]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/e1000/e1000_main.c
fac82152e4c8795287fc5c2b7dc10481cc994093
[linux-2.6-omap-h63xx.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #define DRV_VERSION "7.3.20-k3-NAPI"
35 const char e1000_driver_version[] = DRV_VERSION;
36 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
37
38 /* e1000_pci_tbl - PCI Device ID Table
39  *
40  * Last entry must be all 0s
41  *
42  * Macro expands to...
43  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
44  */
45 static struct pci_device_id e1000_pci_tbl[] = {
46         INTEL_E1000_ETHERNET_DEVICE(0x1000),
47         INTEL_E1000_ETHERNET_DEVICE(0x1001),
48         INTEL_E1000_ETHERNET_DEVICE(0x1004),
49         INTEL_E1000_ETHERNET_DEVICE(0x1008),
50         INTEL_E1000_ETHERNET_DEVICE(0x1009),
51         INTEL_E1000_ETHERNET_DEVICE(0x100C),
52         INTEL_E1000_ETHERNET_DEVICE(0x100D),
53         INTEL_E1000_ETHERNET_DEVICE(0x100E),
54         INTEL_E1000_ETHERNET_DEVICE(0x100F),
55         INTEL_E1000_ETHERNET_DEVICE(0x1010),
56         INTEL_E1000_ETHERNET_DEVICE(0x1011),
57         INTEL_E1000_ETHERNET_DEVICE(0x1012),
58         INTEL_E1000_ETHERNET_DEVICE(0x1013),
59         INTEL_E1000_ETHERNET_DEVICE(0x1014),
60         INTEL_E1000_ETHERNET_DEVICE(0x1015),
61         INTEL_E1000_ETHERNET_DEVICE(0x1016),
62         INTEL_E1000_ETHERNET_DEVICE(0x1017),
63         INTEL_E1000_ETHERNET_DEVICE(0x1018),
64         INTEL_E1000_ETHERNET_DEVICE(0x1019),
65         INTEL_E1000_ETHERNET_DEVICE(0x101A),
66         INTEL_E1000_ETHERNET_DEVICE(0x101D),
67         INTEL_E1000_ETHERNET_DEVICE(0x101E),
68         INTEL_E1000_ETHERNET_DEVICE(0x1026),
69         INTEL_E1000_ETHERNET_DEVICE(0x1027),
70         INTEL_E1000_ETHERNET_DEVICE(0x1028),
71         INTEL_E1000_ETHERNET_DEVICE(0x1075),
72         INTEL_E1000_ETHERNET_DEVICE(0x1076),
73         INTEL_E1000_ETHERNET_DEVICE(0x1077),
74         INTEL_E1000_ETHERNET_DEVICE(0x1078),
75         INTEL_E1000_ETHERNET_DEVICE(0x1079),
76         INTEL_E1000_ETHERNET_DEVICE(0x107A),
77         INTEL_E1000_ETHERNET_DEVICE(0x107B),
78         INTEL_E1000_ETHERNET_DEVICE(0x107C),
79         INTEL_E1000_ETHERNET_DEVICE(0x108A),
80         INTEL_E1000_ETHERNET_DEVICE(0x1099),
81         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
82         /* required last entry */
83         {0,}
84 };
85
86 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
87
88 int e1000_up(struct e1000_adapter *adapter);
89 void e1000_down(struct e1000_adapter *adapter);
90 void e1000_reinit_locked(struct e1000_adapter *adapter);
91 void e1000_reset(struct e1000_adapter *adapter);
92 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx);
93 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
94 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
95 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
96 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
97 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
98                              struct e1000_tx_ring *txdr);
99 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
100                              struct e1000_rx_ring *rxdr);
101 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
102                              struct e1000_tx_ring *tx_ring);
103 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
104                              struct e1000_rx_ring *rx_ring);
105 void e1000_update_stats(struct e1000_adapter *adapter);
106
107 static int e1000_init_module(void);
108 static void e1000_exit_module(void);
109 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
110 static void __devexit e1000_remove(struct pci_dev *pdev);
111 static int e1000_alloc_queues(struct e1000_adapter *adapter);
112 static int e1000_sw_init(struct e1000_adapter *adapter);
113 static int e1000_open(struct net_device *netdev);
114 static int e1000_close(struct net_device *netdev);
115 static void e1000_configure_tx(struct e1000_adapter *adapter);
116 static void e1000_configure_rx(struct e1000_adapter *adapter);
117 static void e1000_setup_rctl(struct e1000_adapter *adapter);
118 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
119 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
120 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
121                                 struct e1000_tx_ring *tx_ring);
122 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
123                                 struct e1000_rx_ring *rx_ring);
124 static void e1000_set_rx_mode(struct net_device *netdev);
125 static void e1000_update_phy_info(unsigned long data);
126 static void e1000_watchdog(unsigned long data);
127 static void e1000_82547_tx_fifo_stall(unsigned long data);
128 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
129 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
130 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
131 static int e1000_set_mac(struct net_device *netdev, void *p);
132 static irqreturn_t e1000_intr(int irq, void *data);
133 static irqreturn_t e1000_intr_msi(int irq, void *data);
134 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
135                                struct e1000_tx_ring *tx_ring);
136 static int e1000_clean(struct napi_struct *napi, int budget);
137 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
138                                struct e1000_rx_ring *rx_ring,
139                                int *work_done, int work_to_do);
140 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
141                                    struct e1000_rx_ring *rx_ring,
142                                    int cleaned_count);
143 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
144 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
145                            int cmd);
146 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
147 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
148 static void e1000_tx_timeout(struct net_device *dev);
149 static void e1000_reset_task(struct work_struct *work);
150 static void e1000_smartspeed(struct e1000_adapter *adapter);
151 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
152                                        struct sk_buff *skb);
153
154 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
155 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
156 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
157 static void e1000_restore_vlan(struct e1000_adapter *adapter);
158
159 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
160 #ifdef CONFIG_PM
161 static int e1000_resume(struct pci_dev *pdev);
162 #endif
163 static void e1000_shutdown(struct pci_dev *pdev);
164
165 #ifdef CONFIG_NET_POLL_CONTROLLER
166 /* for netdump / net console */
167 static void e1000_netpoll (struct net_device *netdev);
168 #endif
169
170 #define COPYBREAK_DEFAULT 256
171 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
172 module_param(copybreak, uint, 0644);
173 MODULE_PARM_DESC(copybreak,
174         "Maximum size of packet that is copied to a new buffer on receive");
175
176 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
177                      pci_channel_state_t state);
178 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
179 static void e1000_io_resume(struct pci_dev *pdev);
180
181 static struct pci_error_handlers e1000_err_handler = {
182         .error_detected = e1000_io_error_detected,
183         .slot_reset = e1000_io_slot_reset,
184         .resume = e1000_io_resume,
185 };
186
187 static struct pci_driver e1000_driver = {
188         .name     = e1000_driver_name,
189         .id_table = e1000_pci_tbl,
190         .probe    = e1000_probe,
191         .remove   = __devexit_p(e1000_remove),
192 #ifdef CONFIG_PM
193         /* Power Managment Hooks */
194         .suspend  = e1000_suspend,
195         .resume   = e1000_resume,
196 #endif
197         .shutdown = e1000_shutdown,
198         .err_handler = &e1000_err_handler
199 };
200
201 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
202 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
203 MODULE_LICENSE("GPL");
204 MODULE_VERSION(DRV_VERSION);
205
206 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
207 module_param(debug, int, 0);
208 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
209
210 /**
211  * e1000_init_module - Driver Registration Routine
212  *
213  * e1000_init_module is the first routine called when the driver is
214  * loaded. All it does is register with the PCI subsystem.
215  **/
216
217 static int __init e1000_init_module(void)
218 {
219         int ret;
220         printk(KERN_INFO "%s - version %s\n",
221                e1000_driver_string, e1000_driver_version);
222
223         printk(KERN_INFO "%s\n", e1000_copyright);
224
225         ret = pci_register_driver(&e1000_driver);
226         if (copybreak != COPYBREAK_DEFAULT) {
227                 if (copybreak == 0)
228                         printk(KERN_INFO "e1000: copybreak disabled\n");
229                 else
230                         printk(KERN_INFO "e1000: copybreak enabled for "
231                                "packets <= %u bytes\n", copybreak);
232         }
233         return ret;
234 }
235
236 module_init(e1000_init_module);
237
238 /**
239  * e1000_exit_module - Driver Exit Cleanup Routine
240  *
241  * e1000_exit_module is called just before the driver is removed
242  * from memory.
243  **/
244
245 static void __exit e1000_exit_module(void)
246 {
247         pci_unregister_driver(&e1000_driver);
248 }
249
250 module_exit(e1000_exit_module);
251
252 static int e1000_request_irq(struct e1000_adapter *adapter)
253 {
254         struct e1000_hw *hw = &adapter->hw;
255         struct net_device *netdev = adapter->netdev;
256         irq_handler_t handler = e1000_intr;
257         int irq_flags = IRQF_SHARED;
258         int err;
259
260         if (hw->mac_type >= e1000_82571) {
261                 adapter->have_msi = !pci_enable_msi(adapter->pdev);
262                 if (adapter->have_msi) {
263                         handler = e1000_intr_msi;
264                         irq_flags = 0;
265                 }
266         }
267
268         err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
269                           netdev);
270         if (err) {
271                 if (adapter->have_msi)
272                         pci_disable_msi(adapter->pdev);
273                 DPRINTK(PROBE, ERR,
274                         "Unable to allocate interrupt Error: %d\n", err);
275         }
276
277         return err;
278 }
279
280 static void e1000_free_irq(struct e1000_adapter *adapter)
281 {
282         struct net_device *netdev = adapter->netdev;
283
284         free_irq(adapter->pdev->irq, netdev);
285
286         if (adapter->have_msi)
287                 pci_disable_msi(adapter->pdev);
288 }
289
290 /**
291  * e1000_irq_disable - Mask off interrupt generation on the NIC
292  * @adapter: board private structure
293  **/
294
295 static void e1000_irq_disable(struct e1000_adapter *adapter)
296 {
297         struct e1000_hw *hw = &adapter->hw;
298
299         ew32(IMC, ~0);
300         E1000_WRITE_FLUSH();
301         synchronize_irq(adapter->pdev->irq);
302 }
303
304 /**
305  * e1000_irq_enable - Enable default interrupt generation settings
306  * @adapter: board private structure
307  **/
308
309 static void e1000_irq_enable(struct e1000_adapter *adapter)
310 {
311         struct e1000_hw *hw = &adapter->hw;
312
313         ew32(IMS, IMS_ENABLE_MASK);
314         E1000_WRITE_FLUSH();
315 }
316
317 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
318 {
319         struct e1000_hw *hw = &adapter->hw;
320         struct net_device *netdev = adapter->netdev;
321         u16 vid = hw->mng_cookie.vlan_id;
322         u16 old_vid = adapter->mng_vlan_id;
323         if (adapter->vlgrp) {
324                 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
325                         if (hw->mng_cookie.status &
326                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
327                                 e1000_vlan_rx_add_vid(netdev, vid);
328                                 adapter->mng_vlan_id = vid;
329                         } else
330                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
331
332                         if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
333                                         (vid != old_vid) &&
334                             !vlan_group_get_device(adapter->vlgrp, old_vid))
335                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
336                 } else
337                         adapter->mng_vlan_id = vid;
338         }
339 }
340
341 /**
342  * e1000_release_hw_control - release control of the h/w to f/w
343  * @adapter: address of board private structure
344  *
345  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
346  * For ASF and Pass Through versions of f/w this means that the
347  * driver is no longer loaded. For AMT version (only with 82573) i
348  * of the f/w this means that the network i/f is closed.
349  *
350  **/
351
352 static void e1000_release_hw_control(struct e1000_adapter *adapter)
353 {
354         u32 ctrl_ext;
355         u32 swsm;
356         struct e1000_hw *hw = &adapter->hw;
357
358         /* Let firmware taken over control of h/w */
359         switch (hw->mac_type) {
360         case e1000_82573:
361                 swsm = er32(SWSM);
362                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
363                 break;
364         case e1000_82571:
365         case e1000_82572:
366         case e1000_80003es2lan:
367         case e1000_ich8lan:
368                 ctrl_ext = er32(CTRL_EXT);
369                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
370                 break;
371         default:
372                 break;
373         }
374 }
375
376 /**
377  * e1000_get_hw_control - get control of the h/w from f/w
378  * @adapter: address of board private structure
379  *
380  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
381  * For ASF and Pass Through versions of f/w this means that
382  * the driver is loaded. For AMT version (only with 82573)
383  * of the f/w this means that the network i/f is open.
384  *
385  **/
386
387 static void e1000_get_hw_control(struct e1000_adapter *adapter)
388 {
389         u32 ctrl_ext;
390         u32 swsm;
391         struct e1000_hw *hw = &adapter->hw;
392
393         /* Let firmware know the driver has taken over */
394         switch (hw->mac_type) {
395         case e1000_82573:
396                 swsm = er32(SWSM);
397                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
398                 break;
399         case e1000_82571:
400         case e1000_82572:
401         case e1000_80003es2lan:
402         case e1000_ich8lan:
403                 ctrl_ext = er32(CTRL_EXT);
404                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
405                 break;
406         default:
407                 break;
408         }
409 }
410
411 static void e1000_init_manageability(struct e1000_adapter *adapter)
412 {
413         struct e1000_hw *hw = &adapter->hw;
414
415         if (adapter->en_mng_pt) {
416                 u32 manc = er32(MANC);
417
418                 /* disable hardware interception of ARP */
419                 manc &= ~(E1000_MANC_ARP_EN);
420
421                 /* enable receiving management packets to the host */
422                 /* this will probably generate destination unreachable messages
423                  * from the host OS, but the packets will be handled on SMBUS */
424                 if (hw->has_manc2h) {
425                         u32 manc2h = er32(MANC2H);
426
427                         manc |= E1000_MANC_EN_MNG2HOST;
428 #define E1000_MNG2HOST_PORT_623 (1 << 5)
429 #define E1000_MNG2HOST_PORT_664 (1 << 6)
430                         manc2h |= E1000_MNG2HOST_PORT_623;
431                         manc2h |= E1000_MNG2HOST_PORT_664;
432                         ew32(MANC2H, manc2h);
433                 }
434
435                 ew32(MANC, manc);
436         }
437 }
438
439 static void e1000_release_manageability(struct e1000_adapter *adapter)
440 {
441         struct e1000_hw *hw = &adapter->hw;
442
443         if (adapter->en_mng_pt) {
444                 u32 manc = er32(MANC);
445
446                 /* re-enable hardware interception of ARP */
447                 manc |= E1000_MANC_ARP_EN;
448
449                 if (hw->has_manc2h)
450                         manc &= ~E1000_MANC_EN_MNG2HOST;
451
452                 /* don't explicitly have to mess with MANC2H since
453                  * MANC has an enable disable that gates MANC2H */
454
455                 ew32(MANC, manc);
456         }
457 }
458
459 /**
460  * e1000_configure - configure the hardware for RX and TX
461  * @adapter = private board structure
462  **/
463 static void e1000_configure(struct e1000_adapter *adapter)
464 {
465         struct net_device *netdev = adapter->netdev;
466         int i;
467
468         e1000_set_rx_mode(netdev);
469
470         e1000_restore_vlan(adapter);
471         e1000_init_manageability(adapter);
472
473         e1000_configure_tx(adapter);
474         e1000_setup_rctl(adapter);
475         e1000_configure_rx(adapter);
476         /* call E1000_DESC_UNUSED which always leaves
477          * at least 1 descriptor unused to make sure
478          * next_to_use != next_to_clean */
479         for (i = 0; i < adapter->num_rx_queues; i++) {
480                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
481                 adapter->alloc_rx_buf(adapter, ring,
482                                       E1000_DESC_UNUSED(ring));
483         }
484
485         adapter->tx_queue_len = netdev->tx_queue_len;
486 }
487
488 int e1000_up(struct e1000_adapter *adapter)
489 {
490         struct e1000_hw *hw = &adapter->hw;
491
492         /* hardware has been reset, we need to reload some things */
493         e1000_configure(adapter);
494
495         clear_bit(__E1000_DOWN, &adapter->flags);
496
497         napi_enable(&adapter->napi);
498
499         e1000_irq_enable(adapter);
500
501         /* fire a link change interrupt to start the watchdog */
502         ew32(ICS, E1000_ICS_LSC);
503         return 0;
504 }
505
506 /**
507  * e1000_power_up_phy - restore link in case the phy was powered down
508  * @adapter: address of board private structure
509  *
510  * The phy may be powered down to save power and turn off link when the
511  * driver is unloaded and wake on lan is not enabled (among others)
512  * *** this routine MUST be followed by a call to e1000_reset ***
513  *
514  **/
515
516 void e1000_power_up_phy(struct e1000_adapter *adapter)
517 {
518         struct e1000_hw *hw = &adapter->hw;
519         u16 mii_reg = 0;
520
521         /* Just clear the power down bit to wake the phy back up */
522         if (hw->media_type == e1000_media_type_copper) {
523                 /* according to the manual, the phy will retain its
524                  * settings across a power-down/up cycle */
525                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
526                 mii_reg &= ~MII_CR_POWER_DOWN;
527                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
528         }
529 }
530
531 static void e1000_power_down_phy(struct e1000_adapter *adapter)
532 {
533         struct e1000_hw *hw = &adapter->hw;
534
535         /* Power down the PHY so no link is implied when interface is down *
536          * The PHY cannot be powered down if any of the following is true *
537          * (a) WoL is enabled
538          * (b) AMT is active
539          * (c) SoL/IDER session is active */
540         if (!adapter->wol && hw->mac_type >= e1000_82540 &&
541            hw->media_type == e1000_media_type_copper) {
542                 u16 mii_reg = 0;
543
544                 switch (hw->mac_type) {
545                 case e1000_82540:
546                 case e1000_82545:
547                 case e1000_82545_rev_3:
548                 case e1000_82546:
549                 case e1000_82546_rev_3:
550                 case e1000_82541:
551                 case e1000_82541_rev_2:
552                 case e1000_82547:
553                 case e1000_82547_rev_2:
554                         if (er32(MANC) & E1000_MANC_SMBUS_EN)
555                                 goto out;
556                         break;
557                 case e1000_82571:
558                 case e1000_82572:
559                 case e1000_82573:
560                 case e1000_80003es2lan:
561                 case e1000_ich8lan:
562                         if (e1000_check_mng_mode(hw) ||
563                             e1000_check_phy_reset_block(hw))
564                                 goto out;
565                         break;
566                 default:
567                         goto out;
568                 }
569                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
570                 mii_reg |= MII_CR_POWER_DOWN;
571                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
572                 mdelay(1);
573         }
574 out:
575         return;
576 }
577
578 void e1000_down(struct e1000_adapter *adapter)
579 {
580         struct net_device *netdev = adapter->netdev;
581
582         /* signal that we're down so the interrupt handler does not
583          * reschedule our watchdog timer */
584         set_bit(__E1000_DOWN, &adapter->flags);
585
586         napi_disable(&adapter->napi);
587
588         e1000_irq_disable(adapter);
589
590         del_timer_sync(&adapter->tx_fifo_stall_timer);
591         del_timer_sync(&adapter->watchdog_timer);
592         del_timer_sync(&adapter->phy_info_timer);
593
594         netdev->tx_queue_len = adapter->tx_queue_len;
595         adapter->link_speed = 0;
596         adapter->link_duplex = 0;
597         netif_carrier_off(netdev);
598         netif_stop_queue(netdev);
599
600         e1000_reset(adapter);
601         e1000_clean_all_tx_rings(adapter);
602         e1000_clean_all_rx_rings(adapter);
603 }
604
605 void e1000_reinit_locked(struct e1000_adapter *adapter)
606 {
607         WARN_ON(in_interrupt());
608         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
609                 msleep(1);
610         e1000_down(adapter);
611         e1000_up(adapter);
612         clear_bit(__E1000_RESETTING, &adapter->flags);
613 }
614
615 void e1000_reset(struct e1000_adapter *adapter)
616 {
617         struct e1000_hw *hw = &adapter->hw;
618         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
619         u16 fc_high_water_mark = E1000_FC_HIGH_DIFF;
620         bool legacy_pba_adjust = false;
621
622         /* Repartition Pba for greater than 9k mtu
623          * To take effect CTRL.RST is required.
