL;
2045                 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
2046                         return -EINVAL;
2047         } else {
2048                 return -EINVAL;
2049         }
2050
2051         spin_lock_irq(&np->lock);
2052         if (ecmd->autoneg == AUTONEG_ENABLE) {
2053                 int adv, bmcr;
2054
2055                 np->autoneg = 1;
2056
2057                 /* advertise only what has been requested */
2058                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2059                 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
2060                 if (ecmd->advertising & ADVERTISED_10baseT_Half)
2061                         adv |= ADVERTISE_10HALF;
2062                 if (ecmd->advertising & ADVERTISED_10baseT_Full)
2063                         adv |= ADVERTISE_10FULL;
2064                 if (ecmd->advertising & ADVERTISED_100baseT_Half)
2065                         adv |= ADVERTISE_100HALF;
2066                 if (ecmd->advertising & ADVERTISED_100baseT_Full)
2067                         adv |= ADVERTISE_100FULL;
2068                 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
2069
2070                 if (np->gigabit == PHY_GIGABIT) {
2071                         adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
2072                         adv &= ~ADVERTISE_1000FULL;
2073                         if (ecmd->advertising & ADVERTISED_1000baseT_Full)
2074                                 adv |= ADVERTISE_1000FULL;
2075                         mii_rw(dev, np->phyaddr, MII_1000BT_CR, adv);
2076                 }
2077
2078                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
2079                 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
2080                 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
2081
2082         } else {
2083                 int adv, bmcr;
2084
2085                 np->autoneg = 0;
2086
2087                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2088                 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
2089                 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
2090                         adv |= ADVERTISE_10HALF;
2091                 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
2092                         adv |= ADVERTISE_10FULL;
2093                 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
2094                         adv |= ADVERTISE_100HALF;
2095                 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
2096                         adv |= ADVERTISE_100FULL;
2097                 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
2098                 np->fixed_mode = adv;
2099
2100                 if (np->gigabit == PHY_GIGABIT) {
2101                         adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
2102                         adv &= ~ADVERTISE_1000FULL;
2103                         mii_rw(dev, np->phyaddr, MII_1000BT_CR, adv);
2104                 }
2105
2106                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
2107                 bmcr |= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_FULLDPLX);
2108                 if (adv & (ADVERTISE_10FULL|ADVERTISE_100FULL))
2109                         bmcr |= BMCR_FULLDPLX;
2110                 if (adv & (ADVERTISE_100HALF|ADVERTISE_100FULL))
2111                         bmcr |= BMCR_SPEED100;
2112                 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
2113
2114                 if (netif_running(dev)) {
2115                         /* Wait a bit and then reconfigure the nic. */
2116                         udelay(10);
2117                         nv_linkchange(dev);
2118                 }
2119         }
2120         spin_unlock_irq(&np->lock);
2121
2122         return 0;
2123 }
2124
2125 #define FORCEDETH_REGS_VER      1
2126 #define FORCEDETH_REGS_SIZE     0x400 /* 256 32-bit registers */
2127
2128 static int nv_get_regs_len(struct net_device *dev)
2129 {
2130         return FORCEDETH_REGS_SIZE;
2131 }
2132
2133 static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
2134 {
2135         struct fe_priv *np = netdev_priv(dev);
2136         u8 __iomem *base = get_hwbase(dev);
2137         u32 *rbuf = buf;
2138         int i;
2139
2140         regs->version = FORCEDETH_REGS_VER;
2141         spin_lock_irq(&np->lock);
2142         for (i=0;i<FORCEDETH_REGS_SIZE/sizeof(u32);i++)
2143                 rbuf[i] = readl(base + i*sizeof(u32));
2144         spin_unlock_irq(&np->lock);
2145 }
2146
2147 static int nv_nway_reset(struct net_device *dev)
2148 {
2149         struct fe_priv *np = netdev_priv(dev);
2150         int ret;
2151
2152         spin_lock_irq(&np->lock);
2153         if (np->autoneg) {
2154                 int bmcr;
2155
2156                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
2157                 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
2158                 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
2159
2160                 ret = 0;
2161         } else {
2162                 ret = -EINVAL;
2163         }
2164         spin_unlock_irq(&np->lock);
2165
2166         return ret;
2167 }
2168
2169 static struct ethtool_ops ops = {
2170         .get_drvinfo = nv_get_drvinfo,
2171         .get_link = ethtool_op_get_link,
2172         .get_wol = nv_get_wol,
2173         .set_wol = nv_set_wol,
2174         .get_settings = nv_get_settings,
2175         .set_settings = nv_set_settings,
