]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/e1000e/ethtool.c
9350564065e7713f900dcbc77acae0fc463728b7
[linux-2.6-omap-h63xx.git] / drivers / net / e1000e / ethtool.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2008 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include <linux/netdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/delay.h>
35
36 #include "e1000.h"
37
38 struct e1000_stats {
39         char stat_string[ETH_GSTRING_LEN];
40         int sizeof_stat;
41         int stat_offset;
42 };
43
44 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
45                       offsetof(struct e1000_adapter, m)
46 static const struct e1000_stats e1000_gstrings_stats[] = {
47         { "rx_packets", E1000_STAT(stats.gprc) },
48         { "tx_packets", E1000_STAT(stats.gptc) },
49         { "rx_bytes", E1000_STAT(stats.gorc) },
50         { "tx_bytes", E1000_STAT(stats.gotc) },
51         { "rx_broadcast", E1000_STAT(stats.bprc) },
52         { "tx_broadcast", E1000_STAT(stats.bptc) },
53         { "rx_multicast", E1000_STAT(stats.mprc) },
54         { "tx_multicast", E1000_STAT(stats.mptc) },
55         { "rx_errors", E1000_STAT(net_stats.rx_errors) },
56         { "tx_errors", E1000_STAT(net_stats.tx_errors) },
57         { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
58         { "multicast", E1000_STAT(stats.mprc) },
59         { "collisions", E1000_STAT(stats.colc) },
60         { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
61         { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
62         { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
63         { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
64         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
65         { "rx_missed_errors", E1000_STAT(stats.mpc) },
66         { "tx_aborted_errors", E1000_STAT(stats.ecol) },
67         { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
68         { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
69         { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
70         { "tx_window_errors", E1000_STAT(stats.latecol) },
71         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
72         { "tx_deferred_ok", E1000_STAT(stats.dc) },
73         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
74         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
75         { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
76         { "tx_restart_queue", E1000_STAT(restart_queue) },
77         { "rx_long_length_errors", E1000_STAT(stats.roc) },
78         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
79         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
80         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
81         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
82         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
83         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
84         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
85         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
86         { "rx_long_byte_count", E1000_STAT(stats.gorc) },
87         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
88         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
89         { "rx_header_split", E1000_STAT(rx_hdr_split) },
90         { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
91         { "tx_smbus", E1000_STAT(stats.mgptc) },
92         { "rx_smbus", E1000_STAT(stats.mgprc) },
93         { "dropped_smbus", E1000_STAT(stats.mgpdc) },
94         { "rx_dma_failed", E1000_STAT(rx_dma_failed) },
95         { "tx_dma_failed", E1000_STAT(tx_dma_failed) },
96 };
97
98 #define E1000_GLOBAL_STATS_LEN  ARRAY_SIZE(e1000_gstrings_stats)
99 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
100 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
101         "Register test  (offline)", "Eeprom test    (offline)",
102         "Interrupt test (offline)", "Loopback test  (offline)",
103         "Link test   (on/offline)"
104 };
105 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
106
107 static int e1000_get_settings(struct net_device *netdev,
108                               struct ethtool_cmd *ecmd)
109 {
110         struct e1000_adapter *adapter = netdev_priv(netdev);
111         struct e1000_hw *hw = &adapter->hw;
112         u32 status;
113
114         if (hw->phy.media_type == e1000_media_type_copper) {
115
116                 ecmd->supported = (SUPPORTED_10baseT_Half |
117                                    SUPPORTED_10baseT_Full |
118                                    SUPPORTED_100baseT_Half |
119                                    SUPPORTED_100baseT_Full |
120                                    SUPPORTED_1000baseT_Full |
121                                    SUPPORTED_Autoneg |
122                                    SUPPORTED_TP);
123                 if (hw->phy.type == e1000_phy_ife)
124                         ecmd->supported &= ~SUPPORTED_1000baseT_Full;
125                 ecmd->advertising = ADVERTISED_TP;
126
127                 if (hw->mac.autoneg == 1) {
128                         ecmd->advertising |= ADVERTISED_Autoneg;
129                         /* the e1000 autoneg seems to match ethtool nicely */
130                         ecmd->advertising |= hw->phy.autoneg_advertised;
131                 }
132
133                 ecmd->port = PORT_TP;
134                 ecmd->phy_address = hw->phy.addr;
135                 ecmd->transceiver = XCVR_INTERNAL;
136
137         } else {
138                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
139                                      SUPPORTED_FIBRE |
140                                      SUPPORTED_Autoneg);
141
142                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
143                                      ADVERTISED_FIBRE |
144                                      ADVERTISED_Autoneg);
145
146                 ecmd->port = PORT_FIBRE;
147                 ecmd->transceiver = XCVR_EXTERNAL;
148         }
149
150         status = er32(STATUS);
151         if (status & E1000_STATUS_LU) {
152                 if (status & E1000_STATUS_SPEED_1000)
153                         ecmd->speed = 1000;
154                 else if (status & E1000_STATUS_SPEED_100)
155                         ecmd->speed = 100;
156                 else
157                         ecmd->speed = 10;
158
159                 if (status & E1000_STATUS_FD)
160                         ecmd->duplex = DUPLEX_FULL;
161                 else
162                         ecmd->duplex = DUPLEX_HALF;
163         } else {
164                 ecmd->speed = -1;
165                 ecmd->duplex = -1;
166         }
167
168         ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
169                          hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
170         return 0;
171 }
172
173 static u32 e1000_get_link(struct net_device *netdev)
174 {
175         struct e1000_adapter *adapter = netdev_priv(netdev);
176         struct e1000_hw *hw = &adapter->hw;
177         u32 status;
178         
179         status = er32(STATUS);
180         return (status & E1000_STATUS_LU);
181 }
182
183 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
184 {
185         struct e1000_mac_info *mac = &adapter->hw.mac;
186
187         mac->autoneg = 0;
188
189         /* Fiber NICs only allow 1000 gbps Full duplex */
190         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
191                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
192                 ndev_err(adapter->netdev, "Unsupported Speed/Duplex "
193                          "configuration\n");
194                 return -EINVAL;
195         }
196
197         switch (spddplx) {
198         case SPEED_10 + DUPLEX_HALF:
199                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
200                 break;
201         case SPEED_10 + DUPLEX_FULL:
202                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
203                 break;
204         case SPEED_100 + DUPLEX_HALF:
205                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
206                 break;
207         case SPEED_100 + DUPLEX_FULL:
208                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
209                 break;
210         case SPEED_1000 + DUPLEX_FULL:
211                 mac->autoneg = 1;
212                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
213                 break;
214         case SPEED_1000 + DUPLEX_HALF: /* not supported */
215         default:
216                 ndev_err(adapter->netdev, "Unsupported Speed/Duplex "
217                          "configuration\n");
218                 return -EINVAL;
219         }
220         return 0;
221 }
222
223 static int e1000_set_settings(struct net_device *netdev,
224                               struct ethtool_cmd *ecmd)
225 {
226         struct e1000_adapter *adapter = netdev_priv(netdev);
227         struct e1000_hw *hw = &adapter->hw;
228
229         /*
230          * When SoL/IDER sessions are active, autoneg/speed/duplex
231          * cannot be changed
232          */
233         if (e1000_check_reset_block(hw)) {
234                 ndev_err(netdev, "Cannot change link "
235                          "characteristics when SoL/IDER is active.\n");
236                 return -EINVAL;
237         }
238
239         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
240                 msleep(1);
241
242         if (ecmd->autoneg == AUTONEG_ENABLE) {
243                 hw->mac.autoneg = 1;
244                 if (hw->phy.media_type == e1000_media_type_fiber)
245                         hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
246                                                      ADVERTISED_FIBRE |
247                                                      ADVERTISED_Autoneg;
248                 else
249                         hw->phy.autoneg_advertised = ecmd->advertising |
250                                                      ADVERTISED_TP |
251                                                      ADVERTISED_Autoneg;
252                 ecmd->advertising = hw->phy.autoneg_advertised;
