]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/e1000e/netdev.c
b8bb4fedb2ba0572cb5ff6f62486230540e6bd16
[linux-2.6-omap-h63xx.git] / drivers / net / e1000e / netdev.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2008 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/delay.h>
36 #include <linux/netdevice.h>
37 #include <linux/tcp.h>
38 #include <linux/ipv6.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/mii.h>
42 #include <linux/ethtool.h>
43 #include <linux/if_vlan.h>
44 #include <linux/cpu.h>
45 #include <linux/smp.h>
46
47 #include "e1000.h"
48
49 #define DRV_VERSION "0.2.0"
50 char e1000e_driver_name[] = "e1000e";
51 const char e1000e_driver_version[] = DRV_VERSION;
52
53 static const struct e1000_info *e1000_info_tbl[] = {
54         [board_82571]           = &e1000_82571_info,
55         [board_82572]           = &e1000_82572_info,
56         [board_82573]           = &e1000_82573_info,
57         [board_80003es2lan]     = &e1000_es2_info,
58         [board_ich8lan]         = &e1000_ich8_info,
59         [board_ich9lan]         = &e1000_ich9_info,
60 };
61
62 #ifdef DEBUG
63 /**
64  * e1000_get_hw_dev_name - return device name string
65  * used by hardware layer to print debugging information
66  **/
67 char *e1000e_get_hw_dev_name(struct e1000_hw *hw)
68 {
69         return hw->adapter->netdev->name;
70 }
71 #endif
72
73 /**
74  * e1000_desc_unused - calculate if we have unused descriptors
75  **/
76 static int e1000_desc_unused(struct e1000_ring *ring)
77 {
78         if (ring->next_to_clean > ring->next_to_use)
79                 return ring->next_to_clean - ring->next_to_use - 1;
80
81         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
82 }
83
84 /**
85  * e1000_receive_skb - helper function to handle Rx indications
86  * @adapter: board private structure
87  * @status: descriptor status field as written by hardware
88  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
89  * @skb: pointer to sk_buff to be indicated to stack
90  **/
91 static void e1000_receive_skb(struct e1000_adapter *adapter,
92                               struct net_device *netdev,
93                               struct sk_buff *skb,
94                               u8 status, __le16 vlan)
95 {
96         skb->protocol = eth_type_trans(skb, netdev);
97
98         if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
99                 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
100                                          le16_to_cpu(vlan) &
101                                          E1000_RXD_SPC_VLAN_MASK);
102         else
103                 netif_receive_skb(skb);
104
105         netdev->last_rx = jiffies;
106 }
107
108 /**
109  * e1000_rx_checksum - Receive Checksum Offload for 82543
110  * @adapter:     board private structure
111  * @status_err:  receive descriptor status and error fields
112  * @csum:       receive descriptor csum field
113  * @sk_buff:     socket buffer with received data
114  **/
115 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
116                               u32 csum, struct sk_buff *skb)
117 {
118         u16 status = (u16)status_err;
119         u8 errors = (u8)(status_err >> 24);
120         skb->ip_summed = CHECKSUM_NONE;
121
122         /* Ignore Checksum bit is set */
123         if (status & E1000_RXD_STAT_IXSM)
124                 return;
125         /* TCP/UDP checksum error bit is set */
126         if (errors & E1000_RXD_ERR_TCPE) {
127                 /* let the stack verify checksum errors */
128                 adapter->hw_csum_err++;
129                 return;
130         }
131
132         /* TCP/UDP Checksum has not been calculated */
133         if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
134                 return;
135
136         /* It must be a TCP or UDP packet with a valid checksum */
137         if (status & E1000_RXD_STAT_TCPCS) {
138                 /* TCP checksum is good */
139                 skb->ip_summed = CHECKSUM_UNNECESSARY;
140         } else {
141                 /*
142                  * IP fragment with UDP payload
143                  * Hardware complements the payload checksum, so we undo it
144                  * and then put the value in host order for further stack use.
145                  */
146                 __sum16 sum = (__force __sum16)htons(csum);
147                 skb->csum = csum_unfold(~sum);
148                 skb->ip_summed = CHECKSUM_COMPLETE;
149         }
150         adapter->hw_csum_good++;
151 }
152
153 /**
154  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
155  * @adapter: address of board private structure
156  **/
157 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
158                                    int cleaned_count)
159 {
160         struct net_device *netdev = adapter->netdev;
161         struct pci_dev *pdev = adapter->pdev;
162         struct e1000_ring *rx_ring = adapter->rx_ring;
163         struct e1000_rx_desc *rx_desc;
164         struct e1000_buffer *buffer_info;
165         struct sk_buff *skb;
166         unsigned int i;
167         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
168
169         i = rx_ring->next_to_use;
170         buffer_info = &rx_ring->buffer_info[i];
171
172         while (cleaned_count--) {
173                 skb = buffer_info->skb;
174                 if (skb) {
175                         skb_trim(skb, 0);
176                         goto map_skb;
177                 }
178
179                 skb = netdev_alloc_skb(netdev, bufsz);
180                 if (!skb) {
181                         /* Better luck next round */
182                         adapter->alloc_rx_buff_failed++;
183                         break;
184                 }
185
186                 /*
187                  * Make buffer alignment 2 beyond a 16 byte boundary
188                  * this will result in a 16 byte aligned IP header after
189                  * the 14 byte MAC header is removed
190                  */
191                 skb_reserve(skb, NET_IP_ALIGN);
192
193                 buffer_info->skb = skb;
194 map_skb:
195                 buffer_info->dma = pci_map_single(pdev, skb->data,
196                                                   adapter->rx_buffer_len,
197                                                   PCI_DMA_FROMDEVICE);
198                 if (pci_dma_mapping_error(buffer_info->dma)) {
199                         dev_err(&pdev->dev, "RX DMA map failed\n");
200                         adapter->rx_dma_failed++;
201                         break;
202                 }
203
204                 rx_desc = E1000_RX_DESC(*rx_ring, i);
205                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
206
207                 i++;
208                 if (i == rx_ring->count)
209                         i = 0;
210                 buffer_info = &rx_ring->buffer_info[i];
211         }
212
213         if (rx_ring->next_to_use != i) {
214                 rx_ring->next_to_use = i;
215                 if (i-- == 0)
216                         i = (rx_ring->count - 1);
217
218                 /*
219                  * Force memory writes to complete before letting h/w
220                  * know there are new descriptors to fetch.  (Only
221                  * applicable for weak-ordered memory model archs,
222                  * such as IA-64).
223                  */
224                 wmb();
225                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
226         }
227 }
228
229 /**
230  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
231  * @adapter: address of board private structure
232  **/
233 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
234                                       int cleaned_count)
235 {
236         struct net_device *netdev = adapter->netdev;
237         struct pci_dev *pdev = adapter->pdev;
238         union e1000_rx_desc_packet_split *rx_desc;
239         struct e1000_ring *rx_ring = adapter->rx_ring;
240         struct e1000_buffer *buffer_info;
241         struct e1000_ps_page *ps_page;
242         struct sk_buff *skb;
243         unsigned int i, j;
244
245         i = rx_ring->next_to_use;
246         buffer_info = &rx_ring->buffer_info[i];
247
248         while (cleaned_count--) {
249                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
250
251                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
252                         ps_page = &buffer_info->ps_pages[j];
253                         if (j >= adapter->rx_ps_pages) {
254                                 /* all unused desc entries get hw null ptr */
255                                 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
256                                 continue;
257                         }
258                         if (!ps_page->page) {
259                                 ps_page->page = alloc_page(GFP_ATOMIC);
260                                 if (!ps_page->page) {
261                                         adapter->alloc_rx_buff_failed++;
262                                         goto no_buffers;
263                                 }
264                                 ps_page->dma = pci_map_page(pdev,
265                                                    ps_page->page,
266                                                    0, PAGE_SIZE,
267                                                    PCI_DMA_FROMDEVICE);
268                                 if (pci_dma_mapping_error(ps_page->dma)) {
269                                         dev_err(&adapter->pdev->dev,
270                                           "RX DMA page map failed\n");
271                                         adapter->rx_dma_failed++;
272                                         goto no_buffers;
273                                 }
274                         }
275                         /*
276                          * Refresh the desc even if buffer_addrs
277                          * didn't change because each write-back
278                          * erases this info.
279                          */
280                         rx_desc->read.buffer_addr[j+1] =
281                              cpu_to_le64(ps_page->dma);
282                 }
283
284                 skb = netdev_alloc_skb(netdev,
285                                        adapter->rx_ps_bsize0 + NET_IP_ALIGN);
286
287                 if (!skb) {
288                         adapter->alloc_rx_buff_failed++;
289                         break;
290                 }
291
292                 /*
293                  * Make buffer alignment 2 beyond a 16 byte boundary
294                  * this will result in a 16 byte aligned IP header after
295                  * the 14 byte MAC header is removed
296                  */
297                 skb_reserve(skb, NET_IP_ALIGN);
298
299                 buffer_info->skb = skb;
300                 buffer_info->dma = pci_map_single(pdev, skb->data,
301                                                   adapter->rx_ps_bsize0,
302                                                   PCI_DMA_FROMDEVICE);
303                 if (pci_dma_mapping_error(buffer_info->dma)) {
304                         dev_err(&pdev->dev, "RX DMA map failed\n");
305                         adapter->rx_dma_failed++;
306                         /* cleanup skb */
307                         dev_kfree_skb_any(skb);
308                         buffer_info->skb = NULL;
309                         break;
310                 }
311
312                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
313
314                 i++;
315                 if (i == rx_ring->count)
316                         i = 0;
317                 buffer_info = &rx_ring->buffer_info[i];
318         }
319
320 no_buffers:
321         if (rx_ring->next_to_use != i) {
322                 rx_ring->next_to_use = i;
323
324                 if (!(i--))
325                         i = (rx_ring->count - 1);
326
327                 /*
328                  * Force memory writes to complete before letting h/w
329                  * know there are new descriptors to fetch.  (Only
330                  * applicable for weak-ordered memory model archs,
331                  * such as IA-64).
332                  */
333                 wmb();
334                 /*
335                  * Hardware increments by 16 bytes, but packet split
336                  * descriptors are 32 bytes...so we increment tail
337                  * twice as much.
338                  */
339                 writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
340         }
341 }
342
343 /**
344  * e1000_clean_rx_irq - Send received data up the network stack; legacy
345  * @adapter: board private structure
346  *
347  * the return value indicates whether actual cleaning was done, there
348  * is no guarantee that everything was cleaned
349  **/
350 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
351                                int *work_done, int work_to_do)
352 {
353         struct net_device *netdev = adapter->netdev;
354         struct pci_dev *pdev = adapter->pdev;
355         struct e1000_ring *rx_ring = adapter->rx_ring;
356         struct e1000_rx_desc *rx_desc, *next_rxd;
357         struct e1000_buffer *buffer_info, *next_buffer;
358         u32 length;
359         unsigned int i;
360         int cleaned_count = 0;
361         bool cleaned = 0;
362         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
363
364         i = rx_ring->next_to_clean;
365         rx_desc = E1000_RX_DESC(*rx_ring, i);
366         buffer_info = &rx_ring->buffer_info[i];
367
368         while (rx_desc->status & E1000_RXD_STAT_DD) {
369                 struct sk_buff *skb;
370                 u8 status;
371
372                 if (*work_done >= work_to_do)
373                         break;
374                 (*work_done)++;
375
376                 status = rx_desc->status;
377                 skb = buffer_info->skb;
378                 buffer_info->skb = NULL;
379
380                 prefetch(skb->data - NET_IP_ALIGN);
381
382                 i++;
383                 if (i == rx_ring->count)
384                         i = 0;
385                 next_rxd = E1000_RX_DESC(*rx_ring, i);
386                 prefetch(next_rxd);
387
388                 next_buffer = &rx_ring->buffer_info[i];
389
390                 cleaned = 1;
391                 cleaned_count++;
392                 pci_unmap_single(pdev,
393                                  buffer_info->dma,
394                                  adapter->rx_buffer_len,
395                                  PCI_DMA_FROMDEVICE);
396                 buffer_info->dma = 0;
397
398                 length = le16_to_cpu(rx_desc->length);
399
400                 /* !EOP means multiple descriptors were used to store a single
401                  * packet, also make sure the frame isn't just CRC only */
402                 if (!(status & E1000_RXD_STAT_EOP) || (length <= 4)) {
403                         /* All receives must fit into a single buffer */
404                         ndev_dbg(netdev, "%s: Receive packet consumed "
405                                  "multiple buffers\n", netdev->name);
406                         /* recycle */
407                         buffer_info->skb = skb;
408                         goto next_desc;
409                 }
410
411                 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
412                         /* recycle */
413                         buffer_info->skb = skb;
414                         goto next_desc;
415                 }
416
417                 total_rx_bytes += length;
418                 total_rx_packets++;
419
420                 /*
421                  * code added for copybreak, this should improve
422                  * performance for small packets with large amounts
423                  * of reassembly being done in the stack
424                  */
425                 if (length < copybreak) {
426                         struct sk_buff *new_skb =
427                             netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
428                         if (new_skb) {
429                                 skb_reserve(new_skb, NET_IP_ALIGN);
430                                 memcpy(new_skb->data - NET_IP_ALIGN,
431                                        skb->data - NET_IP_ALIGN,
432                                        length + NET_IP_ALIGN);
433                                 /* save the skb in buffer_info as good */
434                                 buffer_info->skb = skb;
435                                 skb = new_skb;
436                         }
437                         /* else just continue with the old one */
438                 }
439                 /* end copybreak code */
440                 skb_put(skb, length);
441
442                 /* Receive Checksum Offload */
443                 e1000_rx_checksum(adapter,
444                                   (u32)(status) |
445                                   ((u32)(rx_desc->errors) << 24),
446                                   le16_to_cpu(rx_desc->csum), skb);
447
448                 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
449
450 next_desc:
451                 rx_desc->status = 0;
452
453                 /* return some buffers to hardware, one at a time is too slow */
454                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
455                         adapter->alloc_rx_buf(adapter, cleaned_count);
456                         cleaned_count = 0;
457                 }
458
459                 /* use prefetched values */
460                 rx_desc = next_rxd;
461                 buffer_info = next_buffer;
462         }
463         rx_ring->next_to_clean = i;
464
465         cleaned_count = e1000_desc_unused(rx_ring);
466         if (cleaned_count)
467                 adapter->alloc_rx_buf(adapter, cleaned_count);
468
469         adapter->total_rx_packets += total_rx_packets;
470         adapter->total_rx_bytes += total_rx_bytes;
471         adapter->net_stats.rx_packets += total_rx_packets;
472         adapter->net_stats.rx_bytes += total_rx_bytes;
473         return cleaned;
474 }
475
476 static void e1000_put_txbuf(struct e1000_adapter *adapter,
477                              struct e1000_buffer *buffer_info)
478 {
479         if (buffer_info->dma) {
480                 pci_unmap_page(adapter->pdev, buffer_info->dma,
481                                buffer_info->length, PCI_DMA_TODEVICE);
482                 buffer_info->dma = 0;
483         }
484         if (buffer_info->skb) {
485                 dev_kfree_skb_any(buffer_info->skb);
486                 buffer_info->skb = NULL;
487         }
488 }
489
490 static void e1000_print_tx_hang(struct e1000_adapter *adapter)
491 {
492         struct e1000_ring *tx_ring = adapter->tx_ring;
493         unsigned int i = tx_ring->next_to_clean;
494         unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
495         struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
496         struct net_device *netdev = adapter->netdev;
497
498         /* detected Tx unit hang */
499         ndev_err(netdev,
500                  "Detected Tx Unit Hang:\n"
501                  "  TDH                  <%x>\n"
502                  "  TDT                  <%x>\n"
503                  "  next_to_use          <%x>\n"
504                  "  next_to_clean        <%x>\n"
505                  "buffer_info[next_to_clean]:\n"
506                  "  time_stamp           <%lx>\n"
507                  "  next_to_watch        <%x>\n"
508                  "  jiffies              <%lx>\n"
509                  "  next_to_watch.status <%x>\n",
510                  readl(adapter->hw.hw_addr + tx_ring->head),
511                  readl(adapter->hw.hw_addr + tx_ring->tail),
512                  tx_ring->next_to_use,
513                  tx_ring->next_to_clean,
514                  tx_ring->buffer_info[eop].time_stamp,
515                  eop,
516                  jiffies,
517                  eop_desc->upper.fields.status);
518 }
519
520 /**
521  * e1000_clean_tx_irq - Reclaim resources after transmit completes
522  * @adapter: board private structure
523  *
524  * the return value indicates whether actual cleaning was done, there
525  * is no guarantee that everything was cleaned
526  **/
527 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
528 {
529         struct net_device *netdev = adapter->netdev;
530         struct e1000_hw *hw = &adapter->hw;
531         struct e1000_ring *tx_ring = adapter->tx_ring;
532         struct e1000_tx_desc *tx_desc, *eop_desc;
533         struct e1000_buffer *buffer_info;
534         unsigned int i, eop;
535         unsigned int count = 0;
536         bool cleaned = 0;
537         unsigned int total_tx_bytes = 0, total_tx_packets = 0;
538
539         i = tx_ring->next_to_clean;
540         eop = tx_ring->buffer_info[i].next_to_watch;
541         eop_desc = E1000_TX_DESC(*tx_ring, eop);
542
543         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
544                 for (cleaned = 0; !cleaned; ) {
545                         tx_desc = E1000_TX_DESC(*tx_ring, i);
546                         buffer_info = &tx_ring->buffer_info[i];
547                         cleaned = (i == eop);
548
549                         if (cleaned) {
550                                 struct sk_buff *skb = buffer_info->skb;
551                                 unsigned int segs, bytecount;
552                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
553                                 /* multiply data chunks by size of headers */
554                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
555                                             skb->len;
556                                 total_tx_packets += segs;
557                                 total_tx_bytes += bytecount;
558                         }
559
560                         e1000_put_txbuf(adapter, buffer_info);
561                         tx_desc->upper.data = 0;
562
563                         i++;
564                         if (i == tx_ring->count)
565                                 i = 0;
566                 }
567
568                 eop = tx_ring->buffer_info[i].next_to_watch;
569                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
570 #define E1000_TX_WEIGHT 64
571                 /* weight of a sort for tx, to avoid endless transmit cleanup */
572                 if (count++ == E1000_TX_WEIGHT)
573                         break;
574         }
575
576         tx_ring->next_to_clean = i;
577
578 #define TX_WAKE_THRESHOLD 32
579         if (cleaned && netif_carrier_ok(netdev) &&
580                      e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
581                 /* Make sure that anybody stopping the queue after this
582                  * sees the new next_to_clean.
