]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/e1000/e1000_main.c
Merge branch 'upstream' of git://ftp.linux-mips.org/pub/scm/upstream-linus
[linux-2.6-omap-h63xx.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #ifndef CONFIG_E1000_NAPI
35 #define DRIVERNAPI
36 #else
37 #define DRIVERNAPI "-NAPI"
38 #endif
39 #define DRV_VERSION "7.3.20-k2"DRIVERNAPI
40 const char e1000_driver_version[] = DRV_VERSION;
41 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
42
43 /* e1000_pci_tbl - PCI Device ID Table
44  *
45  * Last entry must be all 0s
46  *
47  * Macro expands to...
48  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
49  */
50 static struct pci_device_id e1000_pci_tbl[] = {
51         INTEL_E1000_ETHERNET_DEVICE(0x1000),
52         INTEL_E1000_ETHERNET_DEVICE(0x1001),
53         INTEL_E1000_ETHERNET_DEVICE(0x1004),
54         INTEL_E1000_ETHERNET_DEVICE(0x1008),
55         INTEL_E1000_ETHERNET_DEVICE(0x1009),
56         INTEL_E1000_ETHERNET_DEVICE(0x100C),
57         INTEL_E1000_ETHERNET_DEVICE(0x100D),
58         INTEL_E1000_ETHERNET_DEVICE(0x100E),
59         INTEL_E1000_ETHERNET_DEVICE(0x100F),
60         INTEL_E1000_ETHERNET_DEVICE(0x1010),
61         INTEL_E1000_ETHERNET_DEVICE(0x1011),
62         INTEL_E1000_ETHERNET_DEVICE(0x1012),
63         INTEL_E1000_ETHERNET_DEVICE(0x1013),
64         INTEL_E1000_ETHERNET_DEVICE(0x1014),
65         INTEL_E1000_ETHERNET_DEVICE(0x1015),
66         INTEL_E1000_ETHERNET_DEVICE(0x1016),
67         INTEL_E1000_ETHERNET_DEVICE(0x1017),
68         INTEL_E1000_ETHERNET_DEVICE(0x1018),
69         INTEL_E1000_ETHERNET_DEVICE(0x1019),
70         INTEL_E1000_ETHERNET_DEVICE(0x101A),
71         INTEL_E1000_ETHERNET_DEVICE(0x101D),
72         INTEL_E1000_ETHERNET_DEVICE(0x101E),
73         INTEL_E1000_ETHERNET_DEVICE(0x1026),
74         INTEL_E1000_ETHERNET_DEVICE(0x1027),
75         INTEL_E1000_ETHERNET_DEVICE(0x1028),
76         INTEL_E1000_ETHERNET_DEVICE(0x1075),
77         INTEL_E1000_ETHERNET_DEVICE(0x1076),
78         INTEL_E1000_ETHERNET_DEVICE(0x1077),
79         INTEL_E1000_ETHERNET_DEVICE(0x1078),
80         INTEL_E1000_ETHERNET_DEVICE(0x1079),
81         INTEL_E1000_ETHERNET_DEVICE(0x107A),
82         INTEL_E1000_ETHERNET_DEVICE(0x107B),
83         INTEL_E1000_ETHERNET_DEVICE(0x107C),
84         INTEL_E1000_ETHERNET_DEVICE(0x108A),
85         INTEL_E1000_ETHERNET_DEVICE(0x1099),
86         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
87         /* required last entry */
88         {0,}
89 };
90
91 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
92
93 int e1000_up(struct e1000_adapter *adapter);
94 void e1000_down(struct e1000_adapter *adapter);
95 void e1000_reinit_locked(struct e1000_adapter *adapter);
96 void e1000_reset(struct e1000_adapter *adapter);
97 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx);
98 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
99 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
100 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
101 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
102 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
103                              struct e1000_tx_ring *txdr);
104 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
105                              struct e1000_rx_ring *rxdr);
106 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
107                              struct e1000_tx_ring *tx_ring);
108 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
109                              struct e1000_rx_ring *rx_ring);
110 void e1000_update_stats(struct e1000_adapter *adapter);
111
112 static int e1000_init_module(void);
113 static void e1000_exit_module(void);
114 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
115 static void __devexit e1000_remove(struct pci_dev *pdev);
116 static int e1000_alloc_queues(struct e1000_adapter *adapter);
117 static int e1000_sw_init(struct e1000_adapter *adapter);
118 static int e1000_open(struct net_device *netdev);
119 static int e1000_close(struct net_device *netdev);
120 static void e1000_configure_tx(struct e1000_adapter *adapter);
121 static void e1000_configure_rx(struct e1000_adapter *adapter);
122 static void e1000_setup_rctl(struct e1000_adapter *adapter);
123 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
124 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
125 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
126                                 struct e1000_tx_ring *tx_ring);
127 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
128                                 struct e1000_rx_ring *rx_ring);
129 static void e1000_set_rx_mode(struct net_device *netdev);
130 static void e1000_update_phy_info(unsigned long data);
131 static void e1000_watchdog(unsigned long data);
132 static void e1000_82547_tx_fifo_stall(unsigned long data);
133 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
134 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
135 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
136 static int e1000_set_mac(struct net_device *netdev, void *p);
137 static irqreturn_t e1000_intr(int irq, void *data);
138 static irqreturn_t e1000_intr_msi(int irq, void *data);
139 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
140                                struct e1000_tx_ring *tx_ring);
141 #ifdef CONFIG_E1000_NAPI
142 static int e1000_clean(struct napi_struct *napi, int budget);
143 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
144                                struct e1000_rx_ring *rx_ring,
145                                int *work_done, int work_to_do);
146 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
147                                   struct e1000_rx_ring *rx_ring,
148                                   int *work_done, int work_to_do);
149 #else
150 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
151                                struct e1000_rx_ring *rx_ring);
152 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
153                                   struct e1000_rx_ring *rx_ring);
154 #endif
155 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
156                                    struct e1000_rx_ring *rx_ring,
157                                    int cleaned_count);
158 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
159                                       struct e1000_rx_ring *rx_ring,
160                                       int cleaned_count);
161 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
162 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
163                            int cmd);
164 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
165 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
166 static void e1000_tx_timeout(struct net_device *dev);
167 static void e1000_reset_task(struct work_struct *work);
168 static void e1000_smartspeed(struct e1000_adapter *adapter);
169 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
170                                        struct sk_buff *skb);
171
172 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
173 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
174 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
175 static void e1000_restore_vlan(struct e1000_adapter *adapter);
176
177 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
178 #ifdef CONFIG_PM
179 static int e1000_resume(struct pci_dev *pdev);
180 #endif
181 static void e1000_shutdown(struct pci_dev *pdev);
182
183 #ifdef CONFIG_NET_POLL_CONTROLLER
184 /* for netdump / net console */
185 static void e1000_netpoll (struct net_device *netdev);
186 #endif
187
188 #define COPYBREAK_DEFAULT 256
189 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
190 module_param(copybreak, uint, 0644);
191 MODULE_PARM_DESC(copybreak,
192         "Maximum size of packet that is copied to a new buffer on receive");
193
194 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
195                      pci_channel_state_t state);
196 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
197 static void e1000_io_resume(struct pci_dev *pdev);
198
199 static struct pci_error_handlers e1000_err_handler = {
200         .error_detected = e1000_io_error_detected,
201         .slot_reset = e1000_io_slot_reset,
202         .resume = e1000_io_resume,
203 };
204
205 static struct pci_driver e1000_driver = {
206         .name     = e1000_driver_name,
207         .id_table = e1000_pci_tbl,
208         .probe    = e1000_probe,
209         .remove   = __devexit_p(e1000_remove),
210 #ifdef CONFIG_PM
211         /* Power Managment Hooks */
212         .suspend  = e1000_suspend,
213         .resume   = e1000_resume,
214 #endif
215         .shutdown = e1000_shutdown,
216         .err_handler = &e1000_err_handler
217 };
218
219 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
220 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
221 MODULE_LICENSE("GPL");
222 MODULE_VERSION(DRV_VERSION);
223
224 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
225 module_param(debug, int, 0);
226 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
227
228 /**
229  * e1000_init_module - Driver Registration Routine
230  *
231  * e1000_init_module is the first routine called when the driver is
232  * loaded. All it does is register with the PCI subsystem.
233  **/
234
235 static int __init
236 e1000_init_module(void)
237 {
238         int ret;
239         printk(KERN_INFO "%s - version %s\n",
240                e1000_driver_string, e1000_driver_version);
241
242         printk(KERN_INFO "%s\n", e1000_copyright);
243
244         ret = pci_register_driver(&e1000_driver);
245         if (copybreak != COPYBREAK_DEFAULT) {
246                 if (copybreak == 0)
247                         printk(KERN_INFO "e1000: copybreak disabled\n");
248                 else
249                         printk(KERN_INFO "e1000: copybreak enabled for "
250                                "packets <= %u bytes\n", copybreak);
251         }
252         return ret;
253 }
254
255 module_init(e1000_init_module);
256
257 /**
258  * e1000_exit_module - Driver Exit Cleanup Routine
259  *
260  * e1000_exit_module is called just before the driver is removed
261  * from memory.
262  **/
263
264 static void __exit
265 e1000_exit_module(void)
266 {
267         pci_unregister_driver(&e1000_driver);
268 }
269
270 module_exit(e1000_exit_module);
271
272 static int e1000_request_irq(struct e1000_adapter *adapter)
273 {
274         struct net_device *netdev = adapter->netdev;
275         irq_handler_t handler = e1000_intr;
276         int irq_flags = IRQF_SHARED;
277         int err;
278
279         if (adapter->hw.mac_type >= e1000_82571) {
280                 adapter->have_msi = !pci_enable_msi(adapter->pdev);
281                 if (adapter->have_msi) {
282                         handler = e1000_intr_msi;
283                         irq_flags = 0;
284                 }
285         }
286
287         err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
288                           netdev);
289         if (err) {
290                 if (adapter->have_msi)
291                         pci_disable_msi(adapter->pdev);
292                 DPRINTK(PROBE, ERR,
293                         "Unable to allocate interrupt Error: %d\n", err);
294         }
295
296         return err;
297 }
298
299 static void e1000_free_irq(struct e1000_adapter *adapter)
300 {
301         struct net_device *netdev = adapter->netdev;
302
303         free_irq(adapter->pdev->irq, netdev);
304
305         if (adapter->have_msi)
306                 pci_disable_msi(adapter->pdev);
307 }
308
309 /**
310  * e1000_irq_disable - Mask off interrupt generation on the NIC
311  * @adapter: board private structure
312  **/
313
314 static void
315 e1000_irq_disable(struct e1000_adapter *adapter)
316 {
317         E1000_WRITE_REG(&adapter->hw, IMC, ~0);
318         E1000_WRITE_FLUSH(&adapter->hw);
319         synchronize_irq(adapter->pdev->irq);
320 }
321
322 /**
323  * e1000_irq_enable - Enable default interrupt generation settings
324  * @adapter: board private structure
325  **/
326
327 static void
328 e1000_irq_enable(struct e1000_adapter *adapter)
329 {
330         E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
331         E1000_WRITE_FLUSH(&adapter->hw);
332 }
333
334 static void
335 e1000_update_mng_vlan(struct e1000_adapter *adapter)
336 {
337         struct net_device *netdev = adapter->netdev;
338         u16 vid = adapter->hw.mng_cookie.vlan_id;
339         u16 old_vid = adapter->mng_vlan_id;
340         if (adapter->vlgrp) {
341                 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
342                         if (adapter->hw.mng_cookie.status &
343                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
344                                 e1000_vlan_rx_add_vid(netdev, vid);
345                                 adapter->mng_vlan_id = vid;
346                         } else
347                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
348
349                         if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
350                                         (vid != old_vid) &&
351                             !vlan_group_get_device(adapter->vlgrp, old_vid))
352                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
353                 } else
354                         adapter->mng_vlan_id = vid;
355         }
356 }
357
358 /**
359  * e1000_release_hw_control - release control of the h/w to f/w
360  * @adapter: address of board private structure
361  *
362  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
363  * For ASF and Pass Through versions of f/w this means that the
364  * driver is no longer loaded. For AMT version (only with 82573) i
365  * of the f/w this means that the network i/f is closed.
366  *
367  **/
368
369 static void
370 e1000_release_hw_control(struct e1000_adapter *adapter)
371 {
372         u32 ctrl_ext;
373         u32 swsm;
374
375         /* Let firmware taken over control of h/w */
376         switch (adapter->hw.mac_type) {
377         case e1000_82573:
378                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
379                 E1000_WRITE_REG(&adapter->hw, SWSM,
380                                 swsm & ~E1000_SWSM_DRV_LOAD);
381                 break;
382         case e1000_82571:
383         case e1000_82572:
384         case e1000_80003es2lan:
385         case e1000_ich8lan:
386                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
387                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
388                                 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
389                 break;
390         default:
391                 break;
392         }
393 }
394
395 /**
396  * e1000_get_hw_control - get control of the h/w from f/w
397  * @adapter: address of board private structure
398  *
399  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
400  * For ASF and Pass Through versions of f/w this means that
401  * the driver is loaded. For AMT version (only with 82573)
402  * of the f/w this means that the network i/f is open.
403  *
404  **/
405
406 static void
407 e1000_get_hw_control(struct e1000_adapter *adapter)
408 {
409         u32 ctrl_ext;
410         u32 swsm;
411
412         /* Let firmware know the driver has taken over */
413         switch (adapter->hw.mac_type) {
414         case e1000_82573:
415                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
416                 E1000_WRITE_REG(&adapter->hw, SWSM,
417                                 swsm | E1000_SWSM_DRV_LOAD);
418                 break;
419         case e1000_82571:
420         case e1000_82572:
421         case e1000_80003es2lan:
422         case e1000_ich8lan:
423                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
424                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
425                                 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
426                 break;
427         default:
428                 break;
429         }
430 }
431
432 static void
433 e1000_init_manageability(struct e1000_adapter *adapter)
434 {
435         if (adapter->en_mng_pt) {
436                 u32 manc = E1000_READ_REG(&adapter->hw, MANC);
437
438                 /* disable hardware interception of ARP */
439                 manc &= ~(E1000_MANC_ARP_EN);
440
441                 /* enable receiving management packets to the host */
442                 /* this will probably generate destination unreachable messages
443                  * from the host OS, but the packets will be handled on SMBUS */
444                 if (adapter->hw.has_manc2h) {
445                         u32 manc2h = E1000_READ_REG(&adapter->hw, MANC2H);
446
447                         manc |= E1000_MANC_EN_MNG2HOST;
448 #define E1000_MNG2HOST_PORT_623 (1 << 5)
449 #define E1000_MNG2HOST_PORT_664 (1 << 6)
450                         manc2h |= E1000_MNG2HOST_PORT_623;
451                         manc2h |= E1000_MNG2HOST_PORT_664;
452                         E1000_WRITE_REG(&adapter->hw, MANC2H, manc2h);
453                 }
454
455                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
456         }
457 }
458
459 static void
460 e1000_release_manageability(struct e1000_adapter *adapter)
461 {
462         if (adapter->en_mng_pt) {
463                 u32 manc = E1000_READ_REG(&adapter->hw, MANC);
464
465                 /* re-enable hardware interception of ARP */
466                 manc |= E1000_MANC_ARP_EN;
467
468                 if (adapter->hw.has_manc2h)
469                         manc &= ~E1000_MANC_EN_MNG2HOST;
470
471                 /* don't explicitly have to mess with MANC2H since
472                  * MANC has an enable disable that gates MANC2H */
473
474                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
475         }
476 }
477
478 /**
479  * e1000_configure - configure the hardware for RX and TX
480  * @adapter = private board structure
481  **/
482 static void e1000_configure(struct e1000_adapter *adapter)
483 {
484         struct net_device *netdev = adapter->netdev;
485         int i;
486
487         e1000_set_rx_mode(netdev);
488
489         e1000_restore_vlan(adapter);
490         e1000_init_manageability(adapter);
491
492         e1000_configure_tx(adapter);
493         e1000_setup_rctl(adapter);
494         e1000_configure_rx(adapter);
495         /* call E1000_DESC_UNUSED which always leaves
496          * at least 1 descriptor unused to make sure
497          * next_to_use != next_to_clean */
498         for (i = 0; i < adapter->num_rx_queues; i++) {
499                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
500                 adapter->alloc_rx_buf(adapter, ring,
501                                       E1000_DESC_UNUSED(ring));
502         }
503
504         adapter->tx_queue_len = netdev->tx_queue_len;
505 }
506
507 int e1000_up(struct e1000_adapter *adapter)
508 {
509         /* hardware has been reset, we need to reload some things */
510         e1000_configure(adapter);
511
512         clear_bit(__E1000_DOWN, &adapter->flags);
513
514 #ifdef CONFIG_E1000_NAPI
515         napi_enable(&adapter->napi);
516 #endif
517         e1000_irq_enable(adapter);
518
519         /* fire a link change interrupt to start the watchdog */
520         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_LSC);
521         return 0;
522 }
523
524 /**
525  * e1000_power_up_phy - restore link in case the phy was powered down
526  * @adapter: address of board private structure
527  *
528  * The phy may be powered down to save power and turn off link when the
529  * driver is unloaded and wake on lan is not enabled (among others)
530  * *** this routine MUST be followed by a call to e1000_reset ***
531  *
532  **/
533
534 void e1000_power_up_phy(struct e1000_adapter *adapter)
535 {
536         u16 mii_reg = 0;
537
538         /* Just clear the power down bit to wake the phy back up */
539         if (adapter->hw.media_type == e1000_media_type_copper) {
540                 /* according to the manual, the phy will retain its
541                  * settings across a power-down/up cycle */
542                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
543                 mii_reg &= ~MII_CR_POWER_DOWN;
544                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
545         }
546 }
547
548 static void e1000_power_down_phy(struct e1000_adapter *adapter)
549 {
550         /* Power down the PHY so no link is implied when interface is down *
551          * The PHY cannot be powered down if any of the following is true *
552          * (a) WoL is enabled
553          * (b) AMT is active
554          * (c) SoL/IDER session is active */
555         if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
556            adapter->hw.media_type == e1000_media_type_copper) {
557                 u16 mii_reg = 0;
558
559                 switch (adapter->hw.mac_type) {
560                 case e1000_82540:
561                 case e1000_82545:
562                 case e1000_82545_rev_3:
563                 case e1000_82546:
564                 case e1000_82546_rev_3:
565                 case e1000_82541:
566                 case e1000_82541_rev_2:
567                 case e1000_82547:
568                 case e1000_82547_rev_2:
569                         if (E1000_READ_REG(&adapter->hw, MANC) &
570                             E1000_MANC_SMBUS_EN)
571                                 goto out;
572                         break;
573                 case e1000_82571:
574                 case e1000_82572:
575                 case e1000_82573:
576                 case e1000_80003es2lan:
577                 case e1000_ich8lan:
578                         if (e1000_check_mng_mode(&adapter->hw) ||
579                             e1000_check_phy_reset_block(&adapter->hw))
580                                 goto out;
581                         break;
582                 default:
583                         goto out;
584                 }
585                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
586                 mii_reg |= MII_CR_POWER_DOWN;
587                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
588                 mdelay(1);
589         }
590 out:
591         return;
592 }
593
594 void
595 e1000_down(struct e1000_adapter *adapter)
596 {
597         struct net_device *netdev = adapter->netdev;
598
599         /* signal that we're down so the interrupt handler does not
600          * reschedule our watchdog timer */
601         set_bit(__E1000_DOWN, &adapter->flags);
602
603 #ifdef CONFIG_E1000_NAPI
604         napi_disable(&adapter->napi);
605 #endif
606         e1000_irq_disable(adapter);
607
608         del_timer_sync(&adapter->tx_fifo_stall_timer);
609         del_timer_sync(&adapter->watchdog_timer);
610         del_timer_sync(&adapter->phy_info_timer);
611
612         netdev->tx_queue_len = adapter->tx_queue_len;
613         adapter->link_speed = 0;
614         adapter->link_duplex = 0;
615         netif_carrier_off(netdev);
616         netif_stop_queue(netdev);
617
618         e1000_reset(adapter);
619         e1000_clean_all_tx_rings(adapter);
620         e1000_clean_all_rx_rings(adapter);
621 }
622
623 void
624 e1000_reinit_locked(struct e1000_adapter *adapter)
625 {
626         WARN_ON(in_interrupt());
627         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
628                 msleep(1);
629         e1000_down(adapter);
630         e1000_up(adapter);
631         clear_bit(__E1000_RESETTING, &adapter->flags);
632 }
633
634 void
635 e1000_reset(struct e1000_adapter *adapter)
636 {
637         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
638         u16 fc_high_water_mark = E1000_FC_HIGH_DIFF;
639         bool legacy_pba_adjust = false;
640
641         /* Repartition Pba for greater than 9k mtu
642          * To take effect CTRL.RST is required.
