]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/e1000/e1000_main.c
[PATCH] e1000: Fix Desc. Rings and Jumbo Frames
[linux-2.6-omap-h63xx.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   
4   Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
5   
6   This program is free software; you can redistribute it and/or modify it 
7   under the terms of the GNU General Public License as published by the Free 
8   Software Foundation; either version 2 of the License, or (at your option) 
9   any later version.
10   
11   This program is distributed in the hope that it will be useful, but WITHOUT 
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
14   more details.
15   
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc., 59 
18   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
19   
20   The full GNU General Public License is included in this distribution in the
21   file called LICENSE.
22   
23   Contact Information:
24   Linux NICS <linux.nics@intel.com>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30
31 /* Change Log
32  * 6.0.58       4/20/05
33  *   o Accepted ethtool cleanup patch from Stephen Hemminger 
34  * 6.0.44+      2/15/05
35  *   o applied Anton's patch to resolve tx hang in hardware
36  *   o Applied Andrew Mortons patch - e1000 stops working after resume
37  */
38
39 char e1000_driver_name[] = "e1000";
40 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
41 #ifndef CONFIG_E1000_NAPI
42 #define DRIVERNAPI
43 #else
44 #define DRIVERNAPI "-NAPI"
45 #endif
46 #define DRV_VERSION "6.3.9-k2"DRIVERNAPI
47 char e1000_driver_version[] = DRV_VERSION;
48 static char e1000_copyright[] = "Copyright (c) 1999-2005 Intel Corporation.";
49
50 /* e1000_pci_tbl - PCI Device ID Table
51  *
52  * Last entry must be all 0s
53  *
54  * Macro expands to...
55  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
56  */
57 static struct pci_device_id e1000_pci_tbl[] = {
58         INTEL_E1000_ETHERNET_DEVICE(0x1000),
59         INTEL_E1000_ETHERNET_DEVICE(0x1001),
60         INTEL_E1000_ETHERNET_DEVICE(0x1004),
61         INTEL_E1000_ETHERNET_DEVICE(0x1008),
62         INTEL_E1000_ETHERNET_DEVICE(0x1009),
63         INTEL_E1000_ETHERNET_DEVICE(0x100C),
64         INTEL_E1000_ETHERNET_DEVICE(0x100D),
65         INTEL_E1000_ETHERNET_DEVICE(0x100E),
66         INTEL_E1000_ETHERNET_DEVICE(0x100F),
67         INTEL_E1000_ETHERNET_DEVICE(0x1010),
68         INTEL_E1000_ETHERNET_DEVICE(0x1011),
69         INTEL_E1000_ETHERNET_DEVICE(0x1012),
70         INTEL_E1000_ETHERNET_DEVICE(0x1013),
71         INTEL_E1000_ETHERNET_DEVICE(0x1014),
72         INTEL_E1000_ETHERNET_DEVICE(0x1015),
73         INTEL_E1000_ETHERNET_DEVICE(0x1016),
74         INTEL_E1000_ETHERNET_DEVICE(0x1017),
75         INTEL_E1000_ETHERNET_DEVICE(0x1018),
76         INTEL_E1000_ETHERNET_DEVICE(0x1019),
77         INTEL_E1000_ETHERNET_DEVICE(0x101A),
78         INTEL_E1000_ETHERNET_DEVICE(0x101D),
79         INTEL_E1000_ETHERNET_DEVICE(0x101E),
80         INTEL_E1000_ETHERNET_DEVICE(0x1026),
81         INTEL_E1000_ETHERNET_DEVICE(0x1027),
82         INTEL_E1000_ETHERNET_DEVICE(0x1028),
83         INTEL_E1000_ETHERNET_DEVICE(0x105E),
84         INTEL_E1000_ETHERNET_DEVICE(0x105F),
85         INTEL_E1000_ETHERNET_DEVICE(0x1060),
86         INTEL_E1000_ETHERNET_DEVICE(0x1075),
87         INTEL_E1000_ETHERNET_DEVICE(0x1076),
88         INTEL_E1000_ETHERNET_DEVICE(0x1077),
89         INTEL_E1000_ETHERNET_DEVICE(0x1078),
90         INTEL_E1000_ETHERNET_DEVICE(0x1079),
91         INTEL_E1000_ETHERNET_DEVICE(0x107A),
92         INTEL_E1000_ETHERNET_DEVICE(0x107B),
93         INTEL_E1000_ETHERNET_DEVICE(0x107C),
94         INTEL_E1000_ETHERNET_DEVICE(0x107D),
95         INTEL_E1000_ETHERNET_DEVICE(0x107E),
96         INTEL_E1000_ETHERNET_DEVICE(0x107F),
97         INTEL_E1000_ETHERNET_DEVICE(0x108A),
98         INTEL_E1000_ETHERNET_DEVICE(0x108B),
99         INTEL_E1000_ETHERNET_DEVICE(0x108C),
100         INTEL_E1000_ETHERNET_DEVICE(0x109A),
101         /* required last entry */
102         {0,}
103 };
104
105 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
106
107 int e1000_up(struct e1000_adapter *adapter);
108 void e1000_down(struct e1000_adapter *adapter);
109 void e1000_reset(struct e1000_adapter *adapter);
110 int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
111 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
112 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
113 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
114 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
115 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
116                                     struct e1000_tx_ring *txdr);
117 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
118                                     struct e1000_rx_ring *rxdr);
119 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
120                                     struct e1000_tx_ring *tx_ring);
121 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
122                                     struct e1000_rx_ring *rx_ring);
123 void e1000_update_stats(struct e1000_adapter *adapter);
124
125 /* Local Function Prototypes */
126
127 static int e1000_init_module(void);
128 static void e1000_exit_module(void);
129 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
130 static void __devexit e1000_remove(struct pci_dev *pdev);
131 static int e1000_alloc_queues(struct e1000_adapter *adapter);
132 #ifdef CONFIG_E1000_MQ
133 static void e1000_setup_queue_mapping(struct e1000_adapter *adapter);
134 #endif
135 static int e1000_sw_init(struct e1000_adapter *adapter);
136 static int e1000_open(struct net_device *netdev);
137 static int e1000_close(struct net_device *netdev);
138 static void e1000_configure_tx(struct e1000_adapter *adapter);
139 static void e1000_configure_rx(struct e1000_adapter *adapter);
140 static void e1000_setup_rctl(struct e1000_adapter *adapter);
141 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
142 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
143 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
144                                 struct e1000_tx_ring *tx_ring);
145 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
146                                 struct e1000_rx_ring *rx_ring);
147 static void e1000_set_multi(struct net_device *netdev);
148 static void e1000_update_phy_info(unsigned long data);
149 static void e1000_watchdog(unsigned long data);
150 static void e1000_watchdog_task(struct e1000_adapter *adapter);
151 static void e1000_82547_tx_fifo_stall(unsigned long data);
152 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
153 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
154 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
155 static int e1000_set_mac(struct net_device *netdev, void *p);
156 static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
157 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
158                                     struct e1000_tx_ring *tx_ring);
159 #ifdef CONFIG_E1000_NAPI
160 static int e1000_clean(struct net_device *poll_dev, int *budget);
161 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
162                                     struct e1000_rx_ring *rx_ring,
163                                     int *work_done, int work_to_do);
164 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
165                                        struct e1000_rx_ring *rx_ring,
166                                        int *work_done, int work_to_do);
167 #else
168 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
169                                     struct e1000_rx_ring *rx_ring);
170 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
171                                        struct e1000_rx_ring *rx_ring);
172 #endif
173 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
174                                    struct e1000_rx_ring *rx_ring);
175 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
176                                       struct e1000_rx_ring *rx_ring);
177 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
178 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
179                            int cmd);
180 void e1000_set_ethtool_ops(struct net_device *netdev);
181 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
182 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
183 static void e1000_tx_timeout(struct net_device *dev);
184 static void e1000_tx_timeout_task(struct net_device *dev);
185 static void e1000_smartspeed(struct e1000_adapter *adapter);
186 static inline int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
187                                               struct sk_buff *skb);
188
189 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
190 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
191 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
192 static void e1000_restore_vlan(struct e1000_adapter *adapter);
193
194 #ifdef CONFIG_PM
195 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
196 static int e1000_resume(struct pci_dev *pdev);
197 #endif
198
199 #ifdef CONFIG_NET_POLL_CONTROLLER
200 /* for netdump / net console */
201 static void e1000_netpoll (struct net_device *netdev);
202 #endif
203
204 #ifdef CONFIG_E1000_MQ
205 /* for multiple Rx queues */
206 void e1000_rx_schedule(void *data);
207 #endif
208
209 /* Exported from other modules */
210
211 extern void e1000_check_options(struct e1000_adapter *adapter);
212
213 static struct pci_driver e1000_driver = {
214         .name     = e1000_driver_name,
215         .id_table = e1000_pci_tbl,
216         .probe    = e1000_probe,
217         .remove   = __devexit_p(e1000_remove),
218         /* Power Managment Hooks */
219 #ifdef CONFIG_PM
220         .suspend  = e1000_suspend,
221         .resume   = e1000_resume
222 #endif
223 };
224
225 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
226 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
227 MODULE_LICENSE("GPL");
228 MODULE_VERSION(DRV_VERSION);
229
230 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
231 module_param(debug, int, 0);
232 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
233
234 /**
235  * e1000_init_module - Driver Registration Routine
236  *
237  * e1000_init_module is the first routine called when the driver is
238  * loaded. All it does is register with the PCI subsystem.
239  **/
240
241 static int __init
242 e1000_init_module(void)
243 {
244         int ret;
245         printk(KERN_INFO "%s - version %s\n",
246                e1000_driver_string, e1000_driver_version);
247
248         printk(KERN_INFO "%s\n", e1000_copyright);
249
250         ret = pci_module_init(&e1000_driver);
251
252         return ret;
253 }
254
255 module_init(e1000_init_module);
256
257 /**
258  * e1000_exit_module - Driver Exit Cleanup Routine
259  *
260  * e1000_exit_module is called just before the driver is removed
261  * from memory.
262  **/
263
264 static void __exit
265 e1000_exit_module(void)
266 {
267         pci_unregister_driver(&e1000_driver);
268 }
269
270 module_exit(e1000_exit_module);
271
272 /**
273  * e1000_irq_disable - Mask off interrupt generation on the NIC
274  * @adapter: board private structure
275  **/
276
277 static inline void
278 e1000_irq_disable(struct e1000_adapter *adapter)
279 {
280         atomic_inc(&adapter->irq_sem);
281         E1000_WRITE_REG(&adapter->hw, IMC, ~0);
282         E1000_WRITE_FLUSH(&adapter->hw);
283         synchronize_irq(adapter->pdev->irq);
284 }
285
286 /**
287  * e1000_irq_enable - Enable default interrupt generation settings
288  * @adapter: board private structure
289  **/
290
291 static inline void
292 e1000_irq_enable(struct e1000_adapter *adapter)
293 {
294         if(likely(atomic_dec_and_test(&adapter->irq_sem))) {
295                 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
296                 E1000_WRITE_FLUSH(&adapter->hw);
297         }
298 }
299
300 static void
301 e1000_update_mng_vlan(struct e1000_adapter *adapter)
302 {
303         struct net_device *netdev = adapter->netdev;
304         uint16_t vid = adapter->hw.mng_cookie.vlan_id;
305         uint16_t old_vid = adapter->mng_vlan_id;
306         if(adapter->vlgrp) {
307                 if(!adapter->vlgrp->vlan_devices[vid]) {
308                         if(adapter->hw.mng_cookie.status &
309                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
310                                 e1000_vlan_rx_add_vid(netdev, vid);
311                                 adapter->mng_vlan_id = vid;
312                         } else
313                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
314                                 
315                         if((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
316                                         (vid != old_vid) && 
317                                         !adapter->vlgrp->vlan_devices[old_vid])
318                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
319                 }
320         }
321 }
322
323 /**
324  * e1000_release_hw_control - release control of the h/w to f/w
325  * @adapter: address of board private structure
326  *
327  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
328  * For ASF and Pass Through versions of f/w this means that the
329  * driver is no longer loaded. For AMT version (only with 82573) i
330  * of the f/w this means that the netowrk i/f is closed.
331  * 
332  **/
333
334 static inline void 
335 e1000_release_hw_control(struct e1000_adapter *adapter)
336 {
337         uint32_t ctrl_ext;
338         uint32_t swsm;
339
340         /* Let firmware taken over control of h/w */
341         switch (adapter->hw.mac_type) {
342         case e1000_82571:
343         case e1000_82572:
344                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
345                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
346                                 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
347                 break;
348         case e1000_82573:
349                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
350                 E1000_WRITE_REG(&adapter->hw, SWSM,
351                                 swsm & ~E1000_SWSM_DRV_LOAD);
352         default:
353                 break;
354         }
355 }
356
357 /**
358  * e1000_get_hw_control - get control of the h/w from f/w
359  * @adapter: address of board private structure
360  *
361  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
362  * For ASF and Pass Through versions of f/w this means that 
363  * the driver is loaded. For AMT version (only with 82573) 
364  * of the f/w this means that the netowrk i/f is open.
365  * 
366  **/
367
368 static inline void 
369 e1000_get_hw_control(struct e1000_adapter *adapter)
370 {
371         uint32_t ctrl_ext;
372         uint32_t swsm;
373         /* Let firmware know the driver has taken over */
374         switch (adapter->hw.mac_type) {
375         case e1000_82571:
376         case e1000_82572:
377                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
378                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
379                                 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
380                 break;
381         case e1000_82573:
382                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
383                 E1000_WRITE_REG(&adapter->hw, SWSM,
384                                 swsm | E1000_SWSM_DRV_LOAD);
385                 break;
386         default:
387                 break;
388         }
389 }
390
391 int
392 e1000_up(struct e1000_adapter *adapter)
393 {
394         struct net_device *netdev = adapter->netdev;
395         int i, err;
396
397         /* hardware has been reset, we need to reload some things */
398
399         /* Reset the PHY if it was previously powered down */
400         if(adapter->hw.media_type == e1000_media_type_copper) {
401                 uint16_t mii_reg;
402                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
403                 if(mii_reg & MII_CR_POWER_DOWN)
404                         e1000_phy_reset(&adapter->hw);
405         }
406
407         e1000_set_multi(netdev);
408
409         e1000_restore_vlan(adapter);
410
411         e1000_configure_tx(adapter);
412         e1000_setup_rctl(adapter);
413         e1000_configure_rx(adapter);
414         for (i = 0; i < adapter->num_rx_queues; i++) {
415                 adapter->alloc_rx_buf(adapter, &adapter->rx_ring[i]);
416         }
417
418 #ifdef CONFIG_PCI_MSI
419         if(adapter->hw.mac_type > e1000_82547_rev_2) {
420                 adapter->have_msi = TRUE;
421                 if((err = pci_enable_msi(adapter->pdev))) {
422                         DPRINTK(PROBE, ERR,
423                          "Unable to allocate MSI interrupt Error: %d\n", err);
424                         adapter->have_msi = FALSE;
425                 }
426         }
427 #endif
428         if((err = request_irq(adapter->pdev->irq, &e1000_intr,
429                               SA_SHIRQ | SA_SAMPLE_RANDOM,
430                               netdev->name, netdev))) {
431                 DPRINTK(PROBE, ERR,
432                     "Unable to allocate interrupt Error: %d\n", err);
433                 return err;
434         }
435
436 #ifdef CONFIG_E1000_MQ
437         e1000_setup_queue_mapping(adapter);
438 #endif
439
440         adapter->tx_queue_len = netdev->tx_queue_len;
441
442         mod_timer(&adapter->watchdog_timer, jiffies);
443
444 #ifdef CONFIG_E1000_NAPI
445         netif_poll_enable(netdev);
446 #endif
447         e1000_irq_enable(adapter);
448
449         return 0;
450 }
451
452 void
453 e1000_down(struct e1000_adapter *adapter)
454 {
455         struct net_device *netdev = adapter->netdev;
456         boolean_t mng_mode_enabled = (adapter->hw.mac_type >= e1000_82571) &&
457                                      e1000_check_mng_mode(&adapter->hw);
458
459         e1000_irq_disable(adapter);
460 #ifdef CONFIG_E1000_MQ
461         while (atomic_read(&adapter->rx_sched_call_data.count) != 0);
462 #endif
463         free_irq(adapter->pdev->irq, netdev);
464 #ifdef CONFIG_PCI_MSI
465         if(adapter->hw.mac_type > e1000_82547_rev_2 &&
466            adapter->have_msi == TRUE)
467                 pci_disable_msi(adapter->pdev);
468 #endif
469         del_timer_sync(&adapter->tx_fifo_stall_timer);
470         del_timer_sync(&adapter->watchdog_timer);
471         del_timer_sync(&adapter->phy_info_timer);
472
473 #ifdef CONFIG_E1000_NAPI
474         netif_poll_disable(netdev);
475 #endif
476         netdev->tx_queue_len = adapter->tx_queue_len;
477         adapter->link_speed = 0;
478         adapter->link_duplex = 0;
479         netif_carrier_off(netdev);
480         netif_stop_queue(netdev);
481
482         e1000_reset(adapter);
483         e1000_clean_all_tx_rings(adapter);
484         e1000_clean_all_rx_rings(adapter);
485
486         /* Power down the PHY so no link is implied when interface is down *
487          * The PHY cannot be powered down if any of the following is TRUE *
488          * (a) WoL is enabled
489          * (b) AMT is active
490          * (c) SoL/IDER session is active */
491         if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
492            adapter->hw.media_type == e1000_media_type_copper &&
493            !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN) &&
494            !mng_mode_enabled &&
495            !e1000_check_phy_reset_block(&adapter->hw)) {
496                 uint16_t mii_reg;
497                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
498                 mii_reg |= MII_CR_POWER_DOWN;
499                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
500                 mdelay(1);
501         }
502 }
503
504 void
505 e1000_reset(struct e1000_adapter *adapter)
506 {
507         uint32_t pba, manc;
508         uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
509
510         /* Repartition Pba for greater than 9k mtu
511          * To take effect CTRL.RST is required.
512          */
513
514         switch (adapter->hw.mac_type) {
515         case e1000_82547:
516         case e1000_82547_rev_2:
517                 pba = E1000_PBA_30K;
518                 break;
519         case e1000_82571:
520         case e1000_82572:
521                 pba = E1000_PBA_38K;
522                 break;
523         case e1000_82573:
524                 pba = E1000_PBA_12K;
525                 break;
526         default:
527                 pba = E1000_PBA_48K;
528                 break;
529         }
530
531         if((adapter->hw.mac_type != e1000_82573) &&
532            (adapter->netdev->mtu > E1000_RXBUFFER_8192))
533                 pba -= 8; /* allocate more FIFO for Tx */
534
535
536         if(adapter->hw.mac_type == e1000_82547) {
537                 adapter->tx_fifo_head = 0;
538                 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
539                 adapter->tx_fifo_size =
540                         (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
541                 atomic_set(&adapter->tx_fifo_stall, 0);
542         }
543
544         E1000_WRITE_REG(&adapter->hw, PBA, pba);
545
546         /* flow control settings */
547         /* Set the FC high water mark to 90% of the FIFO size.
