]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/e1000/e1000_main.c
e1000: add PCI-E capability detection code
[linux-2.6-omap-h63xx.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30
31 char e1000_driver_name[] = "e1000";
32 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
33 #ifndef CONFIG_E1000_NAPI
34 #define DRIVERNAPI
35 #else
36 #define DRIVERNAPI "-NAPI"
37 #endif
38 #define DRV_VERSION "7.2.7-k2"DRIVERNAPI
39 char e1000_driver_version[] = DRV_VERSION;
40 static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
41
42 /* e1000_pci_tbl - PCI Device ID Table
43  *
44  * Last entry must be all 0s
45  *
46  * Macro expands to...
47  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
48  */
49 static struct pci_device_id e1000_pci_tbl[] = {
50         INTEL_E1000_ETHERNET_DEVICE(0x1000),
51         INTEL_E1000_ETHERNET_DEVICE(0x1001),
52         INTEL_E1000_ETHERNET_DEVICE(0x1004),
53         INTEL_E1000_ETHERNET_DEVICE(0x1008),
54         INTEL_E1000_ETHERNET_DEVICE(0x1009),
55         INTEL_E1000_ETHERNET_DEVICE(0x100C),
56         INTEL_E1000_ETHERNET_DEVICE(0x100D),
57         INTEL_E1000_ETHERNET_DEVICE(0x100E),
58         INTEL_E1000_ETHERNET_DEVICE(0x100F),
59         INTEL_E1000_ETHERNET_DEVICE(0x1010),
60         INTEL_E1000_ETHERNET_DEVICE(0x1011),
61         INTEL_E1000_ETHERNET_DEVICE(0x1012),
62         INTEL_E1000_ETHERNET_DEVICE(0x1013),
63         INTEL_E1000_ETHERNET_DEVICE(0x1014),
64         INTEL_E1000_ETHERNET_DEVICE(0x1015),
65         INTEL_E1000_ETHERNET_DEVICE(0x1016),
66         INTEL_E1000_ETHERNET_DEVICE(0x1017),
67         INTEL_E1000_ETHERNET_DEVICE(0x1018),
68         INTEL_E1000_ETHERNET_DEVICE(0x1019),
69         INTEL_E1000_ETHERNET_DEVICE(0x101A),
70         INTEL_E1000_ETHERNET_DEVICE(0x101D),
71         INTEL_E1000_ETHERNET_DEVICE(0x101E),
72         INTEL_E1000_ETHERNET_DEVICE(0x1026),
73         INTEL_E1000_ETHERNET_DEVICE(0x1027),
74         INTEL_E1000_ETHERNET_DEVICE(0x1028),
75         INTEL_E1000_ETHERNET_DEVICE(0x1049),
76         INTEL_E1000_ETHERNET_DEVICE(0x104A),
77         INTEL_E1000_ETHERNET_DEVICE(0x104B),
78         INTEL_E1000_ETHERNET_DEVICE(0x104C),
79         INTEL_E1000_ETHERNET_DEVICE(0x104D),
80         INTEL_E1000_ETHERNET_DEVICE(0x105E),
81         INTEL_E1000_ETHERNET_DEVICE(0x105F),
82         INTEL_E1000_ETHERNET_DEVICE(0x1060),
83         INTEL_E1000_ETHERNET_DEVICE(0x1075),
84         INTEL_E1000_ETHERNET_DEVICE(0x1076),
85         INTEL_E1000_ETHERNET_DEVICE(0x1077),
86         INTEL_E1000_ETHERNET_DEVICE(0x1078),
87         INTEL_E1000_ETHERNET_DEVICE(0x1079),
88         INTEL_E1000_ETHERNET_DEVICE(0x107A),
89         INTEL_E1000_ETHERNET_DEVICE(0x107B),
90         INTEL_E1000_ETHERNET_DEVICE(0x107C),
91         INTEL_E1000_ETHERNET_DEVICE(0x107D),
92         INTEL_E1000_ETHERNET_DEVICE(0x107E),
93         INTEL_E1000_ETHERNET_DEVICE(0x107F),
94         INTEL_E1000_ETHERNET_DEVICE(0x108A),
95         INTEL_E1000_ETHERNET_DEVICE(0x108B),
96         INTEL_E1000_ETHERNET_DEVICE(0x108C),
97         INTEL_E1000_ETHERNET_DEVICE(0x1096),
98         INTEL_E1000_ETHERNET_DEVICE(0x1098),
99         INTEL_E1000_ETHERNET_DEVICE(0x1099),
100         INTEL_E1000_ETHERNET_DEVICE(0x109A),
101         INTEL_E1000_ETHERNET_DEVICE(0x10A4),
102         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
103         INTEL_E1000_ETHERNET_DEVICE(0x10B9),
104         INTEL_E1000_ETHERNET_DEVICE(0x10BA),
105         INTEL_E1000_ETHERNET_DEVICE(0x10BB),
106         /* required last entry */
107         {0,}
108 };
109
110 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
111
112 int e1000_up(struct e1000_adapter *adapter);
113 void e1000_down(struct e1000_adapter *adapter);
114 void e1000_reinit_locked(struct e1000_adapter *adapter);
115 void e1000_reset(struct e1000_adapter *adapter);
116 int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
117 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
118 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
119 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
120 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
121 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
122                              struct e1000_tx_ring *txdr);
123 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
124                              struct e1000_rx_ring *rxdr);
125 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
126                              struct e1000_tx_ring *tx_ring);
127 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
128                              struct e1000_rx_ring *rx_ring);
129 void e1000_update_stats(struct e1000_adapter *adapter);
130
131 static int e1000_init_module(void);
132 static void e1000_exit_module(void);
133 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
134 static void __devexit e1000_remove(struct pci_dev *pdev);
135 static int e1000_alloc_queues(struct e1000_adapter *adapter);
136 static int e1000_sw_init(struct e1000_adapter *adapter);
137 static int e1000_open(struct net_device *netdev);
138 static int e1000_close(struct net_device *netdev);
139 static void e1000_configure_tx(struct e1000_adapter *adapter);
140 static void e1000_configure_rx(struct e1000_adapter *adapter);
141 static void e1000_setup_rctl(struct e1000_adapter *adapter);
142 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
143 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
144 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
145                                 struct e1000_tx_ring *tx_ring);
146 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
147                                 struct e1000_rx_ring *rx_ring);
148 static void e1000_set_multi(struct net_device *netdev);
149 static void e1000_update_phy_info(unsigned long data);
150 static void e1000_watchdog(unsigned long data);
151 static void e1000_82547_tx_fifo_stall(unsigned long data);
152 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
153 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
154 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
155 static int e1000_set_mac(struct net_device *netdev, void *p);
156 static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
157 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
158                                     struct e1000_tx_ring *tx_ring);
159 #ifdef CONFIG_E1000_NAPI
160 static int e1000_clean(struct net_device *poll_dev, int *budget);
161 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
162                                     struct e1000_rx_ring *rx_ring,
163                                     int *work_done, int work_to_do);
164 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
165                                        struct e1000_rx_ring *rx_ring,
166                                        int *work_done, int work_to_do);
167 #else
168 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
169                                     struct e1000_rx_ring *rx_ring);
170 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
171                                        struct e1000_rx_ring *rx_ring);
172 #endif
173 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
174                                    struct e1000_rx_ring *rx_ring,
175                                    int cleaned_count);
176 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
177                                       struct e1000_rx_ring *rx_ring,
178                                       int cleaned_count);
179 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
180 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
181                            int cmd);
182 void e1000_set_ethtool_ops(struct net_device *netdev);
183 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
184 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
185 static void e1000_tx_timeout(struct net_device *dev);
186 static void e1000_reset_task(struct net_device *dev);
187 static void e1000_smartspeed(struct e1000_adapter *adapter);
188 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
189                                        struct sk_buff *skb);
190
191 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
192 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
193 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
194 static void e1000_restore_vlan(struct e1000_adapter *adapter);
195
196 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
197 #ifdef CONFIG_PM
198 static int e1000_resume(struct pci_dev *pdev);
199 #endif
200 static void e1000_shutdown(struct pci_dev *pdev);
201
202 #ifdef CONFIG_NET_POLL_CONTROLLER
203 /* for netdump / net console */
204 static void e1000_netpoll (struct net_device *netdev);
205 #endif
206
207 extern void e1000_check_options(struct e1000_adapter *adapter);
208
209 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
210                      pci_channel_state_t state);
211 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
212 static void e1000_io_resume(struct pci_dev *pdev);
213
214 static struct pci_error_handlers e1000_err_handler = {
215         .error_detected = e1000_io_error_detected,
216         .slot_reset = e1000_io_slot_reset,
217         .resume = e1000_io_resume,
218 };
219
220 static struct pci_driver e1000_driver = {
221         .name     = e1000_driver_name,
222         .id_table = e1000_pci_tbl,
223         .probe    = e1000_probe,
224         .remove   = __devexit_p(e1000_remove),
225 #ifdef CONFIG_PM
226         /* Power Managment Hooks */
227         .suspend  = e1000_suspend,
228         .resume   = e1000_resume,
229 #endif
230         .shutdown = e1000_shutdown,
231         .err_handler = &e1000_err_handler
232 };
233
234 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
235 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
236 MODULE_LICENSE("GPL");
237 MODULE_VERSION(DRV_VERSION);
238
239 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
240 module_param(debug, int, 0);
241 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
242
243 /**
244  * e1000_init_module - Driver Registration Routine
245  *
246  * e1000_init_module is the first routine called when the driver is
247  * loaded. All it does is register with the PCI subsystem.
248  **/
249
250 static int __init
251 e1000_init_module(void)
252 {
253         int ret;
254         printk(KERN_INFO "%s - version %s\n",
255                e1000_driver_string, e1000_driver_version);
256
257         printk(KERN_INFO "%s\n", e1000_copyright);
258
259         ret = pci_register_driver(&e1000_driver);
260
261         return ret;
262 }
263
264 module_init(e1000_init_module);
265
266 /**
267  * e1000_exit_module - Driver Exit Cleanup Routine
268  *
269  * e1000_exit_module is called just before the driver is removed
270  * from memory.
271  **/
272
273 static void __exit
274 e1000_exit_module(void)
275 {
276         pci_unregister_driver(&e1000_driver);
277 }
278
279 module_exit(e1000_exit_module);
280
281 static int e1000_request_irq(struct e1000_adapter *adapter)
282 {
283         struct net_device *netdev = adapter->netdev;
284         int flags, err = 0;
285
286         flags = IRQF_SHARED;
287 #ifdef CONFIG_PCI_MSI
288         if (adapter->hw.mac_type > e1000_82547_rev_2) {
289                 adapter->have_msi = TRUE;
290                 if ((err = pci_enable_msi(adapter->pdev))) {
291                         DPRINTK(PROBE, ERR,
292                          "Unable to allocate MSI interrupt Error: %d\n", err);
293                         adapter->have_msi = FALSE;
294                 }
295         }
296         if (adapter->have_msi)
297                 flags &= ~IRQF_SHARED;
298 #endif
299         if ((err = request_irq(adapter->pdev->irq, &e1000_intr, flags,
300                                netdev->name, netdev)))
301                 DPRINTK(PROBE, ERR,
302                         "Unable to allocate interrupt Error: %d\n", err);
303
304         return err;
305 }
306
307 static void e1000_free_irq(struct e1000_adapter *adapter)
308 {
309         struct net_device *netdev = adapter->netdev;
310
311         free_irq(adapter->pdev->irq, netdev);
312
313 #ifdef CONFIG_PCI_MSI
314         if (adapter->have_msi)
315                 pci_disable_msi(adapter->pdev);
316 #endif
317 }
318
319 /**
320  * e1000_irq_disable - Mask off interrupt generation on the NIC
321  * @adapter: board private structure
322  **/
323
324 static void
325 e1000_irq_disable(struct e1000_adapter *adapter)
326 {
327         atomic_inc(&adapter->irq_sem);
328         E1000_WRITE_REG(&adapter->hw, IMC, ~0);
329         E1000_WRITE_FLUSH(&adapter->hw);
330         synchronize_irq(adapter->pdev->irq);
331 }
332
333 /**
334  * e1000_irq_enable - Enable default interrupt generation settings
335  * @adapter: board private structure
336  **/
337
338 static void
339 e1000_irq_enable(struct e1000_adapter *adapter)
340 {
341         if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
342                 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
343                 E1000_WRITE_FLUSH(&adapter->hw);
344         }
345 }
346
347 static void
348 e1000_update_mng_vlan(struct e1000_adapter *adapter)
349 {
350         struct net_device *netdev = adapter->netdev;
351         uint16_t vid = adapter->hw.mng_cookie.vlan_id;
352         uint16_t old_vid = adapter->mng_vlan_id;
353         if (adapter->vlgrp) {
354                 if (!adapter->vlgrp->vlan_devices[vid]) {
355                         if (adapter->hw.mng_cookie.status &
356                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
357                                 e1000_vlan_rx_add_vid(netdev, vid);
358                                 adapter->mng_vlan_id = vid;
359                         } else
360                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
361
362                         if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
363                                         (vid != old_vid) &&
364                                         !adapter->vlgrp->vlan_devices[old_vid])
365                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
366                 } else
367                         adapter->mng_vlan_id = vid;
368         }
369 }
370
371 /**
372  * e1000_release_hw_control - release control of the h/w to f/w
373  * @adapter: address of board private structure
374  *
375  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
376  * For ASF and Pass Through versions of f/w this means that the
377  * driver is no longer loaded. For AMT version (only with 82573) i
378  * of the f/w this means that the netowrk i/f is closed.
379  *
380  **/
381
382 static void
383 e1000_release_hw_control(struct e1000_adapter *adapter)
384 {
385         uint32_t ctrl_ext;
386         uint32_t swsm;
387         uint32_t extcnf;
388
389         /* Let firmware taken over control of h/w */
390         switch (adapter->hw.mac_type) {
391         case e1000_82571:
392         case e1000_82572:
393         case e1000_80003es2lan:
394                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
395                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
396                                 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
397                 break;
398         case e1000_82573:
399                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
400                 E1000_WRITE_REG(&adapter->hw, SWSM,
401                                 swsm & ~E1000_SWSM_DRV_LOAD);
402         case e1000_ich8lan:
403                 extcnf = E1000_READ_REG(&adapter->hw, CTRL_EXT);
404                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
405                                 extcnf & ~E1000_CTRL_EXT_DRV_LOAD);
406                 break;
407         default:
408                 break;
409         }
410 }
411
412 /**
413  * e1000_get_hw_control - get control of the h/w from f/w
414  * @adapter: address of board private structure
415  *
416  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
417  * For ASF and Pass Through versions of f/w this means that
418  * the driver is loaded. For AMT version (only with 82573)
419  * of the f/w this means that the netowrk i/f is open.
420  *
421  **/
422
423 static void
424 e1000_get_hw_control(struct e1000_adapter *adapter)
425 {
426         uint32_t ctrl_ext;
427         uint32_t swsm;
428         uint32_t extcnf;
429         /* Let firmware know the driver has taken over */
430         switch (adapter->hw.mac_type) {
431         case e1000_82571:
432         case e1000_82572:
433         case e1000_80003es2lan:
434                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
435                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
436                                 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
437                 break;
438         case e1000_82573:
439                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
440                 E1000_WRITE_REG(&adapter->hw, SWSM,
441                                 swsm | E1000_SWSM_DRV_LOAD);
442                 break;
443         case e1000_ich8lan:
444                 extcnf = E1000_READ_REG(&adapter->hw, EXTCNF_CTRL);
445                 E1000_WRITE_REG(&adapter->hw, EXTCNF_CTRL,
446                                 extcnf | E1000_EXTCNF_CTRL_SWFLAG);
447                 break;
448         default:
449                 break;
450         }
451 }
452
453 int
454 e1000_up(struct e1000_adapter *adapter)
455 {
456         struct net_device *netdev = adapter->netdev;
457         int i;
458
459         /* hardware has been reset, we need to reload some things */
460
461         e1000_set_multi(netdev);
462
463         e1000_restore_vlan(adapter);
464
465         e1000_configure_tx(adapter);
466         e1000_setup_rctl(adapter);
467         e1000_configure_rx(adapter);
468         /* call E1000_DESC_UNUSED which always leaves
469          * at least 1 descriptor unused to make sure
470          * next_to_use != next_to_clean */
471         for (i = 0; i < adapter->num_rx_queues; i++) {
472                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
473                 adapter->alloc_rx_buf(adapter, ring,
474                                       E1000_DESC_UNUSED(ring));
475         }
476
477         adapter->tx_queue_len = netdev->tx_queue_len;
478
479         mod_timer(&adapter->watchdog_timer, jiffies);
480
481 #ifdef CONFIG_E1000_NAPI
482         netif_poll_enable(netdev);
483 #endif
484         e1000_irq_enable(adapter);
485
486         return 0;
487 }
488
489 /**
490  * e1000_power_up_phy - restore link in case the phy was powered down
491  * @adapter: address of board private structure
492  *
493  * The phy may be powered down to save power and turn off link when the
494  * driver is unloaded and wake on lan is not enabled (among others)
495  * *** this routine MUST be followed by a call to e1000_reset ***
496  *
497  **/
498
499 void e1000_power_up_phy(struct e1000_adapter *adapter)
500 {
501         uint16_t mii_reg = 0;
502
503         /* Just clear the power down bit to wake the phy back up */
504         if (adapter->hw.media_type == e1000_media_type_copper) {
505                 /* according to the manual, the phy will retain its
506                  * settings across a power-down/up cycle */
507                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
508                 mii_reg &= ~MII_CR_POWER_DOWN;
509                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
510         }
511 }
512
513 static void e1000_power_down_phy(struct e1000_adapter *adapter)
514 {
515         /* Power down the PHY so no link is implied when interface is down *
516          * The PHY cannot be powered down if any of the following is TRUE *
517          * (a) WoL is enabled
518          * (b) AMT is active
519          * (c) SoL/IDER session is active */
520         if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
521            adapter->hw.media_type == e1000_media_type_copper) {
522                 uint16_t mii_reg = 0;
523
524                 switch (adapter->hw.mac_type) {
525                 case e1000_82540:
526                 case e1000_82545:
527                 case e1000_82545_rev_3:
528                 case e1000_82546:
529                 case e1000_82546_rev_3:
530                 case e1000_82541:
531                 case e1000_82541_rev_2:
532                 case e1000_82547:
533                 case e1000_82547_rev_2:
534                         if (E1000_READ_REG(&adapter->hw, MANC) &
535                             E1000_MANC_SMBUS_EN)
536                                 goto out;
537                         break;
538                 case e1000_82571:
539                 case e1000_82572:
540                 case e1000_82573:
541                 case e1000_80003es2lan:
542                 case e1000_ich8lan:
543                         if (e1000_check_mng_mode(&adapter->hw) ||
544                             e1000_check_phy_reset_block(&adapter->hw))
545                                 goto out;
546                         break;
547                 default:
548                         goto out;
549                 }
550                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
551                 mii_reg |= MII_CR_POWER_DOWN;
552                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
553                 mdelay(1);
554         }
555 out:
556         return;
557 }
558
559 void
560 e1000_down(struct e1000_adapter *adapter)
561 {
562         struct net_device *netdev = adapter->netdev;
563
564         e1000_irq_disable(adapter);
565
566         del_timer_sync(&adapter->tx_fifo_stall_timer);
567         del_timer_sync(&adapter->watchdog_timer);
568         del_timer_sync(&adapter->phy_info_timer);
569
570 #ifdef CONFIG_E1000_NAPI
571         netif_poll_disable(netdev);
572 #endif
573         netdev->tx_queue_len = adapter->tx_queue_len;
574         adapter->link_speed = 0;
575         adapter->link_duplex = 0;
576         netif_carrier_off(netdev);
577         netif_stop_queue(netdev);
578
579         e1000_reset(adapter);
580         e1000_clean_all_tx_rings(adapter);
581         e1000_clean_all_rx_rings(adapter);
582 }
583
584 void
585 e1000_reinit_locked(struct e1000_adapter *adapter)
586 {
587         WARN_ON(in_interrupt());
588         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
589                 msleep(1);
590         e1000_down(adapter);
591         e1000_up(adapter);
592         clear_bit(__E1000_RESETTING, &adapter->flags);
593 }
594
595 void
596 e1000_reset(struct e1000_adapter *adapter)
597 {
598         uint32_t pba, manc;
599 #ifdef DISABLE_MULR
600         uint32_t tctl;
601 #endif
602         uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
603
604         /* Repartition Pba for greater than 9k mtu
605          * To take effect CTRL.RST is required.