253                 if (adapter->fc_autoneg)
254                         hw->fc.original_type = e1000_fc_default;
255         } else {
256                 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
257                         clear_bit(__E1000_RESETTING, &adapter->state);
258                         return -EINVAL;
259                 }
260         }
261
262         /* reset the link */
263
264         if (netif_running(adapter->netdev)) {
265                 e1000e_down(adapter);
266                 e1000e_up(adapter);
267         } else {
268                 e1000e_reset(adapter);
269         }
270
271         clear_bit(__E1000_RESETTING, &adapter->state);
272         return 0;
273 }
274
275 static void e1000_get_pauseparam(struct net_device *netdev,
276                                  struct ethtool_pauseparam *pause)
277 {
278         struct e1000_adapter *adapter = netdev_priv(netdev);
279         struct e1000_hw *hw = &adapter->hw;
280
281         pause->autoneg =
282                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
283
284         if (hw->fc.type == e1000_fc_rx_pause) {
285                 pause->rx_pause = 1;
286         } else if (hw->fc.type == e1000_fc_tx_pause) {
287                 pause->tx_pause = 1;
288         } else if (hw->fc.type == e1000_fc_full) {
289                 pause->rx_pause = 1;
290                 pause->tx_pause = 1;
291         }
292 }
293
294 static int e1000_set_pauseparam(struct net_device *netdev,
295                                 struct ethtool_pauseparam *pause)
296 {
297         struct e1000_adapter *adapter = netdev_priv(netdev);
298         struct e1000_hw *hw = &adapter->hw;
299         int retval = 0;
300
301         adapter->fc_autoneg = pause->autoneg;
302
303         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
304                 msleep(1);
305
306         if (pause->rx_pause && pause->tx_pause)
307                 hw->fc.type = e1000_fc_full;
308         else if (pause->rx_pause && !pause->tx_pause)
309                 hw->fc.type = e1000_fc_rx_pause;
310         else if (!pause->rx_pause && pause->tx_pause)
311                 hw->fc.type = e1000_fc_tx_pause;
312         else if (!pause->rx_pause && !pause->tx_pause)
313                 hw->fc.type = e1000_fc_none;
314
315         hw->fc.original_type = hw->fc.type;
316
317         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
318                 hw->fc.type = e1000_fc_default;
319                 if (netif_running(adapter->netdev)) {
320                         e1000e_down(adapter);
321                         e1000e_up(adapter);
322                 } else {
323                         e1000e_reset(adapter);
324                 }
325         } else {
326                 retval = ((hw->phy.media_type == e1000_media_type_fiber) ?
327                           hw->mac.ops.setup_link(hw) : e1000e_force_mac_fc(hw));
328         }
329
330         clear_bit(__E1000_RESETTING, &adapter->state);
331         return retval;
332 }
333
334 static u32 e1000_get_rx_csum(struct net_device *netdev)
335 {
336         struct e1000_adapter *adapter = netdev_priv(netdev);
337         return (adapter->flags & FLAG_RX_CSUM_ENABLED);
338 }
339
340 static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
341 {
342         struct e1000_adapter *adapter = netdev_priv(netdev);
343
344         if (data)
345                 adapter->flags |= FLAG_RX_CSUM_ENABLED;
346         else
347                 adapter->flags &= ~FLAG_RX_CSUM_ENABLED;
348
349         if (netif_running(netdev))
350                 e1000e_reinit_locked(adapter);
351         else
352                 e1000e_reset(adapter);
353         return 0;
354 }
355
356 static u32 e1000_get_tx_csum(struct net_device *netdev)
357 {
358         return ((netdev->features & NETIF_F_HW_CSUM) != 0);
359 }
360
361 static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
362 {
363         if (data)
364                 netdev->features |= NETIF_F_HW_CSUM;
365         else
366                 netdev->features &= ~NETIF_F_HW_CSUM;
367
368         return 0;
369 }
370
371 static int e1000_set_tso(struct net_device *netdev, u32 data)
372 {
373         struct e1000_adapter *adapter = netdev_priv(netdev);
374
375         if (data) {
376                 netdev->features |= NETIF_F_TSO;
377                 netdev->features |= NETIF_F_TSO6;
378         } else {
379                 netdev->features &= ~NETIF_F_TSO;
380                 netdev->features &= ~NETIF_F_TSO6;
381         }
382
383         ndev_info(netdev, "TSO is %s\n",
384                   data ? "Enabled" : "Disabled");
385         adapter->flags |= FLAG_TSO_FORCE;
386         return 0;
387 }
388
389 static u32 e1000_get_msglevel(struct net_device *netdev)
390 {
391         struct e1000_adapter *adapter = netdev_priv(netdev);
392         return adapter->msg_enable;
393 }
394
395 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
396 {
397         struct e1000_adapter *adapter = netdev_priv(netdev);
398         adapter->msg_enable = data;
399 }
400
401 static int e1000_get_regs_len(struct net_device *netdev)
402 {
403 #define E1000_REGS_LEN 32 /* overestimate */
404         return E1000_REGS_LEN * sizeof(u32);
405 }
406
407 static void e1000_get_regs(struct net_device *netdev,
408                            struct ethtool_regs *regs, void *p)
409 {
410         struct e1000_adapter *adapter = netdev_priv(netdev);
411         struct e1000_hw *hw = &adapter->hw;
412         u32 *regs_buff = p;
413         u16 phy_data;
414         u8 revision_id;
415
416         memset(p, 0, E1000_REGS_LEN * sizeof(u32));
417
418         pci_read_config_byte(adapter->pdev, PCI_REVISION_ID, &revision_id);
419
420         regs->version = (1 << 24) | (revision_id << 16) | adapter->pdev->device;
421
422         regs_buff[0]  = er32(CTRL);
423         regs_buff[1]  = er32(STATUS);
424
425         regs_buff[2]  = er32(RCTL);
426         regs_buff[3]  = er32(RDLEN);
427         regs_buff[4]  = er32(RDH);
428         regs_buff[5]  = er32(RDT);
429         regs_buff[6]  = er32(RDTR);
430
431         regs_buff[7]  = er32(TCTL);
432         regs_buff[8]  = er32(TDLEN);
433         regs_buff[9]  = er32(TDH);
434         regs_buff[10] = er32(TDT);
435         regs_buff[11] = er32(TIDV);
436
437         regs_buff[12] = adapter->hw.phy.type;  /* PHY type (IGP=1, M88=0) */
438         if (hw->phy.type == e1000_phy_m88) {
439                 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
440                 regs_buff[13] = (u32)phy_data; /* cable length */
441                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
442                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
443                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
444                 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
445                 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
446                 regs_buff[18] = regs_buff[13]; /* cable polarity */
447                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
448                 regs_buff[20] = regs_buff[17]; /* polarity correction */
449                 /* phy receive errors */
450                 regs_buff[22] = adapter->phy_stats.receive_errors;
451                 regs_buff[23] = regs_buff[13]; /* mdix mode */
452         }
453         regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
454         e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
455         regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
456         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
457 }
458
459 static int e1000_get_eeprom_len(struct net_device *netdev)
460 {
461         struct e1000_adapter *adapter = netdev_priv(netdev);
462         return adapter->hw.nvm.word_size * 2;
463 }
464
465 static int e1000_get_eeprom(struct net_device *netdev,
466                             struct ethtool_eeprom *eeprom, u8 *bytes)
467 {
468         struct e1000_adapter *adapter = netdev_priv(netdev);
469         struct e1000_hw *hw = &adapter->hw;
470         u16 *eeprom_buff;
471         int first_word;
472         int last_word;
473         int ret_val = 0;
474         u16 i;
475
476         if (eeprom->len == 0)
477                 return -EINVAL;
478
479         eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
480
481         first_word = eeprom->offset >> 1;
482         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
483
484         eeprom_buff = kmalloc(sizeof(u16) *
485                         (last_word - first_word + 1), GFP_KERNEL);
486         if (!eeprom_buff)
487                 return -ENOMEM;
488
489         if (hw->nvm.type == e1000_nvm_eeprom_spi) {
490                 ret_val = e1000_read_nvm(hw, first_word,
491                                          last_word - first_word + 1,
492                                          eeprom_buff);
493         } else {
494                 for (i = 0; i < last_word - first_word + 1; i++) {
495                         ret_val = e1000_read_nvm(hw, first_word + i, 1,
496                                                       &eeprom_buff[i]);
497                         if (ret_val) {
498                                 /* a read error occurred, throw away the
499                                  * result */
500                                 memset(eeprom_buff, 0xff, sizeof(eeprom_buff));
501                                 break;
502                         }
503                 }
504         }
505
506         /* Device's eeprom is always little-endian, word addressable */
507         for (i = 0; i < last_word - first_word + 1; i++)
508                 le16_to_cpus(&eeprom_buff[i]);
509
510         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
511         kfree(eeprom_buff);
512
513         return ret_val;
514 }
515
516 static int e1000_set_eeprom(struct net_device *netdev,
517                             struct ethtool_eeprom *eeprom, u8 *bytes)
518 {
519         struct e1000_adapter *adapter = netdev_priv(netdev);
520         struct e1000_hw *hw = &adapter->hw;
521         u16 *eeprom_buff;
522         void *ptr;
523         int max_len;
524         int first_word;