548          * Required to clear last 3 LSB */
549         fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
550
551         adapter->hw.fc_high_water = fc_high_water_mark;
552         adapter->hw.fc_low_water = fc_high_water_mark - 8;
553         adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
554         adapter->hw.fc_send_xon = 1;
555         adapter->hw.fc = adapter->hw.original_fc;
556
557         /* Allow time for pending master requests to run */
558         e1000_reset_hw(&adapter->hw);
559         if(adapter->hw.mac_type >= e1000_82544)
560                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
561         if(e1000_init_hw(&adapter->hw))
562                 DPRINTK(PROBE, ERR, "Hardware Error\n");
563         e1000_update_mng_vlan(adapter);
564         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
565         E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
566
567         e1000_reset_adaptive(&adapter->hw);
568         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
569         if (adapter->en_mng_pt) {
570                 manc = E1000_READ_REG(&adapter->hw, MANC);
571                 manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
572                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
573         }
574 }
575
576 /**
577  * e1000_probe - Device Initialization Routine
578  * @pdev: PCI device information struct
579  * @ent: entry in e1000_pci_tbl
580  *
581  * Returns 0 on success, negative on failure
582  *
583  * e1000_probe initializes an adapter identified by a pci_dev structure.
584  * The OS initialization, configuring of the adapter private structure,
585  * and a hardware reset occur.
586  **/
587
588 static int __devinit
589 e1000_probe(struct pci_dev *pdev,
590             const struct pci_device_id *ent)
591 {
592         struct net_device *netdev;
593         struct e1000_adapter *adapter;
594         unsigned long mmio_start, mmio_len;
595
596         static int cards_found = 0;
597         int i, err, pci_using_dac;
598         uint16_t eeprom_data;
599         uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
600         if((err = pci_enable_device(pdev)))
601                 return err;
602
603         if(!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
604                 pci_using_dac = 1;
605         } else {
606                 if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
607                         E1000_ERR("No usable DMA configuration, aborting\n");
608                         return err;
609                 }
610                 pci_using_dac = 0;
611         }
612
613         if((err = pci_request_regions(pdev, e1000_driver_name)))
614                 return err;
615
616         pci_set_master(pdev);
617
618         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
619         if(!netdev) {
620                 err = -ENOMEM;
621                 goto err_alloc_etherdev;
622         }
623
624         SET_MODULE_OWNER(netdev);
625         SET_NETDEV_DEV(netdev, &pdev->dev);
626
627         pci_set_drvdata(pdev, netdev);
628         adapter = netdev_priv(netdev);
629         adapter->netdev = netdev;
630         adapter->pdev = pdev;
631         adapter->hw.back = adapter;
632         adapter->msg_enable = (1 << debug) - 1;
633
634         mmio_start = pci_resource_start(pdev, BAR_0);
635         mmio_len = pci_resource_len(pdev, BAR_0);
636
637         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
638         if(!adapter->hw.hw_addr) {
639                 err = -EIO;
640                 goto err_ioremap;
641         }
642
643         for(i = BAR_1; i <= BAR_5; i++) {
644                 if(pci_resource_len(pdev, i) == 0)
645                         continue;
646                 if(pci_resource_flags(pdev, i) & IORESOURCE_IO) {
647                         adapter->hw.io_base = pci_resource_start(pdev, i);
648                         break;
649                 }
650         }
651
652         netdev->open = &e1000_open;
653         netdev->stop = &e1000_close;
654         netdev->hard_start_xmit = &e1000_xmit_frame;
655         netdev->get_stats = &e1000_get_stats;
656         netdev->set_multicast_list = &e1000_set_multi;
657         netdev->set_mac_address = &e1000_set_mac;
658         netdev->change_mtu = &e1000_change_mtu;
659         netdev->do_ioctl = &e1000_ioctl;
660         e1000_set_ethtool_ops(netdev);
661         netdev->tx_timeout = &e1000_tx_timeout;
662         netdev->watchdog_timeo = 5 * HZ;
663 #ifdef CONFIG_E1000_NAPI
664         netdev->poll = &e1000_clean;
665         netdev->weight = 64;
666 #endif
667         netdev->vlan_rx_register = e1000_vlan_rx_register;
668         netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
669         netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
670 #ifdef CONFIG_NET_POLL_CONTROLLER
671         netdev->poll_controller = e1000_netpoll;
672 #endif
673         strcpy(netdev->name, pci_name(pdev));
674
675         netdev->mem_start = mmio_start;
676         netdev->mem_end = mmio_start + mmio_len;
677         netdev->base_addr = adapter->hw.io_base;
678
679         adapter->bd_number = cards_found;
680
681         /* setup the private structure */
682
683         if((err = e1000_sw_init(adapter)))
684                 goto err_sw_init;
685
686         if((err = e1000_check_phy_reset_block(&adapter->hw)))
687                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
688
689         if(adapter->hw.mac_type >= e1000_82543) {
690                 netdev->features = NETIF_F_SG |
691                                    NETIF_F_HW_CSUM |
692                                    NETIF_F_HW_VLAN_TX |
693                                    NETIF_F_HW_VLAN_RX |
694                                    NETIF_F_HW_VLAN_FILTER;
695         }
696
697 #ifdef NETIF_F_TSO
698         if((adapter->hw.mac_type >= e1000_82544) &&
699            (adapter->hw.mac_type != e1000_82547))
700                 netdev->features |= NETIF_F_TSO;
701
702 #ifdef NETIF_F_TSO_IPV6
703         if(adapter->hw.mac_type > e1000_82547_rev_2)
704                 netdev->features |= NETIF_F_TSO_IPV6;
705 #endif
706 #endif
707         if(pci_using_dac)
708                 netdev->features |= NETIF_F_HIGHDMA;
709
710         /* hard_start_xmit is safe against parallel locking */
711         netdev->features |= NETIF_F_LLTX; 
712  
713         adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
714
715         /* before reading the EEPROM, reset the controller to 
716          * put the device in a known good starting state */
717         
718         e1000_reset_hw(&adapter->hw);
719
720         /* make sure the EEPROM is good */
721
722         if(e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
723                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
724                 err = -EIO;
725                 goto err_eeprom;
726         }
727
728         /* copy the MAC address out of the EEPROM */
729
730         if(e1000_read_mac_addr(&adapter->hw))
731                 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
732         memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
733         memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
734
735         if(!is_valid_ether_addr(netdev->perm_addr)) {
736                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
737                 err = -EIO;
738                 goto err_eeprom;
739         }
740
741         e1000_read_part_num(&adapter->hw, &(adapter->part_num));
742
743         e1000_get_bus_info(&adapter->hw);
744
745         init_timer(&adapter->tx_fifo_stall_timer);
746         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
747         adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
748
749         init_timer(&adapter->watchdog_timer);
750         adapter->watchdog_timer.function = &e1000_watchdog;
751         adapter->watchdog_timer.data = (unsigned long) adapter;
752
753         INIT_WORK(&adapter->watchdog_task,
754                 (void (*)(void *))e1000_watchdog_task, adapter);
755
756         init_timer(&adapter->phy_info_timer);
757         adapter->phy_info_timer.function = &e1000_update_phy_info;
758         adapter->phy_info_timer.data = (unsigned long) adapter;
759
760         INIT_WORK(&adapter->tx_timeout_task,
761                 (void (*)(void *))e1000_tx_timeout_task, netdev);
762
763         /* we're going to reset, so assume we have no link for now */
764
765         netif_carrier_off(netdev);
766         netif_stop_queue(netdev);
767
768         e1000_check_options(adapter);
769
770         /* Initial Wake on LAN setting
771          * If APM wake is enabled in the EEPROM,
772          * enable the ACPI Magic Packet filter
773          */
774
775         switch(adapter->hw.mac_type) {
776         case e1000_82542_rev2_0:
777         case e1000_82542_rev2_1:
778         case e1000_82543:
779                 break;
780         case e1000_82544:
781                 e1000_read_eeprom(&adapter->hw,
782                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
783                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
784                 break;
785         case e1000_82546:
786         case e1000_82546_rev_3:
787         case e1000_82571:
788                 if((E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
789                    && (adapter->hw.media_type == e1000_media_type_copper)) {
790                         e1000_read_eeprom(&adapter->hw,
791                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
792                         break;
793                 }
794                 /* Fall Through */
795         default:
796                 e1000_read_eeprom(&adapter->hw,
797                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
798                 break;
799         }
800         if(eeprom_data & eeprom_apme_mask)
801                 adapter->wol |= E1000_WUFC_MAG;
802
803         /* reset the hardware with the new settings */
804         e1000_reset(adapter);
805
806         /* If the controller is 82573 and f/w is AMT, do not set
807          * DRV_LOAD until the interface is up.  For all other cases,
808          * let the f/w know that the h/w is now under the control
809          * of the driver. */
810         if (adapter->hw.mac_type != e1000_82573 ||
811             !e1000_check_mng_mode(&adapter->hw))
812                 e1000_get_hw_control(adapter);
813
814         strcpy(netdev->name, "eth%d");
815         if((err = register_netdev(netdev)))
816                 goto err_register;
817
818         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
819
820         cards_found++;
821         return 0;
822
823 err_register:
824 err_sw_init:
825 err_eeprom:
826         iounmap(adapter->hw.hw_addr);
827 err_ioremap:
828         free_netdev(netdev);
829 err_alloc_etherdev:
830         pci_release_regions(pdev);
831         return err;
832 }
833
834 /**
835  * e1000_remove - Device Removal Routine
836  * @pdev: PCI device information struct
837  *
838  * e1000_remove is called by the PCI subsystem to alert the driver
839  * that it should release a PCI device.  The could be caused by a
840  * Hot-Plug event, or because the driver is going to be removed from
841  * memory.
842  **/
843
844 static void __devexit
845 e1000_remove(struct pci_dev *pdev)
846 {
847         struct net_device *netdev = pci_get_drvdata(pdev);
848         struct e1000_adapter *adapter = netdev_priv(netdev);
849         uint32_t manc;
850 #ifdef CONFIG_E1000_NAPI
851         int i;
852 #endif
853
854         flush_scheduled_work();
855
856         if(adapter->hw.mac_type >= e1000_82540 &&
857            adapter->hw.media_type == e1000_media_type_copper) {
858                 manc = E1000_READ_REG(&adapter->hw, MANC);
859                 if(manc & E1000_MANC_SMBUS_EN) {
860                         manc |= E1000_MANC_ARP_EN;
861                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
862                 }
863         }
864
865         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
866          * would have already happened in close and is redundant. */
867         e1000_release_hw_control(adapter);
868
869         unregister_netdev(netdev);
870 #ifdef CONFIG_E1000_NAPI
871         for (i = 0; i < adapter->num_rx_queues; i++)
872                 __dev_put(&adapter->polling_netdev[i]);
873 #endif
874
875         if(!e1000_check_phy_reset_block(&adapter->hw))
876                 e1000_phy_hw_reset(&adapter->hw);
877
878         kfree(adapter->tx_ring);
879         kfree(adapter->rx_ring);
880 #ifdef CONFIG_E1000_NAPI
881         kfree(adapter->polling_netdev);
882 #endif
883
884         iounmap(adapter->hw.hw_addr);
885         pci_release_regions(pdev);
886
887 #ifdef CONFIG_E1000_MQ
888         free_percpu(adapter->cpu_netdev);
889         free_percpu(adapter->cpu_tx_ring);
890 #endif
891         free_netdev(netdev);
892
893         pci_disable_device(pdev);
894 }
895
896 /**
897  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
898  * @adapter: board private structure to initialize
899  *
900  * e1000_sw_init initializes the Adapter private data structure.
901  * Fields are initialized based on PCI device information and
902  * OS network device settings (MTU size).
903  **/
904
905 static int __devinit
906 e1000_sw_init(struct e1000_adapter *adapter)
907 {
908         struct e1000_hw *hw = &adapter->hw;
909         struct net_device *netdev = adapter->netdev;
910         struct pci_dev *pdev = adapter->pdev;
911 #ifdef CONFIG_E1000_NAPI
912         int i;
913 #endif
914
915         /* PCI config space info */
916
917         hw->vendor_id = pdev->vendor;
918         hw->device_id = pdev->device;
919         hw->subsystem_vendor_id = pdev->subsystem_vendor;
920         hw->subsystem_id = pdev->subsystem_device;
921
922         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
923
924         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
925
926         adapter->rx_buffer_len = E1000_RXBUFFER_2048;
927         adapter->rx_ps_bsize0 = E1000_RXBUFFER_256;
928         hw->max_frame_size = netdev->mtu +
929                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
930         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
931
932         /* identify the MAC */
933
934         if(e1000_set_mac_type(hw)) {
935                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
936                 return -EIO;
937         }
938
939         /* initialize eeprom parameters */
940
941         if(e1000_init_eeprom_params(hw)) {
942                 E1000_ERR("EEPROM initialization failed\n");
943                 return -EIO;
944         }
945
946         switch(hw->mac_type) {
947         default:
948                 break;
949         case e1000_82541:
950         case e1000_82547:
951         case e1000_82541_rev_2:
952         case e1000_82547_rev_2:
953                 hw->phy_init_script = 1;
954                 break;
955         }
956
957         e1000_set_media_type(hw);
958
959         hw->wait_autoneg_complete = FALSE;
960         hw->tbi_compatibility_en = TRUE;
961         hw->adaptive_ifs = TRUE;
962
963         /* Copper options */
964
965         if(hw->media_type == e1000_media_type_copper) {
966                 hw->mdix = AUTO_ALL_MODES;
967                 hw->disable_polarity_correction = FALSE;
968                 hw->master_slave = E1000_MASTER_SLAVE;
969         }
970
971 #ifdef CONFIG_E1000_MQ
972         /* Number of supported queues */
973         switch (hw->mac_type) {
974         case e1000_82571:
975         case e1000_82572:
976                 /* These controllers support 2 tx queues, but with a single
977                  * qdisc implementation, multiple tx queues aren't quite as
978                  * interesting.  If we can find a logical way of mapping
979                  * flows to a queue, then perhaps we can up the num_tx_queue
980                  * count back to its default.  Until then, we run the risk of
981                  * terrible performance due to SACK overload. */
982                 adapter->num_tx_queues = 1;
983                 adapter->num_rx_queues = 2;
984                 break;
985         default:
986                 adapter->num_tx_queues = 1;
987                 adapter->num_rx_queues = 1;
988                 break;
989         }
990         adapter->num_rx_queues = min(adapter->num_rx_queues, num_online_cpus());
991         adapter->num_tx_queues = min(adapter->num_tx_queues, num_online_cpus());
992         DPRINTK(DRV, INFO, "Multiqueue Enabled: Rx Queue count = %u %s\n",
993                 adapter->num_rx_queues,
994                 ((adapter->num_rx_queues == 1)
995                  ? ((num_online_cpus() > 1)
996                         ? "(due to unsupported feature in current adapter)"
997                         : "(due to unsupported system configuration)")
998                  : ""));
999         DPRINTK(DRV, INFO, "Multiqueue Enabled: Tx Queue count = %u\n",
1000                 adapter->num_tx_queues);
1001 #else
1002         adapter->num_tx_queues = 1;
1003         adapter->num_rx_queues = 1;
1004 #endif
1005
1006         if (e1000_alloc_queues(adapter)) {
1007                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1008                 return -ENOMEM;
1009         }
1010
1011 #ifdef CONFIG_E1000_NAPI
1012         for (i = 0; i < adapter->num_rx_queues; i++) {
1013                 adapter->polling_netdev[i].priv = adapter;
1014                 adapter->polling_netdev[i].poll = &e1000_clean;
1015                 adapter->polling_netdev[i].weight = 64;
1016                 dev_hold(&adapter->polling_netdev[i]);
1017                 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1018         }
1019         spin_lock_init(&adapter->tx_queue_lock);
1020 #endif
1021
1022         atomic_set(&adapter->irq_sem, 1);
1023         spin_lock_init(&adapter->stats_lock);
1024
1025         return 0;
1026 }
1027
1028 /**
1029  * e1000_alloc_queues - Allocate memory for all rings
1030  * @adapter: board private structure to initialize
1031  *
1032  * We allocate one ring per queue at run-time since we don't know the
1033  * number of queues at compile-time.  The polling_netdev array is
1034  * intended for Multiqueue, but should work fine with a single queue.
1035  **/
1036
1037 static int __devinit
1038 e1000_alloc_queues(struct e1000_adapter *adapter)
1039 {
1040         int size;
1041
1042         size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
1043         adapter->tx_ring = kmalloc(size, GFP_KERNEL);
1044         if (!adapter->tx_ring)
1045                 return -ENOMEM;
1046         memset(adapter->tx_ring, 0, size);
1047
1048         size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
1049         adapter->rx_ring = kmalloc(size, GFP_KERNEL);
1050         if (!adapter->rx_ring) {
1051                 kfree(adapter->tx_ring);
1052                 return -ENOMEM;
1053         }
1054         memset(adapter->rx_ring, 0, size);
1055
1056 #ifdef CONFIG_E1000_NAPI
1057         size = sizeof(struct net_device) * adapter->num_rx_queues;
1058         adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
1059         if (!adapter->polling_netdev) {
1060                 kfree(adapter->tx_ring);
1061                 kfree(adapter->rx_ring);
1062                 return -ENOMEM;
1063         }
1064         memset(adapter->polling_netdev, 0, size);
1065 #endif
1066
1067 #ifdef CONFIG_E1000_MQ
1068         adapter->rx_sched_call_data.func = e1000_rx_schedule;
1069         adapter->rx_sched_call_data.info = adapter->netdev;
1070
1071         adapter->cpu_netdev = alloc_percpu(struct net_device *);
1072         adapter->cpu_tx_ring = alloc_percpu(struct e1000_tx_ring *);
1073 #endif
1074
1075         return E1000_SUCCESS;
1076 }
1077
1078 #ifdef CONFIG_E1000_MQ
1079 static void __devinit
1080 e1000_setup_queue_mapping(struct e1000_adapter *adapter)
1081 {
1082         int i, cpu;
1083
1084         adapter->rx_sched_call_data.func = e1000_rx_schedule;
1085         adapter->rx_sched_call_data.info = adapter->netdev;
1086         cpus_clear(adapter->rx_sched_call_data.cpumask);
1087
1088         adapter->cpu_netdev = alloc_percpu(struct net_device *);
1089         adapter->cpu_tx_ring = alloc_percpu(struct e1000_tx_ring *);
1090
1091         lock_cpu_hotplug();
1092         i = 0;
1093         for_each_online_cpu(cpu) {
1094                 *per_cpu_ptr(adapter->cpu_tx_ring, cpu) = &adapter->tx_ring[i % adapter->num_tx_queues];
1095                 /* This is incomplete because we'd like to assign separate
1096                  * physical cpus to these netdev polling structures and
1097                  * avoid saturating a subset of cpus.
