]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/e1000/e1000_main.c
[PATCH] e1000: Fix SoL/IDER link and loopback
[linux-2.6-omap-h63xx.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   
4   Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
5   
6   This program is free software; you can redistribute it and/or modify it 
7   under the terms of the GNU General Public License as published by the Free 
8   Software Foundation; either version 2 of the License, or (at your option) 
9   any later version.
10   
11   This program is distributed in the hope that it will be useful, but WITHOUT 
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
14   more details.
15   
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc., 59 
18   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
19   
20   The full GNU General Public License is included in this distribution in the
21   file called LICENSE.
22   
23   Contact Information:
24   Linux NICS <linux.nics@intel.com>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30
31 /* Change Log
32  * 6.0.58       4/20/05
33  *   o Accepted ethtool cleanup patch from Stephen Hemminger 
34  * 6.0.44+      2/15/05
35  *   o applied Anton's patch to resolve tx hang in hardware
36  *   o Applied Andrew Mortons patch - e1000 stops working after resume
37  */
38
39 char e1000_driver_name[] = "e1000";
40 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
41 #ifndef CONFIG_E1000_NAPI
42 #define DRIVERNAPI
43 #else
44 #define DRIVERNAPI "-NAPI"
45 #endif
46 #define DRV_VERSION "6.3.9-k2"DRIVERNAPI
47 char e1000_driver_version[] = DRV_VERSION;
48 static char e1000_copyright[] = "Copyright (c) 1999-2005 Intel Corporation.";
49
50 /* e1000_pci_tbl - PCI Device ID Table
51  *
52  * Last entry must be all 0s
53  *
54  * Macro expands to...
55  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
56  */
57 static struct pci_device_id e1000_pci_tbl[] = {
58         INTEL_E1000_ETHERNET_DEVICE(0x1000),
59         INTEL_E1000_ETHERNET_DEVICE(0x1001),
60         INTEL_E1000_ETHERNET_DEVICE(0x1004),
61         INTEL_E1000_ETHERNET_DEVICE(0x1008),
62         INTEL_E1000_ETHERNET_DEVICE(0x1009),
63         INTEL_E1000_ETHERNET_DEVICE(0x100C),
64         INTEL_E1000_ETHERNET_DEVICE(0x100D),
65         INTEL_E1000_ETHERNET_DEVICE(0x100E),
66         INTEL_E1000_ETHERNET_DEVICE(0x100F),
67         INTEL_E1000_ETHERNET_DEVICE(0x1010),
68         INTEL_E1000_ETHERNET_DEVICE(0x1011),
69         INTEL_E1000_ETHERNET_DEVICE(0x1012),
70         INTEL_E1000_ETHERNET_DEVICE(0x1013),
71         INTEL_E1000_ETHERNET_DEVICE(0x1014),
72         INTEL_E1000_ETHERNET_DEVICE(0x1015),
73         INTEL_E1000_ETHERNET_DEVICE(0x1016),
74         INTEL_E1000_ETHERNET_DEVICE(0x1017),
75         INTEL_E1000_ETHERNET_DEVICE(0x1018),
76         INTEL_E1000_ETHERNET_DEVICE(0x1019),
77         INTEL_E1000_ETHERNET_DEVICE(0x101A),
78         INTEL_E1000_ETHERNET_DEVICE(0x101D),
79         INTEL_E1000_ETHERNET_DEVICE(0x101E),
80         INTEL_E1000_ETHERNET_DEVICE(0x1026),
81         INTEL_E1000_ETHERNET_DEVICE(0x1027),
82         INTEL_E1000_ETHERNET_DEVICE(0x1028),
83         INTEL_E1000_ETHERNET_DEVICE(0x105E),
84         INTEL_E1000_ETHERNET_DEVICE(0x105F),
85         INTEL_E1000_ETHERNET_DEVICE(0x1060),
86         INTEL_E1000_ETHERNET_DEVICE(0x1075),
87         INTEL_E1000_ETHERNET_DEVICE(0x1076),
88         INTEL_E1000_ETHERNET_DEVICE(0x1077),
89         INTEL_E1000_ETHERNET_DEVICE(0x1078),
90         INTEL_E1000_ETHERNET_DEVICE(0x1079),
91         INTEL_E1000_ETHERNET_DEVICE(0x107A),
92         INTEL_E1000_ETHERNET_DEVICE(0x107B),
93         INTEL_E1000_ETHERNET_DEVICE(0x107C),
94         INTEL_E1000_ETHERNET_DEVICE(0x107D),
95         INTEL_E1000_ETHERNET_DEVICE(0x107E),
96         INTEL_E1000_ETHERNET_DEVICE(0x107F),
97         INTEL_E1000_ETHERNET_DEVICE(0x108A),
98         INTEL_E1000_ETHERNET_DEVICE(0x108B),
99         INTEL_E1000_ETHERNET_DEVICE(0x108C),
100         INTEL_E1000_ETHERNET_DEVICE(0x109A),
101         /* required last entry */
102         {0,}
103 };
104
105 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
106
107 int e1000_up(struct e1000_adapter *adapter);
108 void e1000_down(struct e1000_adapter *adapter);
109 void e1000_reset(struct e1000_adapter *adapter);
110 int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
111 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
112 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
113 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
114 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
115 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
116                                     struct e1000_tx_ring *txdr);
117 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
118                                     struct e1000_rx_ring *rxdr);
119 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
120                                     struct e1000_tx_ring *tx_ring);
121 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
122                                     struct e1000_rx_ring *rx_ring);
123 void e1000_update_stats(struct e1000_adapter *adapter);
124
125 /* Local Function Prototypes */
126
127 static int e1000_init_module(void);
128 static void e1000_exit_module(void);
129 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
130 static void __devexit e1000_remove(struct pci_dev *pdev);
131 static int e1000_alloc_queues(struct e1000_adapter *adapter);
132 #ifdef CONFIG_E1000_MQ
133 static void e1000_setup_queue_mapping(struct e1000_adapter *adapter);
134 #endif
135 static int e1000_sw_init(struct e1000_adapter *adapter);
136 static int e1000_open(struct net_device *netdev);
137 static int e1000_close(struct net_device *netdev);
138 static void e1000_configure_tx(struct e1000_adapter *adapter);
139 static void e1000_configure_rx(struct e1000_adapter *adapter);
140 static void e1000_setup_rctl(struct e1000_adapter *adapter);
141 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
142 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
143 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
144                                 struct e1000_tx_ring *tx_ring);
145 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
146                                 struct e1000_rx_ring *rx_ring);
147 static void e1000_set_multi(struct net_device *netdev);
148 static void e1000_update_phy_info(unsigned long data);
149 static void e1000_watchdog(unsigned long data);
150 static void e1000_watchdog_task(struct e1000_adapter *adapter);
151 static void e1000_82547_tx_fifo_stall(unsigned long data);
152 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
153 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
154 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
155 static int e1000_set_mac(struct net_device *netdev, void *p);
156 static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
157 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
158                                     struct e1000_tx_ring *tx_ring);
159 #ifdef CONFIG_E1000_NAPI
160 static int e1000_clean(struct net_device *poll_dev, int *budget);
161 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
162                                     struct e1000_rx_ring *rx_ring,
163                                     int *work_done, int work_to_do);
164 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
165                                        struct e1000_rx_ring *rx_ring,
166                                        int *work_done, int work_to_do);
167 #else
168 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
169                                     struct e1000_rx_ring *rx_ring);
170 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
171                                        struct e1000_rx_ring *rx_ring);
172 #endif
173 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
174                                    struct e1000_rx_ring *rx_ring);
175 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
176                                       struct e1000_rx_ring *rx_ring);
177 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
178 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
179                            int cmd);
180 void e1000_set_ethtool_ops(struct net_device *netdev);
181 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
182 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
183 static void e1000_tx_timeout(struct net_device *dev);
184 static void e1000_tx_timeout_task(struct net_device *dev);
185 static void e1000_smartspeed(struct e1000_adapter *adapter);
186 static inline int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
187                                               struct sk_buff *skb);
188
189 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
190 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
191 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
192 static void e1000_restore_vlan(struct e1000_adapter *adapter);
193
194 #ifdef CONFIG_PM
195 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
196 static int e1000_resume(struct pci_dev *pdev);
197 #endif
198
199 #ifdef CONFIG_NET_POLL_CONTROLLER
200 /* for netdump / net console */
201 static void e1000_netpoll (struct net_device *netdev);
202 #endif
203
204 #ifdef CONFIG_E1000_MQ
205 /* for multiple Rx queues */
206 void e1000_rx_schedule(void *data);
207 #endif
208
209 /* Exported from other modules */
210
211 extern void e1000_check_options(struct e1000_adapter *adapter);
212
213 static struct pci_driver e1000_driver = {
214         .name     = e1000_driver_name,
215         .id_table = e1000_pci_tbl,
216         .probe    = e1000_probe,
217         .remove   = __devexit_p(e1000_remove),
218         /* Power Managment Hooks */
219 #ifdef CONFIG_PM
220         .suspend  = e1000_suspend,
221         .resume   = e1000_resume
222 #endif
223 };
224
225 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
226 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
227 MODULE_LICENSE("GPL");
228 MODULE_VERSION(DRV_VERSION);
229
230 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
231 module_param(debug, int, 0);
232 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
233
234 /**
235  * e1000_init_module - Driver Registration Routine
236  *
237  * e1000_init_module is the first routine called when the driver is
238  * loaded. All it does is register with the PCI subsystem.
239  **/
240
241 static int __init
242 e1000_init_module(void)
243 {
244         int ret;
245         printk(KERN_INFO "%s - version %s\n",
246                e1000_driver_string, e1000_driver_version);
247
248         printk(KERN_INFO "%s\n", e1000_copyright);
249
250         ret = pci_module_init(&e1000_driver);
251
252         return ret;
253 }
254
255 module_init(e1000_init_module);
256
257 /**
258  * e1000_exit_module - Driver Exit Cleanup Routine
259  *
260  * e1000_exit_module is called just before the driver is removed
261  * from memory.
262  **/
263
264 static void __exit
265 e1000_exit_module(void)
266 {
267         pci_unregister_driver(&e1000_driver);
268 }
269
270 module_exit(e1000_exit_module);
271
272 /**
273  * e1000_irq_disable - Mask off interrupt generation on the NIC
274  * @adapter: board private structure
275  **/
276
277 static inline void
278 e1000_irq_disable(struct e1000_adapter *adapter)
279 {
280         atomic_inc(&adapter->irq_sem);
281         E1000_WRITE_REG(&adapter->hw, IMC, ~0);
282         E1000_WRITE_FLUSH(&adapter->hw);
283         synchronize_irq(adapter->pdev->irq);
284 }
285
286 /**
287  * e1000_irq_enable - Enable default interrupt generation settings
288  * @adapter: board private structure
289  **/
290
291 static inline void
292 e1000_irq_enable(struct e1000_adapter *adapter)
293 {
294         if(likely(atomic_dec_and_test(&adapter->irq_sem))) {
295                 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
296                 E1000_WRITE_FLUSH(&adapter->hw);
297         }
298 }
299
300 static void
301 e1000_update_mng_vlan(struct e1000_adapter *adapter)
302 {
303         struct net_device *netdev = adapter->netdev;
304         uint16_t vid = adapter->hw.mng_cookie.vlan_id;
305         uint16_t old_vid = adapter->mng_vlan_id;
306         if(adapter->vlgrp) {
307                 if(!adapter->vlgrp->vlan_devices[vid]) {
308                         if(adapter->hw.mng_cookie.status &
309                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
310                                 e1000_vlan_rx_add_vid(netdev, vid);
311                                 adapter->mng_vlan_id = vid;
312                         } else
313                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
314                                 
315                         if((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
316                                         (vid != old_vid) && 
317                                         !adapter->vlgrp->vlan_devices[old_vid])
318                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
319                 }
320         }
321 }
322         
323 int
324 e1000_up(struct e1000_adapter *adapter)
325 {
326         struct net_device *netdev = adapter->netdev;
327         int i, err;
328
329         /* hardware has been reset, we need to reload some things */
330
331         /* Reset the PHY if it was previously powered down */
332         if(adapter->hw.media_type == e1000_media_type_copper) {
333                 uint16_t mii_reg;
334                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
335                 if(mii_reg & MII_CR_POWER_DOWN)
336                         e1000_phy_reset(&adapter->hw);
337         }
338
339         e1000_set_multi(netdev);
340
341         e1000_restore_vlan(adapter);
342
343         e1000_configure_tx(adapter);
344         e1000_setup_rctl(adapter);
345         e1000_configure_rx(adapter);
346         for (i = 0; i < adapter->num_queues; i++)
347                 adapter->alloc_rx_buf(adapter, &adapter->rx_ring[i]);
348
349 #ifdef CONFIG_PCI_MSI
350         if(adapter->hw.mac_type > e1000_82547_rev_2) {
351                 adapter->have_msi = TRUE;
352                 if((err = pci_enable_msi(adapter->pdev))) {
353                         DPRINTK(PROBE, ERR,
354                          "Unable to allocate MSI interrupt Error: %d\n", err);
355                         adapter->have_msi = FALSE;
356                 }
357         }
358 #endif
359         if((err = request_irq(adapter->pdev->irq, &e1000_intr,
360                               SA_SHIRQ | SA_SAMPLE_RANDOM,
361                               netdev->name, netdev))) {
362                 DPRINTK(PROBE, ERR,
363                     "Unable to allocate interrupt Error: %d\n", err);
364                 return err;
365         }
366
367         mod_timer(&adapter->watchdog_timer, jiffies);
368
369 #ifdef CONFIG_E1000_NAPI
370         netif_poll_enable(netdev);
371 #endif
372         e1000_irq_enable(adapter);
373
374         return 0;
375 }
376
377 void
378 e1000_down(struct e1000_adapter *adapter)
379 {
380         struct net_device *netdev = adapter->netdev;
381         boolean_t mng_mode_enabled = (adapter->hw.mac_type >= e1000_82571) &&
382                                      e1000_check_mng_mode(&adapter->hw);
383
384         e1000_irq_disable(adapter);
385 #ifdef CONFIG_E1000_MQ
386         while (atomic_read(&adapter->rx_sched_call_data.count) != 0);
387 #endif
388         free_irq(adapter->pdev->irq, netdev);
389 #ifdef CONFIG_PCI_MSI
390         if(adapter->hw.mac_type > e1000_82547_rev_2 &&
391            adapter->have_msi == TRUE)
392                 pci_disable_msi(adapter->pdev);
393 #endif
394         del_timer_sync(&adapter->tx_fifo_stall_timer);
395         del_timer_sync(&adapter->watchdog_timer);
396         del_timer_sync(&adapter->phy_info_timer);
397
398 #ifdef CONFIG_E1000_NAPI
399         netif_poll_disable(netdev);
400 #endif
401         adapter->link_speed = 0;
402         adapter->link_duplex = 0;
403         netif_carrier_off(netdev);
404         netif_stop_queue(netdev);
405
406         e1000_reset(adapter);
407         e1000_clean_all_tx_rings(adapter);
408         e1000_clean_all_rx_rings(adapter);
409
410         /* Power down the PHY so no link is implied when interface is down *
411          * The PHY cannot be powered down if any of the following is TRUE *
412          * (a) WoL is enabled
413          * (b) AMT is active
414          * (c) SoL/IDER session is active */
415         if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
416            adapter->hw.media_type == e1000_media_type_copper &&
417            !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN) &&
418            !mng_mode_enabled &&
419            !e1000_check_phy_reset_block(&adapter->hw)) {
420                 uint16_t mii_reg;
421                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
422                 mii_reg |= MII_CR_POWER_DOWN;
423                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
424                 mdelay(1);
425         }
426 }
427
428 void
429 e1000_reset(struct e1000_adapter *adapter)
430 {
431         struct net_device *netdev = adapter->netdev;
432         uint32_t pba, manc;
433         uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
434         uint16_t fc_low_water_mark = E1000_FC_LOW_DIFF;
435
436         /* Repartition Pba for greater than 9k mtu
437          * To take effect CTRL.RST is required.
438          */
439
440         switch (adapter->hw.mac_type) {
441         case e1000_82547:
442         case e1000_82547_rev_2:
443                 pba = E1000_PBA_30K;
444                 break;
445         case e1000_82571:
446         case e1000_82572:
447                 pba = E1000_PBA_38K;
448                 break;
449         case e1000_82573:
450                 pba = E1000_PBA_12K;
451                 break;
452         default:
453                 pba = E1000_PBA_48K;
454                 break;
455         }
456
457         if((adapter->hw.mac_type != e1000_82573) &&
458            (adapter->netdev->mtu > E1000_RXBUFFER_8192)) {
459                 pba -= 8; /* allocate more FIFO for Tx */
460                 /* send an XOFF when there is enough space in the
461                  * Rx FIFO to hold one extra full size Rx packet 
462                 */
463                 fc_high_water_mark = netdev->mtu + ENET_HEADER_SIZE + 
464                                         ETHERNET_FCS_SIZE + 1;
465                 fc_low_water_mark = fc_high_water_mark + 8;
466         }
467
468
469         if(adapter->hw.mac_type == e1000_82547) {
470                 adapter->tx_fifo_head = 0;
471                 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
472                 adapter->tx_fifo_size =
473                         (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
474                 atomic_set(&adapter->tx_fifo_stall, 0);
475         }
476
477         E1000_WRITE_REG(&adapter->hw, PBA, pba);
478
479         /* flow control settings */
480         adapter->hw.fc_high_water = (pba << E1000_PBA_BYTES_SHIFT) -
481                                     fc_high_water_mark;
482         adapter->hw.fc_low_water = (pba << E1000_PBA_BYTES_SHIFT) -
483                                    fc_low_water_mark;
484         adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
485         adapter->hw.fc_send_xon = 1;
486         adapter->hw.fc = adapter->hw.original_fc;
487
488         /* Allow time for pending master requests to run */
489         e1000_reset_hw(&adapter->hw);
490         if(adapter->hw.mac_type >= e1000_82544)
491                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
492         if(e1000_init_hw(&adapter->hw))
493                 DPRINTK(PROBE, ERR, "Hardware Error\n");
494         e1000_update_mng_vlan(adapter);
495         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
496         E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
497
498         e1000_reset_adaptive(&adapter->hw);
499         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
500         if (adapter->en_mng_pt) {
501                 manc = E1000_READ_REG(&adapter->hw, MANC);
502                 manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
503                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
504         }
505 }
506
507 /**
508  * e1000_probe - Device Initialization Routine
509  * @pdev: PCI device information struct
510  * @ent: entry in e1000_pci_tbl
511  *
512  * Returns 0 on success, negative on failure
513  *
514  * e1000_probe initializes an adapter identified by a pci_dev structure.