606          */
607
608         switch (adapter->hw.mac_type) {
609         case e1000_82547:
610         case e1000_82547_rev_2:
611                 pba = E1000_PBA_30K;
612                 break;
613         case e1000_82571:
614         case e1000_82572:
615         case e1000_80003es2lan:
616                 pba = E1000_PBA_38K;
617                 break;
618         case e1000_82573:
619                 pba = E1000_PBA_12K;
620                 break;
621         case e1000_ich8lan:
622                 pba = E1000_PBA_8K;
623                 break;
624         default:
625                 pba = E1000_PBA_48K;
626                 break;
627         }
628
629         if ((adapter->hw.mac_type != e1000_82573) &&
630            (adapter->netdev->mtu > E1000_RXBUFFER_8192))
631                 pba -= 8; /* allocate more FIFO for Tx */
632
633
634         if (adapter->hw.mac_type == e1000_82547) {
635                 adapter->tx_fifo_head = 0;
636                 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
637                 adapter->tx_fifo_size =
638                         (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
639                 atomic_set(&adapter->tx_fifo_stall, 0);
640         }
641
642         E1000_WRITE_REG(&adapter->hw, PBA, pba);
643
644         /* flow control settings */
645         /* Set the FC high water mark to 90% of the FIFO size.
646          * Required to clear last 3 LSB */
647         fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
648         /* We can't use 90% on small FIFOs because the remainder
649          * would be less than 1 full frame.  In this case, we size
650          * it to allow at least a full frame above the high water
651          *  mark. */
652         if (pba < E1000_PBA_16K)
653                 fc_high_water_mark = (pba * 1024) - 1600;
654
655         adapter->hw.fc_high_water = fc_high_water_mark;
656         adapter->hw.fc_low_water = fc_high_water_mark - 8;
657         if (adapter->hw.mac_type == e1000_80003es2lan)
658                 adapter->hw.fc_pause_time = 0xFFFF;
659         else
660                 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
661         adapter->hw.fc_send_xon = 1;
662         adapter->hw.fc = adapter->hw.original_fc;
663
664         /* Allow time for pending master requests to run */
665         e1000_reset_hw(&adapter->hw);
666         if (adapter->hw.mac_type >= e1000_82544)
667                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
668 #ifdef DISABLE_MULR
669         /* disable Multiple Reads in Transmit Control Register for debugging */
670         tctl = E1000_READ_REG(hw, TCTL);
671         E1000_WRITE_REG(hw, TCTL, tctl & ~E1000_TCTL_MULR);
672
673 #endif
674         if (e1000_init_hw(&adapter->hw))
675                 DPRINTK(PROBE, ERR, "Hardware Error\n");
676         e1000_update_mng_vlan(adapter);
677         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
678         E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
679
680         e1000_reset_adaptive(&adapter->hw);
681         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
682
683         if (!adapter->smart_power_down &&
684             (adapter->hw.mac_type == e1000_82571 ||
685              adapter->hw.mac_type == e1000_82572)) {
686                 uint16_t phy_data = 0;
687                 /* speed up time to link by disabling smart power down, ignore
688                  * the return value of this function because there is nothing
689                  * different we would do if it failed */
690                 e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
691                                    &phy_data);
692                 phy_data &= ~IGP02E1000_PM_SPD;
693                 e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
694                                     phy_data);
695         }
696
697         if ((adapter->en_mng_pt) && (adapter->hw.mac_type < e1000_82571)) {
698                 manc = E1000_READ_REG(&adapter->hw, MANC);
699                 manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
700                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
701         }
702 }
703
704 /**
705  * e1000_probe - Device Initialization Routine
706  * @pdev: PCI device information struct
707  * @ent: entry in e1000_pci_tbl
708  *
709  * Returns 0 on success, negative on failure
710  *
711  * e1000_probe initializes an adapter identified by a pci_dev structure.
712  * The OS initialization, configuring of the adapter private structure,
713  * and a hardware reset occur.
714  **/
715
716 static int __devinit
717 e1000_probe(struct pci_dev *pdev,
718             const struct pci_device_id *ent)
719 {
720         struct net_device *netdev;
721         struct e1000_adapter *adapter;
722         unsigned long mmio_start, mmio_len;
723         unsigned long flash_start, flash_len;
724
725         static int cards_found = 0;
726         static int global_quad_port_a = 0; /* global ksp3 port a indication */
727         int i, err, pci_using_dac;
728         uint16_t eeprom_data = 0;
729         uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
730         if ((err = pci_enable_device(pdev)))
731                 return err;
732
733         if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
734             !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
735                 pci_using_dac = 1;
736         } else {
737                 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) &&
738                     (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
739                         E1000_ERR("No usable DMA configuration, aborting\n");
740                         goto err_dma;
741                 }
742                 pci_using_dac = 0;
743         }
744
745         if ((err = pci_request_regions(pdev, e1000_driver_name)))
746                 goto err_pci_reg;
747
748         pci_set_master(pdev);
749
750         err = -ENOMEM;
751         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
752         if (!netdev)
753                 goto err_alloc_etherdev;
754
755         SET_MODULE_OWNER(netdev);
756         SET_NETDEV_DEV(netdev, &pdev->dev);
757
758         pci_set_drvdata(pdev, netdev);
759         adapter = netdev_priv(netdev);
760         adapter->netdev = netdev;
761         adapter->pdev = pdev;
762         adapter->hw.back = adapter;
763         adapter->msg_enable = (1 << debug) - 1;
764
765         mmio_start = pci_resource_start(pdev, BAR_0);
766         mmio_len = pci_resource_len(pdev, BAR_0);
767
768         err = -EIO;
769         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
770         if (!adapter->hw.hw_addr)
771                 goto err_ioremap;
772
773         for (i = BAR_1; i <= BAR_5; i++) {
774                 if (pci_resource_len(pdev, i) == 0)
775                         continue;
776                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
777                         adapter->hw.io_base = pci_resource_start(pdev, i);
778                         break;
779                 }
780         }
781
782         netdev->open = &e1000_open;
783         netdev->stop = &e1000_close;
784         netdev->hard_start_xmit = &e1000_xmit_frame;
785         netdev->get_stats = &e1000_get_stats;
786         netdev->set_multicast_list = &e1000_set_multi;
787         netdev->set_mac_address = &e1000_set_mac;
788         netdev->change_mtu = &e1000_change_mtu;
789         netdev->do_ioctl = &e1000_ioctl;
790         e1000_set_ethtool_ops(netdev);
791         netdev->tx_timeout = &e1000_tx_timeout;
792         netdev->watchdog_timeo = 5 * HZ;
793 #ifdef CONFIG_E1000_NAPI
794         netdev->poll = &e1000_clean;
795         netdev->weight = 64;
796 #endif
797         netdev->vlan_rx_register = e1000_vlan_rx_register;
798         netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
799         netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
800 #ifdef CONFIG_NET_POLL_CONTROLLER
801         netdev->poll_controller = e1000_netpoll;
802 #endif
803         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
804
805         netdev->mem_start = mmio_start;
806         netdev->mem_end = mmio_start + mmio_len;
807         netdev->base_addr = adapter->hw.io_base;
808
809         adapter->bd_number = cards_found;
810
811         /* setup the private structure */
812
813         if ((err = e1000_sw_init(adapter)))
814                 goto err_sw_init;
815
816         err = -EIO;
817         /* Flash BAR mapping must happen after e1000_sw_init
818          * because it depends on mac_type */
819         if ((adapter->hw.mac_type == e1000_ich8lan) &&
820            (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
821                 flash_start = pci_resource_start(pdev, 1);
822                 flash_len = pci_resource_len(pdev, 1);
823                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
824                 if (!adapter->hw.flash_address)
825                         goto err_flashmap;
826         }
827
828         if (e1000_check_phy_reset_block(&adapter->hw))
829                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
830
831         if (adapter->hw.mac_type >= e1000_82543) {
832                 netdev->features = NETIF_F_SG |
833                                    NETIF_F_HW_CSUM |
834                                    NETIF_F_HW_VLAN_TX |
835                                    NETIF_F_HW_VLAN_RX |
836                                    NETIF_F_HW_VLAN_FILTER;
837                 if (adapter->hw.mac_type == e1000_ich8lan)
838                         netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
839         }
840
841 #ifdef NETIF_F_TSO
842         if ((adapter->hw.mac_type >= e1000_82544) &&
843            (adapter->hw.mac_type != e1000_82547))
844                 netdev->features |= NETIF_F_TSO;
845
846 #ifdef NETIF_F_TSO_IPV6
847         if (adapter->hw.mac_type > e1000_82547_rev_2)
848                 netdev->features |= NETIF_F_TSO_IPV6;
849 #endif
850 #endif
851         if (pci_using_dac)
852                 netdev->features |= NETIF_F_HIGHDMA;
853
854         netdev->features |= NETIF_F_LLTX;
855
856         adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
857
858         /* initialize eeprom parameters */
859
860         if (e1000_init_eeprom_params(&adapter->hw)) {
861                 E1000_ERR("EEPROM initialization failed\n");
862                 goto err_eeprom;
863         }
864
865         /* before reading the EEPROM, reset the controller to
866          * put the device in a known good starting state */
867
868         e1000_reset_hw(&adapter->hw);
869
870         /* make sure the EEPROM is good */
871
872         if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
873                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
874                 goto err_eeprom;
875         }
876
877         /* copy the MAC address out of the EEPROM */
878
879         if (e1000_read_mac_addr(&adapter->hw))
880                 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
881         memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
882         memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
883
884         if (!is_valid_ether_addr(netdev->perm_addr)) {
885                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
886                 goto err_eeprom;
887         }
888
889         e1000_get_bus_info(&adapter->hw);
890
891         init_timer(&adapter->tx_fifo_stall_timer);
892         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
893         adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
894
895         init_timer(&adapter->watchdog_timer);
896         adapter->watchdog_timer.function = &e1000_watchdog;
897         adapter->watchdog_timer.data = (unsigned long) adapter;
898
899         init_timer(&adapter->phy_info_timer);
900         adapter->phy_info_timer.function = &e1000_update_phy_info;
901         adapter->phy_info_timer.data = (unsigned long) adapter;
902
903         INIT_WORK(&adapter->reset_task,
904                 (void (*)(void *))e1000_reset_task, netdev);
905
906         /* we're going to reset, so assume we have no link for now */
907
908         netif_carrier_off(netdev);
909         netif_stop_queue(netdev);
910
911         e1000_check_options(adapter);
912
913         /* Initial Wake on LAN setting
914          * If APM wake is enabled in the EEPROM,
915          * enable the ACPI Magic Packet filter
916          */
917
918         switch (adapter->hw.mac_type) {
919         case e1000_82542_rev2_0:
920         case e1000_82542_rev2_1:
921         case e1000_82543:
922                 break;
923         case e1000_82544:
924                 e1000_read_eeprom(&adapter->hw,
925                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
926                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
927                 break;
928         case e1000_ich8lan:
929                 e1000_read_eeprom(&adapter->hw,
930                         EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
931                 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
932                 break;
933         case e1000_82546:
934         case e1000_82546_rev_3:
935         case e1000_82571:
936         case e1000_80003es2lan:
937                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
938                         e1000_read_eeprom(&adapter->hw,
939                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
940                         break;
941                 }
942                 /* Fall Through */
943         default:
944                 e1000_read_eeprom(&adapter->hw,
945                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
946                 break;
947         }
948         if (eeprom_data & eeprom_apme_mask)
949                 adapter->eeprom_wol |= E1000_WUFC_MAG;
950
951         /* now that we have the eeprom settings, apply the special cases
952          * where the eeprom may be wrong or the board simply won't support
953          * wake on lan on a particular port */
954         switch (pdev->device) {
955         case E1000_DEV_ID_82546GB_PCIE:
956                 adapter->eeprom_wol = 0;
957                 break;
958         case E1000_DEV_ID_82546EB_FIBER:
959         case E1000_DEV_ID_82546GB_FIBER:
960         case E1000_DEV_ID_82571EB_FIBER:
961                 /* Wake events only supported on port A for dual fiber
962                  * regardless of eeprom setting */
963                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
964                         adapter->eeprom_wol = 0;
965                 break;
966         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
967         case E1000_DEV_ID_82571EB_QUAD_COPPER:
968                 /* if quad port adapter, disable WoL on all but port A */
969                 if (global_quad_port_a != 0)
970                         adapter->eeprom_wol = 0;
971                 else
972                         adapter->quad_port_a = 1;
973                 /* Reset for multiple quad port adapters */
974                 if (++global_quad_port_a == 4)
975                         global_quad_port_a = 0;
976                 break;
977         }
978
979         /* initialize the wol settings based on the eeprom settings */
980         adapter->wol = adapter->eeprom_wol;
981
982         /* print bus type/speed/width info */
983         {
984         struct e1000_hw *hw = &adapter->hw;
985         DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
986                 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
987                  (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
988                 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
989                  (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
990                  (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
991                  (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
992                  (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
993                 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
994                  (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
995                  (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
996                  "32-bit"));
997         }
998
999         for (i = 0; i < 6; i++)
1000                 printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
1001
1002         /* reset the hardware with the new settings */
1003         e1000_reset(adapter);
1004
1005         /* If the controller is 82573 and f/w is AMT, do not set
1006          * DRV_LOAD until the interface is up.  For all other cases,
1007          * let the f/w know that the h/w is now under the control
1008          * of the driver. */
1009         if (adapter->hw.mac_type != e1000_82573 ||
1010             !e1000_check_mng_mode(&adapter->hw))
1011                 e1000_get_hw_control(adapter);
1012
1013         strcpy(netdev->name, "eth%d");
1014         if ((err = register_netdev(netdev)))
1015                 goto err_register;
1016
1017         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1018
1019         cards_found++;
1020         return 0;
1021
1022 err_register:
1023         e1000_release_hw_control(adapter);
1024 err_eeprom:
1025         if (!e1000_check_phy_reset_block(&adapter->hw))
1026                 e1000_phy_hw_reset(&adapter->hw);
1027
1028         if (adapter->hw.flash_address)
1029                 iounmap(adapter->hw.flash_address);
1030 err_flashmap:
1031 #ifdef CONFIG_E1000_NAPI
1032         for (i = 0; i < adapter->num_rx_queues; i++)
1033                 dev_put(&adapter->polling_netdev[i]);
1034 #endif
1035
1036         kfree(adapter->tx_ring);
1037         kfree(adapter->rx_ring);
1038 #ifdef CONFIG_E1000_NAPI
1039         kfree(adapter->polling_netdev);
1040 #endif
1041 err_sw_init:
1042         iounmap(adapter->hw.hw_addr);
1043 err_ioremap:
1044         free_netdev(netdev);
1045 err_alloc_etherdev:
1046         pci_release_regions(pdev);
1047 err_pci_reg:
1048 err_dma:
1049         pci_disable_device(pdev);
1050         return err;
1051 }
1052
1053 /**
1054  * e1000_remove - Device Removal Routine
1055  * @pdev: PCI device information struct
1056  *
1057  * e1000_remove is called by the PCI subsystem to alert the driver
1058  * that it should release a PCI device.  The could be caused by a
1059  * Hot-Plug event, or because the driver is going to be removed from
1060  * memory.
1061  **/
1062
1063 static void __devexit
1064 e1000_remove(struct pci_dev *pdev)
1065 {
1066         struct net_device *netdev = pci_get_drvdata(pdev);
1067         struct e1000_adapter *adapter = netdev_priv(netdev);
1068         uint32_t manc;
1069 #ifdef CONFIG_E1000_NAPI
1070         int i;
1071 #endif
1072
1073         flush_scheduled_work();
1074
1075         if (adapter->hw.mac_type < e1000_82571 &&
1076            adapter->hw.media_type == e1000_media_type_copper) {
1077                 manc = E1000_READ_REG(&adapter->hw, MANC);
1078                 if (manc & E1000_MANC_SMBUS_EN) {
1079                         manc |= E1000_MANC_ARP_EN;
1080                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
1081                 }
1082         }
1083
1084         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1085          * would have already happened in close and is redundant. */
1086         e1000_release_hw_control(adapter);
1087
1088         unregister_netdev(netdev);
1089 #ifdef CONFIG_E1000_NAPI
1090         for (i = 0; i < adapter->num_rx_queues; i++)
1091                 dev_put(&adapter->polling_netdev[i]);
1092 #endif
1093
1094         if (!e1000_check_phy_reset_block(&adapter->hw))
1095                 e1000_phy_hw_reset(&adapter->hw);
1096
1097         kfree(adapter->tx_ring);
1098         kfree(adapter->rx_ring);
1099 #ifdef CONFIG_E1000_NAPI
1100         kfree(adapter->polling_netdev);
1101 #endif
1102
1103         iounmap(adapter->hw.hw_addr);
1104         if (adapter->hw.flash_address)
1105                 iounmap(adapter->hw.flash_address);
1106         pci_release_regions(pdev);
1107
1108         free_netdev(netdev);
1109
1110         pci_disable_device(pdev);
1111 }
1112
1113 /**
1114  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1115  * @adapter: board private structure to initialize
1116  *
1117  * e1000_sw_init initializes the Adapter private data structure.