583                  */
584                 smp_mb();
585
586                 if (netif_queue_stopped(netdev) &&
587                     !(test_bit(__E1000_DOWN, &adapter->state))) {
588                         netif_wake_queue(netdev);
589                         ++adapter->restart_queue;
590                 }
591         }
592
593         if (adapter->detect_tx_hung) {
594                 /*
595                  * Detect a transmit hang in hardware, this serializes the
596                  * check with the clearing of time_stamp and movement of i
597                  */
598                 adapter->detect_tx_hung = 0;
599                 if (tx_ring->buffer_info[eop].dma &&
600                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp
601                                + (adapter->tx_timeout_factor * HZ))
602                     && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
603                         e1000_print_tx_hang(adapter);
604                         netif_stop_queue(netdev);
605                 }
606         }
607         adapter->total_tx_bytes += total_tx_bytes;
608         adapter->total_tx_packets += total_tx_packets;
609         adapter->net_stats.tx_packets += total_tx_packets;
610         adapter->net_stats.tx_bytes += total_tx_bytes;
611         return cleaned;
612 }
613
614 /**
615  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
616  * @adapter: board private structure
617  *
618  * the return value indicates whether actual cleaning was done, there
619  * is no guarantee that everything was cleaned
620  **/
621 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
622                                   int *work_done, int work_to_do)
623 {
624         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
625         struct net_device *netdev = adapter->netdev;
626         struct pci_dev *pdev = adapter->pdev;
627         struct e1000_ring *rx_ring = adapter->rx_ring;
628         struct e1000_buffer *buffer_info, *next_buffer;
629         struct e1000_ps_page *ps_page;
630         struct sk_buff *skb;
631         unsigned int i, j;
632         u32 length, staterr;
633         int cleaned_count = 0;
634         bool cleaned = 0;
635         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
636
637         i = rx_ring->next_to_clean;
638         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
639         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
640         buffer_info = &rx_ring->buffer_info[i];
641
642         while (staterr & E1000_RXD_STAT_DD) {
643                 if (*work_done >= work_to_do)
644                         break;
645                 (*work_done)++;
646                 skb = buffer_info->skb;
647
648                 /* in the packet split case this is header only */
649                 prefetch(skb->data - NET_IP_ALIGN);
650
651                 i++;
652                 if (i == rx_ring->count)
653                         i = 0;
654                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
655                 prefetch(next_rxd);
656
657                 next_buffer = &rx_ring->buffer_info[i];
658
659                 cleaned = 1;
660                 cleaned_count++;
661                 pci_unmap_single(pdev, buffer_info->dma,
662                                  adapter->rx_ps_bsize0,
663                                  PCI_DMA_FROMDEVICE);
664                 buffer_info->dma = 0;
665
666                 if (!(staterr & E1000_RXD_STAT_EOP)) {
667                         ndev_dbg(netdev, "%s: Packet Split buffers didn't pick "
668                                  "up the full packet\n", netdev->name);
669                         dev_kfree_skb_irq(skb);
670                         goto next_desc;
671                 }
672
673                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
674                         dev_kfree_skb_irq(skb);
675                         goto next_desc;
676                 }
677
678                 length = le16_to_cpu(rx_desc->wb.middle.length0);
679
680                 if (!length) {
681                         ndev_dbg(netdev, "%s: Last part of the packet spanning"
682                                  " multiple descriptors\n", netdev->name);
683                         dev_kfree_skb_irq(skb);
684                         goto next_desc;
685                 }
686
687                 /* Good Receive */
688                 skb_put(skb, length);
689
690                 {
691                 /*
692                  * this looks ugly, but it seems compiler issues make it
693                  * more efficient than reusing j
694                  */
695                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
696
697                 /*
698                  * page alloc/put takes too long and effects small packet
699                  * throughput, so unsplit small packets and save the alloc/put
700                  * only valid in softirq (napi) context to call kmap_*
701                  */
702                 if (l1 && (l1 <= copybreak) &&
703                     ((length + l1) <= adapter->rx_ps_bsize0)) {
704                         u8 *vaddr;
705
706                         ps_page = &buffer_info->ps_pages[0];
707
708                         /*
709                          * there is no documentation about how to call
710                          * kmap_atomic, so we can't hold the mapping
711                          * very long
712                          */
713                         pci_dma_sync_single_for_cpu(pdev, ps_page->dma,
714                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
715                         vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
716                         memcpy(skb_tail_pointer(skb), vaddr, l1);
717                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
718                         pci_dma_sync_single_for_device(pdev, ps_page->dma,
719                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
720
721                         skb_put(skb, l1);
722                         goto copydone;
723                 } /* if */
724                 }
725
726                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
727                         length = le16_to_cpu(rx_desc->wb.upper.length[j]);
728                         if (!length)
729                                 break;
730
731                         ps_page = &buffer_info->ps_pages[j];
732                         pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
733                                        PCI_DMA_FROMDEVICE);
734                         ps_page->dma = 0;
735                         skb_fill_page_desc(skb, j, ps_page->page, 0, length);
736                         ps_page->page = NULL;
737                         skb->len += length;
738                         skb->data_len += length;
739                         skb->truesize += length;
740                 }
741
742 copydone:
743                 total_rx_bytes += skb->len;
744                 total_rx_packets++;
745
746                 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
747                         rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
748
749                 if (rx_desc->wb.upper.header_status &
750                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
751                         adapter->rx_hdr_split++;
752
753                 e1000_receive_skb(adapter, netdev, skb,
754                                   staterr, rx_desc->wb.middle.vlan);
755
756 next_desc:
757                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
758                 buffer_info->skb = NULL;
759
760                 /* return some buffers to hardware, one at a time is too slow */
761                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
762                         adapter->alloc_rx_buf(adapter, cleaned_count);
763                         cleaned_count = 0;
764                 }
765
766                 /* use prefetched values */
767                 rx_desc = next_rxd;
768                 buffer_info = next_buffer;
769
770                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
771         }
772         rx_ring->next_to_clean = i;
773
774         cleaned_count = e1000_desc_unused(rx_ring);
775         if (cleaned_count)
776                 adapter->alloc_rx_buf(adapter, cleaned_count);
777
778         adapter->total_rx_packets += total_rx_packets;
779         adapter->total_rx_bytes += total_rx_bytes;
780         adapter->net_stats.rx_packets += total_rx_packets;
781         adapter->net_stats.rx_bytes += total_rx_bytes;
782         return cleaned;
783 }
784
785 /**
786  * e1000_clean_rx_ring - Free Rx Buffers per Queue
787  * @adapter: board private structure
788  **/
789 static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
790 {
791         struct e1000_ring *rx_ring = adapter->rx_ring;
792         struct e1000_buffer *buffer_info;
793         struct e1000_ps_page *ps_page;
794         struct pci_dev *pdev = adapter->pdev;
795         unsigned int i, j;
796
797         /* Free all the Rx ring sk_buffs */
798         for (i = 0; i < rx_ring->count; i++) {
799                 buffer_info = &rx_ring->buffer_info[i];
800                 if (buffer_info->dma) {
801                         if (adapter->clean_rx == e1000_clean_rx_irq)
802                                 pci_unmap_single(pdev, buffer_info->dma,
803                                                  adapter->rx_buffer_len,
804                                                  PCI_DMA_FROMDEVICE);
805                         else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
806                                 pci_unmap_single(pdev, buffer_info->dma,
807                                                  adapter->rx_ps_bsize0,
808                                                  PCI_DMA_FROMDEVICE);
809                         buffer_info->dma = 0;
810                 }
811
812                 if (buffer_info->skb) {
813                         dev_kfree_skb(buffer_info->skb);
814                         buffer_info->skb = NULL;
815                 }
816
817                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
818                         ps_page = &buffer_info->ps_pages[j];
819                         if (!ps_page->page)
820                                 break;
821                         pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
822                                        PCI_DMA_FROMDEVICE);
823                         ps_page->dma = 0;
824                         put_page(ps_page->page);
825                         ps_page->page = NULL;
826                 }
827         }
828
829         /* there also may be some cached data from a chained receive */
830         if (rx_ring->rx_skb_top) {
831                 dev_kfree_skb(rx_ring->rx_skb_top);
832                 rx_ring->rx_skb_top = NULL;
833         }
834
835         /* Zero out the descriptor ring */
836         memset(rx_ring->desc, 0, rx_ring->size);
837
838         rx_ring->next_to_clean = 0;
839         rx_ring->next_to_use = 0;
840
841         writel(0, adapter->hw.hw_addr + rx_ring->head);
842         writel(0, adapter->hw.hw_addr + rx_ring->tail);
843 }
844
845 /**
846  * e1000_intr_msi - Interrupt Handler
847  * @irq: interrupt number
848  * @data: pointer to a network interface device structure
849  **/
850 static irqreturn_t e1000_intr_msi(int irq, void *data)
851 {
852         struct net_device *netdev = data;
853         struct e1000_adapter *adapter = netdev_priv(netdev);
854         struct e1000_hw *hw = &adapter->hw;
855         u32 icr = er32(ICR);
856
857         /*
858          * read ICR disables interrupts using IAM
859          */
860
861         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
862                 hw->mac.get_link_status = 1;
863                 /*
864                  * ICH8 workaround-- Call gig speed drop workaround on cable
865                  * disconnect (LSC) before accessing any PHY registers
866                  */
867                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
868                     (!(er32(STATUS) & E1000_STATUS_LU)))
869                         e1000e_gig_downshift_workaround_ich8lan(hw);
870
871                 /*
872                  * 80003ES2LAN workaround-- For packet buffer work-around on
873                  * link down event; disable receives here in the ISR and reset
874                  * adapter in watchdog
875                  */
876                 if (netif_carrier_ok(netdev) &&
877                     adapter->flags & FLAG_RX_NEEDS_RESTART) {
878                         /* disable receives */
879                         u32 rctl = er32(RCTL);
880                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
881                         adapter->flags |= FLAG_RX_RESTART_NOW;
882                 }
883                 /* guard against interrupt when we're going down */
884                 if (!test_bit(__E1000_DOWN, &adapter->state))
885                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
886         }
887
888         if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
889                 adapter->total_tx_bytes = 0;
890                 adapter->total_tx_packets = 0;
891                 adapter->total_rx_bytes = 0;
892                 adapter->total_rx_packets = 0;
893                 __netif_rx_schedule(netdev, &adapter->napi);
894         }
895
896         return IRQ_HANDLED;
897 }
898
899 /**
900  * e1000_intr - Interrupt Handler
901  * @irq: interrupt number
902  * @data: pointer to a network interface device structure
903  **/
904 static irqreturn_t e1000_intr(int irq, void *data)
905 {
906         struct net_device *netdev = data;
907         struct e1000_adapter *adapter = netdev_priv(netdev);
908         struct e1000_hw *hw = &adapter->hw;
909
910         u32 rctl, icr = er32(ICR);
911         if (!icr)
912                 return IRQ_NONE;  /* Not our interrupt */
913
914         /*
915          * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
916          * not set, then the adapter didn't send an interrupt
917          */
918         if (!(icr & E1000_ICR_INT_ASSERTED))
919                 return IRQ_NONE;
920
921         /*
922          * Interrupt Auto-Mask...upon reading ICR,
923          * interrupts are masked.  No need for the
924          * IMC write
925          */
926
927         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
928                 hw->mac.get_link_status = 1;
929                 /*
930                  * ICH8 workaround-- Call gig speed drop workaround on cable
931                  * disconnect (LSC) before accessing any PHY registers
932                  */
933                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
934                     (!(er32(STATUS) & E1000_STATUS_LU)))
935                         e1000e_gig_downshift_workaround_ich8lan(hw);
936
937                 /*
938                  * 80003ES2LAN workaround--
939                  * For packet buffer work-around on link down event;
940                  * disable receives here in the ISR and
941                  * reset adapter in watchdog
942                  */
943                 if (netif_carrier_ok(netdev) &&
944                     (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
945                         /* disable receives */
946                         rctl = er32(RCTL);
947                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
948                         adapter->flags |= FLAG_RX_RESTART_NOW;
949                 }
950                 /* guard against interrupt when we're going down */
951                 if (!test_bit(__E1000_DOWN, &adapter->state))
952                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
953         }
954
955         if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
956                 adapter->total_tx_bytes = 0;
957                 adapter->total_tx_packets = 0;
958                 adapter->total_rx_bytes = 0;
959                 adapter->total_rx_packets = 0;
960                 __netif_rx_schedule(netdev, &adapter->napi);
961         }
962
963         return IRQ_HANDLED;
964 }
965
966 static int e1000_request_irq(struct e1000_adapter *adapter)
967 {
968         struct net_device *netdev = adapter->netdev;
969         irq_handler_t handler = e1000_intr;
970         int irq_flags = IRQF_SHARED;
971         int err;
972
973         if (!pci_enable_msi(adapter->pdev)) {
974                 adapter->flags |= FLAG_MSI_ENABLED;
975                 handler = e1000_intr_msi;
976                 irq_flags = 0;
977         }
978
979         err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
980                           netdev);
981         if (err) {
982                 ndev_err(netdev,
983                        "Unable to allocate %s interrupt (return: %d)\n",
984                         adapter->flags & FLAG_MSI_ENABLED ? "MSI":"INTx",
985                         err);
986                 if (adapter->flags & FLAG_MSI_ENABLED)
987                         pci_disable_msi(adapter->pdev);
988         }
989
990         return err;
991 }
992
993 static void e1000_free_irq(struct e1000_adapter *adapter)
994 {
995         struct net_device *netdev = adapter->netdev;
996
997         free_irq(adapter->pdev->irq, netdev);
998         if (adapter->flags & FLAG_MSI_ENABLED) {
999                 pci_disable_msi(adapter->pdev);
1000                 adapter->flags &= ~FLAG_MSI_ENABLED;
1001         }
1002 }
1003
1004 /**
1005  * e1000_irq_disable - Mask off interrupt generation on the NIC
1006  **/
1007 static void e1000_irq_disable(struct e1000_adapter *adapter)
1008 {
1009         struct e1000_hw *hw = &adapter->hw;
1010
1011         ew32(IMC, ~0);
1012         e1e_flush();
1013         synchronize_irq(adapter->pdev->irq);
1014 }
1015
1016 /**
1017  * e1000_irq_enable - Enable default interrupt generation settings
1018  **/
1019 static void e1000_irq_enable(struct e1000_adapter *adapter)
1020 {
1021         struct e1000_hw *hw = &adapter->hw;
1022
1023         ew32(IMS, IMS_ENABLE_MASK);
1024         e1e_flush();
1025 }
1026
1027 /**
1028  * e1000_get_hw_control - get control of the h/w from f/w
1029  * @adapter: address of board private structure
1030  *
1031  * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1032  * For ASF and Pass Through versions of f/w this means that
1033  * the driver is loaded. For AMT version (only with 82573)
1034  * of the f/w this means that the network i/f is open.
1035  **/
1036 static void e1000_get_hw_control(struct e1000_adapter *adapter)
1037 {
1038         struct e1000_hw *hw = &adapter->hw;
1039         u32 ctrl_ext;
1040         u32 swsm;
1041
1042         /* Let firmware know the driver has taken over */
1043         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1044                 swsm = er32(SWSM);
1045                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
1046         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1047                 ctrl_ext = er32(CTRL_EXT);
1048                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1049         }
1050 }
1051
1052 /**
1053  * e1000_release_hw_control - release control of the h/w to f/w
1054  * @adapter: address of board private structure
1055  *
1056  * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1057  * For ASF and Pass Through versions of f/w this means that the
1058  * driver is no longer loaded. For AMT version (only with 82573) i
1059  * of the f/w this means that the network i/f is closed.