515  * The OS initialization, configuring of the adapter private structure,
516  * and a hardware reset occur.
517  **/
518
519 static int __devinit
520 e1000_probe(struct pci_dev *pdev,
521             const struct pci_device_id *ent)
522 {
523         struct net_device *netdev;
524         struct e1000_adapter *adapter;
525         unsigned long mmio_start, mmio_len;
526         uint32_t ctrl_ext;
527         uint32_t swsm;
528
529         static int cards_found = 0;
530         int i, err, pci_using_dac;
531         uint16_t eeprom_data;
532         uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
533         if((err = pci_enable_device(pdev)))
534                 return err;
535
536         if(!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
537                 pci_using_dac = 1;
538         } else {
539                 if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
540                         E1000_ERR("No usable DMA configuration, aborting\n");
541                         return err;
542                 }
543                 pci_using_dac = 0;
544         }
545
546         if((err = pci_request_regions(pdev, e1000_driver_name)))
547                 return err;
548
549         pci_set_master(pdev);
550
551         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
552         if(!netdev) {
553                 err = -ENOMEM;
554                 goto err_alloc_etherdev;
555         }
556
557         SET_MODULE_OWNER(netdev);
558         SET_NETDEV_DEV(netdev, &pdev->dev);
559
560         pci_set_drvdata(pdev, netdev);
561         adapter = netdev_priv(netdev);
562         adapter->netdev = netdev;
563         adapter->pdev = pdev;
564         adapter->hw.back = adapter;
565         adapter->msg_enable = (1 << debug) - 1;
566
567         mmio_start = pci_resource_start(pdev, BAR_0);
568         mmio_len = pci_resource_len(pdev, BAR_0);
569
570         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
571         if(!adapter->hw.hw_addr) {
572                 err = -EIO;
573                 goto err_ioremap;
574         }
575
576         for(i = BAR_1; i <= BAR_5; i++) {
577                 if(pci_resource_len(pdev, i) == 0)
578                         continue;
579                 if(pci_resource_flags(pdev, i) & IORESOURCE_IO) {
580                         adapter->hw.io_base = pci_resource_start(pdev, i);
581                         break;
582                 }
583         }
584
585         netdev->open = &e1000_open;
586         netdev->stop = &e1000_close;
587         netdev->hard_start_xmit = &e1000_xmit_frame;
588         netdev->get_stats = &e1000_get_stats;
589         netdev->set_multicast_list = &e1000_set_multi;
590         netdev->set_mac_address = &e1000_set_mac;
591         netdev->change_mtu = &e1000_change_mtu;
592         netdev->do_ioctl = &e1000_ioctl;
593         e1000_set_ethtool_ops(netdev);
594         netdev->tx_timeout = &e1000_tx_timeout;
595         netdev->watchdog_timeo = 5 * HZ;
596 #ifdef CONFIG_E1000_NAPI
597         netdev->poll = &e1000_clean;
598         netdev->weight = 64;
599 #endif
600         netdev->vlan_rx_register = e1000_vlan_rx_register;
601         netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
602         netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
603 #ifdef CONFIG_NET_POLL_CONTROLLER
604         netdev->poll_controller = e1000_netpoll;
605 #endif
606         strcpy(netdev->name, pci_name(pdev));
607
608         netdev->mem_start = mmio_start;
609         netdev->mem_end = mmio_start + mmio_len;
610         netdev->base_addr = adapter->hw.io_base;
611
612         adapter->bd_number = cards_found;
613
614         /* setup the private structure */
615
616         if((err = e1000_sw_init(adapter)))
617                 goto err_sw_init;
618
619         if((err = e1000_check_phy_reset_block(&adapter->hw)))
620                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
621
622         if(adapter->hw.mac_type >= e1000_82543) {
623                 netdev->features = NETIF_F_SG |
624                                    NETIF_F_HW_CSUM |
625                                    NETIF_F_HW_VLAN_TX |
626                                    NETIF_F_HW_VLAN_RX |
627                                    NETIF_F_HW_VLAN_FILTER;
628         }
629
630 #ifdef NETIF_F_TSO
631         if((adapter->hw.mac_type >= e1000_82544) &&
632            (adapter->hw.mac_type != e1000_82547))
633                 netdev->features |= NETIF_F_TSO;
634
635 #ifdef NETIF_F_TSO_IPV6
636         if(adapter->hw.mac_type > e1000_82547_rev_2)
637                 netdev->features |= NETIF_F_TSO_IPV6;
638 #endif
639 #endif
640         if(pci_using_dac)
641                 netdev->features |= NETIF_F_HIGHDMA;
642
643         /* hard_start_xmit is safe against parallel locking */
644         netdev->features |= NETIF_F_LLTX; 
645  
646         adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
647
648         /* before reading the EEPROM, reset the controller to 
649          * put the device in a known good starting state */
650         
651         e1000_reset_hw(&adapter->hw);
652
653         /* make sure the EEPROM is good */
654
655         if(e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
656                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
657                 err = -EIO;
658                 goto err_eeprom;
659         }
660
661         /* copy the MAC address out of the EEPROM */
662
663         if(e1000_read_mac_addr(&adapter->hw))
664                 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
665         memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
666         memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
667
668         if(!is_valid_ether_addr(netdev->perm_addr)) {
669                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
670                 err = -EIO;
671                 goto err_eeprom;
672         }
673
674         e1000_read_part_num(&adapter->hw, &(adapter->part_num));
675
676         e1000_get_bus_info(&adapter->hw);
677
678         init_timer(&adapter->tx_fifo_stall_timer);
679         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
680         adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
681
682         init_timer(&adapter->watchdog_timer);
683         adapter->watchdog_timer.function = &e1000_watchdog;
684         adapter->watchdog_timer.data = (unsigned long) adapter;
685
686         INIT_WORK(&adapter->watchdog_task,
687                 (void (*)(void *))e1000_watchdog_task, adapter);
688
689         init_timer(&adapter->phy_info_timer);
690         adapter->phy_info_timer.function = &e1000_update_phy_info;
691         adapter->phy_info_timer.data = (unsigned long) adapter;
692
693         INIT_WORK(&adapter->tx_timeout_task,
694                 (void (*)(void *))e1000_tx_timeout_task, netdev);
695
696         /* we're going to reset, so assume we have no link for now */
697
698         netif_carrier_off(netdev);
699         netif_stop_queue(netdev);
700
701         e1000_check_options(adapter);
702
703         /* Initial Wake on LAN setting
704          * If APM wake is enabled in the EEPROM,
705          * enable the ACPI Magic Packet filter
706          */
707
708         switch(adapter->hw.mac_type) {
709         case e1000_82542_rev2_0:
710         case e1000_82542_rev2_1:
711         case e1000_82543:
712                 break;
713         case e1000_82544:
714                 e1000_read_eeprom(&adapter->hw,
715                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
716                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
717                 break;
718         case e1000_82546:
719         case e1000_82546_rev_3:
720         case e1000_82571:
721                 if((E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
722                    && (adapter->hw.media_type == e1000_media_type_copper)) {
723                         e1000_read_eeprom(&adapter->hw,
724                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
725                         break;
726                 }
727                 /* Fall Through */
728         default:
729                 e1000_read_eeprom(&adapter->hw,
730                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
731                 break;
732         }
733         if(eeprom_data & eeprom_apme_mask)
734                 adapter->wol |= E1000_WUFC_MAG;
735
736         /* reset the hardware with the new settings */
737         e1000_reset(adapter);
738
739         /* Let firmware know the driver has taken over */
740         switch(adapter->hw.mac_type) {
741         case e1000_82571:
742         case e1000_82572:
743                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
744                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
745                                 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
746                 break;
747         case e1000_82573:
748                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
749                 E1000_WRITE_REG(&adapter->hw, SWSM,
750                                 swsm | E1000_SWSM_DRV_LOAD);
751                 break;
752         default:
753                 break;
754         }
755
756         strcpy(netdev->name, "eth%d");
757         if((err = register_netdev(netdev)))
758                 goto err_register;
759
760         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
761
762         cards_found++;
763         return 0;
764
765 err_register:
766 err_sw_init:
767 err_eeprom:
768         iounmap(adapter->hw.hw_addr);
769 err_ioremap:
770         free_netdev(netdev);
771 err_alloc_etherdev:
772         pci_release_regions(pdev);
773         return err;
774 }
775
776 /**
777  * e1000_remove - Device Removal Routine
778  * @pdev: PCI device information struct
779  *
780  * e1000_remove is called by the PCI subsystem to alert the driver
781  * that it should release a PCI device.  The could be caused by a
782  * Hot-Plug event, or because the driver is going to be removed from
783  * memory.
784  **/
785
786 static void __devexit
787 e1000_remove(struct pci_dev *pdev)
788 {
789         struct net_device *netdev = pci_get_drvdata(pdev);
790         struct e1000_adapter *adapter = netdev_priv(netdev);
791         uint32_t ctrl_ext;
792         uint32_t manc, swsm;
793 #ifdef CONFIG_E1000_NAPI
794         int i;
795 #endif
796
797         flush_scheduled_work();
798
799         if(adapter->hw.mac_type >= e1000_82540 &&
800            adapter->hw.media_type == e1000_media_type_copper) {
801                 manc = E1000_READ_REG(&adapter->hw, MANC);
802                 if(manc & E1000_MANC_SMBUS_EN) {
803                         manc |= E1000_MANC_ARP_EN;
804                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
805                 }
806         }
807
808         switch(adapter->hw.mac_type) {
809         case e1000_82571:
810         case e1000_82572:
811                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
812                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
813                                 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
814                 break;
815         case e1000_82573:
816                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
817                 E1000_WRITE_REG(&adapter->hw, SWSM,
818                                 swsm & ~E1000_SWSM_DRV_LOAD);
819                 break;
820
821         default:
822                 break;
823         }
824
825         unregister_netdev(netdev);
826 #ifdef CONFIG_E1000_NAPI
827         for (i = 0; i < adapter->num_queues; i++)
828                 __dev_put(&adapter->polling_netdev[i]);
829 #endif
830
831         if(!e1000_check_phy_reset_block(&adapter->hw))
832                 e1000_phy_hw_reset(&adapter->hw);
833
834         kfree(adapter->tx_ring);
835         kfree(adapter->rx_ring);
836 #ifdef CONFIG_E1000_NAPI
837         kfree(adapter->polling_netdev);
838 #endif
839
840         iounmap(adapter->hw.hw_addr);
841         pci_release_regions(pdev);
842
843 #ifdef CONFIG_E1000_MQ
844         free_percpu(adapter->cpu_netdev);
845         free_percpu(adapter->cpu_tx_ring);
846 #endif
847         free_netdev(netdev);
848
849         pci_disable_device(pdev);
850 }
851
852 /**
853  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
854  * @adapter: board private structure to initialize
855  *
856  * e1000_sw_init initializes the Adapter private data structure.
857  * Fields are initialized based on PCI device information and
858  * OS network device settings (MTU size).
859  **/
860
861 static int __devinit
862 e1000_sw_init(struct e1000_adapter *adapter)
863 {
864         struct e1000_hw *hw = &adapter->hw;
865         struct net_device *netdev = adapter->netdev;
866         struct pci_dev *pdev = adapter->pdev;
867 #ifdef CONFIG_E1000_NAPI
868         int i;
869 #endif
870
871         /* PCI config space info */
872
873         hw->vendor_id = pdev->vendor;
874         hw->device_id = pdev->device;
875         hw->subsystem_vendor_id = pdev->subsystem_vendor;
876         hw->subsystem_id = pdev->subsystem_device;
877
878         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
879
880         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
881
882         adapter->rx_buffer_len = E1000_RXBUFFER_2048;
883         adapter->rx_ps_bsize0 = E1000_RXBUFFER_256;
884         hw->max_frame_size = netdev->mtu +
885                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
886         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
887
888         /* identify the MAC */
889
890         if(e1000_set_mac_type(hw)) {
891                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
892                 return -EIO;
893         }
894
895         /* initialize eeprom parameters */
896
897         if(e1000_init_eeprom_params(hw)) {
898                 E1000_ERR("EEPROM initialization failed\n");
899                 return -EIO;
900         }
901
902         switch(hw->mac_type) {
903         default:
904                 break;
905         case e1000_82541:
906         case e1000_82547:
907         case e1000_82541_rev_2:
908         case e1000_82547_rev_2:
909                 hw->phy_init_script = 1;
910                 break;
911         }
912
913         e1000_set_media_type(hw);
914
915         hw->wait_autoneg_complete = FALSE;
916         hw->tbi_compatibility_en = TRUE;
917         hw->adaptive_ifs = TRUE;
918
919         /* Copper options */
920
921         if(hw->media_type == e1000_media_type_copper) {
922                 hw->mdix = AUTO_ALL_MODES;
923                 hw->disable_polarity_correction = FALSE;
924                 hw->master_slave = E1000_MASTER_SLAVE;
925         }
926
927 #ifdef CONFIG_E1000_MQ
928         /* Number of supported queues */
929         switch (hw->mac_type) {
930         case e1000_82571:
931         case e1000_82572:
932                 adapter->num_queues = 2;
933                 break;
934         default:
935                 adapter->num_queues = 1;
936                 break;
937         }
938         adapter->num_queues = min(adapter->num_queues, num_online_cpus());
939 #else
940         adapter->num_queues = 1;
941 #endif
942
943         if (e1000_alloc_queues(adapter)) {
944                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
945                 return -ENOMEM;
946         }
947
948 #ifdef CONFIG_E1000_NAPI
949         for (i = 0; i < adapter->num_queues; i++) {
950                 adapter->polling_netdev[i].priv = adapter;
951                 adapter->polling_netdev[i].poll = &e1000_clean;
952                 adapter->polling_netdev[i].weight = 64;
953                 dev_hold(&adapter->polling_netdev[i]);
954                 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
955         }
956 #endif
957
958 #ifdef CONFIG_E1000_MQ
959         e1000_setup_queue_mapping(adapter);
960 #endif
961
962         atomic_set(&adapter->irq_sem, 1);
963         spin_lock_init(&adapter->stats_lock);
964
965         return 0;
966 }
967
968 /**
969  * e1000_alloc_queues - Allocate memory for all rings
970  * @adapter: board private structure to initialize
971  *
972  * We allocate one ring per queue at run-time since we don't know the
973  * number of queues at compile-time.  The polling_netdev array is
974  * intended for Multiqueue, but should work fine with a single queue.
975  **/
976
977 static int __devinit
978 e1000_alloc_queues(struct e1000_adapter *adapter)
979 {
980         int size;
981
982         size = sizeof(struct e1000_tx_ring) * adapter->num_queues;
983         adapter->tx_ring = kmalloc(size, GFP_KERNEL);
984         if (!adapter->tx_ring)
985                 return -ENOMEM;
986         memset(adapter->tx_ring, 0, size);
987
988         size = sizeof(struct e1000_rx_ring) * adapter->num_queues;
989         adapter->rx_ring = kmalloc(size, GFP_KERNEL);
990         if (!adapter->rx_ring) {
991                 kfree(adapter->tx_ring);
992                 return -ENOMEM;
993         }
994         memset(adapter->rx_ring, 0, size);
995
996 #ifdef CONFIG_E1000_NAPI
997         size = sizeof(struct net_device) * adapter->num_queues;
998         adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
999         if (!adapter->polling_netdev) {
1000                 kfree(adapter->tx_ring);
1001                 kfree(adapter->rx_ring);
1002                 return -ENOMEM;
1003         }
1004         memset(adapter->polling_netdev, 0, size);
1005 #endif
1006
1007         return E1000_SUCCESS;
1008 }
1009
1010 #ifdef CONFIG_E1000_MQ
1011 static void __devinit
1012 e1000_setup_queue_mapping(struct e1000_adapter *adapter)
1013 {
1014         int i, cpu;
1015
1016         adapter->rx_sched_call_data.func = e1000_rx_schedule;
1017         adapter->rx_sched_call_data.info = adapter->netdev;
1018         cpus_clear(adapter->rx_sched_call_data.cpumask);
1019
1020         adapter->cpu_netdev = alloc_percpu(struct net_device *);
1021         adapter->cpu_tx_ring = alloc_percpu(struct e1000_tx_ring *);
1022
1023         lock_cpu_hotplug();
1024         i = 0;
1025         for_each_online_cpu(cpu) {
1026                 *per_cpu_ptr(adapter->cpu_tx_ring, cpu) = &adapter->tx_ring[i % adapter->num_queues];
1027                 /* This is incomplete because we'd like to assign separate
1028                  * physical cpus to these netdev polling structures and
1029                  * avoid saturating a subset of cpus.
1030                  */
1031                 if (i < adapter->num_queues) {
1032                         *per_cpu_ptr(adapter->cpu_netdev, cpu) = &adapter->polling_netdev[i];
1033                         adapter->cpu_for_queue[i] = cpu;
1034                 } else
1035                         *per_cpu_ptr(adapter->cpu_netdev, cpu) = NULL;
1036
1037                 i++;
1038         }
1039         unlock_cpu_hotplug();
1040 }
1041 #endif
1042
1043 /**
1044  * e1000_open - Called when a network interface is made active
1045  * @netdev: network interface device structure
1046  *
1047  * Returns 0 on success, negative value on failure
1048  *
1049  * The open entry point is called when a network interface is made
1050  * active by the system (IFF_UP).  At this point all resources needed
1051  * for transmit and receive operations are allocated, the interrupt
1052  * handler is registered with the OS, the watchdog timer is started,
1053  * and the stack is notified that the interface is ready.
1054  **/
1055
1056 static int
1057 e1000_open(struct net_device *netdev)
1058 {
1059         struct e1000_adapter *adapter = netdev_priv(netdev);
1060         int err;
1061
1062         /* allocate transmit descriptors */
1063
1064         if ((err = e1000_setup_all_tx_resources(adapter)))
1065                 goto err_setup_tx;
1066
1067         /* allocate receive descriptors */
1068
1069         if ((err = e1000_setup_all_rx_resources(adapter)))
1070                 goto err_setup_rx;
1071
1072         if((err = e1000_up(adapter)))
1073                 goto err_up;
1074         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1075         if((adapter->hw.mng_cookie.status &
1076                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1077                 e1000_update_mng_vlan(adapter);
1078         }
1079
1080         return E1000_SUCCESS;
1081
1082 err_up:
1083         e1000_free_all_rx_resources(adapter);
1084 err_setup_rx:
1085         e1000_free_all_tx_resources(adapter);
1086 err_setup_tx:
1087         e1000_reset(adapter);
1088
1089         return err;
1090 }
1091
1092 /**
1093  * e1000_close - Disables a network interface
1094  * @netdev: network interface device structure
1095  *
1096  * Returns 0, this is not allowed to fail
1097  *
1098  * The close entry point is called when an interface is de-activated
1099  * by the OS.  The hardware is still under the drivers control, but
1100  * needs to be disabled.  A global MAC reset is issued to stop the
1101  * hardware, and all transmit and receive resources are freed.