643          */
644
645         switch (adapter->hw.mac_type) {
646         case e1000_82542_rev2_0:
647         case e1000_82542_rev2_1:
648         case e1000_82543:
649         case e1000_82544:
650         case e1000_82540:
651         case e1000_82541:
652         case e1000_82541_rev_2:
653                 legacy_pba_adjust = true;
654                 pba = E1000_PBA_48K;
655                 break;
656         case e1000_82545:
657         case e1000_82545_rev_3:
658         case e1000_82546:
659         case e1000_82546_rev_3:
660                 pba = E1000_PBA_48K;
661                 break;
662         case e1000_82547:
663         case e1000_82547_rev_2:
664                 legacy_pba_adjust = true;
665                 pba = E1000_PBA_30K;
666                 break;
667         case e1000_82571:
668         case e1000_82572:
669         case e1000_80003es2lan:
670                 pba = E1000_PBA_38K;
671                 break;
672         case e1000_82573:
673                 pba = E1000_PBA_20K;
674                 break;
675         case e1000_ich8lan:
676                 pba = E1000_PBA_8K;
677         case e1000_undefined:
678         case e1000_num_macs:
679                 break;
680         }
681
682         if (legacy_pba_adjust) {
683                 if (adapter->netdev->mtu > E1000_RXBUFFER_8192)
684                         pba -= 8; /* allocate more FIFO for Tx */
685
686                 if (adapter->hw.mac_type == e1000_82547) {
687                         adapter->tx_fifo_head = 0;
688                         adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
689                         adapter->tx_fifo_size =
690                                 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
691                         atomic_set(&adapter->tx_fifo_stall, 0);
692                 }
693         } else if (adapter->hw.max_frame_size > MAXIMUM_ETHERNET_FRAME_SIZE) {
694                 /* adjust PBA for jumbo frames */
695                 E1000_WRITE_REG(&adapter->hw, PBA, pba);
696
697                 /* To maintain wire speed transmits, the Tx FIFO should be
698                  * large enough to accomodate two full transmit packets,
699                  * rounded up to the next 1KB and expressed in KB.  Likewise,
700                  * the Rx FIFO should be large enough to accomodate at least
701                  * one full receive packet and is similarly rounded up and
702                  * expressed in KB. */
703                 pba = E1000_READ_REG(&adapter->hw, PBA);
704                 /* upper 16 bits has Tx packet buffer allocation size in KB */
705                 tx_space = pba >> 16;
706                 /* lower 16 bits has Rx packet buffer allocation size in KB */
707                 pba &= 0xffff;
708                 /* don't include ethernet FCS because hardware appends/strips */
709                 min_rx_space = adapter->netdev->mtu + ENET_HEADER_SIZE +
710                                VLAN_TAG_SIZE;
711                 min_tx_space = min_rx_space;
712                 min_tx_space *= 2;
713                 min_tx_space = ALIGN(min_tx_space, 1024);
714                 min_tx_space >>= 10;
715                 min_rx_space = ALIGN(min_rx_space, 1024);
716                 min_rx_space >>= 10;
717
718                 /* If current Tx allocation is less than the min Tx FIFO size,
719                  * and the min Tx FIFO size is less than the current Rx FIFO
720                  * allocation, take space away from current Rx allocation */
721                 if (tx_space < min_tx_space &&
722                     ((min_tx_space - tx_space) < pba)) {
723                         pba = pba - (min_tx_space - tx_space);
724
725                         /* PCI/PCIx hardware has PBA alignment constraints */
726                         switch (adapter->hw.mac_type) {
727                         case e1000_82545 ... e1000_82546_rev_3:
728                                 pba &= ~(E1000_PBA_8K - 1);
729                                 break;
730                         default:
731                                 break;
732                         }
733
734                         /* if short on rx space, rx wins and must trump tx
735                          * adjustment or use Early Receive if available */
736                         if (pba < min_rx_space) {
737                                 switch (adapter->hw.mac_type) {
738                                 case e1000_82573:
739                                         /* ERT enabled in e1000_configure_rx */
740                                         break;
741                                 default:
742                                         pba = min_rx_space;
743                                         break;
744                                 }
745                         }
746                 }
747         }
748
749         E1000_WRITE_REG(&adapter->hw, PBA, pba);
750
751         /* flow control settings */
752         /* Set the FC high water mark to 90% of the FIFO size.
753          * Required to clear last 3 LSB */
754         fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
755         /* We can't use 90% on small FIFOs because the remainder
756          * would be less than 1 full frame.  In this case, we size
757          * it to allow at least a full frame above the high water
758          *  mark. */
759         if (pba < E1000_PBA_16K)
760                 fc_high_water_mark = (pba * 1024) - 1600;
761
762         adapter->hw.fc_high_water = fc_high_water_mark;
763         adapter->hw.fc_low_water = fc_high_water_mark - 8;
764         if (adapter->hw.mac_type == e1000_80003es2lan)
765                 adapter->hw.fc_pause_time = 0xFFFF;
766         else
767                 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
768         adapter->hw.fc_send_xon = 1;
769         adapter->hw.fc = adapter->hw.original_fc;
770
771         /* Allow time for pending master requests to run */
772         e1000_reset_hw(&adapter->hw);
773         if (adapter->hw.mac_type >= e1000_82544)
774                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
775
776         if (e1000_init_hw(&adapter->hw))
777                 DPRINTK(PROBE, ERR, "Hardware Error\n");
778         e1000_update_mng_vlan(adapter);
779
780         /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
781         if (adapter->hw.mac_type >= e1000_82544 &&
782             adapter->hw.mac_type <= e1000_82547_rev_2 &&
783             adapter->hw.autoneg == 1 &&
784             adapter->hw.autoneg_advertised == ADVERTISE_1000_FULL) {
785                 u32 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
786                 /* clear phy power management bit if we are in gig only mode,
787                  * which if enabled will attempt negotiation to 100Mb, which
788                  * can cause a loss of link at power off or driver unload */
789                 ctrl &= ~E1000_CTRL_SWDPIN3;
790                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
791         }
792
793         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
794         E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
795
796         e1000_reset_adaptive(&adapter->hw);
797         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
798
799         if (!adapter->smart_power_down &&
800             (adapter->hw.mac_type == e1000_82571 ||
801              adapter->hw.mac_type == e1000_82572)) {
802                 u16 phy_data = 0;
803                 /* speed up time to link by disabling smart power down, ignore
804                  * the return value of this function because there is nothing
805                  * different we would do if it failed */
806                 e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
807                                    &phy_data);
808                 phy_data &= ~IGP02E1000_PM_SPD;
809                 e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
810                                     phy_data);
811         }
812
813         e1000_release_manageability(adapter);
814 }
815
816 /**
817  *  Dump the eeprom for users having checksum issues
818  **/
819 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
820 {
821         struct net_device *netdev = adapter->netdev;
822         struct ethtool_eeprom eeprom;
823         const struct ethtool_ops *ops = netdev->ethtool_ops;
824         u8 *data;
825         int i;
826         u16 csum_old, csum_new = 0;
827
828         eeprom.len = ops->get_eeprom_len(netdev);
829         eeprom.offset = 0;
830
831         data = kmalloc(eeprom.len, GFP_KERNEL);
832         if (!data) {
833                 printk(KERN_ERR "Unable to allocate memory to dump EEPROM"
834                        " data\n");
835                 return;
836         }
837
838         ops->get_eeprom(netdev, &eeprom, data);
839
840         csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
841                    (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
842         for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
843                 csum_new += data[i] + (data[i + 1] << 8);
844         csum_new = EEPROM_SUM - csum_new;
845
846         printk(KERN_ERR "/*********************/\n");
847         printk(KERN_ERR "Current EEPROM Checksum : 0x%04x\n", csum_old);
848         printk(KERN_ERR "Calculated              : 0x%04x\n", csum_new);
849
850         printk(KERN_ERR "Offset    Values\n");
851         printk(KERN_ERR "========  ======\n");
852         print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
853
854         printk(KERN_ERR "Include this output when contacting your support "
855                "provider.\n");
856         printk(KERN_ERR "This is not a software error! Something bad "
857                "happened to your hardware or\n");
858         printk(KERN_ERR "EEPROM image. Ignoring this "
859                "problem could result in further problems,\n");
860         printk(KERN_ERR "possibly loss of data, corruption or system hangs!\n");
861         printk(KERN_ERR "The MAC Address will be reset to 00:00:00:00:00:00, "
862                "which is invalid\n");
863         printk(KERN_ERR "and requires you to set the proper MAC "
864                "address manually before continuing\n");
865         printk(KERN_ERR "to enable this network device.\n");
866         printk(KERN_ERR "Please inspect the EEPROM dump and report the issue "
867                "to your hardware vendor\n");
868         printk(KERN_ERR "or Intel Customer Support: linux-nics@intel.com\n");
869         printk(KERN_ERR "/*********************/\n");
870
871         kfree(data);
872 }
873
874 /**
875  * e1000_probe - Device Initialization Routine
876  * @pdev: PCI device information struct
877  * @ent: entry in e1000_pci_tbl
878  *
879  * Returns 0 on success, negative on failure
880  *
881  * e1000_probe initializes an adapter identified by a pci_dev structure.
882  * The OS initialization, configuring of the adapter private structure,
883  * and a hardware reset occur.
884  **/
885
886 static int __devinit
887 e1000_probe(struct pci_dev *pdev,
888             const struct pci_device_id *ent)
889 {
890         struct net_device *netdev;
891         struct e1000_adapter *adapter;
892
893         static int cards_found = 0;
894         static int global_quad_port_a = 0; /* global ksp3 port a indication */
895         int i, err, pci_using_dac;
896         u16 eeprom_data = 0;
897         u16 eeprom_apme_mask = E1000_EEPROM_APME;
898         DECLARE_MAC_BUF(mac);
899
900         if ((err = pci_enable_device(pdev)))
901                 return err;
902
903         if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
904             !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
905                 pci_using_dac = 1;
906         } else {
907                 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) &&
908                     (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
909                         E1000_ERR("No usable DMA configuration, aborting\n");
910                         goto err_dma;
911                 }
912                 pci_using_dac = 0;
913         }
914
915         if ((err = pci_request_regions(pdev, e1000_driver_name)))
916                 goto err_pci_reg;
917
918         pci_set_master(pdev);
919
920         err = -ENOMEM;
921         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
922         if (!netdev)
923                 goto err_alloc_etherdev;
924
925         SET_NETDEV_DEV(netdev, &pdev->dev);
926
927         pci_set_drvdata(pdev, netdev);
928         adapter = netdev_priv(netdev);
929         adapter->netdev = netdev;
930         adapter->pdev = pdev;
931         adapter->hw.back = adapter;
932         adapter->msg_enable = (1 << debug) - 1;
933
934         err = -EIO;
935         adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, BAR_0),
936                                       pci_resource_len(pdev, BAR_0));
937         if (!adapter->hw.hw_addr)
938                 goto err_ioremap;
939
940         for (i = BAR_1; i <= BAR_5; i++) {
941                 if (pci_resource_len(pdev, i) == 0)
942                         continue;
943                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
944                         adapter->hw.io_base = pci_resource_start(pdev, i);
945                         break;
946                 }
947         }
948
949         netdev->open = &e1000_open;
950         netdev->stop = &e1000_close;
951         netdev->hard_start_xmit = &e1000_xmit_frame;
952         netdev->get_stats = &e1000_get_stats;
953         netdev->set_rx_mode = &e1000_set_rx_mode;
954         netdev->set_mac_address = &e1000_set_mac;
955         netdev->change_mtu = &e1000_change_mtu;
956         netdev->do_ioctl = &e1000_ioctl;
957         e1000_set_ethtool_ops(netdev);
958         netdev->tx_timeout = &e1000_tx_timeout;
959         netdev->watchdog_timeo = 5 * HZ;
960 #ifdef CONFIG_E1000_NAPI
961         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
962 #endif
963         netdev->vlan_rx_register = e1000_vlan_rx_register;
964         netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
965         netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
966 #ifdef CONFIG_NET_POLL_CONTROLLER
967         netdev->poll_controller = e1000_netpoll;
968 #endif
969         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
970
971         adapter->bd_number = cards_found;
972
973         /* setup the private structure */
974
975         if ((err = e1000_sw_init(adapter)))
976                 goto err_sw_init;
977
978         err = -EIO;
979         /* Flash BAR mapping must happen after e1000_sw_init
980          * because it depends on mac_type */
981         if ((adapter->hw.mac_type == e1000_ich8lan) &&
982            (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
983                 adapter->hw.flash_address =
984                         ioremap(pci_resource_start(pdev, 1),
985                                 pci_resource_len(pdev, 1));
986                 if (!adapter->hw.flash_address)
987                         goto err_flashmap;
988         }
989
990         if (e1000_check_phy_reset_block(&adapter->hw))
991                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
992
993         if (adapter->hw.mac_type >= e1000_82543) {
994                 netdev->features = NETIF_F_SG |
995                                    NETIF_F_HW_CSUM |
996                                    NETIF_F_HW_VLAN_TX |
997                                    NETIF_F_HW_VLAN_RX |
998                                    NETIF_F_HW_VLAN_FILTER;
999                 if (adapter->hw.mac_type == e1000_ich8lan)
1000                         netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
1001         }
1002
1003         if ((adapter->hw.mac_type >= e1000_82544) &&
1004            (adapter->hw.mac_type != e1000_82547))
1005                 netdev->features |= NETIF_F_TSO;
1006
1007         if (adapter->hw.mac_type > e1000_82547_rev_2)
1008                 netdev->features |= NETIF_F_TSO6;
1009         if (pci_using_dac)
1010                 netdev->features |= NETIF_F_HIGHDMA;
1011
1012         netdev->features |= NETIF_F_LLTX;
1013
1014         adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
1015
1016         /* initialize eeprom parameters */
1017         if (e1000_init_eeprom_params(&adapter->hw)) {
1018                 E1000_ERR("EEPROM initialization failed\n");
1019                 goto err_eeprom;
1020         }
1021
1022         /* before reading the EEPROM, reset the controller to
1023          * put the device in a known good starting state */
1024
1025         e1000_reset_hw(&adapter->hw);
1026
1027         /* make sure the EEPROM is good */
1028         if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
1029                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
1030                 e1000_dump_eeprom(adapter);
1031                 /*
1032                  * set MAC address to all zeroes to invalidate and temporary
1033                  * disable this device for the user. This blocks regular
1034                  * traffic while still permitting ethtool ioctls from reaching
1035                  * the hardware as well as allowing the user to run the
1036                  * interface after manually setting a hw addr using
1037                  * `ip set address`
1038                  */
1039                 memset(adapter->hw.mac_addr, 0, netdev->addr_len);
1040         } else {
1041                 /* copy the MAC address out of the EEPROM */
1042                 if (e1000_read_mac_addr(&adapter->hw))
1043                         DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
1044         }
1045         /* don't block initalization here due to bad MAC address */
1046         memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
1047         memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
1048
1049         if (!is_valid_ether_addr(netdev->perm_addr))
1050                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
1051
1052         e1000_get_bus_info(&adapter->hw);
1053
1054         init_timer(&adapter->tx_fifo_stall_timer);
1055         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
1056         adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
1057
1058         init_timer(&adapter->watchdog_timer);
1059         adapter->watchdog_timer.function = &e1000_watchdog;
1060         adapter->watchdog_timer.data = (unsigned long) adapter;
1061
1062         init_timer(&adapter->phy_info_timer);
1063         adapter->phy_info_timer.function = &e1000_update_phy_info;
1064         adapter->phy_info_timer.data = (unsigned long) adapter;
1065
1066         INIT_WORK(&adapter->reset_task, e1000_reset_task);
1067
1068         e1000_check_options(adapter);
1069
1070         /* Initial Wake on LAN setting
1071          * If APM wake is enabled in the EEPROM,
1072          * enable the ACPI Magic Packet filter
1073          */
1074
1075         switch (adapter->hw.mac_type) {
1076         case e1000_82542_rev2_0:
1077         case e1000_82542_rev2_1:
1078         case e1000_82543:
1079                 break;
1080         case e1000_82544:
1081                 e1000_read_eeprom(&adapter->hw,
1082                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1083                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1084                 break;
1085         case e1000_ich8lan:
1086                 e1000_read_eeprom(&adapter->hw,
1087                         EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
1088                 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
1089                 break;
1090         case e1000_82546:
1091         case e1000_82546_rev_3:
1092         case e1000_82571:
1093         case e1000_80003es2lan:
1094                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
1095                         e1000_read_eeprom(&adapter->hw,
1096                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1097                         break;
1098                 }
1099                 /* Fall Through */
1100         default:
1101                 e1000_read_eeprom(&adapter->hw,
1102                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1103                 break;
1104         }
1105         if (eeprom_data & eeprom_apme_mask)
1106                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1107
1108         /* now that we have the eeprom settings, apply the special cases
1109          * where the eeprom may be wrong or the board simply won't support
1110          * wake on lan on a particular port */
1111         switch (pdev->device) {
1112         case E1000_DEV_ID_82546GB_PCIE:
1113                 adapter->eeprom_wol = 0;
1114                 break;
1115         case E1000_DEV_ID_82546EB_FIBER:
1116         case E1000_DEV_ID_82546GB_FIBER:
1117         case E1000_DEV_ID_82571EB_FIBER:
1118                 /* Wake events only supported on port A for dual fiber
1119                  * regardless of eeprom setting */
1120                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
1121                         adapter->eeprom_wol = 0;
1122                 break;
1123         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1124         case E1000_DEV_ID_82571EB_QUAD_COPPER:
1125         case E1000_DEV_ID_82571EB_QUAD_FIBER:
1126         case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1127         case E1000_DEV_ID_82571PT_QUAD_COPPER:
1128                 /* if quad port adapter, disable WoL on all but port A */
1129                 if (global_quad_port_a != 0)
1130                         adapter->eeprom_wol = 0;
1131                 else
1132                         adapter->quad_port_a = 1;
1133                 /* Reset for multiple quad port adapters */
1134                 if (++global_quad_port_a == 4)
1135                         global_quad_port_a = 0;
1136                 break;
1137         }
1138
1139         /* initialize the wol settings based on the eeprom settings */
1140         adapter->wol = adapter->eeprom_wol;
1141
1142         /* print bus type/speed/width info */
1143         {
1144         struct e1000_hw *hw = &adapter->hw;
1145         DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
1146                 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
1147                  (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
1148                 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1149                  (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
1150                  (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
1151                  (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
1152                  (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
1153                 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
1154                  (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
1155                  (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
1156                  "32-bit"));
1157         }
1158
1159         printk("%s\n", print_mac(mac, netdev->dev_addr));
1160
1161         if (adapter->hw.bus_type == e1000_bus_type_pci_express) {
1162                 DPRINTK(PROBE, WARNING, "This device (id %04x:%04x) will no "
1163                         "longer be supported by this driver in the future.\n",
1164                         pdev->vendor, pdev->device);
1165                 DPRINTK(PROBE, WARNING, "please use the \"e1000e\" "
1166                         "driver instead.\n");
1167         }
1168
1169         /* reset the hardware with the new settings */
1170         e1000_reset(adapter);
1171
1172         /* If the controller is 82573 and f/w is AMT, do not set
1173          * DRV_LOAD until the interface is up.  For all other cases,
1174          * let the f/w know that the h/w is now under the control
1175          * of the driver. */
1176         if (adapter->hw.mac_type != e1000_82573 ||
1177             !e1000_check_mng_mode(&adapter->hw))
1178                 e1000_get_hw_control(adapter);
1179
1180         /* tell the stack to leave us alone until e1000_open() is called */
1181         netif_carrier_off(netdev);
1182         netif_stop_queue(netdev);
1183
1184         strcpy(netdev->name, "eth%d");
1185         if ((err = register_netdev(netdev)))
1186                 goto err_register;
1187
1188         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1189
1190         cards_found++;
1191         return 0;
1192
1193 err_register:
1194         e1000_release_hw_control(adapter);
1195 err_eeprom:
1196         if (!e1000_check_phy_reset_block(&adapter->hw))
1197                 e1000_phy_hw_reset(&adapter->hw);
1198
1199         if (adapter->hw.flash_address)
1200                 iounmap(adapter->hw.flash_address);
1201 err_flashmap:
1202 #ifdef CONFIG_E1000_NAPI
1203         for (i = 0; i < adapter->num_rx_queues; i++)
1204                 dev_put(&adapter->polling_netdev[i]);
1205 #endif
1206
1207         kfree(adapter->tx_ring);
1208         kfree(adapter->rx_ring);
1209 #ifdef CONFIG_E1000_NAPI
1210         kfree(adapter->polling_netdev);
1211 #endif
1212 err_sw_init:
1213         iounmap(adapter->hw.hw_addr);
1214 err_ioremap:
1215         free_netdev(netdev);
1216 err_alloc_etherdev:
1217         pci_release_regions(pdev);
1218 err_pci_reg:
1219 err_dma:
1220         pci_disable_device(pdev);
1221         return err;
1222 }
1223
1224 /**
1225  * e1000_remove - Device Removal Routine
1226  * @pdev: PCI device information struct
1227  *
1228  * e1000_remove is called by the PCI subsystem to alert the driver
1229  * that it should release a PCI device.  The could be caused by a
1230  * Hot-Plug event, or because the driver is going to be removed from
1231  * memory.
1232  **/
1233
1234 static void __devexit
1235 e1000_remove(struct pci_dev *pdev)
1236 {
1237         struct net_device *netdev = pci_get_drvdata(pdev);
1238         struct e1000_adapter *adapter = netdev_priv(netdev);
1239 #ifdef CONFIG_E1000_NAPI
1240         int i;
1241 #endif
1242
1243         cancel_work_sync(&adapter->reset_task);
1244
1245         e1000_release_manageability(adapter);
1246
1247         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1248          * would have already happened in close and is redundant. */
1249         e1000_release_hw_control(adapter);
1250
1251 #ifdef CONFIG_E1000_NAPI
1252         for (i = 0; i < adapter->num_rx_queues; i++)
1253                 dev_put(&adapter->polling_netdev[i]);
1254 #endif
1255
1256         unregister_netdev(netdev);
1257
1258         if (!e1000_check_phy_reset_block(&adapter->hw))
1259                 e1000_phy_hw_reset(&adapter->hw);
1260
1261         kfree(adapter->tx_ring);
1262         kfree(adapter->rx_ring);
1263 #ifdef CONFIG_E1000_NAPI
1264         kfree(adapter->polling_netdev);
1265 #endif
1266
1267         iounmap(adapter->hw.hw_addr);
1268         if (adapter->hw.flash_address)
1269                 iounmap(adapter->hw.flash_address);
1270         pci_release_regions(pdev);
1271
1272         free_netdev(netdev);
1273
1274         pci_disable_device(pdev);
1275 }
1276
1277 /**
1278  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1279  * @adapter: board private structure to initialize
1280  *
1281  * e1000_sw_init initializes the Adapter private data structure.
1282  * Fields are initialized based on PCI device information and
1283  * OS network device settings (MTU size).