1060  *
1061  **/
1062 static void e1000_release_hw_control(struct e1000_adapter *adapter)
1063 {
1064         struct e1000_hw *hw = &adapter->hw;
1065         u32 ctrl_ext;
1066         u32 swsm;
1067
1068         /* Let firmware taken over control of h/w */
1069         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1070                 swsm = er32(SWSM);
1071                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1072         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1073                 ctrl_ext = er32(CTRL_EXT);
1074                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1075         }
1076 }
1077
1078 /**
1079  * @e1000_alloc_ring - allocate memory for a ring structure
1080  **/
1081 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
1082                                 struct e1000_ring *ring)
1083 {
1084         struct pci_dev *pdev = adapter->pdev;
1085
1086         ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
1087                                         GFP_KERNEL);
1088         if (!ring->desc)
1089                 return -ENOMEM;
1090
1091         return 0;
1092 }
1093
1094 /**
1095  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
1096  * @adapter: board private structure
1097  *
1098  * Return 0 on success, negative on failure
1099  **/
1100 int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
1101 {
1102         struct e1000_ring *tx_ring = adapter->tx_ring;
1103         int err = -ENOMEM, size;
1104
1105         size = sizeof(struct e1000_buffer) * tx_ring->count;
1106         tx_ring->buffer_info = vmalloc(size);
1107         if (!tx_ring->buffer_info)
1108                 goto err;
1109         memset(tx_ring->buffer_info, 0, size);
1110
1111         /* round up to nearest 4K */
1112         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1113         tx_ring->size = ALIGN(tx_ring->size, 4096);
1114
1115         err = e1000_alloc_ring_dma(adapter, tx_ring);
1116         if (err)
1117                 goto err;
1118
1119         tx_ring->next_to_use = 0;
1120         tx_ring->next_to_clean = 0;
1121         spin_lock_init(&adapter->tx_queue_lock);
1122
1123         return 0;
1124 err:
1125         vfree(tx_ring->buffer_info);
1126         ndev_err(adapter->netdev,
1127         "Unable to allocate memory for the transmit descriptor ring\n");
1128         return err;
1129 }
1130
1131 /**
1132  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
1133  * @adapter: board private structure
1134  *
1135  * Returns 0 on success, negative on failure
1136  **/
1137 int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
1138 {
1139         struct e1000_ring *rx_ring = adapter->rx_ring;
1140         struct e1000_buffer *buffer_info;
1141         int i, size, desc_len, err = -ENOMEM;
1142
1143         size = sizeof(struct e1000_buffer) * rx_ring->count;
1144         rx_ring->buffer_info = vmalloc(size);
1145         if (!rx_ring->buffer_info)
1146                 goto err;
1147         memset(rx_ring->buffer_info, 0, size);
1148
1149         for (i = 0; i < rx_ring->count; i++) {
1150                 buffer_info = &rx_ring->buffer_info[i];
1151                 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
1152                                                 sizeof(struct e1000_ps_page),
1153                                                 GFP_KERNEL);
1154                 if (!buffer_info->ps_pages)
1155                         goto err_pages;
1156         }
1157
1158         desc_len = sizeof(union e1000_rx_desc_packet_split);
1159
1160         /* Round up to nearest 4K */
1161         rx_ring->size = rx_ring->count * desc_len;
1162         rx_ring->size = ALIGN(rx_ring->size, 4096);
1163
1164         err = e1000_alloc_ring_dma(adapter, rx_ring);
1165         if (err)
1166                 goto err_pages;
1167
1168         rx_ring->next_to_clean = 0;
1169         rx_ring->next_to_use = 0;
1170         rx_ring->rx_skb_top = NULL;
1171
1172         return 0;
1173
1174 err_pages:
1175         for (i = 0; i < rx_ring->count; i++) {
1176                 buffer_info = &rx_ring->buffer_info[i];
1177                 kfree(buffer_info->ps_pages);
1178         }
1179 err:
1180         vfree(rx_ring->buffer_info);
1181         ndev_err(adapter->netdev,
1182         "Unable to allocate memory for the transmit descriptor ring\n");
1183         return err;
1184 }
1185
1186 /**
1187  * e1000_clean_tx_ring - Free Tx Buffers
1188  * @adapter: board private structure
1189  **/
1190 static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
1191 {
1192         struct e1000_ring *tx_ring = adapter->tx_ring;
1193         struct e1000_buffer *buffer_info;
1194         unsigned long size;
1195         unsigned int i;
1196
1197         for (i = 0; i < tx_ring->count; i++) {
1198                 buffer_info = &tx_ring->buffer_info[i];
1199                 e1000_put_txbuf(adapter, buffer_info);
1200         }
1201
1202         size = sizeof(struct e1000_buffer) * tx_ring->count;
1203         memset(tx_ring->buffer_info, 0, size);
1204
1205         memset(tx_ring->desc, 0, tx_ring->size);
1206
1207         tx_ring->next_to_use = 0;
1208         tx_ring->next_to_clean = 0;
1209
1210         writel(0, adapter->hw.hw_addr + tx_ring->head);
1211         writel(0, adapter->hw.hw_addr + tx_ring->tail);
1212 }
1213
1214 /**
1215  * e1000e_free_tx_resources - Free Tx Resources per Queue
1216  * @adapter: board private structure
1217  *
1218  * Free all transmit software resources
1219  **/
1220 void e1000e_free_tx_resources(struct e1000_adapter *adapter)
1221 {
1222         struct pci_dev *pdev = adapter->pdev;
1223         struct e1000_ring *tx_ring = adapter->tx_ring;
1224
1225         e1000_clean_tx_ring(adapter);
1226
1227         vfree(tx_ring->buffer_info);
1228         tx_ring->buffer_info = NULL;
1229
1230         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1231                           tx_ring->dma);
1232         tx_ring->desc = NULL;
1233 }
1234
1235 /**
1236  * e1000e_free_rx_resources - Free Rx Resources
1237  * @adapter: board private structure
1238  *
1239  * Free all receive software resources
1240  **/
1241
1242 void e1000e_free_rx_resources(struct e1000_adapter *adapter)
1243 {
1244         struct pci_dev *pdev = adapter->pdev;
1245         struct e1000_ring *rx_ring = adapter->rx_ring;
1246         int i;
1247
1248         e1000_clean_rx_ring(adapter);
1249
1250         for (i = 0; i < rx_ring->count; i++) {
1251                 kfree(rx_ring->buffer_info[i].ps_pages);
1252         }
1253
1254         vfree(rx_ring->buffer_info);
1255         rx_ring->buffer_info = NULL;
1256
1257         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1258                           rx_ring->dma);
1259         rx_ring->desc = NULL;
1260 }
1261
1262 /**
1263  * e1000_update_itr - update the dynamic ITR value based on statistics
1264  * @adapter: pointer to adapter
1265  * @itr_setting: current adapter->itr
1266  * @packets: the number of packets during this measurement interval
1267  * @bytes: the number of bytes during this measurement interval
1268  *
1269  *      Stores a new ITR value based on packets and byte
1270  *      counts during the last interrupt.  The advantage of per interrupt
1271  *      computation is faster updates and more accurate ITR for the current
1272  *      traffic pattern.  Constants in this function were computed
1273  *      based on theoretical maximum wire speed and thresholds were set based
1274  *      on testing data as well as attempting to minimize response time
1275  *      while increasing bulk throughput.
1276  *      this functionality is controlled by the InterruptThrottleRate module
1277  *      parameter (see e1000_param.c)
1278  **/
1279 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
1280                                      u16 itr_setting, int packets,
1281                                      int bytes)
1282 {
1283         unsigned int retval = itr_setting;
1284
1285         if (packets == 0)
1286                 goto update_itr_done;
1287
1288         switch (itr_setting) {
1289         case lowest_latency:
1290                 /* handle TSO and jumbo frames */
1291                 if (bytes/packets > 8000)
1292                         retval = bulk_latency;
1293                 else if ((packets < 5) && (bytes > 512)) {
1294                         retval = low_latency;
1295                 }
1296                 break;
1297         case low_latency:  /* 50 usec aka 20000 ints/s */
1298                 if (bytes > 10000) {
1299                         /* this if handles the TSO accounting */
1300                         if (bytes/packets > 8000) {
1301                                 retval = bulk_latency;
1302                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
1303                                 retval = bulk_latency;
1304                         } else if ((packets > 35)) {
1305                                 retval = lowest_latency;
1306                         }
1307                 } else if (bytes/packets > 2000) {
1308                         retval = bulk_latency;
1309                 } else if (packets <= 2 && bytes < 512) {
1310                         retval = lowest_latency;
1311                 }
1312                 break;
1313         case bulk_latency: /* 250 usec aka 4000 ints/s */
1314                 if (bytes > 25000) {
1315                         if (packets > 35) {
1316                                 retval = low_latency;
1317                         }
1318                 } else if (bytes < 6000) {
1319                         retval = low_latency;
1320                 }
1321                 break;
1322         }
1323
1324 update_itr_done:
1325         return retval;
1326 }
1327
1328 static void e1000_set_itr(struct e1000_adapter *adapter)
1329 {
1330         struct e1000_hw *hw = &adapter->hw;
1331         u16 current_itr;
1332         u32 new_itr = adapter->itr;
1333
1334         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
1335         if (adapter->link_speed != SPEED_1000) {
1336                 current_itr = 0;
1337                 new_itr = 4000;
1338                 goto set_itr_now;
1339         }
1340
1341         adapter->tx_itr = e1000_update_itr(adapter,
1342                                     adapter->tx_itr,
1343                                     adapter->total_tx_packets,
1344                                     adapter->total_tx_bytes);
1345         /* conservative mode (itr 3) eliminates the lowest_latency setting */
1346         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
1347                 adapter->tx_itr = low_latency;
1348
1349         adapter->rx_itr = e1000_update_itr(adapter,
1350                                     adapter->rx_itr,
1351                                     adapter->total_rx_packets,
1352                                     adapter->total_rx_bytes);
1353         /* conservative mode (itr 3) eliminates the lowest_latency setting */
1354         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
1355                 adapter->rx_itr = low_latency;
1356
1357         current_itr = max(adapter->rx_itr, adapter->tx_itr);
1358
1359         switch (current_itr) {
1360         /* counts and packets in update_itr are dependent on these numbers */
1361         case lowest_latency:
1362                 new_itr = 70000;
1363                 break;
1364         case low_latency:
1365                 new_itr = 20000; /* aka hwitr = ~200 */
1366                 break;
1367         case bulk_latency:
1368                 new_itr = 4000;
1369                 break;
1370         default:
1371                 break;
1372         }
1373
1374 set_itr_now:
1375         if (new_itr != adapter->itr) {
1376                 /*
1377                  * this attempts to bias the interrupt rate towards Bulk
1378                  * by adding intermediate steps when interrupt rate is
1379                  * increasing
1380                  */
1381                 new_itr = new_itr > adapter->itr ?
1382                              min(adapter->itr + (new_itr >> 2), new_itr) :
1383                              new_itr;
1384                 adapter->itr = new_itr;
1385                 ew32(ITR, 1000000000 / (new_itr * 256));
1386         }
1387 }
1388
1389 /**
1390  * e1000_clean - NAPI Rx polling callback
1391  * @napi: struct associated with this polling callback
1392  * @budget: amount of packets driver is allowed to process this poll
1393  **/
1394 static int e1000_clean(struct napi_struct *napi, int budget)
1395 {
1396         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
1397         struct net_device *poll_dev = adapter->netdev;
1398         int tx_cleaned = 0, work_done = 0;
1399
1400         /* Must NOT use netdev_priv macro here. */
1401         adapter = poll_dev->priv;
1402
1403         /*
1404          * e1000_clean is called per-cpu.  This lock protects
1405          * tx_ring from being cleaned by multiple cpus
1406          * simultaneously.  A failure obtaining the lock means
1407          * tx_ring is currently being cleaned anyway.
1408          */
1409         if (spin_trylock(&adapter->tx_queue_lock)) {
1410                 tx_cleaned = e1000_clean_tx_irq(adapter);
1411                 spin_unlock(&adapter->tx_queue_lock);
1412         }
1413
1414         adapter->clean_rx(adapter, &work_done, budget);
1415
1416         if (tx_cleaned)
1417                 work_done = budget;
1418
1419         /* If budget not fully consumed, exit the polling mode */
1420         if (work_done < budget) {
1421                 if (adapter->itr_setting & 3)
1422                         e1000_set_itr(adapter);
1423                 netif_rx_complete(poll_dev, napi);
1424                 e1000_irq_enable(adapter);
1425         }
1426
1427         return work_done;
1428 }
1429
1430 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1431 {
1432         struct e1000_adapter *adapter = netdev_priv(netdev);
1433         struct e1000_hw *hw = &adapter->hw;
1434         u32 vfta, index;
1435
1436         /* don't update vlan cookie if already programmed */
1437         if ((adapter->hw.mng_cookie.status &
1438              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1439             (vid == adapter->mng_vlan_id))
1440                 return;
1441         /* add VID to filter table */
1442         index = (vid >> 5) & 0x7F;
1443         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
1444         vfta |= (1 << (vid & 0x1F));
1445         e1000e_write_vfta(hw, index, vfta);
1446 }
1447
1448 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1449 {
1450         struct e1000_adapter *adapter = netdev_priv(netdev);
1451         struct e1000_hw *hw = &adapter->hw;
1452         u32 vfta, index;
1453
1454         if (!test_bit(__E1000_DOWN, &adapter->state))
1455                 e1000_irq_disable(adapter);
1456         vlan_group_set_device(adapter->vlgrp, vid, NULL);
1457
1458         if (!test_bit(__E1000_DOWN, &adapter->state))
1459                 e1000_irq_enable(adapter);
1460
1461         if ((adapter->hw.mng_cookie.status &
1462              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1463             (vid == adapter->mng_vlan_id)) {
1464                 /* release control to f/w */
1465                 e1000_release_hw_control(adapter);
1466                 return;
1467         }
1468
1469         /* remove VID from filter table */
1470         index = (vid >> 5) & 0x7F;
1471         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
1472         vfta &= ~(1 << (vid & 0x1F));
1473         e1000e_write_vfta(hw, index, vfta);
1474 }
1475
1476 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
1477 {
1478         struct net_device *netdev = adapter->netdev;
1479         u16 vid = adapter->hw.mng_cookie.vlan_id;
1480         u16 old_vid = adapter->mng_vlan_id;
1481
1482         if (!adapter->vlgrp)
1483                 return;
1484
1485         if (!vlan_group_get_device(adapter->vlgrp, vid)) {
1486                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1487                 if (adapter->hw.mng_cookie.status &
1488                         E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1489                         e1000_vlan_rx_add_vid(netdev, vid);
1490                         adapter->mng_vlan_id = vid;
1491                 }
1492
1493                 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
1494                                 (vid != old_vid) &&
1495                     !vlan_group_get_device(adapter->vlgrp, old_vid))
1496                         e1000_vlan_rx_kill_vid(netdev, old_vid);
1497         } else {
1498                 adapter->mng_vlan_id = vid;
1499         }
1500 }
1501
1502
1503 static void e1000_vlan_rx_register(struct net_device *netdev,
1504                                    struct vlan_group *grp)
1505 {
1506         struct e1000_adapter *adapter = netdev_priv(netdev);
1507         struct e1000_hw *hw = &adapter->hw;
1508         u32 ctrl, rctl;
1509
1510         if (!test_bit(__E1000_DOWN, &adapter->state))
1511                 e1000_irq_disable(adapter);
1512         adapter->vlgrp = grp;
1513
1514         if (grp) {
1515                 /* enable VLAN tag insert/strip */
1516                 ctrl = er32(CTRL);
1517                 ctrl |= E1000_CTRL_VME;
1518                 ew32(CTRL, ctrl);
1519
1520                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
1521                         /* enable VLAN receive filtering */
1522                         rctl = er32(RCTL);
1523                         rctl |= E1000_RCTL_VFE;
1524                         rctl &= ~E1000_RCTL_CFIEN;
1525                         ew32(RCTL, rctl);
1526                         e1000_update_mng_vlan(adapter);
1527                 }
1528         } else {
1529                 /* disable VLAN tag insert/strip */
1530                 ctrl = er32(CTRL);
1531                 ctrl &= ~E1000_CTRL_VME;
1532                 ew32(CTRL, ctrl);
1533
1534                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
1535                         /* disable VLAN filtering */
1536                         rctl = er32(RCTL);
1537                         rctl &= ~E1000_RCTL_VFE;
1538                         ew32(RCTL, rctl);
1539                         if (adapter->mng_vlan_id !=
1540                             (u16)E1000_MNG_VLAN_NONE) {
1541                                 e1000_vlan_rx_kill_vid(netdev,
1542                                                        adapter->mng_vlan_id);
1543                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1544                         }
1545                 }
1546         }
1547
1548         if (!test_bit(__E1000_DOWN, &adapter->state))
1549                 e1000_irq_enable(adapter);
1550 }
1551
1552 static void e1000_restore_vlan(struct e1000_adapter *adapter)
1553 {
1554         u16 vid;
1555
1556         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
1557
1558         if (!adapter->vlgrp)
1559                 return;
1560
1561         for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
1562                 if (!vlan_group_get_device(adapter->vlgrp, vid))
1563                         continue;
1564                 e1000_vlan_rx_add_vid(adapter->netdev, vid);
1565         }
1566 }
1567
1568 static void e1000_init_manageability(struct e1000_adapter *adapter)
1569 {
1570         struct e1000_hw *hw = &adapter->hw;
1571         u32 manc, manc2h;
1572
1573         if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
1574                 return;
1575
1576         manc = er32(MANC);
1577
1578         /*
1579          * enable receiving management packets to the host. this will probably
1580          * generate destination unreachable messages from the host OS, but
1581          * the packets will be handled on SMBUS
1582          */
1583         manc |= E1000_MANC_EN_MNG2HOST;
1584         manc2h = er32(MANC2H);
1585 #define E1000_MNG2HOST_PORT_623 (1 << 5)
1586 #define E1000_MNG2HOST_PORT_664 (1 << 6)
1587         manc2h |= E1000_MNG2HOST_PORT_623;
1588         manc2h |= E1000_MNG2HOST_PORT_664;
1589         ew32(MANC2H, manc2h);
1590         ew32(MANC, manc);
1591 }
1592
1593 /**
1594  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1595  * @adapter: board private structure
1596  *
1597  * Configure the Tx unit of the MAC after a reset.
1598  **/
1599 static void e1000_configure_tx(struct e1000_adapter *adapter)
1600 {
1601         struct e1000_hw *hw = &adapter->hw;
1602         struct e1000_ring *tx_ring = adapter->tx_ring;
1603         u64 tdba;
1604         u32 tdlen, tctl, tipg, tarc;
1605         u32 ipgr1, ipgr2;
1606
1607         /* Setup the HW Tx Head and Tail descriptor pointers */
1608         tdba = tx_ring->dma;
1609         tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
1610         ew32(TDBAL, (tdba & DMA_32BIT_MASK));
1611         ew32(TDBAH, (tdba >> 32));
1612         ew32(TDLEN, tdlen);
1613         ew32(TDH, 0);
1614         ew32(TDT, 0);
1615         tx_ring->head = E1000_TDH;
1616         tx_ring->tail = E1000_TDT;
1617
1618         /* Set the default values for the Tx Inter Packet Gap timer */
1619         tipg = DEFAULT_82543_TIPG_IPGT_COPPER;          /*  8  */
1620         ipgr1 = DEFAULT_82543_TIPG_IPGR1;               /*  8  */
1621         ipgr2 = DEFAULT_82543_TIPG_IPGR2;               /*  6  */
1622
1623         if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
1624                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /*  7  */
1625
1626         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1627         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1628         ew32(TIPG, tipg);
1629
1630         /* Set the Tx Interrupt Delay register */
1631         ew32(TIDV, adapter->tx_int_delay);
1632         /* Tx irq moderation */
1633         ew32(TADV, adapter->tx_abs_int_delay);
1634
1635         /* Program the Transmit Control Register */
1636         tctl = er32(TCTL);
1637         tctl &= ~E1000_TCTL_CT;
1638         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1639                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1640
1641         if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
1642                 tarc = er32(TARC(0));
1643                 /*
1644                  * set the speed mode bit, we'll clear it if we're not at
1645                  * gigabit link later
1646                  */
1647 #define SPEED_MODE_BIT (1 << 21)
1648                 tarc |= SPEED_MODE_BIT;
1649                 ew32(TARC(0), tarc);
1650         }
1651
1652         /* errata: program both queues to unweighted RR */
1653         if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
1654                 tarc = er32(TARC(0));
1655                 tarc |= 1;
1656                 ew32(TARC(0), tarc);
1657                 tarc = er32(TARC(1));
1658                 tarc |= 1;
1659                 ew32(TARC(1), tarc);
1660         }
1661
1662         e1000e_config_collision_dist(hw);
1663
1664         /* Setup Transmit Descriptor Settings for eop descriptor */
1665         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1666
1667         /* only set IDE if we are delaying interrupts using the timers */
1668         if (adapter->tx_int_delay)
1669                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1670
1671         /* enable Report Status bit */
1672         adapter->txd_cmd |= E1000_TXD_CMD_RS;
1673
1674         ew32(TCTL, tctl);
1675
1676         adapter->tx_queue_len = adapter->netdev->tx_queue_len;
1677 }
1678
1679 /**
1680  * e1000_setup_rctl - configure the receive control registers
1681  * @adapter: Board private structure
1682  **/
1683 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1684                            (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1685 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1686 {
1687         struct e1000_hw *hw = &adapter->hw;
1688         u32 rctl, rfctl;
1689         u32 psrctl = 0;
1690         u32 pages = 0;
1691
1692         /* Program MC offset vector base */
1693         rctl = er32(RCTL);
1694         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1695         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1696                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1697                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1698
1699         /* Do not Store bad packets */
1700         rctl &= ~E1000_RCTL_SBP;
1701
1702         /* Enable Long Packet receive */
1703         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1704                 rctl &= ~E1000_RCTL_LPE;
1705         else
1706                 rctl |= E1000_RCTL_LPE;
1707
1708         /* Enable hardware CRC frame stripping */
1709         rctl |= E1000_RCTL_SECRC;
1710
1711         /* Setup buffer sizes */
1712         rctl &= ~E1000_RCTL_SZ_4096;
1713         rctl |= E1000_RCTL_BSEX;
1714         switch (adapter->rx_buffer_len) {
1715         case 256:
1716                 rctl |= E1000_RCTL_SZ_256;
1717                 rctl &= ~E1000_RCTL_BSEX;
1718                 break;
1719         case 512:
1720                 rctl |= E1000_RCTL_SZ_512;
1721                 rctl &= ~E1000_RCTL_BSEX;
1722                 break;
1723         case 1024:
1724                 rctl |= E1000_RCTL_SZ_1024;
1725                 rctl &= ~E1000_RCTL_BSEX;
1726                 break;
1727         case 2048:
1728         default:
1729                 rctl |= E1000_RCTL_SZ_2048;
1730                 rctl &= ~E1000_RCTL_BSEX;
1731                 break;
1732         case 4096:
1733                 rctl |= E1000_RCTL_SZ_4096;
1734                 break;
1735         case 8192:
1736                 rctl |= E1000_RCTL_SZ_8192;
1737                 break;
1738         case 16384:
1739                 rctl |= E1000_RCTL_SZ_16384;
1740                 break;
1741         }
1742
1743         /*
1744          * 82571 and greater support packet-split where the protocol
1745          * header is placed in skb->data and the packet data is
1746          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1747          * In the case of a non-split, skb->data is linearly filled,
1748          * followed by the page buffers.  Therefore, skb->data is
1749          * sized to hold the largest protocol header.