1102  **/
1103
1104 static int
1105 e1000_close(struct net_device *netdev)
1106 {
1107         struct e1000_adapter *adapter = netdev_priv(netdev);
1108
1109         e1000_down(adapter);
1110
1111         e1000_free_all_tx_resources(adapter);
1112         e1000_free_all_rx_resources(adapter);
1113
1114         if((adapter->hw.mng_cookie.status &
1115                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1116                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1117         }
1118         return 0;
1119 }
1120
1121 /**
1122  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1123  * @adapter: address of board private structure
1124  * @start: address of beginning of memory
1125  * @len: length of memory
1126  **/
1127 static inline boolean_t
1128 e1000_check_64k_bound(struct e1000_adapter *adapter,
1129                       void *start, unsigned long len)
1130 {
1131         unsigned long begin = (unsigned long) start;
1132         unsigned long end = begin + len;
1133
1134         /* First rev 82545 and 82546 need to not allow any memory
1135          * write location to cross 64k boundary due to errata 23 */
1136         if (adapter->hw.mac_type == e1000_82545 ||
1137             adapter->hw.mac_type == e1000_82546) {
1138                 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1139         }
1140
1141         return TRUE;
1142 }
1143
1144 /**
1145  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1146  * @adapter: board private structure
1147  * @txdr:    tx descriptor ring (for a specific queue) to setup
1148  *
1149  * Return 0 on success, negative on failure
1150  **/
1151
1152 static int
1153 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1154                          struct e1000_tx_ring *txdr)
1155 {
1156         struct pci_dev *pdev = adapter->pdev;
1157         int size;
1158
1159         size = sizeof(struct e1000_buffer) * txdr->count;
1160
1161         txdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus));
1162         if(!txdr->buffer_info) {
1163                 DPRINTK(PROBE, ERR,
1164                 "Unable to allocate memory for the transmit descriptor ring\n");
1165                 return -ENOMEM;
1166         }
1167         memset(txdr->buffer_info, 0, size);
1168
1169         /* round up to nearest 4K */
1170
1171         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1172         E1000_ROUNDUP(txdr->size, 4096);
1173
1174         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1175         if(!txdr->desc) {
1176 setup_tx_desc_die:
1177                 vfree(txdr->buffer_info);
1178                 DPRINTK(PROBE, ERR,
1179                 "Unable to allocate memory for the transmit descriptor ring\n");
1180                 return -ENOMEM;
1181         }
1182
1183         /* Fix for errata 23, can't cross 64kB boundary */
1184         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1185                 void *olddesc = txdr->desc;
1186                 dma_addr_t olddma = txdr->dma;
1187                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1188                                      "at %p\n", txdr->size, txdr->desc);
1189                 /* Try again, without freeing the previous */
1190                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1191                 if(!txdr->desc) {
1192                 /* Failed allocation, critical failure */
1193                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1194                         goto setup_tx_desc_die;
1195                 }
1196
1197                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1198                         /* give up */
1199                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1200                                             txdr->dma);
1201                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1202                         DPRINTK(PROBE, ERR,
1203                                 "Unable to allocate aligned memory "
1204                                 "for the transmit descriptor ring\n");
1205                         vfree(txdr->buffer_info);
1206                         return -ENOMEM;
1207                 } else {
1208                         /* Free old allocation, new allocation was successful */
1209                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1210                 }
1211         }
1212         memset(txdr->desc, 0, txdr->size);
1213
1214         txdr->next_to_use = 0;
1215         txdr->next_to_clean = 0;
1216         spin_lock_init(&txdr->tx_lock);
1217
1218         return 0;
1219 }
1220
1221 /**
1222  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1223  *                                (Descriptors) for all queues
1224  * @adapter: board private structure
1225  *
1226  * If this function returns with an error, then it's possible one or
1227  * more of the rings is populated (while the rest are not).  It is the
1228  * callers duty to clean those orphaned rings.
1229  *
1230  * Return 0 on success, negative on failure
1231  **/
1232
1233 int
1234 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1235 {
1236         int i, err = 0;
1237
1238         for (i = 0; i < adapter->num_queues; i++) {
1239                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1240                 if (err) {
1241                         DPRINTK(PROBE, ERR,
1242                                 "Allocation for Tx Queue %u failed\n", i);
1243                         break;
1244                 }
1245         }
1246
1247         return err;
1248 }
1249
1250 /**
1251  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1252  * @adapter: board private structure
1253  *
1254  * Configure the Tx unit of the MAC after a reset.
1255  **/
1256
1257 static void
1258 e1000_configure_tx(struct e1000_adapter *adapter)
1259 {
1260         uint64_t tdba;
1261         struct e1000_hw *hw = &adapter->hw;
1262         uint32_t tdlen, tctl, tipg, tarc;
1263
1264         /* Setup the HW Tx Head and Tail descriptor pointers */
1265
1266         switch (adapter->num_queues) {
1267         case 2:
1268                 tdba = adapter->tx_ring[1].dma;
1269                 tdlen = adapter->tx_ring[1].count *
1270                         sizeof(struct e1000_tx_desc);
1271                 E1000_WRITE_REG(hw, TDBAL1, (tdba & 0x00000000ffffffffULL));
1272                 E1000_WRITE_REG(hw, TDBAH1, (tdba >> 32));
1273                 E1000_WRITE_REG(hw, TDLEN1, tdlen);
1274                 E1000_WRITE_REG(hw, TDH1, 0);
1275                 E1000_WRITE_REG(hw, TDT1, 0);
1276                 adapter->tx_ring[1].tdh = E1000_TDH1;
1277                 adapter->tx_ring[1].tdt = E1000_TDT1;
1278                 /* Fall Through */
1279         case 1:
1280         default:
1281                 tdba = adapter->tx_ring[0].dma;
1282                 tdlen = adapter->tx_ring[0].count *
1283                         sizeof(struct e1000_tx_desc);
1284                 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1285                 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1286                 E1000_WRITE_REG(hw, TDLEN, tdlen);
1287                 E1000_WRITE_REG(hw, TDH, 0);
1288                 E1000_WRITE_REG(hw, TDT, 0);
1289                 adapter->tx_ring[0].tdh = E1000_TDH;
1290                 adapter->tx_ring[0].tdt = E1000_TDT;
1291                 break;
1292         }
1293
1294         /* Set the default values for the Tx Inter Packet Gap timer */
1295
1296         switch (hw->mac_type) {
1297         case e1000_82542_rev2_0:
1298         case e1000_82542_rev2_1:
1299                 tipg = DEFAULT_82542_TIPG_IPGT;
1300                 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
1301                 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
1302                 break;
1303         default:
1304                 if (hw->media_type == e1000_media_type_fiber ||
1305                     hw->media_type == e1000_media_type_internal_serdes)
1306                         tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1307                 else
1308                         tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1309                 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
1310                 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
1311         }
1312         E1000_WRITE_REG(hw, TIPG, tipg);
1313
1314         /* Set the Tx Interrupt Delay register */
1315
1316         E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1317         if (hw->mac_type >= e1000_82540)
1318                 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1319
1320         /* Program the Transmit Control Register */
1321
1322         tctl = E1000_READ_REG(hw, TCTL);
1323
1324         tctl &= ~E1000_TCTL_CT;
1325         tctl |= E1000_TCTL_EN | E1000_TCTL_PSP | E1000_TCTL_RTLC |
1326                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1327
1328         E1000_WRITE_REG(hw, TCTL, tctl);
1329
1330         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1331                 tarc = E1000_READ_REG(hw, TARC0);
1332                 tarc |= ((1 << 25) | (1 << 21));
1333                 E1000_WRITE_REG(hw, TARC0, tarc);
1334                 tarc = E1000_READ_REG(hw, TARC1);
1335                 tarc |= (1 << 25);
1336                 if (tctl & E1000_TCTL_MULR)
1337                         tarc &= ~(1 << 28);
1338                 else
1339                         tarc |= (1 << 28);
1340                 E1000_WRITE_REG(hw, TARC1, tarc);
1341         }
1342
1343         e1000_config_collision_dist(hw);
1344
1345         /* Setup Transmit Descriptor Settings for eop descriptor */
1346         adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
1347                 E1000_TXD_CMD_IFCS;
1348
1349         if (hw->mac_type < e1000_82543)
1350                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1351         else
1352                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1353
1354         /* Cache if we're 82544 running in PCI-X because we'll
1355          * need this to apply a workaround later in the send path. */
1356         if (hw->mac_type == e1000_82544 &&
1357             hw->bus_type == e1000_bus_type_pcix)
1358                 adapter->pcix_82544 = 1;
1359 }
1360
1361 /**
1362  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1363  * @adapter: board private structure
1364  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1365  *
1366  * Returns 0 on success, negative on failure
1367  **/
1368
1369 static int
1370 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1371                          struct e1000_rx_ring *rxdr)
1372 {
1373         struct pci_dev *pdev = adapter->pdev;
1374         int size, desc_len;
1375
1376         size = sizeof(struct e1000_buffer) * rxdr->count;
1377         rxdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus));
1378         if (!rxdr->buffer_info) {
1379                 DPRINTK(PROBE, ERR,
1380                 "Unable to allocate memory for the receive descriptor ring\n");
1381                 return -ENOMEM;
1382         }
1383         memset(rxdr->buffer_info, 0, size);
1384
1385         size = sizeof(struct e1000_ps_page) * rxdr->count;
1386         rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1387         if(!rxdr->ps_page) {
1388                 vfree(rxdr->buffer_info);
1389                 DPRINTK(PROBE, ERR,
1390                 "Unable to allocate memory for the receive descriptor ring\n");
1391                 return -ENOMEM;
1392         }
1393         memset(rxdr->ps_page, 0, size);
1394
1395         size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1396         rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1397         if(!rxdr->ps_page_dma) {
1398                 vfree(rxdr->buffer_info);
1399                 kfree(rxdr->ps_page);
1400                 DPRINTK(PROBE, ERR,
1401                 "Unable to allocate memory for the receive descriptor ring\n");
1402                 return -ENOMEM;
1403         }
1404         memset(rxdr->ps_page_dma, 0, size);
1405
1406         if(adapter->hw.mac_type <= e1000_82547_rev_2)
1407                 desc_len = sizeof(struct e1000_rx_desc);
1408         else
1409                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1410
1411         /* Round up to nearest 4K */
1412
1413         rxdr->size = rxdr->count * desc_len;
1414         E1000_ROUNDUP(rxdr->size, 4096);
1415
1416         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1417
1418         if (!rxdr->desc) {
1419                 DPRINTK(PROBE, ERR,
1420                 "Unable to allocate memory for the receive descriptor ring\n");
1421 setup_rx_desc_die:
1422                 vfree(rxdr->buffer_info);
1423                 kfree(rxdr->ps_page);
1424                 kfree(rxdr->ps_page_dma);
1425                 return -ENOMEM;
1426         }
1427
1428         /* Fix for errata 23, can't cross 64kB boundary */
1429         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1430                 void *olddesc = rxdr->desc;
1431                 dma_addr_t olddma = rxdr->dma;
1432                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1433                                      "at %p\n", rxdr->size, rxdr->desc);
1434                 /* Try again, without freeing the previous */
1435                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1436                 /* Failed allocation, critical failure */
1437                 if (!rxdr->desc) {
1438                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1439                         DPRINTK(PROBE, ERR,
1440                                 "Unable to allocate memory "
1441                                 "for the receive descriptor ring\n");
1442                         goto setup_rx_desc_die;
1443                 }
1444
1445                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1446                         /* give up */
1447                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1448                                             rxdr->dma);
1449                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1450                         DPRINTK(PROBE, ERR,
1451                                 "Unable to allocate aligned memory "
1452                                 "for the receive descriptor ring\n");
1453                         goto setup_rx_desc_die;
1454                 } else {
1455                         /* Free old allocation, new allocation was successful */
1456                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1457                 }
1458         }
1459         memset(rxdr->desc, 0, rxdr->size);
1460
1461         rxdr->next_to_clean = 0;
1462         rxdr->next_to_use = 0;
1463
1464         return 0;
1465 }
1466
1467 /**
1468  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1469  *                                (Descriptors) for all queues
1470  * @adapter: board private structure
1471  *
1472  * If this function returns with an error, then it's possible one or
1473  * more of the rings is populated (while the rest are not).  It is the
1474  * callers duty to clean those orphaned rings.
1475  *
1476  * Return 0 on success, negative on failure
1477  **/
1478
1479 int
1480 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1481 {
1482         int i, err = 0;
1483
1484         for (i = 0; i < adapter->num_queues; i++) {
1485                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1486                 if (err) {
1487                         DPRINTK(PROBE, ERR,
1488                                 "Allocation for Rx Queue %u failed\n", i);
1489                         break;
1490                 }
1491         }
1492
1493         return err;
1494 }
1495
1496 /**
1497  * e1000_setup_rctl - configure the receive control registers
1498  * @adapter: Board private structure
1499  **/
1500 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1501                         (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1502 static void
1503 e1000_setup_rctl(struct e1000_adapter *adapter)
1504 {
1505         uint32_t rctl, rfctl;
1506         uint32_t psrctl = 0;
1507 #ifdef CONFIG_E1000_PACKET_SPLIT
1508         uint32_t pages = 0;
1509 #endif
1510
1511         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1512
1513         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1514
1515         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1516                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1517                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1518
1519         if(adapter->hw.tbi_compatibility_on == 1)
1520                 rctl |= E1000_RCTL_SBP;
1521         else
1522                 rctl &= ~E1000_RCTL_SBP;
1523
1524         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1525                 rctl &= ~E1000_RCTL_LPE;
1526         else
1527                 rctl |= E1000_RCTL_LPE;
1528
1529         /* Setup buffer sizes */
1530         if(adapter->hw.mac_type >= e1000_82571) {
1531                 /* We can now specify buffers in 1K increments.
1532                  * BSIZE and BSEX are ignored in this case. */
1533                 rctl |= adapter->rx_buffer_len << 0x11;
1534         } else {
1535                 rctl &= ~E1000_RCTL_SZ_4096;
1536                 rctl |= E1000_RCTL_BSEX; 
1537                 switch (adapter->rx_buffer_len) {
1538                 case E1000_RXBUFFER_2048:
1539                 default:
1540                         rctl |= E1000_RCTL_SZ_2048;
1541                         rctl &= ~E1000_RCTL_BSEX;
1542                         break;
1543                 case E1000_RXBUFFER_4096:
1544                         rctl |= E1000_RCTL_SZ_4096;
1545                         break;
1546                 case E1000_RXBUFFER_8192:
1547                         rctl |= E1000_RCTL_SZ_8192;
1548                         break;
1549                 case E1000_RXBUFFER_16384:
1550                         rctl |= E1000_RCTL_SZ_16384;
1551                         break;
1552                 }
1553         }
1554
1555 #ifdef CONFIG_E1000_PACKET_SPLIT
1556         /* 82571 and greater support packet-split where the protocol
1557          * header is placed in skb->data and the packet data is
1558          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1559          * In the case of a non-split, skb->data is linearly filled,
1560          * followed by the page buffers.  Therefore, skb->data is
1561          * sized to hold the largest protocol header.
1562          */
1563         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1564         if ((adapter->hw.mac_type > e1000_82547_rev_2) && (pages <= 3) &&
1565             PAGE_SIZE <= 16384)
1566                 adapter->rx_ps_pages = pages;
1567         else
1568                 adapter->rx_ps_pages = 0;
1569 #endif
1570         if (adapter->rx_ps_pages) {
1571                 /* Configure extra packet-split registers */
1572                 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1573                 rfctl |= E1000_RFCTL_EXTEN;
1574                 /* disable IPv6 packet split support */
1575                 rfctl |= E1000_RFCTL_IPV6_DIS;
1576                 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1577
1578                 rctl |= E1000_RCTL_DTYP_PS | E1000_RCTL_SECRC;
1579                 
1580                 psrctl |= adapter->rx_ps_bsize0 >>
1581                         E1000_PSRCTL_BSIZE0_SHIFT;
1582
1583                 switch (adapter->rx_ps_pages) {
1584                 case 3:
1585                         psrctl |= PAGE_SIZE <<
1586                                 E1000_PSRCTL_BSIZE3_SHIFT;
1587                 case 2:
1588                         psrctl |= PAGE_SIZE <<
1589                                 E1000_PSRCTL_BSIZE2_SHIFT;
1590                 case 1:
1591                         psrctl |= PAGE_SIZE >>
1592                                 E1000_PSRCTL_BSIZE1_SHIFT;
1593                         break;
1594                 }
1595
1596                 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1597         }
1598
1599         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1600 }
1601
1602 /**
1603  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1604  * @adapter: board private structure
1605  *
1606  * Configure the Rx unit of the MAC after a reset.