1284  **/
1285
1286 static int __devinit
1287 e1000_sw_init(struct e1000_adapter *adapter)
1288 {
1289         struct e1000_hw *hw = &adapter->hw;
1290         struct net_device *netdev = adapter->netdev;
1291         struct pci_dev *pdev = adapter->pdev;
1292 #ifdef CONFIG_E1000_NAPI
1293         int i;
1294 #endif
1295
1296         /* PCI config space info */
1297
1298         hw->vendor_id = pdev->vendor;
1299         hw->device_id = pdev->device;
1300         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1301         hw->subsystem_id = pdev->subsystem_device;
1302         hw->revision_id = pdev->revision;
1303
1304         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1305
1306         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1307         adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
1308         hw->max_frame_size = netdev->mtu +
1309                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1310         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1311
1312         /* identify the MAC */
1313
1314         if (e1000_set_mac_type(hw)) {
1315                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1316                 return -EIO;
1317         }
1318
1319         switch (hw->mac_type) {
1320         default:
1321                 break;
1322         case e1000_82541:
1323         case e1000_82547:
1324         case e1000_82541_rev_2:
1325         case e1000_82547_rev_2:
1326                 hw->phy_init_script = 1;
1327                 break;
1328         }
1329
1330         e1000_set_media_type(hw);
1331
1332         hw->wait_autoneg_complete = false;
1333         hw->tbi_compatibility_en = true;
1334         hw->adaptive_ifs = true;
1335
1336         /* Copper options */
1337
1338         if (hw->media_type == e1000_media_type_copper) {
1339                 hw->mdix = AUTO_ALL_MODES;
1340                 hw->disable_polarity_correction = false;
1341                 hw->master_slave = E1000_MASTER_SLAVE;
1342         }
1343
1344         adapter->num_tx_queues = 1;
1345         adapter->num_rx_queues = 1;
1346
1347         if (e1000_alloc_queues(adapter)) {
1348                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1349                 return -ENOMEM;
1350         }
1351
1352 #ifdef CONFIG_E1000_NAPI
1353         for (i = 0; i < adapter->num_rx_queues; i++) {
1354                 adapter->polling_netdev[i].priv = adapter;
1355                 dev_hold(&adapter->polling_netdev[i]);
1356                 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1357         }
1358         spin_lock_init(&adapter->tx_queue_lock);
1359 #endif
1360
1361         /* Explicitly disable IRQ since the NIC can be in any state. */
1362         e1000_irq_disable(adapter);
1363
1364         spin_lock_init(&adapter->stats_lock);
1365
1366         set_bit(__E1000_DOWN, &adapter->flags);
1367
1368         return 0;
1369 }
1370
1371 /**
1372  * e1000_alloc_queues - Allocate memory for all rings
1373  * @adapter: board private structure to initialize
1374  *
1375  * We allocate one ring per queue at run-time since we don't know the
1376  * number of queues at compile-time.  The polling_netdev array is
1377  * intended for Multiqueue, but should work fine with a single queue.
1378  **/
1379
1380 static int __devinit
1381 e1000_alloc_queues(struct e1000_adapter *adapter)
1382 {
1383         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1384                                    sizeof(struct e1000_tx_ring), GFP_KERNEL);
1385         if (!adapter->tx_ring)
1386                 return -ENOMEM;
1387
1388         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1389                                    sizeof(struct e1000_rx_ring), GFP_KERNEL);
1390         if (!adapter->rx_ring) {
1391                 kfree(adapter->tx_ring);
1392                 return -ENOMEM;
1393         }
1394
1395 #ifdef CONFIG_E1000_NAPI
1396         adapter->polling_netdev = kcalloc(adapter->num_rx_queues,
1397                                           sizeof(struct net_device),
1398                                           GFP_KERNEL);
1399         if (!adapter->polling_netdev) {
1400                 kfree(adapter->tx_ring);
1401                 kfree(adapter->rx_ring);
1402                 return -ENOMEM;
1403         }
1404 #endif
1405
1406         return E1000_SUCCESS;
1407 }
1408
1409 /**
1410  * e1000_open - Called when a network interface is made active
1411  * @netdev: network interface device structure
1412  *
1413  * Returns 0 on success, negative value on failure
1414  *
1415  * The open entry point is called when a network interface is made
1416  * active by the system (IFF_UP).  At this point all resources needed
1417  * for transmit and receive operations are allocated, the interrupt
1418  * handler is registered with the OS, the watchdog timer is started,
1419  * and the stack is notified that the interface is ready.
1420  **/
1421
1422 static int
1423 e1000_open(struct net_device *netdev)
1424 {
1425         struct e1000_adapter *adapter = netdev_priv(netdev);
1426         int err;
1427
1428         /* disallow open during test */
1429         if (test_bit(__E1000_TESTING, &adapter->flags))
1430                 return -EBUSY;
1431
1432         /* allocate transmit descriptors */
1433         err = e1000_setup_all_tx_resources(adapter);
1434         if (err)
1435                 goto err_setup_tx;
1436
1437         /* allocate receive descriptors */
1438         err = e1000_setup_all_rx_resources(adapter);
1439         if (err)
1440                 goto err_setup_rx;
1441
1442         e1000_power_up_phy(adapter);
1443
1444         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1445         if ((adapter->hw.mng_cookie.status &
1446                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1447                 e1000_update_mng_vlan(adapter);
1448         }
1449
1450         /* If AMT is enabled, let the firmware know that the network
1451          * interface is now open */
1452         if (adapter->hw.mac_type == e1000_82573 &&
1453             e1000_check_mng_mode(&adapter->hw))
1454                 e1000_get_hw_control(adapter);
1455
1456         /* before we allocate an interrupt, we must be ready to handle it.
1457          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1458          * as soon as we call pci_request_irq, so we have to setup our
1459          * clean_rx handler before we do so.  */
1460         e1000_configure(adapter);
1461
1462         err = e1000_request_irq(adapter);
1463         if (err)
1464                 goto err_req_irq;
1465
1466         /* From here on the code is the same as e1000_up() */
1467         clear_bit(__E1000_DOWN, &adapter->flags);
1468
1469 #ifdef CONFIG_E1000_NAPI
1470         napi_enable(&adapter->napi);
1471 #endif
1472
1473         e1000_irq_enable(adapter);
1474
1475         netif_start_queue(netdev);
1476
1477         /* fire a link status change interrupt to start the watchdog */
1478         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_LSC);
1479
1480         return E1000_SUCCESS;
1481
1482 err_req_irq:
1483         e1000_release_hw_control(adapter);
1484         e1000_power_down_phy(adapter);
1485         e1000_free_all_rx_resources(adapter);
1486 err_setup_rx:
1487         e1000_free_all_tx_resources(adapter);
1488 err_setup_tx:
1489         e1000_reset(adapter);
1490
1491         return err;
1492 }
1493
1494 /**
1495  * e1000_close - Disables a network interface
1496  * @netdev: network interface device structure
1497  *
1498  * Returns 0, this is not allowed to fail
1499  *
1500  * The close entry point is called when an interface is de-activated
1501  * by the OS.  The hardware is still under the drivers control, but
1502  * needs to be disabled.  A global MAC reset is issued to stop the
1503  * hardware, and all transmit and receive resources are freed.
1504  **/
1505
1506 static int
1507 e1000_close(struct net_device *netdev)
1508 {
1509         struct e1000_adapter *adapter = netdev_priv(netdev);
1510
1511         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1512         e1000_down(adapter);
1513         e1000_power_down_phy(adapter);
1514         e1000_free_irq(adapter);
1515
1516         e1000_free_all_tx_resources(adapter);
1517         e1000_free_all_rx_resources(adapter);
1518
1519         /* kill manageability vlan ID if supported, but not if a vlan with
1520          * the same ID is registered on the host OS (let 8021q kill it) */
1521         if ((adapter->hw.mng_cookie.status &
1522                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1523              !(adapter->vlgrp &&
1524                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
1525                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1526         }
1527
1528         /* If AMT is enabled, let the firmware know that the network
1529          * interface is now closed */
1530         if (adapter->hw.mac_type == e1000_82573 &&
1531             e1000_check_mng_mode(&adapter->hw))
1532                 e1000_release_hw_control(adapter);
1533
1534         return 0;
1535 }
1536
1537 /**
1538  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1539  * @adapter: address of board private structure
1540  * @start: address of beginning of memory
1541  * @len: length of memory
1542  **/
1543 static bool
1544 e1000_check_64k_bound(struct e1000_adapter *adapter,
1545                       void *start, unsigned long len)
1546 {
1547         unsigned long begin = (unsigned long) start;
1548         unsigned long end = begin + len;
1549
1550         /* First rev 82545 and 82546 need to not allow any memory
1551          * write location to cross 64k boundary due to errata 23 */
1552         if (adapter->hw.mac_type == e1000_82545 ||
1553             adapter->hw.mac_type == e1000_82546) {
1554                 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1555         }
1556
1557         return true;
1558 }
1559
1560 /**
1561  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1562  * @adapter: board private structure
1563  * @txdr:    tx descriptor ring (for a specific queue) to setup
1564  *
1565  * Return 0 on success, negative on failure
1566  **/
1567
1568 static int
1569 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1570                          struct e1000_tx_ring *txdr)
1571 {
1572         struct pci_dev *pdev = adapter->pdev;
1573         int size;
1574
1575         size = sizeof(struct e1000_buffer) * txdr->count;
1576         txdr->buffer_info = vmalloc(size);
1577         if (!txdr->buffer_info) {
1578                 DPRINTK(PROBE, ERR,
1579                 "Unable to allocate memory for the transmit descriptor ring\n");
1580                 return -ENOMEM;
1581         }
1582         memset(txdr->buffer_info, 0, size);
1583
1584         /* round up to nearest 4K */
1585
1586         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1587         txdr->size = ALIGN(txdr->size, 4096);
1588
1589         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1590         if (!txdr->desc) {
1591 setup_tx_desc_die:
1592                 vfree(txdr->buffer_info);
1593                 DPRINTK(PROBE, ERR,
1594                 "Unable to allocate memory for the transmit descriptor ring\n");
1595                 return -ENOMEM;
1596         }
1597
1598         /* Fix for errata 23, can't cross 64kB boundary */
1599         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1600                 void *olddesc = txdr->desc;
1601                 dma_addr_t olddma = txdr->dma;
1602                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1603                                      "at %p\n", txdr->size, txdr->desc);
1604                 /* Try again, without freeing the previous */
1605                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1606                 /* Failed allocation, critical failure */
1607                 if (!txdr->desc) {
1608                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1609                         goto setup_tx_desc_die;
1610                 }
1611
1612                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1613                         /* give up */
1614                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1615                                             txdr->dma);
1616                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1617                         DPRINTK(PROBE, ERR,
1618                                 "Unable to allocate aligned memory "
1619                                 "for the transmit descriptor ring\n");
1620                         vfree(txdr->buffer_info);
1621                         return -ENOMEM;
1622                 } else {
1623                         /* Free old allocation, new allocation was successful */
1624                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1625                 }
1626         }
1627         memset(txdr->desc, 0, txdr->size);
1628
1629         txdr->next_to_use = 0;
1630         txdr->next_to_clean = 0;
1631         spin_lock_init(&txdr->tx_lock);
1632
1633         return 0;
1634 }
1635
1636 /**
1637  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1638  *                                (Descriptors) for all queues
1639  * @adapter: board private structure
1640  *
1641  * Return 0 on success, negative on failure
1642  **/
1643
1644 int
1645 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1646 {
1647         int i, err = 0;
1648
1649         for (i = 0; i < adapter->num_tx_queues; i++) {
1650                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1651                 if (err) {
1652                         DPRINTK(PROBE, ERR,
1653                                 "Allocation for Tx Queue %u failed\n", i);
1654                         for (i-- ; i >= 0; i--)
1655                                 e1000_free_tx_resources(adapter,
1656                                                         &adapter->tx_ring[i]);
1657                         break;
1658                 }
1659         }
1660
1661         return err;
1662 }
1663
1664 /**
1665  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1666  * @adapter: board private structure
1667  *
1668  * Configure the Tx unit of the MAC after a reset.
1669  **/
1670
1671 static void
1672 e1000_configure_tx(struct e1000_adapter *adapter)
1673 {
1674         u64 tdba;
1675         struct e1000_hw *hw = &adapter->hw;
1676         u32 tdlen, tctl, tipg, tarc;
1677         u32 ipgr1, ipgr2;
1678
1679         /* Setup the HW Tx Head and Tail descriptor pointers */
1680
1681         switch (adapter->num_tx_queues) {
1682         case 1:
1683         default:
1684                 tdba = adapter->tx_ring[0].dma;
1685                 tdlen = adapter->tx_ring[0].count *
1686                         sizeof(struct e1000_tx_desc);
1687                 E1000_WRITE_REG(hw, TDLEN, tdlen);
1688                 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1689                 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1690                 E1000_WRITE_REG(hw, TDT, 0);
1691                 E1000_WRITE_REG(hw, TDH, 0);
1692                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1693                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1694                 break;
1695         }
1696
1697         /* Set the default values for the Tx Inter Packet Gap timer */
1698         if (adapter->hw.mac_type <= e1000_82547_rev_2 &&
1699             (hw->media_type == e1000_media_type_fiber ||
1700              hw->media_type == e1000_media_type_internal_serdes))
1701                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1702         else
1703                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1704
1705         switch (hw->mac_type) {
1706         case e1000_82542_rev2_0:
1707         case e1000_82542_rev2_1:
1708                 tipg = DEFAULT_82542_TIPG_IPGT;
1709                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1710                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1711                 break;
1712         case e1000_80003es2lan:
1713                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1714                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1715                 break;
1716         default:
1717                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1718                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1719                 break;
1720         }
1721         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1722         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1723         E1000_WRITE_REG(hw, TIPG, tipg);
1724
1725         /* Set the Tx Interrupt Delay register */
1726
1727         E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1728         if (hw->mac_type >= e1000_82540)
1729                 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1730
1731         /* Program the Transmit Control Register */
1732
1733         tctl = E1000_READ_REG(hw, TCTL);
1734         tctl &= ~E1000_TCTL_CT;
1735         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1736                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1737
1738         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1739                 tarc = E1000_READ_REG(hw, TARC0);
1740                 /* set the speed mode bit, we'll clear it if we're not at
1741                  * gigabit link later */
1742                 tarc |= (1 << 21);
1743                 E1000_WRITE_REG(hw, TARC0, tarc);
1744         } else if (hw->mac_type == e1000_80003es2lan) {
1745                 tarc = E1000_READ_REG(hw, TARC0);
1746                 tarc |= 1;
1747                 E1000_WRITE_REG(hw, TARC0, tarc);
1748                 tarc = E1000_READ_REG(hw, TARC1);
1749                 tarc |= 1;
1750                 E1000_WRITE_REG(hw, TARC1, tarc);
1751         }
1752
1753         e1000_config_collision_dist(hw);
1754
1755         /* Setup Transmit Descriptor Settings for eop descriptor */
1756         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1757
1758         /* only set IDE if we are delaying interrupts using the timers */
1759         if (adapter->tx_int_delay)
1760                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1761
1762         if (hw->mac_type < e1000_82543)
1763                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1764         else
1765                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1766
1767         /* Cache if we're 82544 running in PCI-X because we'll
1768          * need this to apply a workaround later in the send path. */
1769         if (hw->mac_type == e1000_82544 &&
1770             hw->bus_type == e1000_bus_type_pcix)
1771                 adapter->pcix_82544 = 1;
1772
1773         E1000_WRITE_REG(hw, TCTL, tctl);
1774
1775 }
1776
1777 /**
1778  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1779  * @adapter: board private structure
1780  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1781  *
1782  * Returns 0 on success, negative on failure
1783  **/
1784
1785 static int
1786 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1787                          struct e1000_rx_ring *rxdr)
1788 {
1789         struct pci_dev *pdev = adapter->pdev;
1790         int size, desc_len;
1791
1792         size = sizeof(struct e1000_buffer) * rxdr->count;
1793         rxdr->buffer_info = vmalloc(size);
1794         if (!rxdr->buffer_info) {
1795                 DPRINTK(PROBE, ERR,
1796                 "Unable to allocate memory for the receive descriptor ring\n");
1797                 return -ENOMEM;
1798         }
1799         memset(rxdr->buffer_info, 0, size);
1800
1801         rxdr->ps_page = kcalloc(rxdr->count, sizeof(struct e1000_ps_page),
1802                                 GFP_KERNEL);
1803         if (!rxdr->ps_page) {
1804                 vfree(rxdr->buffer_info);
1805                 DPRINTK(PROBE, ERR,
1806                 "Unable to allocate memory for the receive descriptor ring\n");
1807                 return -ENOMEM;
1808         }
1809
1810         rxdr->ps_page_dma = kcalloc(rxdr->count,
1811                                     sizeof(struct e1000_ps_page_dma),
1812                                     GFP_KERNEL);
1813         if (!rxdr->ps_page_dma) {
1814                 vfree(rxdr->buffer_info);
1815                 kfree(rxdr->ps_page);
1816                 DPRINTK(PROBE, ERR,
1817                 "Unable to allocate memory for the receive descriptor ring\n");
1818                 return -ENOMEM;
1819         }
1820
1821         if (adapter->hw.mac_type <= e1000_82547_rev_2)
1822                 desc_len = sizeof(struct e1000_rx_desc);
1823         else
1824                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1825
1826         /* Round up to nearest 4K */
1827
1828         rxdr->size = rxdr->count * desc_len;
1829         rxdr->size = ALIGN(rxdr->size, 4096);
1830
1831         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1832
1833         if (!rxdr->desc) {
1834                 DPRINTK(PROBE, ERR,
1835                 "Unable to allocate memory for the receive descriptor ring\n");
1836 setup_rx_desc_die:
1837                 vfree(rxdr->buffer_info);
1838                 kfree(rxdr->ps_page);
1839                 kfree(rxdr->ps_page_dma);
1840                 return -ENOMEM;
1841         }
1842
1843         /* Fix for errata 23, can't cross 64kB boundary */
1844         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1845                 void *olddesc = rxdr->desc;
1846                 dma_addr_t olddma = rxdr->dma;
1847                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1848                                      "at %p\n", rxdr->size, rxdr->desc);
1849                 /* Try again, without freeing the previous */
1850                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1851                 /* Failed allocation, critical failure */
1852                 if (!rxdr->desc) {
1853                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1854                         DPRINTK(PROBE, ERR,
1855                                 "Unable to allocate memory "
1856                                 "for the receive descriptor ring\n");
1857                         goto setup_rx_desc_die;
1858                 }
1859
1860                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1861                         /* give up */
1862                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1863                                             rxdr->dma);
1864                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1865                         DPRINTK(PROBE, ERR,
1866                                 "Unable to allocate aligned memory "
1867                                 "for the receive descriptor ring\n");
1868                         goto setup_rx_desc_die;
1869                 } else {
1870                         /* Free old allocation, new allocation was successful */
1871                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1872                 }
1873         }
1874         memset(rxdr->desc, 0, rxdr->size);
1875
1876         rxdr->next_to_clean = 0;
1877         rxdr->next_to_use = 0;
1878
1879         return 0;
1880 }
1881
1882 /**
1883  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1884  *                                (Descriptors) for all queues
1885  * @adapter: board private structure
1886  *
1887  * Return 0 on success, negative on failure
1888  **/
1889
1890 int
1891 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1892 {
1893         int i, err = 0;
1894
1895         for (i = 0; i < adapter->num_rx_queues; i++) {
1896                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1897                 if (err) {
1898                         DPRINTK(PROBE, ERR,
1899                                 "Allocation for Rx Queue %u failed\n", i);
1900                         for (i-- ; i >= 0; i--)
1901                                 e1000_free_rx_resources(adapter,
1902                                                         &adapter->rx_ring[i]);
1903                         break;
1904                 }
1905         }
1906
1907         return err;
1908 }
1909
1910 /**
1911  * e1000_setup_rctl - configure the receive control registers
1912  * @adapter: Board private structure
1913  **/
1914 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1915                         (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1916 static void
1917 e1000_setup_rctl(struct e1000_adapter *adapter)
1918 {
1919         u32 rctl, rfctl;
1920         u32 psrctl = 0;
1921 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1922         u32 pages = 0;
1923 #endif
1924
1925         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1926
1927         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1928
1929         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1930                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1931                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1932
1933         if (adapter->hw.tbi_compatibility_on == 1)
1934                 rctl |= E1000_RCTL_SBP;
1935         else
1936                 rctl &= ~E1000_RCTL_SBP;
1937
1938         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1939                 rctl &= ~E1000_RCTL_LPE;
1940         else
1941                 rctl |= E1000_RCTL_LPE;
1942
1943         /* Setup buffer sizes */
1944         rctl &= ~E1000_RCTL_SZ_4096;
1945         rctl |= E1000_RCTL_BSEX;
1946         switch (adapter->rx_buffer_len) {
1947                 case E1000_RXBUFFER_256:
1948                         rctl |= E1000_RCTL_SZ_256;
1949                         rctl &= ~E1000_RCTL_BSEX;
1950                         break;
1951                 case E1000_RXBUFFER_512:
1952                         rctl |= E1000_RCTL_SZ_512;
1953                         rctl &= ~E1000_RCTL_BSEX;
1954                         break;
1955                 case E1000_RXBUFFER_1024:
1956                         rctl |= E1000_RCTL_SZ_1024;
1957                         rctl &= ~E1000_RCTL_BSEX;
1958                         break;
1959                 case E1000_RXBUFFER_2048:
1960                 default:
1961                         rctl |= E1000_RCTL_SZ_2048;
1962                         rctl &= ~E1000_RCTL_BSEX;
1963                         break;
1964                 case E1000_RXBUFFER_4096:
1965                         rctl |= E1000_RCTL_SZ_4096;
1966                         break;
1967                 case E1000_RXBUFFER_8192:
1968                         rctl |= E1000_RCTL_SZ_8192;
1969                         break;
1970                 case E1000_RXBUFFER_16384:
1971                         rctl |= E1000_RCTL_SZ_16384;
1972                         break;
1973         }
1974
1975 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1976         /* 82571 and greater support packet-split where the protocol
1977          * header is placed in skb->data and the packet data is
1978          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1979          * In the case of a non-split, skb->data is linearly filled,
1980          * followed by the page buffers.  Therefore, skb->data is
1981          * sized to hold the largest protocol header.
1982          */
1983         /* allocations using alloc_page take too long for regular MTU
1984          * so only enable packet split for jumbo frames */
1985         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1986         if ((adapter->hw.mac_type >= e1000_82571) && (pages <= 3) &&
1987             PAGE_SIZE <= 16384 && (rctl & E1000_RCTL_LPE))
1988                 adapter->rx_ps_pages = pages;
1989         else
1990                 adapter->rx_ps_pages = 0;
1991 #endif
1992         if (adapter->rx_ps_pages) {
1993                 /* Configure extra packet-split registers */
1994                 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1995                 rfctl |= E1000_RFCTL_EXTEN;
1996                 /* disable packet split support for IPv6 extension headers,
1997                  * because some malformed IPv6 headers can hang the RX */
1998                 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
1999                           E1000_RFCTL_NEW_IPV6_EXT_DIS);
2000
2001                 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
2002
2003                 rctl |= E1000_RCTL_DTYP_PS;
2004
2005                 psrctl |= adapter->rx_ps_bsize0 >>
2006                         E1000_PSRCTL_BSIZE0_SHIFT;
2007
2008                 switch (adapter->rx_ps_pages) {
2009                 case 3:
2010                         psrctl |= PAGE_SIZE <<
2011                                 E1000_PSRCTL_BSIZE3_SHIFT;
2012                 case 2:
2013                         psrctl |= PAGE_SIZE <<
2014                                 E1000_PSRCTL_BSIZE2_SHIFT;
2015                 case 1:
2016                         psrctl |= PAGE_SIZE >>
2017                                 E1000_PSRCTL_BSIZE1_SHIFT;
2018                         break;
2019                 }
2020
2021                 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
2022         }
2023
2024         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2025 }
2026
2027 /**
2028  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
2029  * @adapter: board private structure
2030  *
2031  * Configure the Rx unit of the MAC after a reset.