624          */
625
626         switch (hw->mac_type) {
627         case e1000_82542_rev2_0:
628         case e1000_82542_rev2_1:
629         case e1000_82543:
630         case e1000_82544:
631         case e1000_82540:
632         case e1000_82541:
633         case e1000_82541_rev_2:
634                 legacy_pba_adjust = true;
635                 pba = E1000_PBA_48K;
636                 break;
637         case e1000_82545:
638         case e1000_82545_rev_3:
639         case e1000_82546:
640         case e1000_82546_rev_3:
641                 pba = E1000_PBA_48K;
642                 break;
643         case e1000_82547:
644         case e1000_82547_rev_2:
645                 legacy_pba_adjust = true;
646                 pba = E1000_PBA_30K;
647                 break;
648         case e1000_82571:
649         case e1000_82572:
650         case e1000_80003es2lan:
651                 pba = E1000_PBA_38K;
652                 break;
653         case e1000_82573:
654                 pba = E1000_PBA_20K;
655                 break;
656         case e1000_ich8lan:
657                 pba = E1000_PBA_8K;
658         case e1000_undefined:
659         case e1000_num_macs:
660                 break;
661         }
662
663         if (legacy_pba_adjust) {
664                 if (adapter->netdev->mtu > E1000_RXBUFFER_8192)
665                         pba -= 8; /* allocate more FIFO for Tx */
666
667                 if (hw->mac_type == e1000_82547) {
668                         adapter->tx_fifo_head = 0;
669                         adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
670                         adapter->tx_fifo_size =
671                                 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
672                         atomic_set(&adapter->tx_fifo_stall, 0);
673                 }
674         } else if (hw->max_frame_size > MAXIMUM_ETHERNET_FRAME_SIZE) {
675                 /* adjust PBA for jumbo frames */
676                 ew32(PBA, pba);
677
678                 /* To maintain wire speed transmits, the Tx FIFO should be
679                  * large enough to accomodate two full transmit packets,
680                  * rounded up to the next 1KB and expressed in KB.  Likewise,
681                  * the Rx FIFO should be large enough to accomodate at least
682                  * one full receive packet and is similarly rounded up and
683                  * expressed in KB. */
684                 pba = er32(PBA);
685                 /* upper 16 bits has Tx packet buffer allocation size in KB */
686                 tx_space = pba >> 16;
687                 /* lower 16 bits has Rx packet buffer allocation size in KB */
688                 pba &= 0xffff;
689                 /* don't include ethernet FCS because hardware appends/strips */
690                 min_rx_space = adapter->netdev->mtu + ENET_HEADER_SIZE +
691                                VLAN_TAG_SIZE;
692                 min_tx_space = min_rx_space;
693                 min_tx_space *= 2;
694                 min_tx_space = ALIGN(min_tx_space, 1024);
695                 min_tx_space >>= 10;
696                 min_rx_space = ALIGN(min_rx_space, 1024);
697                 min_rx_space >>= 10;
698
699                 /* If current Tx allocation is less than the min Tx FIFO size,
700                  * and the min Tx FIFO size is less than the current Rx FIFO
701                  * allocation, take space away from current Rx allocation */
702                 if (tx_space < min_tx_space &&
703                     ((min_tx_space - tx_space) < pba)) {
704                         pba = pba - (min_tx_space - tx_space);
705
706                         /* PCI/PCIx hardware has PBA alignment constraints */
707                         switch (hw->mac_type) {
708                         case e1000_82545 ... e1000_82546_rev_3:
709                                 pba &= ~(E1000_PBA_8K - 1);
710                                 break;
711                         default:
712                                 break;
713                         }
714
715                         /* if short on rx space, rx wins and must trump tx
716                          * adjustment or use Early Receive if available */
717                         if (pba < min_rx_space) {
718                                 switch (hw->mac_type) {
719                                 case e1000_82573:
720                                         /* ERT enabled in e1000_configure_rx */
721                                         break;
722                                 default:
723                                         pba = min_rx_space;
724                                         break;
725                                 }
726                         }
727                 }
728         }
729
730         ew32(PBA, pba);
731
732         /* flow control settings */
733         /* Set the FC high water mark to 90% of the FIFO size.
734          * Required to clear last 3 LSB */
735         fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
736         /* We can't use 90% on small FIFOs because the remainder
737          * would be less than 1 full frame.  In this case, we size
738          * it to allow at least a full frame above the high water
739          *  mark. */
740         if (pba < E1000_PBA_16K)
741                 fc_high_water_mark = (pba * 1024) - 1600;
742
743         hw->fc_high_water = fc_high_water_mark;
744         hw->fc_low_water = fc_high_water_mark - 8;
745         if (hw->mac_type == e1000_80003es2lan)
746                 hw->fc_pause_time = 0xFFFF;
747         else
748                 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
749         hw->fc_send_xon = 1;
750         hw->fc = hw->original_fc;
751
752         /* Allow time for pending master requests to run */
753         e1000_reset_hw(hw);
754         if (hw->mac_type >= e1000_82544)
755                 ew32(WUC, 0);
756
757         if (e1000_init_hw(hw))
758                 DPRINTK(PROBE, ERR, "Hardware Error\n");
759         e1000_update_mng_vlan(adapter);
760
761         /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
762         if (hw->mac_type >= e1000_82544 &&
763             hw->mac_type <= e1000_82547_rev_2 &&
764             hw->autoneg == 1 &&
765             hw->autoneg_advertised == ADVERTISE_1000_FULL) {
766                 u32 ctrl = er32(CTRL);
767                 /* clear phy power management bit if we are in gig only mode,
768                  * which if enabled will attempt negotiation to 100Mb, which
769                  * can cause a loss of link at power off or driver unload */
770                 ctrl &= ~E1000_CTRL_SWDPIN3;
771                 ew32(CTRL, ctrl);
772         }
773
774         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
775         ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
776
777         e1000_reset_adaptive(hw);
778         e1000_phy_get_info(hw, &adapter->phy_info);
779
780         if (!adapter->smart_power_down &&
781             (hw->mac_type == e1000_82571 ||
782              hw->mac_type == e1000_82572)) {
783                 u16 phy_data = 0;
784                 /* speed up time to link by disabling smart power down, ignore
785                  * the return value of this function because there is nothing
786                  * different we would do if it failed */
787                 e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
788                                    &phy_data);
789                 phy_data &= ~IGP02E1000_PM_SPD;
790                 e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
791                                     phy_data);
792         }
793
794         e1000_release_manageability(adapter);
795 }
796
797 /**
798  *  Dump the eeprom for users having checksum issues
799  **/
800 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
801 {
802         struct net_device *netdev = adapter->netdev;
803         struct ethtool_eeprom eeprom;
804         const struct ethtool_ops *ops = netdev->ethtool_ops;
805         u8 *data;
806         int i;
807         u16 csum_old, csum_new = 0;
808
809         eeprom.len = ops->get_eeprom_len(netdev);
810         eeprom.offset = 0;
811
812         data = kmalloc(eeprom.len, GFP_KERNEL);
813         if (!data) {
814                 printk(KERN_ERR "Unable to allocate memory to dump EEPROM"
815                        " data\n");
816                 return;
817         }
818
819         ops->get_eeprom(netdev, &eeprom, data);
820
821         csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
822                    (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
823         for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
824                 csum_new += data[i] + (data[i + 1] << 8);
825         csum_new = EEPROM_SUM - csum_new;
826
827         printk(KERN_ERR "/*********************/\n");
828         printk(KERN_ERR "Current EEPROM Checksum : 0x%04x\n", csum_old);
829         printk(KERN_ERR "Calculated              : 0x%04x\n", csum_new);
830
831         printk(KERN_ERR "Offset    Values\n");
832         printk(KERN_ERR "========  ======\n");
833         print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
834
835         printk(KERN_ERR "Include this output when contacting your support "
836                "provider.\n");
837         printk(KERN_ERR "This is not a software error! Something bad "
838                "happened to your hardware or\n");
839         printk(KERN_ERR "EEPROM image. Ignoring this "
840                "problem could result in further problems,\n");
841         printk(KERN_ERR "possibly loss of data, corruption or system hangs!\n");
842         printk(KERN_ERR "The MAC Address will be reset to 00:00:00:00:00:00, "
843                "which is invalid\n");
844         printk(KERN_ERR "and requires you to set the proper MAC "
845                "address manually before continuing\n");
846         printk(KERN_ERR "to enable this network device.\n");
847         printk(KERN_ERR "Please inspect the EEPROM dump and report the issue "
848                "to your hardware vendor\n");
849         printk(KERN_ERR "or Intel Customer Support.\n");
850         printk(KERN_ERR "/*********************/\n");
851
852         kfree(data);
853 }
854
855 /**
856  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
857  * @pdev: PCI device information struct
858  *
859  * Return true if an adapter needs ioport resources
860  **/
861 static int e1000_is_need_ioport(struct pci_dev *pdev)
862 {
863         switch (pdev->device) {
864         case E1000_DEV_ID_82540EM:
865         case E1000_DEV_ID_82540EM_LOM:
866         case E1000_DEV_ID_82540EP:
867         case E1000_DEV_ID_82540EP_LOM:
868         case E1000_DEV_ID_82540EP_LP:
869         case E1000_DEV_ID_82541EI:
870         case E1000_DEV_ID_82541EI_MOBILE:
871         case E1000_DEV_ID_82541ER:
872         case E1000_DEV_ID_82541ER_LOM:
873         case E1000_DEV_ID_82541GI:
874         case E1000_DEV_ID_82541GI_LF:
875         case E1000_DEV_ID_82541GI_MOBILE:
876         case E1000_DEV_ID_82544EI_COPPER:
877         case E1000_DEV_ID_82544EI_FIBER:
878         case E1000_DEV_ID_82544GC_COPPER:
879         case E1000_DEV_ID_82544GC_LOM:
880         case E1000_DEV_ID_82545EM_COPPER:
881         case E1000_DEV_ID_82545EM_FIBER:
882         case E1000_DEV_ID_82546EB_COPPER:
883         case E1000_DEV_ID_82546EB_FIBER:
884         case E1000_DEV_ID_82546EB_QUAD_COPPER:
885                 return true;
886         default:
887                 return false;
888         }
889 }
890
891 /**
892  * e1000_probe - Device Initialization Routine
893  * @pdev: PCI device information struct
894  * @ent: entry in e1000_pci_tbl
895  *
896  * Returns 0 on success, negative on failure
897  *
898  * e1000_probe initializes an adapter identified by a pci_dev structure.
899  * The OS initialization, configuring of the adapter private structure,
900  * and a hardware reset occur.
901  **/
902 static int __devinit e1000_probe(struct pci_dev *pdev,
903                                  const struct pci_device_id *ent)
904 {
905         struct net_device *netdev;
906         struct e1000_adapter *adapter;
907         struct e1000_hw *hw;
908
909         static int cards_found = 0;
910         static int global_quad_port_a = 0; /* global ksp3 port a indication */
911         int i, err, pci_using_dac;
912         u16 eeprom_data = 0;
913         u16 eeprom_apme_mask = E1000_EEPROM_APME;
914         int bars, need_ioport;
915         DECLARE_MAC_BUF(mac);
916
917         /* do not allocate ioport bars when not needed */
918         need_ioport = e1000_is_need_ioport(pdev);
919         if (need_ioport) {
920                 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
921                 err = pci_enable_device(pdev);
922         } else {
923                 bars = pci_select_bars(pdev, IORESOURCE_MEM);
924                 err = pci_enable_device(pdev);
925         }
926         if (err)
927                 return err;
928
929         if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK) &&
930             !pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK)) {
931                 pci_using_dac = 1;
932         } else {
933                 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
934                 if (err) {
935                         err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
936                         if (err) {
937                                 E1000_ERR("No usable DMA configuration, "
938                                           "aborting\n");
939                                 goto err_dma;
940                         }
941                 }
942                 pci_using_dac = 0;
943         }
944
945         err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
946         if (err)
947                 goto err_pci_reg;
948
949         pci_set_master(pdev);
950
951         err = -ENOMEM;
952         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
953         if (!netdev)
954                 goto err_alloc_etherdev;
955
956         SET_NETDEV_DEV(netdev, &pdev->dev);
957
958         pci_set_drvdata(pdev, netdev);
959         adapter = netdev_priv(netdev);
960         adapter->netdev = netdev;
961         adapter->pdev = pdev;
962         adapter->msg_enable = (1 << debug) - 1;
963         adapter->bars = bars;
964         adapter->need_ioport = need_ioport;
965
966         hw = &adapter->hw;
967         hw->back = adapter;
968
969         err = -EIO;
970         hw->hw_addr = ioremap(pci_resource_start(pdev, BAR_0),
971                               pci_resource_len(pdev, BAR_0));
972         if (!hw->hw_addr)
973                 goto err_ioremap;
974
975         if (adapter->need_ioport) {
976                 for (i = BAR_1; i <= BAR_5; i++) {
977                         if (pci_resource_len(pdev, i) == 0)
978                                 continue;
979                         if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
980                                 hw->io_base = pci_resource_start(pdev, i);
981                                 break;
982                         }
983                 }
984         }
985
986         netdev->open = &e1000_open;
987         netdev->stop = &e1000_close;
988         netdev->hard_start_xmit = &e1000_xmit_frame;
989         netdev->get_stats = &e1000_get_stats;
990         netdev->set_rx_mode = &e1000_set_rx_mode;
991         netdev->set_mac_address = &e1000_set_mac;
992         netdev->change_mtu = &e1000_change_mtu;
993         netdev->do_ioctl = &e1000_ioctl;
994         e1000_set_ethtool_ops(netdev);
995         netdev->tx_timeout = &e1000_tx_timeout;
996         netdev->watchdog_timeo = 5 * HZ;
997         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
998         netdev->vlan_rx_register = e1000_vlan_rx_register;
999         netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
1000         netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
1001 #ifdef CONFIG_NET_POLL_CONTROLLER
1002         netdev->poll_controller = e1000_netpoll;
1003 #endif
1004         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1005
1006         adapter->bd_number = cards_found;
1007
1008         /* setup the private structure */
1009
1010         err = e1000_sw_init(adapter);
1011         if (err)
1012                 goto err_sw_init;
1013
1014         err = -EIO;
1015         /* Flash BAR mapping must happen after e1000_sw_init
1016          * because it depends on mac_type */
1017         if ((hw->mac_type == e1000_ich8lan) &&
1018            (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
1019                 hw->flash_address =
1020                         ioremap(pci_resource_start(pdev, 1),
1021                                 pci_resource_len(pdev, 1));
1022                 if (!hw->flash_address)
1023                         goto err_flashmap;
1024         }
1025
1026         if (e1000_check_phy_reset_block(hw))
1027                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
1028
1029         if (hw->mac_type >= e1000_82543) {
1030                 netdev->features = NETIF_F_SG |
1031                                    NETIF_F_HW_CSUM |
1032                                    NETIF_F_HW_VLAN_TX |
1033                                    NETIF_F_HW_VLAN_RX |
1034                                    NETIF_F_HW_VLAN_FILTER;
1035                 if (hw->mac_type == e1000_ich8lan)
1036                         netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
1037         }
1038
1039         if ((hw->mac_type >= e1000_82544) &&
1040            (hw->mac_type != e1000_82547))
1041                 netdev->features |= NETIF_F_TSO;
1042
1043         if (hw->mac_type > e1000_82547_rev_2)
1044                 netdev->features |= NETIF_F_TSO6;
1045         if (pci_using_dac)
1046                 netdev->features |= NETIF_F_HIGHDMA;
1047
1048         netdev->features |= NETIF_F_LLTX;
1049
1050         netdev->vlan_features |= NETIF_F_TSO;
1051         netdev->vlan_features |= NETIF_F_TSO6;
1052         netdev->vlan_features |= NETIF_F_HW_CSUM;
1053         netdev->vlan_features |= NETIF_F_SG;
1054
1055         adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1056
1057         /* initialize eeprom parameters */
1058         if (e1000_init_eeprom_params(hw)) {
1059                 E1000_ERR("EEPROM initialization failed\n");
1060                 goto err_eeprom;
1061         }
1062
1063         /* before reading the EEPROM, reset the controller to
1064          * put the device in a known good starting state */
1065
1066         e1000_reset_hw(hw);
1067
1068         /* make sure the EEPROM is good */
1069         if (e1000_validate_eeprom_checksum(hw) < 0) {
1070                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
1071                 e1000_dump_eeprom(adapter);
1072                 /*
1073                  * set MAC address to all zeroes to invalidate and temporary
1074                  * disable this device for the user. This blocks regular
1075                  * traffic while still permitting ethtool ioctls from reaching
1076                  * the hardware as well as allowing the user to run the
1077                  * interface after manually setting a hw addr using
1078                  * `ip set address`
1079                  */
1080                 memset(hw->mac_addr, 0, netdev->addr_len);
1081         } else {
1082                 /* copy the MAC address out of the EEPROM */
1083                 if (e1000_read_mac_addr(hw))
1084                         DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
1085         }
1086         /* don't block initalization here due to bad MAC address */
1087         memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1088         memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
1089
1090         if (!is_valid_ether_addr(netdev->perm_addr))
1091                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
1092
1093         e1000_get_bus_info(hw);
1094
1095         init_timer(&adapter->tx_fifo_stall_timer);
1096         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
1097         adapter->tx_fifo_stall_timer.data = (unsigned long)adapter;
1098
1099         init_timer(&adapter->watchdog_timer);
1100         adapter->watchdog_timer.function = &e1000_watchdog;
1101         adapter->watchdog_timer.data = (unsigned long) adapter;
1102
1103         init_timer(&adapter->phy_info_timer);
1104         adapter->phy_info_timer.function = &e1000_update_phy_info;
1105         adapter->phy_info_timer.data = (unsigned long)adapter;
1106
1107         INIT_WORK(&adapter->reset_task, e1000_reset_task);
1108
1109         e1000_check_options(adapter);
1110
1111         /* Initial Wake on LAN setting
1112          * If APM wake is enabled in the EEPROM,
1113          * enable the ACPI Magic Packet filter
1114          */
1115
1116         switch (hw->mac_type) {
1117         case e1000_82542_rev2_0:
1118         case e1000_82542_rev2_1:
1119         case e1000_82543:
1120                 break;
1121         case e1000_82544:
1122                 e1000_read_eeprom(hw,
1123                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1124                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1125                 break;
1126         case e1000_ich8lan:
1127                 e1000_read_eeprom(hw,
1128                         EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
1129                 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
1130                 break;
1131         case e1000_82546:
1132         case e1000_82546_rev_3:
1133         case e1000_82571:
1134         case e1000_80003es2lan:
1135                 if (er32(STATUS) & E1000_STATUS_FUNC_1){
1136                         e1000_read_eeprom(hw,
1137                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1138                         break;
1139                 }
1140                 /* Fall Through */
1141         default:
1142                 e1000_read_eeprom(hw,
1143                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1144                 break;
1145         }
1146         if (eeprom_data & eeprom_apme_mask)
1147                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1148
1149         /* now that we have the eeprom settings, apply the special cases
1150          * where the eeprom may be wrong or the board simply won't support
1151          * wake on lan on a particular port */
1152         switch (pdev->device) {
1153         case E1000_DEV_ID_82546GB_PCIE:
1154                 adapter->eeprom_wol = 0;
1155                 break;
1156         case E1000_DEV_ID_82546EB_FIBER:
1157         case E1000_DEV_ID_82546GB_FIBER:
1158         case E1000_DEV_ID_82571EB_FIBER:
1159                 /* Wake events only supported on port A for dual fiber
1160                  * regardless of eeprom setting */
1161                 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1162                         adapter->eeprom_wol = 0;
1163                 break;
1164         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1165         case E1000_DEV_ID_82571EB_QUAD_COPPER:
1166         case E1000_DEV_ID_82571EB_QUAD_FIBER:
1167         case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1168         case E1000_DEV_ID_82571PT_QUAD_COPPER:
1169                 /* if quad port adapter, disable WoL on all but port A */
1170                 if (global_quad_port_a != 0)
1171                         adapter->eeprom_wol = 0;
1172                 else
1173                         adapter->quad_port_a = 1;
1174                 /* Reset for multiple quad port adapters */
1175                 if (++global_quad_port_a == 4)
1176                         global_quad_port_a = 0;
1177                 break;
1178         }
1179
1180         /* initialize the wol settings based on the eeprom settings */
1181         adapter->wol = adapter->eeprom_wol;
1182
1183         /* print bus type/speed/width info */
1184         DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
1185                 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
1186                  (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
1187                 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1188                  (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
1189                  (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
1190                  (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
1191                  (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
1192                 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
1193                  (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
1194                  (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
1195                  "32-bit"));
1196
1197         printk("%s\n", print_mac(mac, netdev->dev_addr));
1198
1199         if (hw->bus_type == e1000_bus_type_pci_express) {
1200                 DPRINTK(PROBE, WARNING, "This device (id %04x:%04x) will no "
1201                         "longer be supported by this driver in the future.\n",
1202                         pdev->vendor, pdev->device);
1203                 DPRINTK(PROBE, WARNING, "please use the \"e1000e\" "
1204                         "driver instead.\n");
1205         }
1206
1207         /* reset the hardware with the new settings */
1208         e1000_reset(adapter);
1209
1210         /* If the controller is 82573 and f/w is AMT, do not set
1211          * DRV_LOAD until the interface is up.  For all other cases,
1212          * let the f/w know that the h/w is now under the control
1213          * of the driver. */
1214         if (hw->mac_type != e1000_82573 ||
1215             !e1000_check_mng_mode(hw))
1216                 e1000_get_hw_control(adapter);
1217
1218         /* tell the stack to leave us alone until e1000_open() is called */
1219         netif_carrier_off(netdev);
1220         netif_stop_queue(netdev);
1221
1222         strcpy(netdev->name, "eth%d");
1223         err = register_netdev(netdev);
1224         if (err)
1225                 goto err_register;
1226
1227         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1228
1229         cards_found++;
1230         return 0;
1231
1232 err_register:
1233         e1000_release_hw_control(adapter);
1234 err_eeprom:
1235         if (!e1000_check_phy_reset_block(hw))
1236                 e1000_phy_hw_reset(hw);
1237
1238         if (hw->flash_address)
1239                 iounmap(hw->flash_address);
1240 err_flashmap:
1241         for (i = 0; i < adapter->num_rx_queues; i++)
1242                 dev_put(&adapter->polling_netdev[i]);
1243
1244         kfree(adapter->tx_ring);
1245         kfree(adapter->rx_ring);
1246         kfree(adapter->polling_netdev);
1247 err_sw_init:
1248         iounmap(hw->hw_addr);
1249 err_ioremap:
1250         free_netdev(netdev);
1251 err_alloc_etherdev:
1252         pci_release_selected_regions(pdev, bars);
1253 err_pci_reg:
1254 err_dma:
1255         pci_disable_device(pdev);
1256         return err;
1257 }
1258
1259 /**
1260  * e1000_remove - Device Removal Routine
1261  * @pdev: PCI device information struct
1262  *
1263  * e1000_remove is called by the PCI subsystem to alert the driver
1264  * that it should release a PCI device.  The could be caused by a
1265  * Hot-Plug event, or because the driver is going to be removed from
1266  * memory.
