]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/forcedeth.c
1e691024868fc0bac043109aeb0fcda7bcbd5693
[linux-2.6-omap-h63xx.git] / drivers / net / forcedeth.c
1 /*
2  * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
3  *
4  * Note: This driver is a cleanroom reimplementation based on reverse
5  *      engineered documentation written by Carl-Daniel Hailfinger
6  *      and Andrew de Quincey. It's neither supported nor endorsed
7  *      by NVIDIA Corp. Use at your own risk.
8  *
9  * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
10  * trademarks of NVIDIA Corporation in the United States and other
11  * countries.
12  *
13  * Copyright (C) 2003,4 Manfred Spraul
14  * Copyright (C) 2004 Andrew de Quincey (wol support)
15  * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
16  *              IRQ rate fixes, bigendian fixes, cleanups, verification)
17  * Copyright (c) 2004 NVIDIA Corporation
18  *
19  * This program is free software; you can redistribute it and/or modify
20  * it under the terms of the GNU General Public License as published by
21  * the Free Software Foundation; either version 2 of the License, or
22  * (at your option) any later version.
23  *
24  * This program is distributed in the hope that it will be useful,
25  * but WITHOUT ANY WARRANTY; without even the implied warranty of
26  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
27  * GNU General Public License for more details.
28  *
29  * You should have received a copy of the GNU General Public License
30  * along with this program; if not, write to the Free Software
31  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
32  *
33  * Changelog:
34  *      0.01: 05 Oct 2003: First release that compiles without warnings.
35  *      0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
36  *                         Check all PCI BARs for the register window.
37  *                         udelay added to mii_rw.
38  *      0.03: 06 Oct 2003: Initialize dev->irq.
39  *      0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
40  *      0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
41  *      0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
42  *                         irq mask updated
43  *      0.07: 14 Oct 2003: Further irq mask updates.
44  *      0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
45  *                         added into irq handler, NULL check for drain_ring.
46  *      0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
47  *                         requested interrupt sources.
48  *      0.10: 20 Oct 2003: First cleanup for release.
49  *      0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
50  *                         MAC Address init fix, set_multicast cleanup.
51  *      0.12: 23 Oct 2003: Cleanups for release.
52  *      0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
53  *                         Set link speed correctly. start rx before starting
54  *                         tx (nv_start_rx sets the link speed).
55  *      0.14: 25 Oct 2003: Nic dependant irq mask.
56  *      0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
57  *                         open.
58  *      0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
59  *                         increased to 1628 bytes.
60  *      0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
61  *                         the tx length.
62  *      0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
63  *      0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
64  *                         addresses, really stop rx if already running
65  *                         in nv_start_rx, clean up a bit.
66  *      0.20: 07 Dec 2003: alloc fixes
67  *      0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
68  *      0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
69  *                         on close.
70  *      0.23: 26 Jan 2004: various small cleanups
71  *      0.24: 27 Feb 2004: make driver even less anonymous in backtraces
72  *      0.25: 09 Mar 2004: wol support
73  *      0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
74  *      0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
75  *                         added CK804/MCP04 device IDs, code fixes
76  *                         for registers, link status and other minor fixes.
77  *      0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
78  *      0.29: 31 Aug 2004: Add backup timer for link change notification.
79  *      0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
80  *                         into nv_close, otherwise reenabling for wol can
81  *                         cause DMA to kfree'd memory.
82  *      0.31: 14 Nov 2004: ethtool support for getting/setting link
83  *                         capabilities.
84  *      0.32: 16 Apr 2005: RX_ERROR4 handling added.
85  *      0.33: 16 May 2005: Support for MCP51 added.
86  *      0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics.
87  *      0.35: 26 Jun 2005: Support for MCP55 added.
88  *      0.36: 28 Jun 2005: Add jumbo frame support.
89  *      0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list
90  *      0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of
91  *                         per-packet flags.
92  *      0.39: 18 Jul 2005: Add 64bit descriptor support.
93  *      0.40: 19 Jul 2005: Add support for mac address change.
94  *
95  * Known bugs:
96  * We suspect that on some hardware no TX done interrupts are generated.
97  * This means recovery from netif_stop_queue only happens if the hw timer
98  * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
99  * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
100  * If your hardware reliably generates tx done interrupts, then you can remove
101  * DEV_NEED_TIMERIRQ from the driver_data flags.
102  * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
103  * superfluous timer interrupts from the nic.
104  */
105 #define FORCEDETH_VERSION               "0.40"
106 #define DRV_NAME                        "forcedeth"
107
108 #include <linux/module.h>
109 #include <linux/types.h>
110 #include <linux/pci.h>
111 #include <linux/interrupt.h>
112 #include <linux/netdevice.h>
113 #include <linux/etherdevice.h>
114 #include <linux/delay.h>
115 #include <linux/spinlock.h>
116 #include <linux/ethtool.h>
117 #include <linux/timer.h>
118 #include <linux/skbuff.h>
119 #include <linux/mii.h>
120 #include <linux/random.h>
121 #include <linux/init.h>
122 #include <linux/if_vlan.h>
123
124 #include <asm/irq.h>
125 #include <asm/io.h>
126 #include <asm/uaccess.h>
127 #include <asm/system.h>
128
129 #if 0
130 #define dprintk                 printk
131 #else
132 #define dprintk(x...)           do { } while (0)
133 #endif
134
135
136 /*
137  * Hardware access:
138  */
139
140 #define DEV_NEED_TIMERIRQ       0x0001  /* set the timer irq flag in the irq mask */
141 #define DEV_NEED_LINKTIMER      0x0002  /* poll link settings. Relies on the timer irq */
142 #define DEV_HAS_LARGEDESC       0x0004  /* device supports jumbo frames and needs packet format 2 */
143 #define DEV_HAS_HIGH_DMA        0x0008  /* device supports 64bit dma */
144
145 enum {
146         NvRegIrqStatus = 0x000,
147 #define NVREG_IRQSTAT_MIIEVENT  0x040
148 #define NVREG_IRQSTAT_MASK              0x1ff
149         NvRegIrqMask = 0x004,
150 #define NVREG_IRQ_RX_ERROR              0x0001
151 #define NVREG_IRQ_RX                    0x0002
152 #define NVREG_IRQ_RX_NOBUF              0x0004
153 #define NVREG_IRQ_TX_ERR                0x0008
154 #define NVREG_IRQ_TX_OK                 0x0010
155 #define NVREG_IRQ_TIMER                 0x0020
156 #define NVREG_IRQ_LINK                  0x0040
157 #define NVREG_IRQ_TX_ERROR              0x0080
158 #define NVREG_IRQ_TX1                   0x0100
159 #define NVREG_IRQMASK_WANTED            0x00df
160
161 #define NVREG_IRQ_UNKNOWN       (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
162                                         NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_TX_ERROR| \
163                                         NVREG_IRQ_TX1))
164
165         NvRegUnknownSetupReg6 = 0x008,
166 #define NVREG_UNKSETUP6_VAL             3
167
168 /*
169  * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
170  * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
171  */
172         NvRegPollingInterval = 0x00c,
173 #define NVREG_POLL_DEFAULT      970
174         NvRegMisc1 = 0x080,
175 #define NVREG_MISC1_HD          0x02
176 #define NVREG_MISC1_FORCE       0x3b0f3c
177
178         NvRegTransmitterControl = 0x084,
179 #define NVREG_XMITCTL_START     0x01
180         NvRegTransmitterStatus = 0x088,
181 #define NVREG_XMITSTAT_BUSY     0x01
182
183         NvRegPacketFilterFlags = 0x8c,
184 #define NVREG_PFF_ALWAYS        0x7F0008
185 #define NVREG_PFF_PROMISC       0x80
186 #define NVREG_PFF_MYADDR        0x20
187
188         NvRegOffloadConfig = 0x90,
189 #define NVREG_OFFLOAD_HOMEPHY   0x601
190 #define NVREG_OFFLOAD_NORMAL    RX_NIC_BUFSIZE
191         NvRegReceiverControl = 0x094,
192 #define NVREG_RCVCTL_START      0x01
193         NvRegReceiverStatus = 0x98,
194 #define NVREG_RCVSTAT_BUSY      0x01
195
196         NvRegRandomSeed = 0x9c,
197 #define NVREG_RNDSEED_MASK      0x00ff
198 #define NVREG_RNDSEED_FORCE     0x7f00
199 #define NVREG_RNDSEED_FORCE2    0x2d00
200 #define NVREG_RNDSEED_FORCE3    0x7400
201
202         NvRegUnknownSetupReg1 = 0xA0,
203 #define NVREG_UNKSETUP1_VAL     0x16070f
204         NvRegUnknownSetupReg2 = 0xA4,
205 #define NVREG_UNKSETUP2_VAL     0x16
206         NvRegMacAddrA = 0xA8,
207         NvRegMacAddrB = 0xAC,
208         NvRegMulticastAddrA = 0xB0,
209 #define NVREG_MCASTADDRA_FORCE  0x01
210         NvRegMulticastAddrB = 0xB4,
211         NvRegMulticastMaskA = 0xB8,
212         NvRegMulticastMaskB = 0xBC,
213
214         NvRegPhyInterface = 0xC0,
215 #define PHY_RGMII               0x10000000
216
217         NvRegTxRingPhysAddr = 0x100,
218         NvRegRxRingPhysAddr = 0x104,
219         NvRegRingSizes = 0x108,
220 #define NVREG_RINGSZ_TXSHIFT 0
221 #define NVREG_RINGSZ_RXSHIFT 16
222         NvRegUnknownTransmitterReg = 0x10c,
223         NvRegLinkSpeed = 0x110,
224 #define NVREG_LINKSPEED_FORCE 0x10000
225 #define NVREG_LINKSPEED_10      1000
226 #define NVREG_LINKSPEED_100     100
227 #define NVREG_LINKSPEED_1000    50
228 #define NVREG_LINKSPEED_MASK    (0xFFF)
229         NvRegUnknownSetupReg5 = 0x130,
230 #define NVREG_UNKSETUP5_BIT31   (1<<31)
231         NvRegUnknownSetupReg3 = 0x13c,
232 #define NVREG_UNKSETUP3_VAL1    0x200010
233         NvRegTxRxControl = 0x144,
234 #define NVREG_TXRXCTL_KICK      0x0001
235 #define NVREG_TXRXCTL_BIT1      0x0002
236 #define NVREG_TXRXCTL_BIT2      0x0004
237 #define NVREG_TXRXCTL_IDLE      0x0008
238 #define NVREG_TXRXCTL_RESET     0x0010
239 #define NVREG_TXRXCTL_RXCHECK   0x0400
240         NvRegMIIStatus = 0x180,
241 #define NVREG_MIISTAT_ERROR             0x0001
242 #define NVREG_MIISTAT_LINKCHANGE        0x0008
243 #define NVREG_MIISTAT_MASK              0x000f
244 #define NVREG_MIISTAT_MASK2             0x000f
245         NvRegUnknownSetupReg4 = 0x184,
246 #define NVREG_UNKSETUP4_VAL     8
247