1750          *
1751          * allocations using alloc_page take too long for regular MTU
1752          * so only enable packet split for jumbo frames
1753          *
1754          * Using pages when the page size is greater than 16k wastes
1755          * a lot of memory, since we allocate 3 pages at all times
1756          * per packet.
1757          */
1758         adapter->rx_ps_pages = 0;
1759         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1760         if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
1761                 adapter->rx_ps_pages = pages;
1762
1763         if (adapter->rx_ps_pages) {
1764                 /* Configure extra packet-split registers */
1765                 rfctl = er32(RFCTL);
1766                 rfctl |= E1000_RFCTL_EXTEN;
1767                 /*
1768                  * disable packet split support for IPv6 extension headers,
1769                  * because some malformed IPv6 headers can hang the Rx
1770                  */
1771                 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
1772                           E1000_RFCTL_NEW_IPV6_EXT_DIS);
1773
1774                 ew32(RFCTL, rfctl);
1775
1776                 /* Enable Packet split descriptors */
1777                 rctl |= E1000_RCTL_DTYP_PS;
1778
1779                 psrctl |= adapter->rx_ps_bsize0 >>
1780                         E1000_PSRCTL_BSIZE0_SHIFT;
1781
1782                 switch (adapter->rx_ps_pages) {
1783                 case 3:
1784                         psrctl |= PAGE_SIZE <<
1785                                 E1000_PSRCTL_BSIZE3_SHIFT;
1786                 case 2:
1787                         psrctl |= PAGE_SIZE <<
1788                                 E1000_PSRCTL_BSIZE2_SHIFT;
1789                 case 1:
1790                         psrctl |= PAGE_SIZE >>
1791                                 E1000_PSRCTL_BSIZE1_SHIFT;
1792                         break;
1793                 }
1794
1795                 ew32(PSRCTL, psrctl);
1796         }
1797
1798         ew32(RCTL, rctl);
1799         /* just started the receive unit, no need to restart */
1800         adapter->flags &= ~FLAG_RX_RESTART_NOW;
1801 }
1802
1803 /**
1804  * e1000_configure_rx - Configure Receive Unit after Reset
1805  * @adapter: board private structure
1806  *
1807  * Configure the Rx unit of the MAC after a reset.
1808  **/
1809 static void e1000_configure_rx(struct e1000_adapter *adapter)
1810 {
1811         struct e1000_hw *hw = &adapter->hw;
1812         struct e1000_ring *rx_ring = adapter->rx_ring;
1813         u64 rdba;
1814         u32 rdlen, rctl, rxcsum, ctrl_ext;
1815
1816         if (adapter->rx_ps_pages) {
1817                 /* this is a 32 byte descriptor */
1818                 rdlen = rx_ring->count *
1819                         sizeof(union e1000_rx_desc_packet_split);
1820                 adapter->clean_rx = e1000_clean_rx_irq_ps;
1821                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1822         } else {
1823                 rdlen = rx_ring->count *
1824                         sizeof(struct e1000_rx_desc);
1825                 adapter->clean_rx = e1000_clean_rx_irq;
1826                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1827         }
1828
1829         /* disable receives while setting up the descriptors */
1830         rctl = er32(RCTL);
1831         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1832         e1e_flush();
1833         msleep(10);
1834
1835         /* set the Receive Delay Timer Register */
1836         ew32(RDTR, adapter->rx_int_delay);
1837
1838         /* irq moderation */
1839         ew32(RADV, adapter->rx_abs_int_delay);
1840         if (adapter->itr_setting != 0)
1841                 ew32(ITR, 1000000000 / (adapter->itr * 256));
1842
1843         ctrl_ext = er32(CTRL_EXT);
1844         /* Reset delay timers after every interrupt */
1845         ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1846         /* Auto-Mask interrupts upon ICR access */
1847         ctrl_ext |= E1000_CTRL_EXT_IAME;
1848         ew32(IAM, 0xffffffff);
1849         ew32(CTRL_EXT, ctrl_ext);
1850         e1e_flush();
1851
1852         /*
1853          * Setup the HW Rx Head and Tail Descriptor Pointers and
1854          * the Base and Length of the Rx Descriptor Ring
1855          */
1856         rdba = rx_ring->dma;
1857         ew32(RDBAL, (rdba & DMA_32BIT_MASK));
1858         ew32(RDBAH, (rdba >> 32));
1859         ew32(RDLEN, rdlen);
1860         ew32(RDH, 0);
1861         ew32(RDT, 0);
1862         rx_ring->head = E1000_RDH;
1863         rx_ring->tail = E1000_RDT;
1864
1865         /* Enable Receive Checksum Offload for TCP and UDP */
1866         rxcsum = er32(RXCSUM);
1867         if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
1868                 rxcsum |= E1000_RXCSUM_TUOFL;
1869
1870                 /*
1871                  * IPv4 payload checksum for UDP fragments must be
1872                  * used in conjunction with packet-split.
1873                  */
1874                 if (adapter->rx_ps_pages)
1875                         rxcsum |= E1000_RXCSUM_IPPCSE;
1876         } else {
1877                 rxcsum &= ~E1000_RXCSUM_TUOFL;
1878                 /* no need to clear IPPCSE as it defaults to 0 */
1879         }
1880         ew32(RXCSUM, rxcsum);
1881
1882         /*
1883          * Enable early receives on supported devices, only takes effect when
1884          * packet size is equal or larger than the specified value (in 8 byte
1885          * units), e.g. using jumbo frames when setting to E1000_ERT_2048
1886          */
1887         if ((adapter->flags & FLAG_HAS_ERT) &&
1888             (adapter->netdev->mtu > ETH_DATA_LEN))
1889                 ew32(ERT, E1000_ERT_2048);
1890
1891         /* Enable Receives */
1892         ew32(RCTL, rctl);
1893 }
1894
1895 /**
1896  *  e1000_update_mc_addr_list - Update Multicast addresses
1897  *  @hw: pointer to the HW structure
1898  *  @mc_addr_list: array of multicast addresses to program
1899  *  @mc_addr_count: number of multicast addresses to program
1900  *  @rar_used_count: the first RAR register free to program
1901  *  @rar_count: total number of supported Receive Address Registers
1902  *
1903  *  Updates the Receive Address Registers and Multicast Table Array.
1904  *  The caller must have a packed mc_addr_list of multicast addresses.
1905  *  The parameter rar_count will usually be hw->mac.rar_entry_count
1906  *  unless there are workarounds that change this.  Currently no func pointer
1907  *  exists and all implementations are handled in the generic version of this
1908  *  function.
1909  **/
1910 static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
1911                                       u32 mc_addr_count, u32 rar_used_count,
1912                                       u32 rar_count)
1913 {
1914         hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count,
1915                                         rar_used_count, rar_count);
1916 }
1917
1918 /**
1919  * e1000_set_multi - Multicast and Promiscuous mode set
1920  * @netdev: network interface device structure
1921  *
1922  * The set_multi entry point is called whenever the multicast address
1923  * list or the network interface flags are updated.  This routine is
1924  * responsible for configuring the hardware for proper multicast,
1925  * promiscuous mode, and all-multi behavior.
1926  **/
1927 static void e1000_set_multi(struct net_device *netdev)
1928 {
1929         struct e1000_adapter *adapter = netdev_priv(netdev);
1930         struct e1000_hw *hw = &adapter->hw;
1931         struct e1000_mac_info *mac = &hw->mac;
1932         struct dev_mc_list *mc_ptr;
1933         u8  *mta_list;
1934         u32 rctl;
1935         int i;
1936
1937         /* Check for Promiscuous and All Multicast modes */
1938
1939         rctl = er32(RCTL);
1940
1941         if (netdev->flags & IFF_PROMISC) {
1942                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1943         } else if (netdev->flags & IFF_ALLMULTI) {
1944                 rctl |= E1000_RCTL_MPE;
1945                 rctl &= ~E1000_RCTL_UPE;
1946         } else {
1947                 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
1948         }
1949
1950         ew32(RCTL, rctl);
1951
1952         if (netdev->mc_count) {
1953                 mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC);
1954                 if (!mta_list)
1955                         return;
1956
1957                 /* prepare a packed array of only addresses. */
1958                 mc_ptr = netdev->mc_list;
1959
1960                 for (i = 0; i < netdev->mc_count; i++) {
1961                         if (!mc_ptr)
1962                                 break;
1963                         memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr,
1964                                ETH_ALEN);
1965                         mc_ptr = mc_ptr->next;
1966                 }
1967
1968                 e1000_update_mc_addr_list(hw, mta_list, i, 1,
1969                                           mac->rar_entry_count);
1970                 kfree(mta_list);
1971         } else {
1972                 /*
1973                  * if we're called from probe, we might not have
1974                  * anything to do here, so clear out the list
1975                  */
1976                 e1000_update_mc_addr_list(hw, NULL, 0, 1, mac->rar_entry_count);
1977         }
1978 }
1979
1980 /**
1981  * e1000_configure - configure the hardware for Rx and Tx
1982  * @adapter: private board structure
1983  **/
1984 static void e1000_configure(struct e1000_adapter *adapter)
1985 {
1986         e1000_set_multi(adapter->netdev);
1987
1988         e1000_restore_vlan(adapter);
1989         e1000_init_manageability(adapter);
1990
1991         e1000_configure_tx(adapter);
1992         e1000_setup_rctl(adapter);
1993         e1000_configure_rx(adapter);
1994         adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));
1995 }
1996
1997 /**
1998  * e1000e_power_up_phy - restore link in case the phy was powered down
1999  * @adapter: address of board private structure
2000  *
2001  * The phy may be powered down to save power and turn off link when the
2002  * driver is unloaded and wake on lan is not enabled (among others)
2003  * *** this routine MUST be followed by a call to e1000e_reset ***
2004  **/
2005 void e1000e_power_up_phy(struct e1000_adapter *adapter)
2006 {
2007         u16 mii_reg = 0;
2008
2009         /* Just clear the power down bit to wake the phy back up */
2010         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
2011                 /*
2012                  * According to the manual, the phy will retain its
2013                  * settings across a power-down/up cycle
2014                  */
2015                 e1e_rphy(&adapter->hw, PHY_CONTROL, &mii_reg);
2016                 mii_reg &= ~MII_CR_POWER_DOWN;
2017                 e1e_wphy(&adapter->hw, PHY_CONTROL, mii_reg);
2018         }
2019
2020         adapter->hw.mac.ops.setup_link(&adapter->hw);
2021 }
2022
2023 /**
2024  * e1000_power_down_phy - Power down the PHY
2025  *
2026  * Power down the PHY so no link is implied when interface is down
2027  * The PHY cannot be powered down is management or WoL is active
2028  */
2029 static void e1000_power_down_phy(struct e1000_adapter *adapter)
2030 {
2031         struct e1000_hw *hw = &adapter->hw;
2032         u16 mii_reg;
2033
2034         /* WoL is enabled */
2035         if (adapter->wol)
2036                 return;
2037
2038         /* non-copper PHY? */
2039         if (adapter->hw.phy.media_type != e1000_media_type_copper)
2040                 return;
2041
2042         /* reset is blocked because of a SoL/IDER session */
2043         if (e1000e_check_mng_mode(hw) || e1000_check_reset_block(hw))
2044                 return;
2045
2046         /* manageability (AMT) is enabled */
2047         if (er32(MANC) & E1000_MANC_SMBUS_EN)
2048                 return;
2049
2050         /* power down the PHY */
2051         e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2052         mii_reg |= MII_CR_POWER_DOWN;
2053         e1e_wphy(hw, PHY_CONTROL, mii_reg);
2054         mdelay(1);
2055 }
2056
2057 /**
2058  * e1000e_reset - bring the hardware into a known good state
2059  *
2060  * This function boots the hardware and enables some settings that
2061  * require a configuration cycle of the hardware - those cannot be
2062  * set/changed during runtime. After reset the device needs to be
2063  * properly configured for Rx, Tx etc.
2064  */
2065 void e1000e_reset(struct e1000_adapter *adapter)
2066 {
2067         struct e1000_mac_info *mac = &adapter->hw.mac;
2068         struct e1000_fc_info *fc = &adapter->hw.fc;
2069         struct e1000_hw *hw = &adapter->hw;
2070         u32 tx_space, min_tx_space, min_rx_space;
2071         u32 pba = adapter->pba;
2072         u16 hwm;
2073
2074         /* reset Packet Buffer Allocation to default */
2075         ew32(PBA, pba);
2076
2077         if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
2078                 /*
2079                  * To maintain wire speed transmits, the Tx FIFO should be
2080                  * large enough to accommodate two full transmit packets,
2081                  * rounded up to the next 1KB and expressed in KB.  Likewise,
2082                  * the Rx FIFO should be large enough to accommodate at least
2083                  * one full receive packet and is similarly rounded up and
2084                  * expressed in KB.
2085                  */
2086                 pba = er32(PBA);
2087                 /* upper 16 bits has Tx packet buffer allocation size in KB */
2088                 tx_space = pba >> 16;
2089                 /* lower 16 bits has Rx packet buffer allocation size in KB */
2090                 pba &= 0xffff;
2091                 /*
2092                  * the Tx fifo also stores 16 bytes of information about the tx
2093                  * but don't include ethernet FCS because hardware appends it
2094                  */
2095                 min_tx_space = (adapter->max_frame_size +
2096                                 sizeof(struct e1000_tx_desc) -
2097                                 ETH_FCS_LEN) * 2;
2098                 min_tx_space = ALIGN(min_tx_space, 1024);
2099                 min_tx_space >>= 10;
2100                 /* software strips receive CRC, so leave room for it */
2101                 min_rx_space = adapter->max_frame_size;
2102                 min_rx_space = ALIGN(min_rx_space, 1024);
2103                 min_rx_space >>= 10;
2104
2105                 /*
2106                  * If current Tx allocation is less than the min Tx FIFO size,
2107                  * and the min Tx FIFO size is less than the current Rx FIFO
2108                  * allocation, take space away from current Rx allocation
2109                  */
2110                 if ((tx_space < min_tx_space) &&
2111                     ((min_tx_space - tx_space) < pba)) {
2112                         pba -= min_tx_space - tx_space;
2113
2114                         /*
2115                          * if short on Rx space, Rx wins and must trump tx
2116                          * adjustment or use Early Receive if available
2117                          */
2118                         if ((pba < min_rx_space) &&
2119                             (!(adapter->flags & FLAG_HAS_ERT)))
2120                                 /* ERT enabled in e1000_configure_rx */
2121                                 pba = min_rx_space;
2122                 }
2123
2124                 ew32(PBA, pba);
2125         }
2126
2127
2128         /*
2129          * flow control settings
2130          *
2131          * The high water mark must be low enough to fit one full frame
2132          * (or the size used for early receive) above it in the Rx FIFO.