1098                  */
1099                 if (i < adapter->num_rx_queues) {
1100                         *per_cpu_ptr(adapter->cpu_netdev, cpu) = &adapter->polling_netdev[i];
1101                         adapter->rx_ring[i].cpu = cpu;
1102                         cpu_set(cpu, adapter->cpumask);
1103                 } else
1104                         *per_cpu_ptr(adapter->cpu_netdev, cpu) = NULL;
1105
1106                 i++;
1107         }
1108         unlock_cpu_hotplug();
1109 }
1110 #endif
1111
1112 /**
1113  * e1000_open - Called when a network interface is made active
1114  * @netdev: network interface device structure
1115  *
1116  * Returns 0 on success, negative value on failure
1117  *
1118  * The open entry point is called when a network interface is made
1119  * active by the system (IFF_UP).  At this point all resources needed
1120  * for transmit and receive operations are allocated, the interrupt
1121  * handler is registered with the OS, the watchdog timer is started,
1122  * and the stack is notified that the interface is ready.
1123  **/
1124
1125 static int
1126 e1000_open(struct net_device *netdev)
1127 {
1128         struct e1000_adapter *adapter = netdev_priv(netdev);
1129         int err;
1130
1131         /* allocate transmit descriptors */
1132
1133         if ((err = e1000_setup_all_tx_resources(adapter)))
1134                 goto err_setup_tx;
1135
1136         /* allocate receive descriptors */
1137
1138         if ((err = e1000_setup_all_rx_resources(adapter)))
1139                 goto err_setup_rx;
1140
1141         if((err = e1000_up(adapter)))
1142                 goto err_up;
1143         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1144         if((adapter->hw.mng_cookie.status &
1145                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1146                 e1000_update_mng_vlan(adapter);
1147         }
1148
1149         /* If AMT is enabled, let the firmware know that the network
1150          * interface is now open */
1151         if (adapter->hw.mac_type == e1000_82573 &&
1152             e1000_check_mng_mode(&adapter->hw))
1153                 e1000_get_hw_control(adapter);
1154
1155         return E1000_SUCCESS;
1156
1157 err_up:
1158         e1000_free_all_rx_resources(adapter);
1159 err_setup_rx:
1160         e1000_free_all_tx_resources(adapter);
1161 err_setup_tx:
1162         e1000_reset(adapter);
1163
1164         return err;
1165 }
1166
1167 /**
1168  * e1000_close - Disables a network interface
1169  * @netdev: network interface device structure
1170  *
1171  * Returns 0, this is not allowed to fail
1172  *
1173  * The close entry point is called when an interface is de-activated
1174  * by the OS.  The hardware is still under the drivers control, but
1175  * needs to be disabled.  A global MAC reset is issued to stop the
1176  * hardware, and all transmit and receive resources are freed.
1177  **/
1178
1179 static int
1180 e1000_close(struct net_device *netdev)
1181 {
1182         struct e1000_adapter *adapter = netdev_priv(netdev);
1183
1184         e1000_down(adapter);
1185
1186         e1000_free_all_tx_resources(adapter);
1187         e1000_free_all_rx_resources(adapter);
1188
1189         if((adapter->hw.mng_cookie.status &
1190                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1191                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1192         }
1193
1194         /* If AMT is enabled, let the firmware know that the network
1195          * interface is now closed */
1196         if (adapter->hw.mac_type == e1000_82573 &&
1197             e1000_check_mng_mode(&adapter->hw))
1198                 e1000_release_hw_control(adapter);
1199
1200         return 0;
1201 }
1202
1203 /**
1204  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1205  * @adapter: address of board private structure
1206  * @start: address of beginning of memory
1207  * @len: length of memory
1208  **/
1209 static inline boolean_t
1210 e1000_check_64k_bound(struct e1000_adapter *adapter,
1211                       void *start, unsigned long len)
1212 {
1213         unsigned long begin = (unsigned long) start;
1214         unsigned long end = begin + len;
1215
1216         /* First rev 82545 and 82546 need to not allow any memory
1217          * write location to cross 64k boundary due to errata 23 */
1218         if (adapter->hw.mac_type == e1000_82545 ||
1219             adapter->hw.mac_type == e1000_82546) {
1220                 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1221         }
1222
1223         return TRUE;
1224 }
1225
1226 /**
1227  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1228  * @adapter: board private structure
1229  * @txdr:    tx descriptor ring (for a specific queue) to setup
1230  *
1231  * Return 0 on success, negative on failure
1232  **/
1233
1234 static int
1235 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1236                          struct e1000_tx_ring *txdr)
1237 {
1238         struct pci_dev *pdev = adapter->pdev;
1239         int size;
1240
1241         size = sizeof(struct e1000_buffer) * txdr->count;
1242
1243         txdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus));
1244         if(!txdr->buffer_info) {
1245                 DPRINTK(PROBE, ERR,
1246                 "Unable to allocate memory for the transmit descriptor ring\n");
1247                 return -ENOMEM;
1248         }
1249         memset(txdr->buffer_info, 0, size);
1250
1251         /* round up to nearest 4K */
1252
1253         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1254         E1000_ROUNDUP(txdr->size, 4096);
1255
1256         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1257         if(!txdr->desc) {
1258 setup_tx_desc_die:
1259                 vfree(txdr->buffer_info);
1260                 DPRINTK(PROBE, ERR,
1261                 "Unable to allocate memory for the transmit descriptor ring\n");
1262                 return -ENOMEM;
1263         }
1264
1265         /* Fix for errata 23, can't cross 64kB boundary */
1266         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1267                 void *olddesc = txdr->desc;
1268                 dma_addr_t olddma = txdr->dma;
1269                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1270                                      "at %p\n", txdr->size, txdr->desc);
1271                 /* Try again, without freeing the previous */
1272                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1273                 if(!txdr->desc) {
1274                 /* Failed allocation, critical failure */
1275                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1276                         goto setup_tx_desc_die;
1277                 }
1278
1279                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1280                         /* give up */
1281                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1282                                             txdr->dma);
1283                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1284                         DPRINTK(PROBE, ERR,
1285                                 "Unable to allocate aligned memory "
1286                                 "for the transmit descriptor ring\n");
1287                         vfree(txdr->buffer_info);
1288                         return -ENOMEM;
1289                 } else {
1290                         /* Free old allocation, new allocation was successful */
1291                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1292                 }
1293         }
1294         memset(txdr->desc, 0, txdr->size);
1295
1296         txdr->next_to_use = 0;
1297         txdr->next_to_clean = 0;
1298         spin_lock_init(&txdr->tx_lock);
1299
1300         return 0;
1301 }
1302
1303 /**
1304  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1305  *                                (Descriptors) for all queues
1306  * @adapter: board private structure
1307  *
1308  * If this function returns with an error, then it's possible one or
1309  * more of the rings is populated (while the rest are not).  It is the
1310  * callers duty to clean those orphaned rings.
1311  *
1312  * Return 0 on success, negative on failure
1313  **/
1314
1315 int
1316 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1317 {
1318         int i, err = 0;
1319
1320         for (i = 0; i < adapter->num_tx_queues; i++) {
1321                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1322                 if (err) {
1323                         DPRINTK(PROBE, ERR,
1324                                 "Allocation for Tx Queue %u failed\n", i);
1325                         break;
1326                 }
1327         }
1328
1329         return err;
1330 }
1331
1332 /**
1333  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1334  * @adapter: board private structure
1335  *
1336  * Configure the Tx unit of the MAC after a reset.
1337  **/
1338
1339 static void
1340 e1000_configure_tx(struct e1000_adapter *adapter)
1341 {
1342         uint64_t tdba;
1343         struct e1000_hw *hw = &adapter->hw;
1344         uint32_t tdlen, tctl, tipg, tarc;
1345
1346         /* Setup the HW Tx Head and Tail descriptor pointers */
1347
1348         switch (adapter->num_tx_queues) {
1349         case 2:
1350                 tdba = adapter->tx_ring[1].dma;
1351                 tdlen = adapter->tx_ring[1].count *
1352                         sizeof(struct e1000_tx_desc);
1353                 E1000_WRITE_REG(hw, TDBAL1, (tdba & 0x00000000ffffffffULL));
1354                 E1000_WRITE_REG(hw, TDBAH1, (tdba >> 32));
1355                 E1000_WRITE_REG(hw, TDLEN1, tdlen);
1356                 E1000_WRITE_REG(hw, TDH1, 0);
1357                 E1000_WRITE_REG(hw, TDT1, 0);
1358                 adapter->tx_ring[1].tdh = E1000_TDH1;
1359                 adapter->tx_ring[1].tdt = E1000_TDT1;
1360                 /* Fall Through */
1361         case 1:
1362         default:
1363                 tdba = adapter->tx_ring[0].dma;
1364                 tdlen = adapter->tx_ring[0].count *
1365                         sizeof(struct e1000_tx_desc);
1366                 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1367                 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1368                 E1000_WRITE_REG(hw, TDLEN, tdlen);
1369                 E1000_WRITE_REG(hw, TDH, 0);
1370                 E1000_WRITE_REG(hw, TDT, 0);
1371                 adapter->tx_ring[0].tdh = E1000_TDH;
1372                 adapter->tx_ring[0].tdt = E1000_TDT;
1373                 break;
1374         }
1375
1376         /* Set the default values for the Tx Inter Packet Gap timer */
1377
1378         switch (hw->mac_type) {
1379         case e1000_82542_rev2_0:
1380         case e1000_82542_rev2_1:
1381                 tipg = DEFAULT_82542_TIPG_IPGT;
1382                 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
1383                 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
1384                 break;
1385         default:
1386                 if (hw->media_type == e1000_media_type_fiber ||
1387                     hw->media_type == e1000_media_type_internal_serdes)
1388                         tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1389                 else
1390                         tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1391                 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
1392                 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
1393         }
1394         E1000_WRITE_REG(hw, TIPG, tipg);
1395
1396         /* Set the Tx Interrupt Delay register */
1397
1398         E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1399         if (hw->mac_type >= e1000_82540)
1400                 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1401
1402         /* Program the Transmit Control Register */
1403
1404         tctl = E1000_READ_REG(hw, TCTL);
1405
1406         tctl &= ~E1000_TCTL_CT;
1407         tctl |= E1000_TCTL_EN | E1000_TCTL_PSP | E1000_TCTL_RTLC |
1408                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1409
1410         E1000_WRITE_REG(hw, TCTL, tctl);
1411
1412         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1413                 tarc = E1000_READ_REG(hw, TARC0);
1414                 tarc |= ((1 << 25) | (1 << 21));
1415                 E1000_WRITE_REG(hw, TARC0, tarc);
1416                 tarc = E1000_READ_REG(hw, TARC1);
1417                 tarc |= (1 << 25);
1418                 if (tctl & E1000_TCTL_MULR)
1419                         tarc &= ~(1 << 28);
1420                 else
1421                         tarc |= (1 << 28);
1422                 E1000_WRITE_REG(hw, TARC1, tarc);
1423         }
1424
1425         e1000_config_collision_dist(hw);
1426
1427         /* Setup Transmit Descriptor Settings for eop descriptor */
1428         adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
1429                 E1000_TXD_CMD_IFCS;
1430
1431         if (hw->mac_type < e1000_82543)
1432                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1433         else
1434                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1435
1436         /* Cache if we're 82544 running in PCI-X because we'll
1437          * need this to apply a workaround later in the send path. */
1438         if (hw->mac_type == e1000_82544 &&
1439             hw->bus_type == e1000_bus_type_pcix)
1440                 adapter->pcix_82544 = 1;
1441 }
1442
1443 /**
1444  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1445  * @adapter: board private structure
1446  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1447  *
1448  * Returns 0 on success, negative on failure
1449  **/
1450
1451 static int
1452 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1453                          struct e1000_rx_ring *rxdr)
1454 {
1455         struct pci_dev *pdev = adapter->pdev;
1456         int size, desc_len;
1457
1458         size = sizeof(struct e1000_buffer) * rxdr->count;
1459         rxdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus));
1460         if (!rxdr->buffer_info) {
1461                 DPRINTK(PROBE, ERR,
1462                 "Unable to allocate memory for the receive descriptor ring\n");
1463                 return -ENOMEM;
1464         }
1465         memset(rxdr->buffer_info, 0, size);
1466
1467         size = sizeof(struct e1000_ps_page) * rxdr->count;
1468         rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1469         if(!rxdr->ps_page) {
1470                 vfree(rxdr->buffer_info);
1471                 DPRINTK(PROBE, ERR,
1472                 "Unable to allocate memory for the receive descriptor ring\n");
1473                 return -ENOMEM;
1474         }
1475         memset(rxdr->ps_page, 0, size);
1476
1477         size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1478         rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1479         if(!rxdr->ps_page_dma) {
1480                 vfree(rxdr->buffer_info);
1481                 kfree(rxdr->ps_page);
1482                 DPRINTK(PROBE, ERR,
1483                 "Unable to allocate memory for the receive descriptor ring\n");
1484                 return -ENOMEM;
1485         }
1486         memset(rxdr->ps_page_dma, 0, size);
1487
1488         if(adapter->hw.mac_type <= e1000_82547_rev_2)
1489                 desc_len = sizeof(struct e1000_rx_desc);
1490         else
1491                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1492
1493         /* Round up to nearest 4K */
1494
1495         rxdr->size = rxdr->count * desc_len;
1496         E1000_ROUNDUP(rxdr->size, 4096);
1497
1498         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1499
1500         if (!rxdr->desc) {
1501                 DPRINTK(PROBE, ERR,
1502                 "Unable to allocate memory for the receive descriptor ring\n");
1503 setup_rx_desc_die:
1504                 vfree(rxdr->buffer_info);
1505                 kfree(rxdr->ps_page);
1506                 kfree(rxdr->ps_page_dma);
1507                 return -ENOMEM;
1508         }
1509
1510         /* Fix for errata 23, can't cross 64kB boundary */
1511         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1512                 void *olddesc = rxdr->desc;
1513                 dma_addr_t olddma = rxdr->dma;
1514                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1515                                      "at %p\n", rxdr->size, rxdr->desc);
1516                 /* Try again, without freeing the previous */
1517                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1518                 /* Failed allocation, critical failure */
1519                 if (!rxdr->desc) {
1520                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1521                         DPRINTK(PROBE, ERR,
1522                                 "Unable to allocate memory "
1523                                 "for the receive descriptor ring\n");
1524                         goto setup_rx_desc_die;
1525                 }
1526
1527                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1528                         /* give up */
1529                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1530                                             rxdr->dma);
1531                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1532                         DPRINTK(PROBE, ERR,
1533                                 "Unable to allocate aligned memory "
1534                                 "for the receive descriptor ring\n");
1535                         goto setup_rx_desc_die;
1536                 } else {
1537                         /* Free old allocation, new allocation was successful */
1538                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1539                 }
1540         }
1541         memset(rxdr->desc, 0, rxdr->size);
1542
1543         rxdr->next_to_clean = 0;
1544         rxdr->next_to_use = 0;
1545         rxdr->rx_skb_top = NULL;
1546         rxdr->rx_skb_prev = NULL;
1547
1548         return 0;
1549 }
1550
1551 /**
1552  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1553  *                                (Descriptors) for all queues
1554  * @adapter: board private structure
1555  *
1556  * If this function returns with an error, then it's possible one or
1557  * more of the rings is populated (while the rest are not).  It is the
1558  * callers duty to clean those orphaned rings.
1559  *
1560  * Return 0 on success, negative on failure
1561  **/
1562
1563 int
1564 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1565 {
1566         int i, err = 0;
1567
1568         for (i = 0; i < adapter->num_rx_queues; i++) {
1569                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1570                 if (err) {
1571                         DPRINTK(PROBE, ERR,
1572                                 "Allocation for Rx Queue %u failed\n", i);
1573                         break;
1574                 }
1575         }
1576
1577         return err;
1578 }
1579
1580 /**
1581  * e1000_setup_rctl - configure the receive control registers
1582  * @adapter: Board private structure
1583  **/
1584 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1585                         (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1586 static void
1587 e1000_setup_rctl(struct e1000_adapter *adapter)
1588 {
1589         uint32_t rctl, rfctl;
1590         uint32_t psrctl = 0;
1591 #ifdef CONFIG_E1000_PACKET_SPLIT
1592         uint32_t pages = 0;
1593 #endif
1594
1595         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1596
1597         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1598
1599         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1600                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1601                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1602
1603         if(adapter->hw.tbi_compatibility_on == 1)
1604                 rctl |= E1000_RCTL_SBP;
1605         else
1606                 rctl &= ~E1000_RCTL_SBP;
1607
1608         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1609                 rctl &= ~E1000_RCTL_LPE;
1610         else
1611                 rctl |= E1000_RCTL_LPE;
1612
1613         /* Setup buffer sizes */
1614         if(adapter->hw.mac_type >= e1000_82571) {
1615                 /* We can now specify buffers in 1K increments.
1616                  * BSIZE and BSEX are ignored in this case. */
1617                 rctl |= adapter->rx_buffer_len << 0x11;
1618         } else {
1619                 rctl &= ~E1000_RCTL_SZ_4096;
1620                 rctl |= E1000_RCTL_BSEX; 
1621                 switch (adapter->rx_buffer_len) {
1622                 case E1000_RXBUFFER_2048:
1623                 default:
1624                         rctl |= E1000_RCTL_SZ_2048;
1625                         rctl &= ~E1000_RCTL_BSEX;
1626                         break;
1627                 case E1000_RXBUFFER_4096:
1628                         rctl |= E1000_RCTL_SZ_4096;
1629                         break;
1630                 case E1000_RXBUFFER_8192:
1631                         rctl |= E1000_RCTL_SZ_8192;
1632                         break;
1633                 case E1000_RXBUFFER_16384:
1634                         rctl |= E1000_RCTL_SZ_16384;
1635                         break;
1636                 }
1637         }
1638
1639 #ifdef CONFIG_E1000_PACKET_SPLIT
1640         /* 82571 and greater support packet-split where the protocol
1641          * header is placed in skb->data and the packet data is
1642          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1643          * In the case of a non-split, skb->data is linearly filled,
1644          * followed by the page buffers.  Therefore, skb->data is
1645          * sized to hold the largest protocol header.
1646          */
1647         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1648         if ((adapter->hw.mac_type > e1000_82547_rev_2) && (pages <= 3) &&
1649             PAGE_SIZE <= 16384)
1650                 adapter->rx_ps_pages = pages;
1651         else
1652                 adapter->rx_ps_pages = 0;
1653 #endif
1654         if (adapter->rx_ps_pages) {
1655                 /* Configure extra packet-split registers */
1656                 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1657                 rfctl |= E1000_RFCTL_EXTEN;
1658                 /* disable IPv6 packet split support */
1659                 rfctl |= E1000_RFCTL_IPV6_DIS;
1660                 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1661
1662                 rctl |= E1000_RCTL_DTYP_PS | E1000_RCTL_SECRC;
1663                 
1664                 psrctl |= adapter->rx_ps_bsize0 >>
1665                         E1000_PSRCTL_BSIZE0_SHIFT;
1666
1667                 switch (adapter->rx_ps_pages) {
1668                 case 3:
1669                         psrctl |= PAGE_SIZE <<
1670                                 E1000_PSRCTL_BSIZE3_SHIFT;
1671                 case 2:
1672                         psrctl |= PAGE_SIZE <<
1673                                 E1000_PSRCTL_BSIZE2_SHIFT;
1674                 case 1:
1675                         psrctl |= PAGE_SIZE >>
1676                                 E1000_PSRCTL_BSIZE1_SHIFT;
1677                         break;
1678                 }
1679
1680                 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1681         }
1682
1683         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1684 }
1685
1686 /**
1687  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1688  * @adapter: board private structure
1689  *
1690  * Configure the Rx unit of the MAC after a reset.