248         NvRegAdapterControl = 0x188,
249 #define NVREG_ADAPTCTL_START    0x02
250 #define NVREG_ADAPTCTL_LINKUP   0x04
251 #define NVREG_ADAPTCTL_PHYVALID 0x40000
252 #define NVREG_ADAPTCTL_RUNNING  0x100000
253 #define NVREG_ADAPTCTL_PHYSHIFT 24
254         NvRegMIISpeed = 0x18c,
255 #define NVREG_MIISPEED_BIT8     (1<<8)
256 #define NVREG_MIIDELAY  5
257         NvRegMIIControl = 0x190,
258 #define NVREG_MIICTL_INUSE      0x08000
259 #define NVREG_MIICTL_WRITE      0x00400
260 #define NVREG_MIICTL_ADDRSHIFT  5
261         NvRegMIIData = 0x194,
262         NvRegWakeUpFlags = 0x200,
263 #define NVREG_WAKEUPFLAGS_VAL           0x7770
264 #define NVREG_WAKEUPFLAGS_BUSYSHIFT     24
265 #define NVREG_WAKEUPFLAGS_ENABLESHIFT   16
266 #define NVREG_WAKEUPFLAGS_D3SHIFT       12
267 #define NVREG_WAKEUPFLAGS_D2SHIFT       8
268 #define NVREG_WAKEUPFLAGS_D1SHIFT       4
269 #define NVREG_WAKEUPFLAGS_D0SHIFT       0
270 #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT         0x01
271 #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT      0x02
272 #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE     0x04
273 #define NVREG_WAKEUPFLAGS_ENABLE        0x1111
274
275         NvRegPatternCRC = 0x204,
276         NvRegPatternMask = 0x208,
277         NvRegPowerCap = 0x268,
278 #define NVREG_POWERCAP_D3SUPP   (1<<30)
279 #define NVREG_POWERCAP_D2SUPP   (1<<26)
280 #define NVREG_POWERCAP_D1SUPP   (1<<25)
281         NvRegPowerState = 0x26c,
282 #define NVREG_POWERSTATE_POWEREDUP      0x8000
283 #define NVREG_POWERSTATE_VALID          0x0100
284 #define NVREG_POWERSTATE_MASK           0x0003
285 #define NVREG_POWERSTATE_D0             0x0000
286 #define NVREG_POWERSTATE_D1             0x0001
287 #define NVREG_POWERSTATE_D2             0x0002
288 #define NVREG_POWERSTATE_D3             0x0003
289 };
290
291 /* Big endian: should work, but is untested */
292 struct ring_desc {
293         u32 PacketBuffer;
294         u32 FlagLen;
295 };
296
297 struct ring_desc_ex {
298         u32 PacketBufferHigh;
299         u32 PacketBufferLow;
300         u32 Reserved;
301         u32 FlagLen;
302 };
303
304 typedef union _ring_type {
305         struct ring_desc* orig;
306         struct ring_desc_ex* ex;
307 } ring_type;
308
309 #define FLAG_MASK_V1 0xffff0000
310 #define FLAG_MASK_V2 0xffffc000
311 #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
312 #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
313
314 #define NV_TX_LASTPACKET        (1<<16)
315 #define NV_TX_RETRYERROR        (1<<19)
316 #define NV_TX_FORCED_INTERRUPT  (1<<24)
317 #define NV_TX_DEFERRED          (1<<26)
318 #define NV_TX_CARRIERLOST       (1<<27)
319 #define NV_TX_LATECOLLISION     (1<<28)
320 #define NV_TX_UNDERFLOW         (1<<29)
321 #define NV_TX_ERROR             (1<<30)
322 #define NV_TX_VALID             (1<<31)
323
324 #define NV_TX2_LASTPACKET       (1<<29)
325 #define NV_TX2_RETRYERROR       (1<<18)
326 #define NV_TX2_FORCED_INTERRUPT (1<<30)
327 #define NV_TX2_DEFERRED         (1<<25)
328 #define NV_TX2_CARRIERLOST      (1<<26)
329 #define NV_TX2_LATECOLLISION    (1<<27)
330 #define NV_TX2_UNDERFLOW        (1<<28)
331 /* error and valid are the same for both */
332 #define NV_TX2_ERROR            (1<<30)
333 #define NV_TX2_VALID            (1<<31)
334
335 #define NV_RX_DESCRIPTORVALID   (1<<16)
336 #define NV_RX_MISSEDFRAME       (1<<17)
337 #define NV_RX_SUBSTRACT1        (1<<18)
338 #define NV_RX_ERROR1            (1<<23)
339 #define NV_RX_ERROR2            (1<<24)
340 #define NV_RX_ERROR3            (1<<25)
341 #define NV_RX_ERROR4            (1<<26)
342 #define NV_RX_CRCERR            (1<<27)
343 #define NV_RX_OVERFLOW          (1<<28)
344 #define NV_RX_FRAMINGERR        (1<<29)
345 #define NV_RX_ERROR             (1<<30)
346 #define NV_RX_AVAIL             (1<<31)
347
348 #define NV_RX2_CHECKSUMMASK     (0x1C000000)
349 #define NV_RX2_CHECKSUMOK1      (0x10000000)
350 #define NV_RX2_CHECKSUMOK2      (0x14000000)
351 #define NV_RX2_CHECKSUMOK3      (0x18000000)
352 #define NV_RX2_DESCRIPTORVALID  (1<<29)
353 #define NV_RX2_SUBSTRACT1       (1<<25)
354 #define NV_RX2_ERROR1           (1<<18)
355 #define NV_RX2_ERROR2           (1<<19)
356 #define NV_RX2_ERROR3           (1<<20)
357 #define NV_RX2_ERROR4           (1<<21)
358 #define NV_RX2_CRCERR           (1<<22)
359 #define NV_RX2_OVERFLOW         (1<<23)
360 #define NV_RX2_FRAMINGERR       (1<<24)
361 /* error and avail are the same for both */
362 #define NV_RX2_ERROR            (1<<30)
363 #define NV_RX2_AVAIL            (1<<31)
364
365 /* Miscelaneous hardware related defines: */
366 #define NV_PCI_REGSZ            0x270
367
368 /* various timeout delays: all in usec */
369 #define NV_TXRX_RESET_DELAY     4
370 #define NV_TXSTOP_DELAY1        10
371 #define NV_TXSTOP_DELAY1MAX     500000
372 #define NV_TXSTOP_DELAY2        100
373 #define NV_RXSTOP_DELAY1        10
374 #define NV_RXSTOP_DELAY1MAX     500000
375 #define NV_RXSTOP_DELAY2        100
376 #define NV_SETUP5_DELAY         5
377 #define NV_SETUP5_DELAYMAX      50000
378 #define NV_POWERUP_DELAY        5
379 #define NV_POWERUP_DELAYMAX     5000
380 #define NV_MIIBUSY_DELAY        50
381 #define NV_MIIPHY_DELAY 10
382 #define NV_MIIPHY_DELAYMAX      10000
383
384 #define NV_WAKEUPPATTERNS       5
385 #define NV_WAKEUPMASKENTRIES    4
386
387 /* General driver defaults */
388 #define NV_WATCHDOG_TIMEO       (5*HZ)
389
390 #define RX_RING         128
391 #define TX_RING         64
392 /* 
393  * If your nic mysteriously hangs then try to reduce the limits
394  * to 1/0: It might be required to set NV_TX_LASTPACKET in the
395  * last valid ring entry. But this would be impossible to
396  * implement - probably a disassembly error.
397  */
398 #define TX_LIMIT_STOP   63
399 #define TX_LIMIT_START  62
400
401 /* rx/tx mac addr + type + vlan + align + slack*/
402 #define NV_RX_HEADERS           (64)
403 /* even more slack. */
404 #define NV_RX_ALLOC_PAD         (64)
405
406 /* maximum mtu size */
407 #define NV_PKTLIMIT_1   ETH_DATA_LEN    /* hard limit not known */
408 #define NV_PKTLIMIT_2   9100    /* Actual limit according to NVidia: 9202 */
409
410 #define OOM_REFILL      (1+HZ/20)
411 #define POLL_WAIT       (1+HZ/100)
412 #define LINK_TIMEOUT    (3*HZ)
413
414 /* 
415  * desc_ver values:
416  * This field has two purposes:
417  * - Newer nics uses a different ring layout. The layout is selected by
418  *   comparing np->desc_ver with DESC_VER_xy.
419  * - It contains bits that are forced on when writing to NvRegTxRxControl.
420  */
421 #define DESC_VER_1      0x0
422 #define DESC_VER_2      (0x02100|NVREG_TXRXCTL_RXCHECK)
423 #define DESC_VER_3      (0x02200|NVREG_TXRXCTL_RXCHECK)
424
425 /* PHY defines */
426 #define PHY_OUI_MARVELL 0x5043
427 #define PHY_OUI_CICADA  0x03f1
428 #define PHYID1_OUI_MASK 0x03ff
429 #define PHYID1_OUI_SHFT 6
430 #define PHYID2_OUI_MASK 0xfc00
431 #define PHYID2_OUI_SHFT 10
432 #define PHY_INIT1       0x0f000
433 #define PHY_INIT2       0x0e00
434 #define PHY_INIT3       0x01000
435 #define PHY_INIT4       0x0200
436 #define PHY_INIT5       0x0004
437 #define PHY_INIT6       0x02000
438 #define PHY_GIGABIT     0x0100
439
440 #define PHY_TIMEOUT     0x1
441 #define PHY_ERROR       0x2
442
443 #define PHY_100 0x1
444 #define PHY_1000        0x2
445 #define PHY_HALF        0x100
446
447 /* FIXME: MII defines that should be added to <linux/mii.h> */
448 #define MII_1000BT_CR   0x09
449 #define MII_1000BT_SR   0x0a
450 #define ADVERTISE_1000FULL      0x0200
451 #define ADVERTISE_1000HALF      0x0100
452 #define LPA_1000FULL    0x0800
453 #define LPA_1000HALF    0x0400
454
455
456 /*
457  * SMP locking:
458  * All hardware access under dev->priv->lock, except the performance
459  * critical parts:
460  * - rx is (pseudo-) lockless: it relies on the single-threading provided
461  *      by the arch code for interrupts.
462  * - tx setup is lockless: it relies on dev->xmit_lock. Actual submission
463  *      needs dev->priv->lock :-(
464  * - set_multicast_list: preparation lockless, relies on dev->xmit_lock.
465  */
466
467 /* in dev: base, irq */
468 struct fe_priv {
469         spinlock_t lock;
470
471         /* General data:
472          * Locking: spin_lock(&np->lock); */
473         struct net_device_stats stats;
474         int in_shutdown;
475         u32 linkspeed;
476         int duplex;
477         int autoneg;
478         int fixed_mode;
479         int phyaddr;
480         int wolenabled;
481         unsigned int phy_oui;
482         u16 gigabit;
483
484         /* General data: RO fields */
485         dma_addr_t ring_addr;
486         struct pci_dev *pci_dev;
487         u32 orig_mac[2];
488         u32 irqmask;
489         u32 desc_ver;
490
491         void __iomem *base;
492
493         /* rx specific fields.
494          * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
495          */
496         ring_type rx_ring;
497         unsigned int cur_rx, refill_rx;
498         struct sk_buff *rx_skbuff[RX_RING];
499         dma_addr_t rx_dma[RX_RING];
500         unsigned int rx_buf_sz;
501         unsigned int pkt_limit;
502         struct timer_list oom_kick;
503         struct timer_list nic_poll;
504
505         /* media detection workaround.
506          * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
507          */
508         int need_linktimer;
509         unsigned long link_timeout;
510         /*
511          * tx specific fields.
512          */
513         ring_type tx_ring;
514         unsigned int next_tx, nic_tx;
515         struct sk_buff *tx_skbuff[TX_RING];
516         dma_addr_t tx_dma[TX_RING];
517         u32 tx_flags;
518 };
519
520 /*
521  * Maximum number of loops until we assume that a bit in the irq mask
522  * is stuck. Overridable with module param.
523  */
524 static int max_interrupt_work = 5;
525
526 static inline struct fe_priv *get_nvpriv(struct net_device *dev)
527 {
528         return netdev_priv(dev);
529 }
530
531 static inline u8 __iomem *get_hwbase(struct net_device *dev)
532 {
533         return get_nvpriv(dev)->base;
534 }
535
536 static inline void pci_push(u8 __iomem *base)
537 {
538         /* force out pending posted writes */
539         readl(base);
540 }
541
542 static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
543 {
544         return le32_to_cpu(prd->FlagLen)
545                 & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
546 }
547
548 static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
549 {
550         return le32_to_cpu(prd->FlagLen) & LEN_MASK_V2;
551 }
552
553 static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
554                                 int delay, int delaymax, const char *msg)
555 {
556         u8 __iomem *base = get_hwbase(dev);
557
558         pci_push(base);
559         do {
560                 udelay(delay);
561                 delaymax -= delay;
562                 if (delaymax < 0) {
563                         if (msg)
564                                 printk(msg);
565                         return 1;
566                 }
567         } while ((readl(base + offset) & mask) != target);
568         return 0;
569 }
570
571 #define MII_READ        (-1)
572 /* mii_rw: read/write a register on the PHY.