2133          * Set it to the lower of:
2134          * - 90% of the Rx FIFO size, and
2135          * - the full Rx FIFO size minus the early receive size (for parts
2136          *   with ERT support assuming ERT set to E1000_ERT_2048), or
2137          * - the full Rx FIFO size minus one full frame
2138          */
2139         if (adapter->flags & FLAG_HAS_ERT)
2140                 hwm = min(((pba << 10) * 9 / 10),
2141                           ((pba << 10) - (E1000_ERT_2048 << 3)));
2142         else
2143                 hwm = min(((pba << 10) * 9 / 10),
2144                           ((pba << 10) - adapter->max_frame_size));
2145
2146         fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
2147         fc->low_water = fc->high_water - 8;
2148
2149         if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
2150                 fc->pause_time = 0xFFFF;
2151         else
2152                 fc->pause_time = E1000_FC_PAUSE_TIME;
2153         fc->send_xon = 1;
2154         fc->type = fc->original_type;
2155
2156         /* Allow time for pending master requests to run */
2157         mac->ops.reset_hw(hw);
2158         ew32(WUC, 0);
2159
2160         if (mac->ops.init_hw(hw))
2161                 ndev_err(adapter->netdev, "Hardware Error\n");
2162
2163         e1000_update_mng_vlan(adapter);
2164
2165         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2166         ew32(VET, ETH_P_8021Q);
2167
2168         e1000e_reset_adaptive(hw);
2169         e1000_get_phy_info(hw);
2170
2171         if (!(adapter->flags & FLAG_SMART_POWER_DOWN)) {
2172                 u16 phy_data = 0;
2173                 /*
2174                  * speed up time to link by disabling smart power down, ignore
2175                  * the return value of this function because there is nothing
2176                  * different we would do if it failed
2177                  */
2178                 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
2179                 phy_data &= ~IGP02E1000_PM_SPD;
2180                 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
2181         }
2182 }
2183
2184 int e1000e_up(struct e1000_adapter *adapter)
2185 {
2186         struct e1000_hw *hw = &adapter->hw;
2187
2188         /* hardware has been reset, we need to reload some things */
2189         e1000_configure(adapter);
2190
2191         clear_bit(__E1000_DOWN, &adapter->state);
2192
2193         napi_enable(&adapter->napi);
2194         e1000_irq_enable(adapter);
2195
2196         /* fire a link change interrupt to start the watchdog */
2197         ew32(ICS, E1000_ICS_LSC);
2198         return 0;
2199 }
2200
2201 void e1000e_down(struct e1000_adapter *adapter)
2202 {
2203         struct net_device *netdev = adapter->netdev;
2204         struct e1000_hw *hw = &adapter->hw;
2205         u32 tctl, rctl;
2206
2207         /*
2208          * signal that we're down so the interrupt handler does not
2209          * reschedule our watchdog timer
2210          */
2211         set_bit(__E1000_DOWN, &adapter->state);
2212
2213         /* disable receives in the hardware */
2214         rctl = er32(RCTL);
2215         ew32(RCTL, rctl & ~E1000_RCTL_EN);
2216         /* flush and sleep below */
2217
2218         netif_stop_queue(netdev);
2219
2220         /* disable transmits in the hardware */
2221         tctl = er32(TCTL);
2222         tctl &= ~E1000_TCTL_EN;
2223         ew32(TCTL, tctl);
2224         /* flush both disables and wait for them to finish */
2225         e1e_flush();
2226         msleep(10);
2227
2228         napi_disable(&adapter->napi);
2229         e1000_irq_disable(adapter);
2230
2231         del_timer_sync(&adapter->watchdog_timer);
2232         del_timer_sync(&adapter->phy_info_timer);
2233
2234         netdev->tx_queue_len = adapter->tx_queue_len;
2235         netif_carrier_off(netdev);
2236         adapter->link_speed = 0;
2237         adapter->link_duplex = 0;
2238
2239         e1000e_reset(adapter);
2240         e1000_clean_tx_ring(adapter);
2241         e1000_clean_rx_ring(adapter);
2242
2243         /*
2244          * TODO: for power management, we could drop the link and
2245          * pci_disable_device here.
2246          */
2247 }
2248
2249 void e1000e_reinit_locked(struct e1000_adapter *adapter)
2250 {
2251         might_sleep();
2252         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
2253                 msleep(1);
2254         e1000e_down(adapter);
2255         e1000e_up(adapter);
2256         clear_bit(__E1000_RESETTING, &adapter->state);
2257 }
2258
2259 /**
2260  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
2261  * @adapter: board private structure to initialize
2262  *
2263  * e1000_sw_init initializes the Adapter private data structure.
2264  * Fields are initialized based on PCI device information and
2265  * OS network device settings (MTU size).
2266  **/
2267 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
2268 {
2269         struct net_device *netdev = adapter->netdev;
2270
2271         adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
2272         adapter->rx_ps_bsize0 = 128;
2273         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2274         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2275
2276         adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2277         if (!adapter->tx_ring)
2278                 goto err;
2279
2280         adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2281         if (!adapter->rx_ring)
2282                 goto err;
2283
2284         spin_lock_init(&adapter->tx_queue_lock);
2285
2286         /* Explicitly disable IRQ since the NIC can be in any state. */
2287         e1000_irq_disable(adapter);
2288
2289         spin_lock_init(&adapter->stats_lock);
2290
2291         set_bit(__E1000_DOWN, &adapter->state);
2292         return 0;
2293
2294 err:
2295         ndev_err(netdev, "Unable to allocate memory for queues\n");
2296         kfree(adapter->rx_ring);
2297         kfree(adapter->tx_ring);
2298         return -ENOMEM;
2299 }
2300
2301 /**
2302  * e1000_open - Called when a network interface is made active
2303  * @netdev: network interface device structure
2304  *
2305  * Returns 0 on success, negative value on failure
2306  *
2307  * The open entry point is called when a network interface is made
2308  * active by the system (IFF_UP).  At this point all resources needed
2309  * for transmit and receive operations are allocated, the interrupt
2310  * handler is registered with the OS, the watchdog timer is started,
2311  * and the stack is notified that the interface is ready.
2312  **/
2313 static int e1000_open(struct net_device *netdev)
2314 {
2315         struct e1000_adapter *adapter = netdev_priv(netdev);
2316         struct e1000_hw *hw = &adapter->hw;
2317         int err;
2318
2319         /* disallow open during test */
2320         if (test_bit(__E1000_TESTING, &adapter->state))
2321                 return -EBUSY;
2322
2323         /* allocate transmit descriptors */
2324         err = e1000e_setup_tx_resources(adapter);
2325         if (err)
2326                 goto err_setup_tx;
2327
2328         /* allocate receive descriptors */
2329         err = e1000e_setup_rx_resources(adapter);
2330         if (err)
2331                 goto err_setup_rx;
2332
2333         e1000e_power_up_phy(adapter);
2334
2335         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2336         if ((adapter->hw.mng_cookie.status &
2337              E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
2338                 e1000_update_mng_vlan(adapter);
2339
2340         /*
2341          * If AMT is enabled, let the firmware know that the network
2342          * interface is now open
2343          */
2344         if ((adapter->flags & FLAG_HAS_AMT) &&
2345             e1000e_check_mng_mode(&adapter->hw))
2346                 e1000_get_hw_control(adapter);
2347
2348         /*
2349          * before we allocate an interrupt, we must be ready to handle it.
2350          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2351          * as soon as we call pci_request_irq, so we have to setup our
2352          * clean_rx handler before we do so.
2353          */
2354         e1000_configure(adapter);
2355
2356         err = e1000_request_irq(adapter);
2357         if (err)
2358                 goto err_req_irq;
2359
2360         /* From here on the code is the same as e1000e_up() */
2361         clear_bit(__E1000_DOWN, &adapter->state);
2362
2363         napi_enable(&adapter->napi);
2364
2365         e1000_irq_enable(adapter);
2366
2367         /* fire a link status change interrupt to start the watchdog */
2368         ew32(ICS, E1000_ICS_LSC);
2369
2370         return 0;
2371
2372 err_req_irq:
2373         e1000_release_hw_control(adapter);
2374         e1000_power_down_phy(adapter);
2375         e1000e_free_rx_resources(adapter);
2376 err_setup_rx:
2377         e1000e_free_tx_resources(adapter);
2378 err_setup_tx:
2379         e1000e_reset(adapter);
2380
2381         return err;
2382 }
2383
2384 /**
2385  * e1000_close - Disables a network interface
2386  * @netdev: network interface device structure
2387  *
2388  * Returns 0, this is not allowed to fail
2389  *
2390  * The close entry point is called when an interface is de-activated
2391  * by the OS.  The hardware is still under the drivers control, but
2392  * needs to be disabled.  A global MAC reset is issued to stop the
2393  * hardware, and all transmit and receive resources are freed.
2394  **/
2395 static int e1000_close(struct net_device *netdev)
2396 {
2397         struct e1000_adapter *adapter = netdev_priv(netdev);
2398
2399         WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
2400         e1000e_down(adapter);
2401         e1000_power_down_phy(adapter);
2402         e1000_free_irq(adapter);
2403
2404         e1000e_free_tx_resources(adapter);
2405         e1000e_free_rx_resources(adapter);
2406
2407         /*
2408          * kill manageability vlan ID if supported, but not if a vlan with
2409          * the same ID is registered on the host OS (let 8021q kill it)
2410          */
2411         if ((adapter->hw.mng_cookie.status &
2412                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2413              !(adapter->vlgrp &&
2414                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
2415                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
2416
2417         /*
2418          * If AMT is enabled, let the firmware know that the network
2419          * interface is now closed
2420          */
2421         if ((adapter->flags & FLAG_HAS_AMT) &&
2422             e1000e_check_mng_mode(&adapter->hw))
2423                 e1000_release_hw_control(adapter);
2424
2425         return 0;
2426 }
2427 /**
2428  * e1000_set_mac - Change the Ethernet Address of the NIC
2429  * @netdev: network interface device structure
2430  * @p: pointer to an address structure
2431  *
2432  * Returns 0 on success, negative on failure
2433  **/
2434 static int e1000_set_mac(struct net_device *netdev, void *p)
2435 {
2436         struct e1000_adapter *adapter = netdev_priv(netdev);
2437         struct sockaddr *addr = p;
2438
2439         if (!is_valid_ether_addr(addr->sa_data))
2440                 return -EADDRNOTAVAIL;
2441
2442         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2443         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
2444
2445         e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2446
2447         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
2448                 /* activate the work around */
2449                 e1000e_set_laa_state_82571(&adapter->hw, 1);
2450
2451                 /*
2452                  * Hold a copy of the LAA in RAR[14] This is done so that
2453                  * between the time RAR[0] gets clobbered  and the time it
2454                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2455                  * of the RARs and no incoming packets directed to this port
2456                  * are dropped. Eventually the LAA will be in RAR[0] and
2457                  * RAR[14]
2458                  */
2459                 e1000e_rar_set(&adapter->hw,
2460                               adapter->hw.mac.addr,
2461                               adapter->hw.mac.rar_entry_count - 1);
2462         }
2463
2464         return 0;
2465 }
2466
2467 /*
2468  * Need to wait a few seconds after link up to get diagnostic information from
2469  * the phy
2470  */
2471 static void e1000_update_phy_info(unsigned long data)
2472 {
2473         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2474         e1000_get_phy_info(&adapter->hw);
2475 }
2476
2477 /**
2478  * e1000e_update_stats - Update the board statistics counters
2479  * @adapter: board private structure
2480  **/
2481 void e1000e_update_stats(struct e1000_adapter *adapter)
2482 {
2483         struct e1000_hw *hw = &adapter->hw;
2484         struct pci_dev *pdev = adapter->pdev;
2485         unsigned long irq_flags;
2486         u16 phy_tmp;
2487
2488 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2489
2490         /*
2491          * Prevent stats update while adapter is being reset, or if the pci
2492          * connection is down.
2493          */
2494         if (adapter->link_speed == 0)
2495                 return;
2496         if (pci_channel_offline(pdev))
2497                 return;
2498
2499         spin_lock_irqsave(&adapter->stats_lock, irq_flags);
2500
2501         /*
2502          * these counters are modified from e1000_adjust_tbi_stats,
2503          * called from the interrupt context, so they must only
2504          * be written while holding adapter->stats_lock
2505          */
2506
2507         adapter->stats.crcerrs += er32(CRCERRS);
2508         adapter->stats.gprc += er32(GPRC);
2509         adapter->stats.gorcl += er32(GORCL);
2510         adapter->stats.gorch += er32(GORCH);
2511         adapter->stats.bprc += er32(BPRC);
2512         adapter->stats.mprc += er32(MPRC);
2513         adapter->stats.roc += er32(ROC);
2514
2515         if (adapter->flags & FLAG_HAS_STATS_PTC_PRC) {
2516                 adapter->stats.prc64 += er32(PRC64);
2517                 adapter->stats.prc127 += er32(PRC127);
2518                 adapter->stats.prc255 += er32(PRC255);
2519                 adapter->stats.prc511 += er32(PRC511);
2520                 adapter->stats.prc1023 += er32(PRC1023);
2521                 adapter->stats.prc1522 += er32(PRC1522);
2522                 adapter->stats.symerrs += er32(SYMERRS);
2523                 adapter->stats.sec += er32(SEC);
2524         }
2525
2526         adapter->stats.mpc += er32(MPC);
2527         adapter->stats.scc += er32(SCC);
2528         adapter->stats.ecol += er32(ECOL);
2529         adapter->stats.mcc += er32(MCC);
2530         adapter->stats.latecol += er32(LATECOL);
2531         adapter->stats.dc += er32(DC);
2532         adapter->stats.rlec += er32(RLEC);
2533         adapter->stats.xonrxc += er32(XONRXC);
2534         adapter->stats.xontxc += er32(XONTXC);
2535         adapter->stats.xoffrxc += er32(XOFFRXC);
2536         adapter->stats.xofftxc += er32(XOFFTXC);
2537         adapter->stats.fcruc += er32(FCRUC);
2538         adapter->stats.gptc += er32(GPTC);
2539         adapter->stats.gotcl += er32(GOTCL);
2540         adapter->stats.gotch += er32(GOTCH);
2541         adapter->stats.rnbc += er32(RNBC);
2542         adapter->stats.ruc += er32(RUC);
2543         adapter->stats.rfc += er32(RFC);
2544         adapter->stats.rjc += er32(RJC);
2545         adapter->stats.torl += er32(TORL);
2546         adapter->stats.torh += er32(TORH);
2547         adapter->stats.totl += er32(TOTL);
2548         adapter->stats.toth += er32(TOTH);
2549         adapter->stats.tpr += er32(TPR);
2550
2551         if (adapter->flags & FLAG_HAS_STATS_PTC_PRC) {
2552                 adapter->stats.ptc64 += er32(PTC64);
2553                 adapter->stats.ptc127 += er32(PTC127);
2554                 adapter->stats.ptc255 += er32(PTC255);
2555                 adapter->stats.ptc511 += er32(PTC511);
2556                 adapter->stats.ptc1023 += er32(PTC1023);
2557                 adapter->stats.ptc1522 += er32(PTC1522);
2558         }
2559
2560         adapter->stats.mptc += er32(MPTC);
2561         adapter->stats.bptc += er32(BPTC);
2562
2563         /* used for adaptive IFS */
2564
2565         hw->mac.tx_packet_delta = er32(TPT);
2566         adapter->stats.tpt += hw->mac.tx_packet_delta;
2567         hw->mac.collision_delta = er32(COLC);
2568         adapter->stats.colc += hw->mac.collision_delta;
2569
2570         adapter->stats.algnerrc += er32(ALGNERRC);
2571         adapter->stats.rxerrc += er32(RXERRC);
2572         adapter->stats.tncrs += er32(TNCRS);
2573         adapter->stats.cexterr += er32(CEXTERR);
2574         adapter->stats.tsctc += er32(TSCTC);
2575         adapter->stats.tsctfc += er32(TSCTFC);
2576
2577         adapter->stats.iac += er32(IAC);
2578
2579         if (adapter->flags & FLAG_HAS_STATS_ICR_ICT) {
2580                 adapter->stats.icrxoc += er32(ICRXOC);
2581                 adapter->stats.icrxptc += er32(ICRXPTC);
2582                 adapter->stats.icrxatc += er32(ICRXATC);
2583                 adapter->stats.ictxptc += er32(ICTXPTC);
2584                 adapter->stats.ictxatc += er32(ICTXATC);
2585                 adapter->stats.ictxqec += er32(ICTXQEC);
2586                 adapter->stats.ictxqmtc += er32(ICTXQMTC);
2587                 adapter->stats.icrxdmtc += er32(ICRXDMTC);
2588         }
2589
2590         /* Fill out the OS statistics structure */
2591         adapter->net_stats.multicast = adapter->stats.mprc;
2592         adapter->net_stats.collisions = adapter->stats.colc;
2593
2594         /* Rx Errors */
2595
2596         /*
2597          * RLEC on some newer hardware can be incorrect so build
2598          * our own version based on RUC and ROC
2599          */
2600         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
2601                 adapter->stats.crcerrs + adapter->stats.algnerrc +
2602                 adapter->stats.ruc + adapter->stats.roc +
2603                 adapter->stats.cexterr;
2604         adapter->net_stats.rx_length_errors = adapter->stats.ruc +
2605                                               adapter->stats.roc;
2606         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
2607         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
2608         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
2609
2610         /* Tx Errors */
2611         adapter->net_stats.tx_errors = adapter->stats.ecol +
2612                                        adapter->stats.latecol;
2613         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
2614         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
2615         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
2616
2617         /* Tx Dropped needs to be maintained elsewhere */
2618
2619         /* Phy Stats */
2620         if (hw->phy.media_type == e1000_media_type_copper) {
2621                 if ((adapter->link_speed == SPEED_1000) &&
2622                    (!e1e_rphy(hw, PHY_1000T_STATUS, &phy_tmp))) {
2623                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
2624                         adapter->phy_stats.idle_errors += phy_tmp;
2625                 }
2626         }
2627
2628         /* Management Stats */
2629         adapter->stats.mgptc += er32(MGTPTC);
2630         adapter->stats.mgprc += er32(MGTPRC);
2631         adapter->stats.mgpdc += er32(MGTPDC);
2632
2633         spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
2634 }
2635
2636 static void e1000_print_link_info(struct e1000_adapter *adapter)
2637 {
2638         struct e1000_hw *hw = &adapter->hw;
2639         struct net_device *netdev = adapter->netdev;
2640         u32 ctrl = er32(CTRL);
2641
2642         ndev_info(netdev,
2643                 "Link is Up %d Mbps %s, Flow Control: %s\n",
2644                 adapter->link_speed,
2645                 (adapter->link_duplex == FULL_DUPLEX) ?