2032  **/
2033
2034 static void
2035 e1000_configure_rx(struct e1000_adapter *adapter)
2036 {
2037         u64 rdba;
2038         struct e1000_hw *hw = &adapter->hw;
2039         u32 rdlen, rctl, rxcsum, ctrl_ext;
2040
2041         if (adapter->rx_ps_pages) {
2042                 /* this is a 32 byte descriptor */
2043                 rdlen = adapter->rx_ring[0].count *
2044                         sizeof(union e1000_rx_desc_packet_split);
2045                 adapter->clean_rx = e1000_clean_rx_irq_ps;
2046                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2047         } else {
2048                 rdlen = adapter->rx_ring[0].count *
2049                         sizeof(struct e1000_rx_desc);
2050                 adapter->clean_rx = e1000_clean_rx_irq;
2051                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2052         }
2053
2054         /* disable receives while setting up the descriptors */
2055         rctl = E1000_READ_REG(hw, RCTL);
2056         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
2057
2058         /* set the Receive Delay Timer Register */
2059         E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
2060
2061         if (hw->mac_type >= e1000_82540) {
2062                 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
2063                 if (adapter->itr_setting != 0)
2064                         E1000_WRITE_REG(hw, ITR,
2065                                 1000000000 / (adapter->itr * 256));
2066         }
2067
2068         if (hw->mac_type >= e1000_82571) {
2069                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
2070                 /* Reset delay timers after every interrupt */
2071                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
2072 #ifdef CONFIG_E1000_NAPI
2073                 /* Auto-Mask interrupts upon ICR access */
2074                 ctrl_ext |= E1000_CTRL_EXT_IAME;
2075                 E1000_WRITE_REG(hw, IAM, 0xffffffff);
2076 #endif
2077                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
2078                 E1000_WRITE_FLUSH(hw);
2079         }
2080
2081         /* Setup the HW Rx Head and Tail Descriptor Pointers and
2082          * the Base and Length of the Rx Descriptor Ring */
2083         switch (adapter->num_rx_queues) {
2084         case 1:
2085         default:
2086                 rdba = adapter->rx_ring[0].dma;
2087                 E1000_WRITE_REG(hw, RDLEN, rdlen);
2088                 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
2089                 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
2090                 E1000_WRITE_REG(hw, RDT, 0);
2091                 E1000_WRITE_REG(hw, RDH, 0);
2092                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
2093                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
2094                 break;
2095         }
2096
2097         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
2098         if (hw->mac_type >= e1000_82543) {
2099                 rxcsum = E1000_READ_REG(hw, RXCSUM);
2100                 if (adapter->rx_csum) {
2101                         rxcsum |= E1000_RXCSUM_TUOFL;
2102
2103                         /* Enable 82571 IPv4 payload checksum for UDP fragments
2104                          * Must be used in conjunction with packet-split. */
2105                         if ((hw->mac_type >= e1000_82571) &&
2106                             (adapter->rx_ps_pages)) {
2107                                 rxcsum |= E1000_RXCSUM_IPPCSE;
2108                         }
2109                 } else {
2110                         rxcsum &= ~E1000_RXCSUM_TUOFL;
2111                         /* don't need to clear IPPCSE as it defaults to 0 */
2112                 }
2113                 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
2114         }
2115
2116         /* enable early receives on 82573, only takes effect if using > 2048
2117          * byte total frame size.  for example only for jumbo frames */
2118 #define E1000_ERT_2048 0x100
2119         if (hw->mac_type == e1000_82573)
2120                 E1000_WRITE_REG(hw, ERT, E1000_ERT_2048);
2121
2122         /* Enable Receives */
2123         E1000_WRITE_REG(hw, RCTL, rctl);
2124 }
2125
2126 /**
2127  * e1000_free_tx_resources - Free Tx Resources per Queue
2128  * @adapter: board private structure
2129  * @tx_ring: Tx descriptor ring for a specific queue
2130  *
2131  * Free all transmit software resources
2132  **/
2133
2134 static void
2135 e1000_free_tx_resources(struct e1000_adapter *adapter,
2136                         struct e1000_tx_ring *tx_ring)
2137 {
2138         struct pci_dev *pdev = adapter->pdev;
2139
2140         e1000_clean_tx_ring(adapter, tx_ring);
2141
2142         vfree(tx_ring->buffer_info);
2143         tx_ring->buffer_info = NULL;
2144
2145         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2146
2147         tx_ring->desc = NULL;
2148 }
2149
2150 /**
2151  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
2152  * @adapter: board private structure
2153  *
2154  * Free all transmit software resources
2155  **/
2156
2157 void
2158 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
2159 {
2160         int i;
2161
2162         for (i = 0; i < adapter->num_tx_queues; i++)
2163                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
2164 }
2165
2166 static void
2167 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
2168                         struct e1000_buffer *buffer_info)
2169 {
2170         if (buffer_info->dma) {
2171                 pci_unmap_page(adapter->pdev,
2172                                 buffer_info->dma,
2173                                 buffer_info->length,
2174                                 PCI_DMA_TODEVICE);
2175                 buffer_info->dma = 0;
2176         }
2177         if (buffer_info->skb) {
2178                 dev_kfree_skb_any(buffer_info->skb);
2179                 buffer_info->skb = NULL;
2180         }
2181         /* buffer_info must be completely set up in the transmit path */
2182 }
2183
2184 /**
2185  * e1000_clean_tx_ring - Free Tx Buffers
2186  * @adapter: board private structure
2187  * @tx_ring: ring to be cleaned
2188  **/
2189
2190 static void
2191 e1000_clean_tx_ring(struct e1000_adapter *adapter,
2192                     struct e1000_tx_ring *tx_ring)
2193 {
2194         struct e1000_buffer *buffer_info;
2195         unsigned long size;
2196         unsigned int i;
2197
2198         /* Free all the Tx ring sk_buffs */
2199
2200         for (i = 0; i < tx_ring->count; i++) {
2201                 buffer_info = &tx_ring->buffer_info[i];
2202                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2203         }
2204
2205         size = sizeof(struct e1000_buffer) * tx_ring->count;
2206         memset(tx_ring->buffer_info, 0, size);
2207
2208         /* Zero out the descriptor ring */
2209
2210         memset(tx_ring->desc, 0, tx_ring->size);
2211
2212         tx_ring->next_to_use = 0;
2213         tx_ring->next_to_clean = 0;
2214         tx_ring->last_tx_tso = 0;
2215
2216         writel(0, adapter->hw.hw_addr + tx_ring->tdh);
2217         writel(0, adapter->hw.hw_addr + tx_ring->tdt);
2218 }
2219
2220 /**
2221  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2222  * @adapter: board private structure
2223  **/
2224
2225 static void
2226 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2227 {
2228         int i;
2229
2230         for (i = 0; i < adapter->num_tx_queues; i++)
2231                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2232 }
2233
2234 /**
2235  * e1000_free_rx_resources - Free Rx Resources
2236  * @adapter: board private structure
2237  * @rx_ring: ring to clean the resources from
2238  *
2239  * Free all receive software resources
2240  **/
2241
2242 static void
2243 e1000_free_rx_resources(struct e1000_adapter *adapter,
2244                         struct e1000_rx_ring *rx_ring)
2245 {
2246         struct pci_dev *pdev = adapter->pdev;
2247
2248         e1000_clean_rx_ring(adapter, rx_ring);
2249
2250         vfree(rx_ring->buffer_info);
2251         rx_ring->buffer_info = NULL;
2252         kfree(rx_ring->ps_page);
2253         rx_ring->ps_page = NULL;
2254         kfree(rx_ring->ps_page_dma);
2255         rx_ring->ps_page_dma = NULL;
2256
2257         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2258
2259         rx_ring->desc = NULL;
2260 }
2261
2262 /**
2263  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2264  * @adapter: board private structure
2265  *
2266  * Free all receive software resources
2267  **/
2268
2269 void
2270 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2271 {
2272         int i;
2273
2274         for (i = 0; i < adapter->num_rx_queues; i++)
2275                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2276 }
2277
2278 /**
2279  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2280  * @adapter: board private structure
2281  * @rx_ring: ring to free buffers from
2282  **/
2283
2284 static void
2285 e1000_clean_rx_ring(struct e1000_adapter *adapter,
2286                     struct e1000_rx_ring *rx_ring)
2287 {
2288         struct e1000_buffer *buffer_info;
2289         struct e1000_ps_page *ps_page;
2290         struct e1000_ps_page_dma *ps_page_dma;
2291         struct pci_dev *pdev = adapter->pdev;
2292         unsigned long size;
2293         unsigned int i, j;
2294
2295         /* Free all the Rx ring sk_buffs */
2296         for (i = 0; i < rx_ring->count; i++) {
2297                 buffer_info = &rx_ring->buffer_info[i];
2298                 if (buffer_info->skb) {
2299                         pci_unmap_single(pdev,
2300                                          buffer_info->dma,
2301                                          buffer_info->length,
2302                                          PCI_DMA_FROMDEVICE);
2303
2304                         dev_kfree_skb(buffer_info->skb);
2305                         buffer_info->skb = NULL;
2306                 }
2307                 ps_page = &rx_ring->ps_page[i];
2308                 ps_page_dma = &rx_ring->ps_page_dma[i];
2309                 for (j = 0; j < adapter->rx_ps_pages; j++) {
2310                         if (!ps_page->ps_page[j]) break;
2311                         pci_unmap_page(pdev,
2312                                        ps_page_dma->ps_page_dma[j],
2313                                        PAGE_SIZE, PCI_DMA_FROMDEVICE);
2314                         ps_page_dma->ps_page_dma[j] = 0;
2315                         put_page(ps_page->ps_page[j]);
2316                         ps_page->ps_page[j] = NULL;
2317                 }
2318         }
2319
2320         size = sizeof(struct e1000_buffer) * rx_ring->count;
2321         memset(rx_ring->buffer_info, 0, size);
2322         size = sizeof(struct e1000_ps_page) * rx_ring->count;
2323         memset(rx_ring->ps_page, 0, size);
2324         size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
2325         memset(rx_ring->ps_page_dma, 0, size);
2326
2327         /* Zero out the descriptor ring */
2328
2329         memset(rx_ring->desc, 0, rx_ring->size);
2330
2331         rx_ring->next_to_clean = 0;
2332         rx_ring->next_to_use = 0;
2333
2334         writel(0, adapter->hw.hw_addr + rx_ring->rdh);
2335         writel(0, adapter->hw.hw_addr + rx_ring->rdt);
2336 }
2337
2338 /**
2339  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2340  * @adapter: board private structure
2341  **/
2342
2343 static void
2344 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2345 {
2346         int i;
2347
2348         for (i = 0; i < adapter->num_rx_queues; i++)
2349                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2350 }
2351
2352 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2353  * and memory write and invalidate disabled for certain operations
2354  */
2355 static void
2356 e1000_enter_82542_rst(struct e1000_adapter *adapter)
2357 {
2358         struct net_device *netdev = adapter->netdev;
2359         u32 rctl;
2360
2361         e1000_pci_clear_mwi(&adapter->hw);
2362
2363         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2364         rctl |= E1000_RCTL_RST;
2365         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2366         E1000_WRITE_FLUSH(&adapter->hw);
2367         mdelay(5);
2368
2369         if (netif_running(netdev))
2370                 e1000_clean_all_rx_rings(adapter);
2371 }
2372
2373 static void
2374 e1000_leave_82542_rst(struct e1000_adapter *adapter)
2375 {
2376         struct net_device *netdev = adapter->netdev;
2377         u32 rctl;
2378
2379         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2380         rctl &= ~E1000_RCTL_RST;
2381         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2382         E1000_WRITE_FLUSH(&adapter->hw);
2383         mdelay(5);
2384
2385         if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2386                 e1000_pci_set_mwi(&adapter->hw);
2387
2388         if (netif_running(netdev)) {
2389                 /* No need to loop, because 82542 supports only 1 queue */
2390                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2391                 e1000_configure_rx(adapter);
2392                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2393         }
2394 }
2395
2396 /**
2397  * e1000_set_mac - Change the Ethernet Address of the NIC
2398  * @netdev: network interface device structure
2399  * @p: pointer to an address structure
2400  *
2401  * Returns 0 on success, negative on failure
2402  **/
2403
2404 static int
2405 e1000_set_mac(struct net_device *netdev, void *p)
2406 {
2407         struct e1000_adapter *adapter = netdev_priv(netdev);
2408         struct sockaddr *addr = p;
2409
2410         if (!is_valid_ether_addr(addr->sa_data))
2411                 return -EADDRNOTAVAIL;
2412
2413         /* 82542 2.0 needs to be in reset to write receive address registers */
2414
2415         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2416                 e1000_enter_82542_rst(adapter);
2417
2418         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2419         memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2420
2421         e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2422
2423         /* With 82571 controllers, LAA may be overwritten (with the default)
2424          * due to controller reset from the other port. */
2425         if (adapter->hw.mac_type == e1000_82571) {
2426                 /* activate the work around */
2427                 adapter->hw.laa_is_present = 1;
2428
2429                 /* Hold a copy of the LAA in RAR[14] This is done so that
2430                  * between the time RAR[0] gets clobbered  and the time it
2431                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2432                  * of the RARs and no incoming packets directed to this port
2433                  * are dropped. Eventaully the LAA will be in RAR[0] and
2434                  * RAR[14] */
2435                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2436                                         E1000_RAR_ENTRIES - 1);
2437         }
2438
2439         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2440                 e1000_leave_82542_rst(adapter);
2441
2442         return 0;
2443 }
2444
2445 /**
2446  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2447  * @netdev: network interface device structure
2448  *
2449  * The set_rx_mode entry point is called whenever the unicast or multicast
2450  * address lists or the network interface flags are updated. This routine is
2451  * responsible for configuring the hardware for proper unicast, multicast,
2452  * promiscuous mode, and all-multi behavior.
2453  **/
2454
2455 static void
2456 e1000_set_rx_mode(struct net_device *netdev)
2457 {
2458         struct e1000_adapter *adapter = netdev_priv(netdev);
2459         struct e1000_hw *hw = &adapter->hw;
2460         struct dev_addr_list *uc_ptr;
2461         struct dev_addr_list *mc_ptr;
2462         u32 rctl;
2463         u32 hash_value;
2464         int i, rar_entries = E1000_RAR_ENTRIES;
2465         int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2466                                 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2467                                 E1000_NUM_MTA_REGISTERS;
2468
2469         if (adapter->hw.mac_type == e1000_ich8lan)
2470                 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2471
2472         /* reserve RAR[14] for LAA over-write work-around */
2473         if (adapter->hw.mac_type == e1000_82571)
2474                 rar_entries--;
2475
2476         /* Check for Promiscuous and All Multicast modes */
2477
2478         rctl = E1000_READ_REG(hw, RCTL);
2479
2480         if (netdev->flags & IFF_PROMISC) {
2481                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2482                 rctl &= ~E1000_RCTL_VFE;
2483         } else {
2484                 if (netdev->flags & IFF_ALLMULTI) {
2485                         rctl |= E1000_RCTL_MPE;
2486                 } else {
2487                         rctl &= ~E1000_RCTL_MPE;
2488                 }
2489                 if (adapter->hw.mac_type != e1000_ich8lan)
2490                         rctl |= E1000_RCTL_VFE;
2491         }
2492
2493         uc_ptr = NULL;
2494         if (netdev->uc_count > rar_entries - 1) {
2495                 rctl |= E1000_RCTL_UPE;
2496         } else if (!(netdev->flags & IFF_PROMISC)) {
2497                 rctl &= ~E1000_RCTL_UPE;
2498                 uc_ptr = netdev->uc_list;
2499         }
2500
2501         E1000_WRITE_REG(hw, RCTL, rctl);
2502
2503         /* 82542 2.0 needs to be in reset to write receive address registers */
2504
2505         if (hw->mac_type == e1000_82542_rev2_0)
2506                 e1000_enter_82542_rst(adapter);
2507
2508         /* load the first 14 addresses into the exact filters 1-14. Unicast
2509          * addresses take precedence to avoid disabling unicast filtering
2510          * when possible.
2511          *
2512          * RAR 0 is used for the station MAC adddress
2513          * if there are not 14 addresses, go ahead and clear the filters
2514          * -- with 82571 controllers only 0-13 entries are filled here
2515          */
2516         mc_ptr = netdev->mc_list;
2517
2518         for (i = 1; i < rar_entries; i++) {
2519                 if (uc_ptr) {
2520                         e1000_rar_set(hw, uc_ptr->da_addr, i);
2521                         uc_ptr = uc_ptr->next;
2522                 } else if (mc_ptr) {
2523                         e1000_rar_set(hw, mc_ptr->da_addr, i);
2524                         mc_ptr = mc_ptr->next;
2525                 } else {
2526                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2527                         E1000_WRITE_FLUSH(hw);
2528                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2529                         E1000_WRITE_FLUSH(hw);
2530                 }
2531         }
2532         WARN_ON(uc_ptr != NULL);
2533
2534         /* clear the old settings from the multicast hash table */
2535
2536         for (i = 0; i < mta_reg_count; i++) {
2537                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2538                 E1000_WRITE_FLUSH(hw);
2539         }
2540
2541         /* load any remaining addresses into the hash table */
2542
2543         for (; mc_ptr; mc_ptr = mc_ptr->next) {
2544                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->da_addr);
2545                 e1000_mta_set(hw, hash_value);
2546         }
2547
2548         if (hw->mac_type == e1000_82542_rev2_0)
2549                 e1000_leave_82542_rst(adapter);
2550 }
2551
2552 /* Need to wait a few seconds after link up to get diagnostic information from
2553  * the phy */
2554
2555 static void
2556 e1000_update_phy_info(unsigned long data)
2557 {
2558         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2559         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2560 }
2561
2562 /**
2563  * e1000_82547_tx_fifo_stall - Timer Call-back
2564  * @data: pointer to adapter cast into an unsigned long
2565  **/
2566
2567 static void
2568 e1000_82547_tx_fifo_stall(unsigned long data)
2569 {
2570         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2571         struct net_device *netdev = adapter->netdev;
2572         u32 tctl;
2573
2574         if (atomic_read(&adapter->tx_fifo_stall)) {
2575                 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2576                     E1000_READ_REG(&adapter->hw, TDH)) &&
2577                    (E1000_READ_REG(&adapter->hw, TDFT) ==
2578                     E1000_READ_REG(&adapter->hw, TDFH)) &&
2579                    (E1000_READ_REG(&adapter->hw, TDFTS) ==
2580                     E1000_READ_REG(&adapter->hw, TDFHS))) {
2581                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2582                         E1000_WRITE_REG(&adapter->hw, TCTL,
2583                                         tctl & ~E1000_TCTL_EN);
2584                         E1000_WRITE_REG(&adapter->hw, TDFT,
2585                                         adapter->tx_head_addr);
2586                         E1000_WRITE_REG(&adapter->hw, TDFH,
2587                                         adapter->tx_head_addr);
2588                         E1000_WRITE_REG(&adapter->hw, TDFTS,
2589                                         adapter->tx_head_addr);
2590                         E1000_WRITE_REG(&adapter->hw, TDFHS,
2591                                         adapter->tx_head_addr);
2592                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2593                         E1000_WRITE_FLUSH(&adapter->hw);
2594
2595                         adapter->tx_fifo_head = 0;
2596                         atomic_set(&adapter->tx_fifo_stall, 0);
2597                         netif_wake_queue(netdev);
2598                 } else {
2599                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2600                 }
2601         }
2602 }
2603
2604 /**
2605  * e1000_watchdog - Timer Call-back
2606  * @data: pointer to adapter cast into an unsigned long
2607  **/
2608 static void
2609 e1000_watchdog(unsigned long data)
2610 {
2611         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2612         struct net_device *netdev = adapter->netdev;
2613         struct e1000_tx_ring *txdr = adapter->tx_ring;
2614         u32 link, tctl;
2615         s32 ret_val;
2616
2617         ret_val = e1000_check_for_link(&adapter->hw);
2618         if ((ret_val == E1000_ERR_PHY) &&
2619             (adapter->hw.phy_type == e1000_phy_igp_3) &&
2620             (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2621                 /* See e1000_kumeran_lock_loss_workaround() */
2622                 DPRINTK(LINK, INFO,
2623                         "Gigabit has been disabled, downgrading speed\n");
2624         }
2625
2626         if (adapter->hw.mac_type == e1000_82573) {
2627                 e1000_enable_tx_pkt_filtering(&adapter->hw);
2628                 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2629                         e1000_update_mng_vlan(adapter);
2630         }
2631
2632         if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2633            !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2634                 link = !adapter->hw.serdes_link_down;
2635         else
2636                 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2637
2638         if (link) {
2639                 if (!netif_carrier_ok(netdev)) {
2640                         u32 ctrl;
2641                         bool txb2b = true;
2642                         e1000_get_speed_and_duplex(&adapter->hw,
2643                                                    &adapter->link_speed,
2644                                                    &adapter->link_duplex);
2645
2646                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
2647                         DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s, "
2648                                 "Flow Control: %s\n",
2649                                 adapter->link_speed,
2650                                 adapter->link_duplex == FULL_DUPLEX ?