1691  **/
1692
1693 static void
1694 e1000_configure_rx(struct e1000_adapter *adapter)
1695 {
1696         uint64_t rdba;
1697         struct e1000_hw *hw = &adapter->hw;
1698         uint32_t rdlen, rctl, rxcsum, ctrl_ext;
1699 #ifdef CONFIG_E1000_MQ
1700         uint32_t reta, mrqc;
1701         int i;
1702 #endif
1703
1704         if (adapter->rx_ps_pages) {
1705                 rdlen = adapter->rx_ring[0].count *
1706                         sizeof(union e1000_rx_desc_packet_split);
1707                 adapter->clean_rx = e1000_clean_rx_irq_ps;
1708                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1709         } else {
1710                 rdlen = adapter->rx_ring[0].count *
1711                         sizeof(struct e1000_rx_desc);
1712                 adapter->clean_rx = e1000_clean_rx_irq;
1713                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1714         }
1715
1716         /* disable receives while setting up the descriptors */
1717         rctl = E1000_READ_REG(hw, RCTL);
1718         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
1719
1720         /* set the Receive Delay Timer Register */
1721         E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
1722
1723         if (hw->mac_type >= e1000_82540) {
1724                 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
1725                 if(adapter->itr > 1)
1726                         E1000_WRITE_REG(hw, ITR,
1727                                 1000000000 / (adapter->itr * 256));
1728         }
1729
1730         if (hw->mac_type >= e1000_82571) {
1731                 /* Reset delay timers after every interrupt */
1732                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1733                 ctrl_ext |= E1000_CTRL_EXT_CANC;
1734                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1735                 E1000_WRITE_FLUSH(hw);
1736         }
1737
1738         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1739          * the Base and Length of the Rx Descriptor Ring */
1740         switch (adapter->num_rx_queues) {
1741 #ifdef CONFIG_E1000_MQ
1742         case 2:
1743                 rdba = adapter->rx_ring[1].dma;
1744                 E1000_WRITE_REG(hw, RDBAL1, (rdba & 0x00000000ffffffffULL));
1745                 E1000_WRITE_REG(hw, RDBAH1, (rdba >> 32));
1746                 E1000_WRITE_REG(hw, RDLEN1, rdlen);
1747                 E1000_WRITE_REG(hw, RDH1, 0);
1748                 E1000_WRITE_REG(hw, RDT1, 0);
1749                 adapter->rx_ring[1].rdh = E1000_RDH1;
1750                 adapter->rx_ring[1].rdt = E1000_RDT1;
1751                 /* Fall Through */
1752 #endif
1753         case 1:
1754         default:
1755                 rdba = adapter->rx_ring[0].dma;
1756                 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1757                 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
1758                 E1000_WRITE_REG(hw, RDLEN, rdlen);
1759                 E1000_WRITE_REG(hw, RDH, 0);
1760                 E1000_WRITE_REG(hw, RDT, 0);
1761                 adapter->rx_ring[0].rdh = E1000_RDH;
1762                 adapter->rx_ring[0].rdt = E1000_RDT;
1763                 break;
1764         }
1765
1766 #ifdef CONFIG_E1000_MQ
1767         if (adapter->num_rx_queues > 1) {
1768                 uint32_t random[10];
1769
1770                 get_random_bytes(&random[0], 40);
1771
1772                 if (hw->mac_type <= e1000_82572) {
1773                         E1000_WRITE_REG(hw, RSSIR, 0);
1774                         E1000_WRITE_REG(hw, RSSIM, 0);
1775                 }
1776
1777                 switch (adapter->num_rx_queues) {
1778                 case 2:
1779                 default:
1780                         reta = 0x00800080;
1781                         mrqc = E1000_MRQC_ENABLE_RSS_2Q;
1782                         break;
1783                 }
1784
1785                 /* Fill out redirection table */
1786                 for (i = 0; i < 32; i++)
1787                         E1000_WRITE_REG_ARRAY(hw, RETA, i, reta);
1788                 /* Fill out hash function seeds */
1789                 for (i = 0; i < 10; i++)
1790                         E1000_WRITE_REG_ARRAY(hw, RSSRK, i, random[i]);
1791
1792                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
1793                          E1000_MRQC_RSS_FIELD_IPV4_TCP);
1794                 E1000_WRITE_REG(hw, MRQC, mrqc);
1795         }
1796
1797         /* Multiqueue and packet checksumming are mutually exclusive. */
1798         if (hw->mac_type >= e1000_82571) {
1799                 rxcsum = E1000_READ_REG(hw, RXCSUM);
1800                 rxcsum |= E1000_RXCSUM_PCSD;
1801                 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1802         }
1803
1804 #else
1805
1806         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1807         if (hw->mac_type >= e1000_82543) {
1808                 rxcsum = E1000_READ_REG(hw, RXCSUM);
1809                 if(adapter->rx_csum == TRUE) {
1810                         rxcsum |= E1000_RXCSUM_TUOFL;
1811
1812                         /* Enable 82571 IPv4 payload checksum for UDP fragments
1813                          * Must be used in conjunction with packet-split. */
1814                         if ((hw->mac_type >= e1000_82571) && 
1815                            (adapter->rx_ps_pages)) {
1816                                 rxcsum |= E1000_RXCSUM_IPPCSE;
1817                         }
1818                 } else {
1819                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1820                         /* don't need to clear IPPCSE as it defaults to 0 */
1821                 }
1822                 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1823         }
1824 #endif /* CONFIG_E1000_MQ */
1825
1826         if (hw->mac_type == e1000_82573)
1827                 E1000_WRITE_REG(hw, ERT, 0x0100);
1828
1829         /* Enable Receives */
1830         E1000_WRITE_REG(hw, RCTL, rctl);
1831 }
1832
1833 /**
1834  * e1000_free_tx_resources - Free Tx Resources per Queue
1835  * @adapter: board private structure
1836  * @tx_ring: Tx descriptor ring for a specific queue
1837  *
1838  * Free all transmit software resources
1839  **/
1840
1841 static void
1842 e1000_free_tx_resources(struct e1000_adapter *adapter,
1843                         struct e1000_tx_ring *tx_ring)
1844 {
1845         struct pci_dev *pdev = adapter->pdev;
1846
1847         e1000_clean_tx_ring(adapter, tx_ring);
1848
1849         vfree(tx_ring->buffer_info);
1850         tx_ring->buffer_info = NULL;
1851
1852         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1853
1854         tx_ring->desc = NULL;
1855 }
1856
1857 /**
1858  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1859  * @adapter: board private structure
1860  *
1861  * Free all transmit software resources
1862  **/
1863
1864 void
1865 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1866 {
1867         int i;
1868
1869         for (i = 0; i < adapter->num_tx_queues; i++)
1870                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1871 }
1872
1873 static inline void
1874 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1875                         struct e1000_buffer *buffer_info)
1876 {
1877         if(buffer_info->dma) {
1878                 pci_unmap_page(adapter->pdev,
1879                                 buffer_info->dma,
1880                                 buffer_info->length,
1881                                 PCI_DMA_TODEVICE);
1882                 buffer_info->dma = 0;
1883         }
1884         if(buffer_info->skb) {
1885                 dev_kfree_skb_any(buffer_info->skb);
1886                 buffer_info->skb = NULL;
1887         }
1888 }
1889
1890 /**
1891  * e1000_clean_tx_ring - Free Tx Buffers
1892  * @adapter: board private structure
1893  * @tx_ring: ring to be cleaned
1894  **/
1895
1896 static void
1897 e1000_clean_tx_ring(struct e1000_adapter *adapter,
1898                     struct e1000_tx_ring *tx_ring)
1899 {
1900         struct e1000_buffer *buffer_info;
1901         unsigned long size;
1902         unsigned int i;
1903
1904         /* Free all the Tx ring sk_buffs */
1905
1906         for(i = 0; i < tx_ring->count; i++) {
1907                 buffer_info = &tx_ring->buffer_info[i];
1908                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1909         }
1910
1911         size = sizeof(struct e1000_buffer) * tx_ring->count;
1912         memset(tx_ring->buffer_info, 0, size);
1913
1914         /* Zero out the descriptor ring */
1915
1916         memset(tx_ring->desc, 0, tx_ring->size);
1917
1918         tx_ring->next_to_use = 0;
1919         tx_ring->next_to_clean = 0;
1920         tx_ring->last_tx_tso = 0;
1921
1922         writel(0, adapter->hw.hw_addr + tx_ring->tdh);
1923         writel(0, adapter->hw.hw_addr + tx_ring->tdt);
1924 }
1925
1926 /**
1927  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
1928  * @adapter: board private structure
1929  **/
1930
1931 static void
1932 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
1933 {
1934         int i;
1935
1936         for (i = 0; i < adapter->num_tx_queues; i++)
1937                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1938 }
1939
1940 /**
1941  * e1000_free_rx_resources - Free Rx Resources
1942  * @adapter: board private structure
1943  * @rx_ring: ring to clean the resources from
1944  *
1945  * Free all receive software resources
1946  **/
1947
1948 static void
1949 e1000_free_rx_resources(struct e1000_adapter *adapter,
1950                         struct e1000_rx_ring *rx_ring)
1951 {
1952         struct pci_dev *pdev = adapter->pdev;
1953
1954         e1000_clean_rx_ring(adapter, rx_ring);
1955
1956         vfree(rx_ring->buffer_info);
1957         rx_ring->buffer_info = NULL;
1958         kfree(rx_ring->ps_page);
1959         rx_ring->ps_page = NULL;
1960         kfree(rx_ring->ps_page_dma);
1961         rx_ring->ps_page_dma = NULL;
1962
1963         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
1964
1965         rx_ring->desc = NULL;
1966 }
1967
1968 /**
1969  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
1970  * @adapter: board private structure
1971  *
1972  * Free all receive software resources
1973  **/
1974
1975 void
1976 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
1977 {
1978         int i;
1979
1980         for (i = 0; i < adapter->num_rx_queues; i++)
1981                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
1982 }
1983
1984 /**
1985  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1986  * @adapter: board private structure
1987  * @rx_ring: ring to free buffers from
1988  **/
1989
1990 static void
1991 e1000_clean_rx_ring(struct e1000_adapter *adapter,
1992                     struct e1000_rx_ring *rx_ring)
1993 {
1994         struct e1000_buffer *buffer_info;
1995         struct e1000_ps_page *ps_page;
1996         struct e1000_ps_page_dma *ps_page_dma;
1997         struct pci_dev *pdev = adapter->pdev;
1998         unsigned long size;
1999         unsigned int i, j;
2000
2001         /* Free all the Rx ring sk_buffs */
2002
2003         for(i = 0; i < rx_ring->count; i++) {
2004                 buffer_info = &rx_ring->buffer_info[i];
2005                 if(buffer_info->skb) {
2006                         ps_page = &rx_ring->ps_page[i];
2007                         ps_page_dma = &rx_ring->ps_page_dma[i];
2008                         pci_unmap_single(pdev,
2009                                          buffer_info->dma,
2010                                          buffer_info->length,
2011                                          PCI_DMA_FROMDEVICE);
2012
2013                         dev_kfree_skb(buffer_info->skb);
2014                         buffer_info->skb = NULL;
2015                 }
2016                 ps_page = &rx_ring->ps_page[i];
2017                 ps_page_dma = &rx_ring->ps_page_dma[i];
2018                 for (j = 0; j < adapter->rx_ps_pages; j++) {
2019                         if (!ps_page->ps_page[j]) break;
2020                         pci_unmap_page(pdev,
2021                                        ps_page_dma->ps_page_dma[j],
2022                                        PAGE_SIZE, PCI_DMA_FROMDEVICE);
2023                         ps_page_dma->ps_page_dma[j] = 0;
2024                         put_page(ps_page->ps_page[j]);
2025                         ps_page->ps_page[j] = NULL;
2026                 }
2027         }
2028
2029         /* there also may be some cached data in our adapter */
2030         if (rx_ring->rx_skb_top) {
2031                 dev_kfree_skb(rx_ring->rx_skb_top);
2032
2033                 /* rx_skb_prev will be wiped out by rx_skb_top */
2034                 rx_ring->rx_skb_top = NULL;
2035                 rx_ring->rx_skb_prev = NULL;
2036         }
2037
2038
2039         size = sizeof(struct e1000_buffer) * rx_ring->count;
2040         memset(rx_ring->buffer_info, 0, size);
2041         size = sizeof(struct e1000_ps_page) * rx_ring->count;
2042         memset(rx_ring->ps_page, 0, size);
2043         size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
2044         memset(rx_ring->ps_page_dma, 0, size);
2045
2046         /* Zero out the descriptor ring */
2047
2048         memset(rx_ring->desc, 0, rx_ring->size);
2049
2050         rx_ring->next_to_clean = 0;
2051         rx_ring->next_to_use = 0;
2052
2053         writel(0, adapter->hw.hw_addr + rx_ring->rdh);
2054         writel(0, adapter->hw.hw_addr + rx_ring->rdt);
2055 }
2056
2057 /**
2058  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2059  * @adapter: board private structure
2060  **/
2061
2062 static void
2063 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2064 {
2065         int i;
2066
2067         for (i = 0; i < adapter->num_rx_queues; i++)
2068                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2069 }
2070
2071 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2072  * and memory write and invalidate disabled for certain operations
2073  */
2074 static void
2075 e1000_enter_82542_rst(struct e1000_adapter *adapter)
2076 {
2077         struct net_device *netdev = adapter->netdev;
2078         uint32_t rctl;
2079
2080         e1000_pci_clear_mwi(&adapter->hw);
2081
2082         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2083         rctl |= E1000_RCTL_RST;
2084         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2085         E1000_WRITE_FLUSH(&adapter->hw);
2086         mdelay(5);
2087
2088         if(netif_running(netdev))
2089                 e1000_clean_all_rx_rings(adapter);
2090 }
2091
2092 static void
2093 e1000_leave_82542_rst(struct e1000_adapter *adapter)
2094 {
2095         struct net_device *netdev = adapter->netdev;
2096         uint32_t rctl;
2097
2098         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2099         rctl &= ~E1000_RCTL_RST;
2100         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2101         E1000_WRITE_FLUSH(&adapter->hw);
2102         mdelay(5);
2103
2104         if(adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2105                 e1000_pci_set_mwi(&adapter->hw);
2106
2107         if(netif_running(netdev)) {
2108                 e1000_configure_rx(adapter);
2109                 e1000_alloc_rx_buffers(adapter, &adapter->rx_ring[0]);
2110         }
2111 }
2112
2113 /**
2114  * e1000_set_mac - Change the Ethernet Address of the NIC
2115  * @netdev: network interface device structure
2116  * @p: pointer to an address structure
2117  *
2118  * Returns 0 on success, negative on failure
2119  **/
2120
2121 static int
2122 e1000_set_mac(struct net_device *netdev, void *p)
2123 {
2124         struct e1000_adapter *adapter = netdev_priv(netdev);
2125         struct sockaddr *addr = p;
2126
2127         if(!is_valid_ether_addr(addr->sa_data))
2128                 return -EADDRNOTAVAIL;
2129
2130         /* 82542 2.0 needs to be in reset to write receive address registers */
2131
2132         if(adapter->hw.mac_type == e1000_82542_rev2_0)
2133                 e1000_enter_82542_rst(adapter);
2134
2135         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2136         memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2137
2138         e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2139
2140         /* With 82571 controllers, LAA may be overwritten (with the default)
2141          * due to controller reset from the other port. */
2142         if (adapter->hw.mac_type == e1000_82571) {
2143                 /* activate the work around */
2144                 adapter->hw.laa_is_present = 1;
2145
2146                 /* Hold a copy of the LAA in RAR[14] This is done so that 
2147                  * between the time RAR[0] gets clobbered  and the time it 
2148                  * gets fixed (in e1000_watchdog), the actual LAA is in one 
2149                  * of the RARs and no incoming packets directed to this port
2150                  * are dropped. Eventaully the LAA will be in RAR[0] and 
2151                  * RAR[14] */
2152                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 
2153                                         E1000_RAR_ENTRIES - 1);
2154         }
2155
2156         if(adapter->hw.mac_type == e1000_82542_rev2_0)
2157                 e1000_leave_82542_rst(adapter);
2158
2159         return 0;
2160 }
2161
2162 /**
2163  * e1000_set_multi - Multicast and Promiscuous mode set
2164  * @netdev: network interface device structure
2165  *
2166  * The set_multi entry point is called whenever the multicast address
2167  * list or the network interface flags are updated.  This routine is
2168  * responsible for configuring the hardware for proper multicast,
2169  * promiscuous mode, and all-multi behavior.