1607  **/
1608
1609 static void
1610 e1000_configure_rx(struct e1000_adapter *adapter)
1611 {
1612         uint64_t rdba;
1613         struct e1000_hw *hw = &adapter->hw;
1614         uint32_t rdlen, rctl, rxcsum, ctrl_ext;
1615 #ifdef CONFIG_E1000_MQ
1616         uint32_t reta, mrqc;
1617         int i;
1618 #endif
1619
1620         if (adapter->rx_ps_pages) {
1621                 rdlen = adapter->rx_ring[0].count *
1622                         sizeof(union e1000_rx_desc_packet_split);
1623                 adapter->clean_rx = e1000_clean_rx_irq_ps;
1624                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1625         } else {
1626                 rdlen = adapter->rx_ring[0].count *
1627                         sizeof(struct e1000_rx_desc);
1628                 adapter->clean_rx = e1000_clean_rx_irq;
1629                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1630         }
1631
1632         /* disable receives while setting up the descriptors */
1633         rctl = E1000_READ_REG(hw, RCTL);
1634         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
1635
1636         /* set the Receive Delay Timer Register */
1637         E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
1638
1639         if (hw->mac_type >= e1000_82540) {
1640                 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
1641                 if(adapter->itr > 1)
1642                         E1000_WRITE_REG(hw, ITR,
1643                                 1000000000 / (adapter->itr * 256));
1644         }
1645
1646         if (hw->mac_type >= e1000_82571) {
1647                 /* Reset delay timers after every interrupt */
1648                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1649                 ctrl_ext |= E1000_CTRL_EXT_CANC;
1650                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1651                 E1000_WRITE_FLUSH(hw);
1652         }
1653
1654         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1655          * the Base and Length of the Rx Descriptor Ring */
1656         switch (adapter->num_queues) {
1657 #ifdef CONFIG_E1000_MQ
1658         case 2:
1659                 rdba = adapter->rx_ring[1].dma;
1660                 E1000_WRITE_REG(hw, RDBAL1, (rdba & 0x00000000ffffffffULL));
1661                 E1000_WRITE_REG(hw, RDBAH1, (rdba >> 32));
1662                 E1000_WRITE_REG(hw, RDLEN1, rdlen);
1663                 E1000_WRITE_REG(hw, RDH1, 0);
1664                 E1000_WRITE_REG(hw, RDT1, 0);
1665                 adapter->rx_ring[1].rdh = E1000_RDH1;
1666                 adapter->rx_ring[1].rdt = E1000_RDT1;
1667                 /* Fall Through */
1668 #endif
1669         case 1:
1670         default:
1671                 rdba = adapter->rx_ring[0].dma;
1672                 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1673                 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
1674                 E1000_WRITE_REG(hw, RDLEN, rdlen);
1675                 E1000_WRITE_REG(hw, RDH, 0);
1676                 E1000_WRITE_REG(hw, RDT, 0);
1677                 adapter->rx_ring[0].rdh = E1000_RDH;
1678                 adapter->rx_ring[0].rdt = E1000_RDT;
1679                 break;
1680         }
1681
1682 #ifdef CONFIG_E1000_MQ
1683         if (adapter->num_queues > 1) {
1684                 uint32_t random[10];
1685
1686                 get_random_bytes(&random[0], 40);
1687
1688                 if (hw->mac_type <= e1000_82572) {
1689                         E1000_WRITE_REG(hw, RSSIR, 0);
1690                         E1000_WRITE_REG(hw, RSSIM, 0);
1691                 }
1692
1693                 switch (adapter->num_queues) {
1694                 case 2:
1695                 default:
1696                         reta = 0x00800080;
1697                         mrqc = E1000_MRQC_ENABLE_RSS_2Q;
1698                         break;
1699                 }
1700
1701                 /* Fill out redirection table */
1702                 for (i = 0; i < 32; i++)
1703                         E1000_WRITE_REG_ARRAY(hw, RETA, i, reta);
1704                 /* Fill out hash function seeds */
1705                 for (i = 0; i < 10; i++)
1706                         E1000_WRITE_REG_ARRAY(hw, RSSRK, i, random[i]);
1707
1708                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
1709                          E1000_MRQC_RSS_FIELD_IPV4_TCP);
1710                 E1000_WRITE_REG(hw, MRQC, mrqc);
1711         }
1712
1713         /* Multiqueue and packet checksumming are mutually exclusive. */
1714         if (hw->mac_type >= e1000_82571) {
1715                 rxcsum = E1000_READ_REG(hw, RXCSUM);
1716                 rxcsum |= E1000_RXCSUM_PCSD;
1717                 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1718         }
1719
1720 #else
1721
1722         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1723         if (hw->mac_type >= e1000_82543) {
1724                 rxcsum = E1000_READ_REG(hw, RXCSUM);
1725                 if(adapter->rx_csum == TRUE) {
1726                         rxcsum |= E1000_RXCSUM_TUOFL;
1727
1728                         /* Enable 82571 IPv4 payload checksum for UDP fragments
1729                          * Must be used in conjunction with packet-split. */
1730                         if ((hw->mac_type >= e1000_82571) && 
1731                            (adapter->rx_ps_pages)) {
1732                                 rxcsum |= E1000_RXCSUM_IPPCSE;
1733                         }
1734                 } else {
1735                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1736                         /* don't need to clear IPPCSE as it defaults to 0 */
1737                 }
1738                 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1739         }
1740 #endif /* CONFIG_E1000_MQ */
1741
1742         if (hw->mac_type == e1000_82573)
1743                 E1000_WRITE_REG(hw, ERT, 0x0100);
1744
1745         /* Enable Receives */
1746         E1000_WRITE_REG(hw, RCTL, rctl);
1747 }
1748
1749 /**
1750  * e1000_free_tx_resources - Free Tx Resources per Queue
1751  * @adapter: board private structure
1752  * @tx_ring: Tx descriptor ring for a specific queue
1753  *
1754  * Free all transmit software resources
1755  **/
1756
1757 static void
1758 e1000_free_tx_resources(struct e1000_adapter *adapter,
1759                         struct e1000_tx_ring *tx_ring)
1760 {
1761         struct pci_dev *pdev = adapter->pdev;
1762
1763         e1000_clean_tx_ring(adapter, tx_ring);
1764
1765         vfree(tx_ring->buffer_info);
1766         tx_ring->buffer_info = NULL;
1767
1768         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1769
1770         tx_ring->desc = NULL;
1771 }
1772
1773 /**
1774  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1775  * @adapter: board private structure
1776  *
1777  * Free all transmit software resources
1778  **/
1779
1780 void
1781 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1782 {
1783         int i;
1784
1785         for (i = 0; i < adapter->num_queues; i++)
1786                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1787 }
1788
1789 static inline void
1790 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1791                         struct e1000_buffer *buffer_info)
1792 {
1793         if(buffer_info->dma) {
1794                 pci_unmap_page(adapter->pdev,
1795                                 buffer_info->dma,
1796                                 buffer_info->length,
1797                                 PCI_DMA_TODEVICE);
1798                 buffer_info->dma = 0;
1799         }
1800         if(buffer_info->skb) {
1801                 dev_kfree_skb_any(buffer_info->skb);
1802                 buffer_info->skb = NULL;
1803         }
1804 }
1805
1806 /**
1807  * e1000_clean_tx_ring - Free Tx Buffers
1808  * @adapter: board private structure
1809  * @tx_ring: ring to be cleaned
1810  **/
1811
1812 static void
1813 e1000_clean_tx_ring(struct e1000_adapter *adapter,
1814                     struct e1000_tx_ring *tx_ring)
1815 {
1816         struct e1000_buffer *buffer_info;
1817         unsigned long size;
1818         unsigned int i;
1819
1820         /* Free all the Tx ring sk_buffs */
1821
1822         for(i = 0; i < tx_ring->count; i++) {
1823                 buffer_info = &tx_ring->buffer_info[i];
1824                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1825         }
1826
1827         size = sizeof(struct e1000_buffer) * tx_ring->count;
1828         memset(tx_ring->buffer_info, 0, size);
1829
1830         /* Zero out the descriptor ring */
1831
1832         memset(tx_ring->desc, 0, tx_ring->size);
1833
1834         tx_ring->next_to_use = 0;
1835         tx_ring->next_to_clean = 0;
1836         tx_ring->last_tx_tso = 0;
1837
1838         writel(0, adapter->hw.hw_addr + tx_ring->tdh);
1839         writel(0, adapter->hw.hw_addr + tx_ring->tdt);
1840 }
1841
1842 /**
1843  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
1844  * @adapter: board private structure
1845  **/
1846
1847 static void
1848 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
1849 {
1850         int i;
1851
1852         for (i = 0; i < adapter->num_queues; i++)
1853                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1854 }
1855
1856 /**
1857  * e1000_free_rx_resources - Free Rx Resources
1858  * @adapter: board private structure
1859  * @rx_ring: ring to clean the resources from
1860  *
1861  * Free all receive software resources
1862  **/
1863
1864 static void
1865 e1000_free_rx_resources(struct e1000_adapter *adapter,
1866                         struct e1000_rx_ring *rx_ring)
1867 {
1868         struct pci_dev *pdev = adapter->pdev;
1869
1870         e1000_clean_rx_ring(adapter, rx_ring);
1871
1872         vfree(rx_ring->buffer_info);
1873         rx_ring->buffer_info = NULL;
1874         kfree(rx_ring->ps_page);
1875         rx_ring->ps_page = NULL;
1876         kfree(rx_ring->ps_page_dma);
1877         rx_ring->ps_page_dma = NULL;
1878
1879         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
1880
1881         rx_ring->desc = NULL;
1882 }
1883
1884 /**
1885  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
1886  * @adapter: board private structure
1887  *
1888  * Free all receive software resources
1889  **/
1890
1891 void
1892 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
1893 {
1894         int i;
1895
1896         for (i = 0; i < adapter->num_queues; i++)
1897                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
1898 }
1899
1900 /**
1901  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1902  * @adapter: board private structure
1903  * @rx_ring: ring to free buffers from
1904  **/
1905
1906 static void
1907 e1000_clean_rx_ring(struct e1000_adapter *adapter,
1908                     struct e1000_rx_ring *rx_ring)
1909 {
1910         struct e1000_buffer *buffer_info;
1911         struct e1000_ps_page *ps_page;
1912         struct e1000_ps_page_dma *ps_page_dma;
1913         struct pci_dev *pdev = adapter->pdev;
1914         unsigned long size;
1915         unsigned int i, j;
1916
1917         /* Free all the Rx ring sk_buffs */
1918
1919         for(i = 0; i < rx_ring->count; i++) {
1920                 buffer_info = &rx_ring->buffer_info[i];
1921                 if(buffer_info->skb) {
1922                         ps_page = &rx_ring->ps_page[i];
1923                         ps_page_dma = &rx_ring->ps_page_dma[i];
1924                         pci_unmap_single(pdev,
1925                                          buffer_info->dma,
1926                                          buffer_info->length,
1927                                          PCI_DMA_FROMDEVICE);
1928
1929                         dev_kfree_skb(buffer_info->skb);
1930                         buffer_info->skb = NULL;
1931
1932                         for(j = 0; j < adapter->rx_ps_pages; j++) {
1933                                 if(!ps_page->ps_page[j]) break;
1934                                 pci_unmap_single(pdev,
1935                                                  ps_page_dma->ps_page_dma[j],
1936                                                  PAGE_SIZE, PCI_DMA_FROMDEVICE);
1937                                 ps_page_dma->ps_page_dma[j] = 0;
1938                                 put_page(ps_page->ps_page[j]);
1939                                 ps_page->ps_page[j] = NULL;
1940                         }
1941                 }
1942         }
1943
1944         size = sizeof(struct e1000_buffer) * rx_ring->count;
1945         memset(rx_ring->buffer_info, 0, size);
1946         size = sizeof(struct e1000_ps_page) * rx_ring->count;
1947         memset(rx_ring->ps_page, 0, size);
1948         size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
1949         memset(rx_ring->ps_page_dma, 0, size);
1950
1951         /* Zero out the descriptor ring */
1952
1953         memset(rx_ring->desc, 0, rx_ring->size);
1954
1955         rx_ring->next_to_clean = 0;
1956         rx_ring->next_to_use = 0;
1957
1958         writel(0, adapter->hw.hw_addr + rx_ring->rdh);
1959         writel(0, adapter->hw.hw_addr + rx_ring->rdt);
1960 }
1961
1962 /**
1963  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
1964  * @adapter: board private structure
1965  **/
1966
1967 static void
1968 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
1969 {
1970         int i;
1971
1972         for (i = 0; i < adapter->num_queues; i++)
1973                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
1974 }
1975
1976 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
1977  * and memory write and invalidate disabled for certain operations
1978  */
1979 static void
1980 e1000_enter_82542_rst(struct e1000_adapter *adapter)
1981 {
1982         struct net_device *netdev = adapter->netdev;
1983         uint32_t rctl;
1984
1985         e1000_pci_clear_mwi(&adapter->hw);
1986
1987         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1988         rctl |= E1000_RCTL_RST;
1989         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1990         E1000_WRITE_FLUSH(&adapter->hw);
1991         mdelay(5);
1992
1993         if(netif_running(netdev))
1994                 e1000_clean_all_rx_rings(adapter);
1995 }
1996
1997 static void
1998 e1000_leave_82542_rst(struct e1000_adapter *adapter)
1999 {
2000         struct net_device *netdev = adapter->netdev;
2001         uint32_t rctl;
2002
2003         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2004         rctl &= ~E1000_RCTL_RST;
2005         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2006         E1000_WRITE_FLUSH(&adapter->hw);
2007         mdelay(5);
2008
2009         if(adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2010                 e1000_pci_set_mwi(&adapter->hw);
2011
2012         if(netif_running(netdev)) {
2013                 e1000_configure_rx(adapter);
2014                 e1000_alloc_rx_buffers(adapter, &adapter->rx_ring[0]);
2015         }
2016 }
2017
2018 /**
2019  * e1000_set_mac - Change the Ethernet Address of the NIC
2020  * @netdev: network interface device structure
2021  * @p: pointer to an address structure
2022  *
2023  * Returns 0 on success, negative on failure
2024  **/
2025
2026 static int
2027 e1000_set_mac(struct net_device *netdev, void *p)
2028 {
2029         struct e1000_adapter *adapter = netdev_priv(netdev);
2030         struct sockaddr *addr = p;
2031
2032         if(!is_valid_ether_addr(addr->sa_data))
2033                 return -EADDRNOTAVAIL;
2034
2035         /* 82542 2.0 needs to be in reset to write receive address registers */
2036
2037         if(adapter->hw.mac_type == e1000_82542_rev2_0)
2038                 e1000_enter_82542_rst(adapter);
2039
2040         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2041         memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2042
2043         e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2044
2045         /* With 82571 controllers, LAA may be overwritten (with the default)
2046          * due to controller reset from the other port. */
2047         if (adapter->hw.mac_type == e1000_82571) {
2048                 /* activate the work around */
2049                 adapter->hw.laa_is_present = 1;
2050
2051                 /* Hold a copy of the LAA in RAR[14] This is done so that 
2052                  * between the time RAR[0] gets clobbered  and the time it 
2053                  * gets fixed (in e1000_watchdog), the actual LAA is in one 
2054                  * of the RARs and no incoming packets directed to this port
2055                  * are dropped. Eventaully the LAA will be in RAR[0] and 
2056                  * RAR[14] */
2057                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 
2058                                         E1000_RAR_ENTRIES - 1);
2059         }
2060
2061         if(adapter->hw.mac_type == e1000_82542_rev2_0)
2062                 e1000_leave_82542_rst(adapter);
2063
2064         return 0;
2065 }
2066
2067 /**
2068  * e1000_set_multi - Multicast and Promiscuous mode set
2069  * @netdev: network interface device structure
2070  *
2071  * The set_multi entry point is called whenever the multicast address
2072  * list or the network interface flags are updated.  This routine is
2073  * responsible for configuring the hardware for proper multicast,
2074  * promiscuous mode, and all-multi behavior.
2075  **/
2076
2077 static void
2078 e1000_set_multi(struct net_device *netdev)
2079 {
2080         struct e1000_adapter *adapter = netdev_priv(netdev);
2081         struct e1000_hw *hw = &adapter->hw;
2082         struct dev_mc_list *mc_ptr;
2083         uint32_t rctl;
2084         uint32_t hash_value;
2085         int i, rar_entries = E1000_RAR_ENTRIES;
2086
2087         /* reserve RAR[14] for LAA over-write work-around */
2088         if (adapter->hw.mac_type == e1000_82571)
2089                 rar_entries--;
2090
2091         /* Check for Promiscuous and All Multicast modes */
2092
2093         rctl = E1000_READ_REG(hw, RCTL);
2094
2095         if(netdev->flags & IFF_PROMISC) {
2096                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2097         } else if(netdev->flags & IFF_ALLMULTI) {
2098                 rctl |= E1000_RCTL_MPE;
2099                 rctl &= ~E1000_RCTL_UPE;
2100         } else {
2101                 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2102         }
2103
2104         E1000_WRITE_REG(hw, RCTL, rctl);
2105
2106         /* 82542 2.0 needs to be in reset to write receive address registers */
2107
2108         if(hw->mac_type == e1000_82542_rev2_0)
2109                 e1000_enter_82542_rst(adapter);
2110
2111         /* load the first 14 multicast address into the exact filters 1-14
2112          * RAR 0 is used for the station MAC adddress
2113          * if there are not 14 addresses, go ahead and clear the filters
2114          * -- with 82571 controllers only 0-13 entries are filled here
2115          */
2116         mc_ptr = netdev->mc_list;
2117
2118         for(i = 1; i < rar_entries; i++) {
2119                 if (mc_ptr) {
2120                         e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2121                         mc_ptr = mc_ptr->next;
2122                 } else {
2123                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2124                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2125                 }
2126         }
2127
2128         /* clear the old settings from the multicast hash table */
2129
2130         for(i = 0; i < E1000_NUM_MTA_REGISTERS; i++)
2131                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2132
2133         /* load any remaining addresses into the hash table */
2134
2135         for(; mc_ptr; mc_ptr = mc_ptr->next) {
2136                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2137                 e1000_mta_set(hw, hash_value);
2138         }
2139
2140         if(hw->mac_type == e1000_82542_rev2_0)
2141                 e1000_leave_82542_rst(adapter);
2142 }
2143
2144 /* Need to wait a few seconds after link up to get diagnostic information from
2145  * the phy */
2146
2147 static void
2148 e1000_update_phy_info(unsigned long data)
2149 {
2150         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2151         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2152 }
2153
2154 /**
2155  * e1000_82547_tx_fifo_stall - Timer Call-back
2156  * @data: pointer to adapter cast into an unsigned long
2157  **/
2158
2159 static void
2160 e1000_82547_tx_fifo_stall(unsigned long data)
2161 {
2162         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2163         struct net_device *netdev = adapter->netdev;
2164         uint32_t tctl;
2165
2166         if(atomic_read(&adapter->tx_fifo_stall)) {
2167                 if((E1000_READ_REG(&adapter->hw, TDT) ==
2168                     E1000_READ_REG(&adapter->hw, TDH)) &&
2169                    (E1000_READ_REG(&adapter->hw, TDFT) ==
2170                     E1000_READ_REG(&adapter->hw, TDFH)) &&
2171                    (E1000_READ_REG(&adapter->hw, TDFTS) ==
2172                     E1000_READ_REG(&adapter->hw, TDFHS))) {
2173                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2174                         E1000_WRITE_REG(&adapter->hw, TCTL,
2175                                         tctl & ~E1000_TCTL_EN);
2176                         E1000_WRITE_REG(&adapter->hw, TDFT,
2177                                         adapter->tx_head_addr);
2178                         E1000_WRITE_REG(&adapter->hw, TDFH,
2179                                         adapter->tx_head_addr);
2180                         E1000_WRITE_REG(&adapter->hw, TDFTS,
2181                                         adapter->tx_head_addr);
2182                         E1000_WRITE_REG(&adapter->hw, TDFHS,
2183                                         adapter->tx_head_addr);
2184                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2185                         E1000_WRITE_FLUSH(&adapter->hw);
2186
2187                         adapter->tx_fifo_head = 0;
2188                         atomic_set(&adapter->tx_fifo_stall, 0);
2189                         netif_wake_queue(netdev);
2190                 } else {
2191                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2192                 }
2193         }
2194 }
2195
2196 /**
2197  * e1000_watchdog - Timer Call-back
2198  * @data: pointer to adapter cast into an unsigned long
2199  **/
2200 static void
2201 e1000_watchdog(unsigned long data)
2202 {
2203         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2204
2205         /* Do the rest outside of interrupt context */
2206         schedule_work(&adapter->watchdog_task);
2207 }
2208
2209 static void
2210 e1000_watchdog_task(struct e1000_adapter *adapter)
2211 {
2212         struct net_device *netdev = adapter->netdev;
2213         struct e1000_tx_ring *txdr = adapter->tx_ring;
2214         uint32_t link;
2215
2216         e1000_check_for_link(&adapter->hw);
2217         if (adapter->hw.mac_type == e1000_82573) {
2218                 e1000_enable_tx_pkt_filtering(&adapter->hw);
2219                 if(adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2220                         e1000_update_mng_vlan(adapter);
2221         }       
2222
2223         if((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2224            !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2225                 link = !adapter->hw.serdes_link_down;
2226         else
2227                 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2228
2229         if(link) {
2230                 if(!netif_carrier_ok(netdev)) {
2231                         e1000_get_speed_and_duplex(&adapter->hw,
2232                                                    &adapter->link_speed,
2233                                                    &adapter->link_duplex);
2234
2235                         DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
2236                                adapter->link_speed,
2237                                adapter->link_duplex == FULL_DUPLEX ?