1267  **/
1268
1269 static void __devexit e1000_remove(struct pci_dev *pdev)
1270 {
1271         struct net_device *netdev = pci_get_drvdata(pdev);
1272         struct e1000_adapter *adapter = netdev_priv(netdev);
1273         struct e1000_hw *hw = &adapter->hw;
1274         int i;
1275
1276         cancel_work_sync(&adapter->reset_task);
1277
1278         e1000_release_manageability(adapter);
1279
1280         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1281          * would have already happened in close and is redundant. */
1282         e1000_release_hw_control(adapter);
1283
1284         for (i = 0; i < adapter->num_rx_queues; i++)
1285                 dev_put(&adapter->polling_netdev[i]);
1286
1287         unregister_netdev(netdev);
1288
1289         if (!e1000_check_phy_reset_block(hw))
1290                 e1000_phy_hw_reset(hw);
1291
1292         kfree(adapter->tx_ring);
1293         kfree(adapter->rx_ring);
1294         kfree(adapter->polling_netdev);
1295
1296         iounmap(hw->hw_addr);
1297         if (hw->flash_address)
1298                 iounmap(hw->flash_address);
1299         pci_release_selected_regions(pdev, adapter->bars);
1300
1301         free_netdev(netdev);
1302
1303         pci_disable_device(pdev);
1304 }
1305
1306 /**
1307  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1308  * @adapter: board private structure to initialize
1309  *
1310  * e1000_sw_init initializes the Adapter private data structure.
1311  * Fields are initialized based on PCI device information and
1312  * OS network device settings (MTU size).
1313  **/
1314
1315 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
1316 {
1317         struct e1000_hw *hw = &adapter->hw;
1318         struct net_device *netdev = adapter->netdev;
1319         struct pci_dev *pdev = adapter->pdev;
1320         int i;
1321
1322         /* PCI config space info */
1323
1324         hw->vendor_id = pdev->vendor;
1325         hw->device_id = pdev->device;
1326         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1327         hw->subsystem_id = pdev->subsystem_device;
1328         hw->revision_id = pdev->revision;
1329
1330         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1331
1332         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1333         hw->max_frame_size = netdev->mtu +
1334                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1335         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1336
1337         /* identify the MAC */
1338
1339         if (e1000_set_mac_type(hw)) {
1340                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1341                 return -EIO;
1342         }
1343
1344         switch (hw->mac_type) {
1345         default:
1346                 break;
1347         case e1000_82541:
1348         case e1000_82547:
1349         case e1000_82541_rev_2:
1350         case e1000_82547_rev_2:
1351                 hw->phy_init_script = 1;
1352                 break;
1353         }
1354
1355         e1000_set_media_type(hw);
1356
1357         hw->wait_autoneg_complete = false;
1358         hw->tbi_compatibility_en = true;
1359         hw->adaptive_ifs = true;
1360
1361         /* Copper options */
1362
1363         if (hw->media_type == e1000_media_type_copper) {
1364                 hw->mdix = AUTO_ALL_MODES;
1365                 hw->disable_polarity_correction = false;
1366                 hw->master_slave = E1000_MASTER_SLAVE;
1367         }
1368
1369         adapter->num_tx_queues = 1;
1370         adapter->num_rx_queues = 1;
1371
1372         if (e1000_alloc_queues(adapter)) {
1373                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1374                 return -ENOMEM;
1375         }
1376
1377         for (i = 0; i < adapter->num_rx_queues; i++) {
1378                 adapter->polling_netdev[i].priv = adapter;
1379                 dev_hold(&adapter->polling_netdev[i]);
1380                 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1381         }
1382         spin_lock_init(&adapter->tx_queue_lock);
1383
1384         /* Explicitly disable IRQ since the NIC can be in any state. */
1385         e1000_irq_disable(adapter);
1386
1387         spin_lock_init(&adapter->stats_lock);
1388
1389         set_bit(__E1000_DOWN, &adapter->flags);
1390
1391         return 0;
1392 }
1393
1394 /**
1395  * e1000_alloc_queues - Allocate memory for all rings
1396  * @adapter: board private structure to initialize
1397  *
1398  * We allocate one ring per queue at run-time since we don't know the
1399  * number of queues at compile-time.  The polling_netdev array is
1400  * intended for Multiqueue, but should work fine with a single queue.
1401  **/
1402
1403 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1404 {
1405         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1406                                    sizeof(struct e1000_tx_ring), GFP_KERNEL);
1407         if (!adapter->tx_ring)
1408                 return -ENOMEM;
1409
1410         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1411                                    sizeof(struct e1000_rx_ring), GFP_KERNEL);
1412         if (!adapter->rx_ring) {
1413                 kfree(adapter->tx_ring);
1414                 return -ENOMEM;
1415         }
1416
1417         adapter->polling_netdev = kcalloc(adapter->num_rx_queues,
1418                                           sizeof(struct net_device),
1419                                           GFP_KERNEL);
1420         if (!adapter->polling_netdev) {
1421                 kfree(adapter->tx_ring);
1422                 kfree(adapter->rx_ring);
1423                 return -ENOMEM;
1424         }
1425
1426         return E1000_SUCCESS;
1427 }
1428
1429 /**
1430  * e1000_open - Called when a network interface is made active
1431  * @netdev: network interface device structure
1432  *
1433  * Returns 0 on success, negative value on failure
1434  *
1435  * The open entry point is called when a network interface is made
1436  * active by the system (IFF_UP).  At this point all resources needed
1437  * for transmit and receive operations are allocated, the interrupt
1438  * handler is registered with the OS, the watchdog timer is started,
1439  * and the stack is notified that the interface is ready.
1440  **/
1441
1442 static int e1000_open(struct net_device *netdev)
1443 {
1444         struct e1000_adapter *adapter = netdev_priv(netdev);
1445         struct e1000_hw *hw = &adapter->hw;
1446         int err;
1447
1448         /* disallow open during test */
1449         if (test_bit(__E1000_TESTING, &adapter->flags))
1450                 return -EBUSY;
1451
1452         /* allocate transmit descriptors */
1453         err = e1000_setup_all_tx_resources(adapter);
1454         if (err)
1455                 goto err_setup_tx;
1456
1457         /* allocate receive descriptors */
1458         err = e1000_setup_all_rx_resources(adapter);
1459         if (err)
1460                 goto err_setup_rx;
1461
1462         e1000_power_up_phy(adapter);
1463
1464         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1465         if ((hw->mng_cookie.status &
1466                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1467                 e1000_update_mng_vlan(adapter);
1468         }
1469
1470         /* If AMT is enabled, let the firmware know that the network
1471          * interface is now open */
1472         if (hw->mac_type == e1000_82573 &&
1473             e1000_check_mng_mode(hw))
1474                 e1000_get_hw_control(adapter);
1475
1476         /* before we allocate an interrupt, we must be ready to handle it.
1477          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1478          * as soon as we call pci_request_irq, so we have to setup our
1479          * clean_rx handler before we do so.  */
1480         e1000_configure(adapter);
1481
1482         err = e1000_request_irq(adapter);
1483         if (err)
1484                 goto err_req_irq;
1485
1486         /* From here on the code is the same as e1000_up() */
1487         clear_bit(__E1000_DOWN, &adapter->flags);
1488
1489         napi_enable(&adapter->napi);
1490
1491         e1000_irq_enable(adapter);
1492
1493         netif_start_queue(netdev);
1494
1495         /* fire a link status change interrupt to start the watchdog */
1496         ew32(ICS, E1000_ICS_LSC);
1497
1498         return E1000_SUCCESS;
1499
1500 err_req_irq:
1501         e1000_release_hw_control(adapter);
1502         e1000_power_down_phy(adapter);
1503         e1000_free_all_rx_resources(adapter);
1504 err_setup_rx:
1505         e1000_free_all_tx_resources(adapter);
1506 err_setup_tx:
1507         e1000_reset(adapter);
1508
1509         return err;
1510 }
1511
1512 /**
1513  * e1000_close - Disables a network interface
1514  * @netdev: network interface device structure
1515  *
1516  * Returns 0, this is not allowed to fail
1517  *
1518  * The close entry point is called when an interface is de-activated
1519  * by the OS.  The hardware is still under the drivers control, but
1520  * needs to be disabled.  A global MAC reset is issued to stop the
1521  * hardware, and all transmit and receive resources are freed.
1522  **/
1523
1524 static int e1000_close(struct net_device *netdev)
1525 {
1526         struct e1000_adapter *adapter = netdev_priv(netdev);
1527         struct e1000_hw *hw = &adapter->hw;
1528
1529         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1530         e1000_down(adapter);
1531         e1000_power_down_phy(adapter);
1532         e1000_free_irq(adapter);
1533
1534         e1000_free_all_tx_resources(adapter);
1535         e1000_free_all_rx_resources(adapter);
1536
1537         /* kill manageability vlan ID if supported, but not if a vlan with
1538          * the same ID is registered on the host OS (let 8021q kill it) */
1539         if ((hw->mng_cookie.status &
1540                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1541              !(adapter->vlgrp &&
1542                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
1543                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1544         }
1545
1546         /* If AMT is enabled, let the firmware know that the network
1547          * interface is now closed */
1548         if (hw->mac_type == e1000_82573 &&
1549             e1000_check_mng_mode(hw))
1550                 e1000_release_hw_control(adapter);
1551
1552         return 0;
1553 }
1554
1555 /**
1556  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1557  * @adapter: address of board private structure
1558  * @start: address of beginning of memory
1559  * @len: length of memory
1560  **/
1561 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1562                                   unsigned long len)
1563 {
1564         struct e1000_hw *hw = &adapter->hw;
1565         unsigned long begin = (unsigned long)start;
1566         unsigned long end = begin + len;
1567
1568         /* First rev 82545 and 82546 need to not allow any memory
1569          * write location to cross 64k boundary due to errata 23 */
1570         if (hw->mac_type == e1000_82545 ||
1571             hw->mac_type == e1000_82546) {
1572                 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1573         }
1574
1575         return true;
1576 }
1577
1578 /**
1579  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1580  * @adapter: board private structure
1581  * @txdr:    tx descriptor ring (for a specific queue) to setup
1582  *
1583  * Return 0 on success, negative on failure
1584  **/
1585
1586 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1587                                     struct e1000_tx_ring *txdr)
1588 {
1589         struct pci_dev *pdev = adapter->pdev;
1590         int size;
1591
1592         size = sizeof(struct e1000_buffer) * txdr->count;
1593         txdr->buffer_info = vmalloc(size);
1594         if (!txdr->buffer_info) {
1595                 DPRINTK(PROBE, ERR,
1596                 "Unable to allocate memory for the transmit descriptor ring\n");
1597                 return -ENOMEM;
1598         }
1599         memset(txdr->buffer_info, 0, size);
1600
1601         /* round up to nearest 4K */
1602
1603         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1604         txdr->size = ALIGN(txdr->size, 4096);
1605
1606         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1607         if (!txdr->desc) {
1608 setup_tx_desc_die:
1609                 vfree(txdr->buffer_info);
1610                 DPRINTK(PROBE, ERR,
1611                 "Unable to allocate memory for the transmit descriptor ring\n");
1612                 return -ENOMEM;
1613         }
1614
1615         /* Fix for errata 23, can't cross 64kB boundary */
1616         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1617                 void *olddesc = txdr->desc;
1618                 dma_addr_t olddma = txdr->dma;
1619                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1620                                      "at %p\n", txdr->size, txdr->desc);
1621                 /* Try again, without freeing the previous */
1622                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1623                 /* Failed allocation, critical failure */
1624                 if (!txdr->desc) {
1625                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1626                         goto setup_tx_desc_die;
1627                 }
1628
1629                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1630                         /* give up */
1631                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1632                                             txdr->dma);
1633                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1634                         DPRINTK(PROBE, ERR,
1635                                 "Unable to allocate aligned memory "
1636                                 "for the transmit descriptor ring\n");
1637                         vfree(txdr->buffer_info);
1638                         return -ENOMEM;
1639                 } else {
1640                         /* Free old allocation, new allocation was successful */
1641                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1642                 }
1643         }
1644         memset(txdr->desc, 0, txdr->size);
1645
1646         txdr->next_to_use = 0;
1647         txdr->next_to_clean = 0;
1648         spin_lock_init(&txdr->tx_lock);
1649
1650         return 0;
1651 }
1652
1653 /**
1654  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1655  *                                (Descriptors) for all queues
1656  * @adapter: board private structure
1657  *
1658  * Return 0 on success, negative on failure
1659  **/
1660
1661 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1662 {
1663         int i, err = 0;
1664
1665         for (i = 0; i < adapter->num_tx_queues; i++) {
1666                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1667                 if (err) {
1668                         DPRINTK(PROBE, ERR,
1669                                 "Allocation for Tx Queue %u failed\n", i);
1670                         for (i-- ; i >= 0; i--)
1671                                 e1000_free_tx_resources(adapter,
1672                                                         &adapter->tx_ring[i]);
1673                         break;
1674                 }
1675         }
1676
1677         return err;
1678 }
1679
1680 /**
1681  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1682  * @adapter: board private structure
1683  *
1684  * Configure the Tx unit of the MAC after a reset.
1685  **/
1686
1687 static void e1000_configure_tx(struct e1000_adapter *adapter)
1688 {
1689         u64 tdba;
1690         struct e1000_hw *hw = &adapter->hw;
1691         u32 tdlen, tctl, tipg, tarc;
1692         u32 ipgr1, ipgr2;
1693
1694         /* Setup the HW Tx Head and Tail descriptor pointers */
1695
1696         switch (adapter->num_tx_queues) {
1697         case 1:
1698         default:
1699                 tdba = adapter->tx_ring[0].dma;
1700                 tdlen = adapter->tx_ring[0].count *
1701                         sizeof(struct e1000_tx_desc);
1702                 ew32(TDLEN, tdlen);
1703                 ew32(TDBAH, (tdba >> 32));
1704                 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1705                 ew32(TDT, 0);
1706                 ew32(TDH, 0);
1707                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1708                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1709                 break;
1710         }
1711
1712         /* Set the default values for the Tx Inter Packet Gap timer */
1713         if (hw->mac_type <= e1000_82547_rev_2 &&
1714             (hw->media_type == e1000_media_type_fiber ||
1715              hw->media_type == e1000_media_type_internal_serdes))
1716                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1717         else
1718                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1719
1720         switch (hw->mac_type) {
1721         case e1000_82542_rev2_0:
1722         case e1000_82542_rev2_1:
1723                 tipg = DEFAULT_82542_TIPG_IPGT;
1724                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1725                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1726                 break;
1727         case e1000_80003es2lan:
1728                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1729                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1730                 break;
1731         default:
1732                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1733                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1734                 break;
1735         }
1736         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1737         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1738         ew32(TIPG, tipg);
1739
1740         /* Set the Tx Interrupt Delay register */
1741
1742         ew32(TIDV, adapter->tx_int_delay);
1743         if (hw->mac_type >= e1000_82540)
1744                 ew32(TADV, adapter->tx_abs_int_delay);
1745
1746         /* Program the Transmit Control Register */
1747
1748         tctl = er32(TCTL);
1749         tctl &= ~E1000_TCTL_CT;
1750         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1751                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1752
1753         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1754                 tarc = er32(TARC0);
1755                 /* set the speed mode bit, we'll clear it if we're not at
1756                  * gigabit link later */
1757                 tarc |= (1 << 21);
1758                 ew32(TARC0, tarc);
1759         } else if (hw->mac_type == e1000_80003es2lan) {
1760                 tarc = er32(TARC0);
1761                 tarc |= 1;
1762                 ew32(TARC0, tarc);
1763                 tarc = er32(TARC1);
1764                 tarc |= 1;
1765                 ew32(TARC1, tarc);
1766         }
1767
1768         e1000_config_collision_dist(hw);
1769
1770         /* Setup Transmit Descriptor Settings for eop descriptor */
1771         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1772
1773         /* only set IDE if we are delaying interrupts using the timers */
1774         if (adapter->tx_int_delay)
1775                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1776
1777         if (hw->mac_type < e1000_82543)
1778                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1779         else
1780                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1781
1782         /* Cache if we're 82544 running in PCI-X because we'll
1783          * need this to apply a workaround later in the send path. */
1784         if (hw->mac_type == e1000_82544 &&
1785             hw->bus_type == e1000_bus_type_pcix)
1786                 adapter->pcix_82544 = 1;
1787
1788         ew32(TCTL, tctl);
1789
1790 }
1791
1792 /**
1793  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1794  * @adapter: board private structure
1795  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1796  *
1797  * Returns 0 on success, negative on failure
1798  **/
1799
1800 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1801                                     struct e1000_rx_ring *rxdr)
1802 {
1803         struct e1000_hw *hw = &adapter->hw;
1804         struct pci_dev *pdev = adapter->pdev;
1805         int size, desc_len;
1806
1807         size = sizeof(struct e1000_buffer) * rxdr->count;
1808         rxdr->buffer_info = vmalloc(size);
1809         if (!rxdr->buffer_info) {
1810                 DPRINTK(PROBE, ERR,
1811                 "Unable to allocate memory for the receive descriptor ring\n");
1812                 return -ENOMEM;
1813         }
1814         memset(rxdr->buffer_info, 0, size);
1815
1816         if (hw->mac_type <= e1000_82547_rev_2)
1817                 desc_len = sizeof(struct e1000_rx_desc);
1818         else
1819                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1820
1821         /* Round up to nearest 4K */
1822
1823         rxdr->size = rxdr->count * desc_len;
1824         rxdr->size = ALIGN(rxdr->size, 4096);
1825
1826         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1827
1828         if (!rxdr->desc) {
1829                 DPRINTK(PROBE, ERR,
1830                 "Unable to allocate memory for the receive descriptor ring\n");
1831 setup_rx_desc_die:
1832                 vfree(rxdr->buffer_info);
1833                 return -ENOMEM;
1834         }
1835
1836         /* Fix for errata 23, can't cross 64kB boundary */
1837         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1838                 void *olddesc = rxdr->desc;
1839                 dma_addr_t olddma = rxdr->dma;
1840                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1841                                      "at %p\n", rxdr->size, rxdr->desc);
1842                 /* Try again, without freeing the previous */
1843                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1844                 /* Failed allocation, critical failure */
1845                 if (!rxdr->desc) {
1846                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1847                         DPRINTK(PROBE, ERR,
1848                                 "Unable to allocate memory "
1849                                 "for the receive descriptor ring\n");
1850                         goto setup_rx_desc_die;
1851                 }
1852
1853                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1854                         /* give up */
1855                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1856                                             rxdr->dma);
1857                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1858                         DPRINTK(PROBE, ERR,
1859                                 "Unable to allocate aligned memory "
1860                                 "for the receive descriptor ring\n");
1861                         goto setup_rx_desc_die;
1862                 } else {
1863                         /* Free old allocation, new allocation was successful */
1864                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1865                 }
1866         }
1867         memset(rxdr->desc, 0, rxdr->size);
1868
1869         rxdr->next_to_clean = 0;
1870         rxdr->next_to_use = 0;
1871
1872         return 0;
1873 }
1874
1875 /**
1876  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1877  *                                (Descriptors) for all queues
1878  * @adapter: board private structure
1879  *
1880  * Return 0 on success, negative on failure
1881  **/
1882
1883 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1884 {
1885         int i, err = 0;
1886
1887         for (i = 0; i < adapter->num_rx_queues; i++) {
1888                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1889                 if (err) {
1890                         DPRINTK(PROBE, ERR,
1891                                 "Allocation for Rx Queue %u failed\n", i);
1892                         for (i-- ; i >= 0; i--)
1893                                 e1000_free_rx_resources(adapter,
1894                                                         &adapter->rx_ring[i]);
1895                         break;
1896                 }
1897         }
1898
1899         return err;
1900 }
1901
1902 /**
1903  * e1000_setup_rctl - configure the receive control registers
1904  * @adapter: Board private structure
1905  **/
1906 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1907                         (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1908 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1909 {
1910         struct e1000_hw *hw = &adapter->hw;
1911         u32 rctl;
1912
1913         rctl = er32(RCTL);
1914
1915         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1916
1917         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1918                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1919                 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1920
1921         if (hw->tbi_compatibility_on == 1)
1922                 rctl |= E1000_RCTL_SBP;
1923         else
1924                 rctl &= ~E1000_RCTL_SBP;
1925
1926         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1927                 rctl &= ~E1000_RCTL_LPE;
1928         else
1929                 rctl |= E1000_RCTL_LPE;
1930
1931         /* Setup buffer sizes */
1932         rctl &= ~E1000_RCTL_SZ_4096;
1933         rctl |= E1000_RCTL_BSEX;
1934         switch (adapter->rx_buffer_len) {
1935                 case E1000_RXBUFFER_256:
1936                         rctl |= E1000_RCTL_SZ_256;
1937                         rctl &= ~E1000_RCTL_BSEX;
1938                         break;
1939                 case E1000_RXBUFFER_512:
1940                         rctl |= E1000_RCTL_SZ_512;
1941                         rctl &= ~E1000_RCTL_BSEX;
1942                         break;
1943                 case E1000_RXBUFFER_1024:
1944                         rctl |= E1000_RCTL_SZ_1024;
1945                         rctl &= ~E1000_RCTL_BSEX;
1946                         break;
1947                 case E1000_RXBUFFER_2048:
1948                 default:
1949                         rctl |= E1000_RCTL_SZ_2048;
1950                         rctl &= ~E1000_RCTL_BSEX;
1951                         break;
1952                 case E1000_RXBUFFER_4096:
1953                         rctl |= E1000_RCTL_SZ_4096;
1954                         break;
1955                 case E1000_RXBUFFER_8192:
1956                         rctl |= E1000_RCTL_SZ_8192;
1957                         break;
1958                 case E1000_RXBUFFER_16384:
1959                         rctl |= E1000_RCTL_SZ_16384;
1960                         break;
1961         }
1962
1963         ew32(RCTL, rctl);
1964 }
1965
1966 /**
1967  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1968  * @adapter: board private structure
1969  *
1970  * Configure the Rx unit of the MAC after a reset.