2170  **/
2171
2172 static void
2173 e1000_set_multi(struct net_device *netdev)
2174 {
2175         struct e1000_adapter *adapter = netdev_priv(netdev);
2176         struct e1000_hw *hw = &adapter->hw;
2177         struct dev_mc_list *mc_ptr;
2178         uint32_t rctl;
2179         uint32_t hash_value;
2180         int i, rar_entries = E1000_RAR_ENTRIES;
2181
2182         /* reserve RAR[14] for LAA over-write work-around */
2183         if (adapter->hw.mac_type == e1000_82571)
2184                 rar_entries--;
2185
2186         /* Check for Promiscuous and All Multicast modes */
2187
2188         rctl = E1000_READ_REG(hw, RCTL);
2189
2190         if(netdev->flags & IFF_PROMISC) {
2191                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2192         } else if(netdev->flags & IFF_ALLMULTI) {
2193                 rctl |= E1000_RCTL_MPE;
2194                 rctl &= ~E1000_RCTL_UPE;
2195         } else {
2196                 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2197         }
2198
2199         E1000_WRITE_REG(hw, RCTL, rctl);
2200
2201         /* 82542 2.0 needs to be in reset to write receive address registers */
2202
2203         if(hw->mac_type == e1000_82542_rev2_0)
2204                 e1000_enter_82542_rst(adapter);
2205
2206         /* load the first 14 multicast address into the exact filters 1-14
2207          * RAR 0 is used for the station MAC adddress
2208          * if there are not 14 addresses, go ahead and clear the filters
2209          * -- with 82571 controllers only 0-13 entries are filled here
2210          */
2211         mc_ptr = netdev->mc_list;
2212
2213         for(i = 1; i < rar_entries; i++) {
2214                 if (mc_ptr) {
2215                         e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2216                         mc_ptr = mc_ptr->next;
2217                 } else {
2218                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2219                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2220                 }
2221         }
2222
2223         /* clear the old settings from the multicast hash table */
2224
2225         for(i = 0; i < E1000_NUM_MTA_REGISTERS; i++)
2226                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2227
2228         /* load any remaining addresses into the hash table */
2229
2230         for(; mc_ptr; mc_ptr = mc_ptr->next) {
2231                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2232                 e1000_mta_set(hw, hash_value);
2233         }
2234
2235         if(hw->mac_type == e1000_82542_rev2_0)
2236                 e1000_leave_82542_rst(adapter);
2237 }
2238
2239 /* Need to wait a few seconds after link up to get diagnostic information from
2240  * the phy */
2241
2242 static void
2243 e1000_update_phy_info(unsigned long data)
2244 {
2245         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2246         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2247 }
2248
2249 /**
2250  * e1000_82547_tx_fifo_stall - Timer Call-back
2251  * @data: pointer to adapter cast into an unsigned long
2252  **/
2253
2254 static void
2255 e1000_82547_tx_fifo_stall(unsigned long data)
2256 {
2257         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2258         struct net_device *netdev = adapter->netdev;
2259         uint32_t tctl;
2260
2261         if(atomic_read(&adapter->tx_fifo_stall)) {
2262                 if((E1000_READ_REG(&adapter->hw, TDT) ==
2263                     E1000_READ_REG(&adapter->hw, TDH)) &&
2264                    (E1000_READ_REG(&adapter->hw, TDFT) ==
2265                     E1000_READ_REG(&adapter->hw, TDFH)) &&
2266                    (E1000_READ_REG(&adapter->hw, TDFTS) ==
2267                     E1000_READ_REG(&adapter->hw, TDFHS))) {
2268                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2269                         E1000_WRITE_REG(&adapter->hw, TCTL,
2270                                         tctl & ~E1000_TCTL_EN);
2271                         E1000_WRITE_REG(&adapter->hw, TDFT,
2272                                         adapter->tx_head_addr);
2273                         E1000_WRITE_REG(&adapter->hw, TDFH,
2274                                         adapter->tx_head_addr);
2275                         E1000_WRITE_REG(&adapter->hw, TDFTS,
2276                                         adapter->tx_head_addr);
2277                         E1000_WRITE_REG(&adapter->hw, TDFHS,
2278                                         adapter->tx_head_addr);
2279                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2280                         E1000_WRITE_FLUSH(&adapter->hw);
2281
2282                         adapter->tx_fifo_head = 0;
2283                         atomic_set(&adapter->tx_fifo_stall, 0);
2284                         netif_wake_queue(netdev);
2285                 } else {
2286                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2287                 }
2288         }
2289 }
2290
2291 /**
2292  * e1000_watchdog - Timer Call-back
2293  * @data: pointer to adapter cast into an unsigned long
2294  **/
2295 static void
2296 e1000_watchdog(unsigned long data)
2297 {
2298         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2299
2300         /* Do the rest outside of interrupt context */
2301         schedule_work(&adapter->watchdog_task);
2302 }
2303
2304 static void
2305 e1000_watchdog_task(struct e1000_adapter *adapter)
2306 {
2307         struct net_device *netdev = adapter->netdev;
2308         struct e1000_tx_ring *txdr = adapter->tx_ring;
2309         uint32_t link;
2310
2311         e1000_check_for_link(&adapter->hw);
2312         if (adapter->hw.mac_type == e1000_82573) {
2313                 e1000_enable_tx_pkt_filtering(&adapter->hw);
2314                 if(adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2315                         e1000_update_mng_vlan(adapter);
2316         }       
2317
2318         if((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2319            !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2320                 link = !adapter->hw.serdes_link_down;
2321         else
2322                 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2323
2324         if(link) {
2325                 if(!netif_carrier_ok(netdev)) {
2326                         e1000_get_speed_and_duplex(&adapter->hw,
2327                                                    &adapter->link_speed,
2328                                                    &adapter->link_duplex);
2329
2330                         DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
2331                                adapter->link_speed,
2332                                adapter->link_duplex == FULL_DUPLEX ?
2333                                "Full Duplex" : "Half Duplex");
2334
2335                         /* tweak tx_queue_len according to speed/duplex */
2336                         netdev->tx_queue_len = adapter->tx_queue_len;
2337                         adapter->tx_timeout_factor = 1;
2338                         if (adapter->link_duplex == HALF_DUPLEX) {
2339                                 switch (adapter->link_speed) {
2340                                 case SPEED_10:
2341                                         netdev->tx_queue_len = 10;
2342                                         adapter->tx_timeout_factor = 8;
2343                                         break;
2344                                 case SPEED_100:
2345                                         netdev->tx_queue_len = 100;
2346                                         break;
2347                                 }
2348                         }
2349
2350                         netif_carrier_on(netdev);
2351                         netif_wake_queue(netdev);
2352                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2353                         adapter->smartspeed = 0;
2354                 }
2355         } else {
2356                 if(netif_carrier_ok(netdev)) {
2357                         adapter->link_speed = 0;
2358                         adapter->link_duplex = 0;
2359                         DPRINTK(LINK, INFO, "NIC Link is Down\n");
2360                         netif_carrier_off(netdev);
2361                         netif_stop_queue(netdev);
2362                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2363                 }
2364
2365                 e1000_smartspeed(adapter);
2366         }
2367
2368         e1000_update_stats(adapter);
2369
2370         adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2371         adapter->tpt_old = adapter->stats.tpt;
2372         adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2373         adapter->colc_old = adapter->stats.colc;
2374
2375         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2376         adapter->gorcl_old = adapter->stats.gorcl;
2377         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2378         adapter->gotcl_old = adapter->stats.gotcl;
2379
2380         e1000_update_adaptive(&adapter->hw);
2381
2382 #ifdef CONFIG_E1000_MQ
2383         txdr = *per_cpu_ptr(adapter->cpu_tx_ring, smp_processor_id());
2384 #endif
2385         if (!netif_carrier_ok(netdev)) {
2386                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2387                         /* We've lost link, so the controller stops DMA,
2388                          * but we've got queued Tx work that's never going
2389                          * to get done, so reset controller to flush Tx.
2390                          * (Do the reset outside of interrupt context). */
2391                         schedule_work(&adapter->tx_timeout_task);
2392                 }
2393         }
2394
2395         /* Dynamic mode for Interrupt Throttle Rate (ITR) */
2396         if(adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
2397                 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
2398                  * asymmetrical Tx or Rx gets ITR=8000; everyone
2399                  * else is between 2000-8000. */
2400                 uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
2401                 uint32_t dif = (adapter->gotcl > adapter->gorcl ? 
2402                         adapter->gotcl - adapter->gorcl :
2403                         adapter->gorcl - adapter->gotcl) / 10000;
2404                 uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2405                 E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
2406         }
2407
2408         /* Cause software interrupt to ensure rx ring is cleaned */
2409         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2410
2411         /* Force detection of hung controller every watchdog period */
2412         adapter->detect_tx_hung = TRUE;
2413
2414         /* With 82571 controllers, LAA may be overwritten due to controller 
2415          * reset from the other port. Set the appropriate LAA in RAR[0] */
2416         if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2417                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2418
2419         /* Reset the timer */
2420         mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2421 }
2422
2423 #define E1000_TX_FLAGS_CSUM             0x00000001
2424 #define E1000_TX_FLAGS_VLAN             0x00000002
2425 #define E1000_TX_FLAGS_TSO              0x00000004
2426 #define E1000_TX_FLAGS_IPV4             0x00000008
2427 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2428 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2429
2430 static inline int
2431 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2432           struct sk_buff *skb)
2433 {
2434 #ifdef NETIF_F_TSO
2435         struct e1000_context_desc *context_desc;
2436         struct e1000_buffer *buffer_info;
2437         unsigned int i;
2438         uint32_t cmd_length = 0;
2439         uint16_t ipcse = 0, tucse, mss;
2440         uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2441         int err;
2442
2443         if(skb_shinfo(skb)->tso_size) {
2444                 if (skb_header_cloned(skb)) {
2445                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2446                         if (err)
2447                                 return err;
2448                 }
2449
2450                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2451                 mss = skb_shinfo(skb)->tso_size;
2452                 if(skb->protocol == ntohs(ETH_P_IP)) {
2453                         skb->nh.iph->tot_len = 0;
2454                         skb->nh.iph->check = 0;
2455                         skb->h.th->check =
2456                                 ~csum_tcpudp_magic(skb->nh.iph->saddr,
2457                                                    skb->nh.iph->daddr,
2458                                                    0,
2459                                                    IPPROTO_TCP,
2460                                                    0);
2461                         cmd_length = E1000_TXD_CMD_IP;
2462                         ipcse = skb->h.raw - skb->data - 1;
2463 #ifdef NETIF_F_TSO_IPV6
2464                 } else if(skb->protocol == ntohs(ETH_P_IPV6)) {
2465                         skb->nh.ipv6h->payload_len = 0;
2466                         skb->h.th->check =
2467                                 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
2468                                                  &skb->nh.ipv6h->daddr,
2469                                                  0,
2470                                                  IPPROTO_TCP,
2471                                                  0);
2472                         ipcse = 0;
2473 #endif
2474                 }
2475                 ipcss = skb->nh.raw - skb->data;
2476                 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
2477                 tucss = skb->h.raw - skb->data;
2478                 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
2479                 tucse = 0;
2480
2481                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2482                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2483
2484                 i = tx_ring->next_to_use;
2485                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2486                 buffer_info = &tx_ring->buffer_info[i];
2487
2488                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2489                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2490                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2491                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2492                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2493                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2494                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2495                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2496                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2497
2498                 buffer_info->time_stamp = jiffies;
2499
2500                 if (++i == tx_ring->count) i = 0;
2501                 tx_ring->next_to_use = i;
2502
2503                 return 1;
2504         }
2505 #endif
2506
2507         return 0;
2508 }
2509
2510 static inline boolean_t
2511 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2512               struct sk_buff *skb)
2513 {
2514         struct e1000_context_desc *context_desc;
2515         struct e1000_buffer *buffer_info;
2516         unsigned int i;
2517         uint8_t css;
2518
2519         if(likely(skb->ip_summed == CHECKSUM_HW)) {
2520                 css = skb->h.raw - skb->data;
2521
2522                 i = tx_ring->next_to_use;
2523                 buffer_info = &tx_ring->buffer_info[i];
2524                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2525
2526                 context_desc->upper_setup.tcp_fields.tucss = css;
2527                 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
2528                 context_desc->upper_setup.tcp_fields.tucse = 0;
2529                 context_desc->tcp_seg_setup.data = 0;
2530                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2531
2532                 buffer_info->time_stamp = jiffies;
2533
2534                 if (unlikely(++i == tx_ring->count)) i = 0;
2535                 tx_ring->next_to_use = i;
2536
2537                 return TRUE;
2538         }
2539
2540         return FALSE;
2541 }
2542
2543 #define E1000_MAX_TXD_PWR       12
2544 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2545
2546 static inline int
2547 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2548              struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2549              unsigned int nr_frags, unsigned int mss)
2550 {
2551         struct e1000_buffer *buffer_info;
2552         unsigned int len = skb->len;
2553         unsigned int offset = 0, size, count = 0, i;
2554         unsigned int f;
2555         len -= skb->data_len;
2556
2557         i = tx_ring->next_to_use;
2558
2559         while(len) {
2560                 buffer_info = &tx_ring->buffer_info[i];
2561                 size = min(len, max_per_txd);
2562 #ifdef NETIF_F_TSO
2563                 /* Workaround for Controller erratum --
2564                  * descriptor for non-tso packet in a linear SKB that follows a
2565                  * tso gets written back prematurely before the data is fully
2566                  * DMAd to the controller */
2567                 if (!skb->data_len && tx_ring->last_tx_tso &&
2568                                 !skb_shinfo(skb)->tso_size) {
2569                         tx_ring->last_tx_tso = 0;
2570                         size -= 4;
2571                 }
2572
2573                 /* Workaround for premature desc write-backs
2574                  * in TSO mode.  Append 4-byte sentinel desc */
2575                 if(unlikely(mss && !nr_frags && size == len && size > 8))
2576                         size -= 4;
2577 #endif
2578                 /* work-around for errata 10 and it applies
2579                  * to all controllers in PCI-X mode
2580                  * The fix is to make sure that the first descriptor of a
2581                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2582                  */
2583                 if(unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2584                                 (size > 2015) && count == 0))
2585                         size = 2015;
2586                                                                                 
2587                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2588                  * terminating buffers within evenly-aligned dwords. */
2589                 if(unlikely(adapter->pcix_82544 &&
2590                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2591                    size > 4))
2592                         size -= 4;
2593
2594                 buffer_info->length = size;
2595                 buffer_info->dma =
2596                         pci_map_single(adapter->pdev,
2597                                 skb->data + offset,
2598                                 size,
2599                                 PCI_DMA_TODEVICE);
2600                 buffer_info->time_stamp = jiffies;
2601
2602                 len -= size;
2603                 offset += size;
2604                 count++;
2605                 if(unlikely(++i == tx_ring->count)) i = 0;
2606         }
2607
2608         for(f = 0; f < nr_frags; f++) {
2609                 struct skb_frag_struct *frag;
2610
2611                 frag = &skb_shinfo(skb)->frags[f];
2612                 len = frag->size;
2613                 offset = frag->page_offset;
2614
2615                 while(len) {
2616                         buffer_info = &tx_ring->buffer_info[i];
2617                         size = min(len, max_per_txd);
2618 #ifdef NETIF_F_TSO
2619                         /* Workaround for premature desc write-backs
2620                          * in TSO mode.  Append 4-byte sentinel desc */
2621                         if(unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2622                                 size -= 4;
2623 #endif
2624                         /* Workaround for potential 82544 hang in PCI-X.
2625                          * Avoid terminating buffers within evenly-aligned
2626                          * dwords. */
2627                         if(unlikely(adapter->pcix_82544 &&
2628                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
2629                            size > 4))
2630                                 size -= 4;
2631
2632                         buffer_info->length = size;
2633                         buffer_info->dma =
2634                                 pci_map_page(adapter->pdev,
2635                                         frag->page,
2636                                         offset,
2637                                         size,
2638                                         PCI_DMA_TODEVICE);
2639                         buffer_info->time_stamp = jiffies;
2640
2641                         len -= size;
2642                         offset += size;
2643                         count++;
2644                         if(unlikely(++i == tx_ring->count)) i = 0;
2645                 }
2646         }
2647
2648         i = (i == 0) ? tx_ring->count - 1 : i - 1;
2649         tx_ring->buffer_info[i].skb = skb;
2650         tx_ring->buffer_info[first].next_to_watch = i;
2651
2652         return count;
2653 }
2654
2655 static inline void
2656 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2657                int tx_flags, int count)
2658 {
2659         struct e1000_tx_desc *tx_desc = NULL;
2660         struct e1000_buffer *buffer_info;
2661         uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2662         unsigned int i;
2663
2664         if(likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2665                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2666                              E1000_TXD_CMD_TSE;
2667                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2668
2669                 if(likely(tx_flags & E1000_TX_FLAGS_IPV4))
2670                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2671         }
2672
2673         if(likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2674                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2675                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2676         }
2677
2678         if(unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2679                 txd_lower |= E1000_TXD_CMD_VLE;
2680                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2681         }
2682
2683         i = tx_ring->next_to_use;
2684
2685         while(count--) {
2686                 buffer_info = &tx_ring->buffer_info[i];
2687                 tx_desc = E1000_TX_DESC(*tx_ring, i);
2688                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2689                 tx_desc->lower.data =
2690                         cpu_to_le32(txd_lower | buffer_info->length);
2691                 tx_desc->upper.data = cpu_to_le32(txd_upper);
2692                 if(unlikely(++i == tx_ring->count)) i = 0;
2693         }
2694
2695         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2696
2697         /* Force memory writes to complete before letting h/w
2698          * know there are new descriptors to fetch.  (Only
2699          * applicable for weak-ordered memory model archs,
2700          * such as IA-64). */
2701         wmb();
2702
2703         tx_ring->next_to_use = i;
2704         writel(i, adapter->hw.hw_addr + tx_ring->tdt);
2705 }
2706
2707 /**
2708  * 82547 workaround to avoid controller hang in half-duplex environment.
2709  * The workaround is to avoid queuing a large packet that would span
2710  * the internal Tx FIFO ring boundary by notifying the stack to resend
2711  * the packet at a later time.  This gives the Tx FIFO an opportunity to
2712  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
2713  * to the beginning of the Tx FIFO.