2238                                "Full Duplex" : "Half Duplex");
2239
2240                         netif_carrier_on(netdev);
2241                         netif_wake_queue(netdev);
2242                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2243                         adapter->smartspeed = 0;
2244                 }
2245         } else {
2246                 if(netif_carrier_ok(netdev)) {
2247                         adapter->link_speed = 0;
2248                         adapter->link_duplex = 0;
2249                         DPRINTK(LINK, INFO, "NIC Link is Down\n");
2250                         netif_carrier_off(netdev);
2251                         netif_stop_queue(netdev);
2252                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2253                 }
2254
2255                 e1000_smartspeed(adapter);
2256         }
2257
2258         e1000_update_stats(adapter);
2259
2260         adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2261         adapter->tpt_old = adapter->stats.tpt;
2262         adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2263         adapter->colc_old = adapter->stats.colc;
2264
2265         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2266         adapter->gorcl_old = adapter->stats.gorcl;
2267         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2268         adapter->gotcl_old = adapter->stats.gotcl;
2269
2270         e1000_update_adaptive(&adapter->hw);
2271
2272         if (adapter->num_queues == 1 && !netif_carrier_ok(netdev)) {
2273                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2274                         /* We've lost link, so the controller stops DMA,
2275                          * but we've got queued Tx work that's never going
2276                          * to get done, so reset controller to flush Tx.
2277                          * (Do the reset outside of interrupt context). */
2278                         schedule_work(&adapter->tx_timeout_task);
2279                 }
2280         }
2281
2282         /* Dynamic mode for Interrupt Throttle Rate (ITR) */
2283         if(adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
2284                 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
2285                  * asymmetrical Tx or Rx gets ITR=8000; everyone
2286                  * else is between 2000-8000. */
2287                 uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
2288                 uint32_t dif = (adapter->gotcl > adapter->gorcl ? 
2289                         adapter->gotcl - adapter->gorcl :
2290                         adapter->gorcl - adapter->gotcl) / 10000;
2291                 uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2292                 E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
2293         }
2294
2295         /* Cause software interrupt to ensure rx ring is cleaned */
2296         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2297
2298         /* Force detection of hung controller every watchdog period */
2299         adapter->detect_tx_hung = TRUE;
2300
2301         /* With 82571 controllers, LAA may be overwritten due to controller 
2302          * reset from the other port. Set the appropriate LAA in RAR[0] */
2303         if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2304                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2305
2306         /* Reset the timer */
2307         mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2308 }
2309
2310 #define E1000_TX_FLAGS_CSUM             0x00000001
2311 #define E1000_TX_FLAGS_VLAN             0x00000002
2312 #define E1000_TX_FLAGS_TSO              0x00000004
2313 #define E1000_TX_FLAGS_IPV4             0x00000008
2314 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2315 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2316
2317 static inline int
2318 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2319           struct sk_buff *skb)
2320 {
2321 #ifdef NETIF_F_TSO
2322         struct e1000_context_desc *context_desc;
2323         struct e1000_buffer *buffer_info;
2324         unsigned int i;
2325         uint32_t cmd_length = 0;
2326         uint16_t ipcse = 0, tucse, mss;
2327         uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2328         int err;
2329
2330         if(skb_shinfo(skb)->tso_size) {
2331                 if (skb_header_cloned(skb)) {
2332                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2333                         if (err)
2334                                 return err;
2335                 }
2336
2337                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2338                 mss = skb_shinfo(skb)->tso_size;
2339                 if(skb->protocol == ntohs(ETH_P_IP)) {
2340                         skb->nh.iph->tot_len = 0;
2341                         skb->nh.iph->check = 0;
2342                         skb->h.th->check =
2343                                 ~csum_tcpudp_magic(skb->nh.iph->saddr,
2344                                                    skb->nh.iph->daddr,
2345                                                    0,
2346                                                    IPPROTO_TCP,
2347                                                    0);
2348                         cmd_length = E1000_TXD_CMD_IP;
2349                         ipcse = skb->h.raw - skb->data - 1;
2350 #ifdef NETIF_F_TSO_IPV6
2351                 } else if(skb->protocol == ntohs(ETH_P_IPV6)) {
2352                         skb->nh.ipv6h->payload_len = 0;
2353                         skb->h.th->check =
2354                                 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
2355                                                  &skb->nh.ipv6h->daddr,
2356                                                  0,
2357                                                  IPPROTO_TCP,
2358                                                  0);
2359                         ipcse = 0;
2360 #endif
2361                 }
2362                 ipcss = skb->nh.raw - skb->data;
2363                 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
2364                 tucss = skb->h.raw - skb->data;
2365                 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
2366                 tucse = 0;
2367
2368                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2369                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2370
2371                 i = tx_ring->next_to_use;
2372                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2373                 buffer_info = &tx_ring->buffer_info[i];
2374
2375                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2376                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2377                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2378                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2379                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2380                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2381                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2382                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2383                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2384
2385                 buffer_info->time_stamp = jiffies;
2386
2387                 if (++i == tx_ring->count) i = 0;
2388                 tx_ring->next_to_use = i;
2389
2390                 return 1;
2391         }
2392 #endif
2393
2394         return 0;
2395 }
2396
2397 static inline boolean_t
2398 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2399               struct sk_buff *skb)
2400 {
2401         struct e1000_context_desc *context_desc;
2402         struct e1000_buffer *buffer_info;
2403         unsigned int i;
2404         uint8_t css;
2405
2406         if(likely(skb->ip_summed == CHECKSUM_HW)) {
2407                 css = skb->h.raw - skb->data;
2408
2409                 i = tx_ring->next_to_use;
2410                 buffer_info = &tx_ring->buffer_info[i];
2411                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2412
2413                 context_desc->upper_setup.tcp_fields.tucss = css;
2414                 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
2415                 context_desc->upper_setup.tcp_fields.tucse = 0;
2416                 context_desc->tcp_seg_setup.data = 0;
2417                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2418
2419                 buffer_info->time_stamp = jiffies;
2420
2421                 if (unlikely(++i == tx_ring->count)) i = 0;
2422                 tx_ring->next_to_use = i;
2423
2424                 return TRUE;
2425         }
2426
2427         return FALSE;
2428 }
2429
2430 #define E1000_MAX_TXD_PWR       12
2431 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2432
2433 static inline int
2434 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2435              struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2436              unsigned int nr_frags, unsigned int mss)
2437 {
2438         struct e1000_buffer *buffer_info;
2439         unsigned int len = skb->len;
2440         unsigned int offset = 0, size, count = 0, i;
2441         unsigned int f;
2442         len -= skb->data_len;
2443
2444         i = tx_ring->next_to_use;
2445
2446         while(len) {
2447                 buffer_info = &tx_ring->buffer_info[i];
2448                 size = min(len, max_per_txd);
2449 #ifdef NETIF_F_TSO
2450                 /* Workaround for Controller erratum --
2451                  * descriptor for non-tso packet in a linear SKB that follows a
2452                  * tso gets written back prematurely before the data is fully
2453                  * DMAd to the controller */
2454                 if (!skb->data_len && tx_ring->last_tx_tso &&
2455                                 !skb_shinfo(skb)->tso_size) {
2456                         tx_ring->last_tx_tso = 0;
2457                         size -= 4;
2458                 }
2459
2460                 /* Workaround for premature desc write-backs
2461                  * in TSO mode.  Append 4-byte sentinel desc */
2462                 if(unlikely(mss && !nr_frags && size == len && size > 8))
2463                         size -= 4;
2464 #endif
2465                 /* work-around for errata 10 and it applies
2466                  * to all controllers in PCI-X mode
2467                  * The fix is to make sure that the first descriptor of a
2468                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2469                  */
2470                 if(unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2471                                 (size > 2015) && count == 0))
2472                         size = 2015;
2473                                                                                 
2474                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2475                  * terminating buffers within evenly-aligned dwords. */
2476                 if(unlikely(adapter->pcix_82544 &&
2477                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2478                    size > 4))
2479                         size -= 4;
2480
2481                 buffer_info->length = size;
2482                 buffer_info->dma =
2483                         pci_map_single(adapter->pdev,
2484                                 skb->data + offset,
2485                                 size,
2486                                 PCI_DMA_TODEVICE);
2487                 buffer_info->time_stamp = jiffies;
2488
2489                 len -= size;
2490                 offset += size;
2491                 count++;
2492                 if(unlikely(++i == tx_ring->count)) i = 0;
2493         }
2494
2495         for(f = 0; f < nr_frags; f++) {
2496                 struct skb_frag_struct *frag;
2497
2498                 frag = &skb_shinfo(skb)->frags[f];
2499                 len = frag->size;
2500                 offset = frag->page_offset;
2501
2502                 while(len) {
2503                         buffer_info = &tx_ring->buffer_info[i];
2504                         size = min(len, max_per_txd);
2505 #ifdef NETIF_F_TSO
2506                         /* Workaround for premature desc write-backs
2507                          * in TSO mode.  Append 4-byte sentinel desc */
2508                         if(unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2509                                 size -= 4;
2510 #endif
2511                         /* Workaround for potential 82544 hang in PCI-X.
2512                          * Avoid terminating buffers within evenly-aligned
2513                          * dwords. */
2514                         if(unlikely(adapter->pcix_82544 &&
2515                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
2516                            size > 4))
2517                                 size -= 4;
2518
2519                         buffer_info->length = size;
2520                         buffer_info->dma =
2521                                 pci_map_page(adapter->pdev,
2522                                         frag->page,
2523                                         offset,
2524                                         size,
2525                                         PCI_DMA_TODEVICE);
2526                         buffer_info->time_stamp = jiffies;
2527
2528                         len -= size;
2529                         offset += size;
2530                         count++;
2531                         if(unlikely(++i == tx_ring->count)) i = 0;
2532                 }
2533         }
2534
2535         i = (i == 0) ? tx_ring->count - 1 : i - 1;
2536         tx_ring->buffer_info[i].skb = skb;
2537         tx_ring->buffer_info[first].next_to_watch = i;
2538
2539         return count;
2540 }
2541
2542 static inline void
2543 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2544                int tx_flags, int count)
2545 {
2546         struct e1000_tx_desc *tx_desc = NULL;
2547         struct e1000_buffer *buffer_info;
2548         uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2549         unsigned int i;
2550
2551         if(likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2552                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2553                              E1000_TXD_CMD_TSE;
2554                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2555
2556                 if(likely(tx_flags & E1000_TX_FLAGS_IPV4))
2557                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2558         }
2559
2560         if(likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2561                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2562                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2563         }
2564
2565         if(unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2566                 txd_lower |= E1000_TXD_CMD_VLE;
2567                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2568         }
2569
2570         i = tx_ring->next_to_use;
2571
2572         while(count--) {
2573                 buffer_info = &tx_ring->buffer_info[i];
2574                 tx_desc = E1000_TX_DESC(*tx_ring, i);
2575                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2576                 tx_desc->lower.data =
2577                         cpu_to_le32(txd_lower | buffer_info->length);
2578                 tx_desc->upper.data = cpu_to_le32(txd_upper);
2579                 if(unlikely(++i == tx_ring->count)) i = 0;
2580         }
2581
2582         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2583
2584         /* Force memory writes to complete before letting h/w
2585          * know there are new descriptors to fetch.  (Only
2586          * applicable for weak-ordered memory model archs,
2587          * such as IA-64). */
2588         wmb();
2589
2590         tx_ring->next_to_use = i;
2591         writel(i, adapter->hw.hw_addr + tx_ring->tdt);
2592 }
2593
2594 /**
2595  * 82547 workaround to avoid controller hang in half-duplex environment.
2596  * The workaround is to avoid queuing a large packet that would span
2597  * the internal Tx FIFO ring boundary by notifying the stack to resend
2598  * the packet at a later time.  This gives the Tx FIFO an opportunity to
2599  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
2600  * to the beginning of the Tx FIFO.
2601  **/
2602
2603 #define E1000_FIFO_HDR                  0x10
2604 #define E1000_82547_PAD_LEN             0x3E0
2605
2606 static inline int
2607 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
2608 {
2609         uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2610         uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
2611
2612         E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
2613
2614         if(adapter->link_duplex != HALF_DUPLEX)
2615                 goto no_fifo_stall_required;
2616
2617         if(atomic_read(&adapter->tx_fifo_stall))
2618                 return 1;
2619
2620         if(skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2621                 atomic_set(&adapter->tx_fifo_stall, 1);
2622                 return 1;
2623         }
2624
2625 no_fifo_stall_required:
2626         adapter->tx_fifo_head += skb_fifo_len;
2627         if(adapter->tx_fifo_head >= adapter->tx_fifo_size)
2628                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2629         return 0;
2630 }
2631
2632 #define MINIMUM_DHCP_PACKET_SIZE 282
2633 static inline int
2634 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
2635 {
2636         struct e1000_hw *hw =  &adapter->hw;
2637         uint16_t length, offset;
2638         if(vlan_tx_tag_present(skb)) {
2639                 if(!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
2640                         ( adapter->hw.mng_cookie.status &
2641                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
2642                         return 0;
2643         }
2644         if ((skb->len > MINIMUM_DHCP_PACKET_SIZE) && (!skb->protocol)) {
2645                 struct ethhdr *eth = (struct ethhdr *) skb->data;
2646                 if((htons(ETH_P_IP) == eth->h_proto)) {
2647                         const struct iphdr *ip = 
2648                                 (struct iphdr *)((uint8_t *)skb->data+14);
2649                         if(IPPROTO_UDP == ip->protocol) {
2650                                 struct udphdr *udp = 
2651                                         (struct udphdr *)((uint8_t *)ip + 
2652                                                 (ip->ihl << 2));
2653                                 if(ntohs(udp->dest) == 67) {
2654                                         offset = (uint8_t *)udp + 8 - skb->data;
2655                                         length = skb->len - offset;
2656
2657                                         return e1000_mng_write_dhcp_info(hw,
2658                                                         (uint8_t *)udp + 8, 
2659                                                         length);
2660                                 }
2661                         }
2662                 }
2663         }
2664         return 0;
2665 }
2666
2667 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2668 static int
2669 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2670 {
2671         struct e1000_adapter *adapter = netdev_priv(netdev);
2672         struct e1000_tx_ring *tx_ring;
2673         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2674         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2675         unsigned int tx_flags = 0;
2676         unsigned int len = skb->len;
2677         unsigned long flags;
2678         unsigned int nr_frags = 0;
2679         unsigned int mss = 0;
2680         int count = 0;
2681         int tso;
2682         unsigned int f;
2683         len -= skb->data_len;
2684
2685 #ifdef CONFIG_E1000_MQ
2686         tx_ring = *per_cpu_ptr(adapter->cpu_tx_ring, smp_processor_id());
2687 #else
2688         tx_ring = adapter->tx_ring;
2689 #endif
2690
2691         if (unlikely(skb->len <= 0)) {
2692                 dev_kfree_skb_any(skb);
2693                 return NETDEV_TX_OK;
2694         }
2695
2696 #ifdef NETIF_F_TSO
2697         mss = skb_shinfo(skb)->tso_size;
2698         /* The controller does a simple calculation to 
2699          * make sure there is enough room in the FIFO before
2700          * initiating the DMA for each buffer.  The calc is:
2701          * 4 = ceil(buffer len/mss).  To make sure we don't
2702          * overrun the FIFO, adjust the max buffer len if mss
2703          * drops. */
2704         if(mss) {
2705                 uint8_t hdr_len;
2706                 max_per_txd = min(mss << 2, max_per_txd);
2707                 max_txd_pwr = fls(max_per_txd) - 1;
2708
2709         /* TSO Workaround for 82571/2 Controllers -- if skb->data
2710          * points to just header, pull a few bytes of payload from
2711          * frags into skb->data */
2712                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2713                 if (skb->data_len && (hdr_len == (skb->len - skb->data_len)) &&
2714                         (adapter->hw.mac_type == e1000_82571 ||
2715                         adapter->hw.mac_type == e1000_82572)) {
2716                         len = skb->len - skb->data_len;
2717                 }
2718         }
2719
2720         if((mss) || (skb->ip_summed == CHECKSUM_HW))
2721         /* reserve a descriptor for the offload context */
2722                 count++;
2723         count++;
2724 #else
2725         if(skb->ip_summed == CHECKSUM_HW)
2726                 count++;
2727 #endif
2728
2729 #ifdef NETIF_F_TSO
2730         /* Controller Erratum workaround */
2731         if (!skb->data_len && tx_ring->last_tx_tso &&
2732                 !skb_shinfo(skb)->tso_size)
2733                 count++;
2734 #endif
2735
2736         count += TXD_USE_COUNT(len, max_txd_pwr);
2737
2738         if(adapter->pcix_82544)
2739                 count++;
2740
2741         /* work-around for errata 10 and it applies to all controllers 
2742          * in PCI-X mode, so add one more descriptor to the count
2743          */
2744         if(unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2745                         (len > 2015)))
2746                 count++;
2747
2748         nr_frags = skb_shinfo(skb)->nr_frags;
2749         for(f = 0; f < nr_frags; f++)
2750                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
2751                                        max_txd_pwr);
2752         if(adapter->pcix_82544)
2753                 count += nr_frags;
2754
2755                 unsigned int pull_size;
2756                 pull_size = min((unsigned int)4, skb->data_len);
2757                 if (!__pskb_pull_tail(skb, pull_size)) {
2758                         printk(KERN_ERR "__pskb_pull_tail failed.\n");
2759                         dev_kfree_skb_any(skb);
2760                         return -EFAULT;
2761                 }
2762
2763         if(adapter->hw.tx_pkt_filtering && (adapter->hw.mac_type == e1000_82573) )
2764                 e1000_transfer_dhcp_info(adapter, skb);
2765
2766         local_irq_save(flags);
2767         if (!spin_trylock(&tx_ring->tx_lock)) {
2768                 /* Collision - tell upper layer to requeue */
2769                 local_irq_restore(flags);
2770                 return NETDEV_TX_LOCKED;
2771         }
2772
2773         /* need: count + 2 desc gap to keep tail from touching
2774          * head, otherwise try next time */
2775         if (unlikely(E1000_DESC_UNUSED(tx_ring) < count + 2)) {
2776                 netif_stop_queue(netdev);
2777                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2778                 return NETDEV_TX_BUSY;
2779         }
2780
2781         if(unlikely(adapter->hw.mac_type == e1000_82547)) {
2782                 if(unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
2783                         netif_stop_queue(netdev);
2784                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
2785                         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2786                         return NETDEV_TX_BUSY;
2787                 }
2788         }
2789
2790         if(unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
2791                 tx_flags |= E1000_TX_FLAGS_VLAN;
2792                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
2793         }
2794
2795         first = tx_ring->next_to_use;
2796         
2797         tso = e1000_tso(adapter, tx_ring, skb);
2798         if (tso < 0) {
2799                 dev_kfree_skb_any(skb);
2800                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2801                 return NETDEV_TX_OK;
2802         }
2803
2804         if (likely(tso)) {
2805                 tx_ring->last_tx_tso = 1;
2806                 tx_flags |= E1000_TX_FLAGS_TSO;
2807         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
2808                 tx_flags |= E1000_TX_FLAGS_CSUM;
2809
2810         /* Old method was to assume IPv4 packet by default if TSO was enabled.