1118  * Fields are initialized based on PCI device information and
1119  * OS network device settings (MTU size).
1120  **/
1121
1122 static int __devinit
1123 e1000_sw_init(struct e1000_adapter *adapter)
1124 {
1125         struct e1000_hw *hw = &adapter->hw;
1126         struct net_device *netdev = adapter->netdev;
1127         struct pci_dev *pdev = adapter->pdev;
1128 #ifdef CONFIG_E1000_NAPI
1129         int i;
1130 #endif
1131
1132         /* PCI config space info */
1133
1134         hw->vendor_id = pdev->vendor;
1135         hw->device_id = pdev->device;
1136         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1137         hw->subsystem_id = pdev->subsystem_device;
1138
1139         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
1140
1141         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1142
1143         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1144         adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
1145         hw->max_frame_size = netdev->mtu +
1146                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1147         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1148
1149         /* identify the MAC */
1150
1151         if (e1000_set_mac_type(hw)) {
1152                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1153                 return -EIO;
1154         }
1155
1156         switch (hw->mac_type) {
1157         default:
1158                 break;
1159         case e1000_82541:
1160         case e1000_82547:
1161         case e1000_82541_rev_2:
1162         case e1000_82547_rev_2:
1163                 hw->phy_init_script = 1;
1164                 break;
1165         }
1166
1167         e1000_set_media_type(hw);
1168
1169         hw->wait_autoneg_complete = FALSE;
1170         hw->tbi_compatibility_en = TRUE;
1171         hw->adaptive_ifs = TRUE;
1172
1173         /* Copper options */
1174
1175         if (hw->media_type == e1000_media_type_copper) {
1176                 hw->mdix = AUTO_ALL_MODES;
1177                 hw->disable_polarity_correction = FALSE;
1178                 hw->master_slave = E1000_MASTER_SLAVE;
1179         }
1180
1181         adapter->num_tx_queues = 1;
1182         adapter->num_rx_queues = 1;
1183
1184         if (e1000_alloc_queues(adapter)) {
1185                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1186                 return -ENOMEM;
1187         }
1188
1189 #ifdef CONFIG_E1000_NAPI
1190         for (i = 0; i < adapter->num_rx_queues; i++) {
1191                 adapter->polling_netdev[i].priv = adapter;
1192                 adapter->polling_netdev[i].poll = &e1000_clean;
1193                 adapter->polling_netdev[i].weight = 64;
1194                 dev_hold(&adapter->polling_netdev[i]);
1195                 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1196         }
1197         spin_lock_init(&adapter->tx_queue_lock);
1198 #endif
1199
1200         atomic_set(&adapter->irq_sem, 1);
1201         spin_lock_init(&adapter->stats_lock);
1202
1203         return 0;
1204 }
1205
1206 /**
1207  * e1000_alloc_queues - Allocate memory for all rings
1208  * @adapter: board private structure to initialize
1209  *
1210  * We allocate one ring per queue at run-time since we don't know the
1211  * number of queues at compile-time.  The polling_netdev array is
1212  * intended for Multiqueue, but should work fine with a single queue.
1213  **/
1214
1215 static int __devinit
1216 e1000_alloc_queues(struct e1000_adapter *adapter)
1217 {
1218         int size;
1219
1220         size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
1221         adapter->tx_ring = kmalloc(size, GFP_KERNEL);
1222         if (!adapter->tx_ring)
1223                 return -ENOMEM;
1224         memset(adapter->tx_ring, 0, size);
1225
1226         size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
1227         adapter->rx_ring = kmalloc(size, GFP_KERNEL);
1228         if (!adapter->rx_ring) {
1229                 kfree(adapter->tx_ring);
1230                 return -ENOMEM;
1231         }
1232         memset(adapter->rx_ring, 0, size);
1233
1234 #ifdef CONFIG_E1000_NAPI
1235         size = sizeof(struct net_device) * adapter->num_rx_queues;
1236         adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
1237         if (!adapter->polling_netdev) {
1238                 kfree(adapter->tx_ring);
1239                 kfree(adapter->rx_ring);
1240                 return -ENOMEM;
1241         }
1242         memset(adapter->polling_netdev, 0, size);
1243 #endif
1244
1245         return E1000_SUCCESS;
1246 }
1247
1248 /**
1249  * e1000_open - Called when a network interface is made active
1250  * @netdev: network interface device structure
1251  *
1252  * Returns 0 on success, negative value on failure
1253  *
1254  * The open entry point is called when a network interface is made
1255  * active by the system (IFF_UP).  At this point all resources needed
1256  * for transmit and receive operations are allocated, the interrupt
1257  * handler is registered with the OS, the watchdog timer is started,
1258  * and the stack is notified that the interface is ready.
1259  **/
1260
1261 static int
1262 e1000_open(struct net_device *netdev)
1263 {
1264         struct e1000_adapter *adapter = netdev_priv(netdev);
1265         int err;
1266
1267         /* disallow open during test */
1268         if (test_bit(__E1000_DRIVER_TESTING, &adapter->flags))
1269                 return -EBUSY;
1270
1271         /* allocate transmit descriptors */
1272
1273         if ((err = e1000_setup_all_tx_resources(adapter)))
1274                 goto err_setup_tx;
1275
1276         /* allocate receive descriptors */
1277
1278         if ((err = e1000_setup_all_rx_resources(adapter)))
1279                 goto err_setup_rx;
1280
1281         err = e1000_request_irq(adapter);
1282         if (err)
1283                 goto err_req_irq;
1284
1285         e1000_power_up_phy(adapter);
1286
1287         if ((err = e1000_up(adapter)))
1288                 goto err_up;
1289         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1290         if ((adapter->hw.mng_cookie.status &
1291                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1292                 e1000_update_mng_vlan(adapter);
1293         }
1294
1295         /* If AMT is enabled, let the firmware know that the network
1296          * interface is now open */
1297         if (adapter->hw.mac_type == e1000_82573 &&
1298             e1000_check_mng_mode(&adapter->hw))
1299                 e1000_get_hw_control(adapter);
1300
1301         return E1000_SUCCESS;
1302
1303 err_up:
1304         e1000_power_down_phy(adapter);
1305         e1000_free_irq(adapter);
1306 err_req_irq:
1307         e1000_free_all_rx_resources(adapter);
1308 err_setup_rx:
1309         e1000_free_all_tx_resources(adapter);
1310 err_setup_tx:
1311         e1000_reset(adapter);
1312
1313         return err;
1314 }
1315
1316 /**
1317  * e1000_close - Disables a network interface
1318  * @netdev: network interface device structure
1319  *
1320  * Returns 0, this is not allowed to fail
1321  *
1322  * The close entry point is called when an interface is de-activated
1323  * by the OS.  The hardware is still under the drivers control, but
1324  * needs to be disabled.  A global MAC reset is issued to stop the
1325  * hardware, and all transmit and receive resources are freed.
1326  **/
1327
1328 static int
1329 e1000_close(struct net_device *netdev)
1330 {
1331         struct e1000_adapter *adapter = netdev_priv(netdev);
1332
1333         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1334         e1000_down(adapter);
1335         e1000_power_down_phy(adapter);
1336         e1000_free_irq(adapter);
1337
1338         e1000_free_all_tx_resources(adapter);
1339         e1000_free_all_rx_resources(adapter);
1340
1341         if ((adapter->hw.mng_cookie.status &
1342                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1343                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1344         }
1345
1346         /* If AMT is enabled, let the firmware know that the network
1347          * interface is now closed */
1348         if (adapter->hw.mac_type == e1000_82573 &&
1349             e1000_check_mng_mode(&adapter->hw))
1350                 e1000_release_hw_control(adapter);
1351
1352         return 0;
1353 }
1354
1355 /**
1356  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1357  * @adapter: address of board private structure
1358  * @start: address of beginning of memory
1359  * @len: length of memory
1360  **/
1361 static boolean_t
1362 e1000_check_64k_bound(struct e1000_adapter *adapter,
1363                       void *start, unsigned long len)
1364 {
1365         unsigned long begin = (unsigned long) start;
1366         unsigned long end = begin + len;
1367
1368         /* First rev 82545 and 82546 need to not allow any memory
1369          * write location to cross 64k boundary due to errata 23 */
1370         if (adapter->hw.mac_type == e1000_82545 ||
1371             adapter->hw.mac_type == e1000_82546) {
1372                 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1373         }
1374
1375         return TRUE;
1376 }
1377
1378 /**
1379  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1380  * @adapter: board private structure
1381  * @txdr:    tx descriptor ring (for a specific queue) to setup
1382  *
1383  * Return 0 on success, negative on failure
1384  **/
1385
1386 static int
1387 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1388                          struct e1000_tx_ring *txdr)
1389 {
1390         struct pci_dev *pdev = adapter->pdev;
1391         int size;
1392
1393         size = sizeof(struct e1000_buffer) * txdr->count;
1394         txdr->buffer_info = vmalloc(size);
1395         if (!txdr->buffer_info) {
1396                 DPRINTK(PROBE, ERR,
1397                 "Unable to allocate memory for the transmit descriptor ring\n");
1398                 return -ENOMEM;
1399         }
1400         memset(txdr->buffer_info, 0, size);
1401
1402         /* round up to nearest 4K */
1403
1404         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1405         E1000_ROUNDUP(txdr->size, 4096);
1406
1407         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1408         if (!txdr->desc) {
1409 setup_tx_desc_die:
1410                 vfree(txdr->buffer_info);
1411                 DPRINTK(PROBE, ERR,
1412                 "Unable to allocate memory for the transmit descriptor ring\n");
1413                 return -ENOMEM;
1414         }
1415
1416         /* Fix for errata 23, can't cross 64kB boundary */
1417         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1418                 void *olddesc = txdr->desc;
1419                 dma_addr_t olddma = txdr->dma;
1420                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1421                                      "at %p\n", txdr->size, txdr->desc);
1422                 /* Try again, without freeing the previous */
1423                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1424                 /* Failed allocation, critical failure */
1425                 if (!txdr->desc) {
1426                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1427                         goto setup_tx_desc_die;
1428                 }
1429
1430                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1431                         /* give up */
1432                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1433                                             txdr->dma);
1434                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1435                         DPRINTK(PROBE, ERR,
1436                                 "Unable to allocate aligned memory "
1437                                 "for the transmit descriptor ring\n");
1438                         vfree(txdr->buffer_info);
1439                         return -ENOMEM;
1440                 } else {
1441                         /* Free old allocation, new allocation was successful */
1442                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1443                 }
1444         }
1445         memset(txdr->desc, 0, txdr->size);
1446
1447         txdr->next_to_use = 0;
1448         txdr->next_to_clean = 0;
1449         spin_lock_init(&txdr->tx_lock);
1450
1451         return 0;
1452 }
1453
1454 /**
1455  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1456  *                                (Descriptors) for all queues
1457  * @adapter: board private structure
1458  *
1459  * Return 0 on success, negative on failure
1460  **/
1461
1462 int
1463 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1464 {
1465         int i, err = 0;
1466
1467         for (i = 0; i < adapter->num_tx_queues; i++) {
1468                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1469                 if (err) {
1470                         DPRINTK(PROBE, ERR,
1471                                 "Allocation for Tx Queue %u failed\n", i);
1472                         for (i-- ; i >= 0; i--)
1473                                 e1000_free_tx_resources(adapter,
1474                                                         &adapter->tx_ring[i]);
1475                         break;
1476                 }
1477         }
1478
1479         return err;
1480 }
1481
1482 /**
1483  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1484  * @adapter: board private structure
1485  *
1486  * Configure the Tx unit of the MAC after a reset.
1487  **/
1488
1489 static void
1490 e1000_configure_tx(struct e1000_adapter *adapter)
1491 {
1492         uint64_t tdba;
1493         struct e1000_hw *hw = &adapter->hw;
1494         uint32_t tdlen, tctl, tipg, tarc;
1495         uint32_t ipgr1, ipgr2;
1496
1497         /* Setup the HW Tx Head and Tail descriptor pointers */
1498
1499         switch (adapter->num_tx_queues) {
1500         case 1:
1501         default:
1502                 tdba = adapter->tx_ring[0].dma;
1503                 tdlen = adapter->tx_ring[0].count *
1504                         sizeof(struct e1000_tx_desc);
1505                 E1000_WRITE_REG(hw, TDLEN, tdlen);
1506                 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1507                 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1508                 E1000_WRITE_REG(hw, TDT, 0);
1509                 E1000_WRITE_REG(hw, TDH, 0);
1510                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1511                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1512                 break;
1513         }
1514
1515         /* Set the default values for the Tx Inter Packet Gap timer */
1516
1517         if (hw->media_type == e1000_media_type_fiber ||
1518             hw->media_type == e1000_media_type_internal_serdes)
1519                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1520         else
1521                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1522
1523         switch (hw->mac_type) {
1524         case e1000_82542_rev2_0:
1525         case e1000_82542_rev2_1:
1526                 tipg = DEFAULT_82542_TIPG_IPGT;
1527                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1528                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1529                 break;
1530         case e1000_80003es2lan:
1531                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1532                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1533                 break;
1534         default:
1535                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1536                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1537                 break;
1538         }
1539         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1540         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1541         E1000_WRITE_REG(hw, TIPG, tipg);
1542
1543         /* Set the Tx Interrupt Delay register */
1544
1545         E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1546         if (hw->mac_type >= e1000_82540)
1547                 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1548
1549         /* Program the Transmit Control Register */
1550
1551         tctl = E1000_READ_REG(hw, TCTL);
1552         tctl &= ~E1000_TCTL_CT;
1553         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1554                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1555
1556         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1557                 tarc = E1000_READ_REG(hw, TARC0);
1558                 tarc |= (1 << 21);
1559                 E1000_WRITE_REG(hw, TARC0, tarc);
1560         } else if (hw->mac_type == e1000_80003es2lan) {
1561                 tarc = E1000_READ_REG(hw, TARC0);
1562                 tarc |= 1;
1563                 E1000_WRITE_REG(hw, TARC0, tarc);
1564                 tarc = E1000_READ_REG(hw, TARC1);
1565                 tarc |= 1;
1566                 E1000_WRITE_REG(hw, TARC1, tarc);
1567         }
1568
1569         e1000_config_collision_dist(hw);
1570
1571         /* Setup Transmit Descriptor Settings for eop descriptor */
1572         adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
1573                 E1000_TXD_CMD_IFCS;
1574
1575         if (hw->mac_type < e1000_82543)
1576                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1577         else
1578                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1579
1580         /* Cache if we're 82544 running in PCI-X because we'll
1581          * need this to apply a workaround later in the send path. */
1582         if (hw->mac_type == e1000_82544 &&
1583             hw->bus_type == e1000_bus_type_pcix)
1584                 adapter->pcix_82544 = 1;
1585
1586         E1000_WRITE_REG(hw, TCTL, tctl);
1587
1588 }
1589
1590 /**
1591  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1592  * @adapter: board private structure
1593  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1594  *
1595  * Returns 0 on success, negative on failure
1596  **/
1597
1598 static int
1599 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1600                          struct e1000_rx_ring *rxdr)
1601 {
1602         struct pci_dev *pdev = adapter->pdev;
1603         int size, desc_len;
1604
1605         size = sizeof(struct e1000_buffer) * rxdr->count;
1606         rxdr->buffer_info = vmalloc(size);
1607         if (!rxdr->buffer_info) {
1608                 DPRINTK(PROBE, ERR,
1609                 "Unable to allocate memory for the receive descriptor ring\n");
1610                 return -ENOMEM;
1611         }
1612         memset(rxdr->buffer_info, 0, size);
1613
1614         size = sizeof(struct e1000_ps_page) * rxdr->count;
1615         rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1616         if (!rxdr->ps_page) {
1617                 vfree(rxdr->buffer_info);
1618                 DPRINTK(PROBE, ERR,
1619                 "Unable to allocate memory for the receive descriptor ring\n");
1620                 return -ENOMEM;
1621         }
1622         memset(rxdr->ps_page, 0, size);
1623
1624         size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1625         rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1626         if (!rxdr->ps_page_dma) {
1627                 vfree(rxdr->buffer_info);
1628                 kfree(rxdr->ps_page);
1629                 DPRINTK(PROBE, ERR,
1630                 "Unable to allocate memory for the receive descriptor ring\n");
1631                 return -ENOMEM;
1632         }
1633         memset(rxdr->ps_page_dma, 0, size);
1634
1635         if (adapter->hw.mac_type <= e1000_82547_rev_2)
1636                 desc_len = sizeof(struct e1000_rx_desc);
1637         else
1638                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1639
1640         /* Round up to nearest 4K */
1641
1642         rxdr->size = rxdr->count * desc_len;
1643         E1000_ROUNDUP(rxdr->size, 4096);
1644
1645         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1646
1647         if (!rxdr->desc) {
1648                 DPRINTK(PROBE, ERR,
1649                 "Unable to allocate memory for the receive descriptor ring\n");
1650 setup_rx_desc_die:
1651                 vfree(rxdr->buffer_info);
1652                 kfree(rxdr->ps_page);
1653                 kfree(rxdr->ps_page_dma);
1654                 return -ENOMEM;
1655         }
1656
1657         /* Fix for errata 23, can't cross 64kB boundary */
1658         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1659                 void *olddesc = rxdr->desc;
1660                 dma_addr_t olddma = rxdr->dma;
1661                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1662                                      "at %p\n", rxdr->size, rxdr->desc);
1663                 /* Try again, without freeing the previous */
1664                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1665                 /* Failed allocation, critical failure */
1666                 if (!rxdr->desc) {
1667                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1668                         DPRINTK(PROBE, ERR,
1669                                 "Unable to allocate memory "
1670                                 "for the receive descriptor ring\n");
1671                         goto setup_rx_desc_die;
1672                 }
1673
1674                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1675                         /* give up */
1676                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1677                                             rxdr->dma);
1678                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1679                         DPRINTK(PROBE, ERR,
1680                                 "Unable to allocate aligned memory "
1681                                 "for the receive descriptor ring\n");
1682                         goto setup_rx_desc_die;
1683                 } else {
1684                         /* Free old allocation, new allocation was successful */
1685                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1686                 }
1687         }
1688         memset(rxdr->desc, 0, rxdr->size);
1689
1690         rxdr->next_to_clean = 0;
1691         rxdr->next_to_use = 0;
1692
1693         return 0;
1694 }
1695
1696 /**
1697  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1698  *                                (Descriptors) for all queues
1699  * @adapter: board private structure
1700  *
1701  * Return 0 on success, negative on failure
1702  **/
1703
1704 int
1705 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1706 {
1707         int i, err = 0;
1708
1709         for (i = 0; i < adapter->num_rx_queues; i++) {
1710                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1711                 if (err) {
1712                         DPRINTK(PROBE, ERR,
1713                                 "Allocation for Rx Queue %u failed\n", i);
1714                         for (i-- ; i >= 0; i--)
1715                                 e1000_free_rx_resources(adapter,
1716                                                         &adapter->rx_ring[i]);
1717                         break;
1718                 }
1719         }
1720
1721         return err;
1722 }
1723
1724 /**
1725  * e1000_setup_rctl - configure the receive control registers
1726  * @adapter: Board private structure
1727  **/
1728 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1729                         (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1730 static void
1731 e1000_setup_rctl(struct e1000_adapter *adapter)
1732 {
1733         uint32_t rctl, rfctl;
1734         uint32_t psrctl = 0;
1735 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1736         uint32_t pages = 0;
1737 #endif
1738
1739         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1740
1741         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1742
1743         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1744                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1745                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1746
1747         if (adapter->hw.tbi_compatibility_on == 1)
1748                 rctl |= E1000_RCTL_SBP;
1749         else
1750                 rctl &= ~E1000_RCTL_SBP;
1751
1752         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1753                 rctl &= ~E1000_RCTL_LPE;
1754         else
1755                 rctl |= E1000_RCTL_LPE;
1756
1757         /* Setup buffer sizes */
1758         rctl &= ~E1000_RCTL_SZ_4096;
1759         rctl |= E1000_RCTL_BSEX;
1760         switch (adapter->rx_buffer_len) {
1761                 case E1000_RXBUFFER_256:
1762                         rctl |= E1000_RCTL_SZ_256;
1763                         rctl &= ~E1000_RCTL_BSEX;
1764                         break;
1765                 case E1000_RXBUFFER_512:
1766                         rctl |= E1000_RCTL_SZ_512;
1767                         rctl &= ~E1000_RCTL_BSEX;
1768                         break;
1769                 case E1000_RXBUFFER_1024:
1770                         rctl |= E1000_RCTL_SZ_1024;
1771                         rctl &= ~E1000_RCTL_BSEX;
1772                         break;
1773                 case E1000_RXBUFFER_2048:
1774                 default:
1775                         rctl |= E1000_RCTL_SZ_2048;
1776                         rctl &= ~E1000_RCTL_BSEX;
1777                         break;
1778                 case E1000_RXBUFFER_4096:
1779                         rctl |= E1000_RCTL_SZ_4096;
1780                         break;
1781                 case E1000_RXBUFFER_8192:
1782                         rctl |= E1000_RCTL_SZ_8192;
1783                         break;
1784                 case E1000_RXBUFFER_16384:
1785                         rctl |= E1000_RCTL_SZ_16384;
1786                         break;
1787         }
1788
1789 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1790         /* 82571 and greater support packet-split where the protocol
1791          * header is placed in skb->data and the packet data is
1792          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1793          * In the case of a non-split, skb->data is linearly filled,
1794          * followed by the page buffers.  Therefore, skb->data is
1795          * sized to hold the largest protocol header.