2714  **/
2715
2716 #define E1000_FIFO_HDR                  0x10
2717 #define E1000_82547_PAD_LEN             0x3E0
2718
2719 static inline int
2720 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
2721 {
2722         uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2723         uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
2724
2725         E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
2726
2727         if(adapter->link_duplex != HALF_DUPLEX)
2728                 goto no_fifo_stall_required;
2729
2730         if(atomic_read(&adapter->tx_fifo_stall))
2731                 return 1;
2732
2733         if(skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2734                 atomic_set(&adapter->tx_fifo_stall, 1);
2735                 return 1;
2736         }
2737
2738 no_fifo_stall_required:
2739         adapter->tx_fifo_head += skb_fifo_len;
2740         if(adapter->tx_fifo_head >= adapter->tx_fifo_size)
2741                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2742         return 0;
2743 }
2744
2745 #define MINIMUM_DHCP_PACKET_SIZE 282
2746 static inline int
2747 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
2748 {
2749         struct e1000_hw *hw =  &adapter->hw;
2750         uint16_t length, offset;
2751         if(vlan_tx_tag_present(skb)) {
2752                 if(!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
2753                         ( adapter->hw.mng_cookie.status &
2754                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
2755                         return 0;
2756         }
2757         if ((skb->len > MINIMUM_DHCP_PACKET_SIZE) && (!skb->protocol)) {
2758                 struct ethhdr *eth = (struct ethhdr *) skb->data;
2759                 if((htons(ETH_P_IP) == eth->h_proto)) {
2760                         const struct iphdr *ip = 
2761                                 (struct iphdr *)((uint8_t *)skb->data+14);
2762                         if(IPPROTO_UDP == ip->protocol) {
2763                                 struct udphdr *udp = 
2764                                         (struct udphdr *)((uint8_t *)ip + 
2765                                                 (ip->ihl << 2));
2766                                 if(ntohs(udp->dest) == 67) {
2767                                         offset = (uint8_t *)udp + 8 - skb->data;
2768                                         length = skb->len - offset;
2769
2770                                         return e1000_mng_write_dhcp_info(hw,
2771                                                         (uint8_t *)udp + 8, 
2772                                                         length);
2773                                 }
2774                         }
2775                 }
2776         }
2777         return 0;
2778 }
2779
2780 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2781 static int
2782 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2783 {
2784         struct e1000_adapter *adapter = netdev_priv(netdev);
2785         struct e1000_tx_ring *tx_ring;
2786         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2787         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2788         unsigned int tx_flags = 0;
2789         unsigned int len = skb->len;
2790         unsigned long flags;
2791         unsigned int nr_frags = 0;
2792         unsigned int mss = 0;
2793         int count = 0;
2794         int tso;
2795         unsigned int f;
2796         len -= skb->data_len;
2797
2798 #ifdef CONFIG_E1000_MQ
2799         tx_ring = *per_cpu_ptr(adapter->cpu_tx_ring, smp_processor_id());
2800 #else
2801         tx_ring = adapter->tx_ring;
2802 #endif
2803
2804         if (unlikely(skb->len <= 0)) {
2805                 dev_kfree_skb_any(skb);
2806                 return NETDEV_TX_OK;
2807         }
2808
2809 #ifdef NETIF_F_TSO
2810         mss = skb_shinfo(skb)->tso_size;
2811         /* The controller does a simple calculation to 
2812          * make sure there is enough room in the FIFO before
2813          * initiating the DMA for each buffer.  The calc is:
2814          * 4 = ceil(buffer len/mss).  To make sure we don't
2815          * overrun the FIFO, adjust the max buffer len if mss
2816          * drops. */
2817         if(mss) {
2818                 uint8_t hdr_len;
2819                 max_per_txd = min(mss << 2, max_per_txd);
2820                 max_txd_pwr = fls(max_per_txd) - 1;
2821
2822         /* TSO Workaround for 82571/2 Controllers -- if skb->data
2823          * points to just header, pull a few bytes of payload from
2824          * frags into skb->data */
2825                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2826                 if (skb->data_len && (hdr_len == (skb->len - skb->data_len)) &&
2827                         (adapter->hw.mac_type == e1000_82571 ||
2828                         adapter->hw.mac_type == e1000_82572)) {
2829                         len = skb->len - skb->data_len;
2830                 }
2831         }
2832
2833         if((mss) || (skb->ip_summed == CHECKSUM_HW))
2834         /* reserve a descriptor for the offload context */
2835                 count++;
2836         count++;
2837 #else
2838         if(skb->ip_summed == CHECKSUM_HW)
2839                 count++;
2840 #endif
2841
2842 #ifdef NETIF_F_TSO
2843         /* Controller Erratum workaround */
2844         if (!skb->data_len && tx_ring->last_tx_tso &&
2845                 !skb_shinfo(skb)->tso_size)
2846                 count++;
2847 #endif
2848
2849         count += TXD_USE_COUNT(len, max_txd_pwr);
2850
2851         if(adapter->pcix_82544)
2852                 count++;
2853
2854         /* work-around for errata 10 and it applies to all controllers 
2855          * in PCI-X mode, so add one more descriptor to the count
2856          */
2857         if(unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2858                         (len > 2015)))
2859                 count++;
2860
2861         nr_frags = skb_shinfo(skb)->nr_frags;
2862         for(f = 0; f < nr_frags; f++)
2863                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
2864                                        max_txd_pwr);
2865         if(adapter->pcix_82544)
2866                 count += nr_frags;
2867
2868                 unsigned int pull_size;
2869                 pull_size = min((unsigned int)4, skb->data_len);
2870                 if (!__pskb_pull_tail(skb, pull_size)) {
2871                         printk(KERN_ERR "__pskb_pull_tail failed.\n");
2872                         dev_kfree_skb_any(skb);
2873                         return -EFAULT;
2874                 }
2875
2876         if(adapter->hw.tx_pkt_filtering && (adapter->hw.mac_type == e1000_82573) )
2877                 e1000_transfer_dhcp_info(adapter, skb);
2878
2879         local_irq_save(flags);
2880         if (!spin_trylock(&tx_ring->tx_lock)) {
2881                 /* Collision - tell upper layer to requeue */
2882                 local_irq_restore(flags);
2883                 return NETDEV_TX_LOCKED;
2884         }
2885
2886         /* need: count + 2 desc gap to keep tail from touching
2887          * head, otherwise try next time */
2888         if (unlikely(E1000_DESC_UNUSED(tx_ring) < count + 2)) {
2889                 netif_stop_queue(netdev);
2890                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2891                 return NETDEV_TX_BUSY;
2892         }
2893
2894         if(unlikely(adapter->hw.mac_type == e1000_82547)) {
2895                 if(unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
2896                         netif_stop_queue(netdev);
2897                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
2898                         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2899                         return NETDEV_TX_BUSY;
2900                 }
2901         }
2902
2903         if(unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
2904                 tx_flags |= E1000_TX_FLAGS_VLAN;
2905                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
2906         }
2907
2908         first = tx_ring->next_to_use;
2909         
2910         tso = e1000_tso(adapter, tx_ring, skb);
2911         if (tso < 0) {
2912                 dev_kfree_skb_any(skb);
2913                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2914                 return NETDEV_TX_OK;
2915         }
2916
2917         if (likely(tso)) {
2918                 tx_ring->last_tx_tso = 1;
2919                 tx_flags |= E1000_TX_FLAGS_TSO;
2920         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
2921                 tx_flags |= E1000_TX_FLAGS_CSUM;
2922
2923         /* Old method was to assume IPv4 packet by default if TSO was enabled.
2924          * 82571 hardware supports TSO capabilities for IPv6 as well...
2925          * no longer assume, we must. */
2926         if (likely(skb->protocol == ntohs(ETH_P_IP)))
2927                 tx_flags |= E1000_TX_FLAGS_IPV4;
2928
2929         e1000_tx_queue(adapter, tx_ring, tx_flags,
2930                        e1000_tx_map(adapter, tx_ring, skb, first,
2931                                     max_per_txd, nr_frags, mss));
2932
2933         netdev->trans_start = jiffies;
2934
2935         /* Make sure there is space in the ring for the next send. */
2936         if (unlikely(E1000_DESC_UNUSED(tx_ring) < MAX_SKB_FRAGS + 2))
2937                 netif_stop_queue(netdev);
2938
2939         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2940         return NETDEV_TX_OK;
2941 }
2942
2943 /**
2944  * e1000_tx_timeout - Respond to a Tx Hang
2945  * @netdev: network interface device structure
2946  **/
2947
2948 static void
2949 e1000_tx_timeout(struct net_device *netdev)
2950 {
2951         struct e1000_adapter *adapter = netdev_priv(netdev);
2952
2953         /* Do the reset outside of interrupt context */
2954         schedule_work(&adapter->tx_timeout_task);
2955 }
2956
2957 static void
2958 e1000_tx_timeout_task(struct net_device *netdev)
2959 {
2960         struct e1000_adapter *adapter = netdev_priv(netdev);
2961
2962         adapter->tx_timeout_count++;
2963         e1000_down(adapter);
2964         e1000_up(adapter);
2965 }
2966
2967 /**
2968  * e1000_get_stats - Get System Network Statistics
2969  * @netdev: network interface device structure
2970  *
2971  * Returns the address of the device statistics structure.
2972  * The statistics are actually updated from the timer callback.
2973  **/
2974
2975 static struct net_device_stats *
2976 e1000_get_stats(struct net_device *netdev)
2977 {
2978         struct e1000_adapter *adapter = netdev_priv(netdev);
2979
2980         /* only return the current stats */
2981         return &adapter->net_stats;
2982 }
2983
2984 /**
2985  * e1000_change_mtu - Change the Maximum Transfer Unit
2986  * @netdev: network interface device structure
2987  * @new_mtu: new value for maximum frame size
2988  *
2989  * Returns 0 on success, negative on failure
2990  **/
2991
2992 static int
2993 e1000_change_mtu(struct net_device *netdev, int new_mtu)
2994 {
2995         struct e1000_adapter *adapter = netdev_priv(netdev);
2996         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
2997
2998         if((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
2999                 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3000                         DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3001                 return -EINVAL;
3002         }
3003
3004         /* Adapter-specific max frame size limits. */
3005         switch (adapter->hw.mac_type) {
3006         case e1000_82542_rev2_0:
3007         case e1000_82542_rev2_1:
3008         case e1000_82573:
3009                 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3010                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3011                         return -EINVAL;
3012                 }
3013                 break;
3014         case e1000_82571:
3015         case e1000_82572:
3016 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3017                 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3018                         DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3019                         return -EINVAL;
3020                 }
3021                 break;
3022         default:
3023                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3024                 break;
3025         }
3026
3027         /* since the driver code now supports splitting a packet across
3028          * multiple descriptors, most of the fifo related limitations on
3029          * jumbo frame traffic have gone away.
3030          * simply use 2k descriptors for everything.
3031          *
3032          * NOTE: dev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3033          * means we reserve 2 more, this pushes us to allocate from the next
3034          * larger slab size
3035          * i.e. RXBUFFER_2048 --> size-4096 slab */
3036
3037         /* recent hardware supports 1KB granularity */
3038         if (adapter->hw.mac_type > e1000_82547_rev_2) {
3039                 adapter->rx_buffer_len =
3040                     ((max_frame < E1000_RXBUFFER_2048) ?
3041                         max_frame : E1000_RXBUFFER_2048);
3042                 E1000_ROUNDUP(adapter->rx_buffer_len, 1024);
3043         } else
3044                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3045
3046         netdev->mtu = new_mtu;
3047
3048         if(netif_running(netdev)) {
3049                 e1000_down(adapter);
3050                 e1000_up(adapter);
3051         }
3052
3053         adapter->hw.max_frame_size = max_frame;
3054
3055         return 0;
3056 }
3057
3058 /**
3059  * e1000_update_stats - Update the board statistics counters
3060  * @adapter: board private structure
3061  **/
3062
3063 void
3064 e1000_update_stats(struct e1000_adapter *adapter)
3065 {
3066         struct e1000_hw *hw = &adapter->hw;
3067         unsigned long flags;
3068         uint16_t phy_tmp;
3069
3070 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3071
3072         spin_lock_irqsave(&adapter->stats_lock, flags);
3073
3074         /* these counters are modified from e1000_adjust_tbi_stats,
3075          * called from the interrupt context, so they must only
3076          * be written while holding adapter->stats_lock
3077          */
3078
3079         adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3080         adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3081         adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3082         adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3083         adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3084         adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3085         adapter->stats.roc += E1000_READ_REG(hw, ROC);
3086         adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3087         adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3088         adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3089         adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3090         adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3091         adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3092
3093         adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3094         adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3095         adapter->stats.scc += E1000_READ_REG(hw, SCC);
3096         adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3097         adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3098         adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3099         adapter->stats.dc += E1000_READ_REG(hw, DC);
3100         adapter->stats.sec += E1000_READ_REG(hw, SEC);
3101         adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3102         adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3103         adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3104         adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3105         adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3106         adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3107         adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3108         adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3109         adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3110         adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3111         adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3112         adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3113         adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3114         adapter->stats.torl += E1000_READ_REG(hw, TORL);
3115         adapter->stats.torh += E1000_READ_REG(hw, TORH);
3116         adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3117         adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3118         adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3119         adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3120         adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3121         adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3122         adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3123         adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3124         adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3125         adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3126         adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3127
3128         /* used for adaptive IFS */
3129
3130         hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3131         adapter->stats.tpt += hw->tx_packet_delta;
3132         hw->collision_delta = E1000_READ_REG(hw, COLC);
3133         adapter->stats.colc += hw->collision_delta;
3134
3135         if(hw->mac_type >= e1000_82543) {
3136                 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3137                 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3138                 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3139                 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3140                 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3141                 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3142         }
3143         if(hw->mac_type > e1000_82547_rev_2) {
3144                 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3145                 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3146                 adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3147                 adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3148                 adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3149                 adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3150                 adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3151                 adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3152                 adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3153         }
3154
3155         /* Fill out the OS statistics structure */
3156
3157         adapter->net_stats.rx_packets = adapter->stats.gprc;
3158         adapter->net_stats.tx_packets = adapter->stats.gptc;
3159         adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3160         adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3161         adapter->net_stats.multicast = adapter->stats.mprc;
3162         adapter->net_stats.collisions = adapter->stats.colc;
3163
3164         /* Rx Errors */
3165
3166         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3167                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3168                 adapter->stats.rlec + adapter->stats.cexterr;
3169         adapter->net_stats.rx_dropped = 0;
3170         adapter->net_stats.rx_length_errors = adapter->stats.rlec;
3171         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3172         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3173         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3174
3175         /* Tx Errors */
3176
3177         adapter->net_stats.tx_errors = adapter->stats.ecol +
3178                                        adapter->stats.latecol;
3179         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3180         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3181         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3182
3183         /* Tx Dropped needs to be maintained elsewhere */
3184
3185         /* Phy Stats */
3186
3187         if(hw->media_type == e1000_media_type_copper) {
3188                 if((adapter->link_speed == SPEED_1000) &&
3189                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3190                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3191                         adapter->phy_stats.idle_errors += phy_tmp;
3192                 }
3193
3194                 if((hw->mac_type <= e1000_82546) &&
3195                    (hw->phy_type == e1000_phy_m88) &&
3196                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3197                         adapter->phy_stats.receive_errors += phy_tmp;
3198         }
3199
3200         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3201 }
3202
3203 #ifdef CONFIG_E1000_MQ
3204 void
3205 e1000_rx_schedule(void *data)
3206 {
3207         struct net_device *poll_dev, *netdev = data;
3208         struct e1000_adapter *adapter = netdev->priv;
3209         int this_cpu = get_cpu();
3210
3211         poll_dev = *per_cpu_ptr(adapter->cpu_netdev, this_cpu);
3212         if (poll_dev == NULL) {
3213                 put_cpu();
3214                 return;
3215         }
3216
3217         if (likely(netif_rx_schedule_prep(poll_dev)))
3218                 __netif_rx_schedule(poll_dev);
3219         else
3220                 e1000_irq_enable(adapter);
3221
3222         put_cpu();
3223 }
3224 #endif
3225
3226 /**
3227  * e1000_intr - Interrupt Handler
3228  * @irq: interrupt number
3229  * @data: pointer to a network interface device structure
3230  * @pt_regs: CPU registers structure
3231  **/
3232
3233 static irqreturn_t
3234 e1000_intr(int irq, void *data, struct pt_regs *regs)
3235 {
3236         struct net_device *netdev = data;
3237         struct e1000_adapter *adapter = netdev_priv(netdev);
3238         struct e1000_hw *hw = &adapter->hw;
3239         uint32_t icr = E1000_READ_REG(hw, ICR);
3240 #if defined(CONFIG_E1000_NAPI) && defined(CONFIG_E1000_MQ) || !defined(CONFIG_E1000_NAPI)
3241         int i;
3242 #endif
3243
3244         if(unlikely(!icr))
3245                 return IRQ_NONE;  /* Not our interrupt */
3246
3247         if(unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3248                 hw->get_link_status = 1;
3249                 mod_timer(&adapter->watchdog_timer, jiffies);
3250         }
3251
3252 #ifdef CONFIG_E1000_NAPI
3253         atomic_inc(&adapter->irq_sem);
3254         E1000_WRITE_REG(hw, IMC, ~0);
3255         E1000_WRITE_FLUSH(hw);
3256 #ifdef CONFIG_E1000_MQ
3257         if (atomic_read(&adapter->rx_sched_call_data.count) == 0) {
3258                 /* We must setup the cpumask once count == 0 since
3259                  * each cpu bit is cleared when the work is done. */
3260                 adapter->rx_sched_call_data.cpumask = adapter->cpumask;
3261                 atomic_add(adapter->num_rx_queues - 1, &adapter->irq_sem);
3262                 atomic_set(&adapter->rx_sched_call_data.count,
3263                            adapter->num_rx_queues);
3264                 smp_call_async_mask(&adapter->rx_sched_call_data);
3265         } else {
3266                 printk("call_data.count == %u\n", atomic_read(&adapter->rx_sched_call_data.count));
3267         }
3268 #else /* if !CONFIG_E1000_MQ */
3269         if (likely(netif_rx_schedule_prep(&adapter->polling_netdev[0])))
3270                 __netif_rx_schedule(&adapter->polling_netdev[0]);
3271         else
3272                 e1000_irq_enable(adapter);
3273 #endif /* CONFIG_E1000_MQ */
3274
3275 #else /* if !CONFIG_E1000_NAPI */
3276         /* Writing IMC and IMS is needed for 82547.
3277            Due to Hub Link bus being occupied, an interrupt
3278            de-assertion message is not able to be sent.
3279            When an interrupt assertion message is generated later,
3280            two messages are re-ordered and sent out.
3281            That causes APIC to think 82547 is in de-assertion
3282            state, while 82547 is in assertion state, resulting
3283            in dead lock. Writing IMC forces 82547 into
3284            de-assertion state.
