]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/e1000e/es2lan.c
e1000e: reorganize PHY and flow control interface
[linux-2.6-omap-h63xx.git] / drivers / net / e1000e / es2lan.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2008 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /*
30  * 80003ES2LAN Gigabit Ethernet Controller (Copper)
31  * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
32  */
33
34 #include <linux/netdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/delay.h>
37 #include <linux/pci.h>
38
39 #include "e1000.h"
40
41 #define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL       0x00
42 #define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL        0x02
43 #define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL         0x10
44
45 #define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS    0x0008
46 #define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS    0x0800
47 #define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING   0x0010
48
49 #define E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004
50 #define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT   0x0000
51
52 #define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */
53 #define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN        0x00010000
54
55 #define DEFAULT_TIPG_IPGT_1000_80003ES2LAN       0x8
56 #define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN     0x9
57
58 /* GG82563 PHY Specific Status Register (Page 0, Register 16 */
59 #define GG82563_PSCR_POLARITY_REVERSAL_DISABLE   0x0002 /* 1=Reversal Disab. */
60 #define GG82563_PSCR_CROSSOVER_MODE_MASK         0x0060
61 #define GG82563_PSCR_CROSSOVER_MODE_MDI          0x0000 /* 00=Manual MDI */
62 #define GG82563_PSCR_CROSSOVER_MODE_MDIX         0x0020 /* 01=Manual MDIX */
63 #define GG82563_PSCR_CROSSOVER_MODE_AUTO         0x0060 /* 11=Auto crossover */
64
65 /* PHY Specific Control Register 2 (Page 0, Register 26) */
66 #define GG82563_PSCR2_REVERSE_AUTO_NEG           0x2000
67                                                 /* 1=Reverse Auto-Negotiation */
68
69 /* MAC Specific Control Register (Page 2, Register 21) */
70 /* Tx clock speed for Link Down and 1000BASE-T for the following speeds */
71 #define GG82563_MSCR_TX_CLK_MASK                 0x0007
72 #define GG82563_MSCR_TX_CLK_10MBPS_2_5           0x0004
73 #define GG82563_MSCR_TX_CLK_100MBPS_25           0x0005
74 #define GG82563_MSCR_TX_CLK_1000MBPS_25          0x0007
75
76 #define GG82563_MSCR_ASSERT_CRS_ON_TX            0x0010 /* 1=Assert */
77
78 /* DSP Distance Register (Page 5, Register 26) */
79 #define GG82563_DSPD_CABLE_LENGTH                0x0007 /* 0 = <50M
80                                                            1 = 50-80M
81                                                            2 = 80-110M
82                                                            3 = 110-140M
83                                                            4 = >140M */
84
85 /* Kumeran Mode Control Register (Page 193, Register 16) */
86 #define GG82563_KMCR_PASS_FALSE_CARRIER          0x0800
87
88 /* Power Management Control Register (Page 193, Register 20) */
89 #define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE      0x0001
90                                            /* 1=Enable SERDES Electrical Idle */
91
92 /* In-Band Control Register (Page 194, Register 18) */
93 #define GG82563_ICR_DIS_PADDING                  0x0010 /* Disable Padding */
94
95 /*
96  * A table for the GG82563 cable length where the range is defined
97  * with a lower bound at "index" and the upper bound at
98  * "index + 5".
99  */
100 static const u16 e1000_gg82563_cable_length_table[] =
101          { 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF };
102
103 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
104 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
105 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
106 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
107 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
108 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
109 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
110
111 /**
112  *  e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
113  *  @hw: pointer to the HW structure
114  *
115  *  This is a function pointer entry point called by the api module.
116  **/
117 static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
118 {
119         struct e1000_phy_info *phy = &hw->phy;
120         s32 ret_val;
121
122         if (hw->phy.media_type != e1000_media_type_copper) {
123                 phy->type       = e1000_phy_none;
124                 return 0;
125         }
126
127         phy->addr               = 1;
128         phy->autoneg_mask       = AUTONEG_ADVERTISE_SPEED_DEFAULT;
129         phy->reset_delay_us      = 100;
130         phy->type               = e1000_phy_gg82563;
131
132         /* This can only be done after all function pointers are setup. */
133         ret_val = e1000e_get_phy_id(hw);
134
135         /* Verify phy id */
136         if (phy->id != GG82563_E_PHY_ID)
137                 return -E1000_ERR_PHY;
138
139         return ret_val;
140 }
141
142 /**
143  *  e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
144  *  @hw: pointer to the HW structure
145  *
146  *  This is a function pointer entry point called by the api module.