525         int last_word;
526         int ret_val = 0;
527         u16 i;
528
529         if (eeprom->len == 0)
530                 return -EOPNOTSUPP;
531
532         if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
533                 return -EFAULT;
534
535         max_len = hw->nvm.word_size * 2;
536
537         first_word = eeprom->offset >> 1;
538         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
539         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
540         if (!eeprom_buff)
541                 return -ENOMEM;
542
543         ptr = (void *)eeprom_buff;
544
545         if (eeprom->offset & 1) {
546                 /* need read/modify/write of first changed EEPROM word */
547                 /* only the second byte of the word is being modified */
548                 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
549                 ptr++;
550         }
551         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
552                 /* need read/modify/write of last changed EEPROM word */
553                 /* only the first byte of the word is being modified */
554                 ret_val = e1000_read_nvm(hw, last_word, 1,
555                                   &eeprom_buff[last_word - first_word]);
556
557         /* Device's eeprom is always little-endian, word addressable */
558         for (i = 0; i < last_word - first_word + 1; i++)
559                 le16_to_cpus(&eeprom_buff[i]);
560
561         memcpy(ptr, bytes, eeprom->len);
562
563         for (i = 0; i < last_word - first_word + 1; i++)
564                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
565
566         ret_val = e1000_write_nvm(hw, first_word,
567                                   last_word - first_word + 1, eeprom_buff);
568
569         /*
570          * Update the checksum over the first part of the EEPROM if needed
571          * and flush shadow RAM for 82573 controllers
572          */
573         if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG) ||
574                                (hw->mac.type == e1000_82573)))
575                 e1000e_update_nvm_checksum(hw);
576
577         kfree(eeprom_buff);
578         return ret_val;
579 }
580
581 static void e1000_get_drvinfo(struct net_device *netdev,
582                               struct ethtool_drvinfo *drvinfo)
583 {
584         struct e1000_adapter *adapter = netdev_priv(netdev);
585         char firmware_version[32];
586         u16 eeprom_data;
587
588         strncpy(drvinfo->driver,  e1000e_driver_name, 32);
589         strncpy(drvinfo->version, e1000e_driver_version, 32);
590
591         /*
592          * EEPROM image version # is reported as firmware version # for
593          * PCI-E controllers
594          */
595         e1000_read_nvm(&adapter->hw, 5, 1, &eeprom_data);
596         sprintf(firmware_version, "%d.%d-%d",
597                 (eeprom_data & 0xF000) >> 12,
598                 (eeprom_data & 0x0FF0) >> 4,
599                 eeprom_data & 0x000F);
600
601         strncpy(drvinfo->fw_version, firmware_version, 32);
602         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
603         drvinfo->regdump_len = e1000_get_regs_len(netdev);
604         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
605 }
606
607 static void e1000_get_ringparam(struct net_device *netdev,
608                                 struct ethtool_ringparam *ring)
609 {
610         struct e1000_adapter *adapter = netdev_priv(netdev);
611         struct e1000_ring *tx_ring = adapter->tx_ring;
612         struct e1000_ring *rx_ring = adapter->rx_ring;
613
614         ring->rx_max_pending = E1000_MAX_RXD;
615         ring->tx_max_pending = E1000_MAX_TXD;
616         ring->rx_mini_max_pending = 0;
617         ring->rx_jumbo_max_pending = 0;
618         ring->rx_pending = rx_ring->count;
619         ring->tx_pending = tx_ring->count;
620         ring->rx_mini_pending = 0;
621         ring->rx_jumbo_pending = 0;
622 }
623
624 static int e1000_set_ringparam(struct net_device *netdev,
625                                struct ethtool_ringparam *ring)
626 {
627         struct e1000_adapter *adapter = netdev_priv(netdev);
628         struct e1000_ring *tx_ring, *tx_old;
629         struct e1000_ring *rx_ring, *rx_old;
630         int err;
631
632         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
633                 return -EINVAL;
634
635         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
636                 msleep(1);
637
638         if (netif_running(adapter->netdev))
639                 e1000e_down(adapter);
640
641         tx_old = adapter->tx_ring;
642         rx_old = adapter->rx_ring;
643
644         err = -ENOMEM;
645         tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
646         if (!tx_ring)
647                 goto err_alloc_tx;
648         /*
649          * use a memcpy to save any previously configured
650          * items like napi structs from having to be
651          * reinitialized
652          */
653         memcpy(tx_ring, tx_old, sizeof(struct e1000_ring));
654
655         rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
656         if (!rx_ring)
657                 goto err_alloc_rx;
658         memcpy(rx_ring, rx_old, sizeof(struct e1000_ring));
659
660         adapter->tx_ring = tx_ring;
661         adapter->rx_ring = rx_ring;
662
663         rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
664         rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
665         rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
666
667         tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
668         tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
669         tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
670
671         if (netif_running(adapter->netdev)) {
672                 /* Try to get new resources before deleting old */
673                 err = e1000e_setup_rx_resources(adapter);
674                 if (err)
675                         goto err_setup_rx;
676                 err = e1000e_setup_tx_resources(adapter);
677                 if (err)
678                         goto err_setup_tx;
679
680                 /*
681                  * restore the old in order to free it,
682                  * then add in the new
683                  */
684                 adapter->rx_ring = rx_old;
685                 adapter->tx_ring = tx_old;
686                 e1000e_free_rx_resources(adapter);
687                 e1000e_free_tx_resources(adapter);
688                 kfree(tx_old);
689                 kfree(rx_old);
690                 adapter->rx_ring = rx_ring;
691                 adapter->tx_ring = tx_ring;
692                 err = e1000e_up(adapter);
693                 if (err)
694                         goto err_setup;
695         }
696
697         clear_bit(__E1000_RESETTING, &adapter->state);
698         return 0;
699 err_setup_tx:
700         e1000e_free_rx_resources(adapter);
701 err_setup_rx:
702         adapter->rx_ring = rx_old;
703         adapter->tx_ring = tx_old;
704         kfree(rx_ring);
705 err_alloc_rx:
706         kfree(tx_ring);
707 err_alloc_tx:
708         e1000e_up(adapter);
709 err_setup:
710         clear_bit(__E1000_RESETTING, &adapter->state);
711         return err;
712 }
713
714 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
715                              int reg, int offset, u32 mask, u32 write)
716 {
717         u32 pat, val;
718         static const u32 test[] =
719                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
720         for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
721                 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
722                                       (test[pat] & write));
723                 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
724                 if (val != (test[pat] & write & mask)) {
725                         ndev_err(adapter->netdev, "pattern test reg %04X "
726                                  "failed: got 0x%08X expected 0x%08X\n",
727                                  reg + offset,
728                                  val, (test[pat] & write & mask));
729                         *data = reg;
730                         return 1;
731                 }
732         }
733         return 0;
734 }
735
736 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
737                               int reg, u32 mask, u32 write)
738 {
739         u32 val;
740         __ew32(&adapter->hw, reg, write & mask);
741         val = __er32(&adapter->hw, reg);
742         if ((write & mask) != (val & mask)) {
743                 ndev_err(adapter->netdev, "set/check reg %04X test failed: "
744                          "got 0x%08X expected 0x%08X\n", reg, (val & mask),
745                          (write & mask));
746                 *data = reg;
747                 return 1;
748         }
749         return 0;
750 }
751 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
752         do {                                                                   \
753                 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
754                         return 1;                                              \
755         } while (0)
756 #define REG_PATTERN_TEST(reg, mask, write)                                     \
757         REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
758
759 #define REG_SET_AND_CHECK(reg, mask, write)                                    \
760         do {                                                                   \
761                 if (reg_set_and_check(adapter, data, reg, mask, write))        \
762                         return 1;                                              \
763         } while (0)
764
765 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
766 {
767         struct e1000_hw *hw = &adapter->hw;
768         struct e1000_mac_info *mac = &adapter->hw.mac;
769         struct net_device *netdev = adapter->netdev;
770         u32 value;
771         u32 before;
772         u32 after;
773         u32 i;
774         u32 toggle;
775
776         /*
777          * The status register is Read Only, so a write should fail.