2176         .get_regs_len = nv_get_regs_len,
2177         .get_regs = nv_get_regs,
2178         .nway_reset = nv_nway_reset,
2179         .get_perm_addr = ethtool_op_get_perm_addr,
2180 };
2181
2182 static int nv_open(struct net_device *dev)
2183 {
2184         struct fe_priv *np = netdev_priv(dev);
2185         u8 __iomem *base = get_hwbase(dev);
2186         int ret, oom, i;
2187
2188         dprintk(KERN_DEBUG "nv_open: begin\n");
2189
2190         /* 1) erase previous misconfiguration */
2191         /* 4.1-1: stop adapter: ignored, 4.3 seems to be overkill */
2192         writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
2193         writel(0, base + NvRegMulticastAddrB);
2194         writel(0, base + NvRegMulticastMaskA);
2195         writel(0, base + NvRegMulticastMaskB);
2196         writel(0, base + NvRegPacketFilterFlags);
2197
2198         writel(0, base + NvRegTransmitterControl);
2199         writel(0, base + NvRegReceiverControl);
2200
2201         writel(0, base + NvRegAdapterControl);
2202
2203         /* 2) initialize descriptor rings */
2204         set_bufsize(dev);
2205         oom = nv_init_ring(dev);
2206
2207         writel(0, base + NvRegLinkSpeed);
2208         writel(0, base + NvRegUnknownTransmitterReg);
2209         nv_txrx_reset(dev);
2210         writel(0, base + NvRegUnknownSetupReg6);
2211
2212         np->in_shutdown = 0;
2213
2214         /* 3) set mac address */
2215         nv_copy_mac_to_hw(dev);
2216
2217         /* 4) give hw rings */
2218         writel((u32) np->ring_addr, base + NvRegRxRingPhysAddr);
2219         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
2220                 writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
2221         else
2222                 writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
2223         writel( ((RX_RING-1) << NVREG_RINGSZ_RXSHIFT) + ((TX_RING-1) << NVREG_RINGSZ_TXSHIFT),
2224                 base + NvRegRingSizes);
2225
2226         /* 5) continue setup */
2227         writel(np->linkspeed, base + NvRegLinkSpeed);
2228         writel(NVREG_UNKSETUP3_VAL1, base + NvRegUnknownSetupReg3);
2229         writel(np->txrxctl_bits, base + NvRegTxRxControl);
2230         pci_push(base);
2231         writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
2232         reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
2233                         NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
2234                         KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
2235
2236         writel(0, base + NvRegUnknownSetupReg4);
2237         writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
2238         writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
2239
2240         /* 6) continue setup */
2241         writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
2242         writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
2243         writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
2244         writel(np->rx_buf_sz, base + NvRegOffloadConfig);
2245
2246         writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
2247         get_random_bytes(&i, sizeof(i));
2248         writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
2249         writel(NVREG_UNKSETUP1_VAL, base + NvRegUnknownSetupReg1);
2250         writel(NVREG_UNKSETUP2_VAL, base + NvRegUnknownSetupReg2);
2251         if (poll_interval == -1) {
2252                 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
2253                         writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
2254                 else
2255                         writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
2256         }
2257         else
2258                 writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
2259         writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
2260         writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
2261                         base + NvRegAdapterControl);
2262         writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
2263         writel(NVREG_UNKSETUP4_VAL, base + NvRegUnknownSetupReg4);
2264         writel(NVREG_WAKEUPFLAGS_VAL, base + NvRegWakeUpFlags);
2265
2266         i = readl(base + NvRegPowerState);
2267         if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
2268                 writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
2269
2270         pci_push(base);
2271         udelay(10);
2272         writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
2273
2274         writel(0, base + NvRegIrqMask);
2275         pci_push(base);
2276         writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
2277         writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
2278         pci_push(base);
2279
2280         ret = request_irq(dev->irq, &nv_nic_irq, SA_SHIRQ, dev->name, dev);
2281         if (ret)
2282                 goto out_drain;
2283
2284         /* ask for interrupts */
2285         writel(np->irqmask, base + NvRegIrqMask);
2286
2287         spin_lock_irq(&np->lock);
2288         writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
2289         writel(0, base + NvRegMulticastAddrB);
2290         writel(0, base + NvRegMulticastMaskA);
2291         writel(0, base + NvRegMulticastMaskB);
2292         writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
2293         /* One manual link speed update: Interrupts are enabled, future link
2294          * speed changes cause interrupts and are handled by nv_link_irq().