147  **/
148 static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
149 {
150         struct e1000_nvm_info *nvm = &hw->nvm;
151         u32 eecd = er32(EECD);
152         u16 size;
153
154         nvm->opcode_bits        = 8;
155         nvm->delay_usec  = 1;
156         switch (nvm->override) {
157         case e1000_nvm_override_spi_large:
158                 nvm->page_size    = 32;
159                 nvm->address_bits = 16;
160                 break;
161         case e1000_nvm_override_spi_small:
162                 nvm->page_size    = 8;
163                 nvm->address_bits = 8;
164                 break;
165         default:
166                 nvm->page_size    = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
167                 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
168                 break;
169         }
170
171         nvm->type = e1000_nvm_eeprom_spi;
172
173         size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
174                           E1000_EECD_SIZE_EX_SHIFT);
175
176         /*
177          * Added to a constant, "size" becomes the left-shift value
178          * for setting word_size.
179          */
180         size += NVM_WORD_SIZE_BASE_SHIFT;
181         nvm->word_size  = 1 << size;
182
183         return 0;
184 }
185
186 /**
187  *  e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
188  *  @hw: pointer to the HW structure
189  *
190  *  This is a function pointer entry point called by the api module.
191  **/
192 static s32 e1000_init_mac_params_80003es2lan(struct e1000_adapter *adapter)
193 {
194         struct e1000_hw *hw = &adapter->hw;
195         struct e1000_mac_info *mac = &hw->mac;
196         struct e1000_mac_operations *func = &mac->ops;
197
198         /* Set media type */
199         switch (adapter->pdev->device) {
200         case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
201                 hw->phy.media_type = e1000_media_type_internal_serdes;
202                 break;
203         default:
204                 hw->phy.media_type = e1000_media_type_copper;
205                 break;
206         }
207
208         /* Set mta register count */
209         mac->mta_reg_count = 128;
210         /* Set rar entry count */
211         mac->rar_entry_count = E1000_RAR_ENTRIES;
212         /* Set if manageability features are enabled. */
213         mac->arc_subsystem_valid = (er32(FWSM) & E1000_FWSM_MODE_MASK) ? 1 : 0;
214
215         /* check for link */
216         switch (hw->phy.media_type) {
217         case e1000_media_type_copper:
218                 func->setup_physical_interface = e1000_setup_copper_link_80003es2lan;
219                 func->check_for_link = e1000e_check_for_copper_link;
220                 break;
221         case e1000_media_type_fiber:
222                 func->setup_physical_interface = e1000e_setup_fiber_serdes_link;
223                 func->check_for_link = e1000e_check_for_fiber_link;
224                 break;
225         case e1000_media_type_internal_serdes:
226                 func->setup_physical_interface = e1000e_setup_fiber_serdes_link;
227                 func->check_for_link = e1000e_check_for_serdes_link;
228                 break;
229         default:
230                 return -E1000_ERR_CONFIG;
231                 break;
232         }
233
234         return 0;
235 }
236
237 static s32 e1000_get_invariants_80003es2lan(struct e1000_adapter *adapter)
238 {
239         struct e1000_hw *hw = &adapter->hw;
240         s32 rc;
241
242         rc = e1000_init_mac_params_80003es2lan(adapter);
243         if (rc)
244                 return rc;
245
246         rc = e1000_init_nvm_params_80003es2lan(hw);
247         if (rc)
248                 return rc;
249
250         rc = e1000_init_phy_params_80003es2lan(hw);
251         if (rc)
252                 return rc;
253
254         return 0;
255 }
256
257 /**
258  *  e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
259  *  @hw: pointer to the HW structure
260  *
261  *  A wrapper to acquire access rights to the correct PHY.  This is a
262  *  function pointer entry point called by the api module.
263  **/
264 static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
265 {
266         u16 mask;
267
268         mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
269
270         return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
271 }
272
273 /**
274  *  e1000_release_phy_80003es2lan - Release rights to access PHY
275  *  @hw: pointer to the HW structure
276  *
277  *  A wrapper to release access rights to the correct PHY.  This is a
278  *  function pointer entry point called by the api module.
279  **/
280 static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
281 {
282         u16 mask;
283
284         mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
285         e1000_release_swfw_sync_80003es2lan(hw, mask);
286 }
287
288 /**
289  *  e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
290  *  @hw: pointer to the HW structure
291  *
292  *  Acquire the semaphore to access the EEPROM.  This is a function
293  *  pointer entry point called by the api module.