1796          */
1797         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1798         if ((adapter->hw.mac_type > e1000_82547_rev_2) && (pages <= 3) &&
1799             PAGE_SIZE <= 16384)
1800                 adapter->rx_ps_pages = pages;
1801         else
1802                 adapter->rx_ps_pages = 0;
1803 #endif
1804         if (adapter->rx_ps_pages) {
1805                 /* Configure extra packet-split registers */
1806                 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1807                 rfctl |= E1000_RFCTL_EXTEN;
1808                 /* disable IPv6 packet split support */
1809                 rfctl |= E1000_RFCTL_IPV6_DIS;
1810                 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1811
1812                 rctl |= E1000_RCTL_DTYP_PS;
1813
1814                 psrctl |= adapter->rx_ps_bsize0 >>
1815                         E1000_PSRCTL_BSIZE0_SHIFT;
1816
1817                 switch (adapter->rx_ps_pages) {
1818                 case 3:
1819                         psrctl |= PAGE_SIZE <<
1820                                 E1000_PSRCTL_BSIZE3_SHIFT;
1821                 case 2:
1822                         psrctl |= PAGE_SIZE <<
1823                                 E1000_PSRCTL_BSIZE2_SHIFT;
1824                 case 1:
1825                         psrctl |= PAGE_SIZE >>
1826                                 E1000_PSRCTL_BSIZE1_SHIFT;
1827                         break;
1828                 }
1829
1830                 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1831         }
1832
1833         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1834 }
1835
1836 /**
1837  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1838  * @adapter: board private structure
1839  *
1840  * Configure the Rx unit of the MAC after a reset.
1841  **/
1842
1843 static void
1844 e1000_configure_rx(struct e1000_adapter *adapter)
1845 {
1846         uint64_t rdba;
1847         struct e1000_hw *hw = &adapter->hw;
1848         uint32_t rdlen, rctl, rxcsum, ctrl_ext;
1849
1850         if (adapter->rx_ps_pages) {
1851                 /* this is a 32 byte descriptor */
1852                 rdlen = adapter->rx_ring[0].count *
1853                         sizeof(union e1000_rx_desc_packet_split);
1854                 adapter->clean_rx = e1000_clean_rx_irq_ps;
1855                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1856         } else {
1857                 rdlen = adapter->rx_ring[0].count *
1858                         sizeof(struct e1000_rx_desc);
1859                 adapter->clean_rx = e1000_clean_rx_irq;
1860                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1861         }
1862
1863         /* disable receives while setting up the descriptors */
1864         rctl = E1000_READ_REG(hw, RCTL);
1865         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
1866
1867         /* set the Receive Delay Timer Register */
1868         E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
1869
1870         if (hw->mac_type >= e1000_82540) {
1871                 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
1872                 if (adapter->itr > 1)
1873                         E1000_WRITE_REG(hw, ITR,
1874                                 1000000000 / (adapter->itr * 256));
1875         }
1876
1877         if (hw->mac_type >= e1000_82571) {
1878                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1879                 /* Reset delay timers after every interrupt */
1880                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1881 #ifdef CONFIG_E1000_NAPI
1882                 /* Auto-Mask interrupts upon ICR read. */
1883                 ctrl_ext |= E1000_CTRL_EXT_IAME;
1884 #endif
1885                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1886                 E1000_WRITE_REG(hw, IAM, ~0);
1887                 E1000_WRITE_FLUSH(hw);
1888         }
1889
1890         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1891          * the Base and Length of the Rx Descriptor Ring */
1892         switch (adapter->num_rx_queues) {
1893         case 1:
1894         default:
1895                 rdba = adapter->rx_ring[0].dma;
1896                 E1000_WRITE_REG(hw, RDLEN, rdlen);
1897                 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
1898                 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1899                 E1000_WRITE_REG(hw, RDT, 0);
1900                 E1000_WRITE_REG(hw, RDH, 0);
1901                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1902                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1903                 break;
1904         }
1905
1906         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1907         if (hw->mac_type >= e1000_82543) {
1908                 rxcsum = E1000_READ_REG(hw, RXCSUM);
1909                 if (adapter->rx_csum == TRUE) {
1910                         rxcsum |= E1000_RXCSUM_TUOFL;
1911
1912                         /* Enable 82571 IPv4 payload checksum for UDP fragments
1913                          * Must be used in conjunction with packet-split. */
1914                         if ((hw->mac_type >= e1000_82571) &&
1915                             (adapter->rx_ps_pages)) {
1916                                 rxcsum |= E1000_RXCSUM_IPPCSE;
1917                         }
1918                 } else {
1919                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1920                         /* don't need to clear IPPCSE as it defaults to 0 */
1921                 }
1922                 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1923         }
1924
1925         /* Enable Receives */
1926         E1000_WRITE_REG(hw, RCTL, rctl);
1927 }
1928
1929 /**
1930  * e1000_free_tx_resources - Free Tx Resources per Queue
1931  * @adapter: board private structure
1932  * @tx_ring: Tx descriptor ring for a specific queue
1933  *
1934  * Free all transmit software resources
1935  **/
1936
1937 static void
1938 e1000_free_tx_resources(struct e1000_adapter *adapter,
1939                         struct e1000_tx_ring *tx_ring)
1940 {
1941         struct pci_dev *pdev = adapter->pdev;
1942
1943         e1000_clean_tx_ring(adapter, tx_ring);
1944
1945         vfree(tx_ring->buffer_info);
1946         tx_ring->buffer_info = NULL;
1947
1948         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1949
1950         tx_ring->desc = NULL;
1951 }
1952
1953 /**
1954  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1955  * @adapter: board private structure
1956  *
1957  * Free all transmit software resources
1958  **/
1959
1960 void
1961 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1962 {
1963         int i;
1964
1965         for (i = 0; i < adapter->num_tx_queues; i++)
1966                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1967 }
1968
1969 static void
1970 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1971                         struct e1000_buffer *buffer_info)
1972 {
1973         if (buffer_info->dma) {
1974                 pci_unmap_page(adapter->pdev,
1975                                 buffer_info->dma,
1976                                 buffer_info->length,
1977                                 PCI_DMA_TODEVICE);
1978         }
1979         if (buffer_info->skb)
1980                 dev_kfree_skb_any(buffer_info->skb);
1981         memset(buffer_info, 0, sizeof(struct e1000_buffer));
1982 }
1983
1984 /**
1985  * e1000_clean_tx_ring - Free Tx Buffers
1986  * @adapter: board private structure
1987  * @tx_ring: ring to be cleaned
1988  **/
1989
1990 static void
1991 e1000_clean_tx_ring(struct e1000_adapter *adapter,
1992                     struct e1000_tx_ring *tx_ring)
1993 {
1994         struct e1000_buffer *buffer_info;
1995         unsigned long size;
1996         unsigned int i;
1997
1998         /* Free all the Tx ring sk_buffs */
1999
2000         for (i = 0; i < tx_ring->count; i++) {
2001                 buffer_info = &tx_ring->buffer_info[i];
2002                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2003         }
2004
2005         size = sizeof(struct e1000_buffer) * tx_ring->count;
2006         memset(tx_ring->buffer_info, 0, size);
2007
2008         /* Zero out the descriptor ring */
2009
2010         memset(tx_ring->desc, 0, tx_ring->size);
2011
2012         tx_ring->next_to_use = 0;
2013         tx_ring->next_to_clean = 0;
2014         tx_ring->last_tx_tso = 0;
2015
2016         writel(0, adapter->hw.hw_addr + tx_ring->tdh);
2017         writel(0, adapter->hw.hw_addr + tx_ring->tdt);
2018 }
2019
2020 /**
2021  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2022  * @adapter: board private structure
2023  **/
2024
2025 static void
2026 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2027 {
2028         int i;
2029
2030         for (i = 0; i < adapter->num_tx_queues; i++)
2031                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2032 }
2033
2034 /**
2035  * e1000_free_rx_resources - Free Rx Resources
2036  * @adapter: board private structure
2037  * @rx_ring: ring to clean the resources from
2038  *
2039  * Free all receive software resources
2040  **/
2041
2042 static void
2043 e1000_free_rx_resources(struct e1000_adapter *adapter,
2044                         struct e1000_rx_ring *rx_ring)
2045 {
2046         struct pci_dev *pdev = adapter->pdev;
2047
2048         e1000_clean_rx_ring(adapter, rx_ring);
2049
2050         vfree(rx_ring->buffer_info);
2051         rx_ring->buffer_info = NULL;
2052         kfree(rx_ring->ps_page);
2053         rx_ring->ps_page = NULL;
2054         kfree(rx_ring->ps_page_dma);
2055         rx_ring->ps_page_dma = NULL;
2056
2057         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2058
2059         rx_ring->desc = NULL;
2060 }
2061
2062 /**
2063  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2064  * @adapter: board private structure
2065  *
2066  * Free all receive software resources
2067  **/
2068
2069 void
2070 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2071 {
2072         int i;
2073
2074         for (i = 0; i < adapter->num_rx_queues; i++)
2075                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2076 }
2077
2078 /**
2079  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2080  * @adapter: board private structure
2081  * @rx_ring: ring to free buffers from
2082  **/
2083
2084 static void
2085 e1000_clean_rx_ring(struct e1000_adapter *adapter,
2086                     struct e1000_rx_ring *rx_ring)
2087 {
2088         struct e1000_buffer *buffer_info;
2089         struct e1000_ps_page *ps_page;
2090         struct e1000_ps_page_dma *ps_page_dma;
2091         struct pci_dev *pdev = adapter->pdev;
2092         unsigned long size;
2093         unsigned int i, j;
2094
2095         /* Free all the Rx ring sk_buffs */
2096         for (i = 0; i < rx_ring->count; i++) {
2097                 buffer_info = &rx_ring->buffer_info[i];
2098                 if (buffer_info->skb) {
2099                         pci_unmap_single(pdev,
2100                                          buffer_info->dma,
2101                                          buffer_info->length,
2102                                          PCI_DMA_FROMDEVICE);
2103
2104                         dev_kfree_skb(buffer_info->skb);
2105                         buffer_info->skb = NULL;
2106                 }
2107                 ps_page = &rx_ring->ps_page[i];
2108                 ps_page_dma = &rx_ring->ps_page_dma[i];
2109                 for (j = 0; j < adapter->rx_ps_pages; j++) {
2110                         if (!ps_page->ps_page[j]) break;
2111                         pci_unmap_page(pdev,
2112                                        ps_page_dma->ps_page_dma[j],
2113                                        PAGE_SIZE, PCI_DMA_FROMDEVICE);
2114                         ps_page_dma->ps_page_dma[j] = 0;
2115                         put_page(ps_page->ps_page[j]);
2116                         ps_page->ps_page[j] = NULL;
2117                 }
2118         }
2119
2120         size = sizeof(struct e1000_buffer) * rx_ring->count;
2121         memset(rx_ring->buffer_info, 0, size);
2122         size = sizeof(struct e1000_ps_page) * rx_ring->count;
2123         memset(rx_ring->ps_page, 0, size);
2124         size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
2125         memset(rx_ring->ps_page_dma, 0, size);
2126
2127         /* Zero out the descriptor ring */
2128
2129         memset(rx_ring->desc, 0, rx_ring->size);
2130
2131         rx_ring->next_to_clean = 0;
2132         rx_ring->next_to_use = 0;
2133
2134         writel(0, adapter->hw.hw_addr + rx_ring->rdh);
2135         writel(0, adapter->hw.hw_addr + rx_ring->rdt);
2136 }
2137
2138 /**
2139  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2140  * @adapter: board private structure
2141  **/
2142
2143 static void
2144 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2145 {
2146         int i;
2147
2148         for (i = 0; i < adapter->num_rx_queues; i++)
2149                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2150 }
2151
2152 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2153  * and memory write and invalidate disabled for certain operations
2154  */
2155 static void
2156 e1000_enter_82542_rst(struct e1000_adapter *adapter)
2157 {
2158         struct net_device *netdev = adapter->netdev;
2159         uint32_t rctl;
2160
2161         e1000_pci_clear_mwi(&adapter->hw);
2162
2163         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2164         rctl |= E1000_RCTL_RST;
2165         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2166         E1000_WRITE_FLUSH(&adapter->hw);
2167         mdelay(5);
2168
2169         if (netif_running(netdev))
2170                 e1000_clean_all_rx_rings(adapter);
2171 }
2172
2173 static void
2174 e1000_leave_82542_rst(struct e1000_adapter *adapter)
2175 {
2176         struct net_device *netdev = adapter->netdev;
2177         uint32_t rctl;
2178
2179         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2180         rctl &= ~E1000_RCTL_RST;
2181         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2182         E1000_WRITE_FLUSH(&adapter->hw);
2183         mdelay(5);
2184
2185         if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2186                 e1000_pci_set_mwi(&adapter->hw);
2187
2188         if (netif_running(netdev)) {
2189                 /* No need to loop, because 82542 supports only 1 queue */
2190                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2191                 e1000_configure_rx(adapter);
2192                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2193         }
2194 }
2195
2196 /**
2197  * e1000_set_mac - Change the Ethernet Address of the NIC
2198  * @netdev: network interface device structure
2199  * @p: pointer to an address structure
2200  *
2201  * Returns 0 on success, negative on failure
2202  **/
2203
2204 static int
2205 e1000_set_mac(struct net_device *netdev, void *p)
2206 {
2207         struct e1000_adapter *adapter = netdev_priv(netdev);
2208         struct sockaddr *addr = p;
2209
2210         if (!is_valid_ether_addr(addr->sa_data))
2211                 return -EADDRNOTAVAIL;
2212
2213         /* 82542 2.0 needs to be in reset to write receive address registers */
2214
2215         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2216                 e1000_enter_82542_rst(adapter);
2217
2218         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2219         memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2220
2221         e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2222
2223         /* With 82571 controllers, LAA may be overwritten (with the default)
2224          * due to controller reset from the other port. */
2225         if (adapter->hw.mac_type == e1000_82571) {
2226                 /* activate the work around */
2227                 adapter->hw.laa_is_present = 1;
2228
2229                 /* Hold a copy of the LAA in RAR[14] This is done so that
2230                  * between the time RAR[0] gets clobbered  and the time it
2231                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2232                  * of the RARs and no incoming packets directed to this port
2233                  * are dropped. Eventaully the LAA will be in RAR[0] and
2234                  * RAR[14] */
2235                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2236                                         E1000_RAR_ENTRIES - 1);
2237         }
2238
2239         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2240                 e1000_leave_82542_rst(adapter);
2241
2242         return 0;
2243 }
2244
2245 /**
2246  * e1000_set_multi - Multicast and Promiscuous mode set
2247  * @netdev: network interface device structure
2248  *
2249  * The set_multi entry point is called whenever the multicast address
2250  * list or the network interface flags are updated.  This routine is
2251  * responsible for configuring the hardware for proper multicast,
2252  * promiscuous mode, and all-multi behavior.