2651                                 "Full Duplex" : "Half Duplex",
2652                                 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2653                                 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2654                                 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2655                                 E1000_CTRL_TFCE) ? "TX" : "None" )));
2656
2657                         /* tweak tx_queue_len according to speed/duplex
2658                          * and adjust the timeout factor */
2659                         netdev->tx_queue_len = adapter->tx_queue_len;
2660                         adapter->tx_timeout_factor = 1;
2661                         switch (adapter->link_speed) {
2662                         case SPEED_10:
2663                                 txb2b = false;
2664                                 netdev->tx_queue_len = 10;
2665                                 adapter->tx_timeout_factor = 8;
2666                                 break;
2667                         case SPEED_100:
2668                                 txb2b = false;
2669                                 netdev->tx_queue_len = 100;
2670                                 /* maybe add some timeout factor ? */
2671                                 break;
2672                         }
2673
2674                         if ((adapter->hw.mac_type == e1000_82571 ||
2675                              adapter->hw.mac_type == e1000_82572) &&
2676                             !txb2b) {
2677                                 u32 tarc0;
2678                                 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
2679                                 tarc0 &= ~(1 << 21);
2680                                 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
2681                         }
2682
2683                         /* disable TSO for pcie and 10/100 speeds, to avoid
2684                          * some hardware issues */
2685                         if (!adapter->tso_force &&
2686                             adapter->hw.bus_type == e1000_bus_type_pci_express){
2687                                 switch (adapter->link_speed) {
2688                                 case SPEED_10:
2689                                 case SPEED_100:
2690                                         DPRINTK(PROBE,INFO,
2691                                         "10/100 speed: disabling TSO\n");
2692                                         netdev->features &= ~NETIF_F_TSO;
2693                                         netdev->features &= ~NETIF_F_TSO6;
2694                                         break;
2695                                 case SPEED_1000:
2696                                         netdev->features |= NETIF_F_TSO;
2697                                         netdev->features |= NETIF_F_TSO6;
2698                                         break;
2699                                 default:
2700                                         /* oops */
2701                                         break;
2702                                 }
2703                         }
2704
2705                         /* enable transmits in the hardware, need to do this
2706                          * after setting TARC0 */
2707                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2708                         tctl |= E1000_TCTL_EN;
2709                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2710
2711                         netif_carrier_on(netdev);
2712                         netif_wake_queue(netdev);
2713                         mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2714                         adapter->smartspeed = 0;
2715                 } else {
2716                         /* make sure the receive unit is started */
2717                         if (adapter->hw.rx_needs_kicking) {
2718                                 struct e1000_hw *hw = &adapter->hw;
2719                                 u32 rctl = E1000_READ_REG(hw, RCTL);
2720                                 E1000_WRITE_REG(hw, RCTL, rctl | E1000_RCTL_EN);
2721                         }
2722                 }
2723         } else {
2724                 if (netif_carrier_ok(netdev)) {
2725                         adapter->link_speed = 0;
2726                         adapter->link_duplex = 0;
2727                         DPRINTK(LINK, INFO, "NIC Link is Down\n");
2728                         netif_carrier_off(netdev);
2729                         netif_stop_queue(netdev);
2730                         mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2731
2732                         /* 80003ES2LAN workaround--
2733                          * For packet buffer work-around on link down event;
2734                          * disable receives in the ISR and
2735                          * reset device here in the watchdog
2736                          */
2737                         if (adapter->hw.mac_type == e1000_80003es2lan)
2738                                 /* reset device */
2739                                 schedule_work(&adapter->reset_task);
2740                 }
2741
2742                 e1000_smartspeed(adapter);
2743         }
2744
2745         e1000_update_stats(adapter);
2746
2747         adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2748         adapter->tpt_old = adapter->stats.tpt;
2749         adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2750         adapter->colc_old = adapter->stats.colc;
2751
2752         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2753         adapter->gorcl_old = adapter->stats.gorcl;
2754         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2755         adapter->gotcl_old = adapter->stats.gotcl;
2756
2757         e1000_update_adaptive(&adapter->hw);
2758
2759         if (!netif_carrier_ok(netdev)) {
2760                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2761                         /* We've lost link, so the controller stops DMA,
2762                          * but we've got queued Tx work that's never going
2763                          * to get done, so reset controller to flush Tx.
2764                          * (Do the reset outside of interrupt context). */
2765                         adapter->tx_timeout_count++;
2766                         schedule_work(&adapter->reset_task);
2767                 }
2768         }
2769
2770         /* Cause software interrupt to ensure rx ring is cleaned */
2771         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2772
2773         /* Force detection of hung controller every watchdog period */
2774         adapter->detect_tx_hung = true;
2775
2776         /* With 82571 controllers, LAA may be overwritten due to controller
2777          * reset from the other port. Set the appropriate LAA in RAR[0] */
2778         if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2779                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2780
2781         /* Reset the timer */
2782         mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 2 * HZ));
2783 }
2784
2785 enum latency_range {
2786         lowest_latency = 0,
2787         low_latency = 1,
2788         bulk_latency = 2,
2789         latency_invalid = 255
2790 };
2791
2792 /**
2793  * e1000_update_itr - update the dynamic ITR value based on statistics
2794  *      Stores a new ITR value based on packets and byte
2795  *      counts during the last interrupt.  The advantage of per interrupt
2796  *      computation is faster updates and more accurate ITR for the current
2797  *      traffic pattern.  Constants in this function were computed
2798  *      based on theoretical maximum wire speed and thresholds were set based
2799  *      on testing data as well as attempting to minimize response time
2800  *      while increasing bulk throughput.
2801  *      this functionality is controlled by the InterruptThrottleRate module
2802  *      parameter (see e1000_param.c)
2803  * @adapter: pointer to adapter
2804  * @itr_setting: current adapter->itr
2805  * @packets: the number of packets during this measurement interval
2806  * @bytes: the number of bytes during this measurement interval
2807  **/
2808 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2809                                    u16 itr_setting,
2810                                    int packets,
2811                                    int bytes)
2812 {
2813         unsigned int retval = itr_setting;
2814         struct e1000_hw *hw = &adapter->hw;
2815
2816         if (unlikely(hw->mac_type < e1000_82540))
2817                 goto update_itr_done;
2818
2819         if (packets == 0)
2820                 goto update_itr_done;
2821
2822         switch (itr_setting) {
2823         case lowest_latency:
2824                 /* jumbo frames get bulk treatment*/
2825                 if (bytes/packets > 8000)
2826                         retval = bulk_latency;
2827                 else if ((packets < 5) && (bytes > 512))
2828                         retval = low_latency;
2829                 break;
2830         case low_latency:  /* 50 usec aka 20000 ints/s */
2831                 if (bytes > 10000) {
2832                         /* jumbo frames need bulk latency setting */
2833                         if (bytes/packets > 8000)
2834                                 retval = bulk_latency;
2835                         else if ((packets < 10) || ((bytes/packets) > 1200))
2836                                 retval = bulk_latency;
2837                         else if ((packets > 35))
2838                                 retval = lowest_latency;
2839                 } else if (bytes/packets > 2000)
2840                         retval = bulk_latency;
2841                 else if (packets <= 2 && bytes < 512)
2842                         retval = lowest_latency;
2843                 break;
2844         case bulk_latency: /* 250 usec aka 4000 ints/s */
2845                 if (bytes > 25000) {
2846                         if (packets > 35)
2847                                 retval = low_latency;
2848                 } else if (bytes < 6000) {
2849                         retval = low_latency;
2850                 }
2851                 break;
2852         }
2853
2854 update_itr_done:
2855         return retval;
2856 }
2857
2858 static void e1000_set_itr(struct e1000_adapter *adapter)
2859 {
2860         struct e1000_hw *hw = &adapter->hw;
2861         u16 current_itr;
2862         u32 new_itr = adapter->itr;
2863
2864         if (unlikely(hw->mac_type < e1000_82540))
2865                 return;
2866
2867         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2868         if (unlikely(adapter->link_speed != SPEED_1000)) {
2869                 current_itr = 0;
2870                 new_itr = 4000;
2871                 goto set_itr_now;
2872         }
2873
2874         adapter->tx_itr = e1000_update_itr(adapter,
2875                                     adapter->tx_itr,
2876                                     adapter->total_tx_packets,
2877                                     adapter->total_tx_bytes);
2878         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2879         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2880                 adapter->tx_itr = low_latency;
2881
2882         adapter->rx_itr = e1000_update_itr(adapter,
2883                                     adapter->rx_itr,
2884                                     adapter->total_rx_packets,
2885                                     adapter->total_rx_bytes);
2886         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2887         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2888                 adapter->rx_itr = low_latency;
2889
2890         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2891
2892         switch (current_itr) {
2893         /* counts and packets in update_itr are dependent on these numbers */
2894         case lowest_latency:
2895                 new_itr = 70000;
2896                 break;
2897         case low_latency:
2898                 new_itr = 20000; /* aka hwitr = ~200 */
2899                 break;
2900         case bulk_latency:
2901                 new_itr = 4000;
2902                 break;
2903         default:
2904                 break;
2905         }
2906
2907 set_itr_now:
2908         if (new_itr != adapter->itr) {
2909                 /* this attempts to bias the interrupt rate towards Bulk
2910                  * by adding intermediate steps when interrupt rate is
2911                  * increasing */
2912                 new_itr = new_itr > adapter->itr ?
2913                              min(adapter->itr + (new_itr >> 2), new_itr) :
2914                              new_itr;
2915                 adapter->itr = new_itr;
2916                 E1000_WRITE_REG(hw, ITR, 1000000000 / (new_itr * 256));
2917         }
2918
2919         return;
2920 }
2921
2922 #define E1000_TX_FLAGS_CSUM             0x00000001
2923 #define E1000_TX_FLAGS_VLAN             0x00000002
2924 #define E1000_TX_FLAGS_TSO              0x00000004
2925 #define E1000_TX_FLAGS_IPV4             0x00000008
2926 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2927 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2928
2929 static int
2930 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2931           struct sk_buff *skb)
2932 {
2933         struct e1000_context_desc *context_desc;
2934         struct e1000_buffer *buffer_info;
2935         unsigned int i;
2936         u32 cmd_length = 0;
2937         u16 ipcse = 0, tucse, mss;
2938         u8 ipcss, ipcso, tucss, tucso, hdr_len;
2939         int err;
2940
2941         if (skb_is_gso(skb)) {
2942                 if (skb_header_cloned(skb)) {
2943                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2944                         if (err)
2945                                 return err;
2946                 }
2947
2948                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2949                 mss = skb_shinfo(skb)->gso_size;
2950                 if (skb->protocol == htons(ETH_P_IP)) {
2951                         struct iphdr *iph = ip_hdr(skb);
2952                         iph->tot_len = 0;
2953                         iph->check = 0;
2954                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2955                                                                  iph->daddr, 0,
2956                                                                  IPPROTO_TCP,
2957                                                                  0);
2958                         cmd_length = E1000_TXD_CMD_IP;
2959                         ipcse = skb_transport_offset(skb) - 1;
2960                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2961                         ipv6_hdr(skb)->payload_len = 0;
2962                         tcp_hdr(skb)->check =
2963                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2964                                                  &ipv6_hdr(skb)->daddr,
2965                                                  0, IPPROTO_TCP, 0);
2966                         ipcse = 0;
2967                 }
2968                 ipcss = skb_network_offset(skb);
2969                 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2970                 tucss = skb_transport_offset(skb);
2971                 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2972                 tucse = 0;
2973
2974                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2975                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2976
2977                 i = tx_ring->next_to_use;
2978                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2979                 buffer_info = &tx_ring->buffer_info[i];
2980
2981                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2982                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2983                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2984                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2985                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2986                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2987                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2988                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2989                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2990
2991                 buffer_info->time_stamp = jiffies;
2992                 buffer_info->next_to_watch = i;
2993
2994                 if (++i == tx_ring->count) i = 0;
2995                 tx_ring->next_to_use = i;
2996
2997                 return true;
2998         }
2999         return false;
3000 }
3001
3002 static bool
3003 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
3004               struct sk_buff *skb)
3005 {
3006         struct e1000_context_desc *context_desc;
3007         struct e1000_buffer *buffer_info;
3008         unsigned int i;
3009         u8 css;
3010
3011         if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
3012                 css = skb_transport_offset(skb);
3013
3014                 i = tx_ring->next_to_use;
3015                 buffer_info = &tx_ring->buffer_info[i];
3016                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3017
3018                 context_desc->lower_setup.ip_config = 0;
3019                 context_desc->upper_setup.tcp_fields.tucss = css;
3020                 context_desc->upper_setup.tcp_fields.tucso =
3021                         css + skb->csum_offset;
3022                 context_desc->upper_setup.tcp_fields.tucse = 0;
3023                 context_desc->tcp_seg_setup.data = 0;
3024                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
3025
3026                 buffer_info->time_stamp = jiffies;
3027                 buffer_info->next_to_watch = i;
3028
3029                 if (unlikely(++i == tx_ring->count)) i = 0;
3030                 tx_ring->next_to_use = i;
3031
3032                 return true;
3033         }
3034
3035         return false;
3036 }
3037
3038 #define E1000_MAX_TXD_PWR       12
3039 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
3040
3041 static int
3042 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
3043              struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
3044              unsigned int nr_frags, unsigned int mss)
3045 {
3046         struct e1000_buffer *buffer_info;
3047         unsigned int len = skb->len;
3048         unsigned int offset = 0, size, count = 0, i;
3049         unsigned int f;
3050         len -= skb->data_len;
3051
3052         i = tx_ring->next_to_use;
3053
3054         while (len) {
3055                 buffer_info = &tx_ring->buffer_info[i];
3056                 size = min(len, max_per_txd);
3057                 /* Workaround for Controller erratum --
3058                  * descriptor for non-tso packet in a linear SKB that follows a
3059                  * tso gets written back prematurely before the data is fully
3060                  * DMA'd to the controller */
3061                 if (!skb->data_len && tx_ring->last_tx_tso &&
3062                     !skb_is_gso(skb)) {
3063                         tx_ring->last_tx_tso = 0;
3064                         size -= 4;
3065                 }
3066
3067                 /* Workaround for premature desc write-backs
3068                  * in TSO mode.  Append 4-byte sentinel desc */
3069                 if (unlikely(mss && !nr_frags && size == len && size > 8))
3070                         size -= 4;
3071                 /* work-around for errata 10 and it applies
3072                  * to all controllers in PCI-X mode
3073                  * The fix is to make sure that the first descriptor of a
3074                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
3075                  */
3076                 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
3077                                 (size > 2015) && count == 0))
3078                         size = 2015;
3079
3080                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
3081                  * terminating buffers within evenly-aligned dwords. */
3082                 if (unlikely(adapter->pcix_82544 &&
3083                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
3084                    size > 4))
3085                         size -= 4;
3086
3087                 buffer_info->length = size;
3088                 buffer_info->dma =
3089                         pci_map_single(adapter->pdev,
3090                                 skb->data + offset,
3091                                 size,
3092                                 PCI_DMA_TODEVICE);
3093                 buffer_info->time_stamp = jiffies;
3094                 buffer_info->next_to_watch = i;
3095
3096                 len -= size;
3097                 offset += size;
3098                 count++;
3099                 if (unlikely(++i == tx_ring->count)) i = 0;
3100         }
3101
3102         for (f = 0; f < nr_frags; f++) {
3103                 struct skb_frag_struct *frag;
3104
3105                 frag = &skb_shinfo(skb)->frags[f];
3106                 len = frag->size;
3107                 offset = frag->page_offset;
3108
3109                 while (len) {
3110                         buffer_info = &tx_ring->buffer_info[i];
3111                         size = min(len, max_per_txd);
3112                         /* Workaround for premature desc write-backs
3113                          * in TSO mode.  Append 4-byte sentinel desc */
3114                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
3115                                 size -= 4;
3116                         /* Workaround for potential 82544 hang in PCI-X.
3117                          * Avoid terminating buffers within evenly-aligned
3118                          * dwords. */
3119                         if (unlikely(adapter->pcix_82544 &&
3120                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
3121                            size > 4))
3122                                 size -= 4;
3123
3124                         buffer_info->length = size;
3125                         buffer_info->dma =
3126                                 pci_map_page(adapter->pdev,
3127                                         frag->page,
3128                                         offset,
3129                                         size,
3130                                         PCI_DMA_TODEVICE);
3131                         buffer_info->time_stamp = jiffies;
3132                         buffer_info->next_to_watch = i;
3133
3134                         len -= size;
3135                         offset += size;
3136                         count++;
3137                         if (unlikely(++i == tx_ring->count)) i = 0;
3138                 }
3139         }
3140
3141         i = (i == 0) ? tx_ring->count - 1 : i - 1;
3142         tx_ring->buffer_info[i].skb = skb;
3143         tx_ring->buffer_info[first].next_to_watch = i;
3144
3145         return count;
3146 }
3147
3148 static void
3149 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
3150                int tx_flags, int count)
3151 {
3152         struct e1000_tx_desc *tx_desc = NULL;
3153         struct e1000_buffer *buffer_info;
3154         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3155         unsigned int i;
3156
3157         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
3158                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3159                              E1000_TXD_CMD_TSE;
3160                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3161
3162                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3163                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3164         }
3165
3166         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3167                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3168                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3169         }
3170
3171         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3172                 txd_lower |= E1000_TXD_CMD_VLE;
3173                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3174         }
3175
3176         i = tx_ring->next_to_use;
3177
3178         while (count--) {
3179                 buffer_info = &tx_ring->buffer_info[i];
3180                 tx_desc = E1000_TX_DESC(*tx_ring, i);
3181                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3182                 tx_desc->lower.data =
3183                         cpu_to_le32(txd_lower | buffer_info->length);
3184                 tx_desc->upper.data = cpu_to_le32(txd_upper);
3185                 if (unlikely(++i == tx_ring->count)) i = 0;
3186         }
3187
3188         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3189
3190         /* Force memory writes to complete before letting h/w
3191          * know there are new descriptors to fetch.  (Only
3192          * applicable for weak-ordered memory model archs,
3193          * such as IA-64). */
3194         wmb();
3195
3196         tx_ring->next_to_use = i;
3197         writel(i, adapter->hw.hw_addr + tx_ring->tdt);
3198         /* we need this if more than one processor can write to our tail
3199          * at a time, it syncronizes IO on IA64/Altix systems */
3200         mmiowb();
3201 }
3202
3203 /**
3204  * 82547 workaround to avoid controller hang in half-duplex environment.
3205  * The workaround is to avoid queuing a large packet that would span
3206  * the internal Tx FIFO ring boundary by notifying the stack to resend
3207  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3208  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3209  * to the beginning of the Tx FIFO.
3210  **/
3211
3212 #define E1000_FIFO_HDR                  0x10
3213 #define E1000_82547_PAD_LEN             0x3E0
3214
3215 static int
3216 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
3217 {
3218         u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3219         u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3220
3221         skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3222
3223         if (adapter->link_duplex != HALF_DUPLEX)
3224                 goto no_fifo_stall_required;
3225
3226         if (atomic_read(&adapter->tx_fifo_stall))
3227                 return 1;
3228
3229         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3230                 atomic_set(&adapter->tx_fifo_stall, 1);
3231                 return 1;
3232         }
3233
3234 no_fifo_stall_required:
3235         adapter->tx_fifo_head += skb_fifo_len;
3236         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3237                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3238         return 0;
3239 }
3240
3241 #define MINIMUM_DHCP_PACKET_SIZE 282
3242 static int
3243 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
3244 {
3245         struct e1000_hw *hw =  &adapter->hw;
3246         u16 length, offset;
3247         if (vlan_tx_tag_present(skb)) {
3248                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
3249                         ( adapter->hw.mng_cookie.status &
3250                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
3251                         return 0;
3252         }
3253         if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
3254                 struct ethhdr *eth = (struct ethhdr *) skb->data;
3255                 if ((htons(ETH_P_IP) == eth->h_proto)) {
3256                         const struct iphdr *ip =
3257                                 (struct iphdr *)((u8 *)skb->data+14);
3258                         if (IPPROTO_UDP == ip->protocol) {
3259                                 struct udphdr *udp =
3260                                         (struct udphdr *)((u8 *)ip +
3261                                                 (ip->ihl << 2));
3262                                 if (ntohs(udp->dest) == 67) {
3263                                         offset = (u8 *)udp + 8 - skb->data;
3264                                         length = skb->len - offset;
3265
3266                                         return e1000_mng_write_dhcp_info(hw,
3267                                                         (u8 *)udp + 8,
3268                                                         length);
3269                                 }
3270                         }
3271                 }
3272         }
3273         return 0;
3274 }
3275
3276 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3277 {
3278         struct e1000_adapter *adapter = netdev_priv(netdev);
3279         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3280
3281         netif_stop_queue(netdev);
3282         /* Herbert's original patch had:
3283          *  smp_mb__after_netif_stop_queue();
3284          * but since that doesn't exist yet, just open code it. */
3285         smp_mb();
3286
3287         /* We need to check again in a case another CPU has just
3288          * made room available. */
3289         if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3290                 return -EBUSY;
3291
3292         /* A reprieve! */
3293         netif_start_queue(netdev);
3294         ++adapter->restart_queue;
3295         return 0;
3296 }
3297
3298 static int e1000_maybe_stop_tx(struct net_device *netdev,
3299                                struct e1000_tx_ring *tx_ring, int size)
3300 {
3301         if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3302                 return 0;
3303         return __e1000_maybe_stop_tx(netdev, size);
3304 }
3305
3306 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3307 static int
3308 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3309 {
3310         struct e1000_adapter *adapter = netdev_priv(netdev);
3311         struct e1000_tx_ring *tx_ring;
3312         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3313         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3314         unsigned int tx_flags = 0;
3315         unsigned int len = skb->len - skb->data_len;
3316         unsigned long flags;
3317         unsigned int nr_frags;
3318         unsigned int mss;
3319         int count = 0;
3320         int tso;
3321         unsigned int f;
3322
3323         /* This goes back to the question of how to logically map a tx queue
3324          * to a flow.  Right now, performance is impacted slightly negatively
3325          * if using multiple tx queues.  If the stack breaks away from a
3326          * single qdisc implementation, we can look at this again. */
3327         tx_ring = adapter->tx_ring;
3328
3329         if (unlikely(skb->len <= 0)) {
3330                 dev_kfree_skb_any(skb);
3331                 return NETDEV_TX_OK;
3332         }
3333
3334         /* 82571 and newer doesn't need the workaround that limited descriptor
3335          * length to 4kB */
3336         if (adapter->hw.mac_type >= e1000_82571)
3337                 max_per_txd = 8192;
3338
3339         mss = skb_shinfo(skb)->gso_size;
3340         /* The controller does a simple calculation to
3341          * make sure there is enough room in the FIFO before
3342          * initiating the DMA for each buffer.  The calc is:
3343          * 4 = ceil(buffer len/mss).  To make sure we don't
3344          * overrun the FIFO, adjust the max buffer len if mss
3345          * drops. */
3346         if (mss) {
3347                 u8 hdr_len;
3348                 max_per_txd = min(mss << 2, max_per_txd);
3349                 max_txd_pwr = fls(max_per_txd) - 1;
3350
3351                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3352                 * points to just header, pull a few bytes of payload from
3353                 * frags into skb->data */
3354                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3355                 if (skb->data_len && hdr_len == len) {
3356                         switch (adapter->hw.mac_type) {
3357                                 unsigned int pull_size;
3358                         case e1000_82544:
3359                                 /* Make sure we have room to chop off 4 bytes,
3360                                  * and that the end alignment will work out to
3361                                  * this hardware's requirements
3362                                  * NOTE: this is a TSO only workaround
3363                                  * if end byte alignment not correct move us
3364                                  * into the next dword */
3365                                 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
3366                                         break;
3367                                 /* fall through */
3368                         case e1000_82571:
3369                         case e1000_82572:
3370                         case e1000_82573:
3371                         case e1000_ich8lan:
3372                                 pull_size = min((unsigned int)4, skb->data_len);
3373                                 if (!__pskb_pull_tail(skb, pull_size)) {
3374                                         DPRINTK(DRV, ERR,
3375                                                 "__pskb_pull_tail failed.\n");
3376                                         dev_kfree_skb_any(skb);
3377                                         return NETDEV_TX_OK;
3378                                 }
3379                                 len = skb->len - skb->data_len;
3380                                 break;
3381                         default:
3382                                 /* do nothing */
3383                                 break;
3384                         }
3385                 }
3386         }
3387
3388         /* reserve a descriptor for the offload context */
3389         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3390                 count++;
3391         count++;
3392
3393         /* Controller Erratum workaround */
3394         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3395                 count++;
3396
3397         count += TXD_USE_COUNT(len, max_txd_pwr);
3398
3399         if (adapter->pcix_82544)
3400                 count++;
3401
3402         /* work-around for errata 10 and it applies to all controllers
3403          * in PCI-X mode, so add one more descriptor to the count
3404          */
3405         if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
3406                         (len > 2015)))
3407                 count++;
3408
3409         nr_frags = skb_shinfo(skb)->nr_frags;
3410         for (f = 0; f < nr_frags; f++)
3411                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3412                                        max_txd_pwr);
3413         if (adapter->pcix_82544)
3414                 count += nr_frags;
3415
3416
3417         if (adapter->hw.tx_pkt_filtering &&
3418             (adapter->hw.mac_type == e1000_82573))
3419                 e1000_transfer_dhcp_info(adapter, skb);
3420
3421         if (!spin_trylock_irqsave(&tx_ring->tx_lock, flags))
3422                 /* Collision - tell upper layer to requeue */
3423                 return NETDEV_TX_LOCKED;
3424
3425         /* need: count + 2 desc gap to keep tail from touching
3426          * head, otherwise try next time */
3427         if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) {
3428                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3429                 return NETDEV_TX_BUSY;
3430         }
3431
3432         if (unlikely(adapter->hw.mac_type == e1000_82547)) {
3433                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3434                         netif_stop_queue(netdev);
3435                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
3436                         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3437                         return NETDEV_TX_BUSY;
3438                 }
3439         }
3440
3441         if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3442                 tx_flags |= E1000_TX_FLAGS_VLAN;
3443                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3444         }
3445
3446         first = tx_ring->next_to_use;
3447
3448         tso = e1000_tso(adapter, tx_ring, skb);
3449         if (tso < 0) {
3450                 dev_kfree_skb_any(skb);
3451                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3452                 return NETDEV_TX_OK;
3453         }
3454
3455         if (likely(tso)) {
3456                 tx_ring->last_tx_tso = 1;
3457                 tx_flags |= E1000_TX_FLAGS_TSO;
3458         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3459                 tx_flags |= E1000_TX_FLAGS_CSUM;
3460
3461         /* Old method was to assume IPv4 packet by default if TSO was enabled.