294  **/
295 static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
296 {
297         s32 ret_val;
298
299         ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
300         if (ret_val)
301                 return ret_val;
302
303         ret_val = e1000e_acquire_nvm(hw);
304
305         if (ret_val)
306                 e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
307
308         return ret_val;
309 }
310
311 /**
312  *  e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
313  *  @hw: pointer to the HW structure
314  *
315  *  Release the semaphore used to access the EEPROM.  This is a
316  *  function pointer entry point called by the api module.
317  **/
318 static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
319 {
320         e1000e_release_nvm(hw);
321         e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
322 }
323
324 /**
325  *  e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
326  *  @hw: pointer to the HW structure
327  *  @mask: specifies which semaphore to acquire
328  *
329  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
330  *  will also specify which port we're acquiring the lock for.
331  **/
332 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
333 {
334         u32 swfw_sync;
335         u32 swmask = mask;
336         u32 fwmask = mask << 16;
337         s32 i = 0;
338         s32 timeout = 200;
339
340         while (i < timeout) {
341                 if (e1000e_get_hw_semaphore(hw))
342                         return -E1000_ERR_SWFW_SYNC;
343
344                 swfw_sync = er32(SW_FW_SYNC);
345                 if (!(swfw_sync & (fwmask | swmask)))
346                         break;
347
348                 /*
349                  * Firmware currently using resource (fwmask)
350                  * or other software thread using resource (swmask)
351                  */
352                 e1000e_put_hw_semaphore(hw);
353                 mdelay(5);
354                 i++;
355         }
356
357         if (i == timeout) {
358                 hw_dbg(hw,
359                        "Driver can't access resource, SW_FW_SYNC timeout.\n");
360                 return -E1000_ERR_SWFW_SYNC;
361         }
362
363         swfw_sync |= swmask;
364         ew32(SW_FW_SYNC, swfw_sync);
365
366         e1000e_put_hw_semaphore(hw);
367
368         return 0;
369 }
370
371 /**
372  *  e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
373  *  @hw: pointer to the HW structure
374  *  @mask: specifies which semaphore to acquire
375  *
376  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
377  *  will also specify which port we're releasing the lock for.
378  **/
379 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
380 {
381         u32 swfw_sync;
382
383         while (e1000e_get_hw_semaphore(hw) != 0);
384         /* Empty */
385
386         swfw_sync = er32(SW_FW_SYNC);
387         swfw_sync &= ~mask;
388         ew32(SW_FW_SYNC, swfw_sync);
389
390         e1000e_put_hw_semaphore(hw);
391 }
392
393 /**
394  *  e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
395  *  @hw: pointer to the HW structure
396  *  @offset: offset of the register to read
397  *  @data: pointer to the data returned from the operation
398  *
399  *  Read the GG82563 PHY register.  This is a function pointer entry
400  *  point called by the api module.
401  **/
402 static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
403                                                   u32 offset, u16 *data)
404 {
405         s32 ret_val;
406         u32 page_select;
407         u16 temp;
408
409         /* Select Configuration Page */
410         if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG)
411                 page_select = GG82563_PHY_PAGE_SELECT;
412         else
413                 /*
414                  * Use Alternative Page Select register to access
415                  * registers 30 and 31
416                  */
417                 page_select = GG82563_PHY_PAGE_SELECT_ALT;
418
419         temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
420         ret_val = e1000e_write_phy_reg_m88(hw, page_select, temp);
421         if (ret_val)
422                 return ret_val;
423
424         /*
425          * The "ready" bit in the MDIC register may be incorrectly set
426          * before the device has completed the "Page Select" MDI
427          * transaction.  So we wait 200us after each MDI command...
428          */
429         udelay(200);
430
431         /* ...and verify the command was successful. */
432         ret_val = e1000e_read_phy_reg_m88(hw, page_select, &temp);
433
434         if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
435                 ret_val = -E1000_ERR_PHY;
436                 return ret_val;
437         }
438
439         udelay(200);
440
441         ret_val = e1000e_read_phy_reg_m88(hw,
442                                          MAX_PHY_REG_ADDRESS & offset,
443                                          data);
444
445         udelay(200);
446
447         return ret_val;
448 }
449
450 /**
451  *  e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
452  *  @hw: pointer to the HW structure
453  *  @offset: offset of the register to read
454  *  @data: value to write to the register
455  *
456  *  Write to the GG82563 PHY register.  This is a function pointer entry
457  *  point called by the api module.