573  *
574  * Caller must guarantee serialization
575  */
576 static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
577 {
578         u8 __iomem *base = get_hwbase(dev);
579         u32 reg;
580         int retval;
581
582         writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
583
584         reg = readl(base + NvRegMIIControl);
585         if (reg & NVREG_MIICTL_INUSE) {
586                 writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
587                 udelay(NV_MIIBUSY_DELAY);
588         }
589
590         reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
591         if (value != MII_READ) {
592                 writel(value, base + NvRegMIIData);
593                 reg |= NVREG_MIICTL_WRITE;
594         }
595         writel(reg, base + NvRegMIIControl);
596
597         if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
598                         NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
599                 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
600                                 dev->name, miireg, addr);
601                 retval = -1;
602         } else if (value != MII_READ) {
603                 /* it was a write operation - fewer failures are detectable */
604                 dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
605                                 dev->name, value, miireg, addr);
606                 retval = 0;
607         } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
608                 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
609                                 dev->name, miireg, addr);
610                 retval = -1;
611         } else {
612                 retval = readl(base + NvRegMIIData);
613                 dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
614                                 dev->name, miireg, addr, retval);
615         }
616
617         return retval;
618 }
619
620 static int phy_reset(struct net_device *dev)
621 {
622         struct fe_priv *np = get_nvpriv(dev);
623         u32 miicontrol;
624         unsigned int tries = 0;
625
626         miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
627         miicontrol |= BMCR_RESET;
628         if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
629                 return -1;
630         }
631
632         /* wait for 500ms */
633         msleep(500);
634
635         /* must wait till reset is deasserted */
636         while (miicontrol & BMCR_RESET) {
637                 msleep(10);
638                 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
639                 /* FIXME: 100 tries seem excessive */
640                 if (tries++ > 100)
641                         return -1;
642         }
643         return 0;
644 }
645
646 static int phy_init(struct net_device *dev)
647 {
648         struct fe_priv *np = get_nvpriv(dev);
649         u8 __iomem *base = get_hwbase(dev);
650         u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
651
652         /* set advertise register */
653         reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
654         reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|0x800|0x400);
655         if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
656                 printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
657                 return PHY_ERROR;
658         }
659
660         /* get phy interface type */
661         phyinterface = readl(base + NvRegPhyInterface);
662
663         /* see if gigabit phy */
664         mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
665         if (mii_status & PHY_GIGABIT) {
666                 np->gigabit = PHY_GIGABIT;
667                 mii_control_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
668                 mii_control_1000 &= ~ADVERTISE_1000HALF;
669                 if (phyinterface & PHY_RGMII)
670                         mii_control_1000 |= ADVERTISE_1000FULL;
671                 else
672                         mii_control_1000 &= ~ADVERTISE_1000FULL;
673
674                 if (mii_rw(dev, np->phyaddr, MII_1000BT_CR, mii_control_1000)) {
675                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
676                         return PHY_ERROR;
677                 }
678         }
679         else
680                 np->gigabit = 0;
681
682         /* reset the phy */
683         if (phy_reset(dev)) {
684                 printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
685                 return PHY_ERROR;
686         }
687
688         /* phy vendor specific configuration */
689         if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
690                 phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
691                 phy_reserved &= ~(PHY_INIT1 | PHY_INIT2);
692                 phy_reserved |= (PHY_INIT3 | PHY_INIT4);
693                 if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
694                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
695                         return PHY_ERROR;
696                 }
697                 phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
698                 phy_reserved |= PHY_INIT5;
699                 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
700                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
701                         return PHY_ERROR;
702                 }
703         }
704         if (np->phy_oui == PHY_OUI_CICADA) {
705                 phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
706                 phy_reserved |= PHY_INIT6;
707                 if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
708                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
709                         return PHY_ERROR;
710                 }
711         }
712
713         /* restart auto negotiation */
714         mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
715         mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
716         if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
717                 return PHY_ERROR;
718         }
719
720         return 0;
721 }
722
723 static void nv_start_rx(struct net_device *dev)
724 {
725         struct fe_priv *np = get_nvpriv(dev);
726         u8 __iomem *base = get_hwbase(dev);
727
728         dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
729         /* Already running? Stop it. */
730         if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
731                 writel(0, base + NvRegReceiverControl);
732                 pci_push(base);
733         }
734         writel(np->linkspeed, base + NvRegLinkSpeed);
735         pci_push(base);
736         writel(NVREG_RCVCTL_START, base + NvRegReceiverControl);
737         dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
738                                 dev->name, np->duplex, np->linkspeed);
739         pci_push(base);
740 }
741
742 static void nv_stop_rx(struct net_device *dev)
743 {
744         u8 __iomem *base = get_hwbase(dev);
745
746         dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
747         writel(0, base + NvRegReceiverControl);
748         reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
749                         NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
750                         KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
751
752         udelay(NV_RXSTOP_DELAY2);
753         writel(0, base + NvRegLinkSpeed);
754 }
755
756 static void nv_start_tx(struct net_device *dev)
757 {
758         u8 __iomem *base = get_hwbase(dev);
759
760         dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
761         writel(NVREG_XMITCTL_START, base + NvRegTransmitterControl);
762         pci_push(base);
763 }
764
765 static void nv_stop_tx(struct net_device *dev)
766 {
767         u8 __iomem *base = get_hwbase(dev);
768
769         dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
770         writel(0, base + NvRegTransmitterControl);
771         reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
772                         NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
773                         KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
774
775         udelay(NV_TXSTOP_DELAY2);
776         writel(0, base + NvRegUnknownTransmitterReg);
777 }
778
779 static void nv_txrx_reset(struct net_device *dev)
780 {
781         struct fe_priv *np = get_nvpriv(dev);
782         u8 __iomem *base = get_hwbase(dev);
783
784         dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
785         writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->desc_ver, base + NvRegTxRxControl);
786         pci_push(base);
787         udelay(NV_TXRX_RESET_DELAY);
788         writel(NVREG_TXRXCTL_BIT2 | np->desc_ver, base + NvRegTxRxControl);
789         pci_push(base);
790 }
791
792 /*
793  * nv_get_stats: dev->get_stats function
794  * Get latest stats value from the nic.
795  * Called with read_lock(&dev_base_lock) held for read -
796  * only synchronized against unregister_netdevice.
797  */
798 static struct net_device_stats *nv_get_stats(struct net_device *dev)
799 {
800         struct fe_priv *np = get_nvpriv(dev);
801
802         /* It seems that the nic always generates interrupts and doesn't
803          * accumulate errors internally. Thus the current values in np->stats
804          * are already up to date.
805          */
806         return &np->stats;
807 }
808
809 /*
810  * nv_alloc_rx: fill rx ring entries.
811  * Return 1 if the allocations for the skbs failed and the
812  * rx engine is without Available descriptors
813  */
814 static int nv_alloc_rx(struct net_device *dev)
815 {
816         struct fe_priv *np = get_nvpriv(dev);
817         unsigned int refill_rx = np->refill_rx;
818         int nr;
819
820         while (np->cur_rx != refill_rx) {
821                 struct sk_buff *skb;
822
823                 nr = refill_rx % RX_RING;
824                 if (np->rx_skbuff[nr] == NULL) {
825
826                         skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
827                         if (!skb)
828                                 break;
829
830                         skb->dev = dev;
831                         np->rx_skbuff[nr] = skb;
832                 } else {
833                         skb = np->rx_skbuff[nr];
834                 }
835                 np->rx_dma[nr] = pci_map_single(np->pci_dev, skb->data, skb->len,
836                                                 PCI_DMA_FROMDEVICE);
837                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
838                         np->rx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->rx_dma[nr]);
839                         wmb();
840                         np->rx_ring.orig[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
841                 } else {
842                         np->rx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->rx_dma[nr]) >> 32;
843                         np->rx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->rx_dma[nr]) & 0x0FFFFFFFF;
844                         wmb();
845                         np->rx_ring.ex[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
846                 }
847                 dprintk(KERN_DEBUG "%s: nv_alloc_rx: Packet %d marked as Available\n",
848                                         dev->name, refill_rx);
849                 refill_rx++;
850         }
851         np->refill_rx = refill_rx;
852         if (np->cur_rx - refill_rx == RX_RING)
853                 return 1;
854         return 0;
855 }
856
857 static void nv_do_rx_refill(unsigned long data)
858 {
859         struct net_device *dev = (struct net_device *) data;
860         struct fe_priv *np = get_nvpriv(dev);
861
862         disable_irq(dev->irq);
863         if (nv_alloc_rx(dev)) {
864                 spin_lock(&np->lock);
865                 if (!np->in_shutdown)
866                         mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
867                 spin_unlock(&np->lock);
868         }
869         enable_irq(dev->irq);
870 }
871
872 static void nv_init_rx(struct net_device *dev) 
873 {
874         struct fe_priv *np = get_nvpriv(dev);
875         int i;
876
877         np->cur_rx = RX_RING;
878         np->refill_rx = 0;
879         for (i = 0; i < RX_RING; i++)
880                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
881                         np->rx_ring.orig[i].FlagLen = 0;
882                 else
883                         np->rx_ring.ex[i].FlagLen = 0;
884 }
885
886 static void nv_init_tx(struct net_device *dev)
887 {
888         struct fe_priv *np = get_nvpriv(dev);
889         int i;
890
891         np->next_tx = np->nic_tx = 0;
892         for (i = 0; i < TX_RING; i++)
893                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
894                         np->tx_ring.orig[i].FlagLen = 0;
895                 else
896                         np->tx_ring.ex[i].FlagLen = 0;
897 }
898
899 static int nv_init_ring(struct net_device *dev)
900 {
901         nv_init_tx(dev);
902         nv_init_rx(dev);
903         return nv_alloc_rx(dev);
904 }
905
906 static void nv_drain_tx(struct net_device *dev)
907 {
908         struct fe_priv *np = get_nvpriv(dev);
909         int i;
910         for (i = 0; i < TX_RING; i++) {
911                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
912                         np->tx_ring.orig[i].FlagLen = 0;
913                 else
914                         np->tx_ring.ex[i].FlagLen = 0;
915                 if (np->tx_skbuff[i]) {
916                         pci_unmap_single(np->pci_dev, np->tx_dma[i],
917                                                 np->tx_skbuff[i]->len,
918                                                 PCI_DMA_TODEVICE);
919                         dev_kfree_skb(np->tx_skbuff[i]);
920                         np->tx_skbuff[i] = NULL;
921                         np->stats.tx_dropped++;
922                 }
923         }
924 }
925
926 static void nv_drain_rx(struct net_device *dev)
927 {
928         struct fe_priv *np = get_nvpriv(dev);
929         int i;
930         for (i = 0; i < RX_RING; i++) {
931                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
932                         np->rx_ring.orig[i].FlagLen = 0;
933                 else
934                         np->rx_ring.ex[i].FlagLen = 0;
935                 wmb();
936                 if (np->rx_skbuff[i]) {
937                         pci_unmap_single(np->pci_dev, np->rx_dma[i],
938                                                 np->rx_skbuff[i]->len,
939                                                 PCI_DMA_FROMDEVICE);
940                         dev_kfree_skb(np->rx_skbuff[i]);
941                         np->rx_skbuff[i] = NULL;
942                 }
943         }
944 }
945
946 static void drain_ring(struct net_device *dev)
947 {
948         nv_drain_tx(dev);
949         nv_drain_rx(dev);
950 }
951
952 /*
953  * nv_start_xmit: dev->hard_start_xmit function
954  * Called with dev->xmit_lock held.