1971  **/
1972
1973 static void e1000_configure_rx(struct e1000_adapter *adapter)
1974 {
1975         u64 rdba;
1976         struct e1000_hw *hw = &adapter->hw;
1977         u32 rdlen, rctl, rxcsum, ctrl_ext;
1978
1979         rdlen = adapter->rx_ring[0].count *
1980                 sizeof(struct e1000_rx_desc);
1981         adapter->clean_rx = e1000_clean_rx_irq;
1982         adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1983
1984         /* disable receives while setting up the descriptors */
1985         rctl = er32(RCTL);
1986         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1987
1988         /* set the Receive Delay Timer Register */
1989         ew32(RDTR, adapter->rx_int_delay);
1990
1991         if (hw->mac_type >= e1000_82540) {
1992                 ew32(RADV, adapter->rx_abs_int_delay);
1993                 if (adapter->itr_setting != 0)
1994                         ew32(ITR, 1000000000 / (adapter->itr * 256));
1995         }
1996
1997         if (hw->mac_type >= e1000_82571) {
1998                 ctrl_ext = er32(CTRL_EXT);
1999                 /* Reset delay timers after every interrupt */
2000                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
2001                 /* Auto-Mask interrupts upon ICR access */
2002                 ctrl_ext |= E1000_CTRL_EXT_IAME;
2003                 ew32(IAM, 0xffffffff);
2004                 ew32(CTRL_EXT, ctrl_ext);
2005                 E1000_WRITE_FLUSH();
2006         }
2007
2008         /* Setup the HW Rx Head and Tail Descriptor Pointers and
2009          * the Base and Length of the Rx Descriptor Ring */
2010         switch (adapter->num_rx_queues) {
2011         case 1:
2012         default:
2013                 rdba = adapter->rx_ring[0].dma;
2014                 ew32(RDLEN, rdlen);
2015                 ew32(RDBAH, (rdba >> 32));
2016                 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
2017                 ew32(RDT, 0);
2018                 ew32(RDH, 0);
2019                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
2020                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
2021                 break;
2022         }
2023
2024         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
2025         if (hw->mac_type >= e1000_82543) {
2026                 rxcsum = er32(RXCSUM);
2027                 if (adapter->rx_csum)
2028                         rxcsum |= E1000_RXCSUM_TUOFL;
2029                 else
2030                         /* don't need to clear IPPCSE as it defaults to 0 */
2031                         rxcsum &= ~E1000_RXCSUM_TUOFL;
2032                 ew32(RXCSUM, rxcsum);
2033         }
2034
2035         /* Enable Receives */
2036         ew32(RCTL, rctl);
2037 }
2038
2039 /**
2040  * e1000_free_tx_resources - Free Tx Resources per Queue
2041  * @adapter: board private structure
2042  * @tx_ring: Tx descriptor ring for a specific queue
2043  *
2044  * Free all transmit software resources
2045  **/
2046
2047 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
2048                                     struct e1000_tx_ring *tx_ring)
2049 {
2050         struct pci_dev *pdev = adapter->pdev;
2051
2052         e1000_clean_tx_ring(adapter, tx_ring);
2053
2054         vfree(tx_ring->buffer_info);
2055         tx_ring->buffer_info = NULL;
2056
2057         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2058
2059         tx_ring->desc = NULL;
2060 }
2061
2062 /**
2063  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
2064  * @adapter: board private structure
2065  *
2066  * Free all transmit software resources
2067  **/
2068
2069 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
2070 {
2071         int i;
2072
2073         for (i = 0; i < adapter->num_tx_queues; i++)
2074                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
2075 }
2076
2077 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
2078                                              struct e1000_buffer *buffer_info)
2079 {
2080         if (buffer_info->dma) {
2081                 pci_unmap_page(adapter->pdev,
2082                                 buffer_info->dma,
2083                                 buffer_info->length,
2084                                 PCI_DMA_TODEVICE);
2085                 buffer_info->dma = 0;
2086         }
2087         if (buffer_info->skb) {
2088                 dev_kfree_skb_any(buffer_info->skb);
2089                 buffer_info->skb = NULL;
2090         }
2091         /* buffer_info must be completely set up in the transmit path */
2092 }
2093
2094 /**
2095  * e1000_clean_tx_ring - Free Tx Buffers
2096  * @adapter: board private structure
2097  * @tx_ring: ring to be cleaned
2098  **/
2099
2100 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
2101                                 struct e1000_tx_ring *tx_ring)
2102 {
2103         struct e1000_hw *hw = &adapter->hw;
2104         struct e1000_buffer *buffer_info;
2105         unsigned long size;
2106         unsigned int i;
2107
2108         /* Free all the Tx ring sk_buffs */
2109
2110         for (i = 0; i < tx_ring->count; i++) {
2111                 buffer_info = &tx_ring->buffer_info[i];
2112                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2113         }
2114
2115         size = sizeof(struct e1000_buffer) * tx_ring->count;
2116         memset(tx_ring->buffer_info, 0, size);
2117
2118         /* Zero out the descriptor ring */
2119
2120         memset(tx_ring->desc, 0, tx_ring->size);
2121
2122         tx_ring->next_to_use = 0;
2123         tx_ring->next_to_clean = 0;
2124         tx_ring->last_tx_tso = 0;
2125
2126         writel(0, hw->hw_addr + tx_ring->tdh);
2127         writel(0, hw->hw_addr + tx_ring->tdt);
2128 }
2129
2130 /**
2131  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2132  * @adapter: board private structure
2133  **/
2134
2135 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2136 {
2137         int i;
2138
2139         for (i = 0; i < adapter->num_tx_queues; i++)
2140                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2141 }
2142
2143 /**
2144  * e1000_free_rx_resources - Free Rx Resources
2145  * @adapter: board private structure
2146  * @rx_ring: ring to clean the resources from
2147  *
2148  * Free all receive software resources
2149  **/
2150
2151 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2152                                     struct e1000_rx_ring *rx_ring)
2153 {
2154         struct pci_dev *pdev = adapter->pdev;
2155
2156         e1000_clean_rx_ring(adapter, rx_ring);
2157
2158         vfree(rx_ring->buffer_info);
2159         rx_ring->buffer_info = NULL;
2160
2161         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2162
2163         rx_ring->desc = NULL;
2164 }
2165
2166 /**
2167  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2168  * @adapter: board private structure
2169  *
2170  * Free all receive software resources
2171  **/
2172
2173 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2174 {
2175         int i;
2176
2177         for (i = 0; i < adapter->num_rx_queues; i++)
2178                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2179 }
2180
2181 /**
2182  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2183  * @adapter: board private structure
2184  * @rx_ring: ring to free buffers from
2185  **/
2186
2187 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2188                                 struct e1000_rx_ring *rx_ring)
2189 {
2190         struct e1000_hw *hw = &adapter->hw;
2191         struct e1000_buffer *buffer_info;
2192         struct pci_dev *pdev = adapter->pdev;
2193         unsigned long size;
2194         unsigned int i;
2195
2196         /* Free all the Rx ring sk_buffs */
2197         for (i = 0; i < rx_ring->count; i++) {
2198                 buffer_info = &rx_ring->buffer_info[i];
2199                 if (buffer_info->skb) {
2200                         pci_unmap_single(pdev,
2201                                          buffer_info->dma,
2202                                          buffer_info->length,
2203                                          PCI_DMA_FROMDEVICE);
2204
2205                         dev_kfree_skb(buffer_info->skb);
2206                         buffer_info->skb = NULL;
2207                 }
2208         }
2209
2210         size = sizeof(struct e1000_buffer) * rx_ring->count;
2211         memset(rx_ring->buffer_info, 0, size);
2212
2213         /* Zero out the descriptor ring */
2214
2215         memset(rx_ring->desc, 0, rx_ring->size);
2216
2217         rx_ring->next_to_clean = 0;
2218         rx_ring->next_to_use = 0;
2219
2220         writel(0, hw->hw_addr + rx_ring->rdh);
2221         writel(0, hw->hw_addr + rx_ring->rdt);
2222 }
2223
2224 /**
2225  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2226  * @adapter: board private structure
2227  **/
2228
2229 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2230 {
2231         int i;
2232
2233         for (i = 0; i < adapter->num_rx_queues; i++)
2234                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2235 }
2236
2237 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2238  * and memory write and invalidate disabled for certain operations
2239  */
2240 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2241 {
2242         struct e1000_hw *hw = &adapter->hw;
2243         struct net_device *netdev = adapter->netdev;
2244         u32 rctl;
2245
2246         e1000_pci_clear_mwi(hw);
2247
2248         rctl = er32(RCTL);
2249         rctl |= E1000_RCTL_RST;
2250         ew32(RCTL, rctl);
2251         E1000_WRITE_FLUSH();
2252         mdelay(5);
2253
2254         if (netif_running(netdev))
2255                 e1000_clean_all_rx_rings(adapter);
2256 }
2257
2258 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2259 {
2260         struct e1000_hw *hw = &adapter->hw;
2261         struct net_device *netdev = adapter->netdev;
2262         u32 rctl;
2263
2264         rctl = er32(RCTL);
2265         rctl &= ~E1000_RCTL_RST;
2266         ew32(RCTL, rctl);
2267         E1000_WRITE_FLUSH();
2268         mdelay(5);
2269
2270         if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2271                 e1000_pci_set_mwi(hw);
2272
2273         if (netif_running(netdev)) {
2274                 /* No need to loop, because 82542 supports only 1 queue */
2275                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2276                 e1000_configure_rx(adapter);
2277                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2278         }
2279 }
2280
2281 /**
2282  * e1000_set_mac - Change the Ethernet Address of the NIC
2283  * @netdev: network interface device structure
2284  * @p: pointer to an address structure
2285  *
2286  * Returns 0 on success, negative on failure
2287  **/
2288
2289 static int e1000_set_mac(struct net_device *netdev, void *p)
2290 {
2291         struct e1000_adapter *adapter = netdev_priv(netdev);
2292         struct e1000_hw *hw = &adapter->hw;
2293         struct sockaddr *addr = p;
2294
2295         if (!is_valid_ether_addr(addr->sa_data))
2296                 return -EADDRNOTAVAIL;
2297
2298         /* 82542 2.0 needs to be in reset to write receive address registers */
2299
2300         if (hw->mac_type == e1000_82542_rev2_0)
2301                 e1000_enter_82542_rst(adapter);
2302
2303         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2304         memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2305
2306         e1000_rar_set(hw, hw->mac_addr, 0);
2307
2308         /* With 82571 controllers, LAA may be overwritten (with the default)
2309          * due to controller reset from the other port. */
2310         if (hw->mac_type == e1000_82571) {
2311                 /* activate the work around */
2312                 hw->laa_is_present = 1;
2313
2314                 /* Hold a copy of the LAA in RAR[14] This is done so that
2315                  * between the time RAR[0] gets clobbered  and the time it
2316                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2317                  * of the RARs and no incoming packets directed to this port
2318                  * are dropped. Eventaully the LAA will be in RAR[0] and
2319                  * RAR[14] */
2320                 e1000_rar_set(hw, hw->mac_addr,
2321                                         E1000_RAR_ENTRIES - 1);
2322         }
2323
2324         if (hw->mac_type == e1000_82542_rev2_0)
2325                 e1000_leave_82542_rst(adapter);
2326
2327         return 0;
2328 }
2329
2330 /**
2331  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2332  * @netdev: network interface device structure
2333  *
2334  * The set_rx_mode entry point is called whenever the unicast or multicast
2335  * address lists or the network interface flags are updated. This routine is
2336  * responsible for configuring the hardware for proper unicast, multicast,
2337  * promiscuous mode, and all-multi behavior.
2338  **/
2339
2340 static void e1000_set_rx_mode(struct net_device *netdev)
2341 {
2342         struct e1000_adapter *adapter = netdev_priv(netdev);
2343         struct e1000_hw *hw = &adapter->hw;
2344         struct dev_addr_list *uc_ptr;
2345         struct dev_addr_list *mc_ptr;
2346         u32 rctl;
2347         u32 hash_value;
2348         int i, rar_entries = E1000_RAR_ENTRIES;
2349         int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2350                                 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2351                                 E1000_NUM_MTA_REGISTERS;
2352
2353         if (hw->mac_type == e1000_ich8lan)
2354                 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2355
2356         /* reserve RAR[14] for LAA over-write work-around */
2357         if (hw->mac_type == e1000_82571)
2358                 rar_entries--;
2359
2360         /* Check for Promiscuous and All Multicast modes */
2361
2362         rctl = er32(RCTL);
2363
2364         if (netdev->flags & IFF_PROMISC) {
2365                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2366                 rctl &= ~E1000_RCTL_VFE;
2367         } else {
2368                 if (netdev->flags & IFF_ALLMULTI) {
2369                         rctl |= E1000_RCTL_MPE;
2370                 } else {
2371                         rctl &= ~E1000_RCTL_MPE;
2372                 }
2373                 if (adapter->hw.mac_type != e1000_ich8lan)
2374                         rctl |= E1000_RCTL_VFE;
2375         }
2376
2377         uc_ptr = NULL;
2378         if (netdev->uc_count > rar_entries - 1) {
2379                 rctl |= E1000_RCTL_UPE;
2380         } else if (!(netdev->flags & IFF_PROMISC)) {
2381                 rctl &= ~E1000_RCTL_UPE;
2382                 uc_ptr = netdev->uc_list;
2383         }
2384
2385         ew32(RCTL, rctl);
2386
2387         /* 82542 2.0 needs to be in reset to write receive address registers */
2388
2389         if (hw->mac_type == e1000_82542_rev2_0)
2390                 e1000_enter_82542_rst(adapter);
2391
2392         /* load the first 14 addresses into the exact filters 1-14. Unicast
2393          * addresses take precedence to avoid disabling unicast filtering
2394          * when possible.
2395          *
2396          * RAR 0 is used for the station MAC adddress
2397          * if there are not 14 addresses, go ahead and clear the filters
2398          * -- with 82571 controllers only 0-13 entries are filled here
2399          */
2400         mc_ptr = netdev->mc_list;
2401
2402         for (i = 1; i < rar_entries; i++) {
2403                 if (uc_ptr) {
2404                         e1000_rar_set(hw, uc_ptr->da_addr, i);
2405                         uc_ptr = uc_ptr->next;
2406                 } else if (mc_ptr) {
2407                         e1000_rar_set(hw, mc_ptr->da_addr, i);
2408                         mc_ptr = mc_ptr->next;
2409                 } else {
2410                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2411                         E1000_WRITE_FLUSH();
2412                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2413                         E1000_WRITE_FLUSH();
2414                 }
2415         }
2416         WARN_ON(uc_ptr != NULL);
2417
2418         /* clear the old settings from the multicast hash table */
2419
2420         for (i = 0; i < mta_reg_count; i++) {
2421                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2422                 E1000_WRITE_FLUSH();
2423         }
2424
2425         /* load any remaining addresses into the hash table */
2426
2427         for (; mc_ptr; mc_ptr = mc_ptr->next) {
2428                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->da_addr);
2429                 e1000_mta_set(hw, hash_value);
2430         }
2431
2432         if (hw->mac_type == e1000_82542_rev2_0)
2433                 e1000_leave_82542_rst(adapter);
2434 }
2435
2436 /* Need to wait a few seconds after link up to get diagnostic information from
2437  * the phy */
2438
2439 static void e1000_update_phy_info(unsigned long data)
2440 {
2441         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2442         struct e1000_hw *hw = &adapter->hw;
2443         e1000_phy_get_info(hw, &adapter->phy_info);
2444 }
2445
2446 /**
2447  * e1000_82547_tx_fifo_stall - Timer Call-back
2448  * @data: pointer to adapter cast into an unsigned long
2449  **/
2450
2451 static void e1000_82547_tx_fifo_stall(unsigned long data)
2452 {
2453         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2454         struct e1000_hw *hw = &adapter->hw;
2455         struct net_device *netdev = adapter->netdev;
2456         u32 tctl;
2457
2458         if (atomic_read(&adapter->tx_fifo_stall)) {
2459                 if ((er32(TDT) == er32(TDH)) &&
2460                    (er32(TDFT) == er32(TDFH)) &&
2461                    (er32(TDFTS) == er32(TDFHS))) {
2462                         tctl = er32(TCTL);
2463                         ew32(TCTL, tctl & ~E1000_TCTL_EN);
2464                         ew32(TDFT, adapter->tx_head_addr);
2465                         ew32(TDFH, adapter->tx_head_addr);
2466                         ew32(TDFTS, adapter->tx_head_addr);
2467                         ew32(TDFHS, adapter->tx_head_addr);
2468                         ew32(TCTL, tctl);
2469                         E1000_WRITE_FLUSH();
2470
2471                         adapter->tx_fifo_head = 0;
2472                         atomic_set(&adapter->tx_fifo_stall, 0);
2473                         netif_wake_queue(netdev);
2474                 } else {
2475                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2476                 }
2477         }
2478 }
2479
2480 /**
2481  * e1000_watchdog - Timer Call-back
2482  * @data: pointer to adapter cast into an unsigned long
2483  **/
2484 static void e1000_watchdog(unsigned long data)
2485 {
2486         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2487         struct e1000_hw *hw = &adapter->hw;
2488         struct net_device *netdev = adapter->netdev;
2489         struct e1000_tx_ring *txdr = adapter->tx_ring;
2490         u32 link, tctl;
2491         s32 ret_val;
2492
2493         ret_val = e1000_check_for_link(hw);
2494         if ((ret_val == E1000_ERR_PHY) &&
2495             (hw->phy_type == e1000_phy_igp_3) &&
2496             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2497                 /* See e1000_kumeran_lock_loss_workaround() */
2498                 DPRINTK(LINK, INFO,
2499                         "Gigabit has been disabled, downgrading speed\n");
2500         }
2501
2502         if (hw->mac_type == e1000_82573) {
2503                 e1000_enable_tx_pkt_filtering(hw);
2504                 if (adapter->mng_vlan_id != hw->mng_cookie.vlan_id)
2505                         e1000_update_mng_vlan(adapter);
2506         }
2507
2508         if ((hw->media_type == e1000_media_type_internal_serdes) &&
2509            !(er32(TXCW) & E1000_TXCW_ANE))
2510                 link = !hw->serdes_link_down;
2511         else
2512                 link = er32(STATUS) & E1000_STATUS_LU;
2513
2514         if (link) {
2515                 if (!netif_carrier_ok(netdev)) {
2516                         u32 ctrl;
2517                         bool txb2b = true;
2518                         e1000_get_speed_and_duplex(hw,
2519                                                    &adapter->link_speed,
2520                                                    &adapter->link_duplex);
2521
2522                         ctrl = er32(CTRL);
2523                         DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s, "
2524                                 "Flow Control: %s\n",
2525                                 adapter->link_speed,
2526                                 adapter->link_duplex == FULL_DUPLEX ?