778          * Some bits that get toggled are ignored.
779          */
780         switch (mac->type) {
781         /* there are several bits on newer hardware that are r/w */
782         case e1000_82571:
783         case e1000_82572:
784         case e1000_80003es2lan:
785                 toggle = 0x7FFFF3FF;
786                 break;
787         case e1000_82573:
788         case e1000_ich8lan:
789         case e1000_ich9lan:
790                 toggle = 0x7FFFF033;
791                 break;
792         default:
793                 toggle = 0xFFFFF833;
794                 break;
795         }
796
797         before = er32(STATUS);
798         value = (er32(STATUS) & toggle);
799         ew32(STATUS, toggle);
800         after = er32(STATUS) & toggle;
801         if (value != after) {
802                 ndev_err(netdev, "failed STATUS register test got: "
803                          "0x%08X expected: 0x%08X\n", after, value);
804                 *data = 1;
805                 return 1;
806         }
807         /* restore previous status */
808         ew32(STATUS, before);
809
810         if (!(adapter->flags & FLAG_IS_ICH)) {
811                 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
812                 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
813                 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
814                 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
815         }
816
817         REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
818         REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
819         REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
820         REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
821         REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
822         REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
823         REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
824         REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
825         REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
826         REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);
827
828         REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
829
830         before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
831         REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
832         REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
833
834         REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
835         REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
836         if (!(adapter->flags & FLAG_IS_ICH))
837                 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
838         REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
839         REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
840         for (i = 0; i < mac->rar_entry_count; i++)
841                 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
842                                        0x8003FFFF, 0xFFFFFFFF);
843
844         for (i = 0; i < mac->mta_reg_count; i++)
845                 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
846
847         *data = 0;
848         return 0;
849 }
850
851 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
852 {
853         u16 temp;
854         u16 checksum = 0;
855         u16 i;
856
857         *data = 0;
858         /* Read and add up the contents of the EEPROM */
859         for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
860                 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
861                         *data = 1;
862                         break;
863                 }
864                 checksum += temp;
865         }
866
867         /* If Checksum is not Correct return error else test passed */
868         if ((checksum != (u16) NVM_SUM) && !(*data))
869                 *data = 2;
870
871         return *data;
872 }
873
874 static irqreturn_t e1000_test_intr(int irq, void *data)
875 {
876         struct net_device *netdev = (struct net_device *) data;
877         struct e1000_adapter *adapter = netdev_priv(netdev);
878         struct e1000_hw *hw = &adapter->hw;
879
880         adapter->test_icr |= er32(ICR);
881
882         return IRQ_HANDLED;
883 }
884
885 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
886 {
887         struct net_device *netdev = adapter->netdev;
888         struct e1000_hw *hw = &adapter->hw;
889         u32 mask;
890         u32 shared_int = 1;
891         u32 irq = adapter->pdev->irq;
892         int i;
893
894         *data = 0;
895
896         /* NOTE: we don't test MSI interrupts here, yet */
897         /* Hook up test interrupt handler just for this test */
898         if (!request_irq(irq, &e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
899                          netdev)) {
900                 shared_int = 0;
901         } else if (request_irq(irq, &e1000_test_intr, IRQF_SHARED,
902                  netdev->name, netdev)) {
903                 *data = 1;
904                 return -1;
905         }
906         ndev_info(netdev, "testing %s interrupt\n",
907                   (shared_int ? "shared" : "unshared"));
908
909         /* Disable all the interrupts */
910         ew32(IMC, 0xFFFFFFFF);
911         msleep(10);
912
913         /* Test each interrupt */
914         for (i = 0; i < 10; i++) {
915                 if ((adapter->flags & FLAG_IS_ICH) && (i == 8))
916                         continue;
917
918                 /* Interrupt to test */
919                 mask = 1 << i;
920
921                 if (!shared_int) {
922                         /*
923                          * Disable the interrupt to be reported in
924                          * the cause register and then force the same
925                          * interrupt and see if one gets posted.  If
926                          * an interrupt was posted to the bus, the
927                          * test failed.
928                          */
929                         adapter->test_icr = 0;
930                         ew32(IMC, mask);
931                         ew32(ICS, mask);
932                         msleep(10);
933
934                         if (adapter->test_icr & mask) {
935                                 *data = 3;
936                                 break;
937                         }
938                 }
939
940                 /*
941                  * Enable the interrupt to be reported in
942                  * the cause register and then force the same
943                  * interrupt and see if one gets posted.  If
944                  * an interrupt was not posted to the bus, the
945                  * test failed.
946                  */
947                 adapter->test_icr = 0;
948                 ew32(IMS, mask);
949                 ew32(ICS, mask);
950                 msleep(10);
951
952                 if (!(adapter->test_icr & mask)) {
953                         *data = 4;
954                         break;
955                 }
956
957                 if (!shared_int) {
958                         /*
959                          * Disable the other interrupts to be reported in
960                          * the cause register and then force the other
961                          * interrupts and see if any get posted.  If
962                          * an interrupt was posted to the bus, the
963                          * test failed.