955  */
956 static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
957 {
958         struct fe_priv *np = get_nvpriv(dev);
959         int nr = np->next_tx % TX_RING;
960
961         np->tx_skbuff[nr] = skb;
962         np->tx_dma[nr] = pci_map_single(np->pci_dev, skb->data,skb->len,
963                                         PCI_DMA_TODEVICE);
964
965         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
966                 np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
967         else {
968                 np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
969                 np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
970         }
971
972         spin_lock_irq(&np->lock);
973         wmb();
974         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
975                 np->tx_ring.orig[nr].FlagLen = cpu_to_le32( (skb->len-1) | np->tx_flags );
976         else
977                 np->tx_ring.ex[nr].FlagLen = cpu_to_le32( (skb->len-1) | np->tx_flags );
978         dprintk(KERN_DEBUG "%s: nv_start_xmit: packet packet %d queued for transmission.\n",
979                                 dev->name, np->next_tx);
980         {
981                 int j;
982                 for (j=0; j<64; j++) {
983                         if ((j%16) == 0)
984                                 dprintk("\n%03x:", j);
985                         dprintk(" %02x", ((unsigned char*)skb->data)[j]);
986                 }
987                 dprintk("\n");
988         }
989
990         np->next_tx++;
991
992         dev->trans_start = jiffies;
993         if (np->next_tx - np->nic_tx >= TX_LIMIT_STOP)
994                 netif_stop_queue(dev);
995         spin_unlock_irq(&np->lock);
996         writel(NVREG_TXRXCTL_KICK|np->desc_ver, get_hwbase(dev) + NvRegTxRxControl);
997         pci_push(get_hwbase(dev));
998         return 0;
999 }
1000
1001 /*
1002  * nv_tx_done: check for completed packets, release the skbs.
1003  *
1004  * Caller must own np->lock.
1005  */
1006 static void nv_tx_done(struct net_device *dev)
1007 {
1008         struct fe_priv *np = get_nvpriv(dev);
1009         u32 Flags;
1010         int i;
1011
1012         while (np->nic_tx != np->next_tx) {
1013                 i = np->nic_tx % TX_RING;
1014
1015                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1016                         Flags = le32_to_cpu(np->tx_ring.orig[i].FlagLen);
1017                 else
1018                         Flags = le32_to_cpu(np->tx_ring.ex[i].FlagLen);
1019
1020                 dprintk(KERN_DEBUG "%s: nv_tx_done: looking at packet %d, Flags 0x%x.\n",
1021                                         dev->name, np->nic_tx, Flags);
1022                 if (Flags & NV_TX_VALID)
1023                         break;
1024                 if (np->desc_ver == DESC_VER_1) {
1025                         if (Flags & (NV_TX_RETRYERROR|NV_TX_CARRIERLOST|NV_TX_LATECOLLISION|
1026                                                         NV_TX_UNDERFLOW|NV_TX_ERROR)) {
1027                                 if (Flags & NV_TX_UNDERFLOW)
1028                                         np->stats.tx_fifo_errors++;
1029                                 if (Flags & NV_TX_CARRIERLOST)
1030                                         np->stats.tx_carrier_errors++;
1031                                 np->stats.tx_errors++;
1032                         } else {
1033                                 np->stats.tx_packets++;
1034                                 np->stats.tx_bytes += np->tx_skbuff[i]->len;
1035                         }
1036                 } else {
1037                         if (Flags & (NV_TX2_RETRYERROR|NV_TX2_CARRIERLOST|NV_TX2_LATECOLLISION|
1038                                                         NV_TX2_UNDERFLOW|NV_TX2_ERROR)) {
1039                                 if (Flags & NV_TX2_UNDERFLOW)
1040                                         np->stats.tx_fifo_errors++;
1041                                 if (Flags & NV_TX2_CARRIERLOST)
1042                                         np->stats.tx_carrier_errors++;
1043                                 np->stats.tx_errors++;
1044                         } else {
1045                                 np->stats.tx_packets++;
1046                                 np->stats.tx_bytes += np->tx_skbuff[i]->len;
1047                         }
1048                 }
1049                 pci_unmap_single(np->pci_dev, np->tx_dma[i],
1050                                         np->tx_skbuff[i]->len,
1051                                         PCI_DMA_TODEVICE);
1052                 dev_kfree_skb_irq(np->tx_skbuff[i]);
1053                 np->tx_skbuff[i] = NULL;
1054                 np->nic_tx++;
1055         }
1056         if (np->next_tx - np->nic_tx < TX_LIMIT_START)
1057                 netif_wake_queue(dev);
1058 }
1059
1060 /*
1061  * nv_tx_timeout: dev->tx_timeout function
1062  * Called with dev->xmit_lock held.
1063  */
1064 static void nv_tx_timeout(struct net_device *dev)
1065 {
1066         struct fe_priv *np = get_nvpriv(dev);
1067         u8 __iomem *base = get_hwbase(dev);
1068
1069         printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name,
1070                         readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK);
1071
1072         {
1073                 int i;
1074
1075                 printk(KERN_INFO "%s: Ring at %lx: next %d nic %d\n",
1076                                 dev->name, (unsigned long)np->ring_addr,
1077                                 np->next_tx, np->nic_tx);
1078                 printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
1079                 for (i=0;i<0x400;i+= 32) {
1080                         printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
1081                                         i,
1082                                         readl(base + i + 0), readl(base + i + 4),
1083                                         readl(base + i + 8), readl(base + i + 12),
1084                                         readl(base + i + 16), readl(base + i + 20),
1085                                         readl(base + i + 24), readl(base + i + 28));
1086                 }
1087                 printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
1088                 for (i=0;i<TX_RING;i+= 4) {
1089                         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1090                                 printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
1091                                        i, 
1092                                        le32_to_cpu(np->tx_ring.orig[i].PacketBuffer),
1093                                        le32_to_cpu(np->tx_ring.orig[i].FlagLen),
1094                                        le32_to_cpu(np->tx_ring.orig[i+1].PacketBuffer),
1095                                        le32_to_cpu(np->tx_ring.orig[i+1].FlagLen),
1096                                        le32_to_cpu(np->tx_ring.orig[i+2].PacketBuffer),
1097                                        le32_to_cpu(np->tx_ring.orig[i+2].FlagLen),
1098                                        le32_to_cpu(np->tx_ring.orig[i+3].PacketBuffer),
1099                                        le32_to_cpu(np->tx_ring.orig[i+3].FlagLen));
1100                         } else {
1101                                 printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
1102                                        i, 
1103                                        le32_to_cpu(np->tx_ring.ex[i].PacketBufferHigh),
1104                                        le32_to_cpu(np->tx_ring.ex[i].PacketBufferLow),
1105                                        le32_to_cpu(np->tx_ring.ex[i].FlagLen),
1106                                        le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferHigh),
1107                                        le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferLow),
1108                                        le32_to_cpu(np->tx_ring.ex[i+1].FlagLen),
1109                                        le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferHigh),
1110                                        le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferLow),
1111                                        le32_to_cpu(np->tx_ring.ex[i+2].FlagLen),
1112                                        le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferHigh),
1113                                        le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferLow),
1114                                        le32_to_cpu(np->tx_ring.ex[i+3].FlagLen));
1115                         }
1116                 }
1117         }
1118
1119         spin_lock_irq(&np->lock);
1120
1121         /* 1) stop tx engine */
1122         nv_stop_tx(dev);
1123
1124         /* 2) check that the packets were not sent already: */
1125         nv_tx_done(dev);
1126
1127         /* 3) if there are dead entries: clear everything */
1128         if (np->next_tx != np->nic_tx) {
1129                 printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
1130                 nv_drain_tx(dev);
1131                 np->next_tx = np->nic_tx = 0;
1132                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1133                         writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
1134                 else
1135                         writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
1136                 netif_wake_queue(dev);
1137         }
1138
1139         /* 4) restart tx engine */
1140         nv_start_tx(dev);
1141         spin_unlock_irq(&np->lock);
1142 }
1143
1144 /*
1145  * Called when the nic notices a mismatch between the actual data len on the
1146  * wire and the len indicated in the 802 header
1147  */
1148 static int nv_getlen(struct net_device *dev, void *packet, int datalen)
1149 {
1150         int hdrlen;     /* length of the 802 header */
1151         int protolen;   /* length as stored in the proto field */
1152
1153         /* 1) calculate len according to header */
1154         if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == __constant_htons(ETH_P_8021Q)) {
1155                 protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
1156                 hdrlen = VLAN_HLEN;
1157         } else {
1158                 protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
1159                 hdrlen = ETH_HLEN;
1160         }
1161         dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
1162                                 dev->name, datalen, protolen, hdrlen);
1163         if (protolen > ETH_DATA_LEN)
1164                 return datalen; /* Value in proto field not a len, no checks possible */
1165
1166         protolen += hdrlen;
1167         /* consistency checks: */
1168         if (datalen > ETH_ZLEN) {
1169                 if (datalen >= protolen) {
1170                         /* more data on wire than in 802 header, trim of
1171                          * additional data.
1172                          */
1173                         dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
1174                                         dev->name, protolen);
1175                         return protolen;
1176                 } else {
1177                         /* less data on wire than mentioned in header.
1178                          * Discard the packet.
1179                          */
1180                         dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
1181                                         dev->name);
1182                         return -1;
1183                 }
1184         } else {
1185                 /* short packet. Accept only if 802 values are also short */
1186                 if (protolen > ETH_ZLEN) {
1187                         dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
1188                                         dev->name);
1189                         return -1;
1190                 }
1191                 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
1192                                 dev->name, datalen);
1193                 return datalen;
1194         }
1195 }
1196
1197 static void nv_rx_process(struct net_device *dev)
1198 {
1199         struct fe_priv *np = get_nvpriv(dev);
1200         u32 Flags;
1201
1202         for (;;) {
1203                 struct sk_buff *skb;
1204                 int len;
1205                 int i;
1206                 if (np->cur_rx - np->refill_rx >= RX_RING)
1207                         break;  /* we scanned the whole ring - do not continue */
1208
1209                 i = np->cur_rx % RX_RING;
1210                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1211                         Flags = le32_to_cpu(np->rx_ring.orig[i].FlagLen);
1212                         len = nv_descr_getlength(&np->rx_ring.orig[i], np->desc_ver);
1213                 } else {
1214                         Flags = le32_to_cpu(np->rx_ring.ex[i].FlagLen);
1215                         len = nv_descr_getlength_ex(&np->rx_ring.ex[i], np->desc_ver);
1216                 }
1217
1218                 dprintk(KERN_DEBUG "%s: nv_rx_process: looking at packet %d, Flags 0x%x.\n",
1219                                         dev->name, np->cur_rx, Flags);
1220
1221                 if (Flags & NV_RX_AVAIL)
1222                         break;  /* still owned by hardware, */
1223
1224                 /*
1225                  * the packet is for us - immediately tear down the pci mapping.
1226                  * TODO: check if a prefetch of the first cacheline improves
1227                  * the performance.