2295          */
2296         {
2297                 u32 miistat;
2298                 miistat = readl(base + NvRegMIIStatus);
2299                 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
2300                 dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
2301         }
2302         /* set linkspeed to invalid value, thus force nv_update_linkspeed
2303          * to init hw */
2304         np->linkspeed = 0;
2305         ret = nv_update_linkspeed(dev);
2306         nv_start_rx(dev);
2307         nv_start_tx(dev);
2308         netif_start_queue(dev);
2309         if (ret) {
2310                 netif_carrier_on(dev);
2311         } else {
2312                 printk("%s: no link during initialization.\n", dev->name);
2313                 netif_carrier_off(dev);
2314         }
2315         if (oom)
2316                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2317         spin_unlock_irq(&np->lock);
2318
2319         return 0;
2320 out_drain:
2321         drain_ring(dev);
2322         return ret;
2323 }
2324
2325 static int nv_close(struct net_device *dev)
2326 {
2327         struct fe_priv *np = netdev_priv(dev);
2328         u8 __iomem *base;
2329
2330         spin_lock_irq(&np->lock);
2331         np->in_shutdown = 1;
2332         spin_unlock_irq(&np->lock);
2333         synchronize_irq(dev->irq);
2334
2335         del_timer_sync(&np->oom_kick);
2336         del_timer_sync(&np->nic_poll);
2337
2338         netif_stop_queue(dev);
2339         spin_lock_irq(&np->lock);
2340         nv_stop_tx(dev);
2341         nv_stop_rx(dev);
2342         nv_txrx_reset(dev);
2343
2344         /* disable interrupts on the nic or we will lock up */
2345         base = get_hwbase(dev);
2346         writel(0, base + NvRegIrqMask);
2347         pci_push(base);
2348         dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
2349
2350         spin_unlock_irq(&np->lock);
2351
2352         free_irq(dev->irq, dev);
2353
2354         drain_ring(dev);
2355
2356         if (np->wolenabled)
2357                 nv_start_rx(dev);
2358
2359         /* special op: write back the misordered MAC address - otherwise
2360          * the next nv_probe would see a wrong address.
2361          */
2362         writel(np->orig_mac[0], base + NvRegMacAddrA);
2363         writel(np->orig_mac[1], base + NvRegMacAddrB);
2364
2365         /* FIXME: power down nic */
2366
2367         return 0;
2368 }
2369
2370 static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
2371 {
2372         struct net_device *dev;
2373         struct fe_priv *np;
2374         unsigned long addr;
2375         u8 __iomem *base;
2376         int err, i;
2377
2378         dev = alloc_etherdev(sizeof(struct fe_priv));
2379         err = -ENOMEM;
2380         if (!dev)
2381                 goto out;
2382
2383         np = netdev_priv(dev);
2384         np->pci_dev = pci_dev;
2385         spin_lock_init(&np->lock);
2386         SET_MODULE_OWNER(dev);
2387         SET_NETDEV_DEV(dev, &pci_dev->dev);
2388
2389         init_timer(&np->oom_kick);
2390         np->oom_kick.data = (unsigned long) dev;
2391         np->oom_kick.function = &nv_do_rx_refill;       /* timer handler */
2392         init_timer(&np->nic_poll);
2393         np->nic_poll.data = (unsigned long) dev;
2394         np->nic_poll.function = &nv_do_nic_poll;        /* timer handler */
2395
2396         err = pci_enable_device(pci_dev);
2397         if (err) {
2398                 printk(KERN_INFO "forcedeth: pci_enable_dev failed (%d) for device %s\n",
2399                                 err, pci_name(pci_dev));
2400                 goto out_free;
2401         }
2402
2403         pci_set_master(pci_dev);
2404
2405         err = pci_request_regions(pci_dev, DRV_NAME);
2406         if (err < 0)
2407                 goto out_disable;
2408
2409         err = -EINVAL;
2410         addr = 0;
2411         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
2412                 dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
2413                                 pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
