]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/e1000e/es2lan.c
Merge branch 'upstream' of git://ftp.linux-mips.org/pub/scm/upstream-linus
[linux-2.6-omap-h63xx.git] / drivers / net / e1000e / es2lan.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2008 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /*
30  * 80003ES2LAN Gigabit Ethernet Controller (Copper)
31  * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
32  */
33
34 #include <linux/netdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/delay.h>
37 #include <linux/pci.h>
38
39 #include "e1000.h"
40
41 #define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL       0x00
42 #define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL        0x02
43 #define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL         0x10
44 #define E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE  0x1F
45
46 #define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS    0x0008
47 #define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS    0x0800
48 #define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING   0x0010
49
50 #define E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004
51 #define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT   0x0000
52 #define E1000_KMRNCTRLSTA_OPMODE_E_IDLE          0x2000
53
54 #define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */
55 #define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN        0x00010000
56
57 #define DEFAULT_TIPG_IPGT_1000_80003ES2LAN       0x8
58 #define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN     0x9
59
60 /* GG82563 PHY Specific Status Register (Page 0, Register 16 */
61 #define GG82563_PSCR_POLARITY_REVERSAL_DISABLE   0x0002 /* 1=Reversal Disab. */
62 #define GG82563_PSCR_CROSSOVER_MODE_MASK         0x0060
63 #define GG82563_PSCR_CROSSOVER_MODE_MDI          0x0000 /* 00=Manual MDI */
64 #define GG82563_PSCR_CROSSOVER_MODE_MDIX         0x0020 /* 01=Manual MDIX */
65 #define GG82563_PSCR_CROSSOVER_MODE_AUTO         0x0060 /* 11=Auto crossover */
66
67 /* PHY Specific Control Register 2 (Page 0, Register 26) */
68 #define GG82563_PSCR2_REVERSE_AUTO_NEG           0x2000
69                                                 /* 1=Reverse Auto-Negotiation */
70
71 /* MAC Specific Control Register (Page 2, Register 21) */
72 /* Tx clock speed for Link Down and 1000BASE-T for the following speeds */
73 #define GG82563_MSCR_TX_CLK_MASK                 0x0007
74 #define GG82563_MSCR_TX_CLK_10MBPS_2_5           0x0004
75 #define GG82563_MSCR_TX_CLK_100MBPS_25           0x0005
76 #define GG82563_MSCR_TX_CLK_1000MBPS_25          0x0007
77
78 #define GG82563_MSCR_ASSERT_CRS_ON_TX            0x0010 /* 1=Assert */
79
80 /* DSP Distance Register (Page 5, Register 26) */
81 #define GG82563_DSPD_CABLE_LENGTH                0x0007 /* 0 = <50M
82                                                            1 = 50-80M
83                                                            2 = 80-110M
84                                                            3 = 110-140M
85                                                            4 = >140M */
86
87 /* Kumeran Mode Control Register (Page 193, Register 16) */
88 #define GG82563_KMCR_PASS_FALSE_CARRIER          0x0800
89
90 /* Max number of times Kumeran read/write should be validated */
91 #define GG82563_MAX_KMRN_RETRY  0x5
92
93 /* Power Management Control Register (Page 193, Register 20) */
94 #define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE      0x0001
95                                            /* 1=Enable SERDES Electrical Idle */
96
97 /* In-Band Control Register (Page 194, Register 18) */
98 #define GG82563_ICR_DIS_PADDING                  0x0010 /* Disable Padding */
99
100 /*
101  * A table for the GG82563 cable length where the range is defined
102  * with a lower bound at "index" and the upper bound at
103  * "index + 5".
104  */
105 static const u16 e1000_gg82563_cable_length_table[] =
106          { 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF };
107
108 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
109 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
110 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
111 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
112 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
113 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
114 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
115
116 /**
117  *  e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
118  *  @hw: pointer to the HW structure
119  *
120  *  This is a function pointer entry point called by the api module.
121  **/
122 static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
123 {
124         struct e1000_phy_info *phy = &hw->phy;
125         s32 ret_val;
126
127         if (hw->phy.media_type != e1000_media_type_copper) {
128                 phy->type       = e1000_phy_none;
129                 return 0;
130         }
131
132         phy->addr               = 1;
133         phy->autoneg_mask       = AUTONEG_ADVERTISE_SPEED_DEFAULT;
134         phy->reset_delay_us      = 100;
135         phy->type               = e1000_phy_gg82563;
136
137         /* This can only be done after all function pointers are setup. */
138         ret_val = e1000e_get_phy_id(hw);
139
140         /* Verify phy id */
141         if (phy->id != GG82563_E_PHY_ID)
142                 return -E1000_ERR_PHY;
143
144         return ret_val;
145 }
146
147 /**
148  *  e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
149  *  @hw: pointer to the HW structure
150  *
151  *  This is a function pointer entry point called by the api module.