3462          * 82571 hardware supports TSO capabilities for IPv6 as well...
3463          * no longer assume, we must. */
3464         if (likely(skb->protocol == htons(ETH_P_IP)))
3465                 tx_flags |= E1000_TX_FLAGS_IPV4;
3466
3467         e1000_tx_queue(adapter, tx_ring, tx_flags,
3468                        e1000_tx_map(adapter, tx_ring, skb, first,
3469                                     max_per_txd, nr_frags, mss));
3470
3471         netdev->trans_start = jiffies;
3472
3473         /* Make sure there is space in the ring for the next send. */
3474         e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3475
3476         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3477         return NETDEV_TX_OK;
3478 }
3479
3480 /**
3481  * e1000_tx_timeout - Respond to a Tx Hang
3482  * @netdev: network interface device structure
3483  **/
3484
3485 static void
3486 e1000_tx_timeout(struct net_device *netdev)
3487 {
3488         struct e1000_adapter *adapter = netdev_priv(netdev);
3489
3490         /* Do the reset outside of interrupt context */
3491         adapter->tx_timeout_count++;
3492         schedule_work(&adapter->reset_task);
3493 }
3494
3495 static void
3496 e1000_reset_task(struct work_struct *work)
3497 {
3498         struct e1000_adapter *adapter =
3499                 container_of(work, struct e1000_adapter, reset_task);
3500
3501         e1000_reinit_locked(adapter);
3502 }
3503
3504 /**
3505  * e1000_get_stats - Get System Network Statistics
3506  * @netdev: network interface device structure
3507  *
3508  * Returns the address of the device statistics structure.
3509  * The statistics are actually updated from the timer callback.
3510  **/
3511
3512 static struct net_device_stats *
3513 e1000_get_stats(struct net_device *netdev)
3514 {
3515         struct e1000_adapter *adapter = netdev_priv(netdev);
3516
3517         /* only return the current stats */
3518         return &adapter->net_stats;
3519 }
3520
3521 /**
3522  * e1000_change_mtu - Change the Maximum Transfer Unit
3523  * @netdev: network interface device structure
3524  * @new_mtu: new value for maximum frame size
3525  *
3526  * Returns 0 on success, negative on failure
3527  **/
3528
3529 static int
3530 e1000_change_mtu(struct net_device *netdev, int new_mtu)
3531 {
3532         struct e1000_adapter *adapter = netdev_priv(netdev);
3533         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3534         u16 eeprom_data = 0;
3535
3536         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3537             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3538                 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3539                 return -EINVAL;
3540         }
3541
3542         /* Adapter-specific max frame size limits. */
3543         switch (adapter->hw.mac_type) {
3544         case e1000_undefined ... e1000_82542_rev2_1:
3545         case e1000_ich8lan:
3546                 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3547                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3548                         return -EINVAL;
3549                 }
3550                 break;
3551         case e1000_82573:
3552                 /* Jumbo Frames not supported if:
3553                  * - this is not an 82573L device
3554                  * - ASPM is enabled in any way (0x1A bits 3:2) */
3555                 e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
3556                                   &eeprom_data);
3557                 if ((adapter->hw.device_id != E1000_DEV_ID_82573L) ||
3558                     (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3559                         if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3560                                 DPRINTK(PROBE, ERR,
3561                                         "Jumbo Frames not supported.\n");
3562                                 return -EINVAL;
3563                         }
3564                         break;
3565                 }
3566                 /* ERT will be enabled later to enable wire speed receives */
3567
3568                 /* fall through to get support */
3569         case e1000_82571:
3570         case e1000_82572:
3571         case e1000_80003es2lan:
3572 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3573                 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3574                         DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3575                         return -EINVAL;
3576                 }
3577                 break;
3578         default:
3579                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3580                 break;
3581         }
3582
3583         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3584          * means we reserve 2 more, this pushes us to allocate from the next
3585          * larger slab size
3586          * i.e. RXBUFFER_2048 --> size-4096 slab */
3587
3588         if (max_frame <= E1000_RXBUFFER_256)
3589                 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3590         else if (max_frame <= E1000_RXBUFFER_512)
3591                 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3592         else if (max_frame <= E1000_RXBUFFER_1024)
3593                 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3594         else if (max_frame <= E1000_RXBUFFER_2048)
3595                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3596         else if (max_frame <= E1000_RXBUFFER_4096)
3597                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3598         else if (max_frame <= E1000_RXBUFFER_8192)
3599                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3600         else if (max_frame <= E1000_RXBUFFER_16384)
3601                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3602
3603         /* adjust allocation if LPE protects us, and we aren't using SBP */
3604         if (!adapter->hw.tbi_compatibility_on &&
3605             ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3606              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3607                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3608
3609         netdev->mtu = new_mtu;
3610         adapter->hw.max_frame_size = max_frame;
3611
3612         if (netif_running(netdev))
3613                 e1000_reinit_locked(adapter);
3614
3615         return 0;
3616 }
3617
3618 /**
3619  * e1000_update_stats - Update the board statistics counters
3620  * @adapter: board private structure
3621  **/
3622
3623 void
3624 e1000_update_stats(struct e1000_adapter *adapter)
3625 {
3626         struct e1000_hw *hw = &adapter->hw;
3627         struct pci_dev *pdev = adapter->pdev;
3628         unsigned long flags;
3629         u16 phy_tmp;
3630
3631 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3632
3633         /*
3634          * Prevent stats update while adapter is being reset, or if the pci
3635          * connection is down.
3636          */
3637         if (adapter->link_speed == 0)
3638                 return;
3639         if (pci_channel_offline(pdev))
3640                 return;
3641
3642         spin_lock_irqsave(&adapter->stats_lock, flags);
3643
3644         /* these counters are modified from e1000_tbi_adjust_stats,
3645          * called from the interrupt context, so they must only
3646          * be written while holding adapter->stats_lock
3647          */
3648
3649         adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3650         adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3651         adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3652         adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3653         adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3654         adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3655         adapter->stats.roc += E1000_READ_REG(hw, ROC);
3656
3657         if (adapter->hw.mac_type != e1000_ich8lan) {
3658                 adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3659                 adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3660                 adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3661                 adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3662                 adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3663                 adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3664         }
3665
3666         adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3667         adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3668         adapter->stats.scc += E1000_READ_REG(hw, SCC);
3669         adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3670         adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3671         adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3672         adapter->stats.dc += E1000_READ_REG(hw, DC);
3673         adapter->stats.sec += E1000_READ_REG(hw, SEC);
3674         adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3675         adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3676         adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3677         adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3678         adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3679         adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3680         adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3681         adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3682         adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3683         adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3684         adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3685         adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3686         adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3687         adapter->stats.torl += E1000_READ_REG(hw, TORL);
3688         adapter->stats.torh += E1000_READ_REG(hw, TORH);
3689         adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3690         adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3691         adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3692
3693         if (adapter->hw.mac_type != e1000_ich8lan) {
3694                 adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3695                 adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3696                 adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3697                 adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3698                 adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3699                 adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3700         }
3701
3702         adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3703         adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3704
3705         /* used for adaptive IFS */
3706
3707         hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3708         adapter->stats.tpt += hw->tx_packet_delta;
3709         hw->collision_delta = E1000_READ_REG(hw, COLC);
3710         adapter->stats.colc += hw->collision_delta;
3711
3712         if (hw->mac_type >= e1000_82543) {
3713                 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3714                 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3715                 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3716                 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3717                 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3718                 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3719         }
3720         if (hw->mac_type > e1000_82547_rev_2) {
3721                 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3722                 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3723
3724                 if (adapter->hw.mac_type != e1000_ich8lan) {
3725                         adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3726                         adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3727                         adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3728                         adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3729                         adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3730                         adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3731                         adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3732                 }
3733         }
3734
3735         /* Fill out the OS statistics structure */
3736         adapter->net_stats.multicast = adapter->stats.mprc;
3737         adapter->net_stats.collisions = adapter->stats.colc;
3738
3739         /* Rx Errors */
3740
3741         /* RLEC on some newer hardware can be incorrect so build
3742         * our own version based on RUC and ROC */
3743         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3744                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3745                 adapter->stats.ruc + adapter->stats.roc +
3746                 adapter->stats.cexterr;
3747         adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3748         adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3749         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3750         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3751         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3752
3753         /* Tx Errors */
3754         adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3755         adapter->net_stats.tx_errors = adapter->stats.txerrc;
3756         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3757         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3758         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3759         if (adapter->hw.bad_tx_carr_stats_fd &&
3760             adapter->link_duplex == FULL_DUPLEX) {
3761                 adapter->net_stats.tx_carrier_errors = 0;
3762                 adapter->stats.tncrs = 0;
3763         }
3764
3765         /* Tx Dropped needs to be maintained elsewhere */
3766
3767         /* Phy Stats */
3768         if (hw->media_type == e1000_media_type_copper) {
3769                 if ((adapter->link_speed == SPEED_1000) &&
3770                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3771                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3772                         adapter->phy_stats.idle_errors += phy_tmp;
3773                 }
3774
3775                 if ((hw->mac_type <= e1000_82546) &&
3776                    (hw->phy_type == e1000_phy_m88) &&
3777                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3778                         adapter->phy_stats.receive_errors += phy_tmp;
3779         }
3780
3781         /* Management Stats */
3782         if (adapter->hw.has_smbus) {
3783                 adapter->stats.mgptc += E1000_READ_REG(hw, MGTPTC);
3784                 adapter->stats.mgprc += E1000_READ_REG(hw, MGTPRC);
3785                 adapter->stats.mgpdc += E1000_READ_REG(hw, MGTPDC);
3786         }
3787
3788         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3789 }
3790
3791 /**
3792  * e1000_intr_msi - Interrupt Handler
3793  * @irq: interrupt number
3794  * @data: pointer to a network interface device structure
3795  **/
3796
3797 static irqreturn_t
3798 e1000_intr_msi(int irq, void *data)
3799 {
3800         struct net_device *netdev = data;
3801         struct e1000_adapter *adapter = netdev_priv(netdev);
3802         struct e1000_hw *hw = &adapter->hw;
3803 #ifndef CONFIG_E1000_NAPI
3804         int i;
3805 #endif
3806         u32 icr = E1000_READ_REG(hw, ICR);
3807
3808         /* in NAPI mode read ICR disables interrupts using IAM */
3809
3810         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3811                 hw->get_link_status = 1;
3812                 /* 80003ES2LAN workaround-- For packet buffer work-around on
3813                  * link down event; disable receives here in the ISR and reset
3814                  * adapter in watchdog */
3815                 if (netif_carrier_ok(netdev) &&
3816                     (adapter->hw.mac_type == e1000_80003es2lan)) {
3817                         /* disable receives */
3818                         u32 rctl = E1000_READ_REG(hw, RCTL);
3819                         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3820                 }
3821                 /* guard against interrupt when we're going down */
3822                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3823                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3824         }
3825
3826 #ifdef CONFIG_E1000_NAPI
3827         if (likely(netif_rx_schedule_prep(netdev, &adapter->napi))) {
3828                 adapter->total_tx_bytes = 0;
3829                 adapter->total_tx_packets = 0;
3830                 adapter->total_rx_bytes = 0;
3831                 adapter->total_rx_packets = 0;
3832                 __netif_rx_schedule(netdev, &adapter->napi);
3833         } else
3834                 e1000_irq_enable(adapter);
3835 #else
3836         adapter->total_tx_bytes = 0;
3837         adapter->total_rx_bytes = 0;
3838         adapter->total_tx_packets = 0;
3839         adapter->total_rx_packets = 0;
3840
3841         for (i = 0; i < E1000_MAX_INTR; i++)
3842                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3843                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3844                         break;
3845
3846         if (likely(adapter->itr_setting & 3))
3847                 e1000_set_itr(adapter);
3848 #endif
3849
3850         return IRQ_HANDLED;
3851 }
3852
3853 /**
3854  * e1000_intr - Interrupt Handler
3855  * @irq: interrupt number
3856  * @data: pointer to a network interface device structure
3857  **/
3858
3859 static irqreturn_t
3860 e1000_intr(int irq, void *data)
3861 {
3862         struct net_device *netdev = data;
3863         struct e1000_adapter *adapter = netdev_priv(netdev);
3864         struct e1000_hw *hw = &adapter->hw;
3865         u32 rctl, icr = E1000_READ_REG(hw, ICR);
3866 #ifndef CONFIG_E1000_NAPI
3867         int i;
3868 #endif
3869         if (unlikely(!icr))
3870                 return IRQ_NONE;  /* Not our interrupt */
3871
3872 #ifdef CONFIG_E1000_NAPI
3873         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3874          * not set, then the adapter didn't send an interrupt */
3875         if (unlikely(hw->mac_type >= e1000_82571 &&
3876                      !(icr & E1000_ICR_INT_ASSERTED)))
3877                 return IRQ_NONE;
3878
3879         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
3880          * need for the IMC write */
3881 #endif
3882
3883         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3884                 hw->get_link_status = 1;
3885                 /* 80003ES2LAN workaround--
3886                  * For packet buffer work-around on link down event;
3887                  * disable receives here in the ISR and
3888                  * reset adapter in watchdog
3889                  */
3890                 if (netif_carrier_ok(netdev) &&
3891                     (adapter->hw.mac_type == e1000_80003es2lan)) {
3892                         /* disable receives */
3893                         rctl = E1000_READ_REG(hw, RCTL);
3894                         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3895                 }
3896                 /* guard against interrupt when we're going down */
3897                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3898                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3899         }
3900
3901 #ifdef CONFIG_E1000_NAPI
3902         if (unlikely(hw->mac_type < e1000_82571)) {
3903                 /* disable interrupts, without the synchronize_irq bit */
3904                 E1000_WRITE_REG(hw, IMC, ~0);
3905                 E1000_WRITE_FLUSH(hw);
3906         }
3907         if (likely(netif_rx_schedule_prep(netdev, &adapter->napi))) {
3908                 adapter->total_tx_bytes = 0;
3909                 adapter->total_tx_packets = 0;
3910                 adapter->total_rx_bytes = 0;
3911                 adapter->total_rx_packets = 0;
3912                 __netif_rx_schedule(netdev, &adapter->napi);
3913         } else
3914                 /* this really should not happen! if it does it is basically a
3915                  * bug, but not a hard error, so enable ints and continue */
3916                 e1000_irq_enable(adapter);
3917 #else
3918         /* Writing IMC and IMS is needed for 82547.
3919          * Due to Hub Link bus being occupied, an interrupt
3920          * de-assertion message is not able to be sent.
3921          * When an interrupt assertion message is generated later,
3922          * two messages are re-ordered and sent out.
3923          * That causes APIC to think 82547 is in de-assertion
3924          * state, while 82547 is in assertion state, resulting
3925          * in dead lock. Writing IMC forces 82547 into
3926          * de-assertion state.
3927          */
3928         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3929                 E1000_WRITE_REG(hw, IMC, ~0);
3930
3931         adapter->total_tx_bytes = 0;
3932         adapter->total_rx_bytes = 0;
3933         adapter->total_tx_packets = 0;
3934         adapter->total_rx_packets = 0;
3935
3936         for (i = 0; i < E1000_MAX_INTR; i++)
3937                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3938                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3939                         break;
3940
3941         if (likely(adapter->itr_setting & 3))
3942                 e1000_set_itr(adapter);
3943
3944         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3945                 e1000_irq_enable(adapter);
3946
3947 #endif
3948         return IRQ_HANDLED;
3949 }
3950
3951 #ifdef CONFIG_E1000_NAPI
3952 /**
3953  * e1000_clean - NAPI Rx polling callback
3954  * @adapter: board private structure
3955  **/
3956
3957 static int
3958 e1000_clean(struct napi_struct *napi, int budget)
3959 {
3960         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3961         struct net_device *poll_dev = adapter->netdev;
3962         int tx_cleaned = 0, work_done = 0;
3963
3964         /* Must NOT use netdev_priv macro here. */
3965         adapter = poll_dev->priv;
3966
3967         /* e1000_clean is called per-cpu.  This lock protects
3968          * tx_ring[0] from being cleaned by multiple cpus
3969          * simultaneously.  A failure obtaining the lock means
3970          * tx_ring[0] is currently being cleaned anyway. */
3971         if (spin_trylock(&adapter->tx_queue_lock)) {
3972                 tx_cleaned = e1000_clean_tx_irq(adapter,
3973                                                 &adapter->tx_ring[0]);
3974                 spin_unlock(&adapter->tx_queue_lock);
3975         }
3976
3977         adapter->clean_rx(adapter, &adapter->rx_ring[0],
3978                           &work_done, budget);
3979
3980         if (tx_cleaned)
3981                 work_done = budget;
3982
3983         /* If budget not fully consumed, exit the polling mode */
3984         if (work_done < budget) {
3985                 if (likely(adapter->itr_setting & 3))
3986                         e1000_set_itr(adapter);
3987                 netif_rx_complete(poll_dev, napi);
3988                 e1000_irq_enable(adapter);
3989         }
3990
3991         return work_done;
3992 }
3993
3994 #endif
3995 /**
3996  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3997  * @adapter: board private structure
3998  **/
3999
4000 static bool
4001 e1000_clean_tx_irq(struct e1000_adapter *adapter,
4002                    struct e1000_tx_ring *tx_ring)
4003 {
4004         struct net_device *netdev = adapter->netdev;
4005         struct e1000_tx_desc *tx_desc, *eop_desc;
4006         struct e1000_buffer *buffer_info;
4007         unsigned int i, eop;
4008 #ifdef CONFIG_E1000_NAPI
4009         unsigned int count = 0;
4010 #endif
4011         bool cleaned = false;
4012         unsigned int total_tx_bytes=0, total_tx_packets=0;
4013
4014         i = tx_ring->next_to_clean;
4015         eop = tx_ring->buffer_info[i].next_to_watch;
4016         eop_desc = E1000_TX_DESC(*tx_ring, eop);
4017
4018         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
4019                 for (cleaned = false; !cleaned; ) {
4020                         tx_desc = E1000_TX_DESC(*tx_ring, i);
4021                         buffer_info = &tx_ring->buffer_info[i];
4022                         cleaned = (i == eop);
4023
4024                         if (cleaned) {
4025                                 struct sk_buff *skb = buffer_info->skb;
4026                                 unsigned int segs, bytecount;
4027                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
4028                                 /* multiply data chunks by size of headers */
4029                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
4030                                             skb->len;
4031                                 total_tx_packets += segs;
4032                                 total_tx_bytes += bytecount;
4033                         }
4034                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
4035                         tx_desc->upper.data = 0;
4036
4037                         if (unlikely(++i == tx_ring->count)) i = 0;
4038                 }
4039
4040                 eop = tx_ring->buffer_info[i].next_to_watch;
4041                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
4042 #ifdef CONFIG_E1000_NAPI
4043 #define E1000_TX_WEIGHT 64
4044                 /* weight of a sort for tx, to avoid endless transmit cleanup */
4045                 if (count++ == E1000_TX_WEIGHT) break;
4046 #endif
4047         }
4048
4049         tx_ring->next_to_clean = i;
4050
4051 #define TX_WAKE_THRESHOLD 32
4052         if (unlikely(cleaned && netif_carrier_ok(netdev) &&
4053                      E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
4054                 /* Make sure that anybody stopping the queue after this
4055                  * sees the new next_to_clean.