458  **/
459 static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
460                                                    u32 offset, u16 data)
461 {
462         s32 ret_val;
463         u32 page_select;
464         u16 temp;
465
466         /* Select Configuration Page */
467         if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG)
468                 page_select = GG82563_PHY_PAGE_SELECT;
469         else
470                 /*
471                  * Use Alternative Page Select register to access
472                  * registers 30 and 31
473                  */
474                 page_select = GG82563_PHY_PAGE_SELECT_ALT;
475
476         temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
477         ret_val = e1000e_write_phy_reg_m88(hw, page_select, temp);
478         if (ret_val)
479                 return ret_val;
480
481
482         /*
483          * The "ready" bit in the MDIC register may be incorrectly set
484          * before the device has completed the "Page Select" MDI
485          * transaction.  So we wait 200us after each MDI command...
486          */
487         udelay(200);
488
489         /* ...and verify the command was successful. */
490         ret_val = e1000e_read_phy_reg_m88(hw, page_select, &temp);
491
492         if (((u16)offset >> GG82563_PAGE_SHIFT) != temp)
493                 return -E1000_ERR_PHY;
494
495         udelay(200);
496
497         ret_val = e1000e_write_phy_reg_m88(hw,
498                                           MAX_PHY_REG_ADDRESS & offset,
499                                           data);
500
501         udelay(200);
502
503         return ret_val;
504 }
505
506 /**
507  *  e1000_write_nvm_80003es2lan - Write to ESB2 NVM
508  *  @hw: pointer to the HW structure
509  *  @offset: offset of the register to read
510  *  @words: number of words to write
511  *  @data: buffer of data to write to the NVM
512  *
513  *  Write "words" of data to the ESB2 NVM.  This is a function
514  *  pointer entry point called by the api module.
515  **/
516 static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
517                                        u16 words, u16 *data)
518 {
519         return e1000e_write_nvm_spi(hw, offset, words, data);
520 }
521
522 /**
523  *  e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
524  *  @hw: pointer to the HW structure
525  *
526  *  Wait a specific amount of time for manageability processes to complete.
527  *  This is a function pointer entry point called by the phy module.
528  **/
529 static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
530 {
531         s32 timeout = PHY_CFG_TIMEOUT;
532         u32 mask = E1000_NVM_CFG_DONE_PORT_0;
533
534         if (hw->bus.func == 1)
535                 mask = E1000_NVM_CFG_DONE_PORT_1;
536
537         while (timeout) {
538                 if (er32(EEMNGCTL) & mask)
539                         break;
540                 msleep(1);
541                 timeout--;
542         }
543         if (!timeout) {
544                 hw_dbg(hw, "MNG configuration cycle has not completed.\n");
545                 return -E1000_ERR_RESET;
546         }
547
548         return 0;
549 }
550
551 /**
552  *  e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
553  *  @hw: pointer to the HW structure
554  *
555  *  Force the speed and duplex settings onto the PHY.  This is a
556  *  function pointer entry point called by the phy module.
557  **/
558 static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
559 {
560         s32 ret_val;
561         u16 phy_data;
562         bool link;
563
564         /*
565          * Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
566          * forced whenever speed and duplex are forced.
567          */
568         ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
569         if (ret_val)
570                 return ret_val;
571
572         phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
573         ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
574         if (ret_val)
575                 return ret_val;
576
577         hw_dbg(hw, "GG82563 PSCR: %X\n", phy_data);
578
579         ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
580         if (ret_val)
581                 return ret_val;
582
583         e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
584
585         /* Reset the phy to commit changes. */
586         phy_data |= MII_CR_RESET;
587
588         ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
589         if (ret_val)
590                 return ret_val;
591
592         udelay(1);
593
594         if (hw->phy.autoneg_wait_to_complete) {
595                 hw_dbg(hw, "Waiting for forced speed/duplex link "
596                          "on GG82563 phy.\n");
597
598                 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
599                                                      100000, &link);
600                 if (ret_val)
601                         return ret_val;
602
603                 if (!link) {
604                         /*
605                          * We didn't get link.
606                          * Reset the DSP and cross our fingers.
607                          */
608                         ret_val = e1000e_phy_reset_dsp(hw);
609                         if (ret_val)
610                                 return ret_val;
611                 }
612
613                 /* Try once more */
614                 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
615                                                      100000, &link);
616                 if (ret_val)
617                         return ret_val;
618         }
619
620         ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
621         if (ret_val)
622                 return ret_val;
623
624         /*
625          * Resetting the phy means we need to verify the TX_CLK corresponds
626          * to the link speed.  10Mbps -> 2.5MHz, else 25MHz.
627          */
628         phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
629         if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
630                 phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
631         else
632                 phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
633
634         /*
635          * In addition, we must re-enable CRS on Tx for both half and full
636          * duplex.
637          */
638         phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
639         ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
640
641         return ret_val;
642 }
643
644 /**
645  *  e1000_get_cable_length_80003es2lan - Set approximate cable length
646  *  @hw: pointer to the HW structure
647  *
648  *  Find the approximate cable length as measured by the GG82563 PHY.