152  **/
153 static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
154 {
155         struct e1000_nvm_info *nvm = &hw->nvm;
156         u32 eecd = er32(EECD);
157         u16 size;
158
159         nvm->opcode_bits        = 8;
160         nvm->delay_usec  = 1;
161         switch (nvm->override) {
162         case e1000_nvm_override_spi_large:
163                 nvm->page_size    = 32;
164                 nvm->address_bits = 16;
165                 break;
166         case e1000_nvm_override_spi_small:
167                 nvm->page_size    = 8;
168                 nvm->address_bits = 8;
169                 break;
170         default:
171                 nvm->page_size    = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
172                 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
173                 break;
174         }
175
176         nvm->type = e1000_nvm_eeprom_spi;
177
178         size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
179                           E1000_EECD_SIZE_EX_SHIFT);
180
181         /*
182          * Added to a constant, "size" becomes the left-shift value
183          * for setting word_size.
184          */
185         size += NVM_WORD_SIZE_BASE_SHIFT;
186
187         /* EEPROM access above 16k is unsupported */
188         if (size > 14)
189                 size = 14;
190         nvm->word_size  = 1 << size;
191
192         return 0;
193 }
194
195 /**
196  *  e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
197  *  @hw: pointer to the HW structure
198  *
199  *  This is a function pointer entry point called by the api module.
200  **/
201 static s32 e1000_init_mac_params_80003es2lan(struct e1000_adapter *adapter)
202 {
203         struct e1000_hw *hw = &adapter->hw;
204         struct e1000_mac_info *mac = &hw->mac;
205         struct e1000_mac_operations *func = &mac->ops;
206
207         /* Set media type */
208         switch (adapter->pdev->device) {
209         case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
210                 hw->phy.media_type = e1000_media_type_internal_serdes;
211                 break;
212         default:
213                 hw->phy.media_type = e1000_media_type_copper;
214                 break;
215         }
216
217         /* Set mta register count */
218         mac->mta_reg_count = 128;
219         /* Set rar entry count */
220         mac->rar_entry_count = E1000_RAR_ENTRIES;
221         /* Set if manageability features are enabled. */
222         mac->arc_subsystem_valid = (er32(FWSM) & E1000_FWSM_MODE_MASK) ? 1 : 0;
223
224         /* check for link */
225         switch (hw->phy.media_type) {
226         case e1000_media_type_copper:
227                 func->setup_physical_interface = e1000_setup_copper_link_80003es2lan;
228                 func->check_for_link = e1000e_check_for_copper_link;
229                 break;
230         case e1000_media_type_fiber:
231                 func->setup_physical_interface = e1000e_setup_fiber_serdes_link;
232                 func->check_for_link = e1000e_check_for_fiber_link;
233                 break;
234         case e1000_media_type_internal_serdes:
235                 func->setup_physical_interface = e1000e_setup_fiber_serdes_link;
236                 func->check_for_link = e1000e_check_for_serdes_link;
237                 break;
238         default:
239                 return -E1000_ERR_CONFIG;
240                 break;
241         }
242
243         return 0;
244 }
245
246 static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter)
247 {
248         struct e1000_hw *hw = &adapter->hw;
249         s32 rc;
250
251         rc = e1000_init_mac_params_80003es2lan(adapter);
252         if (rc)
253                 return rc;
254
255         rc = e1000_init_nvm_params_80003es2lan(hw);
256         if (rc)
257                 return rc;
258
259         rc = e1000_init_phy_params_80003es2lan(hw);
260         if (rc)
261                 return rc;
262
263         return 0;
264 }
265
266 /**
267  *  e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
268  *  @hw: pointer to the HW structure
269  *
270  *  A wrapper to acquire access rights to the correct PHY.  This is a
271  *  function pointer entry point called by the api module.
272  **/
273 static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
274 {
275         u16 mask;
276
277         mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
278         mask |= E1000_SWFW_CSR_SM;
279
280         return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
281 }
282
283 /**
284  *  e1000_release_phy_80003es2lan - Release rights to access PHY
285  *  @hw: pointer to the HW structure
286  *
287  *  A wrapper to release access rights to the correct PHY.  This is a
288  *  function pointer entry point called by the api module.
289  **/
290 static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
291 {
292         u16 mask;
293
294         mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
295         mask |= E1000_SWFW_CSR_SM;
296
297         e1000_release_swfw_sync_80003es2lan(hw, mask);
298 }
299
300 /**
301  *  e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
302  *  @hw: pointer to the HW structure
303  *
304  *  Acquire the semaphore to access the EEPROM.  This is a function
305  *  pointer entry point called by the api module.