2811          * 82571 hardware supports TSO capabilities for IPv6 as well...
2812          * no longer assume, we must. */
2813         if (likely(skb->protocol == ntohs(ETH_P_IP)))
2814                 tx_flags |= E1000_TX_FLAGS_IPV4;
2815
2816         e1000_tx_queue(adapter, tx_ring, tx_flags,
2817                        e1000_tx_map(adapter, tx_ring, skb, first,
2818                                     max_per_txd, nr_frags, mss));
2819
2820         netdev->trans_start = jiffies;
2821
2822         /* Make sure there is space in the ring for the next send. */
2823         if (unlikely(E1000_DESC_UNUSED(tx_ring) < MAX_SKB_FRAGS + 2))
2824                 netif_stop_queue(netdev);
2825
2826         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2827         return NETDEV_TX_OK;
2828 }
2829
2830 /**
2831  * e1000_tx_timeout - Respond to a Tx Hang
2832  * @netdev: network interface device structure
2833  **/
2834
2835 static void
2836 e1000_tx_timeout(struct net_device *netdev)
2837 {
2838         struct e1000_adapter *adapter = netdev_priv(netdev);
2839
2840         /* Do the reset outside of interrupt context */
2841         schedule_work(&adapter->tx_timeout_task);
2842 }
2843
2844 static void
2845 e1000_tx_timeout_task(struct net_device *netdev)
2846 {
2847         struct e1000_adapter *adapter = netdev_priv(netdev);
2848
2849         e1000_down(adapter);
2850         e1000_up(adapter);
2851 }
2852
2853 /**
2854  * e1000_get_stats - Get System Network Statistics
2855  * @netdev: network interface device structure
2856  *
2857  * Returns the address of the device statistics structure.
2858  * The statistics are actually updated from the timer callback.
2859  **/
2860
2861 static struct net_device_stats *
2862 e1000_get_stats(struct net_device *netdev)
2863 {
2864         struct e1000_adapter *adapter = netdev_priv(netdev);
2865
2866         e1000_update_stats(adapter);
2867         return &adapter->net_stats;
2868 }
2869
2870 /**
2871  * e1000_change_mtu - Change the Maximum Transfer Unit
2872  * @netdev: network interface device structure
2873  * @new_mtu: new value for maximum frame size
2874  *
2875  * Returns 0 on success, negative on failure
2876  **/
2877
2878 static int
2879 e1000_change_mtu(struct net_device *netdev, int new_mtu)
2880 {
2881         struct e1000_adapter *adapter = netdev_priv(netdev);
2882         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
2883
2884         if((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
2885                 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2886                         DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
2887                         return -EINVAL;
2888         }
2889
2890 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2891         /* might want this to be bigger enum check... */
2892         /* 82571 controllers limit jumbo frame size to 10500 bytes */
2893         if ((adapter->hw.mac_type == e1000_82571 || 
2894              adapter->hw.mac_type == e1000_82572) &&
2895             max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2896                 DPRINTK(PROBE, ERR, "MTU > 9216 bytes not supported "
2897                                     "on 82571 and 82572 controllers.\n");
2898                 return -EINVAL;
2899         }
2900
2901         if(adapter->hw.mac_type == e1000_82573 &&
2902             max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
2903                 DPRINTK(PROBE, ERR, "Jumbo Frames not supported "
2904                                     "on 82573\n");
2905                 return -EINVAL;
2906         }
2907
2908         if(adapter->hw.mac_type > e1000_82547_rev_2) {
2909                 adapter->rx_buffer_len = max_frame;
2910                 E1000_ROUNDUP(adapter->rx_buffer_len, 1024);
2911         } else {
2912                 if(unlikely((adapter->hw.mac_type < e1000_82543) &&
2913                    (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE))) {
2914                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported "
2915                                             "on 82542\n");
2916                         return -EINVAL;
2917
2918                 } else {
2919                         if(max_frame <= E1000_RXBUFFER_2048) {
2920                                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
2921                         } else if(max_frame <= E1000_RXBUFFER_4096) {
2922                                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
2923                         } else if(max_frame <= E1000_RXBUFFER_8192) {
2924                                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
2925                         } else if(max_frame <= E1000_RXBUFFER_16384) {
2926                                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
2927                         }
2928                 }
2929         }
2930
2931         netdev->mtu = new_mtu;
2932
2933         if(netif_running(netdev)) {
2934                 e1000_down(adapter);
2935                 e1000_up(adapter);
2936         }
2937
2938         adapter->hw.max_frame_size = max_frame;
2939
2940         return 0;
2941 }
2942
2943 /**
2944  * e1000_update_stats - Update the board statistics counters
2945  * @adapter: board private structure
2946  **/
2947
2948 void
2949 e1000_update_stats(struct e1000_adapter *adapter)
2950 {
2951         struct e1000_hw *hw = &adapter->hw;
2952         unsigned long flags;
2953         uint16_t phy_tmp;
2954
2955 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2956
2957         spin_lock_irqsave(&adapter->stats_lock, flags);
2958
2959         /* these counters are modified from e1000_adjust_tbi_stats,
2960          * called from the interrupt context, so they must only
2961          * be written while holding adapter->stats_lock
2962          */
2963
2964         adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
2965         adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
2966         adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
2967         adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
2968         adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
2969         adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
2970         adapter->stats.roc += E1000_READ_REG(hw, ROC);
2971         adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
2972         adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
2973         adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
2974         adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
2975         adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
2976         adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
2977
2978         adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
2979         adapter->stats.mpc += E1000_READ_REG(hw, MPC);
2980         adapter->stats.scc += E1000_READ_REG(hw, SCC);
2981         adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
2982         adapter->stats.mcc += E1000_READ_REG(hw, MCC);
2983         adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
2984         adapter->stats.dc += E1000_READ_REG(hw, DC);
2985         adapter->stats.sec += E1000_READ_REG(hw, SEC);
2986         adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
2987         adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
2988         adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
2989         adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
2990         adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
2991         adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
2992         adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
2993         adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
2994         adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
2995         adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
2996         adapter->stats.ruc += E1000_READ_REG(hw, RUC);
2997         adapter->stats.rfc += E1000_READ_REG(hw, RFC);
2998         adapter->stats.rjc += E1000_READ_REG(hw, RJC);
2999         adapter->stats.torl += E1000_READ_REG(hw, TORL);
3000         adapter->stats.torh += E1000_READ_REG(hw, TORH);
3001         adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3002         adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3003         adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3004         adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3005         adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3006         adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3007         adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3008         adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3009         adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3010         adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3011         adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3012
3013         /* used for adaptive IFS */
3014
3015         hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3016         adapter->stats.tpt += hw->tx_packet_delta;
3017         hw->collision_delta = E1000_READ_REG(hw, COLC);
3018         adapter->stats.colc += hw->collision_delta;
3019
3020         if(hw->mac_type >= e1000_82543) {
3021                 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3022                 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3023                 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3024                 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3025                 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3026                 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3027         }
3028         if(hw->mac_type > e1000_82547_rev_2) {
3029                 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3030                 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3031                 adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3032                 adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3033                 adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3034                 adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3035                 adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3036                 adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3037                 adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3038         }
3039
3040         /* Fill out the OS statistics structure */
3041
3042         adapter->net_stats.rx_packets = adapter->stats.gprc;
3043         adapter->net_stats.tx_packets = adapter->stats.gptc;
3044         adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3045         adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3046         adapter->net_stats.multicast = adapter->stats.mprc;
3047         adapter->net_stats.collisions = adapter->stats.colc;
3048
3049         /* Rx Errors */
3050
3051         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3052                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3053                 adapter->stats.rlec + adapter->stats.mpc + 
3054                 adapter->stats.cexterr;
3055         adapter->net_stats.rx_length_errors = adapter->stats.rlec;
3056         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3057         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3058         adapter->net_stats.rx_fifo_errors = adapter->stats.mpc;
3059         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3060
3061         /* Tx Errors */
3062
3063         adapter->net_stats.tx_errors = adapter->stats.ecol +
3064                                        adapter->stats.latecol;
3065         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3066         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3067         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3068
3069         /* Tx Dropped needs to be maintained elsewhere */
3070
3071         /* Phy Stats */
3072
3073         if(hw->media_type == e1000_media_type_copper) {
3074                 if((adapter->link_speed == SPEED_1000) &&
3075                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3076                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3077                         adapter->phy_stats.idle_errors += phy_tmp;
3078                 }
3079
3080                 if((hw->mac_type <= e1000_82546) &&
3081                    (hw->phy_type == e1000_phy_m88) &&
3082                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3083                         adapter->phy_stats.receive_errors += phy_tmp;
3084         }
3085
3086         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3087 }
3088
3089 #ifdef CONFIG_E1000_MQ
3090 void
3091 e1000_rx_schedule(void *data)
3092 {
3093         struct net_device *poll_dev, *netdev = data;
3094         struct e1000_adapter *adapter = netdev->priv;
3095         int this_cpu = get_cpu();
3096
3097         poll_dev = *per_cpu_ptr(adapter->cpu_netdev, this_cpu);
3098         if (poll_dev == NULL) {
3099                 put_cpu();
3100                 return;
3101         }
3102
3103         if (likely(netif_rx_schedule_prep(poll_dev)))
3104                 __netif_rx_schedule(poll_dev);
3105         else
3106                 e1000_irq_enable(adapter);
3107
3108         put_cpu();
3109 }
3110 #endif
3111
3112 /**
3113  * e1000_intr - Interrupt Handler
3114  * @irq: interrupt number
3115  * @data: pointer to a network interface device structure
3116  * @pt_regs: CPU registers structure
3117  **/
3118
3119 static irqreturn_t
3120 e1000_intr(int irq, void *data, struct pt_regs *regs)
3121 {
3122         struct net_device *netdev = data;
3123         struct e1000_adapter *adapter = netdev_priv(netdev);
3124         struct e1000_hw *hw = &adapter->hw;
3125         uint32_t icr = E1000_READ_REG(hw, ICR);
3126 #if defined(CONFIG_E1000_NAPI) && defined(CONFIG_E1000_MQ) || !defined(CONFIG_E1000_NAPI)
3127         int i;
3128 #endif
3129
3130         if(unlikely(!icr))
3131                 return IRQ_NONE;  /* Not our interrupt */
3132
3133         if(unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3134                 hw->get_link_status = 1;
3135                 mod_timer(&adapter->watchdog_timer, jiffies);
3136         }
3137
3138 #ifdef CONFIG_E1000_NAPI
3139         atomic_inc(&adapter->irq_sem);
3140         E1000_WRITE_REG(hw, IMC, ~0);
3141         E1000_WRITE_FLUSH(hw);
3142 #ifdef CONFIG_E1000_MQ
3143         if (atomic_read(&adapter->rx_sched_call_data.count) == 0) {
3144                 cpu_set(adapter->cpu_for_queue[0],
3145                         adapter->rx_sched_call_data.cpumask);
3146                 for (i = 1; i < adapter->num_queues; i++) {
3147                         cpu_set(adapter->cpu_for_queue[i],
3148                                 adapter->rx_sched_call_data.cpumask);
3149                         atomic_inc(&adapter->irq_sem);
3150                 }
3151                 atomic_set(&adapter->rx_sched_call_data.count, i);
3152                 smp_call_async_mask(&adapter->rx_sched_call_data);
3153         } else {
3154                 printk("call_data.count == %u\n", atomic_read(&adapter->rx_sched_call_data.count));
3155         }
3156 #else /* if !CONFIG_E1000_MQ */
3157         if (likely(netif_rx_schedule_prep(&adapter->polling_netdev[0])))
3158                 __netif_rx_schedule(&adapter->polling_netdev[0]);
3159         else
3160                 e1000_irq_enable(adapter);
3161 #endif /* CONFIG_E1000_MQ */
3162
3163 #else /* if !CONFIG_E1000_NAPI */
3164         /* Writing IMC and IMS is needed for 82547.
3165            Due to Hub Link bus being occupied, an interrupt
3166            de-assertion message is not able to be sent.
3167            When an interrupt assertion message is generated later,
3168            two messages are re-ordered and sent out.
3169            That causes APIC to think 82547 is in de-assertion
3170            state, while 82547 is in assertion state, resulting
3171            in dead lock. Writing IMC forces 82547 into
3172            de-assertion state.