2527                                 "Full Duplex" : "Half Duplex",
2528                                 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2529                                 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2530                                 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2531                                 E1000_CTRL_TFCE) ? "TX" : "None" )));
2532
2533                         /* tweak tx_queue_len according to speed/duplex
2534                          * and adjust the timeout factor */
2535                         netdev->tx_queue_len = adapter->tx_queue_len;
2536                         adapter->tx_timeout_factor = 1;
2537                         switch (adapter->link_speed) {
2538                         case SPEED_10:
2539                                 txb2b = false;
2540                                 netdev->tx_queue_len = 10;
2541                                 adapter->tx_timeout_factor = 8;
2542                                 break;
2543                         case SPEED_100:
2544                                 txb2b = false;
2545                                 netdev->tx_queue_len = 100;
2546                                 /* maybe add some timeout factor ? */
2547                                 break;
2548                         }
2549
2550                         if ((hw->mac_type == e1000_82571 ||
2551                              hw->mac_type == e1000_82572) &&
2552                             !txb2b) {
2553                                 u32 tarc0;
2554                                 tarc0 = er32(TARC0);
2555                                 tarc0 &= ~(1 << 21);
2556                                 ew32(TARC0, tarc0);
2557                         }
2558
2559                         /* disable TSO for pcie and 10/100 speeds, to avoid
2560                          * some hardware issues */
2561                         if (!adapter->tso_force &&
2562                             hw->bus_type == e1000_bus_type_pci_express){
2563                                 switch (adapter->link_speed) {
2564                                 case SPEED_10:
2565                                 case SPEED_100:
2566                                         DPRINTK(PROBE,INFO,
2567                                         "10/100 speed: disabling TSO\n");
2568                                         netdev->features &= ~NETIF_F_TSO;
2569                                         netdev->features &= ~NETIF_F_TSO6;
2570                                         break;
2571                                 case SPEED_1000:
2572                                         netdev->features |= NETIF_F_TSO;
2573                                         netdev->features |= NETIF_F_TSO6;
2574                                         break;
2575                                 default:
2576                                         /* oops */
2577                                         break;
2578                                 }
2579                         }
2580
2581                         /* enable transmits in the hardware, need to do this
2582                          * after setting TARC0 */
2583                         tctl = er32(TCTL);
2584                         tctl |= E1000_TCTL_EN;
2585                         ew32(TCTL, tctl);
2586
2587                         netif_carrier_on(netdev);
2588                         netif_wake_queue(netdev);
2589                         mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2590                         adapter->smartspeed = 0;
2591                 } else {
2592                         /* make sure the receive unit is started */
2593                         if (hw->rx_needs_kicking) {
2594                                 u32 rctl = er32(RCTL);
2595                                 ew32(RCTL, rctl | E1000_RCTL_EN);
2596                         }
2597                 }
2598         } else {
2599                 if (netif_carrier_ok(netdev)) {
2600                         adapter->link_speed = 0;
2601                         adapter->link_duplex = 0;
2602                         DPRINTK(LINK, INFO, "NIC Link is Down\n");
2603                         netif_carrier_off(netdev);
2604                         netif_stop_queue(netdev);
2605                         mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2606
2607                         /* 80003ES2LAN workaround--
2608                          * For packet buffer work-around on link down event;
2609                          * disable receives in the ISR and
2610                          * reset device here in the watchdog
2611                          */
2612                         if (hw->mac_type == e1000_80003es2lan)
2613                                 /* reset device */
2614                                 schedule_work(&adapter->reset_task);
2615                 }
2616
2617                 e1000_smartspeed(adapter);
2618         }
2619
2620         e1000_update_stats(adapter);
2621
2622         hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2623         adapter->tpt_old = adapter->stats.tpt;
2624         hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2625         adapter->colc_old = adapter->stats.colc;
2626
2627         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2628         adapter->gorcl_old = adapter->stats.gorcl;
2629         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2630         adapter->gotcl_old = adapter->stats.gotcl;
2631
2632         e1000_update_adaptive(hw);
2633
2634         if (!netif_carrier_ok(netdev)) {
2635                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2636                         /* We've lost link, so the controller stops DMA,
2637                          * but we've got queued Tx work that's never going
2638                          * to get done, so reset controller to flush Tx.
2639                          * (Do the reset outside of interrupt context). */
2640                         adapter->tx_timeout_count++;
2641                         schedule_work(&adapter->reset_task);
2642                 }
2643         }
2644
2645         /* Cause software interrupt to ensure rx ring is cleaned */
2646         ew32(ICS, E1000_ICS_RXDMT0);
2647
2648         /* Force detection of hung controller every watchdog period */
2649         adapter->detect_tx_hung = true;
2650
2651         /* With 82571 controllers, LAA may be overwritten due to controller
2652          * reset from the other port. Set the appropriate LAA in RAR[0] */
2653         if (hw->mac_type == e1000_82571 && hw->laa_is_present)
2654                 e1000_rar_set(hw, hw->mac_addr, 0);
2655
2656         /* Reset the timer */
2657         mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 2 * HZ));
2658 }
2659
2660 enum latency_range {
2661         lowest_latency = 0,
2662         low_latency = 1,
2663         bulk_latency = 2,
2664         latency_invalid = 255
2665 };
2666
2667 /**
2668  * e1000_update_itr - update the dynamic ITR value based on statistics
2669  *      Stores a new ITR value based on packets and byte
2670  *      counts during the last interrupt.  The advantage of per interrupt
2671  *      computation is faster updates and more accurate ITR for the current
2672  *      traffic pattern.  Constants in this function were computed
2673  *      based on theoretical maximum wire speed and thresholds were set based
2674  *      on testing data as well as attempting to minimize response time
2675  *      while increasing bulk throughput.
2676  *      this functionality is controlled by the InterruptThrottleRate module
2677  *      parameter (see e1000_param.c)
2678  * @adapter: pointer to adapter
2679  * @itr_setting: current adapter->itr
2680  * @packets: the number of packets during this measurement interval
2681  * @bytes: the number of bytes during this measurement interval
2682  **/
2683 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2684                                      u16 itr_setting, int packets, int bytes)
2685 {
2686         unsigned int retval = itr_setting;
2687         struct e1000_hw *hw = &adapter->hw;
2688
2689         if (unlikely(hw->mac_type < e1000_82540))
2690                 goto update_itr_done;
2691
2692         if (packets == 0)
2693                 goto update_itr_done;
2694
2695         switch (itr_setting) {
2696         case lowest_latency:
2697                 /* jumbo frames get bulk treatment*/
2698                 if (bytes/packets > 8000)
2699                         retval = bulk_latency;
2700                 else if ((packets < 5) && (bytes > 512))
2701                         retval = low_latency;
2702                 break;
2703         case low_latency:  /* 50 usec aka 20000 ints/s */
2704                 if (bytes > 10000) {
2705                         /* jumbo frames need bulk latency setting */
2706                         if (bytes/packets > 8000)
2707                                 retval = bulk_latency;
2708                         else if ((packets < 10) || ((bytes/packets) > 1200))
2709                                 retval = bulk_latency;
2710                         else if ((packets > 35))
2711                                 retval = lowest_latency;
2712                 } else if (bytes/packets > 2000)
2713                         retval = bulk_latency;
2714                 else if (packets <= 2 && bytes < 512)
2715                         retval = lowest_latency;
2716                 break;
2717         case bulk_latency: /* 250 usec aka 4000 ints/s */
2718                 if (bytes > 25000) {
2719                         if (packets > 35)
2720                                 retval = low_latency;
2721                 } else if (bytes < 6000) {
2722                         retval = low_latency;
2723                 }
2724                 break;
2725         }
2726
2727 update_itr_done:
2728         return retval;
2729 }
2730
2731 static void e1000_set_itr(struct e1000_adapter *adapter)
2732 {
2733         struct e1000_hw *hw = &adapter->hw;
2734         u16 current_itr;
2735         u32 new_itr = adapter->itr;
2736
2737         if (unlikely(hw->mac_type < e1000_82540))
2738                 return;
2739
2740         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2741         if (unlikely(adapter->link_speed != SPEED_1000)) {
2742                 current_itr = 0;
2743                 new_itr = 4000;
2744                 goto set_itr_now;
2745         }
2746
2747         adapter->tx_itr = e1000_update_itr(adapter,
2748                                     adapter->tx_itr,
2749                                     adapter->total_tx_packets,
2750                                     adapter->total_tx_bytes);
2751         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2752         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2753                 adapter->tx_itr = low_latency;
2754
2755         adapter->rx_itr = e1000_update_itr(adapter,
2756                                     adapter->rx_itr,
2757                                     adapter->total_rx_packets,
2758                                     adapter->total_rx_bytes);
2759         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2760         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2761                 adapter->rx_itr = low_latency;
2762
2763         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2764
2765         switch (current_itr) {
2766         /* counts and packets in update_itr are dependent on these numbers */
2767         case lowest_latency:
2768                 new_itr = 70000;
2769                 break;
2770         case low_latency:
2771                 new_itr = 20000; /* aka hwitr = ~200 */
2772                 break;
2773         case bulk_latency:
2774                 new_itr = 4000;
2775                 break;
2776         default:
2777                 break;
2778         }
2779
2780 set_itr_now:
2781         if (new_itr != adapter->itr) {
2782                 /* this attempts to bias the interrupt rate towards Bulk
2783                  * by adding intermediate steps when interrupt rate is
2784                  * increasing */
2785                 new_itr = new_itr > adapter->itr ?
2786                              min(adapter->itr + (new_itr >> 2), new_itr) :
2787                              new_itr;
2788                 adapter->itr = new_itr;
2789                 ew32(ITR, 1000000000 / (new_itr * 256));
2790         }
2791
2792         return;
2793 }
2794
2795 #define E1000_TX_FLAGS_CSUM             0x00000001
2796 #define E1000_TX_FLAGS_VLAN             0x00000002
2797 #define E1000_TX_FLAGS_TSO              0x00000004
2798 #define E1000_TX_FLAGS_IPV4             0x00000008
2799 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2800 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2801
2802 static int e1000_tso(struct e1000_adapter *adapter,
2803                      struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2804 {
2805         struct e1000_context_desc *context_desc;
2806         struct e1000_buffer *buffer_info;
2807         unsigned int i;
2808         u32 cmd_length = 0;
2809         u16 ipcse = 0, tucse, mss;
2810         u8 ipcss, ipcso, tucss, tucso, hdr_len;
2811         int err;
2812
2813         if (skb_is_gso(skb)) {
2814                 if (skb_header_cloned(skb)) {
2815                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2816                         if (err)
2817                                 return err;
2818                 }
2819
2820                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2821                 mss = skb_shinfo(skb)->gso_size;
2822                 if (skb->protocol == htons(ETH_P_IP)) {
2823                         struct iphdr *iph = ip_hdr(skb);
2824                         iph->tot_len = 0;
2825                         iph->check = 0;
2826                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2827                                                                  iph->daddr, 0,
2828                                                                  IPPROTO_TCP,
2829                                                                  0);
2830                         cmd_length = E1000_TXD_CMD_IP;
2831                         ipcse = skb_transport_offset(skb) - 1;
2832                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2833                         ipv6_hdr(skb)->payload_len = 0;
2834                         tcp_hdr(skb)->check =
2835                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2836                                                  &ipv6_hdr(skb)->daddr,
2837                                                  0, IPPROTO_TCP, 0);
2838                         ipcse = 0;
2839                 }
2840                 ipcss = skb_network_offset(skb);
2841                 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2842                 tucss = skb_transport_offset(skb);
2843                 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2844                 tucse = 0;
2845
2846                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2847                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2848
2849                 i = tx_ring->next_to_use;
2850                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2851                 buffer_info = &tx_ring->buffer_info[i];
2852
2853                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2854                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2855                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2856                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2857                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2858                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2859                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2860                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2861                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2862
2863                 buffer_info->time_stamp = jiffies;
2864                 buffer_info->next_to_watch = i;
2865
2866                 if (++i == tx_ring->count) i = 0;
2867                 tx_ring->next_to_use = i;
2868
2869                 return true;
2870         }
2871         return false;
2872 }
2873
2874 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2875                           struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2876 {
2877         struct e1000_context_desc *context_desc;
2878         struct e1000_buffer *buffer_info;
2879         unsigned int i;
2880         u8 css;
2881         u32 cmd_len = E1000_TXD_CMD_DEXT;
2882
2883         if (skb->ip_summed != CHECKSUM_PARTIAL)
2884                 return false;
2885
2886         switch (skb->protocol) {
2887         case __constant_htons(ETH_P_IP):
2888                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2889                         cmd_len |= E1000_TXD_CMD_TCP;
2890                 break;
2891         case __constant_htons(ETH_P_IPV6):
2892                 /* XXX not handling all IPV6 headers */
2893                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2894                         cmd_len |= E1000_TXD_CMD_TCP;
2895                 break;
2896         default:
2897                 if (unlikely(net_ratelimit()))
2898                         DPRINTK(DRV, WARNING,
2899                                 "checksum_partial proto=%x!\n", skb->protocol);
2900                 break;
2901         }
2902
2903         css = skb_transport_offset(skb);
2904
2905         i = tx_ring->next_to_use;
2906         buffer_info = &tx_ring->buffer_info[i];
2907         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2908
2909         context_desc->lower_setup.ip_config = 0;
2910         context_desc->upper_setup.tcp_fields.tucss = css;
2911         context_desc->upper_setup.tcp_fields.tucso =
2912                 css + skb->csum_offset;
2913         context_desc->upper_setup.tcp_fields.tucse = 0;
2914         context_desc->tcp_seg_setup.data = 0;
2915         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2916
2917         buffer_info->time_stamp = jiffies;
2918         buffer_info->next_to_watch = i;
2919
2920         if (unlikely(++i == tx_ring->count)) i = 0;
2921         tx_ring->next_to_use = i;
2922
2923         return true;
2924 }
2925
2926 #define E1000_MAX_TXD_PWR       12
2927 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2928
2929 static int e1000_tx_map(struct e1000_adapter *adapter,
2930                         struct e1000_tx_ring *tx_ring,
2931                         struct sk_buff *skb, unsigned int first,
2932                         unsigned int max_per_txd, unsigned int nr_frags,
2933                         unsigned int mss)
2934 {
2935         struct e1000_hw *hw = &adapter->hw;
2936         struct e1000_buffer *buffer_info;
2937         unsigned int len = skb->len;
2938         unsigned int offset = 0, size, count = 0, i;
2939         unsigned int f;
2940         len -= skb->data_len;
2941
2942         i = tx_ring->next_to_use;
2943
2944         while (len) {
2945                 buffer_info = &tx_ring->buffer_info[i];
2946                 size = min(len, max_per_txd);
2947                 /* Workaround for Controller erratum --
2948                  * descriptor for non-tso packet in a linear SKB that follows a
2949                  * tso gets written back prematurely before the data is fully
2950                  * DMA'd to the controller */
2951                 if (!skb->data_len && tx_ring->last_tx_tso &&
2952                     !skb_is_gso(skb)) {
2953                         tx_ring->last_tx_tso = 0;
2954                         size -= 4;
2955                 }
2956
2957                 /* Workaround for premature desc write-backs
2958                  * in TSO mode.  Append 4-byte sentinel desc */
2959                 if (unlikely(mss && !nr_frags && size == len && size > 8))
2960                         size -= 4;
2961                 /* work-around for errata 10 and it applies
2962                  * to all controllers in PCI-X mode
2963                  * The fix is to make sure that the first descriptor of a
2964                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2965                  */
2966                 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2967                                 (size > 2015) && count == 0))
2968                         size = 2015;
2969
2970                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2971                  * terminating buffers within evenly-aligned dwords. */
2972                 if (unlikely(adapter->pcix_82544 &&
2973                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2974                    size > 4))
2975                         size -= 4;
2976
2977                 buffer_info->length = size;
2978                 buffer_info->dma =
2979                         pci_map_single(adapter->pdev,
2980                                 skb->data + offset,
2981                                 size,
2982                                 PCI_DMA_TODEVICE);
2983                 buffer_info->time_stamp = jiffies;
2984                 buffer_info->next_to_watch = i;
2985
2986                 len -= size;
2987                 offset += size;
2988                 count++;
2989                 if (unlikely(++i == tx_ring->count)) i = 0;
2990         }
2991
2992         for (f = 0; f < nr_frags; f++) {
2993                 struct skb_frag_struct *frag;
2994
2995                 frag = &skb_shinfo(skb)->frags[f];
2996                 len = frag->size;
2997                 offset = frag->page_offset;
2998
2999                 while (len) {
3000                         buffer_info = &tx_ring->buffer_info[i];
3001                         size = min(len, max_per_txd);
3002                         /* Workaround for premature desc write-backs
3003                          * in TSO mode.  Append 4-byte sentinel desc */
3004                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
3005                                 size -= 4;
3006                         /* Workaround for potential 82544 hang in PCI-X.
3007                          * Avoid terminating buffers within evenly-aligned
3008                          * dwords. */
3009                         if (unlikely(adapter->pcix_82544 &&
3010                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
3011                            size > 4))
3012                                 size -= 4;
3013
3014                         buffer_info->length = size;
3015                         buffer_info->dma =
3016                                 pci_map_page(adapter->pdev,
3017                                         frag->page,
3018                                         offset,
3019                                         size,
3020                                         PCI_DMA_TODEVICE);
3021                         buffer_info->time_stamp = jiffies;
3022                         buffer_info->next_to_watch = i;
3023
3024                         len -= size;
3025                         offset += size;
3026                         count++;
3027                         if (unlikely(++i == tx_ring->count)) i = 0;
3028                 }
3029         }
3030
3031         i = (i == 0) ? tx_ring->count - 1 : i - 1;
3032         tx_ring->buffer_info[i].skb = skb;
3033         tx_ring->buffer_info[first].next_to_watch = i;
3034
3035         return count;
3036 }
3037
3038 static void e1000_tx_queue(struct e1000_adapter *adapter,
3039                            struct e1000_tx_ring *tx_ring, int tx_flags,
3040                            int count)
3041 {
3042         struct e1000_hw *hw = &adapter->hw;
3043         struct e1000_tx_desc *tx_desc = NULL;
3044         struct e1000_buffer *buffer_info;
3045         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3046         unsigned int i;
3047
3048         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
3049                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3050                              E1000_TXD_CMD_TSE;
3051                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3052
3053                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3054                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3055         }
3056
3057         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3058                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3059                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3060         }
3061
3062         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3063                 txd_lower |= E1000_TXD_CMD_VLE;
3064                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3065         }
3066
3067         i = tx_ring->next_to_use;
3068
3069         while (count--) {
3070                 buffer_info = &tx_ring->buffer_info[i];
3071                 tx_desc = E1000_TX_DESC(*tx_ring, i);
3072                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3073                 tx_desc->lower.data =
3074                         cpu_to_le32(txd_lower | buffer_info->length);
3075                 tx_desc->upper.data = cpu_to_le32(txd_upper);
3076                 if (unlikely(++i == tx_ring->count)) i = 0;
3077         }
3078
3079         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3080
3081         /* Force memory writes to complete before letting h/w
3082          * know there are new descriptors to fetch.  (Only
3083          * applicable for weak-ordered memory model archs,
3084          * such as IA-64). */
3085         wmb();
3086
3087         tx_ring->next_to_use = i;
3088         writel(i, hw->hw_addr + tx_ring->tdt);
3089         /* we need this if more than one processor can write to our tail
3090          * at a time, it syncronizes IO on IA64/Altix systems */
3091         mmiowb();
3092 }
3093
3094 /**
3095  * 82547 workaround to avoid controller hang in half-duplex environment.