2646                                 "Full Duplex" : "Half Duplex",
2647                 ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
2648                                 "RX/TX" :
2649                 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
2650                 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
2651 }
2652
2653 static bool e1000_has_link(struct e1000_adapter *adapter)
2654 {
2655         struct e1000_hw *hw = &adapter->hw;
2656         bool link_active = 0;
2657         s32 ret_val = 0;
2658
2659         /*
2660          * get_link_status is set on LSC (link status) interrupt or
2661          * Rx sequence error interrupt.  get_link_status will stay
2662          * false until the check_for_link establishes link
2663          * for copper adapters ONLY
2664          */
2665         switch (hw->phy.media_type) {
2666         case e1000_media_type_copper:
2667                 if (hw->mac.get_link_status) {
2668                         ret_val = hw->mac.ops.check_for_link(hw);
2669                         link_active = !hw->mac.get_link_status;
2670                 } else {
2671                         link_active = 1;
2672                 }
2673                 break;
2674         case e1000_media_type_fiber:
2675                 ret_val = hw->mac.ops.check_for_link(hw);
2676                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2677                 break;
2678         case e1000_media_type_internal_serdes:
2679                 ret_val = hw->mac.ops.check_for_link(hw);
2680                 link_active = adapter->hw.mac.serdes_has_link;
2681                 break;
2682         default:
2683         case e1000_media_type_unknown:
2684                 break;
2685         }
2686
2687         if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
2688             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2689                 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
2690                 ndev_info(adapter->netdev,
2691                           "Gigabit has been disabled, downgrading speed\n");
2692         }
2693
2694         return link_active;
2695 }
2696
2697 static void e1000e_enable_receives(struct e1000_adapter *adapter)
2698 {
2699         /* make sure the receive unit is started */
2700         if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
2701             (adapter->flags & FLAG_RX_RESTART_NOW)) {
2702                 struct e1000_hw *hw = &adapter->hw;
2703                 u32 rctl = er32(RCTL);
2704                 ew32(RCTL, rctl | E1000_RCTL_EN);
2705                 adapter->flags &= ~FLAG_RX_RESTART_NOW;
2706         }
2707 }
2708
2709 /**
2710  * e1000_watchdog - Timer Call-back
2711  * @data: pointer to adapter cast into an unsigned long
2712  **/
2713 static void e1000_watchdog(unsigned long data)
2714 {
2715         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2716
2717         /* Do the rest outside of interrupt context */
2718         schedule_work(&adapter->watchdog_task);
2719
2720         /* TODO: make this use queue_delayed_work() */
2721 }
2722
2723 static void e1000_watchdog_task(struct work_struct *work)
2724 {
2725         struct e1000_adapter *adapter = container_of(work,
2726                                         struct e1000_adapter, watchdog_task);
2727         struct net_device *netdev = adapter->netdev;
2728         struct e1000_mac_info *mac = &adapter->hw.mac;
2729         struct e1000_ring *tx_ring = adapter->tx_ring;
2730         struct e1000_hw *hw = &adapter->hw;
2731         u32 link, tctl;
2732         int tx_pending = 0;
2733
2734         link = e1000_has_link(adapter);
2735         if ((netif_carrier_ok(netdev)) && link) {
2736                 e1000e_enable_receives(adapter);
2737                 goto link_up;
2738         }
2739
2740         if ((e1000e_enable_tx_pkt_filtering(hw)) &&
2741             (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
2742                 e1000_update_mng_vlan(adapter);
2743
2744         if (link) {
2745                 if (!netif_carrier_ok(netdev)) {
2746                         bool txb2b = 1;
2747                         /* update snapshot of PHY registers on LSC */
2748                         mac->ops.get_link_up_info(&adapter->hw,
2749                                                    &adapter->link_speed,
2750                                                    &adapter->link_duplex);
2751                         e1000_print_link_info(adapter);
2752                         /*
2753                          * tweak tx_queue_len according to speed/duplex
2754                          * and adjust the timeout factor
2755                          */
2756                         netdev->tx_queue_len = adapter->tx_queue_len;
2757                         adapter->tx_timeout_factor = 1;
2758                         switch (adapter->link_speed) {
2759                         case SPEED_10:
2760                                 txb2b = 0;
2761                                 netdev->tx_queue_len = 10;
2762                                 adapter->tx_timeout_factor = 14;
2763                                 break;
2764                         case SPEED_100:
2765                                 txb2b = 0;
2766                                 netdev->tx_queue_len = 100;
2767                                 /* maybe add some timeout factor ? */
2768                                 break;
2769                         }
2770
2771                         /*
2772                          * workaround: re-program speed mode bit after
2773                          * link-up event
2774                          */
2775                         if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
2776                             !txb2b) {
2777                                 u32 tarc0;
2778                                 tarc0 = er32(TARC(0));
2779                                 tarc0 &= ~SPEED_MODE_BIT;
2780                                 ew32(TARC(0), tarc0);
2781                         }
2782
2783                         /*
2784                          * disable TSO for pcie and 10/100 speeds, to avoid
2785                          * some hardware issues
2786                          */
2787                         if (!(adapter->flags & FLAG_TSO_FORCE)) {
2788                                 switch (adapter->link_speed) {
2789                                 case SPEED_10:
2790                                 case SPEED_100:
2791                                         ndev_info(netdev,
2792                                         "10/100 speed: disabling TSO\n");
2793                                         netdev->features &= ~NETIF_F_TSO;
2794                                         netdev->features &= ~NETIF_F_TSO6;
2795                                         break;
2796                                 case SPEED_1000:
2797                                         netdev->features |= NETIF_F_TSO;
2798                                         netdev->features |= NETIF_F_TSO6;
2799                                         break;
2800                                 default:
2801                                         /* oops */
2802                                         break;
2803                                 }
2804                         }
2805
2806                         /*
2807                          * enable transmits in the hardware, need to do this
2808                          * after setting TARC(0)
2809                          */
2810                         tctl = er32(TCTL);
2811                         tctl |= E1000_TCTL_EN;
2812                         ew32(TCTL, tctl);
2813
2814                         netif_carrier_on(netdev);
2815                         netif_wake_queue(netdev);
2816
2817                         if (!test_bit(__E1000_DOWN, &adapter->state))
2818                                 mod_timer(&adapter->phy_info_timer,
2819                                           round_jiffies(jiffies + 2 * HZ));
2820                 }
2821         } else {
2822                 if (netif_carrier_ok(netdev)) {
2823                         adapter->link_speed = 0;
2824                         adapter->link_duplex = 0;
2825                         ndev_info(netdev, "Link is Down\n");
2826                         netif_carrier_off(netdev);
2827                         netif_stop_queue(netdev);
2828                         if (!test_bit(__E1000_DOWN, &adapter->state))
2829                                 mod_timer(&adapter->phy_info_timer,
2830                                           round_jiffies(jiffies + 2 * HZ));
2831
2832                         if (adapter->flags & FLAG_RX_NEEDS_RESTART)
2833                                 schedule_work(&adapter->reset_task);
2834                 }
2835         }
2836
2837 link_up:
2838         e1000e_update_stats(adapter);
2839
2840         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2841         adapter->tpt_old = adapter->stats.tpt;
2842         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
2843         adapter->colc_old = adapter->stats.colc;
2844
2845         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2846         adapter->gorcl_old = adapter->stats.gorcl;
2847         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2848         adapter->gotcl_old = adapter->stats.gotcl;
2849
2850         e1000e_update_adaptive(&adapter->hw);
2851
2852         if (!netif_carrier_ok(netdev)) {
2853                 tx_pending = (e1000_desc_unused(tx_ring) + 1 <
2854                                tx_ring->count);
2855                 if (tx_pending) {
2856                         /*
2857                          * We've lost link, so the controller stops DMA,
2858                          * but we've got queued Tx work that's never going
2859                          * to get done, so reset controller to flush Tx.
2860                          * (Do the reset outside of interrupt context).
2861                          */
2862                         adapter->tx_timeout_count++;
2863                         schedule_work(&adapter->reset_task);
2864                 }
2865         }
2866
2867         /* Cause software interrupt to ensure Rx ring is cleaned */
2868         ew32(ICS, E1000_ICS_RXDMT0);
2869
2870         /* Force detection of hung controller every watchdog period */
2871         adapter->detect_tx_hung = 1;
2872
2873         /*
2874          * With 82571 controllers, LAA may be overwritten due to controller
2875          * reset from the other port. Set the appropriate LAA in RAR[0]
2876          */
2877         if (e1000e_get_laa_state_82571(hw))
2878                 e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
2879
2880         /* Reset the timer */
2881         if (!test_bit(__E1000_DOWN, &adapter->state))
2882                 mod_timer(&adapter->watchdog_timer,
2883                           round_jiffies(jiffies + 2 * HZ));
2884 }
2885
2886 #define E1000_TX_FLAGS_CSUM             0x00000001
2887 #define E1000_TX_FLAGS_VLAN             0x00000002
2888 #define E1000_TX_FLAGS_TSO              0x00000004
2889 #define E1000_TX_FLAGS_IPV4             0x00000008
2890 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2891 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2892
2893 static int e1000_tso(struct e1000_adapter *adapter,
2894                      struct sk_buff *skb)
2895 {
2896         struct e1000_ring *tx_ring = adapter->tx_ring;
2897         struct e1000_context_desc *context_desc;
2898         struct e1000_buffer *buffer_info;
2899         unsigned int i;
2900         u32 cmd_length = 0;
2901         u16 ipcse = 0, tucse, mss;
2902         u8 ipcss, ipcso, tucss, tucso, hdr_len;
2903         int err;
2904
2905         if (skb_is_gso(skb)) {
2906                 if (skb_header_cloned(skb)) {
2907                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2908                         if (err)
2909                                 return err;
2910                 }
2911
2912                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2913                 mss = skb_shinfo(skb)->gso_size;
2914                 if (skb->protocol == htons(ETH_P_IP)) {
2915                         struct iphdr *iph = ip_hdr(skb);
2916                         iph->tot_len = 0;
2917                         iph->check = 0;
2918                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2919                                                                  iph->daddr, 0,
2920                                                                  IPPROTO_TCP,
2921                                                                  0);
2922                         cmd_length = E1000_TXD_CMD_IP;
2923                         ipcse = skb_transport_offset(skb) - 1;
2924                 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2925                         ipv6_hdr(skb)->payload_len = 0;
2926                         tcp_hdr(skb)->check =
2927                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2928                                                  &ipv6_hdr(skb)->daddr,
2929                                                  0, IPPROTO_TCP, 0);
2930                         ipcse = 0;
2931                 }
2932                 ipcss = skb_network_offset(skb);
2933                 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2934                 tucss = skb_transport_offset(skb);
2935                 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2936                 tucse = 0;
2937
2938                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2939                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2940
2941                 i = tx_ring->next_to_use;
2942                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2943                 buffer_info = &tx_ring->buffer_info[i];
2944
2945                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2946                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2947                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2948                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2949                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2950                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2951                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2952                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2953                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2954
2955                 buffer_info->time_stamp = jiffies;
2956                 buffer_info->next_to_watch = i;
2957
2958                 i++;
2959                 if (i == tx_ring->count)
2960                         i = 0;
2961                 tx_ring->next_to_use = i;
2962
2963                 return 1;
2964         }
2965
2966         return 0;
2967 }
2968
2969 static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
2970 {
2971         struct e1000_ring *tx_ring = adapter->tx_ring;
2972         struct e1000_context_desc *context_desc;
2973         struct e1000_buffer *buffer_info;
2974         unsigned int i;
2975         u8 css;
2976
2977         if (skb->ip_summed == CHECKSUM_PARTIAL) {
2978                 css = skb_transport_offset(skb);
2979
2980                 i = tx_ring->next_to_use;
2981                 buffer_info = &tx_ring->buffer_info[i];
2982                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2983
2984                 context_desc->lower_setup.ip_config = 0;
2985                 context_desc->upper_setup.tcp_fields.tucss = css;
2986                 context_desc->upper_setup.tcp_fields.tucso =
2987                                         css + skb->csum_offset;
2988                 context_desc->upper_setup.tcp_fields.tucse = 0;
2989                 context_desc->tcp_seg_setup.data = 0;
2990                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2991
2992                 buffer_info->time_stamp = jiffies;
2993                 buffer_info->next_to_watch = i;
2994
2995                 i++;
2996                 if (i == tx_ring->count)
2997                         i = 0;
2998                 tx_ring->next_to_use = i;
2999
3000                 return 1;
3001         }
3002
3003         return 0;
3004 }
3005
3006 #define E1000_MAX_PER_TXD       8192
3007 #define E1000_MAX_TXD_PWR       12
3008
3009 static int e1000_tx_map(struct e1000_adapter *adapter,
3010                         struct sk_buff *skb, unsigned int first,
3011                         unsigned int max_per_txd, unsigned int nr_frags,
3012                         unsigned int mss)
3013 {
3014         struct e1000_ring *tx_ring = adapter->tx_ring;
3015         struct e1000_buffer *buffer_info;
3016         unsigned int len = skb->len - skb->data_len;
3017         unsigned int offset = 0, size, count = 0, i;
3018         unsigned int f;
3019
3020         i = tx_ring->next_to_use;
3021
3022         while (len) {
3023                 buffer_info = &tx_ring->buffer_info[i];
3024                 size = min(len, max_per_txd);
3025
3026                 /* Workaround for premature desc write-backs
3027                  * in TSO mode.  Append 4-byte sentinel desc */
3028                 if (mss && !nr_frags && size == len && size > 8)
3029                         size -= 4;
3030
3031                 buffer_info->length = size;
3032                 /* set time_stamp *before* dma to help avoid a possible race */
3033                 buffer_info->time_stamp = jiffies;
3034                 buffer_info->dma =
3035                         pci_map_single(adapter->pdev,
3036                                 skb->data + offset,
3037                                 size,
3038                                 PCI_DMA_TODEVICE);
3039                 if (pci_dma_mapping_error(buffer_info->dma)) {
3040                         dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
3041                         adapter->tx_dma_failed++;
3042                         return -1;
3043                 }
3044                 buffer_info->next_to_watch = i;
3045
3046                 len -= size;
3047                 offset += size;
3048                 count++;
3049                 i++;
3050                 if (i == tx_ring->count)
3051                         i = 0;
3052         }
3053
3054         for (f = 0; f < nr_frags; f++) {
3055                 struct skb_frag_struct *frag;
3056
3057                 frag = &skb_shinfo(skb)->frags[f];
3058                 len = frag->size;
3059                 offset = frag->page_offset;
3060
3061                 while (len) {
3062                         buffer_info = &tx_ring->buffer_info[i];
3063                         size = min(len, max_per_txd);
3064                         /* Workaround for premature desc write-backs
3065                          * in TSO mode.  Append 4-byte sentinel desc */
3066                         if (mss && f == (nr_frags-1) && size == len && size > 8)
3067                                 size -= 4;
3068
3069                         buffer_info->length = size;
3070                         buffer_info->time_stamp = jiffies;
3071                         buffer_info->dma =
3072                                 pci_map_page(adapter->pdev,
3073                                         frag->page,
3074                                         offset,
3075                                         size,
3076                                         PCI_DMA_TODEVICE);
3077                         if (pci_dma_mapping_error(buffer_info->dma)) {
3078                                 dev_err(&adapter->pdev->dev,
3079                                         "TX DMA page map failed\n");
3080                                 adapter->tx_dma_failed++;
3081                                 return -1;
3082                         }
3083
3084                         buffer_info->next_to_watch = i;
3085
3086                         len -= size;
3087                         offset += size;
3088                         count++;
3089
3090                         i++;
3091                         if (i == tx_ring->count)
3092                                 i = 0;
3093                 }
3094         }
3095
3096         if (i == 0)
3097                 i = tx_ring->count - 1;
3098         else
3099                 i--;
3100
3101         tx_ring->buffer_info[i].skb = skb;
3102         tx_ring->buffer_info[first].next_to_watch = i;
3103
3104         return count;
3105 }
3106
3107 static void e1000_tx_queue(struct e1000_adapter *adapter,
3108                            int tx_flags, int count)
3109 {
3110         struct e1000_ring *tx_ring = adapter->tx_ring;
3111         struct e1000_tx_desc *tx_desc = NULL;
3112         struct e1000_buffer *buffer_info;
3113         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3114         unsigned int i;
3115
3116         if (tx_flags & E1000_TX_FLAGS_TSO) {
3117                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3118                              E1000_TXD_CMD_TSE;
3119                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3120
3121                 if (tx_flags & E1000_TX_FLAGS_IPV4)
3122                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3123         }
3124
3125         if (tx_flags & E1000_TX_FLAGS_CSUM) {
3126                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3127                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3128         }
3129
3130         if (tx_flags & E1000_TX_FLAGS_VLAN) {
3131                 txd_lower |= E1000_TXD_CMD_VLE;
3132                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3133         }
3134
3135         i = tx_ring->next_to_use;
3136
3137         while (count--) {
3138                 buffer_info = &tx_ring->buffer_info[i];
3139                 tx_desc = E1000_TX_DESC(*tx_ring, i);
3140                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3141                 tx_desc->lower.data =
3142                         cpu_to_le32(txd_lower | buffer_info->length);
3143                 tx_desc->upper.data = cpu_to_le32(txd_upper);
3144
3145                 i++;
3146                 if (i == tx_ring->count)
3147                         i = 0;
3148         }
3149
3150         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3151
3152         /*
3153          * Force memory writes to complete before letting h/w
3154          * know there are new descriptors to fetch.  (Only
3155          * applicable for weak-ordered memory model archs,
3156          * such as IA-64).
3157          */
3158         wmb();
3159
3160         tx_ring->next_to_use = i;
3161         writel(i, adapter->hw.hw_addr + tx_ring->tail);
3162         /*
3163          * we need this if more than one processor can write to our tail
3164          * at a time, it synchronizes IO on IA64/Altix systems
3165          */
3166         mmiowb();
3167 }
3168
3169 #define MINIMUM_DHCP_PACKET_SIZE 282
3170 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
3171                                     struct sk_buff *skb)
3172 {
3173         struct e1000_hw *hw =  &adapter->hw;
3174         u16 length, offset;
3175
3176         if (vlan_tx_tag_present(skb)) {
3177                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id)
3178                     && (adapter->hw.mng_cookie.status &
3179                         E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
3180                         return 0;
3181         }
3182
3183         if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
3184                 return 0;
3185
3186         if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
3187                 return 0;
3188
3189         {
3190                 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
3191                 struct udphdr *udp;
3192
3193                 if (ip->protocol != IPPROTO_UDP)
3194                         return 0;
3195
3196                 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
3197                 if (ntohs(udp->dest) != 67)
3198                         return 0;
3199
3200                 offset = (u8 *)udp + 8 - skb->data;
3201                 length = skb->len - offset;
3202                 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
3203         }
3204
3205         return 0;
3206 }
3207
3208 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3209 {
3210         struct e1000_adapter *adapter = netdev_priv(netdev);
3211
3212         netif_stop_queue(netdev);
3213         /*
3214          * Herbert's original patch had:
3215          *  smp_mb__after_netif_stop_queue();
3216          * but since that doesn't exist yet, just open code it.
3217          */
3218         smp_mb();
3219
3220         /*
3221          * We need to check again in a case another CPU has just
3222          * made room available.