306  **/
307 static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
308 {
309         s32 ret_val;
310
311         ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
312         if (ret_val)
313                 return ret_val;
314
315         ret_val = e1000e_acquire_nvm(hw);
316
317         if (ret_val)
318                 e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
319
320         return ret_val;
321 }
322
323 /**
324  *  e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
325  *  @hw: pointer to the HW structure
326  *
327  *  Release the semaphore used to access the EEPROM.  This is a
328  *  function pointer entry point called by the api module.
329  **/
330 static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
331 {
332         e1000e_release_nvm(hw);
333         e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
334 }
335
336 /**
337  *  e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
338  *  @hw: pointer to the HW structure
339  *  @mask: specifies which semaphore to acquire
340  *
341  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
342  *  will also specify which port we're acquiring the lock for.
343  **/
344 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
345 {
346         u32 swfw_sync;
347         u32 swmask = mask;
348         u32 fwmask = mask << 16;
349         s32 i = 0;
350         s32 timeout = 200;
351
352         while (i < timeout) {
353                 if (e1000e_get_hw_semaphore(hw))
354                         return -E1000_ERR_SWFW_SYNC;
355
356                 swfw_sync = er32(SW_FW_SYNC);
357                 if (!(swfw_sync & (fwmask | swmask)))
358                         break;
359
360                 /*
361                  * Firmware currently using resource (fwmask)
362                  * or other software thread using resource (swmask)
363                  */
364                 e1000e_put_hw_semaphore(hw);
365                 mdelay(5);
366                 i++;
367         }
368
369         if (i == timeout) {
370                 hw_dbg(hw,
371                        "Driver can't access resource, SW_FW_SYNC timeout.\n");
372                 return -E1000_ERR_SWFW_SYNC;
373         }
374
375         swfw_sync |= swmask;
376         ew32(SW_FW_SYNC, swfw_sync);
377
378         e1000e_put_hw_semaphore(hw);
379
380         return 0;
381 }
382
383 /**
384  *  e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
385  *  @hw: pointer to the HW structure
386  *  @mask: specifies which semaphore to acquire
387  *
388  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
389  *  will also specify which port we're releasing the lock for.
390  **/
391 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
392 {
393         u32 swfw_sync;
394
395         while (e1000e_get_hw_semaphore(hw) != 0);
396         /* Empty */
397
398         swfw_sync = er32(SW_FW_SYNC);
399         swfw_sync &= ~mask;
400         ew32(SW_FW_SYNC, swfw_sync);
401
402         e1000e_put_hw_semaphore(hw);
403 }
404
405 /**
406  *  e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
407  *  @hw: pointer to the HW structure
408  *  @offset: offset of the register to read
409  *  @data: pointer to the data returned from the operation
410  *
411  *  Read the GG82563 PHY register.  This is a function pointer entry
412  *  point called by the api module.
413  **/
414 static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
415                                                   u32 offset, u16 *data)
416 {
417         s32 ret_val;
418         u32 page_select;
419         u16 temp;
420
421         ret_val = e1000_acquire_phy_80003es2lan(hw);
422         if (ret_val)
423                 return ret_val;
424
425         /* Select Configuration Page */
426         if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
427                 page_select = GG82563_PHY_PAGE_SELECT;
428         } else {
429                 /*
430                  * Use Alternative Page Select register to access
431                  * registers 30 and 31
432                  */
433                 page_select = GG82563_PHY_PAGE_SELECT_ALT;
434         }
435
436         temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
437         ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
438         if (ret_val) {
439                 e1000_release_phy_80003es2lan(hw);
440                 return ret_val;
441         }
442
443         /*
444          * The "ready" bit in the MDIC register may be incorrectly set
445          * before the device has completed the "Page Select" MDI
446          * transaction.  So we wait 200us after each MDI command...
447          */
448         udelay(200);
449
450         /* ...and verify the command was successful. */
451         ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
452
453         if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
454                 ret_val = -E1000_ERR_PHY;
455                 e1000_release_phy_80003es2lan(hw);
456                 return ret_val;
457         }
458
459         udelay(200);
460
461         ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
462                                            data);
463
464         udelay(200);
465         e1000_release_phy_80003es2lan(hw);
466
467         return ret_val;
468 }
469
470 /**
471  *  e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
472  *  @hw: pointer to the HW structure
473  *  @offset: offset of the register to read
474  *  @data: value to write to the register
475  *
476  *  Write to the GG82563 PHY register.  This is a function pointer entry
477  *  point called by the api module.