3096  * The workaround is to avoid queuing a large packet that would span
3097  * the internal Tx FIFO ring boundary by notifying the stack to resend
3098  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3099  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3100  * to the beginning of the Tx FIFO.
3101  **/
3102
3103 #define E1000_FIFO_HDR                  0x10
3104 #define E1000_82547_PAD_LEN             0x3E0
3105
3106 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3107                                        struct sk_buff *skb)
3108 {
3109         u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3110         u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3111
3112         skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3113
3114         if (adapter->link_duplex != HALF_DUPLEX)
3115                 goto no_fifo_stall_required;
3116
3117         if (atomic_read(&adapter->tx_fifo_stall))
3118                 return 1;
3119
3120         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3121                 atomic_set(&adapter->tx_fifo_stall, 1);
3122                 return 1;
3123         }
3124
3125 no_fifo_stall_required:
3126         adapter->tx_fifo_head += skb_fifo_len;
3127         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3128                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3129         return 0;
3130 }
3131
3132 #define MINIMUM_DHCP_PACKET_SIZE 282
3133 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
3134                                     struct sk_buff *skb)
3135 {
3136         struct e1000_hw *hw =  &adapter->hw;
3137         u16 length, offset;
3138         if (vlan_tx_tag_present(skb)) {
3139                 if (!((vlan_tx_tag_get(skb) == hw->mng_cookie.vlan_id) &&
3140                         ( hw->mng_cookie.status &
3141                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
3142                         return 0;
3143         }
3144         if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
3145                 struct ethhdr *eth = (struct ethhdr *)skb->data;
3146                 if ((htons(ETH_P_IP) == eth->h_proto)) {
3147                         const struct iphdr *ip =
3148                                 (struct iphdr *)((u8 *)skb->data+14);
3149                         if (IPPROTO_UDP == ip->protocol) {
3150                                 struct udphdr *udp =
3151                                         (struct udphdr *)((u8 *)ip +
3152                                                 (ip->ihl << 2));
3153                                 if (ntohs(udp->dest) == 67) {
3154                                         offset = (u8 *)udp + 8 - skb->data;
3155                                         length = skb->len - offset;
3156
3157                                         return e1000_mng_write_dhcp_info(hw,
3158                                                         (u8 *)udp + 8,
3159                                                         length);
3160                                 }
3161                         }
3162                 }
3163         }
3164         return 0;
3165 }
3166
3167 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3168 {
3169         struct e1000_adapter *adapter = netdev_priv(netdev);
3170         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3171
3172         netif_stop_queue(netdev);
3173         /* Herbert's original patch had:
3174          *  smp_mb__after_netif_stop_queue();
3175          * but since that doesn't exist yet, just open code it. */
3176         smp_mb();
3177
3178         /* We need to check again in a case another CPU has just
3179          * made room available. */
3180         if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3181                 return -EBUSY;
3182
3183         /* A reprieve! */
3184         netif_start_queue(netdev);
3185         ++adapter->restart_queue;
3186         return 0;
3187 }
3188
3189 static int e1000_maybe_stop_tx(struct net_device *netdev,
3190                                struct e1000_tx_ring *tx_ring, int size)
3191 {
3192         if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3193                 return 0;
3194         return __e1000_maybe_stop_tx(netdev, size);
3195 }
3196
3197 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3198 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3199 {
3200         struct e1000_adapter *adapter = netdev_priv(netdev);
3201         struct e1000_hw *hw = &adapter->hw;
3202         struct e1000_tx_ring *tx_ring;
3203         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3204         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3205         unsigned int tx_flags = 0;
3206         unsigned int len = skb->len - skb->data_len;
3207         unsigned long flags;
3208         unsigned int nr_frags;
3209         unsigned int mss;
3210         int count = 0;
3211         int tso;
3212         unsigned int f;
3213
3214         /* This goes back to the question of how to logically map a tx queue
3215          * to a flow.  Right now, performance is impacted slightly negatively
3216          * if using multiple tx queues.  If the stack breaks away from a
3217          * single qdisc implementation, we can look at this again. */
3218         tx_ring = adapter->tx_ring;
3219
3220         if (unlikely(skb->len <= 0)) {
3221                 dev_kfree_skb_any(skb);
3222                 return NETDEV_TX_OK;
3223         }
3224
3225         /* 82571 and newer doesn't need the workaround that limited descriptor
3226          * length to 4kB */
3227         if (hw->mac_type >= e1000_82571)
3228                 max_per_txd = 8192;
3229
3230         mss = skb_shinfo(skb)->gso_size;
3231         /* The controller does a simple calculation to
3232          * make sure there is enough room in the FIFO before
3233          * initiating the DMA for each buffer.  The calc is:
3234          * 4 = ceil(buffer len/mss).  To make sure we don't
3235          * overrun the FIFO, adjust the max buffer len if mss
3236          * drops. */
3237         if (mss) {
3238                 u8 hdr_len;
3239                 max_per_txd = min(mss << 2, max_per_txd);
3240                 max_txd_pwr = fls(max_per_txd) - 1;
3241
3242                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3243                 * points to just header, pull a few bytes of payload from
3244                 * frags into skb->data */
3245                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3246                 if (skb->data_len && hdr_len == len) {
3247                         switch (hw->mac_type) {
3248                                 unsigned int pull_size;
3249                         case e1000_82544:
3250                                 /* Make sure we have room to chop off 4 bytes,
3251                                  * and that the end alignment will work out to
3252                                  * this hardware's requirements
3253                                  * NOTE: this is a TSO only workaround
3254                                  * if end byte alignment not correct move us
3255                                  * into the next dword */
3256                                 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
3257                                         break;
3258                                 /* fall through */
3259                         case e1000_82571:
3260                         case e1000_82572:
3261                         case e1000_82573:
3262                         case e1000_ich8lan:
3263                                 pull_size = min((unsigned int)4, skb->data_len);
3264                                 if (!__pskb_pull_tail(skb, pull_size)) {
3265                                         DPRINTK(DRV, ERR,
3266                                                 "__pskb_pull_tail failed.\n");
3267                                         dev_kfree_skb_any(skb);
3268                                         return NETDEV_TX_OK;
3269                                 }
3270                                 len = skb->len - skb->data_len;
3271                                 break;
3272                         default:
3273                                 /* do nothing */
3274                                 break;
3275                         }
3276                 }
3277         }
3278
3279         /* reserve a descriptor for the offload context */
3280         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3281                 count++;
3282         count++;
3283
3284         /* Controller Erratum workaround */
3285         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3286                 count++;
3287
3288         count += TXD_USE_COUNT(len, max_txd_pwr);
3289
3290         if (adapter->pcix_82544)
3291                 count++;
3292
3293         /* work-around for errata 10 and it applies to all controllers
3294          * in PCI-X mode, so add one more descriptor to the count
3295          */
3296         if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3297                         (len > 2015)))
3298                 count++;
3299
3300         nr_frags = skb_shinfo(skb)->nr_frags;
3301         for (f = 0; f < nr_frags; f++)
3302                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3303                                        max_txd_pwr);
3304         if (adapter->pcix_82544)
3305                 count += nr_frags;
3306
3307
3308         if (hw->tx_pkt_filtering &&
3309             (hw->mac_type == e1000_82573))
3310                 e1000_transfer_dhcp_info(adapter, skb);
3311
3312         if (!spin_trylock_irqsave(&tx_ring->tx_lock, flags))
3313                 /* Collision - tell upper layer to requeue */
3314                 return NETDEV_TX_LOCKED;
3315
3316         /* need: count + 2 desc gap to keep tail from touching
3317          * head, otherwise try next time */
3318         if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) {
3319                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3320                 return NETDEV_TX_BUSY;
3321         }
3322
3323         if (unlikely(hw->mac_type == e1000_82547)) {
3324                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3325                         netif_stop_queue(netdev);
3326                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
3327                         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3328                         return NETDEV_TX_BUSY;
3329                 }
3330         }
3331
3332         if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3333                 tx_flags |= E1000_TX_FLAGS_VLAN;
3334                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3335         }
3336
3337         first = tx_ring->next_to_use;
3338
3339         tso = e1000_tso(adapter, tx_ring, skb);
3340         if (tso < 0) {
3341                 dev_kfree_skb_any(skb);
3342                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3343                 return NETDEV_TX_OK;
3344         }
3345
3346         if (likely(tso)) {
3347                 tx_ring->last_tx_tso = 1;
3348                 tx_flags |= E1000_TX_FLAGS_TSO;
3349         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3350                 tx_flags |= E1000_TX_FLAGS_CSUM;
3351
3352         /* Old method was to assume IPv4 packet by default if TSO was enabled.
3353          * 82571 hardware supports TSO capabilities for IPv6 as well...
3354          * no longer assume, we must. */
3355         if (likely(skb->protocol == htons(ETH_P_IP)))
3356                 tx_flags |= E1000_TX_FLAGS_IPV4;
3357
3358         e1000_tx_queue(adapter, tx_ring, tx_flags,
3359                        e1000_tx_map(adapter, tx_ring, skb, first,
3360                                     max_per_txd, nr_frags, mss));
3361
3362         netdev->trans_start = jiffies;
3363
3364         /* Make sure there is space in the ring for the next send. */
3365         e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3366
3367         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3368         return NETDEV_TX_OK;
3369 }
3370
3371 /**
3372  * e1000_tx_timeout - Respond to a Tx Hang
3373  * @netdev: network interface device structure
3374  **/
3375
3376 static void e1000_tx_timeout(struct net_device *netdev)
3377 {
3378         struct e1000_adapter *adapter = netdev_priv(netdev);
3379
3380         /* Do the reset outside of interrupt context */
3381         adapter->tx_timeout_count++;
3382         schedule_work(&adapter->reset_task);
3383 }
3384
3385 static void e1000_reset_task(struct work_struct *work)
3386 {
3387         struct e1000_adapter *adapter =
3388                 container_of(work, struct e1000_adapter, reset_task);
3389
3390         e1000_reinit_locked(adapter);
3391 }
3392
3393 /**
3394  * e1000_get_stats - Get System Network Statistics
3395  * @netdev: network interface device structure
3396  *
3397  * Returns the address of the device statistics structure.
3398  * The statistics are actually updated from the timer callback.
3399  **/
3400
3401 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3402 {
3403         struct e1000_adapter *adapter = netdev_priv(netdev);
3404
3405         /* only return the current stats */
3406         return &adapter->net_stats;
3407 }
3408
3409 /**
3410  * e1000_change_mtu - Change the Maximum Transfer Unit
3411  * @netdev: network interface device structure
3412  * @new_mtu: new value for maximum frame size
3413  *
3414  * Returns 0 on success, negative on failure
3415  **/
3416
3417 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3418 {
3419         struct e1000_adapter *adapter = netdev_priv(netdev);
3420         struct e1000_hw *hw = &adapter->hw;
3421         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3422         u16 eeprom_data = 0;
3423
3424         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3425             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3426                 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3427                 return -EINVAL;
3428         }
3429
3430         /* Adapter-specific max frame size limits. */
3431         switch (hw->mac_type) {
3432         case e1000_undefined ... e1000_82542_rev2_1:
3433         case e1000_ich8lan:
3434                 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3435                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3436                         return -EINVAL;
3437                 }
3438                 break;
3439         case e1000_82573:
3440                 /* Jumbo Frames not supported if:
3441                  * - this is not an 82573L device
3442                  * - ASPM is enabled in any way (0x1A bits 3:2) */
3443                 e1000_read_eeprom(hw, EEPROM_INIT_3GIO_3, 1,
3444                                   &eeprom_data);
3445                 if ((hw->device_id != E1000_DEV_ID_82573L) ||
3446                     (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3447                         if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3448                                 DPRINTK(PROBE, ERR,
3449                                         "Jumbo Frames not supported.\n");
3450                                 return -EINVAL;
3451                         }
3452                         break;
3453                 }
3454                 /* ERT will be enabled later to enable wire speed receives */
3455
3456                 /* fall through to get support */
3457         case e1000_82571:
3458         case e1000_82572:
3459         case e1000_80003es2lan:
3460 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3461                 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3462                         DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3463                         return -EINVAL;
3464                 }
3465                 break;
3466         default:
3467                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3468                 break;
3469         }
3470
3471         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3472          * means we reserve 2 more, this pushes us to allocate from the next
3473          * larger slab size
3474          * i.e. RXBUFFER_2048 --> size-4096 slab */
3475
3476         if (max_frame <= E1000_RXBUFFER_256)
3477                 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3478         else if (max_frame <= E1000_RXBUFFER_512)
3479                 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3480         else if (max_frame <= E1000_RXBUFFER_1024)
3481                 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3482         else if (max_frame <= E1000_RXBUFFER_2048)
3483                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3484         else if (max_frame <= E1000_RXBUFFER_4096)
3485                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3486         else if (max_frame <= E1000_RXBUFFER_8192)
3487                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3488         else if (max_frame <= E1000_RXBUFFER_16384)
3489                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3490
3491         /* adjust allocation if LPE protects us, and we aren't using SBP */
3492         if (!hw->tbi_compatibility_on &&
3493             ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3494              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3495                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3496
3497         netdev->mtu = new_mtu;
3498         hw->max_frame_size = max_frame;
3499
3500         if (netif_running(netdev))
3501                 e1000_reinit_locked(adapter);
3502
3503         return 0;
3504 }
3505
3506 /**
3507  * e1000_update_stats - Update the board statistics counters
3508  * @adapter: board private structure
3509  **/
3510
3511 void e1000_update_stats(struct e1000_adapter *adapter)
3512 {
3513         struct e1000_hw *hw = &adapter->hw;
3514         struct pci_dev *pdev = adapter->pdev;
3515         unsigned long flags;
3516         u16 phy_tmp;
3517
3518 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3519
3520         /*
3521          * Prevent stats update while adapter is being reset, or if the pci
3522          * connection is down.
3523          */
3524         if (adapter->link_speed == 0)
3525                 return;
3526         if (pci_channel_offline(pdev))
3527                 return;
3528
3529         spin_lock_irqsave(&adapter->stats_lock, flags);
3530
3531         /* these counters are modified from e1000_tbi_adjust_stats,
3532          * called from the interrupt context, so they must only
3533          * be written while holding adapter->stats_lock
3534          */
3535
3536         adapter->stats.crcerrs += er32(CRCERRS);
3537         adapter->stats.gprc += er32(GPRC);
3538         adapter->stats.gorcl += er32(GORCL);
3539         adapter->stats.gorch += er32(GORCH);
3540         adapter->stats.bprc += er32(BPRC);
3541         adapter->stats.mprc += er32(MPRC);
3542         adapter->stats.roc += er32(ROC);
3543
3544         if (hw->mac_type != e1000_ich8lan) {
3545                 adapter->stats.prc64 += er32(PRC64);
3546                 adapter->stats.prc127 += er32(PRC127);
3547                 adapter->stats.prc255 += er32(PRC255);
3548                 adapter->stats.prc511 += er32(PRC511);
3549                 adapter->stats.prc1023 += er32(PRC1023);
3550                 adapter->stats.prc1522 += er32(PRC1522);
3551         }
3552
3553         adapter->stats.symerrs += er32(SYMERRS);
3554         adapter->stats.mpc += er32(MPC);
3555         adapter->stats.scc += er32(SCC);
3556         adapter->stats.ecol += er32(ECOL);
3557         adapter->stats.mcc += er32(MCC);
3558         adapter->stats.latecol += er32(LATECOL);
3559         adapter->stats.dc += er32(DC);
3560         adapter->stats.sec += er32(SEC);
3561         adapter->stats.rlec += er32(RLEC);
3562         adapter->stats.xonrxc += er32(XONRXC);
3563         adapter->stats.xontxc += er32(XONTXC);
3564         adapter->stats.xoffrxc += er32(XOFFRXC);
3565         adapter->stats.xofftxc += er32(XOFFTXC);
3566         adapter->stats.fcruc += er32(FCRUC);
3567         adapter->stats.gptc += er32(GPTC);
3568         adapter->stats.gotcl += er32(GOTCL);
3569         adapter->stats.gotch += er32(GOTCH);
3570         adapter->stats.rnbc += er32(RNBC);
3571         adapter->stats.ruc += er32(RUC);
3572         adapter->stats.rfc += er32(RFC);
3573         adapter->stats.rjc += er32(RJC);
3574         adapter->stats.torl += er32(TORL);
3575         adapter->stats.torh += er32(TORH);
3576         adapter->stats.totl += er32(TOTL);
3577         adapter->stats.toth += er32(TOTH);
3578         adapter->stats.tpr += er32(TPR);
3579
3580         if (hw->mac_type != e1000_ich8lan) {
3581                 adapter->stats.ptc64 += er32(PTC64);
3582                 adapter->stats.ptc127 += er32(PTC127);
3583                 adapter->stats.ptc255 += er32(PTC255);
3584                 adapter->stats.ptc511 += er32(PTC511);
3585                 adapter->stats.ptc1023 += er32(PTC1023);
3586                 adapter->stats.ptc1522 += er32(PTC1522);
3587         }
3588
3589         adapter->stats.mptc += er32(MPTC);
3590         adapter->stats.bptc += er32(BPTC);
3591
3592         /* used for adaptive IFS */
3593
3594         hw->tx_packet_delta = er32(TPT);
3595         adapter->stats.tpt += hw->tx_packet_delta;
3596         hw->collision_delta = er32(COLC);
3597         adapter->stats.colc += hw->collision_delta;
3598
3599         if (hw->mac_type >= e1000_82543) {
3600                 adapter->stats.algnerrc += er32(ALGNERRC);
3601                 adapter->stats.rxerrc += er32(RXERRC);
3602                 adapter->stats.tncrs += er32(TNCRS);
3603                 adapter->stats.cexterr += er32(CEXTERR);
3604                 adapter->stats.tsctc += er32(TSCTC);
3605                 adapter->stats.tsctfc += er32(TSCTFC);
3606         }
3607         if (hw->mac_type > e1000_82547_rev_2) {
3608                 adapter->stats.iac += er32(IAC);
3609                 adapter->stats.icrxoc += er32(ICRXOC);
3610
3611                 if (hw->mac_type != e1000_ich8lan) {
3612                         adapter->stats.icrxptc += er32(ICRXPTC);
3613                         adapter->stats.icrxatc += er32(ICRXATC);
3614                         adapter->stats.ictxptc += er32(ICTXPTC);
3615                         adapter->stats.ictxatc += er32(ICTXATC);
3616                         adapter->stats.ictxqec += er32(ICTXQEC);
3617                         adapter->stats.ictxqmtc += er32(ICTXQMTC);
3618                         adapter->stats.icrxdmtc += er32(ICRXDMTC);
3619                 }
3620         }
3621
3622         /* Fill out the OS statistics structure */
3623         adapter->net_stats.multicast = adapter->stats.mprc;
3624         adapter->net_stats.collisions = adapter->stats.colc;
3625
3626         /* Rx Errors */
3627
3628         /* RLEC on some newer hardware can be incorrect so build
3629         * our own version based on RUC and ROC */
3630         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3631                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3632                 adapter->stats.ruc + adapter->stats.roc +
3633                 adapter->stats.cexterr;
3634         adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3635         adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3636         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3637         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3638         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3639
3640         /* Tx Errors */
3641         adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3642         adapter->net_stats.tx_errors = adapter->stats.txerrc;
3643         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3644         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3645         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3646         if (hw->bad_tx_carr_stats_fd &&
3647             adapter->link_duplex == FULL_DUPLEX) {
3648                 adapter->net_stats.tx_carrier_errors = 0;
3649                 adapter->stats.tncrs = 0;
3650         }
3651
3652         /* Tx Dropped needs to be maintained elsewhere */
3653
3654         /* Phy Stats */
3655         if (hw->media_type == e1000_media_type_copper) {
3656                 if ((adapter->link_speed == SPEED_1000) &&
3657                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3658                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3659                         adapter->phy_stats.idle_errors += phy_tmp;
3660                 }
3661
3662                 if ((hw->mac_type <= e1000_82546) &&
3663                    (hw->phy_type == e1000_phy_m88) &&
3664                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3665                         adapter->phy_stats.receive_errors += phy_tmp;
3666         }
3667
3668         /* Management Stats */
3669         if (hw->has_smbus) {
3670                 adapter->stats.mgptc += er32(MGTPTC);
3671                 adapter->stats.mgprc += er32(MGTPRC);