3223          */
3224         if (e1000_desc_unused(adapter->tx_ring) < size)
3225                 return -EBUSY;
3226
3227         /* A reprieve! */
3228         netif_start_queue(netdev);
3229         ++adapter->restart_queue;
3230         return 0;
3231 }
3232
3233 static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
3234 {
3235         struct e1000_adapter *adapter = netdev_priv(netdev);
3236
3237         if (e1000_desc_unused(adapter->tx_ring) >= size)
3238                 return 0;
3239         return __e1000_maybe_stop_tx(netdev, size);
3240 }
3241
3242 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3243 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3244 {
3245         struct e1000_adapter *adapter = netdev_priv(netdev);
3246         struct e1000_ring *tx_ring = adapter->tx_ring;
3247         unsigned int first;
3248         unsigned int max_per_txd = E1000_MAX_PER_TXD;
3249         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3250         unsigned int tx_flags = 0;
3251         unsigned int len = skb->len - skb->data_len;
3252         unsigned long irq_flags;
3253         unsigned int nr_frags;
3254         unsigned int mss;
3255         int count = 0;
3256         int tso;
3257         unsigned int f;
3258
3259         if (test_bit(__E1000_DOWN, &adapter->state)) {
3260                 dev_kfree_skb_any(skb);
3261                 return NETDEV_TX_OK;
3262         }
3263
3264         if (skb->len <= 0) {
3265                 dev_kfree_skb_any(skb);
3266                 return NETDEV_TX_OK;
3267         }
3268
3269         mss = skb_shinfo(skb)->gso_size;
3270         /*
3271          * The controller does a simple calculation to
3272          * make sure there is enough room in the FIFO before
3273          * initiating the DMA for each buffer.  The calc is:
3274          * 4 = ceil(buffer len/mss).  To make sure we don't
3275          * overrun the FIFO, adjust the max buffer len if mss
3276          * drops.
3277          */
3278         if (mss) {
3279                 u8 hdr_len;
3280                 max_per_txd = min(mss << 2, max_per_txd);
3281                 max_txd_pwr = fls(max_per_txd) - 1;
3282
3283                 /*
3284                  * TSO Workaround for 82571/2/3 Controllers -- if skb->data
3285                  * points to just header, pull a few bytes of payload from
3286                  * frags into skb->data
3287                  */
3288                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3289                 /*
3290                  * we do this workaround for ES2LAN, but it is un-necessary,
3291                  * avoiding it could save a lot of cycles
3292                  */
3293                 if (skb->data_len && (hdr_len == len)) {
3294                         unsigned int pull_size;
3295
3296                         pull_size = min((unsigned int)4, skb->data_len);
3297                         if (!__pskb_pull_tail(skb, pull_size)) {
3298                                 ndev_err(netdev,
3299                                          "__pskb_pull_tail failed.\n");
3300                                 dev_kfree_skb_any(skb);
3301                                 return NETDEV_TX_OK;
3302                         }
3303                         len = skb->len - skb->data_len;
3304                 }
3305         }
3306
3307         /* reserve a descriptor for the offload context */
3308         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3309                 count++;
3310         count++;
3311
3312         count += TXD_USE_COUNT(len, max_txd_pwr);
3313
3314         nr_frags = skb_shinfo(skb)->nr_frags;
3315         for (f = 0; f < nr_frags; f++)
3316                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3317                                        max_txd_pwr);
3318
3319         if (adapter->hw.mac.tx_pkt_filtering)
3320                 e1000_transfer_dhcp_info(adapter, skb);
3321
3322         if (!spin_trylock_irqsave(&adapter->tx_queue_lock, irq_flags))
3323                 /* Collision - tell upper layer to requeue */
3324                 return NETDEV_TX_LOCKED;
3325
3326         /*
3327          * need: count + 2 desc gap to keep tail from touching
3328          * head, otherwise try next time
3329          */
3330         if (e1000_maybe_stop_tx(netdev, count + 2)) {
3331                 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3332                 return NETDEV_TX_BUSY;
3333         }
3334
3335         if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
3336                 tx_flags |= E1000_TX_FLAGS_VLAN;
3337                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3338         }
3339
3340         first = tx_ring->next_to_use;
3341
3342         tso = e1000_tso(adapter, skb);
3343         if (tso < 0) {
3344                 dev_kfree_skb_any(skb);
3345                 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3346                 return NETDEV_TX_OK;
3347         }
3348
3349         if (tso)
3350                 tx_flags |= E1000_TX_FLAGS_TSO;
3351         else if (e1000_tx_csum(adapter, skb))
3352                 tx_flags |= E1000_TX_FLAGS_CSUM;
3353
3354         /*
3355          * Old method was to assume IPv4 packet by default if TSO was enabled.
3356          * 82571 hardware supports TSO capabilities for IPv6 as well...
3357          * no longer assume, we must.
3358          */
3359         if (skb->protocol == htons(ETH_P_IP))
3360                 tx_flags |= E1000_TX_FLAGS_IPV4;
3361
3362         count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
3363         if (count < 0) {
3364                 /* handle pci_map_single() error in e1000_tx_map */
3365                 dev_kfree_skb_any(skb);
3366                 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3367                 return NETDEV_TX_OK;
3368         }
3369
3370         e1000_tx_queue(adapter, tx_flags, count);
3371
3372         netdev->trans_start = jiffies;
3373
3374         /* Make sure there is space in the ring for the next send. */
3375         e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
3376
3377         spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3378         return NETDEV_TX_OK;
3379 }
3380
3381 /**
3382  * e1000_tx_timeout - Respond to a Tx Hang
3383  * @netdev: network interface device structure
3384  **/
3385 static void e1000_tx_timeout(struct net_device *netdev)
3386 {
3387         struct e1000_adapter *adapter = netdev_priv(netdev);
3388
3389         /* Do the reset outside of interrupt context */
3390         adapter->tx_timeout_count++;
3391         schedule_work(&adapter->reset_task);
3392 }
3393
3394 static void e1000_reset_task(struct work_struct *work)
3395 {
3396         struct e1000_adapter *adapter;
3397         adapter = container_of(work, struct e1000_adapter, reset_task);
3398
3399         e1000e_reinit_locked(adapter);
3400 }
3401
3402 /**
3403  * e1000_get_stats - Get System Network Statistics
3404  * @netdev: network interface device structure
3405  *
3406  * Returns the address of the device statistics structure.
3407  * The statistics are actually updated from the timer callback.
3408  **/
3409 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3410 {
3411         struct e1000_adapter *adapter = netdev_priv(netdev);
3412
3413         /* only return the current stats */
3414         return &adapter->net_stats;
3415 }
3416
3417 /**
3418  * e1000_change_mtu - Change the Maximum Transfer Unit
3419  * @netdev: network interface device structure
3420  * @new_mtu: new value for maximum frame size
3421  *
3422  * Returns 0 on success, negative on failure
3423  **/
3424 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3425 {
3426         struct e1000_adapter *adapter = netdev_priv(netdev);
3427         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3428
3429         if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3430             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3431                 ndev_err(netdev, "Invalid MTU setting\n");
3432                 return -EINVAL;
3433         }
3434
3435         /* Jumbo frame size limits */
3436         if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) {
3437                 if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
3438                         ndev_err(netdev, "Jumbo Frames not supported.\n");
3439                         return -EINVAL;
3440                 }
3441                 if (adapter->hw.phy.type == e1000_phy_ife) {
3442                         ndev_err(netdev, "Jumbo Frames not supported.\n");
3443                         return -EINVAL;
3444                 }
3445         }
3446
3447 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3448         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3449                 ndev_err(netdev, "MTU > 9216 not supported.\n");
3450                 return -EINVAL;
3451         }
3452
3453         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3454                 msleep(1);
3455         /* e1000e_down has a dependency on max_frame_size */
3456         adapter->max_frame_size = max_frame;
3457         if (netif_running(netdev))
3458                 e1000e_down(adapter);
3459
3460         /*
3461          * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3462          * means we reserve 2 more, this pushes us to allocate from the next
3463          * larger slab size.
3464          * i.e. RXBUFFER_2048 --> size-4096 slab
3465          */
3466
3467         if (max_frame <= 256)
3468                 adapter->rx_buffer_len = 256;
3469         else if (max_frame <= 512)
3470                 adapter->rx_buffer_len = 512;
3471         else if (max_frame <= 1024)
3472                 adapter->rx_buffer_len = 1024;
3473         else if (max_frame <= 2048)
3474                 adapter->rx_buffer_len = 2048;
3475         else
3476                 adapter->rx_buffer_len = 4096;
3477
3478         /* adjust allocation if LPE protects us, and we aren't using SBP */
3479         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3480              (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
3481                 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
3482                                          + ETH_FCS_LEN;
3483
3484         ndev_info(netdev, "changing MTU from %d to %d\n",
3485                 netdev->mtu, new_mtu);
3486         netdev->mtu = new_mtu;
3487
3488         if (netif_running(netdev))
3489                 e1000e_up(adapter);
3490         else
3491                 e1000e_reset(adapter);
3492
3493         clear_bit(__E1000_RESETTING, &adapter->state);
3494
3495         return 0;
3496 }
3497
3498 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
3499                            int cmd)
3500 {
3501         struct e1000_adapter *adapter = netdev_priv(netdev);
3502         struct mii_ioctl_data *data = if_mii(ifr);
3503         unsigned long irq_flags;
3504
3505         if (adapter->hw.phy.media_type != e1000_media_type_copper)
3506                 return -EOPNOTSUPP;
3507
3508         switch (cmd) {
3509         case SIOCGMIIPHY:
3510                 data->phy_id = adapter->hw.phy.addr;
3511                 break;
3512         case SIOCGMIIREG:
3513                 if (!capable(CAP_NET_ADMIN))
3514                         return -EPERM;
3515                 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
3516                 if (e1e_rphy(&adapter->hw, data->reg_num & 0x1F,
3517                                    &data->val_out)) {
3518                         spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
3519                         return -EIO;
3520                 }
3521                 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
3522                 break;
3523         case SIOCSMIIREG:
3524         default:
3525                 return -EOPNOTSUPP;
3526         }
3527         return 0;
3528 }
3529
3530 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3531 {
3532         switch (cmd) {
3533         case SIOCGMIIPHY:
3534         case SIOCGMIIREG:
3535         case SIOCSMIIREG:
3536                 return e1000_mii_ioctl(netdev, ifr, cmd);
3537         default:
3538                 return -EOPNOTSUPP;
3539         }
3540 }
3541
3542 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
3543 {
3544         struct net_device *netdev = pci_get_drvdata(pdev);
3545         struct e1000_adapter *adapter = netdev_priv(netdev);
3546         struct e1000_hw *hw = &adapter->hw;
3547         u32 ctrl, ctrl_ext, rctl, status;
3548         u32 wufc = adapter->wol;
3549         int retval = 0;
3550
3551         netif_device_detach(netdev);
3552
3553         if (netif_running(netdev)) {
3554                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3555                 e1000e_down(adapter);
3556                 e1000_free_irq(adapter);
3557         }
3558
3559         retval = pci_save_state(pdev);
3560         if (retval)
3561                 return retval;
3562
3563         status = er32(STATUS);
3564         if (status & E1000_STATUS_LU)
3565                 wufc &= ~E1000_WUFC_LNKC;
3566
3567         if (wufc) {
3568                 e1000_setup_rctl(adapter);
3569                 e1000_set_multi(netdev);
3570
3571                 /* turn on all-multi mode if wake on multicast is enabled */
3572                 if (wufc & E1000_WUFC_MC) {
3573                         rctl = er32(RCTL);
3574                         rctl |= E1000_RCTL_MPE;
3575                         ew32(RCTL, rctl);
3576                 }
3577
3578                 ctrl = er32(CTRL);
3579                 /* advertise wake from D3Cold */
3580                 #define E1000_CTRL_ADVD3WUC 0x00100000
3581                 /* phy power management enable */
3582                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
3583                 ctrl |= E1000_CTRL_ADVD3WUC |
3584                         E1000_CTRL_EN_PHY_PWR_MGMT;
3585                 ew32(CTRL, ctrl);
3586
3587                 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
3588                     adapter->hw.phy.media_type ==
3589                     e1000_media_type_internal_serdes) {
3590                         /* keep the laser running in D3 */
3591                         ctrl_ext = er32(CTRL_EXT);
3592                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
3593                         ew32(CTRL_EXT, ctrl_ext);
3594                 }
3595
3596                 /* Allow time for pending master requests to run */
3597                 e1000e_disable_pcie_master(&adapter->hw);
3598
3599                 ew32(WUC, E1000_WUC_PME_EN);
3600                 ew32(WUFC, wufc);
3601                 pci_enable_wake(pdev, PCI_D3hot, 1);
3602                 pci_enable_wake(pdev, PCI_D3cold, 1);
3603         } else {
3604                 ew32(WUC, 0);
3605                 ew32(WUFC, 0);
3606                 pci_enable_wake(pdev, PCI_D3hot, 0);
3607                 pci_enable_wake(pdev, PCI_D3cold, 0);
3608         }
3609
3610         /* make sure adapter isn't asleep if manageability is enabled */
3611         if (adapter->flags & FLAG_MNG_PT_ENABLED) {
3612                 pci_enable_wake(pdev, PCI_D3hot, 1);
3613                 pci_enable_wake(pdev, PCI_D3cold, 1);
3614         }
3615
3616         if (adapter->hw.phy.type == e1000_phy_igp_3)
3617                 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
3618
3619         /*
3620          * Release control of h/w to f/w.  If f/w is AMT enabled, this
3621          * would have already happened in close and is redundant.
3622          */
3623         e1000_release_hw_control(adapter);
3624
3625         pci_disable_device(pdev);
3626
3627         pci_set_power_state(pdev, pci_choose_state(pdev, state));
3628
3629         return 0;
3630 }
3631
3632 static void e1000e_disable_l1aspm(struct pci_dev *pdev)
3633 {
3634         int pos;
3635         u16 val;
3636
3637         /*
3638          * 82573 workaround - disable L1 ASPM on mobile chipsets
3639          *
3640          * L1 ASPM on various mobile (ich7) chipsets do not behave properly
3641          * resulting in lost data or garbage information on the pci-e link
3642          * level. This could result in (false) bad EEPROM checksum errors,
3643          * long ping times (up to 2s) or even a system freeze/hang.
3644          *
3645          * Unfortunately this feature saves about 1W power consumption when
3646          * active.
3647          */
3648         pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
3649         pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &val);
3650         if (val & 0x2) {
3651                 dev_warn(&pdev->dev, "Disabling L1 ASPM\n");
3652                 val &= ~0x2;
3653                 pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, val);
3654         }
3655 }
3656
3657 #ifdef CONFIG_PM
3658 static int e1000_resume(struct pci_dev *pdev)
3659 {
3660         struct net_device *netdev = pci_get_drvdata(pdev);
3661         struct e1000_adapter *adapter = netdev_priv(netdev);
3662         struct e1000_hw *hw = &adapter->hw;
3663         u32 err;
3664
3665         pci_set_power_state(pdev, PCI_D0);
3666         pci_restore_state(pdev);
3667         e1000e_disable_l1aspm(pdev);
3668         err = pci_enable_device(pdev);
3669         if (err) {
3670                 dev_err(&pdev->dev,
3671                         "Cannot enable PCI device from suspend\n");
3672                 return err;
3673         }
3674
3675         pci_set_master(pdev);
3676
3677         pci_enable_wake(pdev, PCI_D3hot, 0);
3678         pci_enable_wake(pdev, PCI_D3cold, 0);
3679
3680         if (netif_running(netdev)) {
3681                 err = e1000_request_irq(adapter);
3682                 if (err)
3683                         return err;
3684         }
3685
3686         e1000e_power_up_phy(adapter);
3687         e1000e_reset(adapter);
3688         ew32(WUS, ~0);
3689
3690         e1000_init_manageability(adapter);
3691
3692         if (netif_running(netdev))
3693                 e1000e_up(adapter);
3694
3695         netif_device_attach(netdev);
3696
3697         /*
3698          * If the controller has AMT, do not set DRV_LOAD until the interface
3699          * is up.  For all other cases, let the f/w know that the h/w is now
3700          * under the control of the driver.
3701          */
3702         if (!(adapter->flags & FLAG_HAS_AMT) || !e1000e_check_mng_mode(&adapter->hw))
3703                 e1000_get_hw_control(adapter);
3704
3705         return 0;
3706 }
3707 #endif
3708
3709 static void e1000_shutdown(struct pci_dev *pdev)
3710 {
3711         e1000_suspend(pdev, PMSG_SUSPEND);
3712 }
3713
3714 #ifdef CONFIG_NET_POLL_CONTROLLER
3715 /*
3716  * Polling 'interrupt' - used by things like netconsole to send skbs
3717  * without having to re-enable interrupts. It's not called while
3718  * the interrupt routine is executing.
3719  */
3720 static void e1000_netpoll(struct net_device *netdev)
3721 {
3722         struct e1000_adapter *adapter = netdev_priv(netdev);
3723
3724         disable_irq(adapter->pdev->irq);
3725         e1000_intr(adapter->pdev->irq, netdev);
3726
3727         e1000_clean_tx_irq(adapter);
3728
3729         enable_irq(adapter->pdev->irq);
3730 }
3731 #endif
3732
3733 /**
3734  * e1000_io_error_detected - called when PCI error is detected
3735  * @pdev: Pointer to PCI device
3736  * @state: The current pci connection state
3737  *
3738  * This function is called after a PCI bus error affecting
3739  * this device has been detected.
3740  */
3741 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
3742                                                 pci_channel_state_t state)
3743 {
3744         struct net_device *netdev = pci_get_drvdata(pdev);
3745         struct e1000_adapter *adapter = netdev_priv(netdev);
3746
3747         netif_device_detach(netdev);
3748
3749         if (netif_running(netdev))
3750                 e1000e_down(adapter);
3751         pci_disable_device(pdev);
3752
3753         /* Request a slot slot reset. */
3754         return PCI_ERS_RESULT_NEED_RESET;
3755 }
3756
3757 /**
3758  * e1000_io_slot_reset - called after the pci bus has been reset.
3759  * @pdev: Pointer to PCI device
3760  *
3761  * Restart the card from scratch, as if from a cold-boot. Implementation
3762  * resembles the first-half of the e1000_resume routine.
3763  */
3764 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
3765 {
3766         struct net_device *netdev = pci_get_drvdata(pdev);
3767         struct e1000_adapter *adapter = netdev_priv(netdev);
3768         struct e1000_hw *hw = &adapter->hw;
3769
3770         e1000e_disable_l1aspm(pdev);
3771         if (pci_enable_device(pdev)) {
3772                 dev_err(&pdev->dev,
3773                         "Cannot re-enable PCI device after reset.\n");
3774                 return PCI_ERS_RESULT_DISCONNECT;
3775         }
3776         pci_set_master(pdev);
3777
3778         pci_enable_wake(pdev, PCI_D3hot, 0);
3779         pci_enable_wake(pdev, PCI_D3cold, 0);
3780
3781         e1000e_reset(adapter);
3782         ew32(WUS, ~0);
3783
3784         return PCI_ERS_RESULT_RECOVERED;
3785 }
3786
3787 /**
3788  * e1000_io_resume - called when traffic can start flowing again.