1228                  */
1229                 pci_unmap_single(np->pci_dev, np->rx_dma[i],
1230                                 np->rx_skbuff[i]->len,
1231                                 PCI_DMA_FROMDEVICE);
1232
1233                 {
1234                         int j;
1235                         dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",Flags);
1236                         for (j=0; j<64; j++) {
1237                                 if ((j%16) == 0)
1238                                         dprintk("\n%03x:", j);
1239                                 dprintk(" %02x", ((unsigned char*)np->rx_skbuff[i]->data)[j]);
1240                         }
1241                         dprintk("\n");
1242                 }
1243                 /* look at what we actually got: */
1244                 if (np->desc_ver == DESC_VER_1) {
1245                         if (!(Flags & NV_RX_DESCRIPTORVALID))
1246                                 goto next_pkt;
1247
1248                         if (Flags & NV_RX_MISSEDFRAME) {
1249                                 np->stats.rx_missed_errors++;
1250                                 np->stats.rx_errors++;
1251                                 goto next_pkt;
1252                         }
1253                         if (Flags & (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3)) {
1254                                 np->stats.rx_errors++;
1255                                 goto next_pkt;
1256                         }
1257                         if (Flags & NV_RX_CRCERR) {
1258                                 np->stats.rx_crc_errors++;
1259                                 np->stats.rx_errors++;
1260                                 goto next_pkt;
1261                         }
1262                         if (Flags & NV_RX_OVERFLOW) {
1263                                 np->stats.rx_over_errors++;
1264                                 np->stats.rx_errors++;
1265                                 goto next_pkt;
1266                         }
1267                         if (Flags & NV_RX_ERROR4) {
1268                                 len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
1269                                 if (len < 0) {
1270                                         np->stats.rx_errors++;
1271                                         goto next_pkt;
1272                                 }
1273                         }
1274                         /* framing errors are soft errors. */
1275                         if (Flags & NV_RX_FRAMINGERR) {
1276                                 if (Flags & NV_RX_SUBSTRACT1) {
1277                                         len--;
1278                                 }
1279                         }
1280                 } else {
1281                         if (!(Flags & NV_RX2_DESCRIPTORVALID))
1282                                 goto next_pkt;
1283
1284                         if (Flags & (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3)) {
1285                                 np->stats.rx_errors++;
1286                                 goto next_pkt;
1287                         }
1288                         if (Flags & NV_RX2_CRCERR) {
1289                                 np->stats.rx_crc_errors++;
1290                                 np->stats.rx_errors++;
1291                                 goto next_pkt;
1292                         }
1293                         if (Flags & NV_RX2_OVERFLOW) {
1294                                 np->stats.rx_over_errors++;
1295                                 np->stats.rx_errors++;
1296                                 goto next_pkt;
1297                         }
1298                         if (Flags & NV_RX2_ERROR4) {
1299                                 len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
1300                                 if (len < 0) {
1301                                         np->stats.rx_errors++;
1302                                         goto next_pkt;
1303                                 }
1304                         }
1305                         /* framing errors are soft errors */
1306                         if (Flags & NV_RX2_FRAMINGERR) {
1307                                 if (Flags & NV_RX2_SUBSTRACT1) {
1308                                         len--;
1309                                 }
1310                         }
1311                         Flags &= NV_RX2_CHECKSUMMASK;
1312                         if (Flags == NV_RX2_CHECKSUMOK1 ||
1313                                         Flags == NV_RX2_CHECKSUMOK2 ||
1314                                         Flags == NV_RX2_CHECKSUMOK3) {
1315                                 dprintk(KERN_DEBUG "%s: hw checksum hit!.\n", dev->name);
1316                                 np->rx_skbuff[i]->ip_summed = CHECKSUM_UNNECESSARY;
1317                         } else {
1318                                 dprintk(KERN_DEBUG "%s: hwchecksum miss!.\n", dev->name);
1319                         }
1320                 }
1321                 /* got a valid packet - forward it to the network core */
1322                 skb = np->rx_skbuff[i];
1323                 np->rx_skbuff[i] = NULL;
1324
1325                 skb_put(skb, len);
1326                 skb->protocol = eth_type_trans(skb, dev);
1327                 dprintk(KERN_DEBUG "%s: nv_rx_process: packet %d with %d bytes, proto %d accepted.\n",
1328                                         dev->name, np->cur_rx, len, skb->protocol);
1329                 netif_rx(skb);
1330                 dev->last_rx = jiffies;
1331                 np->stats.rx_packets++;
1332                 np->stats.rx_bytes += len;
1333 next_pkt:
1334                 np->cur_rx++;
1335         }
1336 }
1337
1338 static void set_bufsize(struct net_device *dev)
1339 {
1340         struct fe_priv *np = netdev_priv(dev);
1341
1342         if (dev->mtu <= ETH_DATA_LEN)
1343                 np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
1344         else
1345                 np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
1346 }
1347
1348 /*
1349  * nv_change_mtu: dev->change_mtu function
1350  * Called with dev_base_lock held for read.
1351  */
1352 static int nv_change_mtu(struct net_device *dev, int new_mtu)
1353 {
1354         struct fe_priv *np = get_nvpriv(dev);
1355         int old_mtu;
1356
1357         if (new_mtu < 64 || new_mtu > np->pkt_limit)
1358                 return -EINVAL;
1359
1360         old_mtu = dev->mtu;
1361         dev->mtu = new_mtu;
1362
1363         /* return early if the buffer sizes will not change */
1364         if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
1365                 return 0;
1366         if (old_mtu == new_mtu)
1367                 return 0;
1368
1369         /* synchronized against open : rtnl_lock() held by caller */
1370         if (netif_running(dev)) {
1371                 u8 *base = get_hwbase(dev);
1372                 /*
1373                  * It seems that the nic preloads valid ring entries into an
1374                  * internal buffer. The procedure for flushing everything is
1375                  * guessed, there is probably a simpler approach.
1376                  * Changing the MTU is a rare event, it shouldn't matter.
1377                  */
1378                 disable_irq(dev->irq);
1379                 spin_lock_bh(&dev->xmit_lock);
1380                 spin_lock(&np->lock);
1381                 /* stop engines */
1382                 nv_stop_rx(dev);
1383                 nv_stop_tx(dev);
1384                 nv_txrx_reset(dev);
1385                 /* drain rx queue */
1386                 nv_drain_rx(dev);
1387                 nv_drain_tx(dev);
1388                 /* reinit driver view of the rx queue */
1389                 nv_init_rx(dev);
1390                 nv_init_tx(dev);
1391                 /* alloc new rx buffers */
1392                 set_bufsize(dev);
1393                 if (nv_alloc_rx(dev)) {
1394                         if (!np->in_shutdown)
1395                                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1396                 }
1397                 /* reinit nic view of the rx queue */
1398                 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
1399                 writel((u32) np->ring_addr, base + NvRegRxRingPhysAddr);
1400                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1401                         writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
1402                 else
1403                         writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
1404                 writel( ((RX_RING-1) << NVREG_RINGSZ_RXSHIFT) + ((TX_RING-1) << NVREG_RINGSZ_TXSHIFT),
1405                         base + NvRegRingSizes);
1406                 pci_push(base);
1407                 writel(NVREG_TXRXCTL_KICK|np->desc_ver, get_hwbase(dev) + NvRegTxRxControl);
1408                 pci_push(base);
1409
1410                 /* restart rx engine */
1411                 nv_start_rx(dev);
1412                 nv_start_tx(dev);
1413                 spin_unlock(&np->lock);
1414                 spin_unlock_bh(&dev->xmit_lock);
1415                 enable_irq(dev->irq);
1416         }
1417         return 0;
1418 }
1419
1420 static void nv_copy_mac_to_hw(struct net_device *dev)
1421 {
1422         u8 *base = get_hwbase(dev);
1423         u32 mac[2];
1424
1425         mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
1426                         (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
1427         mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
1428
1429         writel(mac[0], base + NvRegMacAddrA);
1430         writel(mac[1], base + NvRegMacAddrB);
1431 }
1432
1433 /*
1434  * nv_set_mac_address: dev->set_mac_address function
1435  * Called with rtnl_lock() held.
1436  */
1437 static int nv_set_mac_address(struct net_device *dev, void *addr)
1438 {
1439         struct fe_priv *np = get_nvpriv(dev);
1440         struct sockaddr *macaddr = (struct sockaddr*)addr;
1441
1442         if(!is_valid_ether_addr(macaddr->sa_data))
1443                 return -EADDRNOTAVAIL;
1444
1445         /* synchronized against open : rtnl_lock() held by caller */
1446         memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
1447
1448         if (netif_running(dev)) {
1449                 spin_lock_bh(&dev->xmit_lock);
1450                 spin_lock_irq(&np->lock);
1451
1452                 /* stop rx engine */
1453                 nv_stop_rx(dev);
1454
1455                 /* set mac address */
1456                 nv_copy_mac_to_hw(dev);
1457
1458                 /* restart rx engine */
1459                 nv_start_rx(dev);
1460                 spin_unlock_irq(&np->lock);
1461                 spin_unlock_bh(&dev->xmit_lock);
1462         } else {
1463                 nv_copy_mac_to_hw(dev);
1464         }
1465         return 0;
1466 }
1467
1468 /*
1469  * nv_set_multicast: dev->set_multicast function
1470  * Called with dev->xmit_lock held.
1471  */
1472 static void nv_set_multicast(struct net_device *dev)
1473 {
1474         struct fe_priv *np = get_nvpriv(dev);
1475         u8 __iomem *base = get_hwbase(dev);
1476         u32 addr[2];
1477         u32 mask[2];
1478         u32 pff;
1479
1480         memset(addr, 0, sizeof(addr));
1481         memset(mask, 0, sizeof(mask));
1482
1483         if (dev->flags & IFF_PROMISC) {
1484                 printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name);
1485                 pff = NVREG_PFF_PROMISC;
1486         } else {
1487                 pff = NVREG_PFF_MYADDR;
1488
1489                 if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
1490                         u32 alwaysOff[2];
1491                         u32 alwaysOn[2];
1492
1493                         alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
1494                         if (dev->flags & IFF_ALLMULTI) {
1495                                 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
1496                         } else {
1497                                 struct dev_mc_list *walk;
1498
1499                                 walk = dev->mc_list;
1500                                 while (walk != NULL) {
1501                                         u32 a, b;
1502                                         a = le32_to_cpu(*(u32 *) walk->dmi_addr);
1503                                         b = le16_to_cpu(*(u16 *) (&walk->dmi_addr[4]));
1504                                         alwaysOn[0] &= a;
1505                                         alwaysOff[0] &= ~a;
1506                                         alwaysOn[1] &= b;
1507                                         alwaysOff[1] &= ~b;
1508                                         walk = walk->next;
1509                                 }
1510                         }
1511                         addr[0] = alwaysOn[0];
1512                         addr[1] = alwaysOn[1];
1513                         mask[0] = alwaysOn[0] | alwaysOff[0];
1514                         mask[1] = alwaysOn[1] | alwaysOff[1];
1515                 }
1516         }
1517         addr[0] |= NVREG_MCASTADDRA_FORCE;
1518         pff |= NVREG_PFF_ALWAYS;
1519         spin_lock_irq(&np->lock);
1520         nv_stop_rx(dev);
1521         writel(addr[0], base + NvRegMulticastAddrA);
1522         writel(addr[1], base + NvRegMulticastAddrB);
1523         writel(mask[0], base + NvRegMulticastMaskA);
1524         writel(mask[1], base + NvRegMulticastMaskB);
1525         writel(pff, base + NvRegPacketFilterFlags);
1526         dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
1527                 dev->name);
1528         nv_start_rx(dev);
1529         spin_unlock_irq(&np->lock);
1530 }
1531
1532 static int nv_update_linkspeed(struct net_device *dev)
1533 {
1534         struct fe_priv *np = get_nvpriv(dev);
1535         u8 __iomem *base = get_hwbase(dev);
1536         int adv, lpa;
1537         int newls = np->linkspeed;
1538         int newdup = np->duplex;
1539         int mii_status;
1540         int retval = 0;
1541         u32 control_1000, status_1000, phyreg;
1542
1543         /* BMSR_LSTATUS is latched, read it twice:
1544          * we want the current value.