3285         */
3286         if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2){
3287                 atomic_inc(&adapter->irq_sem);
3288                 E1000_WRITE_REG(hw, IMC, ~0);
3289         }
3290
3291         for(i = 0; i < E1000_MAX_INTR; i++)
3292                 if(unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3293                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3294                         break;
3295
3296         if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3297                 e1000_irq_enable(adapter);
3298
3299 #endif /* CONFIG_E1000_NAPI */
3300
3301         return IRQ_HANDLED;
3302 }
3303
3304 #ifdef CONFIG_E1000_NAPI
3305 /**
3306  * e1000_clean - NAPI Rx polling callback
3307  * @adapter: board private structure
3308  **/
3309
3310 static int
3311 e1000_clean(struct net_device *poll_dev, int *budget)
3312 {
3313         struct e1000_adapter *adapter;
3314         int work_to_do = min(*budget, poll_dev->quota);
3315         int tx_cleaned, i = 0, work_done = 0;
3316
3317         /* Must NOT use netdev_priv macro here. */
3318         adapter = poll_dev->priv;
3319
3320         /* Keep link state information with original netdev */
3321         if (!netif_carrier_ok(adapter->netdev))
3322                 goto quit_polling;
3323
3324         while (poll_dev != &adapter->polling_netdev[i]) {
3325                 i++;
3326                 if (unlikely(i == adapter->num_rx_queues))
3327                         BUG();
3328         }
3329
3330         tx_cleaned = e1000_clean_tx_irq(adapter, &adapter->tx_ring[i]);
3331         adapter->clean_rx(adapter, &adapter->rx_ring[i],
3332                           &work_done, work_to_do);
3333
3334         *budget -= work_done;
3335         poll_dev->quota -= work_done;
3336         
3337         /* If no Tx and not enough Rx work done, exit the polling mode */
3338         if((!tx_cleaned && (work_done == 0)) ||
3339            !netif_running(adapter->netdev)) {
3340 quit_polling:
3341                 netif_rx_complete(poll_dev);
3342                 e1000_irq_enable(adapter);
3343                 return 0;
3344         }
3345
3346         return 1;
3347 }
3348
3349 #endif
3350 /**
3351  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3352  * @adapter: board private structure
3353  **/
3354
3355 static boolean_t
3356 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3357                    struct e1000_tx_ring *tx_ring)
3358 {
3359         struct net_device *netdev = adapter->netdev;
3360         struct e1000_tx_desc *tx_desc, *eop_desc;
3361         struct e1000_buffer *buffer_info;
3362         unsigned int i, eop;
3363         boolean_t cleaned = FALSE;
3364
3365         i = tx_ring->next_to_clean;
3366         eop = tx_ring->buffer_info[i].next_to_watch;
3367         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3368
3369         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3370                 for(cleaned = FALSE; !cleaned; ) {
3371                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3372                         buffer_info = &tx_ring->buffer_info[i];
3373                         cleaned = (i == eop);
3374
3375                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3376
3377                         tx_desc->buffer_addr = 0;
3378                         tx_desc->lower.data = 0;
3379                         tx_desc->upper.data = 0;
3380
3381                         if(unlikely(++i == tx_ring->count)) i = 0;
3382                 }
3383
3384 #ifdef CONFIG_E1000_MQ
3385                 tx_ring->tx_stats.packets++;
3386 #endif
3387
3388                 eop = tx_ring->buffer_info[i].next_to_watch;
3389                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3390         }
3391
3392         tx_ring->next_to_clean = i;
3393
3394         spin_lock(&tx_ring->tx_lock);
3395
3396         if(unlikely(cleaned && netif_queue_stopped(netdev) &&
3397                     netif_carrier_ok(netdev)))
3398                 netif_wake_queue(netdev);
3399
3400         spin_unlock(&tx_ring->tx_lock);
3401
3402         if (adapter->detect_tx_hung) {
3403                 /* Detect a transmit hang in hardware, this serializes the
3404                  * check with the clearing of time_stamp and movement of i */
3405                 adapter->detect_tx_hung = FALSE;
3406                 if (tx_ring->buffer_info[i].dma &&
3407                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp + HZ)
3408                     && !(E1000_READ_REG(&adapter->hw, STATUS) &
3409                         E1000_STATUS_TXOFF)) {
3410
3411                         /* detected Tx unit hang */
3412                         i = tx_ring->next_to_clean;
3413                         eop = tx_ring->buffer_info[i].next_to_watch;
3414                         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3415                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3416                                         "  Tx Queue             <%lu>\n"
3417                                         "  TDH                  <%x>\n"
3418                                         "  TDT                  <%x>\n"
3419                                         "  next_to_use          <%x>\n"
3420                                         "  next_to_clean        <%x>\n"
3421                                         "buffer_info[next_to_clean]\n"
3422                                         "  dma                  <%llx>\n"
3423                                         "  time_stamp           <%lx>\n"
3424                                         "  next_to_watch        <%x>\n"
3425                                         "  jiffies              <%lx>\n"
3426                                         "  next_to_watch.status <%x>\n",
3427                                 (unsigned long)((tx_ring - adapter->tx_ring) /
3428                                         sizeof(struct e1000_tx_ring)),
3429                                 readl(adapter->hw.hw_addr + tx_ring->tdh),
3430                                 readl(adapter->hw.hw_addr + tx_ring->tdt),
3431                                 tx_ring->next_to_use,
3432                                 i,
3433                                 (unsigned long long)tx_ring->buffer_info[i].dma,
3434                                 tx_ring->buffer_info[i].time_stamp,
3435                                 eop,
3436                                 jiffies,
3437                                 eop_desc->upper.fields.status);
3438                         netif_stop_queue(netdev);
3439                 }
3440         }
3441         return cleaned;
3442 }
3443
3444 /**
3445  * e1000_rx_checksum - Receive Checksum Offload for 82543
3446  * @adapter:     board private structure
3447  * @status_err:  receive descriptor status and error fields
3448  * @csum:        receive descriptor csum field
3449  * @sk_buff:     socket buffer with received data
3450  **/
3451
3452 static inline void
3453 e1000_rx_checksum(struct e1000_adapter *adapter,
3454                   uint32_t status_err, uint32_t csum,
3455                   struct sk_buff *skb)
3456 {
3457         uint16_t status = (uint16_t)status_err;
3458         uint8_t errors = (uint8_t)(status_err >> 24);
3459         skb->ip_summed = CHECKSUM_NONE;
3460
3461         /* 82543 or newer only */
3462         if(unlikely(adapter->hw.mac_type < e1000_82543)) return;
3463         /* Ignore Checksum bit is set */
3464         if(unlikely(status & E1000_RXD_STAT_IXSM)) return;
3465         /* TCP/UDP checksum error bit is set */
3466         if(unlikely(errors & E1000_RXD_ERR_TCPE)) {
3467                 /* let the stack verify checksum errors */
3468                 adapter->hw_csum_err++;
3469                 return;
3470         }
3471         /* TCP/UDP Checksum has not been calculated */
3472         if(adapter->hw.mac_type <= e1000_82547_rev_2) {
3473                 if(!(status & E1000_RXD_STAT_TCPCS))
3474                         return;
3475         } else {
3476                 if(!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3477                         return;
3478         }
3479         /* It must be a TCP or UDP packet with a valid checksum */
3480         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3481                 /* TCP checksum is good */
3482                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3483         } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
3484                 /* IP fragment with UDP payload */
3485                 /* Hardware complements the payload checksum, so we undo it
3486                  * and then put the value in host order for further stack use.
3487                  */
3488                 csum = ntohl(csum ^ 0xFFFF);
3489                 skb->csum = csum;
3490                 skb->ip_summed = CHECKSUM_HW;
3491         }
3492         adapter->hw_csum_good++;
3493 }
3494
3495 /**
3496  * e1000_clean_rx_irq - Send received data up the network stack; legacy
3497  * @adapter: board private structure
3498  **/
3499
3500 static boolean_t
3501 #ifdef CONFIG_E1000_NAPI
3502 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3503                    struct e1000_rx_ring *rx_ring,
3504                    int *work_done, int work_to_do)
3505 #else
3506 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3507                    struct e1000_rx_ring *rx_ring)
3508 #endif
3509 {
3510         struct net_device *netdev = adapter->netdev;
3511         struct pci_dev *pdev = adapter->pdev;
3512         struct e1000_rx_desc *rx_desc;
3513         struct e1000_buffer *buffer_info;
3514         struct sk_buff *skb;
3515         unsigned long flags;
3516         uint32_t length;
3517         uint8_t last_byte;
3518         unsigned int i;
3519         boolean_t cleaned = FALSE;
3520
3521         i = rx_ring->next_to_clean;
3522         rx_desc = E1000_RX_DESC(*rx_ring, i);
3523
3524         while(rx_desc->status & E1000_RXD_STAT_DD) {
3525                 buffer_info = &rx_ring->buffer_info[i];
3526 #ifdef CONFIG_E1000_NAPI
3527                 if(*work_done >= work_to_do)
3528                         break;
3529                 (*work_done)++;
3530 #endif
3531                 cleaned = TRUE;
3532
3533                 pci_unmap_single(pdev,
3534                                  buffer_info->dma,
3535                                  buffer_info->length,
3536                                  PCI_DMA_FROMDEVICE);
3537
3538                 skb = buffer_info->skb;
3539                 length = le16_to_cpu(rx_desc->length);
3540
3541                 if(unlikely(!(rx_desc->status & E1000_RXD_STAT_EOP))) {
3542                         /* All receives must fit into a single buffer */
3543                         E1000_DBG("%s: Receive packet consumed multiple"
3544                                   " buffers\n", netdev->name);
3545                         dev_kfree_skb_irq(skb);
3546                         goto next_desc;
3547                 }
3548
3549                 if(unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3550                         last_byte = *(skb->data + length - 1);
3551                         if(TBI_ACCEPT(&adapter->hw, rx_desc->status,
3552                                       rx_desc->errors, length, last_byte)) {
3553                                 spin_lock_irqsave(&adapter->stats_lock, flags);
3554                                 e1000_tbi_adjust_stats(&adapter->hw,
3555                                                        &adapter->stats,
3556                                                        length, skb->data);
3557                                 spin_unlock_irqrestore(&adapter->stats_lock,
3558                                                        flags);
3559                                 length--;
3560                         } else {
3561                                 dev_kfree_skb_irq(skb);
3562                                 goto next_desc;
3563                         }
3564                 }
3565
3566                 /* Good Receive */
3567                 skb_put(skb, length - ETHERNET_FCS_SIZE);
3568
3569                 /* Receive Checksum Offload */
3570                 e1000_rx_checksum(adapter,
3571                                   (uint32_t)(rx_desc->status) |
3572                                   ((uint32_t)(rx_desc->errors) << 24),
3573                                   rx_desc->csum, skb);
3574                 skb->protocol = eth_type_trans(skb, netdev);
3575 #ifdef CONFIG_E1000_NAPI
3576                 if(unlikely(adapter->vlgrp &&
3577                             (rx_desc->status & E1000_RXD_STAT_VP))) {
3578                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3579                                                  le16_to_cpu(rx_desc->special) &
3580                                                  E1000_RXD_SPC_VLAN_MASK);
3581                 } else {
3582                         netif_receive_skb(skb);
3583                 }
3584 #else /* CONFIG_E1000_NAPI */
3585                 if(unlikely(adapter->vlgrp &&
3586                             (rx_desc->status & E1000_RXD_STAT_VP))) {
3587                         vlan_hwaccel_rx(skb, adapter->vlgrp,
3588                                         le16_to_cpu(rx_desc->special) &
3589                                         E1000_RXD_SPC_VLAN_MASK);
3590                 } else {
3591                         netif_rx(skb);
3592                 }
3593 #endif /* CONFIG_E1000_NAPI */
3594                 netdev->last_rx = jiffies;
3595 #ifdef CONFIG_E1000_MQ
3596                 rx_ring->rx_stats.packets++;
3597                 rx_ring->rx_stats.bytes += length;
3598 #endif
3599
3600 next_desc:
3601                 rx_desc->status = 0;
3602                 buffer_info->skb = NULL;
3603                 if(unlikely(++i == rx_ring->count)) i = 0;
3604
3605                 rx_desc = E1000_RX_DESC(*rx_ring, i);
3606         }
3607         rx_ring->next_to_clean = i;
3608         adapter->alloc_rx_buf(adapter, rx_ring);
3609
3610         return cleaned;
3611 }
3612
3613 /**
3614  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
3615  * @adapter: board private structure
3616  **/
3617
3618 static boolean_t
3619 #ifdef CONFIG_E1000_NAPI
3620 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3621                       struct e1000_rx_ring *rx_ring,
3622                       int *work_done, int work_to_do)
3623 #else
3624 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3625                       struct e1000_rx_ring *rx_ring)
3626 #endif
3627 {
3628         union e1000_rx_desc_packet_split *rx_desc;
3629         struct net_device *netdev = adapter->netdev;
3630         struct pci_dev *pdev = adapter->pdev;
3631         struct e1000_buffer *buffer_info;
3632         struct e1000_ps_page *ps_page;
3633         struct e1000_ps_page_dma *ps_page_dma;
3634         struct sk_buff *skb;
3635         unsigned int i, j;
3636         uint32_t length, staterr;
3637         boolean_t cleaned = FALSE;
3638
3639         i = rx_ring->next_to_clean;
3640         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3641         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3642
3643         while(staterr & E1000_RXD_STAT_DD) {
3644                 buffer_info = &rx_ring->buffer_info[i];
3645                 ps_page = &rx_ring->ps_page[i];
3646                 ps_page_dma = &rx_ring->ps_page_dma[i];
3647 #ifdef CONFIG_E1000_NAPI
3648                 if(unlikely(*work_done >= work_to_do))
3649                         break;
3650                 (*work_done)++;
3651 #endif
3652                 cleaned = TRUE;
3653                 pci_unmap_single(pdev, buffer_info->dma,
3654                                  buffer_info->length,
3655                                  PCI_DMA_FROMDEVICE);
3656
3657                 skb = buffer_info->skb;
3658
3659                 if(unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
3660                         E1000_DBG("%s: Packet Split buffers didn't pick up"
3661                                   " the full packet\n", netdev->name);
3662                         dev_kfree_skb_irq(skb);
3663                         goto next_desc;
3664                 }
3665
3666                 if(unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3667                         dev_kfree_skb_irq(skb);
3668                         goto next_desc;
3669                 }
3670
3671                 length = le16_to_cpu(rx_desc->wb.middle.length0);
3672
3673                 if(unlikely(!length)) {
3674                         E1000_DBG("%s: Last part of the packet spanning"
3675                                   " multiple descriptors\n", netdev->name);
3676                         dev_kfree_skb_irq(skb);
3677                         goto next_desc;
3678                 }
3679
3680                 /* Good Receive */
3681                 skb_put(skb, length);
3682
3683                 for(j = 0; j < adapter->rx_ps_pages; j++) {
3684                         if(!(length = le16_to_cpu(rx_desc->wb.upper.length[j])))
3685                                 break;
3686
3687                         pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
3688                                         PAGE_SIZE, PCI_DMA_FROMDEVICE);
3689                         ps_page_dma->ps_page_dma[j] = 0;
3690                         skb_shinfo(skb)->frags[j].page =
3691                                 ps_page->ps_page[j];
3692                         ps_page->ps_page[j] = NULL;
3693                         skb_shinfo(skb)->frags[j].page_offset = 0;
3694                         skb_shinfo(skb)->frags[j].size = length;
3695                         skb_shinfo(skb)->nr_frags++;
3696                         skb->len += length;
3697                         skb->data_len += length;
3698                 }
3699
3700                 e1000_rx_checksum(adapter, staterr,
3701                                   rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
3702                 skb->protocol = eth_type_trans(skb, netdev);
3703
3704                 if(likely(rx_desc->wb.upper.header_status &
3705                           E1000_RXDPS_HDRSTAT_HDRSP)) {
3706                         adapter->rx_hdr_split++;
3707 #ifdef HAVE_RX_ZERO_COPY
3708                         skb_shinfo(skb)->zero_copy = TRUE;
3709 #endif
3710                 }
3711 #ifdef CONFIG_E1000_NAPI
3712                 if(unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3713                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3714                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
3715                                 E1000_RXD_SPC_VLAN_MASK);
3716                 } else {
3717                         netif_receive_skb(skb);
3718                 }
3719 #else /* CONFIG_E1000_NAPI */
3720                 if(unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3721                         vlan_hwaccel_rx(skb, adapter->vlgrp,
3722                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
3723                                 E1000_RXD_SPC_VLAN_MASK);
3724                 } else {
3725                         netif_rx(skb);
3726                 }
3727 #endif /* CONFIG_E1000_NAPI */
3728                 netdev->last_rx = jiffies;
3729 #ifdef CONFIG_E1000_MQ
3730                 rx_ring->rx_stats.packets++;
3731                 rx_ring->rx_stats.bytes += length;
3732 #endif
3733
3734 next_desc:
3735                 rx_desc->wb.middle.status_error &= ~0xFF;
3736                 buffer_info->skb = NULL;
3737                 if(unlikely(++i == rx_ring->count)) i = 0;
3738
3739                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3740                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3741         }
3742         rx_ring->next_to_clean = i;
3743         adapter->alloc_rx_buf(adapter, rx_ring);
3744
3745         return cleaned;
3746 }
3747
3748 /**
3749  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
3750  * @adapter: address of board private structure
3751  **/
3752
3753 static void
3754 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
3755                        struct e1000_rx_ring *rx_ring)
3756 {
3757         struct net_device *netdev = adapter->netdev;
3758         struct pci_dev *pdev = adapter->pdev;
3759         struct e1000_rx_desc *rx_desc;
3760         struct e1000_buffer *buffer_info;
3761         struct sk_buff *skb;
3762         unsigned int i;
3763         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
3764
3765         i = rx_ring->next_to_use;
3766         buffer_info = &rx_ring->buffer_info[i];
3767
3768         while(!buffer_info->skb) {
3769                 skb = dev_alloc_skb(bufsz);
3770
3771                 if(unlikely(!skb)) {
3772                         /* Better luck next round */
3773                         break;
3774                 }
3775
3776                 /* Fix for errata 23, can't cross 64kB boundary */
3777                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3778                         struct sk_buff *oldskb = skb;
3779                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
3780                                              "at %p\n", bufsz, skb->data);
3781                         /* Try again, without freeing the previous */
3782                         skb = dev_alloc_skb(bufsz);
3783                         /* Failed allocation, critical failure */
3784                         if (!skb) {
3785                                 dev_kfree_skb(oldskb);
3786                                 break;
3787                         }
3788
3789                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3790                                 /* give up */
3791                                 dev_kfree_skb(skb);
3792                                 dev_kfree_skb(oldskb);
3793                                 break; /* while !buffer_info->skb */
3794                         } else {
3795                                 /* Use new allocation */
3796                                 dev_kfree_skb(oldskb);
3797                         }
3798                 }
3799                 /* Make buffer alignment 2 beyond a 16 byte boundary
3800                  * this will result in a 16 byte aligned IP header after
3801                  * the 14 byte MAC header is removed
3802                  */
3803                 skb_reserve(skb, NET_IP_ALIGN);
3804
3805                 skb->dev = netdev;
3806
3807                 buffer_info->skb = skb;
3808                 buffer_info->length = adapter->rx_buffer_len;
3809                 buffer_info->dma = pci_map_single(pdev,
3810                                                   skb->data,
3811                                                   adapter->rx_buffer_len,
3812                                                   PCI_DMA_FROMDEVICE);
3813
3814                 /* Fix for errata 23, can't cross 64kB boundary */
3815                 if (!e1000_check_64k_bound(adapter,
3816                                         (void *)(unsigned long)buffer_info->dma,
3817                                         adapter->rx_buffer_len)) {
3818                         DPRINTK(RX_ERR, ERR,
3819                                 "dma align check failed: %u bytes at %p\n",
3820                                 adapter->rx_buffer_len,
3821                                 (void *)(unsigned long)buffer_info->dma);
3822                         dev_kfree_skb(skb);
3823                         buffer_info->skb = NULL;
3824
3825                         pci_unmap_single(pdev, buffer_info->dma,
3826                                          adapter->rx_buffer_len,
3827                                          PCI_DMA_FROMDEVICE);
3828
3829                         break; /* while !buffer_info->skb */
3830                 }
3831                 rx_desc = E1000_RX_DESC(*rx_ring, i);
3832                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3833
3834                 if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) {
3835                         /* Force memory writes to complete before letting h/w
3836                          * know there are new descriptors to fetch.  (Only
3837                          * applicable for weak-ordered memory model archs,
3838                          * such as IA-64). */
3839                         wmb();
3840                         writel(i, adapter->hw.hw_addr + rx_ring->rdt);
3841                 }
3842
3843                 if(unlikely(++i == rx_ring->count)) i = 0;
3844                 buffer_info = &rx_ring->buffer_info[i];
3845         }
3846
3847         rx_ring->next_to_use = i;
3848 }
3849
3850 /**
3851  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
3852  * @adapter: address of board private structure
3853  **/
3854
3855 static void
3856 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
3857                           struct e1000_rx_ring *rx_ring)
3858 {
3859         struct net_device *netdev = adapter->netdev;
3860         struct pci_dev *pdev = adapter->pdev;
3861         union e1000_rx_desc_packet_split *rx_desc;
3862         struct e1000_buffer *buffer_info;
3863         struct e1000_ps_page *ps_page;
3864         struct e1000_ps_page_dma *ps_page_dma;
3865         struct sk_buff *skb;
3866         unsigned int i, j;
3867
3868         i = rx_ring->next_to_use;
3869         buffer_info = &rx_ring->buffer_info[i];
3870         ps_page = &rx_ring->ps_page[i];
3871         ps_page_dma = &rx_ring->ps_page_dma[i];
3872
3873         while(!buffer_info->skb) {
3874                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3875
3876                 for(j = 0; j < PS_PAGE_BUFFERS; j++) {
3877                         if (j < adapter->rx_ps_pages) {
3878                                 if (likely(!ps_page->ps_page[j])) {
3879                                         ps_page->ps_page[j] =
3880                                                 alloc_page(GFP_ATOMIC);
3881                                         if (unlikely(!ps_page->ps_page[j]))
3882                                                 goto no_buffers;
3883                                         ps_page_dma->ps_page_dma[j] =
3884                                                 pci_map_page(pdev,
3885                                                             ps_page->ps_page[j],
3886                                                             0, PAGE_SIZE,
3887                                                             PCI_DMA_FROMDEVICE);
3888                                 }
3889                                 /* Refresh the desc even if buffer_addrs didn't
3890                                  * change because each write-back erases 
3891                                  * this info.