478  **/
479 static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
480                                                    u32 offset, u16 data)
481 {
482         s32 ret_val;
483         u32 page_select;
484         u16 temp;
485
486         ret_val = e1000_acquire_phy_80003es2lan(hw);
487         if (ret_val)
488                 return ret_val;
489
490         /* Select Configuration Page */
491         if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
492                 page_select = GG82563_PHY_PAGE_SELECT;
493         } else {
494                 /*
495                  * Use Alternative Page Select register to access
496                  * registers 30 and 31
497                  */
498                 page_select = GG82563_PHY_PAGE_SELECT_ALT;
499         }
500
501         temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
502         ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
503         if (ret_val) {
504                 e1000_release_phy_80003es2lan(hw);
505                 return ret_val;
506         }
507
508
509         /*
510          * The "ready" bit in the MDIC register may be incorrectly set
511          * before the device has completed the "Page Select" MDI
512          * transaction.  So we wait 200us after each MDI command...
513          */
514         udelay(200);
515
516         /* ...and verify the command was successful. */
517         ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
518
519         if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
520                 e1000_release_phy_80003es2lan(hw);
521                 return -E1000_ERR_PHY;
522         }
523
524         udelay(200);
525
526         ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
527                                             data);
528
529         udelay(200);
530         e1000_release_phy_80003es2lan(hw);
531
532         return ret_val;
533 }
534
535 /**
536  *  e1000_write_nvm_80003es2lan - Write to ESB2 NVM
537  *  @hw: pointer to the HW structure
538  *  @offset: offset of the register to read
539  *  @words: number of words to write
540  *  @data: buffer of data to write to the NVM
541  *
542  *  Write "words" of data to the ESB2 NVM.  This is a function
543  *  pointer entry point called by the api module.
544  **/
545 static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
546                                        u16 words, u16 *data)
547 {
548         return e1000e_write_nvm_spi(hw, offset, words, data);
549 }
550
551 /**
552  *  e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
553  *  @hw: pointer to the HW structure
554  *
555  *  Wait a specific amount of time for manageability processes to complete.
556  *  This is a function pointer entry point called by the phy module.
557  **/
558 static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
559 {
560         s32 timeout = PHY_CFG_TIMEOUT;
561         u32 mask = E1000_NVM_CFG_DONE_PORT_0;
562
563         if (hw->bus.func == 1)
564                 mask = E1000_NVM_CFG_DONE_PORT_1;
565
566         while (timeout) {
567                 if (er32(EEMNGCTL) & mask)
568                         break;
569                 msleep(1);
570                 timeout--;
571         }
572         if (!timeout) {
573                 hw_dbg(hw, "MNG configuration cycle has not completed.\n");
574                 return -E1000_ERR_RESET;
575         }
576
577         return 0;
578 }
579
580 /**
581  *  e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
582  *  @hw: pointer to the HW structure
583  *
584  *  Force the speed and duplex settings onto the PHY.  This is a
585  *  function pointer entry point called by the phy module.
586  **/
587 static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
588 {
589         s32 ret_val;
590         u16 phy_data;
591         bool link;
592
593         /*
594          * Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
595          * forced whenever speed and duplex are forced.
596          */
597         ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
598         if (ret_val)
599                 return ret_val;
600
601         phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
602         ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
603         if (ret_val)
604                 return ret_val;
605
606         hw_dbg(hw, "GG82563 PSCR: %X\n", phy_data);
607
608         ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
609         if (ret_val)
610                 return ret_val;
611
612         e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
613
614         /* Reset the phy to commit changes. */
615         phy_data |= MII_CR_RESET;
616
617         ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
618         if (ret_val)
619                 return ret_val;
620
621         udelay(1);
622
623         if (hw->phy.autoneg_wait_to_complete) {
624                 hw_dbg(hw, "Waiting for forced speed/duplex link "
625                          "on GG82563 phy.\n");
626
627                 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
628                                                      100000, &link);
629                 if (ret_val)
630                         return ret_val;
631
632                 if (!link) {
633                         /*
634                          * We didn't get link.
635                          * Reset the DSP and cross our fingers.
636                          */
637                         ret_val = e1000e_phy_reset_dsp(hw);
638                         if (ret_val)
639                                 return ret_val;
640                 }
641
642                 /* Try once more */
643                 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
644                                                      100000, &link);
645                 if (ret_val)
646                         return ret_val;
647         }
648
649         ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
650         if (ret_val)
651                 return ret_val;
652
653         /*
654          * Resetting the phy means we need to verify the TX_CLK corresponds
655          * to the link speed.  10Mbps -> 2.5MHz, else 25MHz.
656          */
657         phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
658         if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
659                 phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
660         else
661                 phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
662
663         /*
664          * In addition, we must re-enable CRS on Tx for both half and full
665          * duplex.
666          */
667         phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
668         ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
669
670         return ret_val;
671 }
672
673 /**
674  *  e1000_get_cable_length_80003es2lan - Set approximate cable length
675  *  @hw: pointer to the HW structure
676  *
677  *  Find the approximate cable length as measured by the GG82563 PHY.
678  *  This is a function pointer entry point called by the phy module.