649  *  This is a function pointer entry point called by the phy module.
650  **/
651 static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
652 {
653         struct e1000_phy_info *phy = &hw->phy;
654         s32 ret_val;
655         u16 phy_data;
656         u16 index;
657
658         ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
659         if (ret_val)
660                 return ret_val;
661
662         index = phy_data & GG82563_DSPD_CABLE_LENGTH;
663         phy->min_cable_length = e1000_gg82563_cable_length_table[index];
664         phy->max_cable_length = e1000_gg82563_cable_length_table[index+5];
665
666         phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
667
668         return 0;
669 }
670
671 /**
672  *  e1000_get_link_up_info_80003es2lan - Report speed and duplex
673  *  @hw: pointer to the HW structure
674  *  @speed: pointer to speed buffer
675  *  @duplex: pointer to duplex buffer
676  *
677  *  Retrieve the current speed and duplex configuration.
678  *  This is a function pointer entry point called by the api module.
679  **/
680 static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
681                                               u16 *duplex)
682 {
683         s32 ret_val;
684
685         if (hw->phy.media_type == e1000_media_type_copper) {
686                 ret_val = e1000e_get_speed_and_duplex_copper(hw,
687                                                                     speed,
688                                                                     duplex);
689                 if (ret_val)
690                         return ret_val;
691                 if (*speed == SPEED_1000)
692                         ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
693                 else
694                         ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw,
695                                                               *duplex);
696         } else {
697                 ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
698                                                                   speed,
699                                                                   duplex);
700         }
701
702         return ret_val;
703 }
704
705 /**
706  *  e1000_reset_hw_80003es2lan - Reset the ESB2 controller
707  *  @hw: pointer to the HW structure
708  *
709  *  Perform a global reset to the ESB2 controller.
710  *  This is a function pointer entry point called by the api module.
711  **/
712 static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
713 {
714         u32 ctrl;
715         u32 icr;
716         s32 ret_val;
717
718         /*
719          * Prevent the PCI-E bus from sticking if there is no TLP connection
720          * on the last TLP read/write transaction when MAC is reset.
721          */
722         ret_val = e1000e_disable_pcie_master(hw);
723         if (ret_val)
724                 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
725
726         hw_dbg(hw, "Masking off all interrupts\n");
727         ew32(IMC, 0xffffffff);
728
729         ew32(RCTL, 0);
730         ew32(TCTL, E1000_TCTL_PSP);
731         e1e_flush();
732
733         msleep(10);
734
735         ctrl = er32(CTRL);
736
737         hw_dbg(hw, "Issuing a global reset to MAC\n");
738         ew32(CTRL, ctrl | E1000_CTRL_RST);
739
740         ret_val = e1000e_get_auto_rd_done(hw);
741         if (ret_val)
742                 /* We don't want to continue accessing MAC registers. */
743                 return ret_val;
744
745         /* Clear any pending interrupt events. */
746         ew32(IMC, 0xffffffff);
747         icr = er32(ICR);
748
749         return 0;
750 }
751
752 /**
753  *  e1000_init_hw_80003es2lan - Initialize the ESB2 controller
754  *  @hw: pointer to the HW structure
755  *
756  *  Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
757  *  This is a function pointer entry point called by the api module.
758  **/
759 static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
760 {
761         struct e1000_mac_info *mac = &hw->mac;
762         u32 reg_data;
763         s32 ret_val;
764         u16 i;
765
766         e1000_initialize_hw_bits_80003es2lan(hw);
767
768         /* Initialize identification LED */
769         ret_val = e1000e_id_led_init(hw);
770         if (ret_val) {
771                 hw_dbg(hw, "Error initializing identification LED\n");
772                 return ret_val;
773         }
774
775         /* Disabling VLAN filtering */
776         hw_dbg(hw, "Initializing the IEEE VLAN\n");
777         e1000e_clear_vfta(hw);
778
779         /* Setup the receive address. */
780         e1000e_init_rx_addrs(hw, mac->rar_entry_count);
781
782         /* Zero out the Multicast HASH table */
783         hw_dbg(hw, "Zeroing the MTA\n");
784         for (i = 0; i < mac->mta_reg_count; i++)
785                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
786
787         /* Setup link and flow control */
788         ret_val = e1000e_setup_link(hw);
789
790         /* Set the transmit descriptor write-back policy */
791         reg_data = er32(TXDCTL);
792         reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
793                    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
794         ew32(TXDCTL, reg_data);
795
796         /* ...for both queues. */
797         reg_data = er32(TXDCTL1);
798         reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
799                    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
800         ew32(TXDCTL1, reg_data);
801
802         /* Enable retransmit on late collisions */
803         reg_data = er32(TCTL);
804         reg_data |= E1000_TCTL_RTLC;
805         ew32(TCTL, reg_data);
806
807         /* Configure Gigabit Carry Extend Padding */
808         reg_data = er32(TCTL_EXT);
809         reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
810         reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
811         ew32(TCTL_EXT, reg_data);
812
813         /* Configure Transmit Inter-Packet Gap */
814         reg_data = er32(TIPG);
815         reg_data &= ~E1000_TIPG_IPGT_MASK;
816         reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
817         ew32(TIPG, reg_data);
818
819         reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
820         reg_data &= ~0x00100000;
821         E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
822
823         /*
824          * Clear all of the statistics registers (clear on read).  It is
825          * important that we do this after we have tried to establish link
826          * because the symbol error count will increment wildly if there
827          * is no link.