3173         */
3174         if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2){
3175                 atomic_inc(&adapter->irq_sem);
3176                 E1000_WRITE_REG(hw, IMC, ~0);
3177         }
3178
3179         for(i = 0; i < E1000_MAX_INTR; i++)
3180                 if(unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3181                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3182                         break;
3183
3184         if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3185                 e1000_irq_enable(adapter);
3186
3187 #endif /* CONFIG_E1000_NAPI */
3188
3189         return IRQ_HANDLED;
3190 }
3191
3192 #ifdef CONFIG_E1000_NAPI
3193 /**
3194  * e1000_clean - NAPI Rx polling callback
3195  * @adapter: board private structure
3196  **/
3197
3198 static int
3199 e1000_clean(struct net_device *poll_dev, int *budget)
3200 {
3201         struct e1000_adapter *adapter;
3202         int work_to_do = min(*budget, poll_dev->quota);
3203         int tx_cleaned, i = 0, work_done = 0;
3204
3205         /* Must NOT use netdev_priv macro here. */
3206         adapter = poll_dev->priv;
3207
3208         /* Keep link state information with original netdev */
3209         if (!netif_carrier_ok(adapter->netdev))
3210                 goto quit_polling;
3211
3212         while (poll_dev != &adapter->polling_netdev[i]) {
3213                 i++;
3214                 if (unlikely(i == adapter->num_queues))
3215                         BUG();
3216         }
3217
3218         tx_cleaned = e1000_clean_tx_irq(adapter, &adapter->tx_ring[i]);
3219         adapter->clean_rx(adapter, &adapter->rx_ring[i],
3220                           &work_done, work_to_do);
3221
3222         *budget -= work_done;
3223         poll_dev->quota -= work_done;
3224         
3225         /* If no Tx and not enough Rx work done, exit the polling mode */
3226         if((!tx_cleaned && (work_done == 0)) ||
3227            !netif_running(adapter->netdev)) {
3228 quit_polling:
3229                 netif_rx_complete(poll_dev);
3230                 e1000_irq_enable(adapter);
3231                 return 0;
3232         }
3233
3234         return 1;
3235 }
3236
3237 #endif
3238 /**
3239  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3240  * @adapter: board private structure
3241  **/
3242
3243 static boolean_t
3244 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3245                    struct e1000_tx_ring *tx_ring)
3246 {
3247         struct net_device *netdev = adapter->netdev;
3248         struct e1000_tx_desc *tx_desc, *eop_desc;
3249         struct e1000_buffer *buffer_info;
3250         unsigned int i, eop;
3251         boolean_t cleaned = FALSE;
3252
3253         i = tx_ring->next_to_clean;
3254         eop = tx_ring->buffer_info[i].next_to_watch;
3255         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3256
3257         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3258                 for(cleaned = FALSE; !cleaned; ) {
3259                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3260                         buffer_info = &tx_ring->buffer_info[i];
3261                         cleaned = (i == eop);
3262
3263                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3264
3265                         tx_desc->buffer_addr = 0;
3266                         tx_desc->lower.data = 0;
3267                         tx_desc->upper.data = 0;
3268
3269                         if(unlikely(++i == tx_ring->count)) i = 0;
3270                 }
3271
3272                 eop = tx_ring->buffer_info[i].next_to_watch;
3273                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3274         }
3275
3276         tx_ring->next_to_clean = i;
3277
3278         spin_lock(&tx_ring->tx_lock);
3279
3280         if(unlikely(cleaned && netif_queue_stopped(netdev) &&
3281                     netif_carrier_ok(netdev)))
3282                 netif_wake_queue(netdev);
3283
3284         spin_unlock(&tx_ring->tx_lock);
3285
3286         if (adapter->detect_tx_hung) {
3287                 /* Detect a transmit hang in hardware, this serializes the
3288                  * check with the clearing of time_stamp and movement of i */
3289                 adapter->detect_tx_hung = FALSE;
3290                 if (tx_ring->buffer_info[i].dma &&
3291                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp + HZ)
3292                     && !(E1000_READ_REG(&adapter->hw, STATUS) &
3293                         E1000_STATUS_TXOFF)) {
3294
3295                         /* detected Tx unit hang */
3296                         i = tx_ring->next_to_clean;
3297                         eop = tx_ring->buffer_info[i].next_to_watch;
3298                         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3299                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3300                                         "  TDH                  <%x>\n"
3301                                         "  TDT                  <%x>\n"
3302                                         "  next_to_use          <%x>\n"
3303                                         "  next_to_clean        <%x>\n"
3304                                         "buffer_info[next_to_clean]\n"
3305                                         "  dma                  <%llx>\n"
3306                                         "  time_stamp           <%lx>\n"
3307                                         "  next_to_watch        <%x>\n"
3308                                         "  jiffies              <%lx>\n"
3309                                         "  next_to_watch.status <%x>\n",
3310                                 readl(adapter->hw.hw_addr + tx_ring->tdh),
3311                                 readl(adapter->hw.hw_addr + tx_ring->tdt),
3312                                 tx_ring->next_to_use,
3313                                 i,
3314                                 (unsigned long long)tx_ring->buffer_info[i].dma,
3315                                 tx_ring->buffer_info[i].time_stamp,
3316                                 eop,
3317                                 jiffies,
3318                                 eop_desc->upper.fields.status);
3319                         netif_stop_queue(netdev);
3320                 }
3321         }
3322         return cleaned;
3323 }
3324
3325 /**
3326  * e1000_rx_checksum - Receive Checksum Offload for 82543
3327  * @adapter:     board private structure
3328  * @status_err:  receive descriptor status and error fields
3329  * @csum:        receive descriptor csum field
3330  * @sk_buff:     socket buffer with received data
3331  **/
3332
3333 static inline void
3334 e1000_rx_checksum(struct e1000_adapter *adapter,
3335                   uint32_t status_err, uint32_t csum,
3336                   struct sk_buff *skb)
3337 {
3338         uint16_t status = (uint16_t)status_err;
3339         uint8_t errors = (uint8_t)(status_err >> 24);
3340         skb->ip_summed = CHECKSUM_NONE;
3341
3342         /* 82543 or newer only */
3343         if(unlikely(adapter->hw.mac_type < e1000_82543)) return;
3344         /* Ignore Checksum bit is set */
3345         if(unlikely(status & E1000_RXD_STAT_IXSM)) return;
3346         /* TCP/UDP checksum error bit is set */
3347         if(unlikely(errors & E1000_RXD_ERR_TCPE)) {
3348                 /* let the stack verify checksum errors */
3349                 adapter->hw_csum_err++;
3350                 return;
3351         }
3352         /* TCP/UDP Checksum has not been calculated */
3353         if(adapter->hw.mac_type <= e1000_82547_rev_2) {
3354                 if(!(status & E1000_RXD_STAT_TCPCS))
3355                         return;
3356         } else {
3357                 if(!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3358                         return;
3359         }
3360         /* It must be a TCP or UDP packet with a valid checksum */
3361         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3362                 /* TCP checksum is good */
3363                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3364         } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
3365                 /* IP fragment with UDP payload */
3366                 /* Hardware complements the payload checksum, so we undo it
3367                  * and then put the value in host order for further stack use.
3368                  */
3369                 csum = ntohl(csum ^ 0xFFFF);
3370                 skb->csum = csum;
3371                 skb->ip_summed = CHECKSUM_HW;
3372         }
3373         adapter->hw_csum_good++;
3374 }
3375
3376 /**
3377  * e1000_clean_rx_irq - Send received data up the network stack; legacy
3378  * @adapter: board private structure
3379  **/
3380
3381 static boolean_t
3382 #ifdef CONFIG_E1000_NAPI
3383 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3384                    struct e1000_rx_ring *rx_ring,
3385                    int *work_done, int work_to_do)
3386 #else
3387 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3388                    struct e1000_rx_ring *rx_ring)
3389 #endif
3390 {
3391         struct net_device *netdev = adapter->netdev;
3392         struct pci_dev *pdev = adapter->pdev;
3393         struct e1000_rx_desc *rx_desc;
3394         struct e1000_buffer *buffer_info;
3395         struct sk_buff *skb;
3396         unsigned long flags;
3397         uint32_t length;
3398         uint8_t last_byte;
3399         unsigned int i;
3400         boolean_t cleaned = FALSE;
3401
3402         i = rx_ring->next_to_clean;
3403         rx_desc = E1000_RX_DESC(*rx_ring, i);
3404
3405         while(rx_desc->status & E1000_RXD_STAT_DD) {
3406                 buffer_info = &rx_ring->buffer_info[i];
3407 #ifdef CONFIG_E1000_NAPI
3408                 if(*work_done >= work_to_do)
3409                         break;
3410                 (*work_done)++;
3411 #endif
3412                 cleaned = TRUE;
3413
3414                 pci_unmap_single(pdev,
3415                                  buffer_info->dma,
3416                                  buffer_info->length,
3417                                  PCI_DMA_FROMDEVICE);
3418
3419                 skb = buffer_info->skb;
3420                 length = le16_to_cpu(rx_desc->length);
3421
3422                 if(unlikely(!(rx_desc->status & E1000_RXD_STAT_EOP))) {
3423                         /* All receives must fit into a single buffer */
3424                         E1000_DBG("%s: Receive packet consumed multiple"
3425                                   " buffers\n", netdev->name);
3426                         dev_kfree_skb_irq(skb);
3427                         goto next_desc;
3428                 }
3429
3430                 if(unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3431                         last_byte = *(skb->data + length - 1);
3432                         if(TBI_ACCEPT(&adapter->hw, rx_desc->status,
3433                                       rx_desc->errors, length, last_byte)) {
3434                                 spin_lock_irqsave(&adapter->stats_lock, flags);
3435                                 e1000_tbi_adjust_stats(&adapter->hw,
3436                                                        &adapter->stats,
3437                                                        length, skb->data);
3438                                 spin_unlock_irqrestore(&adapter->stats_lock,
3439                                                        flags);
3440                                 length--;
3441                         } else {
3442                                 dev_kfree_skb_irq(skb);
3443                                 goto next_desc;
3444                         }
3445                 }
3446
3447                 /* Good Receive */
3448                 skb_put(skb, length - ETHERNET_FCS_SIZE);
3449
3450                 /* Receive Checksum Offload */
3451                 e1000_rx_checksum(adapter,
3452                                   (uint32_t)(rx_desc->status) |
3453                                   ((uint32_t)(rx_desc->errors) << 24),
3454                                   rx_desc->csum, skb);
3455                 skb->protocol = eth_type_trans(skb, netdev);
3456 #ifdef CONFIG_E1000_NAPI
3457                 if(unlikely(adapter->vlgrp &&
3458                             (rx_desc->status & E1000_RXD_STAT_VP))) {
3459                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3460                                                  le16_to_cpu(rx_desc->special) &
3461                                                  E1000_RXD_SPC_VLAN_MASK);
3462                 } else {
3463                         netif_receive_skb(skb);
3464                 }
3465 #else /* CONFIG_E1000_NAPI */
3466                 if(unlikely(adapter->vlgrp &&
3467                             (rx_desc->status & E1000_RXD_STAT_VP))) {
3468                         vlan_hwaccel_rx(skb, adapter->vlgrp,
3469                                         le16_to_cpu(rx_desc->special) &
3470                                         E1000_RXD_SPC_VLAN_MASK);
3471                 } else {
3472                         netif_rx(skb);
3473                 }
3474 #endif /* CONFIG_E1000_NAPI */
3475                 netdev->last_rx = jiffies;
3476
3477 next_desc:
3478                 rx_desc->status = 0;
3479                 buffer_info->skb = NULL;
3480                 if(unlikely(++i == rx_ring->count)) i = 0;
3481
3482                 rx_desc = E1000_RX_DESC(*rx_ring, i);
3483         }
3484         rx_ring->next_to_clean = i;
3485         adapter->alloc_rx_buf(adapter, rx_ring);
3486
3487         return cleaned;
3488 }
3489
3490 /**
3491  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
3492  * @adapter: board private structure
3493  **/
3494
3495 static boolean_t
3496 #ifdef CONFIG_E1000_NAPI
3497 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3498                       struct e1000_rx_ring *rx_ring,
3499                       int *work_done, int work_to_do)
3500 #else
3501 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3502                       struct e1000_rx_ring *rx_ring)
3503 #endif
3504 {
3505         union e1000_rx_desc_packet_split *rx_desc;
3506         struct net_device *netdev = adapter->netdev;
3507         struct pci_dev *pdev = adapter->pdev;
3508         struct e1000_buffer *buffer_info;
3509         struct e1000_ps_page *ps_page;
3510         struct e1000_ps_page_dma *ps_page_dma;
3511         struct sk_buff *skb;
3512         unsigned int i, j;
3513         uint32_t length, staterr;
3514         boolean_t cleaned = FALSE;
3515
3516         i = rx_ring->next_to_clean;
3517         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3518         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3519
3520         while(staterr & E1000_RXD_STAT_DD) {
3521                 buffer_info = &rx_ring->buffer_info[i];
3522                 ps_page = &rx_ring->ps_page[i];
3523                 ps_page_dma = &rx_ring->ps_page_dma[i];
3524 #ifdef CONFIG_E1000_NAPI
3525                 if(unlikely(*work_done >= work_to_do))
3526                         break;
3527                 (*work_done)++;
3528 #endif
3529                 cleaned = TRUE;
3530                 pci_unmap_single(pdev, buffer_info->dma,
3531                                  buffer_info->length,
3532                                  PCI_DMA_FROMDEVICE);
3533
3534                 skb = buffer_info->skb;
3535
3536                 if(unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
3537                         E1000_DBG("%s: Packet Split buffers didn't pick up"
3538                                   " the full packet\n", netdev->name);
3539                         dev_kfree_skb_irq(skb);
3540                         goto next_desc;
3541                 }
3542
3543                 if(unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3544                         dev_kfree_skb_irq(skb);
3545                         goto next_desc;
3546                 }
3547
3548                 length = le16_to_cpu(rx_desc->wb.middle.length0);
3549
3550                 if(unlikely(!length)) {
3551                         E1000_DBG("%s: Last part of the packet spanning"
3552                                   " multiple descriptors\n", netdev->name);
3553                         dev_kfree_skb_irq(skb);
3554                         goto next_desc;
3555                 }
3556
3557                 /* Good Receive */
3558                 skb_put(skb, length);
3559
3560                 for(j = 0; j < adapter->rx_ps_pages; j++) {
3561                         if(!(length = le16_to_cpu(rx_desc->wb.upper.length[j])))
3562                                 break;
3563
3564                         pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
3565                                         PAGE_SIZE, PCI_DMA_FROMDEVICE);
3566                         ps_page_dma->ps_page_dma[j] = 0;
3567                         skb_shinfo(skb)->frags[j].page =
3568                                 ps_page->ps_page[j];
3569                         ps_page->ps_page[j] = NULL;
3570                         skb_shinfo(skb)->frags[j].page_offset = 0;
3571                         skb_shinfo(skb)->frags[j].size = length;
3572                         skb_shinfo(skb)->nr_frags++;
3573                         skb->len += length;
3574                         skb->data_len += length;
3575                 }
3576
3577                 e1000_rx_checksum(adapter, staterr,
3578                                   rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
3579                 skb->protocol = eth_type_trans(skb, netdev);
3580
3581                 if(likely(rx_desc->wb.upper.header_status &
3582                           E1000_RXDPS_HDRSTAT_HDRSP)) {
3583                         adapter->rx_hdr_split++;
3584 #ifdef HAVE_RX_ZERO_COPY
3585                         skb_shinfo(skb)->zero_copy = TRUE;
3586 #endif
3587                 }
3588 #ifdef CONFIG_E1000_NAPI
3589                 if(unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3590                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3591                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
3592                                 E1000_RXD_SPC_VLAN_MASK);
3593                 } else {
3594                         netif_receive_skb(skb);
3595                 }
3596 #else /* CONFIG_E1000_NAPI */
3597                 if(unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3598                         vlan_hwaccel_rx(skb, adapter->vlgrp,
3599                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
3600                                 E1000_RXD_SPC_VLAN_MASK);
3601                 } else {
3602                         netif_rx(skb);
3603                 }
3604 #endif /* CONFIG_E1000_NAPI */
3605                 netdev->last_rx = jiffies;
3606
3607 next_desc:
3608                 rx_desc->wb.middle.status_error &= ~0xFF;
3609                 buffer_info->skb = NULL;
3610                 if(unlikely(++i == rx_ring->count)) i = 0;
3611
3612                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3613                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3614         }
3615         rx_ring->next_to_clean = i;
3616         adapter->alloc_rx_buf(adapter, rx_ring);
3617
3618         return cleaned;
3619 }
3620
3621 /**
3622  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
3623  * @adapter: address of board private structure
3624  **/
3625
3626 static void
3627 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
3628                        struct e1000_rx_ring *rx_ring)
3629 {
3630         struct net_device *netdev = adapter->netdev;
3631         struct pci_dev *pdev = adapter->pdev;
3632         struct e1000_rx_desc *rx_desc;
3633         struct e1000_buffer *buffer_info;
3634         struct sk_buff *skb;
3635         unsigned int i;
3636         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
3637
3638         i = rx_ring->next_to_use;
3639         buffer_info = &rx_ring->buffer_info[i];
3640
3641         while(!buffer_info->skb) {
3642                 skb = dev_alloc_skb(bufsz);
3643
3644                 if(unlikely(!skb)) {
3645                         /* Better luck next round */
3646                         break;
3647                 }
3648
3649                 /* Fix for errata 23, can't cross 64kB boundary */
3650                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3651                         struct sk_buff *oldskb = skb;
3652                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
3653                                              "at %p\n", bufsz, skb->data);
3654                         /* Try again, without freeing the previous */
3655                         skb = dev_alloc_skb(bufsz);
3656                         /* Failed allocation, critical failure */
3657                         if (!skb) {
3658                                 dev_kfree_skb(oldskb);
3659                                 break;
3660                         }
3661
3662                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3663                                 /* give up */
3664                                 dev_kfree_skb(skb);
3665                                 dev_kfree_skb(oldskb);
3666                                 break; /* while !buffer_info->skb */
3667                         } else {
3668                                 /* Use new allocation */
3669                                 dev_kfree_skb(oldskb);
3670                         }
3671                 }
3672                 /* Make buffer alignment 2 beyond a 16 byte boundary
3673                  * this will result in a 16 byte aligned IP header after
3674                  * the 14 byte MAC header is removed
3675                  */
3676                 skb_reserve(skb, NET_IP_ALIGN);
3677
3678                 skb->dev = netdev;
3679
3680                 buffer_info->skb = skb;
3681                 buffer_info->length = adapter->rx_buffer_len;
3682                 buffer_info->dma = pci_map_single(pdev,
3683                                                   skb->data,
3684                                                   adapter->rx_buffer_len,
3685                                                   PCI_DMA_FROMDEVICE);
3686
3687                 /* Fix for errata 23, can't cross 64kB boundary */
3688                 if (!e1000_check_64k_bound(adapter,
3689                                         (void *)(unsigned long)buffer_info->dma,
3690                                         adapter->rx_buffer_len)) {
3691                         DPRINTK(RX_ERR, ERR,
3692                                 "dma align check failed: %u bytes at %p\n",
3693                                 adapter->rx_buffer_len,
3694                                 (void *)(unsigned long)buffer_info->dma);
3695                         dev_kfree_skb(skb);
3696                         buffer_info->skb = NULL;
3697
3698                         pci_unmap_single(pdev, buffer_info->dma,
3699                                          adapter->rx_buffer_len,
3700                                          PCI_DMA_FROMDEVICE);
3701
3702                         break; /* while !buffer_info->skb */
3703                 }
3704                 rx_desc = E1000_RX_DESC(*rx_ring, i);
3705                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3706
3707                 if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) {
3708                         /* Force memory writes to complete before letting h/w
3709                          * know there are new descriptors to fetch.  (Only
3710                          * applicable for weak-ordered memory model archs,
3711                          * such as IA-64). */
3712                         wmb();
3713                         writel(i, adapter->hw.hw_addr + rx_ring->rdt);
3714                 }
3715
3716                 if(unlikely(++i == rx_ring->count)) i = 0;
3717                 buffer_info = &rx_ring->buffer_info[i];
3718         }
3719
3720         rx_ring->next_to_use = i;
3721 }
3722
3723 /**
3724  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
3725  * @adapter: address of board private structure
3726  **/
3727
3728 static void
3729 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
3730                           struct e1000_rx_ring *rx_ring)
3731 {
3732         struct net_device *netdev = adapter->netdev;
3733         struct pci_dev *pdev = adapter->pdev;
3734         union e1000_rx_desc_packet_split *rx_desc;
3735         struct e1000_buffer *buffer_info;
3736         struct e1000_ps_page *ps_page;
3737         struct e1000_ps_page_dma *ps_page_dma;
3738         struct sk_buff *skb;
3739         unsigned int i, j;
3740
3741         i = rx_ring->next_to_use;
3742         buffer_info = &rx_ring->buffer_info[i];
3743         ps_page = &rx_ring->ps_page[i];
3744         ps_page_dma = &rx_ring->ps_page_dma[i];
3745
3746         while(!buffer_info->skb) {
3747                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3748
3749                 for(j = 0; j < PS_PAGE_BUFFERS; j++) {
3750                         if (j < adapter->rx_ps_pages) {
3751                                 if (likely(!ps_page->ps_page[j])) {
3752                                         ps_page->ps_page[j] =
3753                                                 alloc_page(GFP_ATOMIC);
3754                                         if (unlikely(!ps_page->ps_page[j]))
3755                                                 goto no_buffers;
3756                                         ps_page_dma->ps_page_dma[j] =
3757                                                 pci_map_page(pdev,
3758                                                             ps_page->ps_page[j],
3759                                                             0, PAGE_SIZE,
3760                                                             PCI_DMA_FROMDEVICE);
3761                                 }
3762                                 /* Refresh the desc even if buffer_addrs didn't
3763                                  * change because each write-back erases 
3764                                  * this info.