1545          */
1546         mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
1547         mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
1548
1549         if (!(mii_status & BMSR_LSTATUS)) {
1550                 dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
1551                                 dev->name);
1552                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1553                 newdup = 0;
1554                 retval = 0;
1555                 goto set_speed;
1556         }
1557
1558         if (np->autoneg == 0) {
1559                 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
1560                                 dev->name, np->fixed_mode);
1561                 if (np->fixed_mode & LPA_100FULL) {
1562                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
1563                         newdup = 1;
1564                 } else if (np->fixed_mode & LPA_100HALF) {
1565                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
1566                         newdup = 0;
1567                 } else if (np->fixed_mode & LPA_10FULL) {
1568                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1569                         newdup = 1;
1570                 } else {
1571                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1572                         newdup = 0;
1573                 }
1574                 retval = 1;
1575                 goto set_speed;
1576         }
1577         /* check auto negotiation is complete */
1578         if (!(mii_status & BMSR_ANEGCOMPLETE)) {
1579                 /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
1580                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1581                 newdup = 0;
1582                 retval = 0;
1583                 dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
1584                 goto set_speed;
1585         }
1586
1587         retval = 1;
1588         if (np->gigabit == PHY_GIGABIT) {
1589                 control_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
1590                 status_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_SR, MII_READ);
1591
1592                 if ((control_1000 & ADVERTISE_1000FULL) &&
1593                         (status_1000 & LPA_1000FULL)) {
1594                         dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
1595                                 dev->name);
1596                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
1597                         newdup = 1;
1598                         goto set_speed;
1599                 }
1600         }
1601
1602         adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
1603         lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
1604         dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
1605                                 dev->name, adv, lpa);
1606
1607         /* FIXME: handle parallel detection properly */
1608         lpa = lpa & adv;
1609         if (lpa & LPA_100FULL) {
1610                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
1611                 newdup = 1;
1612         } else if (lpa & LPA_100HALF) {
1613                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
1614                 newdup = 0;
1615         } else if (lpa & LPA_10FULL) {
1616                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1617                 newdup = 1;
1618         } else if (lpa & LPA_10HALF) {
1619                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1620                 newdup = 0;
1621         } else {
1622                 dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, lpa);
1623                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
1624                 newdup = 0;
1625         }
1626
1627 set_speed:
1628         if (np->duplex == newdup && np->linkspeed == newls)
1629                 return retval;
1630
1631         dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
1632                         dev->name, np->linkspeed, np->duplex, newls, newdup);
1633
1634         np->duplex = newdup;
1635         np->linkspeed = newls;
1636
1637         if (np->gigabit == PHY_GIGABIT) {
1638                 phyreg = readl(base + NvRegRandomSeed);
1639                 phyreg &= ~(0x3FF00);
1640                 if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
1641                         phyreg |= NVREG_RNDSEED_FORCE3;
1642                 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
1643                         phyreg |= NVREG_RNDSEED_FORCE2;
1644                 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
1645                         phyreg |= NVREG_RNDSEED_FORCE;
1646                 writel(phyreg, base + NvRegRandomSeed);
1647         }
1648
1649         phyreg = readl(base + NvRegPhyInterface);
1650         phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
1651         if (np->duplex == 0)
1652                 phyreg |= PHY_HALF;
1653         if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
1654                 phyreg |= PHY_100;
1655         else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
1656                 phyreg |= PHY_1000;
1657         writel(phyreg, base + NvRegPhyInterface);
1658
1659         writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
1660                 base + NvRegMisc1);
1661         pci_push(base);
1662         writel(np->linkspeed, base + NvRegLinkSpeed);
1663         pci_push(base);
1664
1665         return retval;
1666 }
1667
1668 static void nv_linkchange(struct net_device *dev)
1669 {
1670         if (nv_update_linkspeed(dev)) {
1671                 if (netif_carrier_ok(dev)) {
1672                         nv_stop_rx(dev);
1673                 } else {
1674                         netif_carrier_on(dev);
1675                         printk(KERN_INFO "%s: link up.\n", dev->name);
1676                 }
1677                 nv_start_rx(dev);
1678         } else {
1679                 if (netif_carrier_ok(dev)) {
1680                         netif_carrier_off(dev);
1681                         printk(KERN_INFO "%s: link down.\n", dev->name);
1682                         nv_stop_rx(dev);
1683                 }
1684         }
1685 }
1686
1687 static void nv_link_irq(struct net_device *dev)
1688 {
1689         u8 __iomem *base = get_hwbase(dev);
1690         u32 miistat;
1691
1692         miistat = readl(base + NvRegMIIStatus);
1693         writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
1694         dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
1695
1696         if (miistat & (NVREG_MIISTAT_LINKCHANGE))
1697                 nv_linkchange(dev);
1698         dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
1699 }
1700
1701 static irqreturn_t nv_nic_irq(int foo, void *data, struct pt_regs *regs)
1702 {
1703         struct net_device *dev = (struct net_device *) data;
1704         struct fe_priv *np = get_nvpriv(dev);
1705         u8 __iomem *base = get_hwbase(dev);
1706         u32 events;
1707         int i;
1708
1709         dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
1710
1711         for (i=0; ; i++) {
1712                 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
1713                 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
1714                 pci_push(base);
1715                 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
1716                 if (!(events & np->irqmask))
1717                         break;
1718
1719                 if (events & (NVREG_IRQ_TX1|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_ERROR|NVREG_IRQ_TX_ERR)) {
1720                         spin_lock(&np->lock);
1721                         nv_tx_done(dev);
1722                         spin_unlock(&np->lock);
1723                 }
1724
1725                 if (events & (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF)) {
1726                         nv_rx_process(dev);
1727                         if (nv_alloc_rx(dev)) {
1728                                 spin_lock(&np->lock);
1729                                 if (!np->in_shutdown)
1730                                         mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1731                                 spin_unlock(&np->lock);
1732                         }
1733                 }
1734
1735                 if (events & NVREG_IRQ_LINK) {
1736                         spin_lock(&np->lock);
1737                         nv_link_irq(dev);
1738                         spin_unlock(&np->lock);
1739                 }
1740                 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
1741                         spin_lock(&np->lock);
1742                         nv_linkchange(dev);
1743                         spin_unlock(&np->lock);
1744                         np->link_timeout = jiffies + LINK_TIMEOUT;
1745                 }
1746                 if (events & (NVREG_IRQ_TX_ERR)) {
1747                         dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
1748                                                 dev->name, events);
1749                 }
1750                 if (events & (NVREG_IRQ_UNKNOWN)) {
1751                         printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
1752                                                 dev->name, events);
1753                 }
1754                 if (i > max_interrupt_work) {
1755                         spin_lock(&np->lock);
1756                         /* disable interrupts on the nic */
1757                         writel(0, base + NvRegIrqMask);
1758                         pci_push(base);
1759
1760                         if (!np->in_shutdown)
1761                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
1762                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
1763                         spin_unlock(&np->lock);
1764                         break;
1765                 }
1766
1767         }
1768         dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
1769
1770         return IRQ_RETVAL(i);
1771 }
1772
1773 static void nv_do_nic_poll(unsigned long data)
1774 {
1775         struct net_device *dev = (struct net_device *) data;
1776         struct fe_priv *np = get_nvpriv(dev);
1777         u8 __iomem *base = get_hwbase(dev);
1778
1779         disable_irq(dev->irq);
1780         /* FIXME: Do we need synchronize_irq(dev->irq) here? */
1781         /*
1782          * reenable interrupts on the nic, we have to do this before calling
1783          * nv_nic_irq because that may decide to do otherwise
1784          */
1785         writel(np->irqmask, base + NvRegIrqMask);
1786         pci_push(base);
1787         nv_nic_irq((int) 0, (void *) data, (struct pt_regs *) NULL);
1788         enable_irq(dev->irq);
1789 }
1790
1791 #ifdef CONFIG_NET_POLL_CONTROLLER
1792 static void nv_poll_controller(struct net_device *dev)
1793 {
1794         nv_do_nic_poll((unsigned long) dev);
1795 }
1796 #endif
1797
1798 static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1799 {
1800         struct fe_priv *np = get_nvpriv(dev);
1801         strcpy(info->driver, "forcedeth");
1802         strcpy(info->version, FORCEDETH_VERSION);
1803         strcpy(info->bus_info, pci_name(np->pci_dev));
1804 }
1805
1806 static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
1807 {
1808         struct fe_priv *np = get_nvpriv(dev);
1809         wolinfo->supported = WAKE_MAGIC;
1810
1811         spin_lock_irq(&np->lock);
1812         if (np->wolenabled)
1813                 wolinfo->wolopts = WAKE_MAGIC;
1814         spin_unlock_irq(&np->lock);
1815 }
1816
1817 static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
1818 {
1819         struct fe_priv *np = get_nvpriv(dev);
1820         u8 __iomem *base = get_hwbase(dev);
1821
1822         spin_lock_irq(&np->lock);
1823         if (wolinfo->wolopts == 0) {
1824                 writel(0, base + NvRegWakeUpFlags);
1825                 np->wolenabled = 0;
1826         }
1827         if (wolinfo->wolopts & WAKE_MAGIC) {
1828                 writel(NVREG_WAKEUPFLAGS_ENABLE, base + NvRegWakeUpFlags);
1829                 np->wolenabled = 1;
1830         }
1831         spin_unlock_irq(&np->lock);
1832         return 0;
1833 }
1834
1835 static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1836 {
1837         struct fe_priv *np = netdev_priv(dev);
1838         int adv;
1839
1840         spin_lock_irq(&np->lock);
1841         ecmd->port = PORT_MII;
1842         if (!netif_running(dev)) {
1843                 /* We do not track link speed / duplex setting if the
1844                  * interface is disabled. Force a link check */
1845                 nv_update_linkspeed(dev);
1846         }
1847         switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
1848                 case NVREG_LINKSPEED_10:
1849                         ecmd->speed = SPEED_10;
1850                         break;
1851                 case NVREG_LINKSPEED_100:
1852                         ecmd->speed = SPEED_100;
1853                         break;
1854                 case NVREG_LINKSPEED_1000:
1855                         ecmd->speed = SPEED_1000;
1856                         break;
1857         }
1858         ecmd->duplex = DUPLEX_HALF;
1859         if (np->duplex)
1860                 ecmd->duplex = DUPLEX_FULL;
1861
1862         ecmd->autoneg = np->autoneg;
1863
1864         ecmd->advertising = ADVERTISED_MII;
1865         if (np->autoneg) {