828          */
829         e1000_clear_hw_cntrs_80003es2lan(hw);
830
831         return ret_val;
832 }
833
834 /**
835  *  e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
836  *  @hw: pointer to the HW structure
837  *
838  *  Initializes required hardware-dependent bits needed for normal operation.
839  **/
840 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
841 {
842         u32 reg;
843
844         /* Transmit Descriptor Control 0 */
845         reg = er32(TXDCTL);
846         reg |= (1 << 22);
847         ew32(TXDCTL, reg);
848
849         /* Transmit Descriptor Control 1 */
850         reg = er32(TXDCTL1);
851         reg |= (1 << 22);
852         ew32(TXDCTL1, reg);
853
854         /* Transmit Arbitration Control 0 */
855         reg = er32(TARC0);
856         reg &= ~(0xF << 27); /* 30:27 */
857         if (hw->phy.media_type != e1000_media_type_copper)
858                 reg &= ~(1 << 20);
859         ew32(TARC0, reg);
860
861         /* Transmit Arbitration Control 1 */
862         reg = er32(TARC1);
863         if (er32(TCTL) & E1000_TCTL_MULR)
864                 reg &= ~(1 << 28);
865         else
866                 reg |= (1 << 28);
867         ew32(TARC1, reg);
868 }
869
870 /**
871  *  e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
872  *  @hw: pointer to the HW structure
873  *
874  *  Setup some GG82563 PHY registers for obtaining link
875  **/
876 static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
877 {
878         struct e1000_phy_info *phy = &hw->phy;
879         s32 ret_val;
880         u32 ctrl_ext;
881         u16 data;
882
883         ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL,
884                                      &data);
885         if (ret_val)
886                 return ret_val;
887
888         data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
889         /* Use 25MHz for both link down and 1000Base-T for Tx clock. */
890         data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
891
892         ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL,
893                                       data);
894         if (ret_val)
895                 return ret_val;
896
897         /*
898          * Options:
899          *   MDI/MDI-X = 0 (default)
900          *   0 - Auto for all speeds
901          *   1 - MDI mode
902          *   2 - MDI-X mode
903          *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
904          */
905         ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
906         if (ret_val)
907                 return ret_val;
908
909         data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
910
911         switch (phy->mdix) {
912         case 1:
913                 data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
914                 break;
915         case 2:
916                 data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
917                 break;
918         case 0:
919         default:
920                 data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
921                 break;
922         }
923
924         /*
925          * Options:
926          *   disable_polarity_correction = 0 (default)
927          *       Automatic Correction for Reversed Cable Polarity
928          *   0 - Disabled
929          *   1 - Enabled
930          */
931         data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
932         if (phy->disable_polarity_correction)
933                 data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
934
935         ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
936         if (ret_val)
937                 return ret_val;
938
939         /* SW Reset the PHY so all changes take effect */
940         ret_val = e1000e_commit_phy(hw);
941         if (ret_val) {
942                 hw_dbg(hw, "Error Resetting the PHY\n");
943                 return ret_val;
944         }
945
946         /* Bypass Rx and Tx FIFO's */
947         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL,
948                                         E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
949                                         E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
950         if (ret_val)
951                 return ret_val;
952
953         ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
954         if (ret_val)
955                 return ret_val;
956
957         data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
958         ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
959         if (ret_val)
960                 return ret_val;
961
962         ctrl_ext = er32(CTRL_EXT);
963         ctrl_ext &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
964         ew32(CTRL_EXT, ctrl_ext);
965
966         ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
967         if (ret_val)
968                 return ret_val;
969
970         /*
971          * Do not init these registers when the HW is in IAMT mode, since the
972          * firmware will have already initialized them.  We only initialize
973          * them if the HW is not in IAMT mode.