2253  **/
2254
2255 static void
2256 e1000_set_multi(struct net_device *netdev)
2257 {
2258         struct e1000_adapter *adapter = netdev_priv(netdev);
2259         struct e1000_hw *hw = &adapter->hw;
2260         struct dev_mc_list *mc_ptr;
2261         uint32_t rctl;
2262         uint32_t hash_value;
2263         int i, rar_entries = E1000_RAR_ENTRIES;
2264         int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2265                                 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2266                                 E1000_NUM_MTA_REGISTERS;
2267
2268         if (adapter->hw.mac_type == e1000_ich8lan)
2269                 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2270
2271         /* reserve RAR[14] for LAA over-write work-around */
2272         if (adapter->hw.mac_type == e1000_82571)
2273                 rar_entries--;
2274
2275         /* Check for Promiscuous and All Multicast modes */
2276
2277         rctl = E1000_READ_REG(hw, RCTL);
2278
2279         if (netdev->flags & IFF_PROMISC) {
2280                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2281         } else if (netdev->flags & IFF_ALLMULTI) {
2282                 rctl |= E1000_RCTL_MPE;
2283                 rctl &= ~E1000_RCTL_UPE;
2284         } else {
2285                 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2286         }
2287
2288         E1000_WRITE_REG(hw, RCTL, rctl);
2289
2290         /* 82542 2.0 needs to be in reset to write receive address registers */
2291
2292         if (hw->mac_type == e1000_82542_rev2_0)
2293                 e1000_enter_82542_rst(adapter);
2294
2295         /* load the first 14 multicast address into the exact filters 1-14
2296          * RAR 0 is used for the station MAC adddress
2297          * if there are not 14 addresses, go ahead and clear the filters
2298          * -- with 82571 controllers only 0-13 entries are filled here
2299          */
2300         mc_ptr = netdev->mc_list;
2301
2302         for (i = 1; i < rar_entries; i++) {
2303                 if (mc_ptr) {
2304                         e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2305                         mc_ptr = mc_ptr->next;
2306                 } else {
2307                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2308                         E1000_WRITE_FLUSH(hw);
2309                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2310                         E1000_WRITE_FLUSH(hw);
2311                 }
2312         }
2313
2314         /* clear the old settings from the multicast hash table */
2315
2316         for (i = 0; i < mta_reg_count; i++) {
2317                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2318                 E1000_WRITE_FLUSH(hw);
2319         }
2320
2321         /* load any remaining addresses into the hash table */
2322
2323         for (; mc_ptr; mc_ptr = mc_ptr->next) {
2324                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2325                 e1000_mta_set(hw, hash_value);
2326         }
2327
2328         if (hw->mac_type == e1000_82542_rev2_0)
2329                 e1000_leave_82542_rst(adapter);
2330 }
2331
2332 /* Need to wait a few seconds after link up to get diagnostic information from
2333  * the phy */
2334
2335 static void
2336 e1000_update_phy_info(unsigned long data)
2337 {
2338         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2339         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2340 }
2341
2342 /**
2343  * e1000_82547_tx_fifo_stall - Timer Call-back
2344  * @data: pointer to adapter cast into an unsigned long
2345  **/
2346
2347 static void
2348 e1000_82547_tx_fifo_stall(unsigned long data)
2349 {
2350         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2351         struct net_device *netdev = adapter->netdev;
2352         uint32_t tctl;
2353
2354         if (atomic_read(&adapter->tx_fifo_stall)) {
2355                 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2356                     E1000_READ_REG(&adapter->hw, TDH)) &&
2357                    (E1000_READ_REG(&adapter->hw, TDFT) ==
2358                     E1000_READ_REG(&adapter->hw, TDFH)) &&
2359                    (E1000_READ_REG(&adapter->hw, TDFTS) ==
2360                     E1000_READ_REG(&adapter->hw, TDFHS))) {
2361                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2362                         E1000_WRITE_REG(&adapter->hw, TCTL,
2363                                         tctl & ~E1000_TCTL_EN);
2364                         E1000_WRITE_REG(&adapter->hw, TDFT,
2365                                         adapter->tx_head_addr);
2366                         E1000_WRITE_REG(&adapter->hw, TDFH,
2367                                         adapter->tx_head_addr);
2368                         E1000_WRITE_REG(&adapter->hw, TDFTS,
2369                                         adapter->tx_head_addr);
2370                         E1000_WRITE_REG(&adapter->hw, TDFHS,
2371                                         adapter->tx_head_addr);
2372                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2373                         E1000_WRITE_FLUSH(&adapter->hw);
2374
2375                         adapter->tx_fifo_head = 0;
2376                         atomic_set(&adapter->tx_fifo_stall, 0);
2377                         netif_wake_queue(netdev);
2378                 } else {
2379                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2380                 }
2381         }
2382 }
2383
2384 /**
2385  * e1000_watchdog - Timer Call-back
2386  * @data: pointer to adapter cast into an unsigned long
2387  **/
2388 static void
2389 e1000_watchdog(unsigned long data)
2390 {
2391         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2392         struct net_device *netdev = adapter->netdev;
2393         struct e1000_tx_ring *txdr = adapter->tx_ring;
2394         uint32_t link, tctl;
2395         int32_t ret_val;
2396
2397         ret_val = e1000_check_for_link(&adapter->hw);
2398         if ((ret_val == E1000_ERR_PHY) &&
2399             (adapter->hw.phy_type == e1000_phy_igp_3) &&
2400             (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2401                 /* See e1000_kumeran_lock_loss_workaround() */
2402                 DPRINTK(LINK, INFO,
2403                         "Gigabit has been disabled, downgrading speed\n");
2404         }
2405         if (adapter->hw.mac_type == e1000_82573) {
2406                 e1000_enable_tx_pkt_filtering(&adapter->hw);
2407                 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2408                         e1000_update_mng_vlan(adapter);
2409         }
2410
2411         if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2412            !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2413                 link = !adapter->hw.serdes_link_down;
2414         else
2415                 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2416
2417         if (link) {
2418                 if (!netif_carrier_ok(netdev)) {
2419                         boolean_t txb2b = 1;
2420                         e1000_get_speed_and_duplex(&adapter->hw,
2421                                                    &adapter->link_speed,
2422                                                    &adapter->link_duplex);
2423
2424                         DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
2425                                adapter->link_speed,
2426                                adapter->link_duplex == FULL_DUPLEX ?
2427                                "Full Duplex" : "Half Duplex");
2428
2429                         /* tweak tx_queue_len according to speed/duplex
2430                          * and adjust the timeout factor */
2431                         netdev->tx_queue_len = adapter->tx_queue_len;
2432                         adapter->tx_timeout_factor = 1;
2433                         switch (adapter->link_speed) {
2434                         case SPEED_10:
2435                                 txb2b = 0;
2436                                 netdev->tx_queue_len = 10;
2437                                 adapter->tx_timeout_factor = 8;
2438                                 break;
2439                         case SPEED_100:
2440                                 txb2b = 0;
2441                                 netdev->tx_queue_len = 100;
2442                                 /* maybe add some timeout factor ? */
2443                                 break;
2444                         }
2445
2446                         if ((adapter->hw.mac_type == e1000_82571 ||
2447                              adapter->hw.mac_type == e1000_82572) &&
2448                             txb2b == 0) {
2449 #define SPEED_MODE_BIT (1 << 21)
2450                                 uint32_t tarc0;
2451                                 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
2452                                 tarc0 &= ~SPEED_MODE_BIT;
2453                                 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
2454                         }
2455                                 
2456 #ifdef NETIF_F_TSO
2457                         /* disable TSO for pcie and 10/100 speeds, to avoid
2458                          * some hardware issues */
2459                         if (!adapter->tso_force &&
2460                             adapter->hw.bus_type == e1000_bus_type_pci_express){
2461                                 switch (adapter->link_speed) {
2462                                 case SPEED_10:
2463                                 case SPEED_100:
2464                                         DPRINTK(PROBE,INFO,
2465                                         "10/100 speed: disabling TSO\n");
2466                                         netdev->features &= ~NETIF_F_TSO;
2467                                         break;
2468                                 case SPEED_1000:
2469                                         netdev->features |= NETIF_F_TSO;
2470                                         break;
2471                                 default:
2472                                         /* oops */
2473                                         break;
2474                                 }
2475                         }
2476 #endif
2477
2478                         /* enable transmits in the hardware, need to do this
2479                          * after setting TARC0 */
2480                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2481                         tctl |= E1000_TCTL_EN;
2482                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2483
2484                         netif_carrier_on(netdev);
2485                         netif_wake_queue(netdev);
2486                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2487                         adapter->smartspeed = 0;
2488                 }
2489         } else {
2490                 if (netif_carrier_ok(netdev)) {
2491                         adapter->link_speed = 0;
2492                         adapter->link_duplex = 0;
2493                         DPRINTK(LINK, INFO, "NIC Link is Down\n");
2494                         netif_carrier_off(netdev);
2495                         netif_stop_queue(netdev);
2496                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2497
2498                         /* 80003ES2LAN workaround--
2499                          * For packet buffer work-around on link down event;
2500                          * disable receives in the ISR and
2501                          * reset device here in the watchdog
2502                          */
2503                         if (adapter->hw.mac_type == e1000_80003es2lan)
2504                                 /* reset device */
2505                                 schedule_work(&adapter->reset_task);
2506                 }
2507
2508                 e1000_smartspeed(adapter);
2509         }
2510
2511         e1000_update_stats(adapter);
2512
2513         adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2514         adapter->tpt_old = adapter->stats.tpt;
2515         adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2516         adapter->colc_old = adapter->stats.colc;
2517
2518         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2519         adapter->gorcl_old = adapter->stats.gorcl;
2520         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2521         adapter->gotcl_old = adapter->stats.gotcl;
2522
2523         e1000_update_adaptive(&adapter->hw);
2524
2525         if (!netif_carrier_ok(netdev)) {
2526                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2527                         /* We've lost link, so the controller stops DMA,
2528                          * but we've got queued Tx work that's never going
2529                          * to get done, so reset controller to flush Tx.
2530                          * (Do the reset outside of interrupt context). */
2531                         adapter->tx_timeout_count++;
2532                         schedule_work(&adapter->reset_task);
2533                 }
2534         }
2535
2536         /* Dynamic mode for Interrupt Throttle Rate (ITR) */
2537         if (adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
2538                 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
2539                  * asymmetrical Tx or Rx gets ITR=8000; everyone
2540                  * else is between 2000-8000. */
2541                 uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
2542                 uint32_t dif = (adapter->gotcl > adapter->gorcl ?
2543                         adapter->gotcl - adapter->gorcl :
2544                         adapter->gorcl - adapter->gotcl) / 10000;
2545                 uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2546                 E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
2547         }
2548
2549         /* Cause software interrupt to ensure rx ring is cleaned */
2550         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2551
2552         /* Force detection of hung controller every watchdog period */
2553         adapter->detect_tx_hung = TRUE;
2554
2555         /* With 82571 controllers, LAA may be overwritten due to controller
2556          * reset from the other port. Set the appropriate LAA in RAR[0] */
2557         if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2558                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2559
2560         /* Reset the timer */
2561         mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2562 }
2563
2564 #define E1000_TX_FLAGS_CSUM             0x00000001
2565 #define E1000_TX_FLAGS_VLAN             0x00000002
2566 #define E1000_TX_FLAGS_TSO              0x00000004
2567 #define E1000_TX_FLAGS_IPV4             0x00000008
2568 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2569 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2570
2571 static int
2572 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2573           struct sk_buff *skb)
2574 {
2575 #ifdef NETIF_F_TSO
2576         struct e1000_context_desc *context_desc;
2577         struct e1000_buffer *buffer_info;
2578         unsigned int i;
2579         uint32_t cmd_length = 0;
2580         uint16_t ipcse = 0, tucse, mss;
2581         uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2582         int err;
2583
2584         if (skb_is_gso(skb)) {
2585                 if (skb_header_cloned(skb)) {
2586                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2587                         if (err)
2588                                 return err;
2589                 }
2590
2591                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2592                 mss = skb_shinfo(skb)->gso_size;
2593                 if (skb->protocol == htons(ETH_P_IP)) {
2594                         skb->nh.iph->tot_len = 0;
2595                         skb->nh.iph->check = 0;
2596                         skb->h.th->check =
2597                                 ~csum_tcpudp_magic(skb->nh.iph->saddr,
2598                                                    skb->nh.iph->daddr,
2599                                                    0,
2600                                                    IPPROTO_TCP,
2601                                                    0);
2602                         cmd_length = E1000_TXD_CMD_IP;
2603                         ipcse = skb->h.raw - skb->data - 1;
2604 #ifdef NETIF_F_TSO_IPV6
2605                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2606                         skb->nh.ipv6h->payload_len = 0;
2607                         skb->h.th->check =
2608                                 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
2609                                                  &skb->nh.ipv6h->daddr,
2610                                                  0,
2611                                                  IPPROTO_TCP,
2612                                                  0);
2613                         ipcse = 0;
2614 #endif
2615                 }
2616                 ipcss = skb->nh.raw - skb->data;
2617                 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
2618                 tucss = skb->h.raw - skb->data;
2619                 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
2620                 tucse = 0;
2621
2622                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2623                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2624
2625                 i = tx_ring->next_to_use;
2626                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2627                 buffer_info = &tx_ring->buffer_info[i];
2628
2629                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2630                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2631                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2632                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2633                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2634                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2635                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2636                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2637                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2638
2639                 buffer_info->time_stamp = jiffies;
2640
2641                 if (++i == tx_ring->count) i = 0;
2642                 tx_ring->next_to_use = i;
2643
2644                 return TRUE;
2645         }
2646 #endif
2647
2648         return FALSE;
2649 }
2650
2651 static boolean_t
2652 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2653               struct sk_buff *skb)
2654 {
2655         struct e1000_context_desc *context_desc;
2656         struct e1000_buffer *buffer_info;
2657         unsigned int i;
2658         uint8_t css;
2659
2660         if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2661                 css = skb->h.raw - skb->data;
2662
2663                 i = tx_ring->next_to_use;
2664                 buffer_info = &tx_ring->buffer_info[i];
2665                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2666
2667                 context_desc->upper_setup.tcp_fields.tucss = css;
2668                 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
2669                 context_desc->upper_setup.tcp_fields.tucse = 0;
2670                 context_desc->tcp_seg_setup.data = 0;
2671                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2672
2673                 buffer_info->time_stamp = jiffies;
2674
2675                 if (unlikely(++i == tx_ring->count)) i = 0;
2676                 tx_ring->next_to_use = i;
2677
2678                 return TRUE;
2679         }
2680
2681         return FALSE;
2682 }
2683
2684 #define E1000_MAX_TXD_PWR       12
2685 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2686
2687 static int
2688 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2689              struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2690              unsigned int nr_frags, unsigned int mss)
2691 {
2692         struct e1000_buffer *buffer_info;
2693         unsigned int len = skb->len;
2694         unsigned int offset = 0, size, count = 0, i;
2695         unsigned int f;
2696         len -= skb->data_len;
2697
2698         i = tx_ring->next_to_use;
2699
2700         while (len) {
2701                 buffer_info = &tx_ring->buffer_info[i];
2702                 size = min(len, max_per_txd);
2703 #ifdef NETIF_F_TSO
2704                 /* Workaround for Controller erratum --
2705                  * descriptor for non-tso packet in a linear SKB that follows a
2706                  * tso gets written back prematurely before the data is fully
2707                  * DMA'd to the controller */
2708                 if (!skb->data_len && tx_ring->last_tx_tso &&
2709                     !skb_is_gso(skb)) {
2710                         tx_ring->last_tx_tso = 0;
2711                         size -= 4;
2712                 }
2713
2714                 /* Workaround for premature desc write-backs
2715                  * in TSO mode.  Append 4-byte sentinel desc */
2716                 if (unlikely(mss && !nr_frags && size == len && size > 8))
2717                         size -= 4;
2718 #endif
2719                 /* work-around for errata 10 and it applies
2720                  * to all controllers in PCI-X mode
2721                  * The fix is to make sure that the first descriptor of a
2722                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2723                  */
2724                 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2725                                 (size > 2015) && count == 0))
2726                         size = 2015;
2727
2728                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2729                  * terminating buffers within evenly-aligned dwords. */
2730                 if (unlikely(adapter->pcix_82544 &&
2731                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2732                    size > 4))
2733                         size -= 4;
2734
2735                 buffer_info->length = size;
2736                 buffer_info->dma =
2737                         pci_map_single(adapter->pdev,
2738                                 skb->data + offset,
2739                                 size,
2740                                 PCI_DMA_TODEVICE);
2741                 buffer_info->time_stamp = jiffies;
2742
2743                 len -= size;
2744                 offset += size;
2745                 count++;
2746                 if (unlikely(++i == tx_ring->count)) i = 0;
2747         }
2748
2749         for (f = 0; f < nr_frags; f++) {
2750                 struct skb_frag_struct *frag;
2751
2752                 frag = &skb_shinfo(skb)->frags[f];
2753                 len = frag->size;
2754                 offset = frag->page_offset;
2755
2756                 while (len) {
2757                         buffer_info = &tx_ring->buffer_info[i];
2758                         size = min(len, max_per_txd);
2759 #ifdef NETIF_F_TSO
2760                         /* Workaround for premature desc write-backs
2761                          * in TSO mode.  Append 4-byte sentinel desc */
2762                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2763                                 size -= 4;
2764 #endif
2765                         /* Workaround for potential 82544 hang in PCI-X.