2414                                 pci_resource_len(pci_dev, i),
2415                                 pci_resource_flags(pci_dev, i));
2416                 if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
2417                                 pci_resource_len(pci_dev, i) >= NV_PCI_REGSZ) {
2418                         addr = pci_resource_start(pci_dev, i);
2419                         break;
2420                 }
2421         }
2422         if (i == DEVICE_COUNT_RESOURCE) {
2423                 printk(KERN_INFO "forcedeth: Couldn't find register window for device %s.\n",
2424                                         pci_name(pci_dev));
2425                 goto out_relreg;
2426         }
2427
2428         /* handle different descriptor versions */
2429         if (id->driver_data & DEV_HAS_HIGH_DMA) {
2430                 /* packet format 3: supports 40-bit addressing */
2431                 np->desc_ver = DESC_VER_3;
2432                 if (pci_set_dma_mask(pci_dev, 0x0000007fffffffffULL)) {
2433                         printk(KERN_INFO "forcedeth: 64-bit DMA failed, using 32-bit addressing for device %s.\n",
2434                                         pci_name(pci_dev));
2435                 } else {
2436                         dev->features |= NETIF_F_HIGHDMA;
2437                 }
2438                 np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
2439         } else if (id->driver_data & DEV_HAS_LARGEDESC) {
2440                 /* packet format 2: supports jumbo frames */
2441                 np->desc_ver = DESC_VER_2;
2442                 np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
2443         } else {
2444                 /* original packet format */
2445                 np->desc_ver = DESC_VER_1;
2446                 np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
2447         }
2448
2449         np->pkt_limit = NV_PKTLIMIT_1;
2450         if (id->driver_data & DEV_HAS_LARGEDESC)
2451                 np->pkt_limit = NV_PKTLIMIT_2;
2452
2453         if (id->driver_data & DEV_HAS_CHECKSUM) {
2454                 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
2455                 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
2456 #ifdef NETIF_F_TSO
2457                 dev->features |= NETIF_F_TSO;
2458 #endif
2459         }
2460
2461         err = -ENOMEM;
2462         np->base = ioremap(addr, NV_PCI_REGSZ);
2463         if (!np->base)
2464                 goto out_relreg;
2465         dev->base_addr = (unsigned long)np->base;
2466
2467         dev->irq = pci_dev->irq;
2468
2469         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
2470                 np->rx_ring.orig = pci_alloc_consistent(pci_dev,
2471                                         sizeof(struct ring_desc) * (RX_RING + TX_RING),
2472                                         &np->ring_addr);
2473                 if (!np->rx_ring.orig)
2474                         goto out_unmap;
2475                 np->tx_ring.orig = &np->rx_ring.orig[RX_RING];
2476         } else {
2477                 np->rx_ring.ex = pci_alloc_consistent(pci_dev,
2478                                         sizeof(struct ring_desc_ex) * (RX_RING + TX_RING),
2479                                         &np->ring_addr);
2480                 if (!np->rx_ring.ex)
2481                         goto out_unmap;
2482                 np->tx_ring.ex = &np->rx_ring.ex[RX_RING];
2483         }
2484
2485         dev->open = nv_open;
2486         dev->stop = nv_close;
2487         dev->hard_start_xmit = nv_start_xmit;
2488         dev->get_stats = nv_get_stats;
2489         dev->change_mtu = nv_change_mtu;
2490         dev->set_mac_address = nv_set_mac_address;
2491         dev->set_multicast_list = nv_set_multicast;
2492 #ifdef CONFIG_NET_POLL_CONTROLLER
2493         dev->poll_controller = nv_poll_controller;
2494 #endif
2495         SET_ETHTOOL_OPS(dev, &ops);
2496         dev->tx_timeout = nv_tx_timeout;
2497         dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
2498
2499         pci_set_drvdata(pci_dev, dev);