3672                 adapter->stats.mgpdc += er32(MGTPDC);
3673         }
3674
3675         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3676 }
3677
3678 /**
3679  * e1000_intr_msi - Interrupt Handler
3680  * @irq: interrupt number
3681  * @data: pointer to a network interface device structure
3682  **/
3683
3684 static irqreturn_t e1000_intr_msi(int irq, void *data)
3685 {
3686         struct net_device *netdev = data;
3687         struct e1000_adapter *adapter = netdev_priv(netdev);
3688         struct e1000_hw *hw = &adapter->hw;
3689         u32 icr = er32(ICR);
3690
3691         /* in NAPI mode read ICR disables interrupts using IAM */
3692
3693         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3694                 hw->get_link_status = 1;
3695                 /* 80003ES2LAN workaround-- For packet buffer work-around on
3696                  * link down event; disable receives here in the ISR and reset
3697                  * adapter in watchdog */
3698                 if (netif_carrier_ok(netdev) &&
3699                     (hw->mac_type == e1000_80003es2lan)) {
3700                         /* disable receives */
3701                         u32 rctl = er32(RCTL);
3702                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3703                 }
3704                 /* guard against interrupt when we're going down */
3705                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3706                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3707         }
3708
3709         if (likely(netif_rx_schedule_prep(netdev, &adapter->napi))) {
3710                 adapter->total_tx_bytes = 0;
3711                 adapter->total_tx_packets = 0;
3712                 adapter->total_rx_bytes = 0;
3713                 adapter->total_rx_packets = 0;
3714                 __netif_rx_schedule(netdev, &adapter->napi);
3715         } else
3716                 e1000_irq_enable(adapter);
3717
3718         return IRQ_HANDLED;
3719 }
3720
3721 /**
3722  * e1000_intr - Interrupt Handler
3723  * @irq: interrupt number
3724  * @data: pointer to a network interface device structure
3725  **/
3726
3727 static irqreturn_t e1000_intr(int irq, void *data)
3728 {
3729         struct net_device *netdev = data;
3730         struct e1000_adapter *adapter = netdev_priv(netdev);
3731         struct e1000_hw *hw = &adapter->hw;
3732         u32 rctl, icr = er32(ICR);
3733
3734         if (unlikely(!icr))
3735                 return IRQ_NONE;  /* Not our interrupt */
3736
3737         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3738          * not set, then the adapter didn't send an interrupt */
3739         if (unlikely(hw->mac_type >= e1000_82571 &&
3740                      !(icr & E1000_ICR_INT_ASSERTED)))
3741                 return IRQ_NONE;
3742
3743         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
3744          * need for the IMC write */
3745
3746         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3747                 hw->get_link_status = 1;
3748                 /* 80003ES2LAN workaround--
3749                  * For packet buffer work-around on link down event;
3750                  * disable receives here in the ISR and
3751                  * reset adapter in watchdog
3752                  */
3753                 if (netif_carrier_ok(netdev) &&
3754                     (hw->mac_type == e1000_80003es2lan)) {
3755                         /* disable receives */
3756                         rctl = er32(RCTL);
3757                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3758                 }
3759                 /* guard against interrupt when we're going down */
3760                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3761                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3762         }
3763
3764         if (unlikely(hw->mac_type < e1000_82571)) {
3765                 /* disable interrupts, without the synchronize_irq bit */
3766                 ew32(IMC, ~0);
3767                 E1000_WRITE_FLUSH();
3768         }
3769         if (likely(netif_rx_schedule_prep(netdev, &adapter->napi))) {
3770                 adapter->total_tx_bytes = 0;
3771                 adapter->total_tx_packets = 0;
3772                 adapter->total_rx_bytes = 0;
3773                 adapter->total_rx_packets = 0;
3774                 __netif_rx_schedule(netdev, &adapter->napi);
3775         } else
3776                 /* this really should not happen! if it does it is basically a
3777                  * bug, but not a hard error, so enable ints and continue */
3778                 e1000_irq_enable(adapter);
3779
3780         return IRQ_HANDLED;
3781 }
3782
3783 /**
3784  * e1000_clean - NAPI Rx polling callback
3785  * @adapter: board private structure
3786  **/
3787 static int e1000_clean(struct napi_struct *napi, int budget)
3788 {
3789         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3790         struct net_device *poll_dev = adapter->netdev;
3791         int tx_cleaned = 0, work_done = 0;
3792
3793         /* Must NOT use netdev_priv macro here. */
3794         adapter = poll_dev->priv;
3795
3796         /* e1000_clean is called per-cpu.  This lock protects
3797          * tx_ring[0] from being cleaned by multiple cpus
3798          * simultaneously.  A failure obtaining the lock means
3799          * tx_ring[0] is currently being cleaned anyway. */
3800         if (spin_trylock(&adapter->tx_queue_lock)) {
3801                 tx_cleaned = e1000_clean_tx_irq(adapter,
3802                                                 &adapter->tx_ring[0]);
3803                 spin_unlock(&adapter->tx_queue_lock);
3804         }
3805
3806         adapter->clean_rx(adapter, &adapter->rx_ring[0],
3807                           &work_done, budget);
3808
3809         if (tx_cleaned)
3810                 work_done = budget;
3811
3812         /* If budget not fully consumed, exit the polling mode */
3813         if (work_done < budget) {
3814                 if (likely(adapter->itr_setting & 3))
3815                         e1000_set_itr(adapter);
3816                 netif_rx_complete(poll_dev, napi);
3817                 e1000_irq_enable(adapter);
3818         }
3819
3820         return work_done;
3821 }
3822
3823 /**
3824  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3825  * @adapter: board private structure
3826  **/
3827 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3828                                struct e1000_tx_ring *tx_ring)
3829 {
3830         struct e1000_hw *hw = &adapter->hw;
3831         struct net_device *netdev = adapter->netdev;
3832         struct e1000_tx_desc *tx_desc, *eop_desc;
3833         struct e1000_buffer *buffer_info;
3834         unsigned int i, eop;
3835         unsigned int count = 0;
3836         bool cleaned = false;
3837         unsigned int total_tx_bytes=0, total_tx_packets=0;
3838
3839         i = tx_ring->next_to_clean;
3840         eop = tx_ring->buffer_info[i].next_to_watch;
3841         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3842
3843         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3844                 for (cleaned = false; !cleaned; ) {
3845                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3846                         buffer_info = &tx_ring->buffer_info[i];
3847                         cleaned = (i == eop);
3848
3849                         if (cleaned) {
3850                                 struct sk_buff *skb = buffer_info->skb;
3851                                 unsigned int segs, bytecount;
3852                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
3853                                 /* multiply data chunks by size of headers */
3854                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
3855                                             skb->len;
3856                                 total_tx_packets += segs;
3857                                 total_tx_bytes += bytecount;
3858                         }
3859                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3860                         tx_desc->upper.data = 0;
3861
3862                         if (unlikely(++i == tx_ring->count)) i = 0;
3863                 }
3864
3865                 eop = tx_ring->buffer_info[i].next_to_watch;
3866                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3867 #define E1000_TX_WEIGHT 64
3868                 /* weight of a sort for tx, to avoid endless transmit cleanup */
3869                 if (count++ == E1000_TX_WEIGHT)
3870                         break;
3871         }
3872
3873         tx_ring->next_to_clean = i;
3874
3875 #define TX_WAKE_THRESHOLD 32
3876         if (unlikely(cleaned && netif_carrier_ok(netdev) &&
3877                      E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3878                 /* Make sure that anybody stopping the queue after this
3879                  * sees the new next_to_clean.
3880                  */
3881                 smp_mb();
3882                 if (netif_queue_stopped(netdev)) {
3883                         netif_wake_queue(netdev);
3884                         ++adapter->restart_queue;
3885                 }
3886         }
3887
3888         if (adapter->detect_tx_hung) {
3889                 /* Detect a transmit hang in hardware, this serializes the
3890                  * check with the clearing of time_stamp and movement of i */
3891                 adapter->detect_tx_hung = false;
3892                 if (tx_ring->buffer_info[eop].dma &&
3893                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3894                                (adapter->tx_timeout_factor * HZ))
3895                     && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3896
3897                         /* detected Tx unit hang */
3898                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3899                                         "  Tx Queue             <%lu>\n"
3900                                         "  TDH                  <%x>\n"
3901                                         "  TDT                  <%x>\n"
3902                                         "  next_to_use          <%x>\n"
3903                                         "  next_to_clean        <%x>\n"
3904                                         "buffer_info[next_to_clean]\n"
3905                                         "  time_stamp           <%lx>\n"
3906                                         "  next_to_watch        <%x>\n"
3907                                         "  jiffies              <%lx>\n"
3908                                         "  next_to_watch.status <%x>\n",
3909                                 (unsigned long)((tx_ring - adapter->tx_ring) /
3910                                         sizeof(struct e1000_tx_ring)),
3911                                 readl(hw->hw_addr + tx_ring->tdh),
3912                                 readl(hw->hw_addr + tx_ring->tdt),
3913                                 tx_ring->next_to_use,
3914                                 tx_ring->next_to_clean,
3915                                 tx_ring->buffer_info[eop].time_stamp,
3916                                 eop,
3917                                 jiffies,
3918                                 eop_desc->upper.fields.status);
3919                         netif_stop_queue(netdev);
3920                 }
3921         }
3922         adapter->total_tx_bytes += total_tx_bytes;
3923         adapter->total_tx_packets += total_tx_packets;
3924         adapter->net_stats.tx_bytes += total_tx_bytes;
3925         adapter->net_stats.tx_packets += total_tx_packets;
3926         return cleaned;
3927 }
3928
3929 /**
3930  * e1000_rx_checksum - Receive Checksum Offload for 82543
3931  * @adapter:     board private structure
3932  * @status_err:  receive descriptor status and error fields
3933  * @csum:        receive descriptor csum field
3934  * @sk_buff:     socket buffer with received data
3935  **/
3936
3937 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3938                               u32 csum, struct sk_buff *skb)
3939 {
3940         struct e1000_hw *hw = &adapter->hw;
3941         u16 status = (u16)status_err;
3942         u8 errors = (u8)(status_err >> 24);
3943         skb->ip_summed = CHECKSUM_NONE;
3944
3945         /* 82543 or newer only */
3946         if (unlikely(hw->mac_type < e1000_82543)) return;
3947         /* Ignore Checksum bit is set */
3948         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3949         /* TCP/UDP checksum error bit is set */
3950         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3951                 /* let the stack verify checksum errors */
3952                 adapter->hw_csum_err++;
3953                 return;
3954         }
3955         /* TCP/UDP Checksum has not been calculated */
3956         if (hw->mac_type <= e1000_82547_rev_2) {
3957                 if (!(status & E1000_RXD_STAT_TCPCS))
3958                         return;
3959         } else {
3960                 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3961                         return;
3962         }
3963         /* It must be a TCP or UDP packet with a valid checksum */
3964         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3965                 /* TCP checksum is good */
3966                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3967         } else if (hw->mac_type > e1000_82547_rev_2) {
3968                 /* IP fragment with UDP payload */
3969                 /* Hardware complements the payload checksum, so we undo it
3970                  * and then put the value in host order for further stack use.
3971                  */
3972                 __sum16 sum = (__force __sum16)htons(csum);
3973                 skb->csum = csum_unfold(~sum);
3974                 skb->ip_summed = CHECKSUM_COMPLETE;
3975         }
3976         adapter->hw_csum_good++;
3977 }
3978
3979 /**
3980  * e1000_clean_rx_irq - Send received data up the network stack; legacy
3981  * @adapter: board private structure
3982  **/
3983 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
3984                                struct e1000_rx_ring *rx_ring,
3985                                int *work_done, int work_to_do)
3986 {
3987         struct e1000_hw *hw = &adapter->hw;
3988         struct net_device *netdev = adapter->netdev;
3989         struct pci_dev *pdev = adapter->pdev;
3990         struct e1000_rx_desc *rx_desc, *next_rxd;
3991         struct e1000_buffer *buffer_info, *next_buffer;
3992         unsigned long flags;
3993         u32 length;
3994         u8 last_byte;
3995         unsigned int i;
3996         int cleaned_count = 0;
3997         bool cleaned = false;
3998         unsigned int total_rx_bytes=0, total_rx_packets=0;
3999
4000         i = rx_ring->next_to_clean;
4001         rx_desc = E1000_RX_DESC(*rx_ring, i);
4002         buffer_info = &rx_ring->buffer_info[i];
4003
4004         while (rx_desc->status & E1000_RXD_STAT_DD) {
4005                 struct sk_buff *skb;
4006                 u8 status;
4007
4008                 if (*work_done >= work_to_do)
4009                         break;
4010                 (*work_done)++;
4011
4012                 status = rx_desc->status;
4013                 skb = buffer_info->skb;
4014                 buffer_info->skb = NULL;
4015
4016                 prefetch(skb->data - NET_IP_ALIGN);
4017
4018                 if (++i == rx_ring->count) i = 0;
4019                 next_rxd = E1000_RX_DESC(*rx_ring, i);
4020                 prefetch(next_rxd);
4021
4022                 next_buffer = &rx_ring->buffer_info[i];
4023
4024                 cleaned = true;
4025                 cleaned_count++;
4026                 pci_unmap_single(pdev,
4027                                  buffer_info->dma,
4028                                  buffer_info->length,
4029                                  PCI_DMA_FROMDEVICE);
4030
4031                 length = le16_to_cpu(rx_desc->length);
4032
4033                 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
4034                         /* All receives must fit into a single buffer */
4035                         E1000_DBG("%s: Receive packet consumed multiple"
4036                                   " buffers\n", netdev->name);
4037                         /* recycle */
4038                         buffer_info->skb = skb;
4039                         goto next_desc;
4040                 }
4041
4042                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4043                         last_byte = *(skb->data + length - 1);
4044                         if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4045                                        last_byte)) {
4046                                 spin_lock_irqsave(&adapter->stats_lock, flags);
4047                                 e1000_tbi_adjust_stats(hw, &adapter->stats,
4048                                                        length, skb->data);
4049                                 spin_unlock_irqrestore(&adapter->stats_lock,
4050                                                        flags);
4051                                 length--;
4052                         } else {
4053                                 /* recycle */
4054                                 buffer_info->skb = skb;
4055                                 goto next_desc;
4056                         }
4057                 }
4058
4059                 /* adjust length to remove Ethernet CRC, this must be
4060                  * done after the TBI_ACCEPT workaround above */
4061                 length -= 4;
4062
4063                 /* probably a little skewed due to removing CRC */
4064                 total_rx_bytes += length;
4065                 total_rx_packets++;
4066
4067                 /* code added for copybreak, this should improve
4068                  * performance for small packets with large amounts
4069                  * of reassembly being done in the stack */
4070                 if (length < copybreak) {
4071                         struct sk_buff *new_skb =
4072                             netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
4073                         if (new_skb) {
4074                                 skb_reserve(new_skb, NET_IP_ALIGN);
4075                                 skb_copy_to_linear_data_offset(new_skb,
4076                                                                -NET_IP_ALIGN,
4077                                                                (skb->data -
4078                                                                 NET_IP_ALIGN),
4079                                                                (length +
4080                                                                 NET_IP_ALIGN));
4081                                 /* save the skb in buffer_info as good */
4082                                 buffer_info->skb = skb;
4083                                 skb = new_skb;
4084                         }
4085                         /* else just continue with the old one */
4086                 }
4087                 /* end copybreak code */
4088                 skb_put(skb, length);
4089
4090                 /* Receive Checksum Offload */
4091                 e1000_rx_checksum(adapter,
4092                                   (u32)(status) |
4093                                   ((u32)(rx_desc->errors) << 24),
4094                                   le16_to_cpu(rx_desc->csum), skb);
4095
4096                 skb->protocol = eth_type_trans(skb, netdev);
4097
4098                 if (unlikely(adapter->vlgrp &&
4099                             (status & E1000_RXD_STAT_VP))) {
4100                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4101                                                  le16_to_cpu(rx_desc->special));
4102                 } else {
4103                         netif_receive_skb(skb);
4104                 }
4105
4106                 netdev->last_rx = jiffies;
4107
4108 next_desc:
4109                 rx_desc->status = 0;
4110
4111                 /* return some buffers to hardware, one at a time is too slow */
4112                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4113                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4114                         cleaned_count = 0;
4115                 }
4116
4117                 /* use prefetched values */
4118                 rx_desc = next_rxd;
4119                 buffer_info = next_buffer;
4120         }
4121         rx_ring->next_to_clean = i;
4122
4123         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4124         if (cleaned_count)
4125                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4126
4127         adapter->total_rx_packets += total_rx_packets;
4128         adapter->total_rx_bytes += total_rx_bytes;
4129         adapter->net_stats.rx_bytes += total_rx_bytes;
4130         adapter->net_stats.rx_packets += total_rx_packets;
4131         return cleaned;
4132 }
4133
4134 /**
4135  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4136  * @adapter: address of board private structure
4137  **/
4138
4139 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4140                                    struct e1000_rx_ring *rx_ring,
4141                                    int cleaned_count)
4142 {
4143         struct e1000_hw *hw = &adapter->hw;
4144         struct net_device *netdev = adapter->netdev;
4145         struct pci_dev *pdev = adapter->pdev;
4146         struct e1000_rx_desc *rx_desc;
4147         struct e1000_buffer *buffer_info;
4148         struct sk_buff *skb;
4149         unsigned int i;
4150         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4151
4152         i = rx_ring->next_to_use;
4153         buffer_info = &rx_ring->buffer_info[i];
4154
4155         while (cleaned_count--) {
4156                 skb = buffer_info->skb;
4157                 if (skb) {
4158                         skb_trim(skb, 0);
4159                         goto map_skb;
4160                 }
4161
4162                 skb = netdev_alloc_skb(netdev, bufsz);
4163                 if (unlikely(!skb)) {
4164                         /* Better luck next round */
4165                         adapter->alloc_rx_buff_failed++;
4166                         break;
4167                 }
4168
4169                 /* Fix for errata 23, can't cross 64kB boundary */
4170                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4171                         struct sk_buff *oldskb = skb;
4172                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4173                                              "at %p\n", bufsz, skb->data);
4174                         /* Try again, without freeing the previous */
4175                         skb = netdev_alloc_skb(netdev, bufsz);
4176                         /* Failed allocation, critical failure */
4177                         if (!skb) {
4178                                 dev_kfree_skb(oldskb);
4179                                 break;
4180                         }
4181
4182                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4183                                 /* give up */
4184                                 dev_kfree_skb(skb);
4185                                 dev_kfree_skb(oldskb);
4186                                 break; /* while !buffer_info->skb */
4187                         }
4188
4189                         /* Use new allocation */
4190                         dev_kfree_skb(oldskb);
4191                 }
4192                 /* Make buffer alignment 2 beyond a 16 byte boundary
4193                  * this will result in a 16 byte aligned IP header after
4194                  * the 14 byte MAC header is removed
4195                  */
4196                 skb_reserve(skb, NET_IP_ALIGN);
4197
4198                 buffer_info->skb = skb;
4199                 buffer_info->length = adapter->rx_buffer_len;
4200 map_skb:
4201                 buffer_info->dma = pci_map_single(pdev,
4202                                                   skb->data,
4203                                                   adapter->rx_buffer_len,
4204                                                   PCI_DMA_FROMDEVICE);
4205
4206                 /* Fix for errata 23, can't cross 64kB boundary */
4207                 if (!e1000_check_64k_bound(adapter,
4208                                         (void *)(unsigned long)buffer_info->dma,
4209                                         adapter->rx_buffer_len)) {
4210                         DPRINTK(RX_ERR, ERR,
4211                                 "dma align check failed: %u bytes at %p\n",
4212                                 adapter->rx_buffer_len,
4213                                 (void *)(unsigned long)buffer_info->dma);
4214                         dev_kfree_skb(skb);
4215                         buffer_info->skb = NULL;
4216
4217                         pci_unmap_single(pdev, buffer_info->dma,
4218                                          adapter->rx_buffer_len,
4219                                          PCI_DMA_FROMDEVICE);
4220
4221                         break; /* while !buffer_info->skb */