964                          */
965                         adapter->test_icr = 0;
966                         ew32(IMC, ~mask & 0x00007FFF);
967                         ew32(ICS, ~mask & 0x00007FFF);
968                         msleep(10);
969
970                         if (adapter->test_icr) {
971                                 *data = 5;
972                                 break;
973                         }
974                 }
975         }
976
977         /* Disable all the interrupts */
978         ew32(IMC, 0xFFFFFFFF);
979         msleep(10);
980
981         /* Unhook test interrupt handler */
982         free_irq(irq, netdev);
983
984         return *data;
985 }
986
987 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
988 {
989         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
990         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
991         struct pci_dev *pdev = adapter->pdev;
992         int i;
993
994         if (tx_ring->desc && tx_ring->buffer_info) {
995                 for (i = 0; i < tx_ring->count; i++) {
996                         if (tx_ring->buffer_info[i].dma)
997                                 pci_unmap_single(pdev,
998                                         tx_ring->buffer_info[i].dma,
999                                         tx_ring->buffer_info[i].length,
1000                                         PCI_DMA_TODEVICE);
1001                         if (tx_ring->buffer_info[i].skb)
1002                                 dev_kfree_skb(tx_ring->buffer_info[i].skb);
1003                 }
1004         }
1005
1006         if (rx_ring->desc && rx_ring->buffer_info) {
1007                 for (i = 0; i < rx_ring->count; i++) {
1008                         if (rx_ring->buffer_info[i].dma)
1009                                 pci_unmap_single(pdev,
1010                                         rx_ring->buffer_info[i].dma,
1011                                         2048, PCI_DMA_FROMDEVICE);
1012                         if (rx_ring->buffer_info[i].skb)
1013                                 dev_kfree_skb(rx_ring->buffer_info[i].skb);
1014                 }
1015         }
1016
1017         if (tx_ring->desc) {
1018                 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1019                                   tx_ring->dma);
1020                 tx_ring->desc = NULL;
1021         }
1022         if (rx_ring->desc) {
1023                 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1024                                   rx_ring->dma);
1025                 rx_ring->desc = NULL;
1026         }
1027
1028         kfree(tx_ring->buffer_info);
1029         tx_ring->buffer_info = NULL;
1030         kfree(rx_ring->buffer_info);
1031         rx_ring->buffer_info = NULL;
1032 }
1033
1034 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1035 {
1036         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1037         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1038         struct pci_dev *pdev = adapter->pdev;
1039         struct e1000_hw *hw = &adapter->hw;
1040         u32 rctl;
1041         int i;
1042         int ret_val;
1043
1044         /* Setup Tx descriptor ring and Tx buffers */
1045
1046         if (!tx_ring->count)
1047                 tx_ring->count = E1000_DEFAULT_TXD;
1048
1049         tx_ring->buffer_info = kcalloc(tx_ring->count,
1050                                        sizeof(struct e1000_buffer),
1051                                        GFP_KERNEL);
1052         if (!(tx_ring->buffer_info)) {
1053                 ret_val = 1;
1054                 goto err_nomem;
1055         }
1056
1057         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1058         tx_ring->size = ALIGN(tx_ring->size, 4096);
1059         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1060                                            &tx_ring->dma, GFP_KERNEL);
1061         if (!tx_ring->desc) {
1062                 ret_val = 2;
1063                 goto err_nomem;
1064         }
1065         tx_ring->next_to_use = 0;
1066         tx_ring->next_to_clean = 0;
1067
1068         ew32(TDBAL, ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1069         ew32(TDBAH, ((u64) tx_ring->dma >> 32));
1070         ew32(TDLEN, tx_ring->count * sizeof(struct e1000_tx_desc));
1071         ew32(TDH, 0);
1072         ew32(TDT, 0);
1073         ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1074              E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1075              E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1076
1077         for (i = 0; i < tx_ring->count; i++) {
1078                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1079                 struct sk_buff *skb;
1080                 unsigned int skb_size = 1024;
1081
1082                 skb = alloc_skb(skb_size, GFP_KERNEL);
1083                 if (!skb) {
1084                         ret_val = 3;
1085                         goto err_nomem;
1086                 }
1087                 skb_put(skb, skb_size);
1088                 tx_ring->buffer_info[i].skb = skb;
1089                 tx_ring->buffer_info[i].length = skb->len;
1090                 tx_ring->buffer_info[i].dma =
1091                         pci_map_single(pdev, skb->data, skb->len,
1092                                        PCI_DMA_TODEVICE);
1093                 if (pci_dma_mapping_error(pdev, tx_ring->buffer_info[i].dma)) {
1094                         ret_val = 4;
1095                         goto err_nomem;
1096                 }
1097                 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1098                 tx_desc->lower.data = cpu_to_le32(skb->len);
1099                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1100                                                    E1000_TXD_CMD_IFCS |
1101                                                    E1000_TXD_CMD_RS);
1102                 tx_desc->upper.data = 0;
1103         }
1104
1105         /* Setup Rx descriptor ring and Rx buffers */
1106
1107         if (!rx_ring->count)
1108                 rx_ring->count = E1000_DEFAULT_RXD;
1109
1110         rx_ring->buffer_info = kcalloc(rx_ring->count,
1111                                        sizeof(struct e1000_buffer),
1112                                        GFP_KERNEL);
1113         if (!(rx_ring->buffer_info)) {
1114                 ret_val = 5;
1115                 goto err_nomem;
1116         }
1117
1118         rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
1119         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1120                                            &rx_ring->dma, GFP_KERNEL);
1121         if (!rx_ring->desc) {
1122                 ret_val = 6;
1123                 goto err_nomem;
1124         }
1125         rx_ring->next_to_use = 0;
1126         rx_ring->next_to_clean = 0;
1127
1128         rctl = er32(RCTL);
1129         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1130         ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
1131         ew32(RDBAH, ((u64) rx_ring->dma >> 32));
1132         ew32(RDLEN, rx_ring->size);
1133         ew32(RDH, 0);
1134         ew32(RDT, 0);
1135         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1136                 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1137                 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1138                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1139                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1140         ew32(RCTL, rctl);
1141
1142         for (i = 0; i < rx_ring->count; i++) {
1143                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
1144                 struct sk_buff *skb;
1145
1146                 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1147                 if (!skb) {
1148                         ret_val = 7;
1149                         goto err_nomem;
1150                 }
1151                 skb_reserve(skb, NET_IP_ALIGN);
1152                 rx_ring->buffer_info[i].skb = skb;
1153                 rx_ring->buffer_info[i].dma =
1154                         pci_map_single(pdev, skb->data, 2048,
1155                                        PCI_DMA_FROMDEVICE);
1156                 if (pci_dma_mapping_error(pdev, rx_ring->buffer_info[i].dma)) {
1157                         ret_val = 8;
1158                         goto err_nomem;
1159                 }
1160                 rx_desc->buffer_addr =
1161                         cpu_to_le64(rx_ring->buffer_info[i].dma);
1162                 memset(skb->data, 0x00, skb->len);
1163         }
1164
1165         return 0;
1166
1167 err_nomem:
1168         e1000_free_desc_rings(adapter);
1169         return ret_val;
1170 }
1171
1172 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1173 {
1174         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1175         e1e_wphy(&adapter->hw, 29, 0x001F);
1176         e1e_wphy(&adapter->hw, 30, 0x8FFC);
1177         e1e_wphy(&adapter->hw, 29, 0x001A);
1178         e1e_wphy(&adapter->hw, 30, 0x8FF0);
1179 }
1180
1181 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1182 {
1183         struct e1000_hw *hw = &adapter->hw;
1184         u32 ctrl_reg = 0;
1185         u32 stat_reg = 0;
1186         u16 phy_reg = 0;
1187
1188         hw->mac.autoneg = 0;
1189
1190         if (hw->phy.type == e1000_phy_m88) {
1191                 /* Auto-MDI/MDIX Off */
1192                 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1193                 /* reset to update Auto-MDI/MDIX */
1194                 e1e_wphy(hw, PHY_CONTROL, 0x9140);
1195                 /* autoneg off */
1196                 e1e_wphy(hw, PHY_CONTROL, 0x8140);
1197         } else if (hw->phy.type == e1000_phy_gg82563)
1198                 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1199
1200         ctrl_reg = er32(CTRL);
1201
1202         switch (hw->phy.type) {
1203         case e1000_phy_ife:
1204                 /* force 100, set loopback */
1205                 e1e_wphy(hw, PHY_CONTROL, 0x6100);
1206
1207                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1208                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1209                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1210                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1211                              E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1212                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1213                 break;
1214         case e1000_phy_bm:
1215                 /* Set Default MAC Interface speed to 1GB */
1216                 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1217                 phy_reg &= ~0x0007;
1218                 phy_reg |= 0x006;
1219                 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1220                 /* Assert SW reset for above settings to take effect */
1221                 e1000e_commit_phy(hw);
1222                 mdelay(1);
1223                 /* Force Full Duplex */
1224                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1225                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1226                 /* Set Link Up (in force link) */
1227                 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1228                 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1229                 /* Force Link */
1230                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1231                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1232                 /* Set Early Link Enable */
1233                 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1234                 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1235                 /* fall through */
1236         default:
1237                 /* force 1000, set loopback */
1238                 e1e_wphy(hw, PHY_CONTROL, 0x4140);
1239                 mdelay(250);
1240
1241                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1242                 ctrl_reg = er32(CTRL);
1243                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1244                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1245                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1246                              E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1247                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1248
1249                 if (adapter->flags & FLAG_IS_ICH)
1250                         ctrl_reg |= E1000_CTRL_SLU;     /* Set Link Up */
1251         }
1252
1253         if (hw->phy.media_type == e1000_media_type_copper &&
1254             hw->phy.type == e1000_phy_m88) {
1255                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1256         } else {
1257                 /*
1258                  * Set the ILOS bit on the fiber Nic if half duplex link is
1259                  * detected.