2500
2501         /* read the mac address */
2502         base = get_hwbase(dev);
2503         np->orig_mac[0] = readl(base + NvRegMacAddrA);
2504         np->orig_mac[1] = readl(base + NvRegMacAddrB);
2505
2506         dev->dev_addr[0] = (np->orig_mac[1] >>  8) & 0xff;
2507         dev->dev_addr[1] = (np->orig_mac[1] >>  0) & 0xff;
2508         dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
2509         dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
2510         dev->dev_addr[4] = (np->orig_mac[0] >>  8) & 0xff;
2511         dev->dev_addr[5] = (np->orig_mac[0] >>  0) & 0xff;
2512         memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
2513
2514         if (!is_valid_ether_addr(dev->perm_addr)) {
2515                 /*
2516                  * Bad mac address. At least one bios sets the mac address
2517                  * to 01:23:45:67:89:ab
2518                  */
2519                 printk(KERN_ERR "%s: Invalid Mac address detected: %02x:%02x:%02x:%02x:%02x:%02x\n",
2520                         pci_name(pci_dev),
2521                         dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
2522                         dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
2523                 printk(KERN_ERR "Please complain to your hardware vendor. Switching to a random MAC.\n");
2524                 dev->dev_addr[0] = 0x00;
2525                 dev->dev_addr[1] = 0x00;
2526                 dev->dev_addr[2] = 0x6c;
2527                 get_random_bytes(&dev->dev_addr[3], 3);
2528         }
2529
2530         dprintk(KERN_DEBUG "%s: MAC Address %02x:%02x:%02x:%02x:%02x:%02x\n", pci_name(pci_dev),
2531                         dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
2532                         dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
2533
2534         /* disable WOL */
2535         writel(0, base + NvRegWakeUpFlags);
2536         np->wolenabled = 0;
2537
2538         if (np->desc_ver == DESC_VER_1) {
2539                 np->tx_flags = NV_TX_VALID;
2540         } else {
2541                 np->tx_flags = NV_TX2_VALID;
2542         }
2543         if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
2544                 np->irqmask = NVREG_IRQMASK_THROUGHPUT;
2545         else
2546                 np->irqmask = NVREG_IRQMASK_CPU;
2547
2548         if (id->driver_data & DEV_NEED_TIMERIRQ)
2549                 np->irqmask |= NVREG_IRQ_TIMER;
2550         if (id->driver_data & DEV_NEED_LINKTIMER) {
2551                 dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
2552                 np->need_linktimer = 1;
2553                 np->link_timeout = jiffies + LINK_TIMEOUT;
2554         } else {
2555                 dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
2556                 np->need_linktimer = 0;
2557         }
2558
2559         /* find a suitable phy */
2560         for (i = 1; i < 32; i++) {
2561                 int id1, id2;
2562
2563                 spin_lock_irq(&np->lock);
2564                 id1 = mii_rw(dev, i, MII_PHYSID1, MII_READ);
2565                 spin_unlock_irq(&np->lock);
2566                 if (id1 < 0 || id1 == 0xffff)
2567                         continue;
2568                 spin_lock_irq(&np->lock);
2569                 id2 = mii_rw(dev, i, MII_PHYSID2, MII_READ);
2570                 spin_unlock_irq(&np->lock);
2571                 if (id2 < 0 || id2 == 0xffff)
2572                         continue;
2573
2574                 id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
2575                 id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
2576                 dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
2577                                 pci_name(pci_dev), id1, id2, i);
2578                 np->phyaddr = i;
2579                 np->phy_oui = id1 | id2;
2580                 break;
2581         }
2582         if (i == 32) {
2583                 /* PHY in isolate mode? No phy attached and user wants to
2584                  * test loopback? Very odd, but can be correct.