974          */
975         if (!e1000e_check_mng_mode(hw)) {
976                 /* Enable Electrical Idle on the PHY */
977                 data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
978                 ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
979                 if (ret_val)
980                         return ret_val;
981
982                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
983                 if (ret_val)
984                         return ret_val;
985
986                 data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
987                 ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
988                 if (ret_val)
989                         return ret_val;
990         }
991
992         /*
993          * Workaround: Disable padding in Kumeran interface in the MAC
994          * and in the PHY to avoid CRC errors.
995          */
996         ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
997         if (ret_val)
998                 return ret_val;
999
1000         data |= GG82563_ICR_DIS_PADDING;
1001         ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
1002         if (ret_val)
1003                 return ret_val;
1004
1005         return 0;
1006 }
1007
1008 /**
1009  *  e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
1010  *  @hw: pointer to the HW structure
1011  *
1012  *  Essentially a wrapper for setting up all things "copper" related.
1013  *  This is a function pointer entry point called by the mac module.
1014  **/
1015 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
1016 {
1017         u32 ctrl;
1018         s32 ret_val;
1019         u16 reg_data;
1020
1021         ctrl = er32(CTRL);
1022         ctrl |= E1000_CTRL_SLU;
1023         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1024         ew32(CTRL, ctrl);
1025
1026         /*
1027          * Set the mac to wait the maximum time between each
1028          * iteration and increase the max iterations when
1029          * polling the phy; this fixes erroneous timeouts at 10Mbps.
1030          */
1031         ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
1032         if (ret_val)
1033                 return ret_val;
1034         ret_val = e1000e_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
1035         if (ret_val)
1036                 return ret_val;
1037         reg_data |= 0x3F;
1038         ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
1039         if (ret_val)
1040                 return ret_val;
1041         ret_val = e1000e_read_kmrn_reg(hw,
1042                                       E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1043                                       &reg_data);
1044         if (ret_val)
1045                 return ret_val;
1046         reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
1047         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1048                                         reg_data);
1049         if (ret_val)
1050                 return ret_val;
1051
1052         ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
1053         if (ret_val)
1054                 return ret_val;
1055
1056         ret_val = e1000e_setup_copper_link(hw);
1057
1058         return 0;
1059 }
1060
1061 /**
1062  *  e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
1063  *  @hw: pointer to the HW structure
1064  *  @duplex: current duplex setting
1065  *
1066  *  Configure the KMRN interface by applying last minute quirks for
1067  *  10/100 operation.
1068  **/
1069 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
1070 {
1071         s32 ret_val;
1072         u32 tipg;
1073         u16 reg_data;
1074
1075         reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
1076         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1077                                         reg_data);
1078         if (ret_val)
1079                 return ret_val;
1080
1081         /* Configure Transmit Inter-Packet Gap */
1082         tipg = er32(TIPG);
1083         tipg &= ~E1000_TIPG_IPGT_MASK;
1084         tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
1085         ew32(TIPG, tipg);
1086
1087         ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1088         if (ret_val)
1089                 return ret_val;
1090
1091         if (duplex == HALF_DUPLEX)
1092                 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
1093         else
1094                 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1095
1096         ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1097
1098         return 0;
1099 }
1100
1101 /**
1102  *  e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
1103  *  @hw: pointer to the HW structure
1104  *
1105  *  Configure the KMRN interface by applying last minute quirks for
1106  *  gigabit operation.
1107  **/
1108 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
1109 {
1110         s32 ret_val;
1111         u16 reg_data;
1112         u32 tipg;
1113
1114         reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
1115         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1116                                         reg_data);
1117         if (ret_val)
1118                 return ret_val;
1119
1120         /* Configure Transmit Inter-Packet Gap */
1121         tipg = er32(TIPG);
1122         tipg &= ~E1000_TIPG_IPGT_MASK;
1123         tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
1124         ew32(TIPG, tipg);
1125
1126         ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1127         if (ret_val)
1128                 return ret_val;
1129
1130         reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1131         ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1132
1133         return ret_val;
1134 }
1135
1136 /**
1137  *  e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
1138  *  @hw: pointer to the HW structure
1139  *
1140  *  Clears the hardware counters by reading the counter registers.