679  **/
680 static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
681 {
682         struct e1000_phy_info *phy = &hw->phy;
683         s32 ret_val;
684         u16 phy_data;
685         u16 index;
686
687         ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
688         if (ret_val)
689                 return ret_val;
690
691         index = phy_data & GG82563_DSPD_CABLE_LENGTH;
692         phy->min_cable_length = e1000_gg82563_cable_length_table[index];
693         phy->max_cable_length = e1000_gg82563_cable_length_table[index+5];
694
695         phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
696
697         return 0;
698 }
699
700 /**
701  *  e1000_get_link_up_info_80003es2lan - Report speed and duplex
702  *  @hw: pointer to the HW structure
703  *  @speed: pointer to speed buffer
704  *  @duplex: pointer to duplex buffer
705  *
706  *  Retrieve the current speed and duplex configuration.
707  *  This is a function pointer entry point called by the api module.
708  **/
709 static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
710                                               u16 *duplex)
711 {
712         s32 ret_val;
713
714         if (hw->phy.media_type == e1000_media_type_copper) {
715                 ret_val = e1000e_get_speed_and_duplex_copper(hw,
716                                                                     speed,
717                                                                     duplex);
718                 if (ret_val)
719                         return ret_val;
720                 if (*speed == SPEED_1000)
721                         ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
722                 else
723                         ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw,
724                                                               *duplex);
725         } else {
726                 ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
727                                                                   speed,
728                                                                   duplex);
729         }
730
731         return ret_val;
732 }
733
734 /**
735  *  e1000_reset_hw_80003es2lan - Reset the ESB2 controller
736  *  @hw: pointer to the HW structure
737  *
738  *  Perform a global reset to the ESB2 controller.
739  *  This is a function pointer entry point called by the api module.
740  **/
741 static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
742 {
743         u32 ctrl;
744         u32 icr;
745         s32 ret_val;
746
747         /*
748          * Prevent the PCI-E bus from sticking if there is no TLP connection
749          * on the last TLP read/write transaction when MAC is reset.
750          */
751         ret_val = e1000e_disable_pcie_master(hw);
752         if (ret_val)
753                 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
754
755         hw_dbg(hw, "Masking off all interrupts\n");
756         ew32(IMC, 0xffffffff);
757
758         ew32(RCTL, 0);
759         ew32(TCTL, E1000_TCTL_PSP);
760         e1e_flush();
761
762         msleep(10);
763
764         ctrl = er32(CTRL);
765
766         hw_dbg(hw, "Issuing a global reset to MAC\n");
767         ew32(CTRL, ctrl | E1000_CTRL_RST);
768
769         ret_val = e1000e_get_auto_rd_done(hw);
770         if (ret_val)
771                 /* We don't want to continue accessing MAC registers. */
772                 return ret_val;
773
774         /* Clear any pending interrupt events. */
775         ew32(IMC, 0xffffffff);
776         icr = er32(ICR);
777
778         return 0;
779 }
780
781 /**
782  *  e1000_init_hw_80003es2lan - Initialize the ESB2 controller
783  *  @hw: pointer to the HW structure
784  *
785  *  Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
786  *  This is a function pointer entry point called by the api module.
787  **/
788 static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
789 {
790         struct e1000_mac_info *mac = &hw->mac;
791         u32 reg_data;
792         s32 ret_val;
793         u16 i;
794
795         e1000_initialize_hw_bits_80003es2lan(hw);
796
797         /* Initialize identification LED */
798         ret_val = e1000e_id_led_init(hw);
799         if (ret_val) {
800                 hw_dbg(hw, "Error initializing identification LED\n");
801                 return ret_val;
802         }
803
804         /* Disabling VLAN filtering */
805         hw_dbg(hw, "Initializing the IEEE VLAN\n");
806         e1000e_clear_vfta(hw);
807
808         /* Setup the receive address. */
809         e1000e_init_rx_addrs(hw, mac->rar_entry_count);
810
811         /* Zero out the Multicast HASH table */
812         hw_dbg(hw, "Zeroing the MTA\n");
813         for (i = 0; i < mac->mta_reg_count; i++)
814                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
815
816         /* Setup link and flow control */
817         ret_val = e1000e_setup_link(hw);
818
819         /* Set the transmit descriptor write-back policy */
820         reg_data = er32(TXDCTL(0));
821         reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
822                    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
823         ew32(TXDCTL(0), reg_data);
824
825         /* ...for both queues. */
826         reg_data = er32(TXDCTL(1));
827         reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
828                    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
829         ew32(TXDCTL(1), reg_data);
830
831         /* Enable retransmit on late collisions */
832         reg_data = er32(TCTL);
833         reg_data |= E1000_TCTL_RTLC;
834         ew32(TCTL, reg_data);
835
836         /* Configure Gigabit Carry Extend Padding */
837         reg_data = er32(TCTL_EXT);
838         reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
839         reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
840         ew32(TCTL_EXT, reg_data);
841
842         /* Configure Transmit Inter-Packet Gap */
843         reg_data = er32(TIPG);
844         reg_data &= ~E1000_TIPG_IPGT_MASK;
845         reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
846         ew32(TIPG, reg_data);
847
848         reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
849         reg_data &= ~0x00100000;
850         E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
851
852         /*
853          * Clear all of the statistics registers (clear on read).  It is
854          * important that we do this after we have tried to establish link
855          * because the symbol error count will increment wildly if there
856          * is no link.