2766                          * Avoid terminating buffers within evenly-aligned
2767                          * dwords. */
2768                         if (unlikely(adapter->pcix_82544 &&
2769                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
2770                            size > 4))
2771                                 size -= 4;
2772
2773                         buffer_info->length = size;
2774                         buffer_info->dma =
2775                                 pci_map_page(adapter->pdev,
2776                                         frag->page,
2777                                         offset,
2778                                         size,
2779                                         PCI_DMA_TODEVICE);
2780                         buffer_info->time_stamp = jiffies;
2781
2782                         len -= size;
2783                         offset += size;
2784                         count++;
2785                         if (unlikely(++i == tx_ring->count)) i = 0;
2786                 }
2787         }
2788
2789         i = (i == 0) ? tx_ring->count - 1 : i - 1;
2790         tx_ring->buffer_info[i].skb = skb;
2791         tx_ring->buffer_info[first].next_to_watch = i;
2792
2793         return count;
2794 }
2795
2796 static void
2797 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2798                int tx_flags, int count)
2799 {
2800         struct e1000_tx_desc *tx_desc = NULL;
2801         struct e1000_buffer *buffer_info;
2802         uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2803         unsigned int i;
2804
2805         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2806                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2807                              E1000_TXD_CMD_TSE;
2808                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2809
2810                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2811                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2812         }
2813
2814         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2815                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2816                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2817         }
2818
2819         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2820                 txd_lower |= E1000_TXD_CMD_VLE;
2821                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2822         }
2823
2824         i = tx_ring->next_to_use;
2825
2826         while (count--) {
2827                 buffer_info = &tx_ring->buffer_info[i];
2828                 tx_desc = E1000_TX_DESC(*tx_ring, i);
2829                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2830                 tx_desc->lower.data =
2831                         cpu_to_le32(txd_lower | buffer_info->length);
2832                 tx_desc->upper.data = cpu_to_le32(txd_upper);
2833                 if (unlikely(++i == tx_ring->count)) i = 0;
2834         }
2835
2836         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2837
2838         /* Force memory writes to complete before letting h/w
2839          * know there are new descriptors to fetch.  (Only
2840          * applicable for weak-ordered memory model archs,
2841          * such as IA-64). */
2842         wmb();
2843
2844         tx_ring->next_to_use = i;
2845         writel(i, adapter->hw.hw_addr + tx_ring->tdt);
2846 }
2847
2848 /**
2849  * 82547 workaround to avoid controller hang in half-duplex environment.
2850  * The workaround is to avoid queuing a large packet that would span
2851  * the internal Tx FIFO ring boundary by notifying the stack to resend
2852  * the packet at a later time.  This gives the Tx FIFO an opportunity to
2853  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
2854  * to the beginning of the Tx FIFO.
2855  **/
2856
2857 #define E1000_FIFO_HDR                  0x10
2858 #define E1000_82547_PAD_LEN             0x3E0
2859
2860 static int
2861 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
2862 {
2863         uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2864         uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
2865
2866         E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
2867
2868         if (adapter->link_duplex != HALF_DUPLEX)
2869                 goto no_fifo_stall_required;
2870
2871         if (atomic_read(&adapter->tx_fifo_stall))
2872                 return 1;
2873
2874         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2875                 atomic_set(&adapter->tx_fifo_stall, 1);
2876                 return 1;
2877         }
2878
2879 no_fifo_stall_required:
2880         adapter->tx_fifo_head += skb_fifo_len;
2881         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
2882                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2883         return 0;
2884 }
2885
2886 #define MINIMUM_DHCP_PACKET_SIZE 282
2887 static int
2888 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
2889 {
2890         struct e1000_hw *hw =  &adapter->hw;
2891         uint16_t length, offset;
2892         if (vlan_tx_tag_present(skb)) {
2893                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
2894                         ( adapter->hw.mng_cookie.status &
2895                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
2896                         return 0;
2897         }
2898         if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
2899                 struct ethhdr *eth = (struct ethhdr *) skb->data;
2900                 if ((htons(ETH_P_IP) == eth->h_proto)) {
2901                         const struct iphdr *ip =
2902                                 (struct iphdr *)((uint8_t *)skb->data+14);
2903                         if (IPPROTO_UDP == ip->protocol) {
2904                                 struct udphdr *udp =
2905                                         (struct udphdr *)((uint8_t *)ip +
2906                                                 (ip->ihl << 2));
2907                                 if (ntohs(udp->dest) == 67) {
2908                                         offset = (uint8_t *)udp + 8 - skb->data;
2909                                         length = skb->len - offset;
2910
2911                                         return e1000_mng_write_dhcp_info(hw,
2912                                                         (uint8_t *)udp + 8,
2913                                                         length);
2914                                 }
2915                         }
2916                 }
2917         }
2918         return 0;
2919 }
2920
2921 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
2922 {
2923         struct e1000_adapter *adapter = netdev_priv(netdev);
2924         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
2925
2926         netif_stop_queue(netdev);
2927         /* Herbert's original patch had:
2928          *  smp_mb__after_netif_stop_queue();
2929          * but since that doesn't exist yet, just open code it. */
2930         smp_mb();
2931
2932         /* We need to check again in a case another CPU has just
2933          * made room available. */
2934         if (likely(E1000_DESC_UNUSED(tx_ring) < size))
2935                 return -EBUSY;
2936
2937         /* A reprieve! */
2938         netif_start_queue(netdev);
2939         return 0;
2940 }
2941
2942 static int e1000_maybe_stop_tx(struct net_device *netdev,
2943                                struct e1000_tx_ring *tx_ring, int size)
2944 {
2945         if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
2946                 return 0;
2947         return __e1000_maybe_stop_tx(netdev, size);
2948 }
2949
2950 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2951 static int
2952 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2953 {
2954         struct e1000_adapter *adapter = netdev_priv(netdev);
2955         struct e1000_tx_ring *tx_ring;
2956         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2957         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2958         unsigned int tx_flags = 0;
2959         unsigned int len = skb->len;
2960         unsigned long flags;
2961         unsigned int nr_frags = 0;
2962         unsigned int mss = 0;
2963         int count = 0;
2964         int tso;
2965         unsigned int f;
2966         len -= skb->data_len;
2967
2968         /* This goes back to the question of how to logically map a tx queue
2969          * to a flow.  Right now, performance is impacted slightly negatively
2970          * if using multiple tx queues.  If the stack breaks away from a
2971          * single qdisc implementation, we can look at this again. */
2972         tx_ring = adapter->tx_ring;
2973
2974         if (unlikely(skb->len <= 0)) {
2975                 dev_kfree_skb_any(skb);
2976                 return NETDEV_TX_OK;
2977         }
2978
2979 #ifdef NETIF_F_TSO
2980         mss = skb_shinfo(skb)->gso_size;
2981         /* The controller does a simple calculation to
2982          * make sure there is enough room in the FIFO before
2983          * initiating the DMA for each buffer.  The calc is:
2984          * 4 = ceil(buffer len/mss).  To make sure we don't
2985          * overrun the FIFO, adjust the max buffer len if mss
2986          * drops. */
2987         if (mss) {
2988                 uint8_t hdr_len;
2989                 max_per_txd = min(mss << 2, max_per_txd);
2990                 max_txd_pwr = fls(max_per_txd) - 1;
2991
2992         /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
2993          * points to just header, pull a few bytes of payload from
2994          * frags into skb->data */
2995                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2996                 if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
2997                         switch (adapter->hw.mac_type) {
2998                                 unsigned int pull_size;
2999                         case e1000_82571:
3000                         case e1000_82572:
3001                         case e1000_82573:
3002                         case e1000_ich8lan:
3003                                 pull_size = min((unsigned int)4, skb->data_len);
3004                                 if (!__pskb_pull_tail(skb, pull_size)) {
3005                                         DPRINTK(DRV, ERR,
3006                                                 "__pskb_pull_tail failed.\n");
3007                                         dev_kfree_skb_any(skb);
3008                                         return NETDEV_TX_OK;
3009                                 }
3010                                 len = skb->len - skb->data_len;
3011                                 break;
3012                         default:
3013                                 /* do nothing */
3014                                 break;
3015                         }
3016                 }
3017         }
3018
3019         /* reserve a descriptor for the offload context */
3020         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3021                 count++;
3022         count++;
3023 #else
3024         if (skb->ip_summed == CHECKSUM_PARTIAL)
3025                 count++;
3026 #endif
3027
3028 #ifdef NETIF_F_TSO
3029         /* Controller Erratum workaround */
3030         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3031                 count++;
3032 #endif
3033
3034         count += TXD_USE_COUNT(len, max_txd_pwr);
3035
3036         if (adapter->pcix_82544)
3037                 count++;
3038
3039         /* work-around for errata 10 and it applies to all controllers
3040          * in PCI-X mode, so add one more descriptor to the count
3041          */
3042         if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
3043                         (len > 2015)))
3044                 count++;
3045
3046         nr_frags = skb_shinfo(skb)->nr_frags;
3047         for (f = 0; f < nr_frags; f++)
3048                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3049                                        max_txd_pwr);
3050         if (adapter->pcix_82544)
3051                 count += nr_frags;
3052
3053
3054         if (adapter->hw.tx_pkt_filtering &&
3055             (adapter->hw.mac_type == e1000_82573))
3056                 e1000_transfer_dhcp_info(adapter, skb);
3057
3058         local_irq_save(flags);
3059         if (!spin_trylock(&tx_ring->tx_lock)) {
3060                 /* Collision - tell upper layer to requeue */
3061                 local_irq_restore(flags);
3062                 return NETDEV_TX_LOCKED;
3063         }
3064
3065         /* need: count + 2 desc gap to keep tail from touching
3066          * head, otherwise try next time */
3067         if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) {
3068                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3069                 return NETDEV_TX_BUSY;
3070         }
3071
3072         if (unlikely(adapter->hw.mac_type == e1000_82547)) {
3073                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3074                         netif_stop_queue(netdev);
3075                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
3076                         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3077                         return NETDEV_TX_BUSY;
3078                 }
3079         }
3080
3081         if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3082                 tx_flags |= E1000_TX_FLAGS_VLAN;
3083                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3084         }
3085
3086         first = tx_ring->next_to_use;
3087
3088         tso = e1000_tso(adapter, tx_ring, skb);
3089         if (tso < 0) {
3090                 dev_kfree_skb_any(skb);
3091                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3092                 return NETDEV_TX_OK;
3093         }
3094
3095         if (likely(tso)) {
3096                 tx_ring->last_tx_tso = 1;
3097                 tx_flags |= E1000_TX_FLAGS_TSO;
3098         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3099                 tx_flags |= E1000_TX_FLAGS_CSUM;
3100
3101         /* Old method was to assume IPv4 packet by default if TSO was enabled.
3102          * 82571 hardware supports TSO capabilities for IPv6 as well...
3103          * no longer assume, we must. */
3104         if (likely(skb->protocol == htons(ETH_P_IP)))
3105                 tx_flags |= E1000_TX_FLAGS_IPV4;
3106
3107         e1000_tx_queue(adapter, tx_ring, tx_flags,
3108                        e1000_tx_map(adapter, tx_ring, skb, first,
3109                                     max_per_txd, nr_frags, mss));
3110
3111         netdev->trans_start = jiffies;
3112
3113         /* Make sure there is space in the ring for the next send. */
3114         e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3115
3116         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3117         return NETDEV_TX_OK;
3118 }
3119
3120 /**
3121  * e1000_tx_timeout - Respond to a Tx Hang
3122  * @netdev: network interface device structure
3123  **/
3124
3125 static void
3126 e1000_tx_timeout(struct net_device *netdev)
3127 {
3128         struct e1000_adapter *adapter = netdev_priv(netdev);
3129
3130         /* Do the reset outside of interrupt context */
3131         adapter->tx_timeout_count++;
3132         schedule_work(&adapter->reset_task);
3133 }
3134
3135 static void
3136 e1000_reset_task(struct net_device *netdev)
3137 {
3138         struct e1000_adapter *adapter = netdev_priv(netdev);
3139
3140         e1000_reinit_locked(adapter);
3141 }
3142
3143 /**
3144  * e1000_get_stats - Get System Network Statistics
3145  * @netdev: network interface device structure
3146  *
3147  * Returns the address of the device statistics structure.
3148  * The statistics are actually updated from the timer callback.
3149  **/
3150
3151 static struct net_device_stats *
3152 e1000_get_stats(struct net_device *netdev)
3153 {
3154         struct e1000_adapter *adapter = netdev_priv(netdev);
3155
3156         /* only return the current stats */
3157         return &adapter->net_stats;
3158 }
3159
3160 /**
3161  * e1000_change_mtu - Change the Maximum Transfer Unit
3162  * @netdev: network interface device structure
3163  * @new_mtu: new value for maximum frame size
3164  *
3165  * Returns 0 on success, negative on failure
3166  **/
3167
3168 static int
3169 e1000_change_mtu(struct net_device *netdev, int new_mtu)
3170 {
3171         struct e1000_adapter *adapter = netdev_priv(netdev);
3172         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3173         uint16_t eeprom_data = 0;
3174
3175         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3176             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3177                 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3178                 return -EINVAL;
3179         }
3180
3181         /* Adapter-specific max frame size limits. */
3182         switch (adapter->hw.mac_type) {
3183         case e1000_undefined ... e1000_82542_rev2_1:
3184         case e1000_ich8lan:
3185                 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3186                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3187                         return -EINVAL;
3188                 }
3189                 break;
3190         case e1000_82573:
3191                 /* Jumbo Frames not supported if:
3192                  * - this is not an 82573L device
3193                  * - ASPM is enabled in any way (0x1A bits 3:2) */
3194                 e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
3195                                   &eeprom_data);
3196                 if ((adapter->hw.device_id != E1000_DEV_ID_82573L) ||
3197                     (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3198                         if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3199                                 DPRINTK(PROBE, ERR,
3200                                         "Jumbo Frames not supported.\n");
3201                                 return -EINVAL;
3202                         }
3203                         break;
3204                 }
3205                 /* ERT will be enabled later to enable wire speed receives */
3206
3207                 /* fall through to get support */
3208         case e1000_82571:
3209         case e1000_82572:
3210         case e1000_80003es2lan:
3211 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3212                 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3213                         DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3214                         return -EINVAL;
3215                 }
3216                 break;
3217         default:
3218                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3219                 break;
3220         }
3221
3222         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3223          * means we reserve 2 more, this pushes us to allocate from the next
3224          * larger slab size
3225          * i.e. RXBUFFER_2048 --> size-4096 slab */
3226
3227         if (max_frame <= E1000_RXBUFFER_256)
3228                 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3229         else if (max_frame <= E1000_RXBUFFER_512)
3230                 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3231         else if (max_frame <= E1000_RXBUFFER_1024)
3232                 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3233         else if (max_frame <= E1000_RXBUFFER_2048)
3234                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3235         else if (max_frame <= E1000_RXBUFFER_4096)
3236                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3237         else if (max_frame <= E1000_RXBUFFER_8192)
3238                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3239         else if (max_frame <= E1000_RXBUFFER_16384)
3240                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3241
3242         /* adjust allocation if LPE protects us, and we aren't using SBP */
3243         if (!adapter->hw.tbi_compatibility_on &&
3244             ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3245              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3246                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3247
3248         netdev->mtu = new_mtu;
3249
3250         if (netif_running(netdev))
3251                 e1000_reinit_locked(adapter);
3252
3253         adapter->hw.max_frame_size = max_frame;
3254
3255         return 0;
3256 }
3257
3258 /**
3259  * e1000_update_stats - Update the board statistics counters
3260  * @adapter: board private structure
3261  **/
3262
3263 void
3264 e1000_update_stats(struct e1000_adapter *adapter)
3265 {
3266         struct e1000_hw *hw = &adapter->hw;
3267         struct pci_dev *pdev = adapter->pdev;
3268         unsigned long flags;
3269         uint16_t phy_tmp;
3270
3271 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3272
3273         /*
3274          * Prevent stats update while adapter is being reset, or if the pci
3275          * connection is down.
3276          */
3277         if (adapter->link_speed == 0)
3278                 return;
3279         if (pdev->error_state && pdev->error_state != pci_channel_io_normal)
3280                 return;
3281
3282         spin_lock_irqsave(&adapter->stats_lock, flags);
3283
3284         /* these counters are modified from e1000_adjust_tbi_stats,
3285          * called from the interrupt context, so they must only
3286          * be written while holding adapter->stats_lock
3287          */
3288
3289         adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3290         adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3291         adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3292         adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3293         adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3294         adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3295         adapter->stats.roc += E1000_READ_REG(hw, ROC);
3296
3297         if (adapter->hw.mac_type != e1000_ich8lan) {
3298         adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3299         adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3300         adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3301         adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3302         adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3303         adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3304         }
3305
3306         adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3307         adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3308         adapter->stats.scc += E1000_READ_REG(hw, SCC);
3309         adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3310         adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3311         adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3312         adapter->stats.dc += E1000_READ_REG(hw, DC);
3313         adapter->stats.sec += E1000_READ_REG(hw, SEC);
3314         adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3315         adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3316         adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3317         adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3318         adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3319         adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3320         adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3321         adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3322         adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3323         adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3324         adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3325         adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3326         adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3327         adapter->stats.torl += E1000_READ_REG(hw, TORL);
3328         adapter->stats.torh += E1000_READ_REG(hw, TORH);
3329         adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3330         adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3331         adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3332
3333         if (adapter->hw.mac_type != e1000_ich8lan) {
3334         adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3335         adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3336         adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3337         adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3338         adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3339         adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3340         }
3341
3342         adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3343         adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3344
3345         /* used for adaptive IFS */
3346
3347         hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3348         adapter->stats.tpt += hw->tx_packet_delta;
3349         hw->collision_delta = E1000_READ_REG(hw, COLC);
3350         adapter->stats.colc += hw->collision_delta;
3351
3352         if (hw->mac_type >= e1000_82543) {
3353                 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3354                 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3355                 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3356                 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3357                 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3358                 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3359         }
3360         if (hw->mac_type > e1000_82547_rev_2) {
3361                 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3362                 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3363
3364                 if (adapter->hw.mac_type != e1000_ich8lan) {
3365                 adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3366                 adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3367                 adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3368                 adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3369                 adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3370                 adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3371                 adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3372                 }
3373         }
3374
3375         /* Fill out the OS statistics structure */
3376
3377         adapter->net_stats.rx_packets = adapter->stats.gprc;
3378         adapter->net_stats.tx_packets = adapter->stats.gptc;
3379         adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3380         adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3381         adapter->net_stats.multicast = adapter->stats.mprc;
3382         adapter->net_stats.collisions = adapter->stats.colc;
3383
3384         /* Rx Errors */
3385
3386         /* RLEC on some newer hardware can be incorrect so build
3387         * our own version based on RUC and ROC */
3388         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3389                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3390                 adapter->stats.ruc + adapter->stats.roc +
3391                 adapter->stats.cexterr;
3392         adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3393         adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3394         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3395         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3396         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3397
3398         /* Tx Errors */
3399         adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3400         adapter->net_stats.tx_errors = adapter->stats.txerrc;
3401         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3402         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3403         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3404
3405         /* Tx Dropped needs to be maintained elsewhere */
3406
3407         /* Phy Stats */
3408
3409         if (hw->media_type == e1000_media_type_copper) {
3410                 if ((adapter->link_speed == SPEED_1000) &&
3411                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3412                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3413                         adapter->phy_stats.idle_errors += phy_tmp;
3414                 }
3415
3416                 if ((hw->mac_type <= e1000_82546) &&
3417                    (hw->phy_type == e1000_phy_m88) &&
3418                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3419                         adapter->phy_stats.receive_errors += phy_tmp;
3420         }
3421
3422         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3423 }
3424
3425 /**
3426  * e1000_intr - Interrupt Handler
3427  * @irq: interrupt number
3428  * @data: pointer to a network interface device structure
3429  * @pt_regs: CPU registers structure
3430  **/
3431
3432 static irqreturn_t
3433 e1000_intr(int irq, void *data, struct pt_regs *regs)
3434 {
3435         struct net_device *netdev = data;
3436         struct e1000_adapter *adapter = netdev_priv(netdev);
3437         struct e1000_hw *hw = &adapter->hw;
3438         uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
3439 #ifndef CONFIG_E1000_NAPI
3440         int i;
3441 #else
3442         /* Interrupt Auto-Mask...upon reading ICR,
3443          * interrupts are masked.  No need for the
3444          * IMC write, but it does mean we should
3445          * account for it ASAP. */
3446         if (likely(hw->mac_type >= e1000_82571))
3447                 atomic_inc(&adapter->irq_sem);
3448 #endif
3449
3450         if (unlikely(!icr)) {
3451 #ifdef CONFIG_E1000_NAPI
3452                 if (hw->mac_type >= e1000_82571)
3453                         e1000_irq_enable(adapter);
3454 #endif
3455                 return IRQ_NONE;  /* Not our interrupt */
3456         }
3457
3458         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3459                 hw->get_link_status = 1;
3460                 /* 80003ES2LAN workaround--
3461                  * For packet buffer work-around on link down event;
3462                  * disable receives here in the ISR and
3463                  * reset adapter in watchdog
3464                  */
3465                 if (netif_carrier_ok(netdev) &&
3466                     (adapter->hw.mac_type == e1000_80003es2lan)) {
3467                         /* disable receives */
3468                         rctl = E1000_READ_REG(hw, RCTL);
3469                         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3470                 }
3471                 mod_timer(&adapter->watchdog_timer, jiffies);
3472         }
3473
3474 #ifdef CONFIG_E1000_NAPI
3475         if (unlikely(hw->mac_type < e1000_82571)) {
3476                 atomic_inc(&adapter->irq_sem);
3477                 E1000_WRITE_REG(hw, IMC, ~0);
3478                 E1000_WRITE_FLUSH(hw);
3479         }
3480         if (likely(netif_rx_schedule_prep(netdev)))
3481                 __netif_rx_schedule(netdev);
3482         else
3483                 e1000_irq_enable(adapter);
3484 #else
3485         /* Writing IMC and IMS is needed for 82547.