1141  **/
1142 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
1143 {
1144         u32 temp;
1145
1146         e1000e_clear_hw_cntrs_base(hw);
1147
1148         temp = er32(PRC64);
1149         temp = er32(PRC127);
1150         temp = er32(PRC255);
1151         temp = er32(PRC511);
1152         temp = er32(PRC1023);
1153         temp = er32(PRC1522);
1154         temp = er32(PTC64);
1155         temp = er32(PTC127);
1156         temp = er32(PTC255);
1157         temp = er32(PTC511);
1158         temp = er32(PTC1023);
1159         temp = er32(PTC1522);
1160
1161         temp = er32(ALGNERRC);
1162         temp = er32(RXERRC);
1163         temp = er32(TNCRS);
1164         temp = er32(CEXTERR);
1165         temp = er32(TSCTC);
1166         temp = er32(TSCTFC);
1167
1168         temp = er32(MGTPRC);
1169         temp = er32(MGTPDC);
1170         temp = er32(MGTPTC);
1171
1172         temp = er32(IAC);
1173         temp = er32(ICRXOC);
1174
1175         temp = er32(ICRXPTC);
1176         temp = er32(ICRXATC);
1177         temp = er32(ICTXPTC);
1178         temp = er32(ICTXATC);
1179         temp = er32(ICTXQEC);
1180         temp = er32(ICTXQMTC);
1181         temp = er32(ICRXDMTC);
1182 }
1183
1184 static struct e1000_mac_operations es2_mac_ops = {
1185         .mng_mode_enab          = E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT,
1186         /* check_for_link dependent on media type */
1187         .cleanup_led            = e1000e_cleanup_led_generic,
1188         .clear_hw_cntrs         = e1000_clear_hw_cntrs_80003es2lan,
1189         .get_bus_info           = e1000e_get_bus_info_pcie,
1190         .get_link_up_info       = e1000_get_link_up_info_80003es2lan,
1191         .led_on                 = e1000e_led_on_generic,
1192         .led_off                = e1000e_led_off_generic,
1193         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
1194         .reset_hw               = e1000_reset_hw_80003es2lan,
1195         .init_hw                = e1000_init_hw_80003es2lan,
1196         .setup_link             = e1000e_setup_link,
1197         /* setup_physical_interface dependent on media type */
1198 };
1199
1200 static struct e1000_phy_operations es2_phy_ops = {
1201         .acquire_phy            = e1000_acquire_phy_80003es2lan,
1202         .check_reset_block      = e1000e_check_reset_block_generic,
1203         .commit_phy             = e1000e_phy_sw_reset,
1204         .force_speed_duplex     = e1000_phy_force_speed_duplex_80003es2lan,
1205         .get_cfg_done           = e1000_get_cfg_done_80003es2lan,
1206         .get_cable_length       = e1000_get_cable_length_80003es2lan,
1207         .get_phy_info           = e1000e_get_phy_info_m88,
1208         .read_phy_reg           = e1000_read_phy_reg_gg82563_80003es2lan,
1209         .release_phy            = e1000_release_phy_80003es2lan,
1210         .reset_phy              = e1000e_phy_hw_reset_generic,
1211         .set_d0_lplu_state      = NULL,
1212         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1213         .write_phy_reg          = e1000_write_phy_reg_gg82563_80003es2lan,
1214 };
1215
1216 static struct e1000_nvm_operations es2_nvm_ops = {
1217         .acquire_nvm            = e1000_acquire_nvm_80003es2lan,
1218         .read_nvm               = e1000e_read_nvm_eerd,
1219         .release_nvm            = e1000_release_nvm_80003es2lan,
1220         .update_nvm             = e1000e_update_nvm_checksum_generic,
1221         .valid_led_default      = e1000e_valid_led_default,
1222         .validate_nvm           = e1000e_validate_nvm_checksum_generic,
1223         .write_nvm              = e1000_write_nvm_80003es2lan,
1224 };
1225
1226 struct e1000_info e1000_es2_info = {
1227         .mac                    = e1000_80003es2lan,
1228         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1229                                   | FLAG_HAS_JUMBO_FRAMES
1230                                   | FLAG_HAS_STATS_PTC_PRC
1231                                   | FLAG_HAS_WOL
1232                                   | FLAG_APME_IN_CTRL3
1233                                   | FLAG_RX_CSUM_ENABLED
1234                                   | FLAG_HAS_CTRLEXT_ON_LOAD
1235                                   | FLAG_HAS_STATS_ICR_ICT
1236                                   | FLAG_RX_NEEDS_RESTART /* errata */
1237                                   | FLAG_TARC_SET_BIT_ZERO /* errata */
1238                                   | FLAG_APME_CHECK_PORT_B
1239                                   | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
1240                                   | FLAG_TIPG_MEDIUM_FOR_80003ESLAN,
1241         .pba                    = 38,
1242         .get_invariants         = e1000_get_invariants_80003es2lan,
1243         .mac_ops                = &es2_mac_ops,
1244         .phy_ops                = &es2_phy_ops,
1245         .nvm_ops                = &es2_nvm_ops,
1246 };
1247