1866                 ecmd->advertising |= ADVERTISED_Autoneg;
1867                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
1868         } else {
1869                 adv = np->fixed_mode;
1870         }
1871         if (adv & ADVERTISE_10HALF)
1872                 ecmd->advertising |= ADVERTISED_10baseT_Half;
1873         if (adv & ADVERTISE_10FULL)
1874                 ecmd->advertising |= ADVERTISED_10baseT_Full;
1875         if (adv & ADVERTISE_100HALF)
1876                 ecmd->advertising |= ADVERTISED_100baseT_Half;
1877         if (adv & ADVERTISE_100FULL)
1878                 ecmd->advertising |= ADVERTISED_100baseT_Full;
1879         if (np->autoneg && np->gigabit == PHY_GIGABIT) {
1880                 adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
1881                 if (adv & ADVERTISE_1000FULL)
1882                         ecmd->advertising |= ADVERTISED_1000baseT_Full;
1883         }
1884
1885         ecmd->supported = (SUPPORTED_Autoneg |
1886                 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
1887                 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
1888                 SUPPORTED_MII);
1889         if (np->gigabit == PHY_GIGABIT)
1890                 ecmd->supported |= SUPPORTED_1000baseT_Full;
1891
1892         ecmd->phy_address = np->phyaddr;
1893         ecmd->transceiver = XCVR_EXTERNAL;
1894
1895         /* ignore maxtxpkt, maxrxpkt for now */
1896         spin_unlock_irq(&np->lock);
1897         return 0;
1898 }
1899
1900 static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1901 {
1902         struct fe_priv *np = netdev_priv(dev);
1903
1904         if (ecmd->port != PORT_MII)
1905                 return -EINVAL;
1906         if (ecmd->transceiver != XCVR_EXTERNAL)
1907                 return -EINVAL;
1908         if (ecmd->phy_address != np->phyaddr) {
1909                 /* TODO: support switching between multiple phys. Should be
1910                  * trivial, but not enabled due to lack of test hardware. */
1911                 return -EINVAL;
1912         }
1913         if (ecmd->autoneg == AUTONEG_ENABLE) {
1914                 u32 mask;
1915
1916                 mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
1917                           ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
1918                 if (np->gigabit == PHY_GIGABIT)
1919                         mask |= ADVERTISED_1000baseT_Full;
1920
1921                 if ((ecmd->advertising & mask) == 0)
1922                         return -EINVAL;
1923
1924         } else if (ecmd->autoneg == AUTONEG_DISABLE) {
1925                 /* Note: autonegotiation disable, speed 1000 intentionally
1926                  * forbidden - noone should need that. */
1927
1928                 if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
1929                         return -EINVAL;
1930                 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
1931                         return -EINVAL;
1932         } else {
1933                 return -EINVAL;
1934         }
1935
1936         spin_lock_irq(&np->lock);
1937         if (ecmd->autoneg == AUTONEG_ENABLE) {
1938                 int adv, bmcr;
1939
1940                 np->autoneg = 1;
1941
1942                 /* advertise only what has been requested */
1943                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
1944                 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
1945                 if (ecmd->advertising & ADVERTISED_10baseT_Half)
1946                         adv |= ADVERTISE_10HALF;
1947                 if (ecmd->advertising & ADVERTISED_10baseT_Full)
1948                         adv |= ADVERTISE_10FULL;
1949                 if (ecmd->advertising & ADVERTISED_100baseT_Half)
1950                         adv |= ADVERTISE_100HALF;
1951                 if (ecmd->advertising & ADVERTISED_100baseT_Full)
1952                         adv |= ADVERTISE_100FULL;
1953                 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
1954
1955                 if (np->gigabit == PHY_GIGABIT) {
1956                         adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
1957                         adv &= ~ADVERTISE_1000FULL;
1958                         if (ecmd->advertising & ADVERTISED_1000baseT_Full)
1959                                 adv |= ADVERTISE_1000FULL;
1960                         mii_rw(dev, np->phyaddr, MII_1000BT_CR, adv);
1961                 }
1962
1963                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1964                 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
1965                 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
1966
1967         } else {
1968                 int adv, bmcr;
1969
1970                 np->autoneg = 0;
1971
1972                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
1973                 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
1974                 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
1975                         adv |= ADVERTISE_10HALF;
1976                 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
1977                         adv |= ADVERTISE_10FULL;
1978                 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
1979                         adv |= ADVERTISE_100HALF;
1980                 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
1981                         adv |= ADVERTISE_100FULL;
1982                 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
1983                 np->fixed_mode = adv;
1984
1985                 if (np->gigabit == PHY_GIGABIT) {
1986                         adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
1987                         adv &= ~ADVERTISE_1000FULL;
1988                         mii_rw(dev, np->phyaddr, MII_1000BT_CR, adv);
1989                 }
1990
1991                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1992                 bmcr |= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_FULLDPLX);
1993                 if (adv & (ADVERTISE_10FULL|ADVERTISE_100FULL))
1994                         bmcr |= BMCR_FULLDPLX;
1995                 if (adv & (ADVERTISE_100HALF|ADVERTISE_100FULL))
1996                         bmcr |= BMCR_SPEED100;
1997                 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
1998
1999                 if (netif_running(dev)) {
2000                         /* Wait a bit and then reconfigure the nic. */
2001                         udelay(10);
2002                         nv_linkchange(dev);
2003                 }
2004         }
2005         spin_unlock_irq(&np->lock);
2006
2007         return 0;
2008 }
2009
2010 #define FORCEDETH_REGS_VER      1
2011 #define FORCEDETH_REGS_SIZE     0x400 /* 256 32-bit registers */
2012
2013 static int nv_get_regs_len(struct net_device *dev)
2014 {
2015         return FORCEDETH_REGS_SIZE;
2016 }
2017
2018 static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
2019 {
2020         struct fe_priv *np = get_nvpriv(dev);
2021         u8 __iomem *base = get_hwbase(dev);
2022         u32 *rbuf = buf;
2023         int i;
2024
2025         regs->version = FORCEDETH_REGS_VER;
2026         spin_lock_irq(&np->lock);
2027         for (i=0;i<FORCEDETH_REGS_SIZE/sizeof(u32);i++)
2028                 rbuf[i] = readl(base + i*sizeof(u32));
2029         spin_unlock_irq(&np->lock);
2030 }
2031
2032 static int nv_nway_reset(struct net_device *dev)
2033 {
2034         struct fe_priv *np = get_nvpriv(dev);
2035         int ret;
2036
2037         spin_lock_irq(&np->lock);
2038         if (np->autoneg) {
2039                 int bmcr;
2040
2041                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
2042                 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
2043                 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
2044
2045                 ret = 0;
2046         } else {
2047                 ret = -EINVAL;
2048         }
2049         spin_unlock_irq(&np->lock);
2050
2051         return ret;
2052 }
2053
2054 static struct ethtool_ops ops = {
2055         .get_drvinfo = nv_get_drvinfo,
2056         .get_link = ethtool_op_get_link,
2057         .get_wol = nv_get_wol,
2058         .set_wol = nv_set_wol,
2059         .get_settings = nv_get_settings,
2060         .set_settings = nv_set_settings,
2061         .get_regs_len = nv_get_regs_len,
2062         .get_regs = nv_get_regs,
2063         .nway_reset = nv_nway_reset,
2064 };
2065
2066 static int nv_open(struct net_device *dev)
2067 {
2068         struct fe_priv *np = get_nvpriv(dev);
2069         u8 __iomem *base = get_hwbase(dev);
2070         int ret, oom, i;
2071
2072         dprintk(KERN_DEBUG "nv_open: begin\n");
2073
2074         /* 1) erase previous misconfiguration */
2075         /* 4.1-1: stop adapter: ignored, 4.3 seems to be overkill */
2076         writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
2077         writel(0, base + NvRegMulticastAddrB);
2078         writel(0, base + NvRegMulticastMaskA);
2079         writel(0, base + NvRegMulticastMaskB);
2080         writel(0, base + NvRegPacketFilterFlags);
2081
2082         writel(0, base + NvRegTransmitterControl);
2083         writel(0, base + NvRegReceiverControl);
2084
2085         writel(0, base + NvRegAdapterControl);
2086
2087         /* 2) initialize descriptor rings */
2088         set_bufsize(dev);
2089         oom = nv_init_ring(dev);
2090
2091         writel(0, base + NvRegLinkSpeed);
2092         writel(0, base + NvRegUnknownTransmitterReg);
2093         nv_txrx_reset(dev);
2094         writel(0, base + NvRegUnknownSetupReg6);
2095
2096         np->in_shutdown = 0;
2097
2098         /* 3) set mac address */
2099         nv_copy_mac_to_hw(dev);
2100
2101         /* 4) give hw rings */
2102         writel((u32) np->ring_addr, base + NvRegRxRingPhysAddr);
2103         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
2104                 writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
2105         else
2106                 writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
2107         writel( ((RX_RING-1) << NVREG_RINGSZ_RXSHIFT) + ((TX_RING-1) << NVREG_RINGSZ_TXSHIFT),
2108                 base + NvRegRingSizes);
2109
2110         /* 5) continue setup */
2111         writel(np->linkspeed, base + NvRegLinkSpeed);
2112         writel(NVREG_UNKSETUP3_VAL1, base + NvRegUnknownSetupReg3);
2113         writel(np->desc_ver, base + NvRegTxRxControl);
2114         pci_push(base);
2115         writel(NVREG_TXRXCTL_BIT1|np->desc_ver, base + NvRegTxRxControl);
2116         reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
2117                         NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
2118                         KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
2119
2120         writel(0, base + NvRegUnknownSetupReg4);
2121         writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
2122         writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
2123
2124         /* 6) continue setup */
2125         writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
2126         writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
2127         writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
2128         writel(np->rx_buf_sz, base + NvRegOffloadConfig);
2129
2130         writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
2131         get_random_bytes(&i, sizeof(i));
2132         writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
2133         writel(NVREG_UNKSETUP1_VAL, base + NvRegUnknownSetupReg1);
2134         writel(NVREG_UNKSETUP2_VAL, base + NvRegUnknownSetupReg2);
2135         writel(NVREG_POLL_DEFAULT, base + NvRegPollingInterval);
2136         writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
2137         writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
2138                         base + NvRegAdapterControl);
2139         writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
2140         writel(NVREG_UNKSETUP4_VAL, base + NvRegUnknownSetupReg4);
2141         writel(NVREG_WAKEUPFLAGS_VAL, base + NvRegWakeUpFlags);
2142
2143         i = readl(base + NvRegPowerState);
2144         if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
2145                 writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
2146
2147         pci_push(base);
2148         udelay(10);
2149         writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
2150
2151         writel(0, base + NvRegIrqMask);
2152         pci_push(base);
2153         writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
2154         writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
2155         pci_push(base);
2156
2157         ret = request_irq(dev->irq, &nv_nic_irq, SA_SHIRQ, dev->name, dev);
2158         if (ret)
2159                 goto out_drain;
2160
2161         /* ask for interrupts */
2162         writel(np->irqmask, base + NvRegIrqMask);
2163
2164         spin_lock_irq(&np->lock);
2165         writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
2166         writel(0, base + NvRegMulticastAddrB);
2167         writel(0, base + NvRegMulticastMaskA);
2168         writel(0, base + NvRegMulticastMaskB);
2169         writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
2170         /* One manual link speed update: Interrupts are enabled, future link
2171          * speed changes cause interrupts and are handled by nv_link_irq().