3486          * Due to Hub Link bus being occupied, an interrupt
3487          * de-assertion message is not able to be sent.
3488          * When an interrupt assertion message is generated later,
3489          * two messages are re-ordered and sent out.
3490          * That causes APIC to think 82547 is in de-assertion
3491          * state, while 82547 is in assertion state, resulting
3492          * in dead lock. Writing IMC forces 82547 into
3493          * de-assertion state.
3494          */
3495         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
3496                 atomic_inc(&adapter->irq_sem);
3497                 E1000_WRITE_REG(hw, IMC, ~0);
3498         }
3499
3500         for (i = 0; i < E1000_MAX_INTR; i++)
3501                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3502                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3503                         break;
3504
3505         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3506                 e1000_irq_enable(adapter);
3507
3508 #endif
3509
3510         return IRQ_HANDLED;
3511 }
3512
3513 #ifdef CONFIG_E1000_NAPI
3514 /**
3515  * e1000_clean - NAPI Rx polling callback
3516  * @adapter: board private structure
3517  **/
3518
3519 static int
3520 e1000_clean(struct net_device *poll_dev, int *budget)
3521 {
3522         struct e1000_adapter *adapter;
3523         int work_to_do = min(*budget, poll_dev->quota);
3524         int tx_cleaned = 0, work_done = 0;
3525
3526         /* Must NOT use netdev_priv macro here. */
3527         adapter = poll_dev->priv;
3528
3529         /* Keep link state information with original netdev */
3530         if (!netif_carrier_ok(poll_dev))
3531                 goto quit_polling;
3532
3533         /* e1000_clean is called per-cpu.  This lock protects
3534          * tx_ring[0] from being cleaned by multiple cpus
3535          * simultaneously.  A failure obtaining the lock means
3536          * tx_ring[0] is currently being cleaned anyway. */
3537         if (spin_trylock(&adapter->tx_queue_lock)) {
3538                 tx_cleaned = e1000_clean_tx_irq(adapter,
3539                                                 &adapter->tx_ring[0]);
3540                 spin_unlock(&adapter->tx_queue_lock);
3541         }
3542
3543         adapter->clean_rx(adapter, &adapter->rx_ring[0],
3544                           &work_done, work_to_do);
3545
3546         *budget -= work_done;
3547         poll_dev->quota -= work_done;
3548
3549         /* If no Tx and not enough Rx work done, exit the polling mode */
3550         if ((!tx_cleaned && (work_done == 0)) ||
3551            !netif_running(poll_dev)) {
3552 quit_polling:
3553                 netif_rx_complete(poll_dev);
3554                 e1000_irq_enable(adapter);
3555                 return 0;
3556         }
3557
3558         return 1;
3559 }
3560
3561 #endif
3562 /**
3563  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3564  * @adapter: board private structure
3565  **/
3566
3567 static boolean_t
3568 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3569                    struct e1000_tx_ring *tx_ring)
3570 {
3571         struct net_device *netdev = adapter->netdev;
3572         struct e1000_tx_desc *tx_desc, *eop_desc;
3573         struct e1000_buffer *buffer_info;
3574         unsigned int i, eop;
3575 #ifdef CONFIG_E1000_NAPI
3576         unsigned int count = 0;
3577 #endif
3578         boolean_t cleaned = FALSE;
3579
3580         i = tx_ring->next_to_clean;
3581         eop = tx_ring->buffer_info[i].next_to_watch;
3582         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3583
3584         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3585                 for (cleaned = FALSE; !cleaned; ) {
3586                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3587                         buffer_info = &tx_ring->buffer_info[i];
3588                         cleaned = (i == eop);
3589
3590                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3591                         memset(tx_desc, 0, sizeof(struct e1000_tx_desc));
3592
3593                         if (unlikely(++i == tx_ring->count)) i = 0;
3594                 }
3595
3596
3597                 eop = tx_ring->buffer_info[i].next_to_watch;
3598                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3599 #ifdef CONFIG_E1000_NAPI
3600 #define E1000_TX_WEIGHT 64
3601                 /* weight of a sort for tx, to avoid endless transmit cleanup */
3602                 if (count++ == E1000_TX_WEIGHT) break;
3603 #endif
3604         }
3605
3606         tx_ring->next_to_clean = i;
3607
3608 #define TX_WAKE_THRESHOLD 32
3609         if (unlikely(cleaned && netif_carrier_ok(netdev) &&
3610                      E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3611                 /* Make sure that anybody stopping the queue after this
3612                  * sees the new next_to_clean.
3613                  */
3614                 smp_mb();
3615                 if (netif_queue_stopped(netdev))
3616                         netif_wake_queue(netdev);
3617         }
3618
3619         if (adapter->detect_tx_hung) {
3620                 /* Detect a transmit hang in hardware, this serializes the
3621                  * check with the clearing of time_stamp and movement of i */
3622                 adapter->detect_tx_hung = FALSE;
3623                 if (tx_ring->buffer_info[eop].dma &&
3624                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3625                                (adapter->tx_timeout_factor * HZ))
3626                     && !(E1000_READ_REG(&adapter->hw, STATUS) &
3627                          E1000_STATUS_TXOFF)) {
3628
3629                         /* detected Tx unit hang */
3630                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3631                                         "  Tx Queue             <%lu>\n"
3632                                         "  TDH                  <%x>\n"
3633                                         "  TDT                  <%x>\n"
3634                                         "  next_to_use          <%x>\n"
3635                                         "  next_to_clean        <%x>\n"
3636                                         "buffer_info[next_to_clean]\n"
3637                                         "  time_stamp           <%lx>\n"
3638                                         "  next_to_watch        <%x>\n"
3639                                         "  jiffies              <%lx>\n"
3640                                         "  next_to_watch.status <%x>\n",
3641                                 (unsigned long)((tx_ring - adapter->tx_ring) /
3642                                         sizeof(struct e1000_tx_ring)),
3643                                 readl(adapter->hw.hw_addr + tx_ring->tdh),
3644                                 readl(adapter->hw.hw_addr + tx_ring->tdt),
3645                                 tx_ring->next_to_use,
3646                                 tx_ring->next_to_clean,
3647                                 tx_ring->buffer_info[eop].time_stamp,
3648                                 eop,
3649                                 jiffies,
3650                                 eop_desc->upper.fields.status);
3651                         netif_stop_queue(netdev);
3652                 }
3653         }
3654         return cleaned;
3655 }
3656
3657 /**
3658  * e1000_rx_checksum - Receive Checksum Offload for 82543
3659  * @adapter:     board private structure
3660  * @status_err:  receive descriptor status and error fields
3661  * @csum:        receive descriptor csum field
3662  * @sk_buff:     socket buffer with received data
3663  **/
3664
3665 static void
3666 e1000_rx_checksum(struct e1000_adapter *adapter,
3667                   uint32_t status_err, uint32_t csum,
3668                   struct sk_buff *skb)
3669 {
3670         uint16_t status = (uint16_t)status_err;
3671         uint8_t errors = (uint8_t)(status_err >> 24);
3672         skb->ip_summed = CHECKSUM_NONE;
3673
3674         /* 82543 or newer only */
3675         if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
3676         /* Ignore Checksum bit is set */
3677         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3678         /* TCP/UDP checksum error bit is set */
3679         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3680                 /* let the stack verify checksum errors */
3681                 adapter->hw_csum_err++;
3682                 return;
3683         }
3684         /* TCP/UDP Checksum has not been calculated */
3685         if (adapter->hw.mac_type <= e1000_82547_rev_2) {
3686                 if (!(status & E1000_RXD_STAT_TCPCS))
3687                         return;
3688         } else {
3689                 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3690                         return;
3691         }
3692         /* It must be a TCP or UDP packet with a valid checksum */
3693         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3694                 /* TCP checksum is good */
3695                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3696         } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
3697                 /* IP fragment with UDP payload */
3698                 /* Hardware complements the payload checksum, so we undo it
3699                  * and then put the value in host order for further stack use.
3700                  */
3701                 csum = ntohl(csum ^ 0xFFFF);
3702                 skb->csum = csum;
3703                 skb->ip_summed = CHECKSUM_COMPLETE;
3704         }
3705         adapter->hw_csum_good++;
3706 }
3707
3708 /**
3709  * e1000_clean_rx_irq - Send received data up the network stack; legacy
3710  * @adapter: board private structure
3711  **/
3712
3713 static boolean_t
3714 #ifdef CONFIG_E1000_NAPI
3715 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3716                    struct e1000_rx_ring *rx_ring,
3717                    int *work_done, int work_to_do)
3718 #else
3719 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3720                    struct e1000_rx_ring *rx_ring)
3721 #endif
3722 {
3723         struct net_device *netdev = adapter->netdev;
3724         struct pci_dev *pdev = adapter->pdev;
3725         struct e1000_rx_desc *rx_desc, *next_rxd;
3726         struct e1000_buffer *buffer_info, *next_buffer;
3727         unsigned long flags;
3728         uint32_t length;
3729         uint8_t last_byte;
3730         unsigned int i;
3731         int cleaned_count = 0;
3732         boolean_t cleaned = FALSE;
3733
3734         i = rx_ring->next_to_clean;
3735         rx_desc = E1000_RX_DESC(*rx_ring, i);
3736         buffer_info = &rx_ring->buffer_info[i];
3737
3738         while (rx_desc->status & E1000_RXD_STAT_DD) {
3739                 struct sk_buff *skb;
3740                 u8 status;
3741 #ifdef CONFIG_E1000_NAPI
3742                 if (*work_done >= work_to_do)
3743                         break;
3744                 (*work_done)++;
3745 #endif
3746                 status = rx_desc->status;
3747                 skb = buffer_info->skb;
3748                 buffer_info->skb = NULL;
3749
3750                 prefetch(skb->data - NET_IP_ALIGN);
3751
3752                 if (++i == rx_ring->count) i = 0;
3753                 next_rxd = E1000_RX_DESC(*rx_ring, i);
3754                 prefetch(next_rxd);
3755
3756                 next_buffer = &rx_ring->buffer_info[i];
3757
3758                 cleaned = TRUE;
3759                 cleaned_count++;
3760                 pci_unmap_single(pdev,
3761                                  buffer_info->dma,
3762                                  buffer_info->length,
3763                                  PCI_DMA_FROMDEVICE);
3764
3765                 length = le16_to_cpu(rx_desc->length);
3766
3767                 /* adjust length to remove Ethernet CRC */
3768                 length -= 4;
3769
3770                 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
3771                         /* All receives must fit into a single buffer */
3772                         E1000_DBG("%s: Receive packet consumed multiple"
3773                                   " buffers\n", netdev->name);
3774                         /* recycle */
3775                         buffer_info->skb = skb;
3776                         goto next_desc;
3777                 }
3778
3779                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3780                         last_byte = *(skb->data + length - 1);
3781                         if (TBI_ACCEPT(&adapter->hw, status,
3782                                       rx_desc->errors, length, last_byte)) {
3783                                 spin_lock_irqsave(&adapter->stats_lock, flags);
3784                                 e1000_tbi_adjust_stats(&adapter->hw,
3785                                                        &adapter->stats,
3786                                                        length, skb->data);
3787                                 spin_unlock_irqrestore(&adapter->stats_lock,
3788                                                        flags);
3789                                 length--;
3790                         } else {
3791                                 /* recycle */
3792                                 buffer_info->skb = skb;
3793                                 goto next_desc;
3794                         }
3795                 }
3796
3797                 /* code added for copybreak, this should improve
3798                  * performance for small packets with large amounts
3799                  * of reassembly being done in the stack */
3800 #define E1000_CB_LENGTH 256
3801                 if (length < E1000_CB_LENGTH) {
3802                         struct sk_buff *new_skb =
3803                             netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
3804                         if (new_skb) {
3805                                 skb_reserve(new_skb, NET_IP_ALIGN);
3806                                 memcpy(new_skb->data - NET_IP_ALIGN,
3807                                        skb->data - NET_IP_ALIGN,
3808                                        length + NET_IP_ALIGN);
3809                                 /* save the skb in buffer_info as good */
3810                                 buffer_info->skb = skb;
3811                                 skb = new_skb;
3812                                 skb_put(skb, length);
3813                         }
3814                 } else
3815                         skb_put(skb, length);
3816
3817                 /* end copybreak code */
3818
3819                 /* Receive Checksum Offload */
3820                 e1000_rx_checksum(adapter,
3821                                   (uint32_t)(status) |
3822                                   ((uint32_t)(rx_desc->errors) << 24),
3823                                   le16_to_cpu(rx_desc->csum), skb);
3824
3825                 skb->protocol = eth_type_trans(skb, netdev);
3826 #ifdef CONFIG_E1000_NAPI
3827                 if (unlikely(adapter->vlgrp &&
3828                             (status & E1000_RXD_STAT_VP))) {
3829                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3830                                                  le16_to_cpu(rx_desc->special) &
3831                                                  E1000_RXD_SPC_VLAN_MASK);
3832                 } else {
3833                         netif_receive_skb(skb);
3834                 }
3835 #else /* CONFIG_E1000_NAPI */
3836                 if (unlikely(adapter->vlgrp &&
3837                             (status & E1000_RXD_STAT_VP))) {
3838                         vlan_hwaccel_rx(skb, adapter->vlgrp,
3839                                         le16_to_cpu(rx_desc->special) &
3840                                         E1000_RXD_SPC_VLAN_MASK);
3841                 } else {
3842                         netif_rx(skb);
3843                 }
3844 #endif /* CONFIG_E1000_NAPI */
3845                 netdev->last_rx = jiffies;
3846
3847 next_desc:
3848                 rx_desc->status = 0;
3849
3850                 /* return some buffers to hardware, one at a time is too slow */
3851                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3852                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3853                         cleaned_count = 0;
3854                 }
3855
3856                 /* use prefetched values */
3857                 rx_desc = next_rxd;
3858                 buffer_info = next_buffer;
3859         }
3860         rx_ring->next_to_clean = i;
3861
3862         cleaned_count = E1000_DESC_UNUSED(rx_ring);
3863         if (cleaned_count)
3864                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3865
3866         return cleaned;
3867 }
3868
3869 /**
3870  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
3871  * @adapter: board private structure
3872  **/
3873
3874 static boolean_t
3875 #ifdef CONFIG_E1000_NAPI
3876 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3877                       struct e1000_rx_ring *rx_ring,
3878                       int *work_done, int work_to_do)
3879 #else
3880 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3881                       struct e1000_rx_ring *rx_ring)
3882 #endif
3883 {
3884         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
3885         struct net_device *netdev = adapter->netdev;
3886         struct pci_dev *pdev = adapter->pdev;
3887         struct e1000_buffer *buffer_info, *next_buffer;
3888         struct e1000_ps_page *ps_page;
3889         struct e1000_ps_page_dma *ps_page_dma;
3890         struct sk_buff *skb;
3891         unsigned int i, j;
3892         uint32_t length, staterr;
3893         int cleaned_count = 0;
3894         boolean_t cleaned = FALSE;
3895
3896         i = rx_ring->next_to_clean;
3897         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3898         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3899         buffer_info = &rx_ring->buffer_info[i];
3900
3901         while (staterr & E1000_RXD_STAT_DD) {
3902                 ps_page = &rx_ring->ps_page[i];
3903                 ps_page_dma = &rx_ring->ps_page_dma[i];
3904 #ifdef CONFIG_E1000_NAPI
3905                 if (unlikely(*work_done >= work_to_do))
3906                         break;
3907                 (*work_done)++;
3908 #endif
3909                 skb = buffer_info->skb;
3910
3911                 /* in the packet split case this is header only */
3912                 prefetch(skb->data - NET_IP_ALIGN);
3913
3914                 if (++i == rx_ring->count) i = 0;
3915                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
3916                 prefetch(next_rxd);
3917
3918                 next_buffer = &rx_ring->buffer_info[i];
3919
3920                 cleaned = TRUE;
3921                 cleaned_count++;
3922                 pci_unmap_single(pdev, buffer_info->dma,
3923                                  buffer_info->length,
3924                                  PCI_DMA_FROMDEVICE);
3925
3926                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
3927                         E1000_DBG("%s: Packet Split buffers didn't pick up"
3928                                   " the full packet\n", netdev->name);
3929                         dev_kfree_skb_irq(skb);
3930                         goto next_desc;
3931                 }
3932
3933                 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3934                         dev_kfree_skb_irq(skb);
3935                         goto next_desc;
3936                 }
3937
3938                 length = le16_to_cpu(rx_desc->wb.middle.length0);
3939
3940                 if (unlikely(!length)) {
3941                         E1000_DBG("%s: Last part of the packet spanning"
3942                                   " multiple descriptors\n", netdev->name);
3943                         dev_kfree_skb_irq(skb);
3944                         goto next_desc;
3945                 }
3946
3947                 /* Good Receive */
3948                 skb_put(skb, length);
3949
3950                 {
3951                 /* this looks ugly, but it seems compiler issues make it
3952                    more efficient than reusing j */
3953                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
3954
3955                 /* page alloc/put takes too long and effects small packet
3956                  * throughput, so unsplit small packets and save the alloc/put*/
3957                 if (l1 && ((length + l1) <= adapter->rx_ps_bsize0)) {
3958                         u8 *vaddr;
3959                         /* there is no documentation about how to call
3960                          * kmap_atomic, so we can't hold the mapping
3961                          * very long */
3962                         pci_dma_sync_single_for_cpu(pdev,
3963                                 ps_page_dma->ps_page_dma[0],
3964                                 PAGE_SIZE,
3965                                 PCI_DMA_FROMDEVICE);
3966                         vaddr = kmap_atomic(ps_page->ps_page[0],
3967                                             KM_SKB_DATA_SOFTIRQ);
3968                         memcpy(skb->tail, vaddr, l1);
3969                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
3970                         pci_dma_sync_single_for_device(pdev,
3971                                 ps_page_dma->ps_page_dma[0],
3972                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3973                         /* remove the CRC */
3974                         l1 -= 4;
3975                         skb_put(skb, l1);
3976                         goto copydone;
3977                 } /* if */
3978                 }
3979                 
3980                 for (j = 0; j < adapter->rx_ps_pages; j++) {
3981                         if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
3982                                 break;
3983                         pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