3789  * @pdev: Pointer to PCI device
3790  *
3791  * This callback is called when the error recovery driver tells us that
3792  * its OK to resume normal operation. Implementation resembles the
3793  * second-half of the e1000_resume routine.
3794  */
3795 static void e1000_io_resume(struct pci_dev *pdev)
3796 {
3797         struct net_device *netdev = pci_get_drvdata(pdev);
3798         struct e1000_adapter *adapter = netdev_priv(netdev);
3799
3800         e1000_init_manageability(adapter);
3801
3802         if (netif_running(netdev)) {
3803                 if (e1000e_up(adapter)) {
3804                         dev_err(&pdev->dev,
3805                                 "can't bring device back up after reset\n");
3806                         return;
3807                 }
3808         }
3809
3810         netif_device_attach(netdev);
3811
3812         /*
3813          * If the controller has AMT, do not set DRV_LOAD until the interface
3814          * is up.  For all other cases, let the f/w know that the h/w is now
3815          * under the control of the driver.
3816          */
3817         if (!(adapter->flags & FLAG_HAS_AMT) ||
3818             !e1000e_check_mng_mode(&adapter->hw))
3819                 e1000_get_hw_control(adapter);
3820
3821 }
3822
3823 static void e1000_print_device_info(struct e1000_adapter *adapter)
3824 {
3825         struct e1000_hw *hw = &adapter->hw;
3826         struct net_device *netdev = adapter->netdev;
3827         u32 part_num;
3828
3829         /* print bus type/speed/width info */
3830         ndev_info(netdev, "(PCI Express:2.5GB/s:%s) "
3831                   "%02x:%02x:%02x:%02x:%02x:%02x\n",
3832                   /* bus width */
3833                  ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
3834                   "Width x1"),
3835                   /* MAC address */
3836                   netdev->dev_addr[0], netdev->dev_addr[1],
3837                   netdev->dev_addr[2], netdev->dev_addr[3],
3838                   netdev->dev_addr[4], netdev->dev_addr[5]);
3839         ndev_info(netdev, "Intel(R) PRO/%s Network Connection\n",
3840                   (hw->phy.type == e1000_phy_ife)
3841                    ? "10/100" : "1000");
3842         e1000e_read_part_num(hw, &part_num);
3843         ndev_info(netdev, "MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
3844                   hw->mac.type, hw->phy.type,
3845                   (part_num >> 8), (part_num & 0xff));
3846 }
3847
3848 /**
3849  * e1000_probe - Device Initialization Routine
3850  * @pdev: PCI device information struct
3851  * @ent: entry in e1000_pci_tbl
3852  *
3853  * Returns 0 on success, negative on failure
3854  *
3855  * e1000_probe initializes an adapter identified by a pci_dev structure.
3856  * The OS initialization, configuring of the adapter private structure,
3857  * and a hardware reset occur.
3858  **/
3859 static int __devinit e1000_probe(struct pci_dev *pdev,
3860                                  const struct pci_device_id *ent)
3861 {
3862         struct net_device *netdev;
3863         struct e1000_adapter *adapter;
3864         struct e1000_hw *hw;
3865         const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
3866         unsigned long mmio_start, mmio_len;
3867         unsigned long flash_start, flash_len;
3868
3869         static int cards_found;
3870         int i, err, pci_using_dac;
3871         u16 eeprom_data = 0;
3872         u16 eeprom_apme_mask = E1000_EEPROM_APME;
3873
3874         e1000e_disable_l1aspm(pdev);
3875         err = pci_enable_device(pdev);
3876         if (err)
3877                 return err;
3878
3879         pci_using_dac = 0;
3880         err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
3881         if (!err) {
3882                 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3883                 if (!err)
3884                         pci_using_dac = 1;
3885         } else {
3886                 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
3887                 if (err) {
3888                         err = pci_set_consistent_dma_mask(pdev,
3889                                                           DMA_32BIT_MASK);
3890                         if (err) {
3891                                 dev_err(&pdev->dev, "No usable DMA "
3892                                         "configuration, aborting\n");
3893                                 goto err_dma;
3894                         }
3895                 }
3896         }
3897
3898         err = pci_request_regions(pdev, e1000e_driver_name);
3899         if (err)
3900                 goto err_pci_reg;
3901
3902         pci_set_master(pdev);
3903
3904         err = -ENOMEM;
3905         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
3906         if (!netdev)
3907                 goto err_alloc_etherdev;
3908
3909         SET_NETDEV_DEV(netdev, &pdev->dev);
3910
3911         pci_set_drvdata(pdev, netdev);
3912         adapter = netdev_priv(netdev);
3913         hw = &adapter->hw;
3914         adapter->netdev = netdev;
3915         adapter->pdev = pdev;
3916         adapter->ei = ei;
3917         adapter->pba = ei->pba;
3918         adapter->flags = ei->flags;
3919         adapter->hw.adapter = adapter;
3920         adapter->hw.mac.type = ei->mac;
3921         adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
3922
3923         mmio_start = pci_resource_start(pdev, 0);
3924         mmio_len = pci_resource_len(pdev, 0);
3925
3926         err = -EIO;
3927         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
3928         if (!adapter->hw.hw_addr)
3929                 goto err_ioremap;
3930
3931         if ((adapter->flags & FLAG_HAS_FLASH) &&
3932             (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
3933                 flash_start = pci_resource_start(pdev, 1);
3934                 flash_len = pci_resource_len(pdev, 1);
3935                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
3936                 if (!adapter->hw.flash_address)
3937                         goto err_flashmap;
3938         }
3939
3940         /* construct the net_device struct */
3941         netdev->open                    = &e1000_open;
3942         netdev->stop                    = &e1000_close;
3943         netdev->hard_start_xmit         = &e1000_xmit_frame;
3944         netdev->get_stats               = &e1000_get_stats;
3945         netdev->set_multicast_list      = &e1000_set_multi;
3946         netdev->set_mac_address         = &e1000_set_mac;
3947         netdev->change_mtu              = &e1000_change_mtu;
3948         netdev->do_ioctl                = &e1000_ioctl;
3949         e1000e_set_ethtool_ops(netdev);
3950         netdev->tx_timeout              = &e1000_tx_timeout;
3951         netdev->watchdog_timeo          = 5 * HZ;
3952         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
3953         netdev->vlan_rx_register        = e1000_vlan_rx_register;
3954         netdev->vlan_rx_add_vid         = e1000_vlan_rx_add_vid;
3955         netdev->vlan_rx_kill_vid        = e1000_vlan_rx_kill_vid;
3956 #ifdef CONFIG_NET_POLL_CONTROLLER
3957         netdev->poll_controller         = e1000_netpoll;
3958 #endif
3959         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3960
3961         netdev->mem_start = mmio_start;
3962         netdev->mem_end = mmio_start + mmio_len;
3963
3964         adapter->bd_number = cards_found++;
3965
3966         /* setup adapter struct */
3967         err = e1000_sw_init(adapter);
3968         if (err)
3969                 goto err_sw_init;
3970
3971         err = -EIO;
3972
3973         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3974         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3975         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3976
3977         err = ei->get_invariants(adapter);
3978         if (err)
3979                 goto err_hw_init;
3980
3981         hw->mac.ops.get_bus_info(&adapter->hw);
3982
3983         adapter->hw.phy.autoneg_wait_to_complete = 0;
3984
3985         /* Copper options */
3986         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
3987                 adapter->hw.phy.mdix = AUTO_ALL_MODES;
3988                 adapter->hw.phy.disable_polarity_correction = 0;
3989                 adapter->hw.phy.ms_type = e1000_ms_hw_default;
3990         }
3991
3992         if (e1000_check_reset_block(&adapter->hw))
3993                 ndev_info(netdev,
3994                           "PHY reset is blocked due to SOL/IDER session.\n");
3995
3996         netdev->features = NETIF_F_SG |
3997                            NETIF_F_HW_CSUM |
3998                            NETIF_F_HW_VLAN_TX |
3999                            NETIF_F_HW_VLAN_RX;
4000
4001         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
4002                 netdev->features |= NETIF_F_HW_VLAN_FILTER;
4003
4004         netdev->features |= NETIF_F_TSO;
4005         netdev->features |= NETIF_F_TSO6;
4006
4007         if (pci_using_dac)
4008                 netdev->features |= NETIF_F_HIGHDMA;
4009
4010         /*
4011          * We should not be using LLTX anymore, but we are still Tx faster with
4012          * it.
4013          */
4014         netdev->features |= NETIF_F_LLTX;
4015
4016         if (e1000e_enable_mng_pass_thru(&adapter->hw))
4017                 adapter->flags |= FLAG_MNG_PT_ENABLED;
4018
4019         /*
4020          * before reading the NVM, reset the controller to
4021          * put the device in a known good starting state
4022          */
4023         adapter->hw.mac.ops.reset_hw(&adapter->hw);
4024
4025         /*
4026          * systems with ASPM and others may see the checksum fail on the first
4027          * attempt. Let's give it a few tries
4028          */
4029         for (i = 0;; i++) {
4030                 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
4031                         break;
4032                 if (i == 2) {
4033                         ndev_err(netdev, "The NVM Checksum Is Not Valid\n");
4034                         err = -EIO;
4035                         goto err_eeprom;
4036                 }
4037         }
4038
4039         /* copy the MAC address out of the NVM */
4040         if (e1000e_read_mac_addr(&adapter->hw))
4041                 ndev_err(netdev, "NVM Read Error while reading MAC address\n");
4042
4043         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
4044         memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
4045
4046         if (!is_valid_ether_addr(netdev->perm_addr)) {
4047                 ndev_err(netdev, "Invalid MAC Address: "
4048                          "%02x:%02x:%02x:%02x:%02x:%02x\n",
4049                          netdev->perm_addr[0], netdev->perm_addr[1],
4050                          netdev->perm_addr[2], netdev->perm_addr[3],
4051                          netdev->perm_addr[4], netdev->perm_addr[5]);
4052                 err = -EIO;
4053                 goto err_eeprom;
4054         }
4055
4056         init_timer(&adapter->watchdog_timer);
4057         adapter->watchdog_timer.function = &e1000_watchdog;
4058         adapter->watchdog_timer.data = (unsigned long) adapter;
4059
4060         init_timer(&adapter->phy_info_timer);
4061         adapter->phy_info_timer.function = &e1000_update_phy_info;
4062         adapter->phy_info_timer.data = (unsigned long) adapter;
4063
4064         INIT_WORK(&adapter->reset_task, e1000_reset_task);
4065         INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
4066
4067         e1000e_check_options(adapter);
4068
4069         /* Initialize link parameters. User can change them with ethtool */
4070         adapter->hw.mac.autoneg = 1;
4071         adapter->fc_autoneg = 1;
4072         adapter->hw.fc.original_type = e1000_fc_default;
4073         adapter->hw.fc.type = e1000_fc_default;
4074         adapter->hw.phy.autoneg_advertised = 0x2f;
4075
4076         /* ring size defaults */
4077         adapter->rx_ring->count = 256;
4078         adapter->tx_ring->count = 256;
4079
4080         /*
4081          * Initial Wake on LAN setting - If APM wake is enabled in
4082          * the EEPROM, enable the ACPI Magic Packet filter
4083          */
4084         if (adapter->flags & FLAG_APME_IN_WUC) {
4085                 /* APME bit in EEPROM is mapped to WUC.APME */
4086                 eeprom_data = er32(WUC);
4087                 eeprom_apme_mask = E1000_WUC_APME;
4088         } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
4089                 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
4090                     (adapter->hw.bus.func == 1))
4091                         e1000_read_nvm(&adapter->hw,
4092                                 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
4093                 else
4094                         e1000_read_nvm(&adapter->hw,
4095                                 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
4096         }
4097
4098         /* fetch WoL from EEPROM */
4099         if (eeprom_data & eeprom_apme_mask)
4100                 adapter->eeprom_wol |= E1000_WUFC_MAG;
4101
4102         /*
4103          * now that we have the eeprom settings, apply the special cases
4104          * where the eeprom may be wrong or the board simply won't support
4105          * wake on lan on a particular port
4106          */
4107         if (!(adapter->flags & FLAG_HAS_WOL))
4108                 adapter->eeprom_wol = 0;
4109
4110         /* initialize the wol settings based on the eeprom settings */
4111         adapter->wol = adapter->eeprom_wol;
4112
4113         /* reset the hardware with the new settings */
4114         e1000e_reset(adapter);
4115
4116         /*
4117          * If the controller has AMT, do not set DRV_LOAD until the interface
4118          * is up.  For all other cases, let the f/w know that the h/w is now
4119          * under the control of the driver.
4120          */
4121         if (!(adapter->flags & FLAG_HAS_AMT) ||
4122             !e1000e_check_mng_mode(&adapter->hw))
4123                 e1000_get_hw_control(adapter);
4124
4125         /* tell the stack to leave us alone until e1000_open() is called */
4126         netif_carrier_off(netdev);
4127         netif_stop_queue(netdev);
4128
4129         strcpy(netdev->name, "eth%d");
4130         err = register_netdev(netdev);
4131         if (err)
4132                 goto err_register;
4133
4134         e1000_print_device_info(adapter);
4135
4136         return 0;
4137
4138 err_register:
4139 err_hw_init:
4140         e1000_release_hw_control(adapter);
4141 err_eeprom:
4142         if (!e1000_check_reset_block(&adapter->hw))
4143                 e1000_phy_hw_reset(&adapter->hw);
4144
4145         if (adapter->hw.flash_address)
4146                 iounmap(adapter->hw.flash_address);
4147
4148 err_flashmap:
4149         kfree(adapter->tx_ring);
4150         kfree(adapter->rx_ring);
4151 err_sw_init:
4152         iounmap(adapter->hw.hw_addr);
4153 err_ioremap:
4154         free_netdev(netdev);
4155 err_alloc_etherdev:
4156         pci_release_regions(pdev);
4157 err_pci_reg:
4158 err_dma:
4159         pci_disable_device(pdev);
4160         return err;
4161 }
4162
4163 /**
4164  * e1000_remove - Device Removal Routine
4165  * @pdev: PCI device information struct
4166  *
4167  * e1000_remove is called by the PCI subsystem to alert the driver
4168  * that it should release a PCI device.  The could be caused by a
4169  * Hot-Plug event, or because the driver is going to be removed from
4170  * memory.
4171  **/
4172 static void __devexit e1000_remove(struct pci_dev *pdev)
4173 {
4174         struct net_device *netdev = pci_get_drvdata(pdev);
4175         struct e1000_adapter *adapter = netdev_priv(netdev);
4176
4177         /*
4178          * flush_scheduled work may reschedule our watchdog task, so
4179          * explicitly disable watchdog tasks from being rescheduled
4180          */
4181         set_bit(__E1000_DOWN, &adapter->state);
4182         del_timer_sync(&adapter->watchdog_timer);
4183         del_timer_sync(&adapter->phy_info_timer);
4184
4185         flush_scheduled_work();
4186
4187         /*
4188          * Release control of h/w to f/w.  If f/w is AMT enabled, this
4189          * would have already happened in close and is redundant.
4190          */
4191         e1000_release_hw_control(adapter);
4192
4193         unregister_netdev(netdev);
4194
4195         if (!e1000_check_reset_block(&adapter->hw))
4196                 e1000_phy_hw_reset(&adapter->hw);
4197
4198         kfree(adapter->tx_ring);
4199         kfree(adapter->rx_ring);
4200
4201         iounmap(adapter->hw.hw_addr);
4202         if (adapter->hw.flash_address)
4203                 iounmap(adapter->hw.flash_address);
4204         pci_release_regions(pdev);
4205
4206         free_netdev(netdev);
4207
4208         pci_disable_device(pdev);
4209 }
4210
4211 /* PCI Error Recovery (ERS) */
4212 static struct pci_error_handlers e1000_err_handler = {
4213         .error_detected = e1000_io_error_detected,
4214         .slot_reset = e1000_io_slot_reset,
4215         .resume = e1000_io_resume,
4216 };
4217
4218 static struct pci_device_id e1000_pci_tbl[] = {
4219         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
4220         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
4221         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
4222         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
4223         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
4224         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
4225         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
4226         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
4227         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
4228
4229         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
4230         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
4231         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
4232         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
4233
4234         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
4235         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
4236         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
4237
4238         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
4239           board_80003es2lan },
4240         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
4241           board_80003es2lan },
4242         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
4243           board_80003es2lan },
4244         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
4245           board_80003es2lan },
4246
4247         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
4248         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
4249         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
4250         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
4251         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
4252         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
4253         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
4254
4255         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
4256         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
4257         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
4258         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
4259         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
4260
4261         { }     /* terminate list */
4262 };
4263 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
4264
4265 /* PCI Device API Driver */
4266 static struct pci_driver e1000_driver = {
4267         .name     = e1000e_driver_name,
4268         .id_table = e1000_pci_tbl,
4269         .probe    = e1000_probe,
4270         .remove   = __devexit_p(e1000_remove),
4271 #ifdef CONFIG_PM
4272         /* Power Management Hooks */
4273         .suspend  = e1000_suspend,
4274         .resume   = e1000_resume,
4275 #endif
4276         .shutdown = e1000_shutdown,
4277         .err_handler = &e1000_err_handler
4278 };
4279
4280 /**
4281  * e1000_init_module - Driver Registration Routine
4282  *
4283  * e1000_init_module is the first routine called when the driver is
4284  * loaded. All it does is register with the PCI subsystem.
4285  **/
4286 static int __init e1000_init_module(void)
4287 {
4288         int ret;
4289         printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n",
4290                e1000e_driver_name, e1000e_driver_version);
4291         printk(KERN_INFO "%s: Copyright (c) 1999-2008 Intel Corporation.\n",
4292                e1000e_driver_name);
4293         ret = pci_register_driver(&e1000_driver);
4294
4295         return ret;
4296 }
4297 module_init(e1000_init_module);
4298
4299 /**
4300  * e1000_exit_module - Driver Exit Cleanup Routine
4301  *
4302  * e1000_exit_module is called just before the driver is removed
4303  * from memory.
4304  **/
4305 static void __exit e1000_exit_module(void)
4306 {
4307         pci_unregister_driver(&e1000_driver);
4308 }
4309 module_exit(e1000_exit_module);
4310
4311
4312 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
4313 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
4314 MODULE_LICENSE("GPL");
4315 MODULE_VERSION(DRV_VERSION);
4316
4317 /* e1000_main.c */