1260                  */
1261                 stat_reg = er32(STATUS);
1262                 if ((stat_reg & E1000_STATUS_FD) == 0)
1263                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1264         }
1265
1266         ew32(CTRL, ctrl_reg);
1267
1268         /*
1269          * Disable the receiver on the PHY so when a cable is plugged in, the
1270          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1271          */
1272         if (hw->phy.type == e1000_phy_m88)
1273                 e1000_phy_disable_receiver(adapter);
1274
1275         udelay(500);
1276
1277         return 0;
1278 }
1279
1280 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1281 {
1282         struct e1000_hw *hw = &adapter->hw;
1283         u32 ctrl = er32(CTRL);
1284         int link = 0;
1285
1286         /* special requirements for 82571/82572 fiber adapters */
1287
1288         /*
1289          * jump through hoops to make sure link is up because serdes
1290          * link is hardwired up
1291          */
1292         ctrl |= E1000_CTRL_SLU;
1293         ew32(CTRL, ctrl);
1294
1295         /* disable autoneg */
1296         ctrl = er32(TXCW);
1297         ctrl &= ~(1 << 31);
1298         ew32(TXCW, ctrl);
1299
1300         link = (er32(STATUS) & E1000_STATUS_LU);
1301
1302         if (!link) {
1303                 /* set invert loss of signal */
1304                 ctrl = er32(CTRL);
1305                 ctrl |= E1000_CTRL_ILOS;
1306                 ew32(CTRL, ctrl);
1307         }
1308
1309         /*
1310          * special write to serdes control register to enable SerDes analog
1311          * loopback
1312          */
1313 #define E1000_SERDES_LB_ON 0x410
1314         ew32(SCTL, E1000_SERDES_LB_ON);
1315         msleep(10);
1316
1317         return 0;
1318 }
1319
1320 /* only call this for fiber/serdes connections to es2lan */
1321 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1322 {
1323         struct e1000_hw *hw = &adapter->hw;
1324         u32 ctrlext = er32(CTRL_EXT);
1325         u32 ctrl = er32(CTRL);
1326
1327         /*
1328          * save CTRL_EXT to restore later, reuse an empty variable (unused
1329          * on mac_type 80003es2lan)
1330          */
1331         adapter->tx_fifo_head = ctrlext;
1332
1333         /* clear the serdes mode bits, putting the device into mac loopback */
1334         ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1335         ew32(CTRL_EXT, ctrlext);
1336
1337         /* force speed to 1000/FD, link up */
1338         ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1339         ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1340                  E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1341         ew32(CTRL, ctrl);
1342
1343         /* set mac loopback */
1344         ctrl = er32(RCTL);
1345         ctrl |= E1000_RCTL_LBM_MAC;
1346         ew32(RCTL, ctrl);
1347
1348         /* set testing mode parameters (no need to reset later) */
1349 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1350 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1351         ew32(KMRNCTRLSTA,
1352              (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1353
1354         return 0;
1355 }
1356
1357 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1358 {
1359         struct e1000_hw *hw = &adapter->hw;
1360         u32 rctl;
1361
1362         if (hw->phy.media_type == e1000_media_type_fiber ||
1363             hw->phy.media_type == e1000_media_type_internal_serdes) {
1364                 switch (hw->mac.type) {
1365                 case e1000_80003es2lan:
1366                         return e1000_set_es2lan_mac_loopback(adapter);
1367                         break;
1368                 case e1000_82571:
1369                 case e1000_82572:
1370                         return e1000_set_82571_fiber_loopback(adapter);
1371                         break;
1372                 default:
1373                         rctl = er32(RCTL);
1374                         rctl |= E1000_RCTL_LBM_TCVR;
1375                         ew32(RCTL, rctl);
1376                         return 0;
1377                 }
1378         } else if (hw->phy.media_type == e1000_media_type_copper) {
1379                 return e1000_integrated_phy_loopback(adapter);
1380         }
1381
1382         return 7;
1383 }
1384
1385 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1386 {
1387         struct e1000_hw *hw = &adapter->hw;
1388         u32 rctl;
1389         u16 phy_reg;
1390
1391         rctl = er32(RCTL);
1392         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1393         ew32(RCTL, rctl);
1394
1395         switch (hw->mac.type) {
1396         case e1000_80003es2lan:
1397                 if (hw->phy.media_type == e1000_media_type_fiber ||
1398                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1399                         /* restore CTRL_EXT, stealing space from tx_fifo_head */
1400                         ew32(CTRL_EXT, adapter->tx_fifo_head);
1401                         adapter->tx_fifo_head = 0;
1402                 }
1403                 /* fall through */
1404         case e1000_82571:
1405         case e1000_82572:
1406                 if (hw->phy.media_type == e1000_media_type_fiber ||
1407                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1408 #define E1000_SERDES_LB_OFF 0x400
1409                         ew32(SCTL, E1000_SERDES_LB_OFF);
1410                         msleep(10);
1411                         break;
1412                 }
1413                 /* Fall Through */
1414         default:
1415                 hw->mac.autoneg = 1;
1416                 if (hw->phy.type == e1000_phy_gg82563)
1417                         e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1418                 e1e_rphy(hw, PHY_CONTROL, &phy_reg);
1419                 if (phy_reg & MII_CR_LOOPBACK) {
1420                         phy_reg &= ~MII_CR_LOOPBACK;
1421                         e1e_wphy(hw, PHY_CONTROL, phy_reg);
1422                         e1000e_commit_phy(hw);
1423                 }
1424                 break;
1425         }
1426 }
1427
1428 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1429                                       unsigned int frame_size)
1430 {
1431         memset(skb->data, 0xFF, frame_size);
1432         frame_size &= ~1;
1433         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1434         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1435         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1436 }
1437
1438 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1439                                     unsigned int frame_size)
1440 {
1441         frame_size &= ~1;
1442         if (*(skb->data + 3) == 0xFF)
1443                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1444                    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1445                         return 0;
1446         return 13;
1447 }
1448
1449 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1450 {
1451         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1452         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1453         struct pci_dev *pdev = adapter->pdev;
1454         struct e1000_hw *hw = &adapter->hw;
1455         int i, j, k, l;
1456         int lc;
1457         int good_cnt;
1458         int ret_val = 0;
1459         unsigned long time;
1460
1461         ew32(RDT, rx_ring->count - 1);
1462
1463         /*
1464          * Calculate the loop count based on the largest descriptor ring
1465          * The idea is to wrap the largest ring a number of times using 64
1466          * send/receive pairs during each loop
1467          */
1468
1469         if (rx_ring->count <= tx_ring->count)
1470                 lc = ((tx_ring->count / 64) * 2) + 1;
1471         else
1472                 lc = ((rx_ring->count / 64) * 2) + 1;
1473
1474         k = 0;
1475         l = 0;
1476         for (j = 0; j <= lc; j++) { /* loop count loop */
1477                 for (i = 0; i < 64; i++) { /* send the packets */
1478                         e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1479                                                   1024);
1480                         pci_dma_sync_single_for_device(pdev,
1481                                         tx_ring->buffer_info[k].dma,
1482                                         tx_ring->buffer_info[k].length,
1483                                         PCI_DMA_TODEVICE);
1484                         k++;
1485                         if (k == tx_ring->count)
1486                                 k = 0;
1487                 }