3765                                  */
3766                                 rx_desc->read.buffer_addr[j+1] =
3767                                      cpu_to_le64(ps_page_dma->ps_page_dma[j]);
3768                         } else
3769                                 rx_desc->read.buffer_addr[j+1] = ~0;
3770                 }
3771
3772                 skb = dev_alloc_skb(adapter->rx_ps_bsize0 + NET_IP_ALIGN);
3773
3774                 if(unlikely(!skb))
3775                         break;
3776
3777                 /* Make buffer alignment 2 beyond a 16 byte boundary
3778                  * this will result in a 16 byte aligned IP header after
3779                  * the 14 byte MAC header is removed
3780                  */
3781                 skb_reserve(skb, NET_IP_ALIGN);
3782
3783                 skb->dev = netdev;
3784
3785                 buffer_info->skb = skb;
3786                 buffer_info->length = adapter->rx_ps_bsize0;
3787                 buffer_info->dma = pci_map_single(pdev, skb->data,
3788                                                   adapter->rx_ps_bsize0,
3789                                                   PCI_DMA_FROMDEVICE);
3790
3791                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
3792
3793                 if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) {
3794                         /* Force memory writes to complete before letting h/w
3795                          * know there are new descriptors to fetch.  (Only
3796                          * applicable for weak-ordered memory model archs,
3797                          * such as IA-64). */
3798                         wmb();
3799                         /* Hardware increments by 16 bytes, but packet split
3800                          * descriptors are 32 bytes...so we increment tail
3801                          * twice as much.
3802                          */
3803                         writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
3804                 }
3805
3806                 if(unlikely(++i == rx_ring->count)) i = 0;
3807                 buffer_info = &rx_ring->buffer_info[i];
3808                 ps_page = &rx_ring->ps_page[i];
3809                 ps_page_dma = &rx_ring->ps_page_dma[i];
3810         }
3811
3812 no_buffers:
3813         rx_ring->next_to_use = i;
3814 }
3815
3816 /**
3817  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
3818  * @adapter:
3819  **/
3820
3821 static void
3822 e1000_smartspeed(struct e1000_adapter *adapter)
3823 {
3824         uint16_t phy_status;
3825         uint16_t phy_ctrl;
3826
3827         if((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
3828            !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
3829                 return;
3830
3831         if(adapter->smartspeed == 0) {
3832                 /* If Master/Slave config fault is asserted twice,
3833                  * we assume back-to-back */
3834                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
3835                 if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
3836                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
3837                 if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
3838                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
3839                 if(phy_ctrl & CR_1000T_MS_ENABLE) {
3840                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
3841                         e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
3842                                             phy_ctrl);
3843                         adapter->smartspeed++;
3844                         if(!e1000_phy_setup_autoneg(&adapter->hw) &&
3845                            !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
3846                                                &phy_ctrl)) {
3847                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
3848                                              MII_CR_RESTART_AUTO_NEG);
3849                                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
3850                                                     phy_ctrl);
3851                         }
3852                 }
3853                 return;
3854         } else if(adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
3855                 /* If still no link, perhaps using 2/3 pair cable */
3856                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
3857                 phy_ctrl |= CR_1000T_MS_ENABLE;
3858                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
3859                 if(!e1000_phy_setup_autoneg(&adapter->hw) &&
3860                    !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
3861                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
3862                                      MII_CR_RESTART_AUTO_NEG);
3863                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
3864                 }
3865         }
3866         /* Restart process after E1000_SMARTSPEED_MAX iterations */
3867         if(adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
3868                 adapter->smartspeed = 0;
3869 }
3870
3871 /**
3872  * e1000_ioctl -
3873  * @netdev:
3874  * @ifreq:
3875  * @cmd:
3876  **/
3877
3878 static int
3879 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3880 {
3881         switch (cmd) {
3882         case SIOCGMIIPHY:
3883         case SIOCGMIIREG:
3884         case SIOCSMIIREG:
3885                 return e1000_mii_ioctl(netdev, ifr, cmd);
3886         default:
3887                 return -EOPNOTSUPP;
3888         }
3889 }
3890
3891 /**
3892  * e1000_mii_ioctl -
3893  * @netdev:
3894  * @ifreq:
3895  * @cmd:
3896  **/
3897
3898 static int
3899 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3900 {
3901         struct e1000_adapter *adapter = netdev_priv(netdev);
3902         struct mii_ioctl_data *data = if_mii(ifr);
3903         int retval;
3904         uint16_t mii_reg;
3905         uint16_t spddplx;
3906         unsigned long flags;
3907
3908         if(adapter->hw.media_type != e1000_media_type_copper)
3909                 return -EOPNOTSUPP;
3910
3911         switch (cmd) {
3912         case SIOCGMIIPHY:
3913                 data->phy_id = adapter->hw.phy_addr;
3914                 break;
3915         case SIOCGMIIREG:
3916                 if(!capable(CAP_NET_ADMIN))
3917                         return -EPERM;
3918                 spin_lock_irqsave(&adapter->stats_lock, flags);
3919                 if(e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
3920                                    &data->val_out)) {
3921                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3922                         return -EIO;
3923                 }
3924                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3925                 break;
3926         case SIOCSMIIREG:
3927                 if(!capable(CAP_NET_ADMIN))
3928                         return -EPERM;
3929                 if(data->reg_num & ~(0x1F))
3930                         return -EFAULT;
3931                 mii_reg = data->val_in;
3932                 spin_lock_irqsave(&adapter->stats_lock, flags);
3933                 if(e1000_write_phy_reg(&adapter->hw, data->reg_num,
3934                                         mii_reg)) {
3935                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3936                         return -EIO;
3937                 }
3938                 if(adapter->hw.phy_type == e1000_phy_m88) {
3939                         switch (data->reg_num) {
3940                         case PHY_CTRL:
3941                                 if(mii_reg & MII_CR_POWER_DOWN)
3942                                         break;
3943                                 if(mii_reg & MII_CR_AUTO_NEG_EN) {
3944                                         adapter->hw.autoneg = 1;
3945                                         adapter->hw.autoneg_advertised = 0x2F;
3946                                 } else {
3947                                         if (mii_reg & 0x40)
3948                                                 spddplx = SPEED_1000;
3949                                         else if (mii_reg & 0x2000)
3950                                                 spddplx = SPEED_100;
3951                                         else
3952                                                 spddplx = SPEED_10;
3953                                         spddplx += (mii_reg & 0x100)
3954                                                    ? FULL_DUPLEX :
3955                                                    HALF_DUPLEX;
3956                                         retval = e1000_set_spd_dplx(adapter,
3957                                                                     spddplx);
3958                                         if(retval) {
3959                                                 spin_unlock_irqrestore(
3960                                                         &adapter->stats_lock, 
3961                                                         flags);
3962                                                 return retval;
3963                                         }
3964                                 }
3965                                 if(netif_running(adapter->netdev)) {
3966                                         e1000_down(adapter);
3967                                         e1000_up(adapter);
3968                                 } else
3969                                         e1000_reset(adapter);
3970                                 break;
3971                         case M88E1000_PHY_SPEC_CTRL:
3972                         case M88E1000_EXT_PHY_SPEC_CTRL:
3973                                 if(e1000_phy_reset(&adapter->hw)) {
3974                                         spin_unlock_irqrestore(
3975                                                 &adapter->stats_lock, flags);
3976                                         return -EIO;
3977                                 }
3978                                 break;
3979                         }
3980                 } else {
3981                         switch (data->reg_num) {
3982                         case PHY_CTRL:
3983                                 if(mii_reg & MII_CR_POWER_DOWN)
3984                                         break;
3985                                 if(netif_running(adapter->netdev)) {
3986                                         e1000_down(adapter);
3987                                         e1000_up(adapter);
3988                                 } else
3989                                         e1000_reset(adapter);
3990                                 break;
3991                         }
3992                 }
3993                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3994                 break;
3995         default:
3996                 return -EOPNOTSUPP;
3997         }
3998         return E1000_SUCCESS;
3999 }
4000
4001 void
4002 e1000_pci_set_mwi(struct e1000_hw *hw)
4003 {
4004         struct e1000_adapter *adapter = hw->back;
4005         int ret_val = pci_set_mwi(adapter->pdev);
4006
4007         if(ret_val)
4008                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4009 }
4010
4011 void
4012 e1000_pci_clear_mwi(struct e1000_hw *hw)
4013 {
4014         struct e1000_adapter *adapter = hw->back;
4015
4016         pci_clear_mwi(adapter->pdev);
4017 }
4018
4019 void
4020 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4021 {
4022         struct e1000_adapter *adapter = hw->back;
4023
4024         pci_read_config_word(adapter->pdev, reg, value);
4025 }
4026
4027 void
4028 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4029 {
4030         struct e1000_adapter *adapter = hw->back;
4031
4032         pci_write_config_word(adapter->pdev, reg, *value);
4033 }
4034
4035 uint32_t
4036 e1000_io_read(struct e1000_hw *hw, unsigned long port)
4037 {
4038         return inl(port);
4039 }
4040
4041 void
4042 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4043 {
4044         outl(value, port);
4045 }
4046
4047 static void
4048 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4049 {
4050         struct e1000_adapter *adapter = netdev_priv(netdev);
4051         uint32_t ctrl, rctl;
4052
4053         e1000_irq_disable(adapter);
4054         adapter->vlgrp = grp;
4055
4056         if(grp) {
4057                 /* enable VLAN tag insert/strip */
4058                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4059                 ctrl |= E1000_CTRL_VME;
4060                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4061
4062                 /* enable VLAN receive filtering */
4063                 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4064                 rctl |= E1000_RCTL_VFE;
4065                 rctl &= ~E1000_RCTL_CFIEN;
4066                 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4067                 e1000_update_mng_vlan(adapter);
4068         } else {
4069                 /* disable VLAN tag insert/strip */
4070                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4071                 ctrl &= ~E1000_CTRL_VME;
4072                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4073
4074                 /* disable VLAN filtering */
4075                 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4076                 rctl &= ~E1000_RCTL_VFE;
4077                 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4078                 if(adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) {
4079                         e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4080                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4081                 }
4082         }
4083
4084         e1000_irq_enable(adapter);
4085 }
4086
4087 static void
4088 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4089 {
4090         struct e1000_adapter *adapter = netdev_priv(netdev);
4091         uint32_t vfta, index;
4092         if((adapter->hw.mng_cookie.status &
4093                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4094                 (vid == adapter->mng_vlan_id))
4095                 return;
4096         /* add VID to filter table */
4097         index = (vid >> 5) & 0x7F;
4098         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4099         vfta |= (1 << (vid & 0x1F));
4100         e1000_write_vfta(&adapter->hw, index, vfta);
4101 }
4102
4103 static void
4104 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
4105 {
4106         struct e1000_adapter *adapter = netdev_priv(netdev);
4107         uint32_t vfta, index;
4108
4109         e1000_irq_disable(adapter);
4110
4111         if(adapter->vlgrp)
4112                 adapter->vlgrp->vlan_devices[vid] = NULL;
4113
4114         e1000_irq_enable(adapter);
4115
4116         if((adapter->hw.mng_cookie.status &
4117                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4118                 (vid == adapter->mng_vlan_id))
4119                 return;
4120         /* remove VID from filter table */
4121         index = (vid >> 5) & 0x7F;
4122         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4123         vfta &= ~(1 << (vid & 0x1F));
4124         e1000_write_vfta(&adapter->hw, index, vfta);
4125 }
4126
4127 static void
4128 e1000_restore_vlan(struct e1000_adapter *adapter)
4129 {
4130         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4131
4132         if(adapter->vlgrp) {
4133                 uint16_t vid;
4134                 for(vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4135                         if(!adapter->vlgrp->vlan_devices[vid])
4136                                 continue;
4137                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
4138                 }
4139         }
4140 }
4141
4142 int
4143 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
4144 {
4145         adapter->hw.autoneg = 0;
4146
4147         /* Fiber NICs only allow 1000 gbps Full duplex */
4148         if((adapter->hw.media_type == e1000_media_type_fiber) &&
4149                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4150                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4151                 return -EINVAL;
4152         }
4153
4154         switch(spddplx) {
4155         case SPEED_10 + DUPLEX_HALF:
4156                 adapter->hw.forced_speed_duplex = e1000_10_half;
4157                 break;
4158         case SPEED_10 + DUPLEX_FULL:
4159                 adapter->hw.forced_speed_duplex = e1000_10_full;
4160                 break;
4161         case SPEED_100 + DUPLEX_HALF:
4162                 adapter->hw.forced_speed_duplex = e1000_100_half;
4163                 break;
4164         case SPEED_100 + DUPLEX_FULL:
4165                 adapter->hw.forced_speed_duplex = e1000_100_full;
4166                 break;
4167         case SPEED_1000 + DUPLEX_FULL:
4168                 adapter->hw.autoneg = 1;
4169                 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
4170                 break;
4171         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4172         default:
4173                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4174                 return -EINVAL;
4175         }
4176         return 0;
4177 }
4178
4179 #ifdef CONFIG_PM
4180 static int
4181 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4182 {
4183         struct net_device *netdev = pci_get_drvdata(pdev);
4184         struct e1000_adapter *adapter = netdev_priv(netdev);
4185         uint32_t ctrl, ctrl_ext, rctl, manc, status, swsm;
4186         uint32_t wufc = adapter->wol;
4187
4188         netif_device_detach(netdev);
4189
4190         if(netif_running(netdev))
4191                 e1000_down(adapter);
4192
4193         status = E1000_READ_REG(&adapter->hw, STATUS);
4194         if(status & E1000_STATUS_LU)
4195                 wufc &= ~E1000_WUFC_LNKC;
4196
4197         if(wufc) {
4198                 e1000_setup_rctl(adapter);
4199                 e1000_set_multi(netdev);
4200
4201                 /* turn on all-multi mode if wake on multicast is enabled */
4202                 if(adapter->wol & E1000_WUFC_MC) {
4203                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4204                         rctl |= E1000_RCTL_MPE;
4205                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4206                 }
4207
4208                 if(adapter->hw.mac_type >= e1000_82540) {
4209                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4210                         /* advertise wake from D3Cold */
4211                         #define E1000_CTRL_ADVD3WUC 0x00100000
4212                         /* phy power management enable */
4213                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4214                         ctrl |= E1000_CTRL_ADVD3WUC |
4215                                 E1000_CTRL_EN_PHY_PWR_MGMT;
4216                         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4217                 }
4218
4219                 if(adapter->hw.media_type == e1000_media_type_fiber ||
4220                    adapter->hw.media_type == e1000_media_type_internal_serdes) {
4221                         /* keep the laser running in D3 */
4222                         ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
4223                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4224                         E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
4225                 }
4226
4227                 /* Allow time for pending master requests to run */
4228                 e1000_disable_pciex_master(&adapter->hw);
4229
4230                 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
4231                 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
4232                 pci_enable_wake(pdev, 3, 1);
4233                 pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
4234         } else {
4235                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
4236                 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
4237                 pci_enable_wake(pdev, 3, 0);
4238                 pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
4239         }
4240
4241         pci_save_state(pdev);
4242
4243         if(adapter->hw.mac_type >= e1000_82540 &&
4244            adapter->hw.media_type == e1000_media_type_copper) {
4245                 manc = E1000_READ_REG(&adapter->hw, MANC);
4246                 if(manc & E1000_MANC_SMBUS_EN) {
4247                         manc |= E1000_MANC_ARP_EN;
4248                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
4249                         pci_enable_wake(pdev, 3, 1);
4250                         pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
4251                 }
4252         }
4253
4254         switch(adapter->hw.mac_type) {
4255         case e1000_82571:
4256         case e1000_82572:
4257                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
4258                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
4259                                 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
4260                 break;
4261         case e1000_82573:
4262                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
4263                 E1000_WRITE_REG(&adapter->hw, SWSM,
4264                                 swsm & ~E1000_SWSM_DRV_LOAD);
4265                 break;
4266         default:
4267                 break;
4268         }
4269
4270         pci_disable_device(pdev);
4271         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4272
4273         return 0;
4274 }
4275
4276 static int
4277 e1000_resume(struct pci_dev *pdev)
4278 {
4279         struct net_device *netdev = pci_get_drvdata(pdev);
4280         struct e1000_adapter *adapter = netdev_priv(netdev);
4281         uint32_t manc, ret_val, swsm;
4282         uint32_t ctrl_ext;
4283
4284         pci_set_power_state(pdev, PCI_D0);
4285         pci_restore_state(pdev);
4286         ret_val = pci_enable_device(pdev);
4287         pci_set_master(pdev);
4288
4289         pci_enable_wake(pdev, PCI_D3hot, 0);
4290         pci_enable_wake(pdev, PCI_D3cold, 0);
4291
4292         e1000_reset(adapter);
4293         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4294
4295         if(netif_running(netdev))
4296                 e1000_up(adapter);
4297
4298         netif_device_attach(netdev);
4299
4300         if(adapter->hw.mac_type >= e1000_82540 &&
4301            adapter->hw.media_type == e1000_media_type_copper) {
4302                 manc = E1000_READ_REG(&adapter->hw, MANC);
4303                 manc &= ~(E1000_MANC_ARP_EN);
4304                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4305         }
4306
4307         switch(adapter->hw.mac_type) {
4308         case e1000_82571:
4309         case e1000_82572:
4310                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
4311                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
4312                                 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
4313                 break;
4314         case e1000_82573:
4315                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
4316                 E1000_WRITE_REG(&adapter->hw, SWSM,
4317                                 swsm | E1000_SWSM_DRV_LOAD);
4318                 break;
4319         default:
4320                 break;
4321         }
4322
4323         return 0;
4324 }
4325 #endif
4326 #ifdef CONFIG_NET_POLL_CONTROLLER
4327 /*
4328  * Polling 'interrupt' - used by things like netconsole to send skbs
4329  * without having to re-enable interrupts. It's not called while
4330  * the interrupt routine is executing.
4331  */
4332 static void
4333 e1000_netpoll(struct net_device *netdev)
4334 {
4335         struct e1000_adapter *adapter = netdev_priv(netdev);
4336         disable_irq(adapter->pdev->irq);
4337         e1000_intr(adapter->pdev->irq, netdev, NULL);
4338         e1000_clean_tx_irq(adapter, adapter->tx_ring);
4339         enable_irq(adapter->pdev->irq);
4340 }
4341 #endif
4342
4343 /* e1000_main.c */