857          */
858         e1000_clear_hw_cntrs_80003es2lan(hw);
859
860         return ret_val;
861 }
862
863 /**
864  *  e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
865  *  @hw: pointer to the HW structure
866  *
867  *  Initializes required hardware-dependent bits needed for normal operation.
868  **/
869 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
870 {
871         u32 reg;
872
873         /* Transmit Descriptor Control 0 */
874         reg = er32(TXDCTL(0));
875         reg |= (1 << 22);
876         ew32(TXDCTL(0), reg);
877
878         /* Transmit Descriptor Control 1 */
879         reg = er32(TXDCTL(1));
880         reg |= (1 << 22);
881         ew32(TXDCTL(1), reg);
882
883         /* Transmit Arbitration Control 0 */
884         reg = er32(TARC(0));
885         reg &= ~(0xF << 27); /* 30:27 */
886         if (hw->phy.media_type != e1000_media_type_copper)
887                 reg &= ~(1 << 20);
888         ew32(TARC(0), reg);
889
890         /* Transmit Arbitration Control 1 */
891         reg = er32(TARC(1));
892         if (er32(TCTL) & E1000_TCTL_MULR)
893                 reg &= ~(1 << 28);
894         else
895                 reg |= (1 << 28);
896         ew32(TARC(1), reg);
897 }
898
899 /**
900  *  e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
901  *  @hw: pointer to the HW structure
902  *
903  *  Setup some GG82563 PHY registers for obtaining link
904  **/
905 static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
906 {
907         struct e1000_phy_info *phy = &hw->phy;
908         s32 ret_val;
909         u32 ctrl_ext;
910         u32 i = 0;
911         u16 data, data2;
912
913         ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
914         if (ret_val)
915                 return ret_val;
916
917         data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
918         /* Use 25MHz for both link down and 1000Base-T for Tx clock. */
919         data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
920
921         ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
922         if (ret_val)
923                 return ret_val;
924
925         /*
926          * Options:
927          *   MDI/MDI-X = 0 (default)
928          *   0 - Auto for all speeds
929          *   1 - MDI mode
930          *   2 - MDI-X mode
931          *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
932          */
933         ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
934         if (ret_val)
935                 return ret_val;
936
937         data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
938
939         switch (phy->mdix) {
940         case 1:
941                 data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
942                 break;
943         case 2:
944                 data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
945                 break;
946         case 0:
947         default:
948                 data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
949                 break;
950         }
951
952         /*
953          * Options:
954          *   disable_polarity_correction = 0 (default)
955          *       Automatic Correction for Reversed Cable Polarity
956          *   0 - Disabled
957          *   1 - Enabled
958          */
959         data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
960         if (phy->disable_polarity_correction)
961                 data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
962
963         ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
964         if (ret_val)
965                 return ret_val;
966
967         /* SW Reset the PHY so all changes take effect */
968         ret_val = e1000e_commit_phy(hw);
969         if (ret_val) {
970                 hw_dbg(hw, "Error Resetting the PHY\n");
971                 return ret_val;
972         }
973
974         /* Bypass Rx and Tx FIFO's */
975         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL,
976                                         E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
977                                         E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
978         if (ret_val)
979                 return ret_val;
980
981         ret_val = e1000e_read_kmrn_reg(hw,
982                                        E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
983                                        &data);
984         if (ret_val)
985                 return ret_val;
986         data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
987         ret_val = e1000e_write_kmrn_reg(hw,
988                                         E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
989                                         data);
990         if (ret_val)
991                 return ret_val;
992
993         ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
994         if (ret_val)
995                 return ret_val;
996
997         data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
998         ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
999         if (ret_val)
1000                 return ret_val;
1001
1002         ctrl_ext = er32(CTRL_EXT);
1003         ctrl_ext &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
1004         ew32(CTRL_EXT, ctrl_ext);
1005
1006         ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
1007         if (ret_val)
1008                 return ret_val;
1009
1010         /*
1011          * Do not init these registers when the HW is in IAMT mode, since the
1012          * firmware will have already initialized them.  We only initialize
1013          * them if the HW is not in IAMT mode.