1488                 ew32(TDT, k);
1489                 msleep(200);
1490                 time = jiffies; /* set the start time for the receive */
1491                 good_cnt = 0;
1492                 do { /* receive the sent packets */
1493                         pci_dma_sync_single_for_cpu(pdev,
1494                                         rx_ring->buffer_info[l].dma, 2048,
1495                                         PCI_DMA_FROMDEVICE);
1496
1497                         ret_val = e1000_check_lbtest_frame(
1498                                         rx_ring->buffer_info[l].skb, 1024);
1499                         if (!ret_val)
1500                                 good_cnt++;
1501                         l++;
1502                         if (l == rx_ring->count)
1503                                 l = 0;
1504                         /*
1505                          * time + 20 msecs (200 msecs on 2.4) is more than
1506                          * enough time to complete the receives, if it's
1507                          * exceeded, break and error off
1508                          */
1509                 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1510                 if (good_cnt != 64) {
1511                         ret_val = 13; /* ret_val is the same as mis-compare */
1512                         break;
1513                 }
1514                 if (jiffies >= (time + 20)) {
1515                         ret_val = 14; /* error code for time out error */
1516                         break;
1517                 }
1518         } /* end loop count loop */
1519         return ret_val;
1520 }
1521
1522 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1523 {
1524         /*
1525          * PHY loopback cannot be performed if SoL/IDER
1526          * sessions are active
1527          */
1528         if (e1000_check_reset_block(&adapter->hw)) {
1529                 ndev_err(adapter->netdev, "Cannot do PHY loopback test "
1530                          "when SoL/IDER is active.\n");
1531                 *data = 0;
1532                 goto out;
1533         }
1534
1535         *data = e1000_setup_desc_rings(adapter);
1536         if (*data)
1537                 goto out;
1538
1539         *data = e1000_setup_loopback_test(adapter);
1540         if (*data)
1541                 goto err_loopback;
1542
1543         *data = e1000_run_loopback_test(adapter);
1544         e1000_loopback_cleanup(adapter);
1545
1546 err_loopback:
1547         e1000_free_desc_rings(adapter);
1548 out:
1549         return *data;
1550 }
1551
1552 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1553 {
1554         struct e1000_hw *hw = &adapter->hw;
1555
1556         *data = 0;
1557         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1558                 int i = 0;
1559                 hw->mac.serdes_has_link = 0;
1560
1561                 /*
1562                  * On some blade server designs, link establishment
1563                  * could take as long as 2-3 minutes
1564                  */
1565                 do {
1566                         hw->mac.ops.check_for_link(hw);
1567                         if (hw->mac.serdes_has_link)
1568                                 return *data;
1569                         msleep(20);
1570                 } while (i++ < 3750);
1571
1572                 *data = 1;
1573         } else {
1574                 hw->mac.ops.check_for_link(hw);
1575                 if (hw->mac.autoneg)
1576                         msleep(4000);
1577
1578                 if (!(er32(STATUS) &
1579                       E1000_STATUS_LU))
1580                         *data = 1;
1581         }
1582         return *data;
1583 }
1584
1585 static int e1000e_get_sset_count(struct net_device *netdev, int sset)
1586 {
1587         switch (sset) {
1588         case ETH_SS_TEST:
1589                 return E1000_TEST_LEN;
1590         case ETH_SS_STATS:
1591                 return E1000_STATS_LEN;
1592         default:
1593                 return -EOPNOTSUPP;
1594         }
1595 }
1596
1597 static void e1000_diag_test(struct net_device *netdev,
1598                             struct ethtool_test *eth_test, u64 *data)
1599 {
1600         struct e1000_adapter *adapter = netdev_priv(netdev);
1601         u16 autoneg_advertised;
1602         u8 forced_speed_duplex;
1603         u8 autoneg;
1604         bool if_running = netif_running(netdev);
1605
1606         set_bit(__E1000_TESTING, &adapter->state);
1607         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1608                 /* Offline tests */
1609
1610                 /* save speed, duplex, autoneg settings */
1611                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1612                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1613                 autoneg = adapter->hw.mac.autoneg;
1614
1615                 ndev_info(netdev, "offline testing starting\n");
1616
1617                 /*
1618                  * Link test performed before hardware reset so autoneg doesn't
1619                  * interfere with test result
1620                  */
1621                 if (e1000_link_test(adapter, &data[4]))
1622                         eth_test->flags |= ETH_TEST_FL_FAILED;
1623
1624                 if (if_running)
1625                         /* indicate we're in test mode */
1626                         dev_close(netdev);
1627                 else
1628                         e1000e_reset(adapter);
1629
1630                 if (e1000_reg_test(adapter, &data[0]))
1631                         eth_test->flags |= ETH_TEST_FL_FAILED;
1632
1633                 e1000e_reset(adapter);
1634                 if (e1000_eeprom_test(adapter, &data[1]))
1635                         eth_test->flags |= ETH_TEST_FL_FAILED;
1636
1637                 e1000e_reset(adapter);
1638                 if (e1000_intr_test(adapter, &data[2]))
1639                         eth_test->flags |= ETH_TEST_FL_FAILED;
1640
1641                 e1000e_reset(adapter);
1642                 /* make sure the phy is powered up */
1643                 e1000e_power_up_phy(adapter);
1644                 if (e1000_loopback_test(adapter, &data[3]))
1645                         eth_test->flags |= ETH_TEST_FL_FAILED;
1646
1647                 /* restore speed, duplex, autoneg settings */
1648                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1649                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1650                 adapter->hw.mac.autoneg = autoneg;
1651
1652                 /* force this routine to wait until autoneg complete/timeout */
1653                 adapter->hw.phy.autoneg_wait_to_complete = 1;
1654                 e1000e_reset(adapter);
1655                 adapter->hw.phy.autoneg_wait_to_complete = 0;
1656
1657                 clear_bit(__E1000_TESTING, &adapter->state);
1658                 if (if_running)
1659                         dev_open(netdev);
1660         } else {
1661                 ndev_info(netdev, "online testing starting\n");
1662                 /* Online tests */
1663                 if (e1000_link_test(adapter, &data[4]))
1664                         eth_test->flags |= ETH_TEST_FL_FAILED;
1665
1666                 /* Online tests aren't run; pass by default */
1667                 data[0] = 0;
1668                 data[1] = 0;
1669                 data[2] = 0;
1670                 data[3] = 0;
1671
1672                 clear_bit(__E1000_TESTING, &adapter->state);
1673         }
1674         msleep_interruptible(4 * 1000);
1675 }
1676
1677 static void e1000_get_wol(struct net_device *netdev,
1678                           struct ethtool_wolinfo *wol)
1679 {
1680         struct e1000_adapter *adapter = netdev_priv(netdev);
1681
1682         wol->supported = 0;
1683         wol->wolopts = 0;
1684
1685         if (!(adapter->flags & FLAG_HAS_WOL))
1686                 return;
1687
1688         wol->supported = WAKE_UCAST | WAKE_MCAST |
1689                          WAKE_BCAST | WAKE_MAGIC |
1690                          WAKE_PHY | WAKE_ARP;
1691
1692         /* apply any specific unsupported masks here */
1693         if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1694                 wol->supported &= ~WAKE_UCAST;
1695
1696                 if (adapter->wol & E1000_WUFC_EX)
1697                         ndev_err(netdev, "Interface does not support "
1698                                  "directed (unicast) frame wake-up packets\n");
1699         }
1700
1701         if (adapter->wol & E1000_WUFC_EX)
1702                 wol->wolopts |= WAKE_UCAST;
1703         if (adapter->wol & E1000_WUFC_MC)
1704                 wol->wolopts |= WAKE_MCAST;