4222                 }
4223                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4224                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4225
4226                 if (unlikely(++i == rx_ring->count))
4227                         i = 0;
4228                 buffer_info = &rx_ring->buffer_info[i];
4229         }
4230
4231         if (likely(rx_ring->next_to_use != i)) {
4232                 rx_ring->next_to_use = i;
4233                 if (unlikely(i-- == 0))
4234                         i = (rx_ring->count - 1);
4235
4236                 /* Force memory writes to complete before letting h/w
4237                  * know there are new descriptors to fetch.  (Only
4238                  * applicable for weak-ordered memory model archs,
4239                  * such as IA-64). */
4240                 wmb();
4241                 writel(i, hw->hw_addr + rx_ring->rdt);
4242         }
4243 }
4244
4245 /**
4246  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4247  * @adapter:
4248  **/
4249
4250 static void e1000_smartspeed(struct e1000_adapter *adapter)
4251 {
4252         struct e1000_hw *hw = &adapter->hw;
4253         u16 phy_status;
4254         u16 phy_ctrl;
4255
4256         if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4257            !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4258                 return;
4259
4260         if (adapter->smartspeed == 0) {
4261                 /* If Master/Slave config fault is asserted twice,
4262                  * we assume back-to-back */
4263                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4264                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4265                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4266                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4267                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4268                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4269                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4270                         e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4271                                             phy_ctrl);
4272                         adapter->smartspeed++;
4273                         if (!e1000_phy_setup_autoneg(hw) &&
4274                            !e1000_read_phy_reg(hw, PHY_CTRL,
4275                                                &phy_ctrl)) {
4276                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4277                                              MII_CR_RESTART_AUTO_NEG);
4278                                 e1000_write_phy_reg(hw, PHY_CTRL,
4279                                                     phy_ctrl);
4280                         }
4281                 }
4282                 return;
4283         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4284                 /* If still no link, perhaps using 2/3 pair cable */
4285                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4286                 phy_ctrl |= CR_1000T_MS_ENABLE;
4287                 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4288                 if (!e1000_phy_setup_autoneg(hw) &&
4289                    !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4290                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4291                                      MII_CR_RESTART_AUTO_NEG);
4292                         e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4293                 }
4294         }
4295         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4296         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4297                 adapter->smartspeed = 0;
4298 }
4299
4300 /**
4301  * e1000_ioctl -
4302  * @netdev:
4303  * @ifreq:
4304  * @cmd:
4305  **/
4306
4307 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4308 {
4309         switch (cmd) {
4310         case SIOCGMIIPHY:
4311         case SIOCGMIIREG:
4312         case SIOCSMIIREG:
4313                 return e1000_mii_ioctl(netdev, ifr, cmd);
4314         default:
4315                 return -EOPNOTSUPP;
4316         }
4317 }
4318
4319 /**
4320  * e1000_mii_ioctl -
4321  * @netdev:
4322  * @ifreq:
4323  * @cmd:
4324  **/
4325
4326 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4327                            int cmd)
4328 {
4329         struct e1000_adapter *adapter = netdev_priv(netdev);
4330         struct e1000_hw *hw = &adapter->hw;
4331         struct mii_ioctl_data *data = if_mii(ifr);
4332         int retval;
4333         u16 mii_reg;
4334         u16 spddplx;
4335         unsigned long flags;
4336
4337         if (hw->media_type != e1000_media_type_copper)
4338                 return -EOPNOTSUPP;
4339
4340         switch (cmd) {
4341         case SIOCGMIIPHY:
4342                 data->phy_id = hw->phy_addr;
4343                 break;
4344         case SIOCGMIIREG:
4345                 if (!capable(CAP_NET_ADMIN))
4346                         return -EPERM;
4347                 spin_lock_irqsave(&adapter->stats_lock, flags);
4348                 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4349                                    &data->val_out)) {
4350                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4351                         return -EIO;
4352                 }
4353                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4354                 break;
4355         case SIOCSMIIREG:
4356                 if (!capable(CAP_NET_ADMIN))
4357                         return -EPERM;
4358                 if (data->reg_num & ~(0x1F))
4359                         return -EFAULT;
4360                 mii_reg = data->val_in;
4361                 spin_lock_irqsave(&adapter->stats_lock, flags);
4362                 if (e1000_write_phy_reg(hw, data->reg_num,
4363                                         mii_reg)) {
4364                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4365                         return -EIO;
4366                 }
4367                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4368                 if (hw->media_type == e1000_media_type_copper) {
4369                         switch (data->reg_num) {
4370                         case PHY_CTRL:
4371                                 if (mii_reg & MII_CR_POWER_DOWN)
4372                                         break;
4373                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4374                                         hw->autoneg = 1;
4375                                         hw->autoneg_advertised = 0x2F;
4376                                 } else {
4377                                         if (mii_reg & 0x40)
4378                                                 spddplx = SPEED_1000;
4379                                         else if (mii_reg & 0x2000)
4380                                                 spddplx = SPEED_100;
4381                                         else
4382                                                 spddplx = SPEED_10;
4383                                         spddplx += (mii_reg & 0x100)
4384                                                    ? DUPLEX_FULL :
4385                                                    DUPLEX_HALF;
4386                                         retval = e1000_set_spd_dplx(adapter,
4387                                                                     spddplx);
4388                                         if (retval)
4389                                                 return retval;
4390                                 }
4391                                 if (netif_running(adapter->netdev))
4392                                         e1000_reinit_locked(adapter);
4393                                 else
4394                                         e1000_reset(adapter);
4395                                 break;
4396                         case M88E1000_PHY_SPEC_CTRL:
4397                         case M88E1000_EXT_PHY_SPEC_CTRL:
4398                                 if (e1000_phy_reset(hw))
4399                                         return -EIO;
4400                                 break;
4401                         }
4402                 } else {
4403                         switch (data->reg_num) {
4404                         case PHY_CTRL:
4405                                 if (mii_reg & MII_CR_POWER_DOWN)
4406                                         break;
4407                                 if (netif_running(adapter->netdev))
4408                                         e1000_reinit_locked(adapter);
4409                                 else
4410                                         e1000_reset(adapter);
4411                                 break;
4412                         }
4413                 }
4414                 break;
4415         default:
4416                 return -EOPNOTSUPP;
4417         }
4418         return E1000_SUCCESS;
4419 }
4420
4421 void e1000_pci_set_mwi(struct e1000_hw *hw)
4422 {
4423         struct e1000_adapter *adapter = hw->back;
4424         int ret_val = pci_set_mwi(adapter->pdev);
4425
4426         if (ret_val)
4427                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4428 }
4429
4430 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4431 {
4432         struct e1000_adapter *adapter = hw->back;
4433
4434         pci_clear_mwi(adapter->pdev);
4435 }
4436
4437 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4438 {
4439         struct e1000_adapter *adapter = hw->back;
4440         return pcix_get_mmrbc(adapter->pdev);
4441 }
4442
4443 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4444 {
4445         struct e1000_adapter *adapter = hw->back;
4446         pcix_set_mmrbc(adapter->pdev, mmrbc);
4447 }
4448
4449 s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
4450 {
4451     struct e1000_adapter *adapter = hw->back;
4452     u16 cap_offset;
4453
4454     cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
4455     if (!cap_offset)
4456         return -E1000_ERR_CONFIG;
4457
4458     pci_read_config_word(adapter->pdev, cap_offset + reg, value);
4459
4460     return E1000_SUCCESS;
4461 }
4462
4463 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4464 {
4465         outl(value, port);
4466 }
4467
4468 static void e1000_vlan_rx_register(struct net_device *netdev,
4469                                    struct vlan_group *grp)
4470 {
4471         struct e1000_adapter *adapter = netdev_priv(netdev);
4472         struct e1000_hw *hw = &adapter->hw;
4473         u32 ctrl, rctl;
4474
4475         if (!test_bit(__E1000_DOWN, &adapter->flags))
4476                 e1000_irq_disable(adapter);
4477         adapter->vlgrp = grp;
4478
4479         if (grp) {
4480                 /* enable VLAN tag insert/strip */
4481                 ctrl = er32(CTRL);
4482                 ctrl |= E1000_CTRL_VME;
4483                 ew32(CTRL, ctrl);
4484
4485                 if (adapter->hw.mac_type != e1000_ich8lan) {
4486                         /* enable VLAN receive filtering */
4487                         rctl = er32(RCTL);
4488                         rctl &= ~E1000_RCTL_CFIEN;
4489                         ew32(RCTL, rctl);
4490                         e1000_update_mng_vlan(adapter);
4491                 }
4492         } else {
4493                 /* disable VLAN tag insert/strip */
4494                 ctrl = er32(CTRL);
4495                 ctrl &= ~E1000_CTRL_VME;
4496                 ew32(CTRL, ctrl);
4497
4498                 if (adapter->hw.mac_type != e1000_ich8lan) {
4499                         if (adapter->mng_vlan_id !=
4500                             (u16)E1000_MNG_VLAN_NONE) {
4501                                 e1000_vlan_rx_kill_vid(netdev,
4502                                                        adapter->mng_vlan_id);
4503                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4504                         }
4505                 }
4506         }
4507
4508         if (!test_bit(__E1000_DOWN, &adapter->flags))
4509                 e1000_irq_enable(adapter);
4510 }
4511
4512 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4513 {
4514         struct e1000_adapter *adapter = netdev_priv(netdev);
4515         struct e1000_hw *hw = &adapter->hw;
4516         u32 vfta, index;
4517
4518         if ((hw->mng_cookie.status &
4519              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4520             (vid == adapter->mng_vlan_id))
4521                 return;
4522         /* add VID to filter table */
4523         index = (vid >> 5) & 0x7F;
4524         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4525         vfta |= (1 << (vid & 0x1F));
4526         e1000_write_vfta(hw, index, vfta);
4527 }
4528
4529 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4530 {
4531         struct e1000_adapter *adapter = netdev_priv(netdev);
4532         struct e1000_hw *hw = &adapter->hw;
4533         u32 vfta, index;
4534
4535         if (!test_bit(__E1000_DOWN, &adapter->flags))
4536                 e1000_irq_disable(adapter);
4537         vlan_group_set_device(adapter->vlgrp, vid, NULL);
4538         if (!test_bit(__E1000_DOWN, &adapter->flags))
4539                 e1000_irq_enable(adapter);
4540
4541         if ((hw->mng_cookie.status &
4542              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4543             (vid == adapter->mng_vlan_id)) {
4544                 /* release control to f/w */
4545                 e1000_release_hw_control(adapter);
4546                 return;
4547         }
4548
4549         /* remove VID from filter table */
4550         index = (vid >> 5) & 0x7F;
4551         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4552         vfta &= ~(1 << (vid & 0x1F));
4553         e1000_write_vfta(hw, index, vfta);
4554 }
4555
4556 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4557 {
4558         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4559
4560         if (adapter->vlgrp) {
4561                 u16 vid;
4562                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4563                         if (!vlan_group_get_device(adapter->vlgrp, vid))
4564                                 continue;
4565                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
4566                 }
4567         }
4568 }
4569
4570 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
4571 {
4572         struct e1000_hw *hw = &adapter->hw;
4573
4574         hw->autoneg = 0;
4575
4576         /* Fiber NICs only allow 1000 gbps Full duplex */
4577         if ((hw->media_type == e1000_media_type_fiber) &&
4578                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4579                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4580                 return -EINVAL;
4581         }
4582
4583         switch (spddplx) {
4584         case SPEED_10 + DUPLEX_HALF:
4585                 hw->forced_speed_duplex = e1000_10_half;
4586                 break;
4587         case SPEED_10 + DUPLEX_FULL:
4588                 hw->forced_speed_duplex = e1000_10_full;
4589                 break;
4590         case SPEED_100 + DUPLEX_HALF:
4591                 hw->forced_speed_duplex = e1000_100_half;
4592                 break;
4593         case SPEED_100 + DUPLEX_FULL:
4594                 hw->forced_speed_duplex = e1000_100_full;
4595                 break;
4596         case SPEED_1000 + DUPLEX_FULL:
4597                 hw->autoneg = 1;
4598                 hw->autoneg_advertised = ADVERTISE_1000_FULL;
4599                 break;
4600         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4601         default:
4602                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4603                 return -EINVAL;
4604         }
4605         return 0;
4606 }
4607
4608 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4609 {
4610         struct net_device *netdev = pci_get_drvdata(pdev);
4611         struct e1000_adapter *adapter = netdev_priv(netdev);
4612         struct e1000_hw *hw = &adapter->hw;
4613         u32 ctrl, ctrl_ext, rctl, status;
4614         u32 wufc = adapter->wol;
4615 #ifdef CONFIG_PM
4616         int retval = 0;
4617 #endif
4618
4619         netif_device_detach(netdev);
4620
4621         if (netif_running(netdev)) {
4622                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4623                 e1000_down(adapter);
4624         }
4625
4626 #ifdef CONFIG_PM
4627         retval = pci_save_state(pdev);
4628         if (retval)
4629                 return retval;
4630 #endif
4631
4632         status = er32(STATUS);
4633         if (status & E1000_STATUS_LU)
4634                 wufc &= ~E1000_WUFC_LNKC;
4635
4636         if (wufc) {
4637                 e1000_setup_rctl(adapter);
4638                 e1000_set_rx_mode(netdev);
4639
4640                 /* turn on all-multi mode if wake on multicast is enabled */
4641                 if (wufc & E1000_WUFC_MC) {
4642                         rctl = er32(RCTL);
4643                         rctl |= E1000_RCTL_MPE;
4644                         ew32(RCTL, rctl);
4645                 }
4646
4647                 if (hw->mac_type >= e1000_82540) {
4648                         ctrl = er32(CTRL);
4649                         /* advertise wake from D3Cold */
4650                         #define E1000_CTRL_ADVD3WUC 0x00100000
4651                         /* phy power management enable */
4652                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4653                         ctrl |= E1000_CTRL_ADVD3WUC |
4654                                 E1000_CTRL_EN_PHY_PWR_MGMT;
4655                         ew32(CTRL, ctrl);
4656                 }
4657
4658                 if (hw->media_type == e1000_media_type_fiber ||
4659                    hw->media_type == e1000_media_type_internal_serdes) {
4660                         /* keep the laser running in D3 */
4661                         ctrl_ext = er32(CTRL_EXT);
4662                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4663                         ew32(CTRL_EXT, ctrl_ext);
4664                 }
4665
4666                 /* Allow time for pending master requests to run */
4667                 e1000_disable_pciex_master(hw);
4668
4669                 ew32(WUC, E1000_WUC_PME_EN);
4670                 ew32(WUFC, wufc);
4671                 pci_enable_wake(pdev, PCI_D3hot, 1);
4672                 pci_enable_wake(pdev, PCI_D3cold, 1);
4673         } else {
4674                 ew32(WUC, 0);
4675                 ew32(WUFC, 0);
4676                 pci_enable_wake(pdev, PCI_D3hot, 0);
4677                 pci_enable_wake(pdev, PCI_D3cold, 0);
4678         }
4679
4680         e1000_release_manageability(adapter);
4681
4682         /* make sure adapter isn't asleep if manageability is enabled */
4683         if (adapter->en_mng_pt) {
4684                 pci_enable_wake(pdev, PCI_D3hot, 1);
4685                 pci_enable_wake(pdev, PCI_D3cold, 1);
4686         }
4687
4688         if (hw->phy_type == e1000_phy_igp_3)
4689                 e1000_phy_powerdown_workaround(hw);
4690
4691         if (netif_running(netdev))
4692                 e1000_free_irq(adapter);
4693
4694         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
4695          * would have already happened in close and is redundant. */
4696         e1000_release_hw_control(adapter);
4697
4698         pci_disable_device(pdev);
4699
4700         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4701
4702         return 0;
4703 }
4704
4705 #ifdef CONFIG_PM
4706 static int e1000_resume(struct pci_dev *pdev)
4707 {
4708         struct net_device *netdev = pci_get_drvdata(pdev);
4709         struct e1000_adapter *adapter = netdev_priv(netdev);
4710         struct e1000_hw *hw = &adapter->hw;
4711         u32 err;
4712
4713         pci_set_power_state(pdev, PCI_D0);
4714         pci_restore_state(pdev);
4715
4716         if (adapter->need_ioport)
4717                 err = pci_enable_device(pdev);
4718         else
4719                 err = pci_enable_device_mem(pdev);
4720         if (err) {
4721                 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
4722                 return err;
4723         }
4724         pci_set_master(pdev);
4725
4726         pci_enable_wake(pdev, PCI_D3hot, 0);
4727         pci_enable_wake(pdev, PCI_D3cold, 0);
4728
4729         if (netif_running(netdev)) {
4730                 err = e1000_request_irq(adapter);
4731                 if (err)
4732                         return err;
4733         }
4734
4735         e1000_power_up_phy(adapter);
4736         e1000_reset(adapter);
4737         ew32(WUS, ~0);
4738
4739         e1000_init_manageability(adapter);
4740
4741         if (netif_running(netdev))
4742                 e1000_up(adapter);
4743
4744         netif_device_attach(netdev);
4745
4746         /* If the controller is 82573 and f/w is AMT, do not set
4747          * DRV_LOAD until the interface is up.  For all other cases,
4748          * let the f/w know that the h/w is now under the control
4749          * of the driver. */
4750         if (hw->mac_type != e1000_82573 ||
4751             !e1000_check_mng_mode(hw))
4752                 e1000_get_hw_control(adapter);
4753
4754         return 0;
4755 }
4756 #endif
4757
4758 static void e1000_shutdown(struct pci_dev *pdev)
4759 {
4760         e1000_suspend(pdev, PMSG_SUSPEND);
4761 }
4762
4763 #ifdef CONFIG_NET_POLL_CONTROLLER
4764 /*
4765  * Polling 'interrupt' - used by things like netconsole to send skbs
4766  * without having to re-enable interrupts. It's not called while
4767  * the interrupt routine is executing.
4768  */
4769 static void e1000_netpoll(struct net_device *netdev)
4770 {
4771         struct e1000_adapter *adapter = netdev_priv(netdev);
4772
4773         disable_irq(adapter->pdev->irq);
4774         e1000_intr(adapter->pdev->irq, netdev);
4775         enable_irq(adapter->pdev->irq);
4776 }
4777 #endif
4778
4779 /**
4780  * e1000_io_error_detected - called when PCI error is detected
4781  * @pdev: Pointer to PCI device
4782  * @state: The current pci conneection state
4783  *
4784  * This function is called after a PCI bus error affecting
4785  * this device has been detected.
4786  */
4787 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4788                                                 pci_channel_state_t state)
4789 {
4790         struct net_device *netdev = pci_get_drvdata(pdev);
4791         struct e1000_adapter *adapter = netdev->priv;
4792
4793         netif_device_detach(netdev);
4794
4795         if (netif_running(netdev))
4796                 e1000_down(adapter);
4797         pci_disable_device(pdev);
4798
4799         /* Request a slot slot reset. */
4800         return PCI_ERS_RESULT_NEED_RESET;
4801 }
4802
4803 /**
4804  * e1000_io_slot_reset - called after the pci bus has been reset.
4805  * @pdev: Pointer to PCI device
4806  *
4807  * Restart the card from scratch, as if from a cold-boot. Implementation
4808  * resembles the first-half of the e1000_resume routine.
4809  */
4810 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4811 {
4812         struct net_device *netdev = pci_get_drvdata(pdev);
4813         struct e1000_adapter *adapter = netdev->priv;
4814         struct e1000_hw *hw = &adapter->hw;
4815         int err;
4816
4817         if (adapter->need_ioport)
4818                 err = pci_enable_device(pdev);
4819         else
4820                 err = pci_enable_device_mem(pdev);
4821         if (err) {
4822                 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
4823                 return PCI_ERS_RESULT_DISCONNECT;
4824         }
4825         pci_set_master(pdev);
4826
4827         pci_enable_wake(pdev, PCI_D3hot, 0);
4828         pci_enable_wake(pdev, PCI_D3cold, 0);
4829
4830         e1000_reset(adapter);
4831         ew32(WUS, ~0);
4832
4833         return PCI_ERS_RESULT_RECOVERED;
4834 }
4835
4836 /**
4837  * e1000_io_resume - called when traffic can start flowing again.
4838  * @pdev: Pointer to PCI device
4839  *
4840  * This callback is called when the error recovery driver tells us that
4841  * its OK to resume normal operation. Implementation resembles the
4842  * second-half of the e1000_resume routine.
4843  */
4844 static void e1000_io_resume(struct pci_dev *pdev)
4845 {
4846         struct net_device *netdev = pci_get_drvdata(pdev);
4847         struct e1000_adapter *adapter = netdev->priv;
4848         struct e1000_hw *hw = &adapter->hw;
4849
4850         e1000_init_manageability(adapter);
4851
4852         if (netif_running(netdev)) {
4853                 if (e1000_up(adapter)) {
4854                         printk("e1000: can't bring device back up after reset\n");
4855                         return;
4856                 }
4857         }
4858
4859         netif_device_attach(netdev);
4860
4861         /* If the controller is 82573 and f/w is AMT, do not set
4862          * DRV_LOAD until the interface is up.  For all other cases,
4863          * let the f/w know that the h/w is now under the control
4864          * of the driver. */
4865         if (hw->mac_type != e1000_82573 ||
4866             !e1000_check_mng_mode(hw))
4867                 e1000_get_hw_control(adapter);
4868
4869 }
4870
4871 /* e1000_main.c */