1014          */
1015         if (!e1000e_check_mng_mode(hw)) {
1016                 /* Enable Electrical Idle on the PHY */
1017                 data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
1018                 ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
1019                 if (ret_val)
1020                         return ret_val;
1021
1022                 do {
1023                         ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL,
1024                                            &data);
1025                         if (ret_val)
1026                                 return ret_val;
1027
1028                         ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL,
1029                                            &data2);
1030                         if (ret_val)
1031                                 return ret_val;
1032                         i++;
1033                 } while ((data != data2) && (i < GG82563_MAX_KMRN_RETRY));
1034
1035                 data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1036                 ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
1037                 if (ret_val)
1038                         return ret_val;
1039         }
1040
1041         /*
1042          * Workaround: Disable padding in Kumeran interface in the MAC
1043          * and in the PHY to avoid CRC errors.
1044          */
1045         ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
1046         if (ret_val)
1047                 return ret_val;
1048
1049         data |= GG82563_ICR_DIS_PADDING;
1050         ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
1051         if (ret_val)
1052                 return ret_val;
1053
1054         return 0;
1055 }
1056
1057 /**
1058  *  e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
1059  *  @hw: pointer to the HW structure
1060  *
1061  *  Essentially a wrapper for setting up all things "copper" related.
1062  *  This is a function pointer entry point called by the mac module.
1063  **/
1064 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
1065 {
1066         u32 ctrl;
1067         s32 ret_val;
1068         u16 reg_data;
1069
1070         ctrl = er32(CTRL);
1071         ctrl |= E1000_CTRL_SLU;
1072         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1073         ew32(CTRL, ctrl);
1074
1075         /*
1076          * Set the mac to wait the maximum time between each
1077          * iteration and increase the max iterations when
1078          * polling the phy; this fixes erroneous timeouts at 10Mbps.
1079          */
1080         ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
1081         if (ret_val)
1082                 return ret_val;
1083         ret_val = e1000e_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
1084         if (ret_val)
1085                 return ret_val;
1086         reg_data |= 0x3F;
1087         ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
1088         if (ret_val)
1089                 return ret_val;
1090         ret_val = e1000e_read_kmrn_reg(hw,
1091                                       E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1092                                       &reg_data);
1093         if (ret_val)
1094                 return ret_val;
1095         reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
1096         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1097                                         reg_data);
1098         if (ret_val)
1099                 return ret_val;
1100
1101         ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
1102         if (ret_val)
1103                 return ret_val;
1104
1105         ret_val = e1000e_setup_copper_link(hw);
1106
1107         return 0;
1108 }
1109
1110 /**
1111  *  e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
1112  *  @hw: pointer to the HW structure
1113  *  @duplex: current duplex setting
1114  *
1115  *  Configure the KMRN interface by applying last minute quirks for
1116  *  10/100 operation.
1117  **/
1118 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
1119 {
1120         s32 ret_val;
1121         u32 tipg;
1122         u32 i = 0;
1123         u16 reg_data, reg_data2;
1124
1125         reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
1126         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1127                                         reg_data);
1128         if (ret_val)
1129                 return ret_val;
1130
1131         /* Configure Transmit Inter-Packet Gap */
1132         tipg = er32(TIPG);
1133         tipg &= ~E1000_TIPG_IPGT_MASK;
1134         tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
1135         ew32(TIPG, tipg);
1136
1137         do {
1138                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1139                 if (ret_val)
1140                         return ret_val;
1141
1142                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1143                 if (ret_val)
1144                         return ret_val;
1145                 i++;
1146         } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1147
1148         if (duplex == HALF_DUPLEX)
1149                 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
1150         else
1151                 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1152
1153         ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1154
1155         return 0;
1156 }
1157
1158 /**
1159  *  e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
1160  *  @hw: pointer to the HW structure
1161  *
1162  *  Configure the KMRN interface by applying last minute quirks for
1163  *  gigabit operation.
1164  **/
1165 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
1166 {
1167         s32 ret_val;
1168         u16 reg_data, reg_data2;
1169         u32 tipg;
1170         u32 i = 0;
1171
1172         reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
1173         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1174                                         reg_data);
1175         if (ret_val)
1176                 return ret_val;
1177
1178         /* Configure Transmit Inter-Packet Gap */
1179         tipg = er32(TIPG);
1180         tipg &= ~E1000_TIPG_IPGT_MASK;
1181         tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
1182         ew32(TIPG, tipg);
1183
1184         do {
1185                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1186                 if (ret_val)
1187                         return ret_val;
1188
1189                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1190                 if (ret_val)
1191                         return ret_val;
1192                 i++;
1193         } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1194
1195         reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1196         ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1197
1198         return ret_val;
1199 }
1200
1201 /**
1202  *  e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
1203  *  @hw: pointer to the HW structure
1204  *
1205  *  Clears the hardware counters by reading the counter registers.