2172          */
2173         {
2174                 u32 miistat;
2175                 miistat = readl(base + NvRegMIIStatus);
2176                 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
2177                 dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
2178         }
2179         ret = nv_update_linkspeed(dev);
2180         nv_start_rx(dev);
2181         nv_start_tx(dev);
2182         netif_start_queue(dev);
2183         if (ret) {
2184                 netif_carrier_on(dev);
2185         } else {
2186                 printk("%s: no link during initialization.\n", dev->name);
2187                 netif_carrier_off(dev);
2188         }
2189         if (oom)
2190                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2191         spin_unlock_irq(&np->lock);
2192
2193         return 0;
2194 out_drain:
2195         drain_ring(dev);
2196         return ret;
2197 }
2198
2199 static int nv_close(struct net_device *dev)
2200 {
2201         struct fe_priv *np = get_nvpriv(dev);
2202         u8 __iomem *base;
2203
2204         spin_lock_irq(&np->lock);
2205         np->in_shutdown = 1;
2206         spin_unlock_irq(&np->lock);
2207         synchronize_irq(dev->irq);
2208
2209         del_timer_sync(&np->oom_kick);
2210         del_timer_sync(&np->nic_poll);
2211
2212         netif_stop_queue(dev);
2213         spin_lock_irq(&np->lock);
2214         nv_stop_tx(dev);
2215         nv_stop_rx(dev);
2216         nv_txrx_reset(dev);
2217
2218         /* disable interrupts on the nic or we will lock up */
2219         base = get_hwbase(dev);
2220         writel(0, base + NvRegIrqMask);
2221         pci_push(base);
2222         dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
2223
2224         spin_unlock_irq(&np->lock);
2225
2226         free_irq(dev->irq, dev);
2227
2228         drain_ring(dev);
2229
2230         if (np->wolenabled)
2231                 nv_start_rx(dev);
2232
2233         /* FIXME: power down nic */
2234
2235         return 0;
2236 }
2237
2238 static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
2239 {
2240         struct net_device *dev;
2241         struct fe_priv *np;
2242         unsigned long addr;
2243         u8 __iomem *base;
2244         int err, i;
2245
2246         dev = alloc_etherdev(sizeof(struct fe_priv));
2247         err = -ENOMEM;
2248         if (!dev)
2249                 goto out;
2250
2251         np = get_nvpriv(dev);
2252         np->pci_dev = pci_dev;
2253         spin_lock_init(&np->lock);
2254         SET_MODULE_OWNER(dev);
2255         SET_NETDEV_DEV(dev, &pci_dev->dev);
2256
2257         init_timer(&np->oom_kick);
2258         np->oom_kick.data = (unsigned long) dev;
2259         np->oom_kick.function = &nv_do_rx_refill;       /* timer handler */
2260         init_timer(&np->nic_poll);
2261         np->nic_poll.data = (unsigned long) dev;
2262         np->nic_poll.function = &nv_do_nic_poll;        /* timer handler */
2263
2264         err = pci_enable_device(pci_dev);
2265         if (err) {
2266                 printk(KERN_INFO "forcedeth: pci_enable_dev failed (%d) for device %s\n",
2267                                 err, pci_name(pci_dev));
2268                 goto out_free;
2269         }
2270
2271         pci_set_master(pci_dev);
2272
2273         err = pci_request_regions(pci_dev, DRV_NAME);
2274         if (err < 0)
2275                 goto out_disable;
2276
2277         err = -EINVAL;
2278         addr = 0;
2279         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
2280                 dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
2281                                 pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
2282                                 pci_resource_len(pci_dev, i),
2283                                 pci_resource_flags(pci_dev, i));
2284                 if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
2285                                 pci_resource_len(pci_dev, i) >= NV_PCI_REGSZ) {
2286                         addr = pci_resource_start(pci_dev, i);
2287                         break;
2288                 }
2289         }
2290         if (i == DEVICE_COUNT_RESOURCE) {
2291                 printk(KERN_INFO "forcedeth: Couldn't find register window for device %s.\n",
2292                                         pci_name(pci_dev));
2293                 goto out_relreg;
2294         }
2295
2296         /* handle different descriptor versions */
2297         if (id->driver_data & DEV_HAS_HIGH_DMA) {
2298                 /* packet format 3: supports 40-bit addressing */
2299                 np->desc_ver = DESC_VER_3;
2300                 if (pci_set_dma_mask(pci_dev, 0x0000007fffffffffULL)) {
2301                         printk(KERN_INFO "forcedeth: 64-bit DMA failed, using 32-bit addressing for device %s.\n",
2302                                         pci_name(pci_dev));
2303                 }
2304         } else if (id->driver_data & DEV_HAS_LARGEDESC) {
2305                 /* packet format 2: supports jumbo frames */
2306                 np->desc_ver = DESC_VER_2;
2307         } else {
2308                 /* original packet format */
2309                 np->desc_ver = DESC_VER_1;
2310         }
2311
2312         np->pkt_limit = NV_PKTLIMIT_1;
2313         if (id->driver_data & DEV_HAS_LARGEDESC)
2314                 np->pkt_limit = NV_PKTLIMIT_2;
2315
2316         err = -ENOMEM;
2317         np->base = ioremap(addr, NV_PCI_REGSZ);
2318         if (!np->base)
2319                 goto out_relreg;
2320         dev->base_addr = (unsigned long)np->base;
2321
2322         dev->irq = pci_dev->irq;
2323
2324         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
2325                 np->rx_ring.orig = pci_alloc_consistent(pci_dev,
2326                                         sizeof(struct ring_desc) * (RX_RING + TX_RING),
2327                                         &np->ring_addr);
2328                 if (!np->rx_ring.orig)
2329                         goto out_unmap;
2330                 np->tx_ring.orig = &np->rx_ring.orig[RX_RING];
2331         } else {
2332                 np->rx_ring.ex = pci_alloc_consistent(pci_dev,
2333                                         sizeof(struct ring_desc_ex) * (RX_RING + TX_RING),
2334                                         &np->ring_addr);
2335                 if (!np->rx_ring.ex)
2336                         goto out_unmap;
2337                 np->tx_ring.ex = &np->rx_ring.ex[RX_RING];
2338         }
2339
2340         dev->open = nv_open;
2341         dev->stop = nv_close;
2342         dev->hard_start_xmit = nv_start_xmit;
2343         dev->get_stats = nv_get_stats;
2344         dev->change_mtu = nv_change_mtu;
2345         dev->set_mac_address = nv_set_mac_address;
2346         dev->set_multicast_list = nv_set_multicast;
2347 #ifdef CONFIG_NET_POLL_CONTROLLER
2348         dev->poll_controller = nv_poll_controller;
2349 #endif
2350         SET_ETHTOOL_OPS(dev, &ops);
2351         dev->tx_timeout = nv_tx_timeout;
2352         dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
2353
2354         pci_set_drvdata(pci_dev, dev);
2355
2356         /* read the mac address */
2357         base = get_hwbase(dev);
2358         np->orig_mac[0] = readl(base + NvRegMacAddrA);
2359         np->orig_mac[1] = readl(base + NvRegMacAddrB);
2360
2361         dev->dev_addr[0] = (np->orig_mac[1] >>  8) & 0xff;
2362         dev->dev_addr[1] = (np->orig_mac[1] >>  0) & 0xff;
2363         dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
2364         dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
2365         dev->dev_addr[4] = (np->orig_mac[0] >>  8) & 0xff;
2366         dev->dev_addr[5] = (np->orig_mac[0] >>  0) & 0xff;
2367
2368         if (!is_valid_ether_addr(dev->dev_addr)) {
2369                 /*
2370                  * Bad mac address. At least one bios sets the mac address
2371                  * to 01:23:45:67:89:ab
2372                  */
2373                 printk(KERN_ERR "%s: Invalid Mac address detected: %02x:%02x:%02x:%02x:%02x:%02x\n",
2374                         pci_name(pci_dev),
2375                         dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
2376                         dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
2377                 printk(KERN_ERR "Please complain to your hardware vendor. Switching to a random MAC.\n");
2378                 dev->dev_addr[0] = 0x00;
2379                 dev->dev_addr[1] = 0x00;
2380                 dev->dev_addr[2] = 0x6c;
2381                 get_random_bytes(&dev->dev_addr[3], 3);
2382         }
2383
2384         dprintk(KERN_DEBUG "%s: MAC Address %02x:%02x:%02x:%02x:%02x:%02x\n", pci_name(pci_dev),
2385                         dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
2386                         dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
2387
2388         /* disable WOL */
2389         writel(0, base + NvRegWakeUpFlags);
2390         np->wolenabled = 0;
2391
2392         if (np->desc_ver == DESC_VER_1) {
2393                 np->tx_flags = NV_TX_LASTPACKET|NV_TX_VALID;
2394         } else {
2395                 np->tx_flags = NV_TX2_LASTPACKET|NV_TX2_VALID;
2396         }
2397         np->irqmask = NVREG_IRQMASK_WANTED;
2398         if (id->driver_data & DEV_NEED_TIMERIRQ)
2399                 np->irqmask |= NVREG_IRQ_TIMER;
2400         if (id->driver_data & DEV_NEED_LINKTIMER) {
2401                 dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
2402                 np->need_linktimer = 1;
2403                 np->link_timeout = jiffies + LINK_TIMEOUT;
2404         } else {
2405                 dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
2406                 np->need_linktimer = 0;
2407         }
2408
2409         /* find a suitable phy */
2410         for (i = 1; i < 32; i++) {
2411                 int id1, id2;
2412
2413                 spin_lock_irq(&np->lock);
2414                 id1 = mii_rw(dev, i, MII_PHYSID1, MII_READ);
2415                 spin_unlock_irq(&np->lock);
2416                 if (id1 < 0 || id1 == 0xffff)
2417                         continue;
2418                 spin_lock_irq(&np->lock);
2419                 id2 = mii_rw(dev, i, MII_PHYSID2, MII_READ);
2420                 spin_unlock_irq(&np->lock);
2421                 if (id2 < 0 || id2 == 0xffff)
2422                         continue;
2423
2424                 id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
2425                 id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
2426                 dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
2427                                 pci_name(pci_dev), id1, id2, i);
2428                 np->phyaddr = i;
2429                 np->phy_oui = id1 | id2;
2430                 break;
2431         }
2432         if (i == 32) {
2433                 /* PHY in isolate mode? No phy attached and user wants to
2434                  * test loopback? Very odd, but can be correct.
2435                  */
2436                 printk(KERN_INFO "%s: open: Could not find a valid PHY.\n",
2437                                 pci_name(pci_dev));
2438         }
2439
2440         if (i != 32) {
2441                 /* reset it */
2442                 phy_init(dev);
2443         }
2444
2445         /* set default link speed settings */
2446         np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2447         np->duplex = 0;
2448         np->autoneg = 1;
2449
2450         err = register_netdev(dev);
2451         if (err) {
2452                 printk(KERN_INFO "forcedeth: unable to register netdev: %d\n", err);
2453                 goto out_freering;
2454         }
2455         printk(KERN_INFO "%s: forcedeth.c: subsystem: %05x:%04x bound to %s\n",
2456                         dev->name, pci_dev->subsystem_vendor, pci_dev->subsystem_device,
2457                         pci_name(pci_dev));
2458
2459         return 0;
2460
2461 out_freering:
2462         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
2463                 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (RX_RING + TX_RING),
2464                                     np->rx_ring.orig, np->ring_addr);
2465         else
2466                 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (RX_RING + TX_RING),
2467                                     np->rx_ring.ex, np->ring_addr);
2468         pci_set_drvdata(pci_dev, NULL);
2469 out_unmap:
2470         iounmap(get_hwbase(dev));
2471 out_relreg:
2472         pci_release_regions(pci_dev);
2473 out_disable:
2474         pci_disable_device(pci_dev);
2475 out_free:
2476         free_netdev(dev);
2477 out:
2478         return err;
2479 }
2480
2481 static void __devexit nv_remove(struct pci_dev *pci_dev)
2482 {
2483         struct net_device *dev = pci_get_drvdata(pci_dev);
2484         struct fe_priv *np = get_nvpriv(dev);
2485         u8 __iomem *base = get_hwbase(dev);
2486
2487         unregister_netdev(dev);
2488
2489         /* special op: write back the misordered MAC address - otherwise
2490          * the next nv_probe would see a wrong address.
2491          */
2492         writel(np->orig_mac[0], base + NvRegMacAddrA);
2493         writel(np->orig_mac[1], base + NvRegMacAddrB);
2494
2495         /* free all structures */
2496         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
2497                 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (RX_RING + TX_RING), np->rx_ring.orig, np->ring_addr);
2498         else
2499                 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (RX_RING + TX_RING), np->rx_ring.ex, np->ring_addr);
2500         iounmap(get_hwbase(dev));
2501         pci_release_regions(pci_dev);
2502         pci_disable_device(pci_dev);
2503         free_netdev(dev);
2504         pci_set_drvdata(pci_dev, NULL);
2505 }
2506
2507 static struct pci_device_id pci_tbl[] = {
2508         {       /* nForce Ethernet Controller */
2509                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
2510                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
2511         },
2512         {       /* nForce2 Ethernet Controller */
2513                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
2514                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
2515         },
2516         {       /* nForce3 Ethernet Controller */
2517                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
2518                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
2519         },
2520         {       /* nForce3 Ethernet Controller */
2521                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
2522                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC,
2523         },
2524         {       /* nForce3 Ethernet Controller */
2525                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
2526                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC,
2527         },
2528         {       /* nForce3 Ethernet Controller */
2529                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
2530                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC,
2531         },
2532         {       /* nForce3 Ethernet Controller */
2533                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
2534                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC,
2535         },
2536         {       /* CK804 Ethernet Controller */
2537                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
2538                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA,
2539         },
2540         {       /* CK804 Ethernet Controller */
2541                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
2542                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA,
2543         },
2544         {       /* MCP04 Ethernet Controller */
2545                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
2546                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA,
2547         },
2548         {       /* MCP04 Ethernet Controller */
2549                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
2550                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA,
2551         },
2552         {       /* MCP51 Ethernet Controller */
2553                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
2554                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA,
2555         },
2556         {       /* MCP51 Ethernet Controller */
2557                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
2558                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA,
2559         },
2560         {       /* MCP55 Ethernet Controller */
2561                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
2562                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA,
2563         },
2564         {       /* MCP55 Ethernet Controller */
2565                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
2566                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA,
2567         },
2568         {0,},
2569 };
2570
2571 static struct pci_driver driver = {
2572         .name = "forcedeth",
2573         .id_table = pci_tbl,
2574         .probe = nv_probe,
2575         .remove = __devexit_p(nv_remove),
2576 };
2577
2578
2579 static int __init init_nic(void)
2580 {
2581         printk(KERN_INFO "forcedeth.c: Reverse Engineered nForce ethernet driver. Version %s.\n", FORCEDETH_VERSION);
2582         return pci_module_init(&driver);
2583 }
2584
2585 static void __exit exit_nic(void)
2586 {
2587         pci_unregister_driver(&driver);
2588 }
2589
2590 module_param(max_interrupt_work, int, 0);
2591 MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
2592
2593 MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
2594 MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
2595 MODULE_LICENSE("GPL");
2596
2597 MODULE_DEVICE_TABLE(pci, pci_tbl);
2598
2599 module_init(init_nic);
2600 module_exit(exit_nic);