2585                  */
2586                 printk(KERN_INFO "%s: open: Could not find a valid PHY.\n",
2587                                 pci_name(pci_dev));
2588         }
2589
2590         if (i != 32) {
2591                 /* reset it */
2592                 phy_init(dev);
2593         }
2594
2595         /* set default link speed settings */
2596         np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2597         np->duplex = 0;
2598         np->autoneg = 1;
2599
2600         err = register_netdev(dev);
2601         if (err) {
2602                 printk(KERN_INFO "forcedeth: unable to register netdev: %d\n", err);
2603                 goto out_freering;
2604         }
2605         printk(KERN_INFO "%s: forcedeth.c: subsystem: %05x:%04x bound to %s\n",
2606                         dev->name, pci_dev->subsystem_vendor, pci_dev->subsystem_device,
2607                         pci_name(pci_dev));
2608
2609         return 0;
2610
2611 out_freering:
2612         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
2613                 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (RX_RING + TX_RING),
2614                                     np->rx_ring.orig, np->ring_addr);
2615         else
2616                 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (RX_RING + TX_RING),
2617                                     np->rx_ring.ex, np->ring_addr);
2618         pci_set_drvdata(pci_dev, NULL);
2619 out_unmap:
2620         iounmap(get_hwbase(dev));
2621 out_relreg:
2622         pci_release_regions(pci_dev);
2623 out_disable:
2624         pci_disable_device(pci_dev);
2625 out_free:
2626         free_netdev(dev);
2627 out:
2628         return err;
2629 }
2630
2631 static void __devexit nv_remove(struct pci_dev *pci_dev)
2632 {
2633         struct net_device *dev = pci_get_drvdata(pci_dev);
2634         struct fe_priv *np = netdev_priv(dev);
2635
2636         unregister_netdev(dev);
2637
2638         /* free all structures */
2639         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
2640                 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (RX_RING + TX_RING), np->rx_ring.orig, np->ring_addr);
2641         else
2642                 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (RX_RING + TX_RING), np->rx_ring.ex, np->ring_addr);
2643         iounmap(get_hwbase(dev));
2644         pci_release_regions(pci_dev);
2645         pci_disable_device(pci_dev);
2646         free_netdev(dev);
2647         pci_set_drvdata(pci_dev, NULL);
2648 }
2649
2650 static struct pci_device_id pci_tbl[] = {
2651         {       /* nForce Ethernet Controller */
2652                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
2653                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
2654         },
2655         {       /* nForce2 Ethernet Controller */
2656                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
2657                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
2658         },
2659         {       /* nForce3 Ethernet Controller */
2660                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
2661                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
2662         },
2663         {       /* nForce3 Ethernet Controller */
2664                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
2665                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
2666         },
2667         {       /* nForce3 Ethernet Controller */
2668                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
2669                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
2670         },
2671         {       /* nForce3 Ethernet Controller */
2672                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
2673                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
2674         },
2675         {       /* nForce3 Ethernet Controller */
2676                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
2677                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
2678         },
2679         {       /* CK804 Ethernet Controller */
2680                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
2681                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
2682         },
2683         {       /* CK804 Ethernet Controller */
2684                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
2685                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
2686         },
2687         {       /* MCP04 Ethernet Controller */
2688                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
2689                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
2690         },
2691         {       /* MCP04 Ethernet Controller */
2692                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
2693                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
2694         },
2695         {       /* MCP51 Ethernet Controller */
2696                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
2697                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA,
2698         },
2699         {       /* MCP51 Ethernet Controller */
2700                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
2701                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA,
2702         },
2703         {       /* MCP55 Ethernet Controller */
2704                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
2705                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
2706         },
2707         {       /* MCP55 Ethernet Controller */
2708                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
2709                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
2710         },
2711         {0,},
2712 };
2713
2714 static struct pci_driver driver = {
2715         .name = "forcedeth",
2716         .id_table = pci_tbl,
2717         .probe = nv_probe,
2718         .remove = __devexit_p(nv_remove),
2719 };
2720
2721
2722 static int __init init_nic(void)
2723 {
2724         printk(KERN_INFO "forcedeth.c: Reverse Engineered nForce ethernet driver. Version %s.\n", FORCEDETH_VERSION);
2725         return pci_module_init(&driver);
2726 }
2727
2728 static void __exit exit_nic(void)
2729 {
2730         pci_unregister_driver(&driver);
2731 }
2732
2733 module_param(max_interrupt_work, int, 0);
2734 MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
2735 module_param(optimization_mode, int, 0);
2736 MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
2737 module_param(poll_interval, int, 0);
2738 MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
2739
2740 MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
2741 MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
2742 MODULE_LICENSE("GPL");
2743
2744 MODULE_DEVICE_TABLE(pci, pci_tbl);
2745
2746 module_init(init_nic);
2747 module_exit(exit_nic);