4056                  */
4057                 smp_mb();
4058                 if (netif_queue_stopped(netdev)) {
4059                         netif_wake_queue(netdev);
4060                         ++adapter->restart_queue;
4061                 }
4062         }
4063
4064         if (adapter->detect_tx_hung) {
4065                 /* Detect a transmit hang in hardware, this serializes the
4066                  * check with the clearing of time_stamp and movement of i */
4067                 adapter->detect_tx_hung = false;
4068                 if (tx_ring->buffer_info[eop].dma &&
4069                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
4070                                (adapter->tx_timeout_factor * HZ))
4071                     && !(E1000_READ_REG(&adapter->hw, STATUS) &
4072                          E1000_STATUS_TXOFF)) {
4073
4074                         /* detected Tx unit hang */
4075                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
4076                                         "  Tx Queue             <%lu>\n"
4077                                         "  TDH                  <%x>\n"
4078                                         "  TDT                  <%x>\n"
4079                                         "  next_to_use          <%x>\n"
4080                                         "  next_to_clean        <%x>\n"
4081                                         "buffer_info[next_to_clean]\n"
4082                                         "  time_stamp           <%lx>\n"
4083                                         "  next_to_watch        <%x>\n"
4084                                         "  jiffies              <%lx>\n"
4085                                         "  next_to_watch.status <%x>\n",
4086                                 (unsigned long)((tx_ring - adapter->tx_ring) /
4087                                         sizeof(struct e1000_tx_ring)),
4088                                 readl(adapter->hw.hw_addr + tx_ring->tdh),
4089                                 readl(adapter->hw.hw_addr + tx_ring->tdt),
4090                                 tx_ring->next_to_use,
4091                                 tx_ring->next_to_clean,
4092                                 tx_ring->buffer_info[eop].time_stamp,
4093                                 eop,
4094                                 jiffies,
4095                                 eop_desc->upper.fields.status);
4096                         netif_stop_queue(netdev);
4097                 }
4098         }
4099         adapter->total_tx_bytes += total_tx_bytes;
4100         adapter->total_tx_packets += total_tx_packets;
4101         adapter->net_stats.tx_bytes += total_tx_bytes;
4102         adapter->net_stats.tx_packets += total_tx_packets;
4103         return cleaned;
4104 }
4105
4106 /**
4107  * e1000_rx_checksum - Receive Checksum Offload for 82543
4108  * @adapter:     board private structure
4109  * @status_err:  receive descriptor status and error fields
4110  * @csum:        receive descriptor csum field
4111  * @sk_buff:     socket buffer with received data
4112  **/
4113
4114 static void
4115 e1000_rx_checksum(struct e1000_adapter *adapter,
4116                   u32 status_err, u32 csum,
4117                   struct sk_buff *skb)
4118 {
4119         u16 status = (u16)status_err;
4120         u8 errors = (u8)(status_err >> 24);
4121         skb->ip_summed = CHECKSUM_NONE;
4122
4123         /* 82543 or newer only */
4124         if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
4125         /* Ignore Checksum bit is set */
4126         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
4127         /* TCP/UDP checksum error bit is set */
4128         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
4129                 /* let the stack verify checksum errors */
4130                 adapter->hw_csum_err++;
4131                 return;
4132         }
4133         /* TCP/UDP Checksum has not been calculated */
4134         if (adapter->hw.mac_type <= e1000_82547_rev_2) {
4135                 if (!(status & E1000_RXD_STAT_TCPCS))
4136                         return;
4137         } else {
4138                 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
4139                         return;
4140         }
4141         /* It must be a TCP or UDP packet with a valid checksum */
4142         if (likely(status & E1000_RXD_STAT_TCPCS)) {
4143                 /* TCP checksum is good */
4144                 skb->ip_summed = CHECKSUM_UNNECESSARY;
4145         } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
4146                 /* IP fragment with UDP payload */
4147                 /* Hardware complements the payload checksum, so we undo it
4148                  * and then put the value in host order for further stack use.
4149                  */
4150                 __sum16 sum = (__force __sum16)htons(csum);
4151                 skb->csum = csum_unfold(~sum);
4152                 skb->ip_summed = CHECKSUM_COMPLETE;
4153         }
4154         adapter->hw_csum_good++;
4155 }
4156
4157 /**
4158  * e1000_clean_rx_irq - Send received data up the network stack; legacy
4159  * @adapter: board private structure
4160  **/
4161
4162 static bool
4163 #ifdef CONFIG_E1000_NAPI
4164 e1000_clean_rx_irq(struct e1000_adapter *adapter,
4165                    struct e1000_rx_ring *rx_ring,
4166                    int *work_done, int work_to_do)
4167 #else
4168 e1000_clean_rx_irq(struct e1000_adapter *adapter,
4169                    struct e1000_rx_ring *rx_ring)
4170 #endif
4171 {
4172         struct net_device *netdev = adapter->netdev;
4173         struct pci_dev *pdev = adapter->pdev;
4174         struct e1000_rx_desc *rx_desc, *next_rxd;
4175         struct e1000_buffer *buffer_info, *next_buffer;
4176         unsigned long flags;
4177         u32 length;
4178         u8 last_byte;
4179         unsigned int i;
4180         int cleaned_count = 0;
4181         bool cleaned = false;
4182         unsigned int total_rx_bytes=0, total_rx_packets=0;
4183
4184         i = rx_ring->next_to_clean;
4185         rx_desc = E1000_RX_DESC(*rx_ring, i);
4186         buffer_info = &rx_ring->buffer_info[i];
4187
4188         while (rx_desc->status & E1000_RXD_STAT_DD) {
4189                 struct sk_buff *skb;
4190                 u8 status;
4191
4192 #ifdef CONFIG_E1000_NAPI
4193                 if (*work_done >= work_to_do)
4194                         break;
4195                 (*work_done)++;
4196 #endif
4197                 status = rx_desc->status;
4198                 skb = buffer_info->skb;
4199                 buffer_info->skb = NULL;
4200
4201                 prefetch(skb->data - NET_IP_ALIGN);
4202
4203                 if (++i == rx_ring->count) i = 0;
4204                 next_rxd = E1000_RX_DESC(*rx_ring, i);
4205                 prefetch(next_rxd);
4206
4207                 next_buffer = &rx_ring->buffer_info[i];
4208
4209                 cleaned = true;
4210                 cleaned_count++;
4211                 pci_unmap_single(pdev,
4212                                  buffer_info->dma,
4213                                  buffer_info->length,
4214                                  PCI_DMA_FROMDEVICE);
4215
4216                 length = le16_to_cpu(rx_desc->length);
4217
4218                 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
4219                         /* All receives must fit into a single buffer */
4220                         E1000_DBG("%s: Receive packet consumed multiple"
4221                                   " buffers\n", netdev->name);
4222                         /* recycle */
4223                         buffer_info->skb = skb;
4224                         goto next_desc;
4225                 }
4226
4227                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4228                         last_byte = *(skb->data + length - 1);
4229                         if (TBI_ACCEPT(&adapter->hw, status,
4230                                       rx_desc->errors, length, last_byte)) {
4231                                 spin_lock_irqsave(&adapter->stats_lock, flags);
4232                                 e1000_tbi_adjust_stats(&adapter->hw,
4233                                                        &adapter->stats,
4234                                                        length, skb->data);
4235                                 spin_unlock_irqrestore(&adapter->stats_lock,
4236                                                        flags);
4237                                 length--;
4238                         } else {
4239                                 /* recycle */
4240                                 buffer_info->skb = skb;
4241                                 goto next_desc;
4242                         }
4243                 }
4244
4245                 /* adjust length to remove Ethernet CRC, this must be
4246                  * done after the TBI_ACCEPT workaround above */
4247                 length -= 4;
4248
4249                 /* probably a little skewed due to removing CRC */
4250                 total_rx_bytes += length;
4251                 total_rx_packets++;
4252
4253                 /* code added for copybreak, this should improve
4254                  * performance for small packets with large amounts
4255                  * of reassembly being done in the stack */
4256                 if (length < copybreak) {
4257                         struct sk_buff *new_skb =
4258                             netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
4259                         if (new_skb) {
4260                                 skb_reserve(new_skb, NET_IP_ALIGN);
4261                                 skb_copy_to_linear_data_offset(new_skb,
4262                                                                -NET_IP_ALIGN,
4263                                                                (skb->data -
4264                                                                 NET_IP_ALIGN),
4265                                                                (length +
4266                                                                 NET_IP_ALIGN));
4267                                 /* save the skb in buffer_info as good */
4268                                 buffer_info->skb = skb;
4269                                 skb = new_skb;
4270                         }
4271                         /* else just continue with the old one */
4272                 }
4273                 /* end copybreak code */
4274                 skb_put(skb, length);
4275
4276                 /* Receive Checksum Offload */
4277                 e1000_rx_checksum(adapter,
4278                                   (u32)(status) |
4279                                   ((u32)(rx_desc->errors) << 24),
4280                                   le16_to_cpu(rx_desc->csum), skb);
4281
4282                 skb->protocol = eth_type_trans(skb, netdev);
4283 #ifdef CONFIG_E1000_NAPI
4284                 if (unlikely(adapter->vlgrp &&
4285                             (status & E1000_RXD_STAT_VP))) {
4286                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4287                                                  le16_to_cpu(rx_desc->special));
4288                 } else {
4289                         netif_receive_skb(skb);
4290                 }
4291 #else /* CONFIG_E1000_NAPI */
4292                 if (unlikely(adapter->vlgrp &&
4293                             (status & E1000_RXD_STAT_VP))) {
4294                         vlan_hwaccel_rx(skb, adapter->vlgrp,
4295                                         le16_to_cpu(rx_desc->special));
4296                 } else {
4297                         netif_rx(skb);
4298                 }
4299 #endif /* CONFIG_E1000_NAPI */
4300                 netdev->last_rx = jiffies;
4301
4302 next_desc:
4303                 rx_desc->status = 0;
4304
4305                 /* return some buffers to hardware, one at a time is too slow */
4306                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4307                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4308                         cleaned_count = 0;
4309                 }
4310
4311                 /* use prefetched values */
4312                 rx_desc = next_rxd;
4313                 buffer_info = next_buffer;
4314         }
4315         rx_ring->next_to_clean = i;
4316
4317         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4318         if (cleaned_count)
4319                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4320
4321         adapter->total_rx_packets += total_rx_packets;
4322         adapter->total_rx_bytes += total_rx_bytes;
4323         adapter->net_stats.rx_bytes += total_rx_bytes;
4324         adapter->net_stats.rx_packets += total_rx_packets;
4325         return cleaned;
4326 }
4327
4328 /**
4329  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
4330  * @adapter: board private structure
4331  **/
4332
4333 static bool
4334 #ifdef CONFIG_E1000_NAPI
4335 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
4336                       struct e1000_rx_ring *rx_ring,
4337                       int *work_done, int work_to_do)
4338 #else
4339 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
4340                       struct e1000_rx_ring *rx_ring)
4341 #endif
4342 {
4343         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
4344         struct net_device *netdev = adapter->netdev;
4345         struct pci_dev *pdev = adapter->pdev;
4346         struct e1000_buffer *buffer_info, *next_buffer;
4347         struct e1000_ps_page *ps_page;
4348         struct e1000_ps_page_dma *ps_page_dma;
4349         struct sk_buff *skb;
4350         unsigned int i, j;
4351         u32 length, staterr;
4352         int cleaned_count = 0;
4353         bool cleaned = false;
4354         unsigned int total_rx_bytes=0, total_rx_packets=0;
4355
4356         i = rx_ring->next_to_clean;
4357         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4358         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4359         buffer_info = &rx_ring->buffer_info[i];
4360
4361         while (staterr & E1000_RXD_STAT_DD) {
4362                 ps_page = &rx_ring->ps_page[i];
4363                 ps_page_dma = &rx_ring->ps_page_dma[i];
4364 #ifdef CONFIG_E1000_NAPI
4365                 if (unlikely(*work_done >= work_to_do))
4366                         break;
4367                 (*work_done)++;
4368 #endif
4369                 skb = buffer_info->skb;
4370
4371                 /* in the packet split case this is header only */
4372                 prefetch(skb->data - NET_IP_ALIGN);
4373
4374                 if (++i == rx_ring->count) i = 0;
4375                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
4376                 prefetch(next_rxd);
4377
4378                 next_buffer = &rx_ring->buffer_info[i];
4379
4380                 cleaned = true;
4381                 cleaned_count++;
4382                 pci_unmap_single(pdev, buffer_info->dma,
4383                                  buffer_info->length,
4384                                  PCI_DMA_FROMDEVICE);
4385
4386                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
4387                         E1000_DBG("%s: Packet Split buffers didn't pick up"
4388                                   " the full packet\n", netdev->name);
4389                         dev_kfree_skb_irq(skb);
4390                         goto next_desc;
4391                 }
4392
4393                 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
4394                         dev_kfree_skb_irq(skb);
4395                         goto next_desc;
4396                 }
4397
4398                 length = le16_to_cpu(rx_desc->wb.middle.length0);
4399
4400                 if (unlikely(!length)) {
4401                         E1000_DBG("%s: Last part of the packet spanning"
4402                                   " multiple descriptors\n", netdev->name);
4403                         dev_kfree_skb_irq(skb);
4404                         goto next_desc;
4405                 }
4406
4407                 /* Good Receive */
4408                 skb_put(skb, length);
4409
4410                 {
4411                 /* this looks ugly, but it seems compiler issues make it
4412                    more efficient than reusing j */
4413                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
4414
4415                 /* page alloc/put takes too long and effects small packet
4416                  * throughput, so unsplit small packets and save the alloc/put*/
4417                 if (l1 && (l1 <= copybreak) && ((length + l1) <= adapter->rx_ps_bsize0)) {
4418                         u8 *vaddr;
4419                         /* there is no documentation about how to call
4420                          * kmap_atomic, so we can't hold the mapping
4421                          * very long */
4422                         pci_dma_sync_single_for_cpu(pdev,
4423                                 ps_page_dma->ps_page_dma[0],
4424                                 PAGE_SIZE,
4425                                 PCI_DMA_FROMDEVICE);
4426                         vaddr = kmap_atomic(ps_page->ps_page[0],
4427                                             KM_SKB_DATA_SOFTIRQ);
4428                         memcpy(skb_tail_pointer(skb), vaddr, l1);
4429                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
4430                         pci_dma_sync_single_for_device(pdev,
4431                                 ps_page_dma->ps_page_dma[0],
4432                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
4433                         /* remove the CRC */
4434                         l1 -= 4;
4435                         skb_put(skb, l1);
4436                         goto copydone;
4437                 } /* if */
4438                 }
4439
4440                 for (j = 0; j < adapter->rx_ps_pages; j++) {
4441                         if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
4442                                 break;
4443                         pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
4444                                         PAGE_SIZE, PCI_DMA_FROMDEVICE);
4445                         ps_page_dma->ps_page_dma[j] = 0;
4446                         skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
4447                                            length);
4448                         ps_page->ps_page[j] = NULL;
4449                         skb->len += length;
4450                         skb->data_len += length;
4451                         skb->truesize += length;
4452                 }
4453
4454                 /* strip the ethernet crc, problem is we're using pages now so
4455                  * this whole operation can get a little cpu intensive */
4456                 pskb_trim(skb, skb->len - 4);
4457
4458 copydone:
4459                 total_rx_bytes += skb->len;
4460                 total_rx_packets++;
4461
4462                 e1000_rx_checksum(adapter, staterr,
4463                                   le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
4464                 skb->protocol = eth_type_trans(skb, netdev);
4465
4466                 if (likely(rx_desc->wb.upper.header_status &
4467                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
4468                         adapter->rx_hdr_split++;
4469 #ifdef CONFIG_E1000_NAPI
4470                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4471                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4472                                 le16_to_cpu(rx_desc->wb.middle.vlan));
4473                 } else {
4474                         netif_receive_skb(skb);
4475                 }
4476 #else /* CONFIG_E1000_NAPI */
4477                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4478                         vlan_hwaccel_rx(skb, adapter->vlgrp,
4479                                 le16_to_cpu(rx_desc->wb.middle.vlan));
4480                 } else {
4481                         netif_rx(skb);
4482                 }
4483 #endif /* CONFIG_E1000_NAPI */
4484                 netdev->last_rx = jiffies;
4485
4486 next_desc:
4487                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
4488                 buffer_info->skb = NULL;
4489
4490                 /* return some buffers to hardware, one at a time is too slow */
4491                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4492                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4493                         cleaned_count = 0;
4494                 }
4495
4496                 /* use prefetched values */
4497                 rx_desc = next_rxd;
4498                 buffer_info = next_buffer;
4499
4500                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4501         }
4502         rx_ring->next_to_clean = i;
4503
4504         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4505         if (cleaned_count)
4506                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4507
4508         adapter->total_rx_packets += total_rx_packets;
4509         adapter->total_rx_bytes += total_rx_bytes;
4510         adapter->net_stats.rx_bytes += total_rx_bytes;
4511         adapter->net_stats.rx_packets += total_rx_packets;
4512         return cleaned;
4513 }
4514
4515 /**
4516  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4517  * @adapter: address of board private structure
4518  **/
4519
4520 static void
4521 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4522                        struct e1000_rx_ring *rx_ring,
4523                        int cleaned_count)
4524 {
4525         struct net_device *netdev = adapter->netdev;
4526         struct pci_dev *pdev = adapter->pdev;
4527         struct e1000_rx_desc *rx_desc;
4528         struct e1000_buffer *buffer_info;
4529         struct sk_buff *skb;
4530         unsigned int i;
4531         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4532
4533         i = rx_ring->next_to_use;
4534         buffer_info = &rx_ring->buffer_info[i];
4535
4536         while (cleaned_count--) {
4537                 skb = buffer_info->skb;
4538                 if (skb) {
4539                         skb_trim(skb, 0);
4540                         goto map_skb;
4541                 }
4542
4543                 skb = netdev_alloc_skb(netdev, bufsz);
4544                 if (unlikely(!skb)) {
4545                         /* Better luck next round */
4546                         adapter->alloc_rx_buff_failed++;
4547                         break;
4548                 }
4549
4550                 /* Fix for errata 23, can't cross 64kB boundary */
4551                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4552                         struct sk_buff *oldskb = skb;
4553                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4554                                              "at %p\n", bufsz, skb->data);
4555                         /* Try again, without freeing the previous */
4556                         skb = netdev_alloc_skb(netdev, bufsz);
4557                         /* Failed allocation, critical failure */
4558                         if (!skb) {
4559                                 dev_kfree_skb(oldskb);
4560                                 break;
4561                         }
4562
4563                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4564                                 /* give up */
4565                                 dev_kfree_skb(skb);
4566                                 dev_kfree_skb(oldskb);
4567                                 break; /* while !buffer_info->skb */
4568                         }
4569
4570                         /* Use new allocation */
4571                         dev_kfree_skb(oldskb);
4572                 }
4573                 /* Make buffer alignment 2 beyond a 16 byte boundary
4574                  * this will result in a 16 byte aligned IP header after
4575                  * the 14 byte MAC header is removed
4576                  */
4577                 skb_reserve(skb, NET_IP_ALIGN);
4578
4579                 buffer_info->skb = skb;
4580                 buffer_info->length = adapter->rx_buffer_len;
4581 map_skb:
4582                 buffer_info->dma = pci_map_single(pdev,
4583                                                   skb->data,
4584                                                   adapter->rx_buffer_len,
4585                                                   PCI_DMA_FROMDEVICE);
4586
4587                 /* Fix for errata 23, can't cross 64kB boundary */
4588                 if (!e1000_check_64k_bound(adapter,
4589                                         (void *)(unsigned long)buffer_info->dma,
4590                                         adapter->rx_buffer_len)) {
4591                         DPRINTK(RX_ERR, ERR,
4592                                 "dma align check failed: %u bytes at %p\n",
4593                                 adapter->rx_buffer_len,
4594                                 (void *)(unsigned long)buffer_info->dma);
4595                         dev_kfree_skb(skb);
4596                         buffer_info->skb = NULL;
4597
4598                         pci_unmap_single(pdev, buffer_info->dma,
4599                                          adapter->rx_buffer_len,
4600                                          PCI_DMA_FROMDEVICE);
4601
4602                         break; /* while !buffer_info->skb */
4603                 }
4604                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4605                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4606
4607                 if (unlikely(++i == rx_ring->count))
4608                         i = 0;
4609                 buffer_info = &rx_ring->buffer_info[i];
4610         }
4611
4612         if (likely(rx_ring->next_to_use != i)) {
4613                 rx_ring->next_to_use = i;
4614                 if (unlikely(i-- == 0))
4615                         i = (rx_ring->count - 1);
4616
4617                 /* Force memory writes to complete before letting h/w
4618                  * know there are new descriptors to fetch.  (Only
4619                  * applicable for weak-ordered memory model archs,
4620                  * such as IA-64). */
4621                 wmb();
4622                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4623         }
4624 }
4625
4626 /**
4627  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
4628  * @adapter: address of board private structure
4629  **/
4630
4631 static void
4632 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
4633                           struct e1000_rx_ring *rx_ring,
4634                           int cleaned_count)
4635 {
4636         struct net_device *netdev = adapter->netdev;
4637         struct pci_dev *pdev = adapter->pdev;
4638         union e1000_rx_desc_packet_split *rx_desc;
4639         struct e1000_buffer *buffer_info;
4640         struct e1000_ps_page *ps_page;
4641         struct e1000_ps_page_dma *ps_page_dma;
4642         struct sk_buff *skb;
4643         unsigned int i, j;
4644
4645         i = rx_ring->next_to_use;
4646         buffer_info = &rx_ring->buffer_info[i];
4647         ps_page = &rx_ring->ps_page[i];
4648         ps_page_dma = &rx_ring->ps_page_dma[i];
4649
4650         while (cleaned_count--) {
4651                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4652
4653                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
4654                         if (j < adapter->rx_ps_pages) {
4655                                 if (likely(!ps_page->ps_page[j])) {
4656                                         ps_page->ps_page[j] =
4657                                                 alloc_page(GFP_ATOMIC);
4658                                         if (unlikely(!ps_page->ps_page[j])) {
4659                                                 adapter->alloc_rx_buff_failed++;
4660                                                 goto no_buffers;
4661                                         }
4662                                         ps_page_dma->ps_page_dma[j] =
4663                                                 pci_map_page(pdev,
4664                                                             ps_page->ps_page[j],
4665                                                             0, PAGE_SIZE,
4666                                                             PCI_DMA_FROMDEVICE);
4667                                 }
4668                                 /* Refresh the desc even if buffer_addrs didn't
4669                                  * change because each write-back erases
4670                                  * this info.