3892                                  */
3893                                 rx_desc->read.buffer_addr[j+1] =
3894                                      cpu_to_le64(ps_page_dma->ps_page_dma[j]);
3895                         } else
3896                                 rx_desc->read.buffer_addr[j+1] = ~0;
3897                 }
3898
3899                 skb = dev_alloc_skb(adapter->rx_ps_bsize0 + NET_IP_ALIGN);
3900
3901                 if(unlikely(!skb))
3902                         break;
3903
3904                 /* Make buffer alignment 2 beyond a 16 byte boundary
3905                  * this will result in a 16 byte aligned IP header after
3906                  * the 14 byte MAC header is removed
3907                  */
3908                 skb_reserve(skb, NET_IP_ALIGN);
3909
3910                 skb->dev = netdev;
3911
3912                 buffer_info->skb = skb;
3913                 buffer_info->length = adapter->rx_ps_bsize0;
3914                 buffer_info->dma = pci_map_single(pdev, skb->data,
3915                                                   adapter->rx_ps_bsize0,
3916                                                   PCI_DMA_FROMDEVICE);
3917
3918                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
3919
3920                 if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) {
3921                         /* Force memory writes to complete before letting h/w
3922                          * know there are new descriptors to fetch.  (Only
3923                          * applicable for weak-ordered memory model archs,
3924                          * such as IA-64). */
3925                         wmb();
3926                         /* Hardware increments by 16 bytes, but packet split
3927                          * descriptors are 32 bytes...so we increment tail
3928                          * twice as much.
3929                          */
3930                         writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
3931                 }
3932
3933                 if(unlikely(++i == rx_ring->count)) i = 0;
3934                 buffer_info = &rx_ring->buffer_info[i];
3935                 ps_page = &rx_ring->ps_page[i];
3936                 ps_page_dma = &rx_ring->ps_page_dma[i];
3937         }
3938
3939 no_buffers:
3940         rx_ring->next_to_use = i;
3941 }
3942
3943 /**
3944  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
3945  * @adapter:
3946  **/
3947
3948 static void
3949 e1000_smartspeed(struct e1000_adapter *adapter)
3950 {
3951         uint16_t phy_status;
3952         uint16_t phy_ctrl;
3953
3954         if((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
3955            !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
3956                 return;
3957
3958         if(adapter->smartspeed == 0) {
3959                 /* If Master/Slave config fault is asserted twice,
3960                  * we assume back-to-back */
3961                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
3962                 if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
3963                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
3964                 if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
3965                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
3966                 if(phy_ctrl & CR_1000T_MS_ENABLE) {
3967                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
3968                         e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
3969                                             phy_ctrl);
3970                         adapter->smartspeed++;
3971                         if(!e1000_phy_setup_autoneg(&adapter->hw) &&
3972                            !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
3973                                                &phy_ctrl)) {
3974                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
3975                                              MII_CR_RESTART_AUTO_NEG);
3976                                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
3977                                                     phy_ctrl);
3978                         }
3979                 }
3980                 return;
3981         } else if(adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
3982                 /* If still no link, perhaps using 2/3 pair cable */
3983                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
3984                 phy_ctrl |= CR_1000T_MS_ENABLE;
3985                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
3986                 if(!e1000_phy_setup_autoneg(&adapter->hw) &&
3987                    !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
3988                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
3989                                      MII_CR_RESTART_AUTO_NEG);
3990                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
3991                 }
3992         }
3993         /* Restart process after E1000_SMARTSPEED_MAX iterations */
3994         if(adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
3995                 adapter->smartspeed = 0;
3996 }
3997
3998 /**
3999  * e1000_ioctl -
4000  * @netdev:
4001  * @ifreq:
4002  * @cmd:
4003  **/
4004
4005 static int
4006 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4007 {
4008         switch (cmd) {
4009         case SIOCGMIIPHY:
4010         case SIOCGMIIREG:
4011         case SIOCSMIIREG:
4012                 return e1000_mii_ioctl(netdev, ifr, cmd);
4013         default:
4014                 return -EOPNOTSUPP;
4015         }
4016 }
4017
4018 /**
4019  * e1000_mii_ioctl -
4020  * @netdev:
4021  * @ifreq:
4022  * @cmd:
4023  **/
4024
4025 static int
4026 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4027 {
4028         struct e1000_adapter *adapter = netdev_priv(netdev);
4029         struct mii_ioctl_data *data = if_mii(ifr);
4030         int retval;
4031         uint16_t mii_reg;
4032         uint16_t spddplx;
4033         unsigned long flags;
4034
4035         if(adapter->hw.media_type != e1000_media_type_copper)
4036                 return -EOPNOTSUPP;
4037
4038         switch (cmd) {
4039         case SIOCGMIIPHY:
4040                 data->phy_id = adapter->hw.phy_addr;
4041                 break;
4042         case SIOCGMIIREG:
4043                 if(!capable(CAP_NET_ADMIN))
4044                         return -EPERM;
4045                 spin_lock_irqsave(&adapter->stats_lock, flags);
4046                 if(e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4047                                    &data->val_out)) {
4048                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4049                         return -EIO;
4050                 }
4051                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4052                 break;
4053         case SIOCSMIIREG:
4054                 if(!capable(CAP_NET_ADMIN))
4055                         return -EPERM;
4056                 if(data->reg_num & ~(0x1F))
4057                         return -EFAULT;
4058                 mii_reg = data->val_in;
4059                 spin_lock_irqsave(&adapter->stats_lock, flags);
4060                 if(e1000_write_phy_reg(&adapter->hw, data->reg_num,
4061                                         mii_reg)) {
4062                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4063                         return -EIO;
4064                 }
4065                 if(adapter->hw.phy_type == e1000_phy_m88) {
4066                         switch (data->reg_num) {
4067                         case PHY_CTRL:
4068                                 if(mii_reg & MII_CR_POWER_DOWN)
4069                                         break;
4070                                 if(mii_reg & MII_CR_AUTO_NEG_EN) {
4071                                         adapter->hw.autoneg = 1;
4072                                         adapter->hw.autoneg_advertised = 0x2F;
4073                                 } else {
4074                                         if (mii_reg & 0x40)
4075                                                 spddplx = SPEED_1000;
4076                                         else if (mii_reg & 0x2000)
4077                                                 spddplx = SPEED_100;
4078                                         else
4079                                                 spddplx = SPEED_10;
4080                                         spddplx += (mii_reg & 0x100)
4081                                                    ? FULL_DUPLEX :
4082                                                    HALF_DUPLEX;
4083                                         retval = e1000_set_spd_dplx(adapter,
4084                                                                     spddplx);
4085                                         if(retval) {
4086                                                 spin_unlock_irqrestore(
4087                                                         &adapter->stats_lock, 
4088                                                         flags);
4089                                                 return retval;
4090                                         }
4091                                 }
4092                                 if(netif_running(adapter->netdev)) {
4093                                         e1000_down(adapter);
4094                                         e1000_up(adapter);
4095                                 } else
4096                                         e1000_reset(adapter);
4097                                 break;
4098                         case M88E1000_PHY_SPEC_CTRL:
4099                         case M88E1000_EXT_PHY_SPEC_CTRL:
4100                                 if(e1000_phy_reset(&adapter->hw)) {
4101                                         spin_unlock_irqrestore(
4102                                                 &adapter->stats_lock, flags);
4103                                         return -EIO;
4104                                 }
4105                                 break;
4106                         }
4107                 } else {
4108                         switch (data->reg_num) {
4109                         case PHY_CTRL:
4110                                 if(mii_reg & MII_CR_POWER_DOWN)
4111                                         break;
4112                                 if(netif_running(adapter->netdev)) {
4113                                         e1000_down(adapter);
4114                                         e1000_up(adapter);
4115                                 } else
4116                                         e1000_reset(adapter);
4117                                 break;
4118                         }
4119                 }
4120                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4121                 break;
4122         default:
4123                 return -EOPNOTSUPP;
4124         }
4125         return E1000_SUCCESS;
4126 }
4127
4128 void
4129 e1000_pci_set_mwi(struct e1000_hw *hw)
4130 {
4131         struct e1000_adapter *adapter = hw->back;
4132         int ret_val = pci_set_mwi(adapter->pdev);
4133
4134         if(ret_val)
4135                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4136 }
4137
4138 void
4139 e1000_pci_clear_mwi(struct e1000_hw *hw)
4140 {
4141         struct e1000_adapter *adapter = hw->back;
4142
4143         pci_clear_mwi(adapter->pdev);
4144 }
4145
4146 void
4147 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4148 {
4149         struct e1000_adapter *adapter = hw->back;
4150
4151         pci_read_config_word(adapter->pdev, reg, value);
4152 }
4153
4154 void
4155 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4156 {
4157         struct e1000_adapter *adapter = hw->back;
4158
4159         pci_write_config_word(adapter->pdev, reg, *value);
4160 }
4161
4162 uint32_t
4163 e1000_io_read(struct e1000_hw *hw, unsigned long port)
4164 {
4165         return inl(port);
4166 }
4167
4168 void
4169 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4170 {
4171         outl(value, port);
4172 }
4173
4174 static void
4175 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4176 {
4177         struct e1000_adapter *adapter = netdev_priv(netdev);
4178         uint32_t ctrl, rctl;
4179
4180         e1000_irq_disable(adapter);
4181         adapter->vlgrp = grp;
4182
4183         if(grp) {
4184                 /* enable VLAN tag insert/strip */
4185                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4186                 ctrl |= E1000_CTRL_VME;
4187                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4188
4189                 /* enable VLAN receive filtering */
4190                 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4191                 rctl |= E1000_RCTL_VFE;
4192                 rctl &= ~E1000_RCTL_CFIEN;
4193                 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4194                 e1000_update_mng_vlan(adapter);
4195         } else {
4196                 /* disable VLAN tag insert/strip */
4197                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4198                 ctrl &= ~E1000_CTRL_VME;
4199                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4200
4201                 /* disable VLAN filtering */
4202                 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4203                 rctl &= ~E1000_RCTL_VFE;
4204                 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4205                 if(adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) {
4206                         e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4207                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4208                 }
4209         }
4210
4211         e1000_irq_enable(adapter);
4212 }
4213
4214 static void
4215 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4216 {
4217         struct e1000_adapter *adapter = netdev_priv(netdev);
4218         uint32_t vfta, index;
4219         if((adapter->hw.mng_cookie.status &
4220                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4221                 (vid == adapter->mng_vlan_id))
4222                 return;
4223         /* add VID to filter table */
4224         index = (vid >> 5) & 0x7F;
4225         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4226         vfta |= (1 << (vid & 0x1F));
4227         e1000_write_vfta(&adapter->hw, index, vfta);
4228 }
4229
4230 static void
4231 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
4232 {
4233         struct e1000_adapter *adapter = netdev_priv(netdev);
4234         uint32_t vfta, index;
4235
4236         e1000_irq_disable(adapter);
4237
4238         if(adapter->vlgrp)
4239                 adapter->vlgrp->vlan_devices[vid] = NULL;
4240
4241         e1000_irq_enable(adapter);
4242
4243         if((adapter->hw.mng_cookie.status &
4244                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4245                 (vid == adapter->mng_vlan_id))
4246                 return;
4247         /* remove VID from filter table */
4248         index = (vid >> 5) & 0x7F;
4249         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4250         vfta &= ~(1 << (vid & 0x1F));
4251         e1000_write_vfta(&adapter->hw, index, vfta);
4252 }
4253
4254 static void
4255 e1000_restore_vlan(struct e1000_adapter *adapter)
4256 {
4257         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4258
4259         if(adapter->vlgrp) {
4260                 uint16_t vid;
4261                 for(vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4262                         if(!adapter->vlgrp->vlan_devices[vid])
4263                                 continue;
4264                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
4265                 }
4266         }
4267 }
4268
4269 int
4270 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
4271 {
4272         adapter->hw.autoneg = 0;
4273
4274         /* Fiber NICs only allow 1000 gbps Full duplex */
4275         if((adapter->hw.media_type == e1000_media_type_fiber) &&
4276                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4277                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4278                 return -EINVAL;
4279         }
4280
4281         switch(spddplx) {
4282         case SPEED_10 + DUPLEX_HALF:
4283                 adapter->hw.forced_speed_duplex = e1000_10_half;
4284                 break;
4285         case SPEED_10 + DUPLEX_FULL:
4286                 adapter->hw.forced_speed_duplex = e1000_10_full;
4287                 break;
4288         case SPEED_100 + DUPLEX_HALF:
4289                 adapter->hw.forced_speed_duplex = e1000_100_half;
4290                 break;
4291         case SPEED_100 + DUPLEX_FULL:
4292                 adapter->hw.forced_speed_duplex = e1000_100_full;
4293                 break;
4294         case SPEED_1000 + DUPLEX_FULL:
4295                 adapter->hw.autoneg = 1;
4296                 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
4297                 break;
4298         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4299         default:
4300                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4301                 return -EINVAL;
4302         }
4303         return 0;
4304 }
4305
4306 #ifdef CONFIG_PM
4307 static int
4308 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4309 {
4310         struct net_device *netdev = pci_get_drvdata(pdev);
4311         struct e1000_adapter *adapter = netdev_priv(netdev);
4312         uint32_t ctrl, ctrl_ext, rctl, manc, status;
4313         uint32_t wufc = adapter->wol;
4314
4315         netif_device_detach(netdev);
4316
4317         if(netif_running(netdev))
4318                 e1000_down(adapter);
4319
4320         status = E1000_READ_REG(&adapter->hw, STATUS);
4321         if(status & E1000_STATUS_LU)
4322                 wufc &= ~E1000_WUFC_LNKC;
4323
4324         if(wufc) {
4325                 e1000_setup_rctl(adapter);
4326                 e1000_set_multi(netdev);
4327
4328                 /* turn on all-multi mode if wake on multicast is enabled */
4329                 if(adapter->wol & E1000_WUFC_MC) {
4330                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4331                         rctl |= E1000_RCTL_MPE;
4332                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4333                 }
4334
4335                 if(adapter->hw.mac_type >= e1000_82540) {
4336                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4337                         /* advertise wake from D3Cold */
4338                         #define E1000_CTRL_ADVD3WUC 0x00100000
4339                         /* phy power management enable */
4340                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4341                         ctrl |= E1000_CTRL_ADVD3WUC |
4342                                 E1000_CTRL_EN_PHY_PWR_MGMT;
4343                         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4344                 }
4345
4346                 if(adapter->hw.media_type == e1000_media_type_fiber ||
4347                    adapter->hw.media_type == e1000_media_type_internal_serdes) {
4348                         /* keep the laser running in D3 */
4349                         ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
4350                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4351                         E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
4352                 }
4353
4354                 /* Allow time for pending master requests to run */
4355                 e1000_disable_pciex_master(&adapter->hw);
4356
4357                 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
4358                 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
4359                 pci_enable_wake(pdev, 3, 1);
4360                 pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
4361         } else {
4362                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
4363                 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
4364                 pci_enable_wake(pdev, 3, 0);
4365                 pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
4366         }
4367
4368         pci_save_state(pdev);
4369
4370         if(adapter->hw.mac_type >= e1000_82540 &&
4371            adapter->hw.media_type == e1000_media_type_copper) {
4372                 manc = E1000_READ_REG(&adapter->hw, MANC);
4373                 if(manc & E1000_MANC_SMBUS_EN) {
4374                         manc |= E1000_MANC_ARP_EN;
4375                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
4376                         pci_enable_wake(pdev, 3, 1);
4377                         pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
4378                 }
4379         }
4380
4381         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
4382          * would have already happened in close and is redundant. */
4383         e1000_release_hw_control(adapter);
4384
4385         pci_disable_device(pdev);
4386         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4387
4388         return 0;
4389 }
4390
4391 static int
4392 e1000_resume(struct pci_dev *pdev)
4393 {
4394         struct net_device *netdev = pci_get_drvdata(pdev);
4395         struct e1000_adapter *adapter = netdev_priv(netdev);
4396         uint32_t manc, ret_val;
4397
4398         pci_set_power_state(pdev, PCI_D0);
4399         pci_restore_state(pdev);
4400         ret_val = pci_enable_device(pdev);
4401         pci_set_master(pdev);
4402
4403         pci_enable_wake(pdev, PCI_D3hot, 0);
4404         pci_enable_wake(pdev, PCI_D3cold, 0);
4405
4406         e1000_reset(adapter);
4407         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4408
4409         if(netif_running(netdev))
4410                 e1000_up(adapter);
4411
4412         netif_device_attach(netdev);
4413
4414         if(adapter->hw.mac_type >= e1000_82540 &&
4415            adapter->hw.media_type == e1000_media_type_copper) {
4416                 manc = E1000_READ_REG(&adapter->hw, MANC);
4417                 manc &= ~(E1000_MANC_ARP_EN);
4418                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4419         }
4420
4421         /* If the controller is 82573 and f/w is AMT, do not set
4422          * DRV_LOAD until the interface is up.  For all other cases,
4423          * let the f/w know that the h/w is now under the control
4424          * of the driver. */
4425         if (adapter->hw.mac_type != e1000_82573 ||
4426             !e1000_check_mng_mode(&adapter->hw))
4427                 e1000_get_hw_control(adapter);
4428
4429         return 0;
4430 }
4431 #endif
4432 #ifdef CONFIG_NET_POLL_CONTROLLER
4433 /*
4434  * Polling 'interrupt' - used by things like netconsole to send skbs
4435  * without having to re-enable interrupts. It's not called while
4436  * the interrupt routine is executing.
4437  */
4438 static void
4439 e1000_netpoll(struct net_device *netdev)
4440 {
4441         struct e1000_adapter *adapter = netdev_priv(netdev);
4442         disable_irq(adapter->pdev->irq);
4443         e1000_intr(adapter->pdev->irq, netdev, NULL);
4444         e1000_clean_tx_irq(adapter, adapter->tx_ring);
4445         enable_irq(adapter->pdev->irq);
4446 }
4447 #endif
4448
4449 /* e1000_main.c */