1705         if (adapter->wol & E1000_WUFC_BC)
1706                 wol->wolopts |= WAKE_BCAST;
1707         if (adapter->wol & E1000_WUFC_MAG)
1708                 wol->wolopts |= WAKE_MAGIC;
1709         if (adapter->wol & E1000_WUFC_LNKC)
1710                 wol->wolopts |= WAKE_PHY;
1711         if (adapter->wol & E1000_WUFC_ARP)
1712                 wol->wolopts |= WAKE_ARP;
1713 }
1714
1715 static int e1000_set_wol(struct net_device *netdev,
1716                          struct ethtool_wolinfo *wol)
1717 {
1718         struct e1000_adapter *adapter = netdev_priv(netdev);
1719
1720         if (wol->wolopts & WAKE_MAGICSECURE)
1721                 return -EOPNOTSUPP;
1722
1723         if (!(adapter->flags & FLAG_HAS_WOL))
1724                 return wol->wolopts ? -EOPNOTSUPP : 0;
1725
1726         /* these settings will always override what we currently have */
1727         adapter->wol = 0;
1728
1729         if (wol->wolopts & WAKE_UCAST)
1730                 adapter->wol |= E1000_WUFC_EX;
1731         if (wol->wolopts & WAKE_MCAST)
1732                 adapter->wol |= E1000_WUFC_MC;
1733         if (wol->wolopts & WAKE_BCAST)
1734                 adapter->wol |= E1000_WUFC_BC;
1735         if (wol->wolopts & WAKE_MAGIC)
1736                 adapter->wol |= E1000_WUFC_MAG;
1737         if (wol->wolopts & WAKE_PHY)
1738                 adapter->wol |= E1000_WUFC_LNKC;
1739         if (wol->wolopts & WAKE_ARP)
1740                 adapter->wol |= E1000_WUFC_ARP;
1741
1742         return 0;
1743 }
1744
1745 /* toggle LED 4 times per second = 2 "blinks" per second */
1746 #define E1000_ID_INTERVAL       (HZ/4)
1747
1748 /* bit defines for adapter->led_status */
1749 #define E1000_LED_ON            0
1750
1751 static void e1000_led_blink_callback(unsigned long data)
1752 {
1753         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1754
1755         if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1756                 adapter->hw.mac.ops.led_off(&adapter->hw);
1757         else
1758                 adapter->hw.mac.ops.led_on(&adapter->hw);
1759
1760         mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1761 }
1762
1763 static int e1000_phys_id(struct net_device *netdev, u32 data)
1764 {
1765         struct e1000_adapter *adapter = netdev_priv(netdev);
1766
1767         if (!data)
1768                 data = INT_MAX;
1769
1770         if (adapter->hw.phy.type == e1000_phy_ife) {
1771                 if (!adapter->blink_timer.function) {
1772                         init_timer(&adapter->blink_timer);
1773                         adapter->blink_timer.function =
1774                                 e1000_led_blink_callback;
1775                         adapter->blink_timer.data = (unsigned long) adapter;
1776                 }
1777                 mod_timer(&adapter->blink_timer, jiffies);
1778                 msleep_interruptible(data * 1000);
1779                 del_timer_sync(&adapter->blink_timer);
1780                 e1e_wphy(&adapter->hw,
1781                                     IFE_PHY_SPECIAL_CONTROL_LED, 0);
1782         } else {
1783                 e1000e_blink_led(&adapter->hw);
1784                 msleep_interruptible(data * 1000);
1785         }
1786
1787         adapter->hw.mac.ops.led_off(&adapter->hw);
1788         clear_bit(E1000_LED_ON, &adapter->led_status);
1789         adapter->hw.mac.ops.cleanup_led(&adapter->hw);
1790
1791         return 0;
1792 }
1793
1794 static int e1000_get_coalesce(struct net_device *netdev,
1795                               struct ethtool_coalesce *ec)
1796 {
1797         struct e1000_adapter *adapter = netdev_priv(netdev);
1798
1799         if (adapter->itr_setting <= 3)
1800                 ec->rx_coalesce_usecs = adapter->itr_setting;
1801         else
1802                 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1803
1804         return 0;
1805 }
1806
1807 static int e1000_set_coalesce(struct net_device *netdev,
1808                               struct ethtool_coalesce *ec)
1809 {
1810         struct e1000_adapter *adapter = netdev_priv(netdev);
1811         struct e1000_hw *hw = &adapter->hw;
1812
1813         if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1814             ((ec->rx_coalesce_usecs > 3) &&
1815              (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1816             (ec->rx_coalesce_usecs == 2))
1817                 return -EINVAL;
1818
1819         if (ec->rx_coalesce_usecs <= 3) {
1820                 adapter->itr = 20000;
1821                 adapter->itr_setting = ec->rx_coalesce_usecs;
1822         } else {
1823                 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1824                 adapter->itr_setting = adapter->itr & ~3;
1825         }
1826
1827         if (adapter->itr_setting != 0)
1828                 ew32(ITR, 1000000000 / (adapter->itr * 256));
1829         else
1830                 ew32(ITR, 0);
1831
1832         return 0;
1833 }
1834
1835 static int e1000_nway_reset(struct net_device *netdev)
1836 {
1837         struct e1000_adapter *adapter = netdev_priv(netdev);
1838         if (netif_running(netdev))
1839                 e1000e_reinit_locked(adapter);
1840         return 0;
1841 }
1842
1843 static void e1000_get_ethtool_stats(struct net_device *netdev,
1844                                     struct ethtool_stats *stats,
1845                                     u64 *data)
1846 {
1847         struct e1000_adapter *adapter = netdev_priv(netdev);
1848         int i;
1849
1850         e1000e_update_stats(adapter);
1851         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1852                 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
1853                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1854                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1855         }
1856 }
1857
1858 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1859                               u8 *data)
1860 {
1861         u8 *p = data;
1862         int i;
1863
1864         switch (stringset) {
1865         case ETH_SS_TEST:
1866                 memcpy(data, *e1000_gstrings_test, sizeof(e1000_gstrings_test));
1867                 break;
1868         case ETH_SS_STATS:
1869                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1870                         memcpy(p, e1000_gstrings_stats[i].stat_string,
1871                                ETH_GSTRING_LEN);
1872                         p += ETH_GSTRING_LEN;
1873                 }
1874                 break;
1875         }
1876 }
1877
1878 static const struct ethtool_ops e1000_ethtool_ops = {
1879         .get_settings           = e1000_get_settings,
1880         .set_settings           = e1000_set_settings,
1881         .get_drvinfo            = e1000_get_drvinfo,
1882         .get_regs_len           = e1000_get_regs_len,
1883         .get_regs               = e1000_get_regs,
1884         .get_wol                = e1000_get_wol,
1885         .set_wol                = e1000_set_wol,
1886         .get_msglevel           = e1000_get_msglevel,
1887         .set_msglevel           = e1000_set_msglevel,
1888         .nway_reset             = e1000_nway_reset,
1889         .get_link               = e1000_get_link,
1890         .get_eeprom_len         = e1000_get_eeprom_len,
1891         .get_eeprom             = e1000_get_eeprom,
1892         .set_eeprom             = e1000_set_eeprom,
1893         .get_ringparam          = e1000_get_ringparam,
1894         .set_ringparam          = e1000_set_ringparam,
1895         .get_pauseparam         = e1000_get_pauseparam,
1896         .set_pauseparam         = e1000_set_pauseparam,
1897         .get_rx_csum            = e1000_get_rx_csum,
1898         .set_rx_csum            = e1000_set_rx_csum,
1899         .get_tx_csum            = e1000_get_tx_csum,
1900         .set_tx_csum            = e1000_set_tx_csum,
1901         .get_sg                 = ethtool_op_get_sg,
1902         .set_sg                 = ethtool_op_set_sg,
1903         .get_tso                = ethtool_op_get_tso,
1904         .set_tso                = e1000_set_tso,
1905         .self_test              = e1000_diag_test,
1906         .get_strings            = e1000_get_strings,
1907         .phys_id                = e1000_phys_id,
1908         .get_ethtool_stats      = e1000_get_ethtool_stats,
1909         .get_sset_count         = e1000e_get_sset_count,
1910         .get_coalesce           = e1000_get_coalesce,
1911         .set_coalesce           = e1000_set_coalesce,
1912 };
1913
1914 void e1000e_set_ethtool_ops(struct net_device *netdev)
1915 {
1916         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1917 }