1206  **/
1207 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
1208 {
1209         u32 temp;
1210
1211         e1000e_clear_hw_cntrs_base(hw);
1212
1213         temp = er32(PRC64);
1214         temp = er32(PRC127);
1215         temp = er32(PRC255);
1216         temp = er32(PRC511);
1217         temp = er32(PRC1023);
1218         temp = er32(PRC1522);
1219         temp = er32(PTC64);
1220         temp = er32(PTC127);
1221         temp = er32(PTC255);
1222         temp = er32(PTC511);
1223         temp = er32(PTC1023);
1224         temp = er32(PTC1522);
1225
1226         temp = er32(ALGNERRC);
1227         temp = er32(RXERRC);
1228         temp = er32(TNCRS);
1229         temp = er32(CEXTERR);
1230         temp = er32(TSCTC);
1231         temp = er32(TSCTFC);
1232
1233         temp = er32(MGTPRC);
1234         temp = er32(MGTPDC);
1235         temp = er32(MGTPTC);
1236
1237         temp = er32(IAC);
1238         temp = er32(ICRXOC);
1239
1240         temp = er32(ICRXPTC);
1241         temp = er32(ICRXATC);
1242         temp = er32(ICTXPTC);
1243         temp = er32(ICTXATC);
1244         temp = er32(ICTXQEC);
1245         temp = er32(ICTXQMTC);
1246         temp = er32(ICRXDMTC);
1247 }
1248
1249 static struct e1000_mac_operations es2_mac_ops = {
1250         .mng_mode_enab          = E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT,
1251         /* check_for_link dependent on media type */
1252         .cleanup_led            = e1000e_cleanup_led_generic,
1253         .clear_hw_cntrs         = e1000_clear_hw_cntrs_80003es2lan,
1254         .get_bus_info           = e1000e_get_bus_info_pcie,
1255         .get_link_up_info       = e1000_get_link_up_info_80003es2lan,
1256         .led_on                 = e1000e_led_on_generic,
1257         .led_off                = e1000e_led_off_generic,
1258         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
1259         .reset_hw               = e1000_reset_hw_80003es2lan,
1260         .init_hw                = e1000_init_hw_80003es2lan,
1261         .setup_link             = e1000e_setup_link,
1262         /* setup_physical_interface dependent on media type */
1263 };
1264
1265 static struct e1000_phy_operations es2_phy_ops = {
1266         .acquire_phy            = e1000_acquire_phy_80003es2lan,
1267         .check_reset_block      = e1000e_check_reset_block_generic,
1268         .commit_phy             = e1000e_phy_sw_reset,
1269         .force_speed_duplex     = e1000_phy_force_speed_duplex_80003es2lan,
1270         .get_cfg_done           = e1000_get_cfg_done_80003es2lan,
1271         .get_cable_length       = e1000_get_cable_length_80003es2lan,
1272         .get_phy_info           = e1000e_get_phy_info_m88,
1273         .read_phy_reg           = e1000_read_phy_reg_gg82563_80003es2lan,
1274         .release_phy            = e1000_release_phy_80003es2lan,
1275         .reset_phy              = e1000e_phy_hw_reset_generic,
1276         .set_d0_lplu_state      = NULL,
1277         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1278         .write_phy_reg          = e1000_write_phy_reg_gg82563_80003es2lan,
1279 };
1280
1281 static struct e1000_nvm_operations es2_nvm_ops = {
1282         .acquire_nvm            = e1000_acquire_nvm_80003es2lan,
1283         .read_nvm               = e1000e_read_nvm_eerd,
1284         .release_nvm            = e1000_release_nvm_80003es2lan,
1285         .update_nvm             = e1000e_update_nvm_checksum_generic,
1286         .valid_led_default      = e1000e_valid_led_default,
1287         .validate_nvm           = e1000e_validate_nvm_checksum_generic,
1288         .write_nvm              = e1000_write_nvm_80003es2lan,
1289 };
1290
1291 struct e1000_info e1000_es2_info = {
1292         .mac                    = e1000_80003es2lan,
1293         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1294                                   | FLAG_HAS_JUMBO_FRAMES
1295                                   | FLAG_HAS_WOL
1296                                   | FLAG_APME_IN_CTRL3
1297                                   | FLAG_RX_CSUM_ENABLED
1298                                   | FLAG_HAS_CTRLEXT_ON_LOAD
1299                                   | FLAG_RX_NEEDS_RESTART /* errata */
1300                                   | FLAG_TARC_SET_BIT_ZERO /* errata */
1301                                   | FLAG_APME_CHECK_PORT_B
1302                                   | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
1303                                   | FLAG_TIPG_MEDIUM_FOR_80003ESLAN,
1304         .pba                    = 38,
1305         .get_variants           = e1000_get_variants_80003es2lan,
1306         .mac_ops                = &es2_mac_ops,
1307         .phy_ops                = &es2_phy_ops,
1308         .nvm_ops                = &es2_nvm_ops,
1309 };
1310