4671                                  */
4672                                 rx_desc->read.buffer_addr[j+1] =
4673                                      cpu_to_le64(ps_page_dma->ps_page_dma[j]);
4674                         } else
4675                                 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
4676                 }
4677
4678                 skb = netdev_alloc_skb(netdev,
4679                                        adapter->rx_ps_bsize0 + NET_IP_ALIGN);
4680
4681                 if (unlikely(!skb)) {
4682                         adapter->alloc_rx_buff_failed++;
4683                         break;
4684                 }
4685
4686                 /* Make buffer alignment 2 beyond a 16 byte boundary
4687                  * this will result in a 16 byte aligned IP header after
4688                  * the 14 byte MAC header is removed
4689                  */
4690                 skb_reserve(skb, NET_IP_ALIGN);
4691
4692                 buffer_info->skb = skb;
4693                 buffer_info->length = adapter->rx_ps_bsize0;
4694                 buffer_info->dma = pci_map_single(pdev, skb->data,
4695                                                   adapter->rx_ps_bsize0,
4696                                                   PCI_DMA_FROMDEVICE);
4697
4698                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
4699
4700                 if (unlikely(++i == rx_ring->count)) i = 0;
4701                 buffer_info = &rx_ring->buffer_info[i];
4702                 ps_page = &rx_ring->ps_page[i];
4703                 ps_page_dma = &rx_ring->ps_page_dma[i];
4704         }
4705
4706 no_buffers:
4707         if (likely(rx_ring->next_to_use != i)) {
4708                 rx_ring->next_to_use = i;
4709                 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4710
4711                 /* Force memory writes to complete before letting h/w
4712                  * know there are new descriptors to fetch.  (Only
4713                  * applicable for weak-ordered memory model archs,
4714                  * such as IA-64). */
4715                 wmb();
4716                 /* Hardware increments by 16 bytes, but packet split
4717                  * descriptors are 32 bytes...so we increment tail
4718                  * twice as much.
4719                  */
4720                 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4721         }
4722 }
4723
4724 /**
4725  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4726  * @adapter:
4727  **/
4728
4729 static void
4730 e1000_smartspeed(struct e1000_adapter *adapter)
4731 {
4732         u16 phy_status;
4733         u16 phy_ctrl;
4734
4735         if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4736            !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4737                 return;
4738
4739         if (adapter->smartspeed == 0) {
4740                 /* If Master/Slave config fault is asserted twice,
4741                  * we assume back-to-back */
4742                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4743                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4744                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4745                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4746                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4747                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4748                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4749                         e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4750                                             phy_ctrl);
4751                         adapter->smartspeed++;
4752                         if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4753                            !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4754                                                &phy_ctrl)) {
4755                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4756                                              MII_CR_RESTART_AUTO_NEG);
4757                                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4758                                                     phy_ctrl);
4759                         }
4760                 }
4761                 return;
4762         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4763                 /* If still no link, perhaps using 2/3 pair cable */
4764                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4765                 phy_ctrl |= CR_1000T_MS_ENABLE;
4766                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4767                 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4768                    !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4769                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4770                                      MII_CR_RESTART_AUTO_NEG);
4771                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4772                 }
4773         }
4774         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4775         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4776                 adapter->smartspeed = 0;
4777 }
4778
4779 /**
4780  * e1000_ioctl -
4781  * @netdev:
4782  * @ifreq:
4783  * @cmd:
4784  **/
4785
4786 static int
4787 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4788 {
4789         switch (cmd) {
4790         case SIOCGMIIPHY:
4791         case SIOCGMIIREG:
4792         case SIOCSMIIREG:
4793                 return e1000_mii_ioctl(netdev, ifr, cmd);
4794         default:
4795                 return -EOPNOTSUPP;
4796         }
4797 }
4798
4799 /**
4800  * e1000_mii_ioctl -
4801  * @netdev:
4802  * @ifreq:
4803  * @cmd:
4804  **/
4805
4806 static int
4807 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4808 {
4809         struct e1000_adapter *adapter = netdev_priv(netdev);
4810         struct mii_ioctl_data *data = if_mii(ifr);
4811         int retval;
4812         u16 mii_reg;
4813         u16 spddplx;
4814         unsigned long flags;
4815
4816         if (adapter->hw.media_type != e1000_media_type_copper)
4817                 return -EOPNOTSUPP;
4818
4819         switch (cmd) {
4820         case SIOCGMIIPHY:
4821                 data->phy_id = adapter->hw.phy_addr;
4822                 break;
4823         case SIOCGMIIREG:
4824                 if (!capable(CAP_NET_ADMIN))
4825                         return -EPERM;
4826                 spin_lock_irqsave(&adapter->stats_lock, flags);
4827                 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4828                                    &data->val_out)) {
4829                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4830                         return -EIO;
4831                 }
4832                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4833                 break;
4834         case SIOCSMIIREG:
4835                 if (!capable(CAP_NET_ADMIN))
4836                         return -EPERM;
4837                 if (data->reg_num & ~(0x1F))
4838                         return -EFAULT;
4839                 mii_reg = data->val_in;
4840                 spin_lock_irqsave(&adapter->stats_lock, flags);
4841                 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4842                                         mii_reg)) {
4843                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4844                         return -EIO;
4845                 }
4846                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4847                 if (adapter->hw.media_type == e1000_media_type_copper) {
4848                         switch (data->reg_num) {
4849                         case PHY_CTRL:
4850                                 if (mii_reg & MII_CR_POWER_DOWN)
4851                                         break;
4852                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4853                                         adapter->hw.autoneg = 1;
4854                                         adapter->hw.autoneg_advertised = 0x2F;
4855                                 } else {
4856                                         if (mii_reg & 0x40)
4857                                                 spddplx = SPEED_1000;
4858                                         else if (mii_reg & 0x2000)
4859                                                 spddplx = SPEED_100;
4860                                         else
4861                                                 spddplx = SPEED_10;
4862                                         spddplx += (mii_reg & 0x100)
4863                                                    ? DUPLEX_FULL :
4864                                                    DUPLEX_HALF;
4865                                         retval = e1000_set_spd_dplx(adapter,
4866                                                                     spddplx);
4867                                         if (retval)
4868                                                 return retval;
4869                                 }
4870                                 if (netif_running(adapter->netdev))
4871                                         e1000_reinit_locked(adapter);
4872                                 else
4873                                         e1000_reset(adapter);
4874                                 break;
4875                         case M88E1000_PHY_SPEC_CTRL:
4876                         case M88E1000_EXT_PHY_SPEC_CTRL:
4877                                 if (e1000_phy_reset(&adapter->hw))
4878                                         return -EIO;
4879                                 break;
4880                         }
4881                 } else {
4882                         switch (data->reg_num) {
4883                         case PHY_CTRL:
4884                                 if (mii_reg & MII_CR_POWER_DOWN)
4885                                         break;
4886                                 if (netif_running(adapter->netdev))
4887                                         e1000_reinit_locked(adapter);
4888                                 else
4889                                         e1000_reset(adapter);
4890                                 break;
4891                         }
4892                 }
4893                 break;
4894         default:
4895                 return -EOPNOTSUPP;
4896         }
4897         return E1000_SUCCESS;
4898 }
4899
4900 void
4901 e1000_pci_set_mwi(struct e1000_hw *hw)
4902 {
4903         struct e1000_adapter *adapter = hw->back;
4904         int ret_val = pci_set_mwi(adapter->pdev);
4905
4906         if (ret_val)
4907                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4908 }
4909
4910 void
4911 e1000_pci_clear_mwi(struct e1000_hw *hw)
4912 {
4913         struct e1000_adapter *adapter = hw->back;
4914
4915         pci_clear_mwi(adapter->pdev);
4916 }
4917
4918 int
4919 e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4920 {
4921         struct e1000_adapter *adapter = hw->back;
4922         return pcix_get_mmrbc(adapter->pdev);
4923 }
4924
4925 void
4926 e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4927 {
4928         struct e1000_adapter *adapter = hw->back;
4929         pcix_set_mmrbc(adapter->pdev, mmrbc);
4930 }
4931
4932 s32
4933 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
4934 {
4935     struct e1000_adapter *adapter = hw->back;
4936     u16 cap_offset;
4937
4938     cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
4939     if (!cap_offset)
4940         return -E1000_ERR_CONFIG;
4941
4942     pci_read_config_word(adapter->pdev, cap_offset + reg, value);
4943
4944     return E1000_SUCCESS;
4945 }
4946
4947 void
4948 e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4949 {
4950         outl(value, port);
4951 }
4952
4953 static void
4954 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4955 {
4956         struct e1000_adapter *adapter = netdev_priv(netdev);
4957         u32 ctrl, rctl;
4958
4959         if (!test_bit(__E1000_DOWN, &adapter->flags))
4960                 e1000_irq_disable(adapter);
4961         adapter->vlgrp = grp;
4962
4963         if (grp) {
4964                 /* enable VLAN tag insert/strip */
4965                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4966                 ctrl |= E1000_CTRL_VME;
4967                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4968
4969                 if (adapter->hw.mac_type != e1000_ich8lan) {
4970                         /* enable VLAN receive filtering */
4971                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4972                         rctl &= ~E1000_RCTL_CFIEN;
4973                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4974                         e1000_update_mng_vlan(adapter);
4975                 }
4976         } else {
4977                 /* disable VLAN tag insert/strip */
4978                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4979                 ctrl &= ~E1000_CTRL_VME;
4980                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4981
4982                 if (adapter->hw.mac_type != e1000_ich8lan) {
4983                         if (adapter->mng_vlan_id !=
4984                             (u16)E1000_MNG_VLAN_NONE) {
4985                                 e1000_vlan_rx_kill_vid(netdev,
4986                                                        adapter->mng_vlan_id);
4987                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4988                         }
4989                 }
4990         }
4991
4992         if (!test_bit(__E1000_DOWN, &adapter->flags))
4993                 e1000_irq_enable(adapter);
4994 }
4995
4996 static void
4997 e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4998 {
4999         struct e1000_adapter *adapter = netdev_priv(netdev);
5000         u32 vfta, index;
5001
5002         if ((adapter->hw.mng_cookie.status &
5003              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
5004             (vid == adapter->mng_vlan_id))
5005                 return;
5006         /* add VID to filter table */
5007         index = (vid >> 5) & 0x7F;
5008         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
5009         vfta |= (1 << (vid & 0x1F));
5010         e1000_write_vfta(&adapter->hw, index, vfta);
5011 }
5012
5013 static void
5014 e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
5015 {
5016         struct e1000_adapter *adapter = netdev_priv(netdev);
5017         u32 vfta, index;
5018
5019         if (!test_bit(__E1000_DOWN, &adapter->flags))
5020                 e1000_irq_disable(adapter);
5021         vlan_group_set_device(adapter->vlgrp, vid, NULL);
5022         if (!test_bit(__E1000_DOWN, &adapter->flags))
5023                 e1000_irq_enable(adapter);
5024
5025         if ((adapter->hw.mng_cookie.status &
5026              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
5027             (vid == adapter->mng_vlan_id)) {
5028                 /* release control to f/w */
5029                 e1000_release_hw_control(adapter);
5030                 return;
5031         }
5032
5033         /* remove VID from filter table */
5034         index = (vid >> 5) & 0x7F;
5035         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
5036         vfta &= ~(1 << (vid & 0x1F));
5037         e1000_write_vfta(&adapter->hw, index, vfta);
5038 }
5039
5040 static void
5041 e1000_restore_vlan(struct e1000_adapter *adapter)
5042 {
5043         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
5044
5045         if (adapter->vlgrp) {
5046                 u16 vid;
5047                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
5048                         if (!vlan_group_get_device(adapter->vlgrp, vid))
5049                                 continue;
5050                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
5051                 }
5052         }
5053 }
5054
5055 int
5056 e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
5057 {
5058         adapter->hw.autoneg = 0;
5059
5060         /* Fiber NICs only allow 1000 gbps Full duplex */
5061         if ((adapter->hw.media_type == e1000_media_type_fiber) &&
5062                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
5063                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
5064                 return -EINVAL;
5065         }
5066
5067         switch (spddplx) {
5068         case SPEED_10 + DUPLEX_HALF:
5069                 adapter->hw.forced_speed_duplex = e1000_10_half;
5070                 break;
5071         case SPEED_10 + DUPLEX_FULL:
5072                 adapter->hw.forced_speed_duplex = e1000_10_full;
5073                 break;
5074         case SPEED_100 + DUPLEX_HALF:
5075                 adapter->hw.forced_speed_duplex = e1000_100_half;
5076                 break;
5077         case SPEED_100 + DUPLEX_FULL:
5078                 adapter->hw.forced_speed_duplex = e1000_100_full;
5079                 break;
5080         case SPEED_1000 + DUPLEX_FULL:
5081                 adapter->hw.autoneg = 1;
5082                 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
5083                 break;
5084         case SPEED_1000 + DUPLEX_HALF: /* not supported */
5085         default:
5086                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
5087                 return -EINVAL;
5088         }
5089         return 0;
5090 }
5091
5092 static int
5093 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5094 {
5095         struct net_device *netdev = pci_get_drvdata(pdev);
5096         struct e1000_adapter *adapter = netdev_priv(netdev);
5097         u32 ctrl, ctrl_ext, rctl, status;
5098         u32 wufc = adapter->wol;
5099 #ifdef CONFIG_PM
5100         int retval = 0;
5101 #endif
5102
5103         netif_device_detach(netdev);
5104
5105         if (netif_running(netdev)) {
5106                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5107                 e1000_down(adapter);
5108         }
5109
5110 #ifdef CONFIG_PM
5111         retval = pci_save_state(pdev);
5112         if (retval)
5113                 return retval;
5114 #endif
5115
5116         status = E1000_READ_REG(&adapter->hw, STATUS);
5117         if (status & E1000_STATUS_LU)
5118                 wufc &= ~E1000_WUFC_LNKC;
5119
5120         if (wufc) {
5121                 e1000_setup_rctl(adapter);
5122                 e1000_set_rx_mode(netdev);
5123
5124                 /* turn on all-multi mode if wake on multicast is enabled */
5125                 if (wufc & E1000_WUFC_MC) {
5126                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
5127                         rctl |= E1000_RCTL_MPE;
5128                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
5129                 }
5130
5131                 if (adapter->hw.mac_type >= e1000_82540) {
5132                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
5133                         /* advertise wake from D3Cold */
5134                         #define E1000_CTRL_ADVD3WUC 0x00100000
5135                         /* phy power management enable */
5136                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5137                         ctrl |= E1000_CTRL_ADVD3WUC |
5138                                 E1000_CTRL_EN_PHY_PWR_MGMT;
5139                         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
5140                 }
5141
5142                 if (adapter->hw.media_type == e1000_media_type_fiber ||
5143                    adapter->hw.media_type == e1000_media_type_internal_serdes) {
5144                         /* keep the laser running in D3 */
5145                         ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
5146                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5147                         E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
5148                 }
5149
5150                 /* Allow time for pending master requests to run */
5151                 e1000_disable_pciex_master(&adapter->hw);
5152
5153                 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
5154                 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
5155                 pci_enable_wake(pdev, PCI_D3hot, 1);
5156                 pci_enable_wake(pdev, PCI_D3cold, 1);
5157         } else {
5158                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
5159                 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
5160                 pci_enable_wake(pdev, PCI_D3hot, 0);
5161                 pci_enable_wake(pdev, PCI_D3cold, 0);
5162         }
5163
5164         e1000_release_manageability(adapter);
5165
5166         /* make sure adapter isn't asleep if manageability is enabled */
5167         if (adapter->en_mng_pt) {
5168                 pci_enable_wake(pdev, PCI_D3hot, 1);
5169                 pci_enable_wake(pdev, PCI_D3cold, 1);
5170         }
5171
5172         if (adapter->hw.phy_type == e1000_phy_igp_3)
5173                 e1000_phy_powerdown_workaround(&adapter->hw);
5174
5175         if (netif_running(netdev))
5176                 e1000_free_irq(adapter);
5177
5178         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
5179          * would have already happened in close and is redundant. */
5180         e1000_release_hw_control(adapter);
5181
5182         pci_disable_device(pdev);
5183
5184         pci_set_power_state(pdev, pci_choose_state(pdev, state));
5185
5186         return 0;
5187 }
5188
5189 #ifdef CONFIG_PM
5190 static int
5191 e1000_resume(struct pci_dev *pdev)
5192 {
5193         struct net_device *netdev = pci_get_drvdata(pdev);
5194         struct e1000_adapter *adapter = netdev_priv(netdev);
5195         u32 err;
5196
5197         pci_set_power_state(pdev, PCI_D0);
5198         pci_restore_state(pdev);
5199         if ((err = pci_enable_device(pdev))) {
5200                 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
5201                 return err;
5202         }
5203         pci_set_master(pdev);
5204
5205         pci_enable_wake(pdev, PCI_D3hot, 0);
5206         pci_enable_wake(pdev, PCI_D3cold, 0);
5207
5208         if (netif_running(netdev) && (err = e1000_request_irq(adapter)))
5209                 return err;
5210
5211         e1000_power_up_phy(adapter);
5212         e1000_reset(adapter);
5213         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
5214
5215         e1000_init_manageability(adapter);
5216
5217         if (netif_running(netdev))
5218                 e1000_up(adapter);
5219
5220         netif_device_attach(netdev);
5221
5222         /* If the controller is 82573 and f/w is AMT, do not set
5223          * DRV_LOAD until the interface is up.  For all other cases,
5224          * let the f/w know that the h/w is now under the control
5225          * of the driver. */
5226         if (adapter->hw.mac_type != e1000_82573 ||
5227             !e1000_check_mng_mode(&adapter->hw))
5228                 e1000_get_hw_control(adapter);
5229
5230         return 0;
5231 }
5232 #endif
5233
5234 static void e1000_shutdown(struct pci_dev *pdev)
5235 {
5236         e1000_suspend(pdev, PMSG_SUSPEND);
5237 }
5238
5239 #ifdef CONFIG_NET_POLL_CONTROLLER
5240 /*
5241  * Polling 'interrupt' - used by things like netconsole to send skbs
5242  * without having to re-enable interrupts. It's not called while
5243  * the interrupt routine is executing.
5244  */
5245 static void
5246 e1000_netpoll(struct net_device *netdev)
5247 {
5248         struct e1000_adapter *adapter = netdev_priv(netdev);
5249
5250         disable_irq(adapter->pdev->irq);
5251         e1000_intr(adapter->pdev->irq, netdev);
5252 #ifndef CONFIG_E1000_NAPI
5253         adapter->clean_rx(adapter, adapter->rx_ring);
5254 #endif
5255         enable_irq(adapter->pdev->irq);
5256 }
5257 #endif
5258
5259 /**
5260  * e1000_io_error_detected - called when PCI error is detected
5261  * @pdev: Pointer to PCI device
5262  * @state: The current pci conneection state
5263  *
5264  * This function is called after a PCI bus error affecting
5265  * this device has been detected.
5266  */
5267 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
5268 {
5269         struct net_device *netdev = pci_get_drvdata(pdev);
5270         struct e1000_adapter *adapter = netdev->priv;
5271
5272         netif_device_detach(netdev);
5273
5274         if (netif_running(netdev))
5275                 e1000_down(adapter);
5276         pci_disable_device(pdev);
5277
5278         /* Request a slot slot reset. */
5279         return PCI_ERS_RESULT_NEED_RESET;
5280 }
5281
5282 /**
5283  * e1000_io_slot_reset - called after the pci bus has been reset.
5284  * @pdev: Pointer to PCI device
5285  *
5286  * Restart the card from scratch, as if from a cold-boot. Implementation
5287  * resembles the first-half of the e1000_resume routine.
5288  */
5289 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5290 {
5291         struct net_device *netdev = pci_get_drvdata(pdev);
5292         struct e1000_adapter *adapter = netdev->priv;
5293
5294         if (pci_enable_device(pdev)) {
5295                 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
5296                 return PCI_ERS_RESULT_DISCONNECT;
5297         }
5298         pci_set_master(pdev);
5299
5300         pci_enable_wake(pdev, PCI_D3hot, 0);
5301         pci_enable_wake(pdev, PCI_D3cold, 0);
5302
5303         e1000_reset(adapter);
5304         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
5305
5306         return PCI_ERS_RESULT_RECOVERED;
5307 }
5308
5309 /**
5310  * e1000_io_resume - called when traffic can start flowing again.
5311  * @pdev: Pointer to PCI device
5312  *
5313  * This callback is called when the error recovery driver tells us that
5314  * its OK to resume normal operation. Implementation resembles the
5315  * second-half of the e1000_resume routine.
5316  */
5317 static void e1000_io_resume(struct pci_dev *pdev)
5318 {
5319         struct net_device *netdev = pci_get_drvdata(pdev);
5320         struct e1000_adapter *adapter = netdev->priv;
5321
5322         e1000_init_manageability(adapter);
5323
5324         if (netif_running(netdev)) {
5325                 if (e1000_up(adapter)) {
5326                         printk("e1000: can't bring device back up after reset\n");
5327                         return;
5328                 }
5329         }
5330
5331         netif_device_attach(netdev);
5332
5333         /* If the controller is 82573 and f/w is AMT, do not set
5334          * DRV_LOAD until the interface is up.  For all other cases,
5335          * let the f/w know that the h/w is now under the control
5336          * of the driver. */
5337         if (adapter->hw.mac_type != e1000_82573 ||
5338             !e1000_check_mng_mode(&adapter->hw))
5339                 e1000_get_hw_control(adapter);
5340
5341 }
5342
5343 /* e1000_main.c */