3984                                         PAGE_SIZE, PCI_DMA_FROMDEVICE);
3985                         ps_page_dma->ps_page_dma[j] = 0;
3986                         skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
3987                                            length);
3988                         ps_page->ps_page[j] = NULL;
3989                         skb->len += length;
3990                         skb->data_len += length;
3991                         skb->truesize += length;
3992                 }
3993
3994                 /* strip the ethernet crc, problem is we're using pages now so
3995                  * this whole operation can get a little cpu intensive */
3996                 pskb_trim(skb, skb->len - 4);
3997
3998 copydone:
3999                 e1000_rx_checksum(adapter, staterr,
4000                                   le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
4001                 skb->protocol = eth_type_trans(skb, netdev);
4002
4003                 if (likely(rx_desc->wb.upper.header_status &
4004                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
4005                         adapter->rx_hdr_split++;
4006 #ifdef CONFIG_E1000_NAPI
4007                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4008                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4009                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
4010                                 E1000_RXD_SPC_VLAN_MASK);
4011                 } else {
4012                         netif_receive_skb(skb);
4013                 }
4014 #else /* CONFIG_E1000_NAPI */
4015                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4016                         vlan_hwaccel_rx(skb, adapter->vlgrp,
4017                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
4018                                 E1000_RXD_SPC_VLAN_MASK);
4019                 } else {
4020                         netif_rx(skb);
4021                 }
4022 #endif /* CONFIG_E1000_NAPI */
4023                 netdev->last_rx = jiffies;
4024
4025 next_desc:
4026                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
4027                 buffer_info->skb = NULL;
4028
4029                 /* return some buffers to hardware, one at a time is too slow */
4030                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4031                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4032                         cleaned_count = 0;
4033                 }
4034
4035                 /* use prefetched values */
4036                 rx_desc = next_rxd;
4037                 buffer_info = next_buffer;
4038
4039                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4040         }
4041         rx_ring->next_to_clean = i;
4042
4043         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4044         if (cleaned_count)
4045                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4046
4047         return cleaned;
4048 }
4049
4050 /**
4051  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4052  * @adapter: address of board private structure
4053  **/
4054
4055 static void
4056 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4057                        struct e1000_rx_ring *rx_ring,
4058                        int cleaned_count)
4059 {
4060         struct net_device *netdev = adapter->netdev;
4061         struct pci_dev *pdev = adapter->pdev;
4062         struct e1000_rx_desc *rx_desc;
4063         struct e1000_buffer *buffer_info;
4064         struct sk_buff *skb;
4065         unsigned int i;
4066         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4067
4068         i = rx_ring->next_to_use;
4069         buffer_info = &rx_ring->buffer_info[i];
4070
4071         while (cleaned_count--) {
4072                 skb = buffer_info->skb;
4073                 if (skb) {
4074                         skb_trim(skb, 0);
4075                         goto map_skb;
4076                 }
4077
4078                 skb = netdev_alloc_skb(netdev, bufsz);
4079                 if (unlikely(!skb)) {
4080                         /* Better luck next round */
4081                         adapter->alloc_rx_buff_failed++;
4082                         break;
4083                 }
4084
4085                 /* Fix for errata 23, can't cross 64kB boundary */
4086                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4087                         struct sk_buff *oldskb = skb;
4088                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4089                                              "at %p\n", bufsz, skb->data);
4090                         /* Try again, without freeing the previous */
4091                         skb = netdev_alloc_skb(netdev, bufsz);
4092                         /* Failed allocation, critical failure */
4093                         if (!skb) {
4094                                 dev_kfree_skb(oldskb);
4095                                 break;
4096                         }
4097
4098                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4099                                 /* give up */
4100                                 dev_kfree_skb(skb);
4101                                 dev_kfree_skb(oldskb);
4102                                 break; /* while !buffer_info->skb */
4103                         }
4104
4105                         /* Use new allocation */
4106                         dev_kfree_skb(oldskb);
4107                 }
4108                 /* Make buffer alignment 2 beyond a 16 byte boundary
4109                  * this will result in a 16 byte aligned IP header after
4110                  * the 14 byte MAC header is removed
4111                  */
4112                 skb_reserve(skb, NET_IP_ALIGN);
4113
4114                 buffer_info->skb = skb;
4115                 buffer_info->length = adapter->rx_buffer_len;
4116 map_skb:
4117                 buffer_info->dma = pci_map_single(pdev,
4118                                                   skb->data,
4119                                                   adapter->rx_buffer_len,
4120                                                   PCI_DMA_FROMDEVICE);
4121
4122                 /* Fix for errata 23, can't cross 64kB boundary */
4123                 if (!e1000_check_64k_bound(adapter,
4124                                         (void *)(unsigned long)buffer_info->dma,
4125                                         adapter->rx_buffer_len)) {
4126                         DPRINTK(RX_ERR, ERR,
4127                                 "dma align check failed: %u bytes at %p\n",
4128                                 adapter->rx_buffer_len,
4129                                 (void *)(unsigned long)buffer_info->dma);
4130                         dev_kfree_skb(skb);
4131                         buffer_info->skb = NULL;
4132
4133                         pci_unmap_single(pdev, buffer_info->dma,
4134                                          adapter->rx_buffer_len,
4135                                          PCI_DMA_FROMDEVICE);
4136
4137                         break; /* while !buffer_info->skb */
4138                 }
4139                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4140                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4141
4142                 if (unlikely(++i == rx_ring->count))
4143                         i = 0;
4144                 buffer_info = &rx_ring->buffer_info[i];
4145         }
4146
4147         if (likely(rx_ring->next_to_use != i)) {
4148                 rx_ring->next_to_use = i;
4149                 if (unlikely(i-- == 0))
4150                         i = (rx_ring->count - 1);
4151
4152                 /* Force memory writes to complete before letting h/w
4153                  * know there are new descriptors to fetch.  (Only
4154                  * applicable for weak-ordered memory model archs,
4155                  * such as IA-64). */
4156                 wmb();
4157                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4158         }
4159 }
4160
4161 /**
4162  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
4163  * @adapter: address of board private structure
4164  **/
4165
4166 static void
4167 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
4168                           struct e1000_rx_ring *rx_ring,
4169                           int cleaned_count)
4170 {
4171         struct net_device *netdev = adapter->netdev;
4172         struct pci_dev *pdev = adapter->pdev;
4173         union e1000_rx_desc_packet_split *rx_desc;
4174         struct e1000_buffer *buffer_info;
4175         struct e1000_ps_page *ps_page;
4176         struct e1000_ps_page_dma *ps_page_dma;
4177         struct sk_buff *skb;
4178         unsigned int i, j;
4179
4180         i = rx_ring->next_to_use;
4181         buffer_info = &rx_ring->buffer_info[i];
4182         ps_page = &rx_ring->ps_page[i];
4183         ps_page_dma = &rx_ring->ps_page_dma[i];
4184
4185         while (cleaned_count--) {
4186                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4187
4188                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
4189                         if (j < adapter->rx_ps_pages) {
4190                                 if (likely(!ps_page->ps_page[j])) {
4191                                         ps_page->ps_page[j] =
4192                                                 alloc_page(GFP_ATOMIC);
4193                                         if (unlikely(!ps_page->ps_page[j])) {
4194                                                 adapter->alloc_rx_buff_failed++;
4195                                                 goto no_buffers;
4196                                         }
4197                                         ps_page_dma->ps_page_dma[j] =
4198                                                 pci_map_page(pdev,
4199                                                             ps_page->ps_page[j],
4200                                                             0, PAGE_SIZE,
4201                                                             PCI_DMA_FROMDEVICE);
4202                                 }
4203                                 /* Refresh the desc even if buffer_addrs didn't
4204                                  * change because each write-back erases
4205                                  * this info.
4206                                  */
4207                                 rx_desc->read.buffer_addr[j+1] =
4208                                      cpu_to_le64(ps_page_dma->ps_page_dma[j]);
4209                         } else
4210                                 rx_desc->read.buffer_addr[j+1] = ~0;
4211                 }
4212
4213                 skb = netdev_alloc_skb(netdev,
4214                                        adapter->rx_ps_bsize0 + NET_IP_ALIGN);
4215
4216                 if (unlikely(!skb)) {
4217                         adapter->alloc_rx_buff_failed++;
4218                         break;
4219                 }
4220
4221                 /* Make buffer alignment 2 beyond a 16 byte boundary
4222                  * this will result in a 16 byte aligned IP header after
4223                  * the 14 byte MAC header is removed
4224                  */
4225                 skb_reserve(skb, NET_IP_ALIGN);
4226
4227                 buffer_info->skb = skb;
4228                 buffer_info->length = adapter->rx_ps_bsize0;
4229                 buffer_info->dma = pci_map_single(pdev, skb->data,
4230                                                   adapter->rx_ps_bsize0,
4231                                                   PCI_DMA_FROMDEVICE);
4232
4233                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
4234
4235                 if (unlikely(++i == rx_ring->count)) i = 0;
4236                 buffer_info = &rx_ring->buffer_info[i];
4237                 ps_page = &rx_ring->ps_page[i];
4238                 ps_page_dma = &rx_ring->ps_page_dma[i];
4239         }
4240
4241 no_buffers:
4242         if (likely(rx_ring->next_to_use != i)) {
4243                 rx_ring->next_to_use = i;
4244                 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4245
4246                 /* Force memory writes to complete before letting h/w
4247                  * know there are new descriptors to fetch.  (Only
4248                  * applicable for weak-ordered memory model archs,
4249                  * such as IA-64). */
4250                 wmb();
4251                 /* Hardware increments by 16 bytes, but packet split
4252                  * descriptors are 32 bytes...so we increment tail
4253                  * twice as much.
4254                  */
4255                 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4256         }
4257 }
4258
4259 /**
4260  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4261  * @adapter:
4262  **/
4263
4264 static void
4265 e1000_smartspeed(struct e1000_adapter *adapter)
4266 {
4267         uint16_t phy_status;
4268         uint16_t phy_ctrl;
4269
4270         if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4271            !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4272                 return;
4273
4274         if (adapter->smartspeed == 0) {
4275                 /* If Master/Slave config fault is asserted twice,
4276                  * we assume back-to-back */
4277                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4278                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4279                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4280                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4281                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4282                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4283                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4284                         e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4285                                             phy_ctrl);
4286                         adapter->smartspeed++;
4287                         if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4288                            !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4289                                                &phy_ctrl)) {
4290                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4291                                              MII_CR_RESTART_AUTO_NEG);
4292                                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4293                                                     phy_ctrl);
4294                         }
4295                 }
4296                 return;
4297         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4298                 /* If still no link, perhaps using 2/3 pair cable */
4299                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4300                 phy_ctrl |= CR_1000T_MS_ENABLE;
4301                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4302                 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4303                    !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4304                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4305                                      MII_CR_RESTART_AUTO_NEG);
4306                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4307                 }
4308         }
4309         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4310         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4311                 adapter->smartspeed = 0;
4312 }
4313
4314 /**
4315  * e1000_ioctl -
4316  * @netdev:
4317  * @ifreq:
4318  * @cmd:
4319  **/
4320
4321 static int
4322 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4323 {
4324         switch (cmd) {
4325         case SIOCGMIIPHY:
4326         case SIOCGMIIREG:
4327         case SIOCSMIIREG:
4328                 return e1000_mii_ioctl(netdev, ifr, cmd);
4329         default:
4330                 return -EOPNOTSUPP;
4331         }
4332 }
4333
4334 /**
4335  * e1000_mii_ioctl -
4336  * @netdev:
4337  * @ifreq:
4338  * @cmd:
4339  **/
4340
4341 static int
4342 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4343 {
4344         struct e1000_adapter *adapter = netdev_priv(netdev);
4345         struct mii_ioctl_data *data = if_mii(ifr);
4346         int retval;
4347         uint16_t mii_reg;
4348         uint16_t spddplx;
4349         unsigned long flags;
4350
4351         if (adapter->hw.media_type != e1000_media_type_copper)
4352                 return -EOPNOTSUPP;
4353
4354         switch (cmd) {
4355         case SIOCGMIIPHY:
4356                 data->phy_id = adapter->hw.phy_addr;
4357                 break;
4358         case SIOCGMIIREG:
4359                 if (!capable(CAP_NET_ADMIN))
4360                         return -EPERM;
4361                 spin_lock_irqsave(&adapter->stats_lock, flags);
4362                 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4363                                    &data->val_out)) {
4364                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4365                         return -EIO;
4366                 }
4367                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4368                 break;
4369         case SIOCSMIIREG:
4370                 if (!capable(CAP_NET_ADMIN))
4371                         return -EPERM;
4372                 if (data->reg_num & ~(0x1F))
4373                         return -EFAULT;
4374                 mii_reg = data->val_in;
4375                 spin_lock_irqsave(&adapter->stats_lock, flags);
4376                 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4377                                         mii_reg)) {
4378                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4379                         return -EIO;
4380                 }
4381                 if (adapter->hw.media_type == e1000_media_type_copper) {
4382                         switch (data->reg_num) {
4383                         case PHY_CTRL:
4384                                 if (mii_reg & MII_CR_POWER_DOWN)
4385                                         break;
4386                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4387                                         adapter->hw.autoneg = 1;
4388                                         adapter->hw.autoneg_advertised = 0x2F;
4389                                 } else {
4390                                         if (mii_reg & 0x40)
4391                                                 spddplx = SPEED_1000;
4392                                         else if (mii_reg & 0x2000)
4393                                                 spddplx = SPEED_100;
4394                                         else
4395                                                 spddplx = SPEED_10;
4396                                         spddplx += (mii_reg & 0x100)
4397                                                    ? DUPLEX_FULL :
4398                                                    DUPLEX_HALF;
4399                                         retval = e1000_set_spd_dplx(adapter,
4400                                                                     spddplx);
4401                                         if (retval) {
4402                                                 spin_unlock_irqrestore(
4403                                                         &adapter->stats_lock,
4404                                                         flags);
4405                                                 return retval;
4406                                         }
4407                                 }
4408                                 if (netif_running(adapter->netdev))
4409                                         e1000_reinit_locked(adapter);
4410                                 else
4411                                         e1000_reset(adapter);
4412                                 break;
4413                         case M88E1000_PHY_SPEC_CTRL:
4414                         case M88E1000_EXT_PHY_SPEC_CTRL:
4415                                 if (e1000_phy_reset(&adapter->hw)) {
4416                                         spin_unlock_irqrestore(
4417                                                 &adapter->stats_lock, flags);
4418                                         return -EIO;
4419                                 }
4420                                 break;
4421                         }
4422                 } else {
4423                         switch (data->reg_num) {
4424                         case PHY_CTRL:
4425                                 if (mii_reg & MII_CR_POWER_DOWN)
4426                                         break;
4427                                 if (netif_running(adapter->netdev))
4428                                         e1000_reinit_locked(adapter);
4429                                 else
4430                                         e1000_reset(adapter);
4431                                 break;
4432                         }
4433                 }
4434                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4435                 break;
4436         default:
4437                 return -EOPNOTSUPP;
4438         }
4439         return E1000_SUCCESS;
4440 }
4441
4442 void
4443 e1000_pci_set_mwi(struct e1000_hw *hw)
4444 {
4445         struct e1000_adapter *adapter = hw->back;
4446         int ret_val = pci_set_mwi(adapter->pdev);
4447
4448         if (ret_val)
4449                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4450 }
4451
4452 void
4453 e1000_pci_clear_mwi(struct e1000_hw *hw)
4454 {
4455         struct e1000_adapter *adapter = hw->back;
4456
4457         pci_clear_mwi(adapter->pdev);
4458 }
4459
4460 void
4461 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4462 {
4463         struct e1000_adapter *adapter = hw->back;
4464
4465         pci_read_config_word(adapter->pdev, reg, value);
4466 }
4467
4468 void
4469 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4470 {
4471         struct e1000_adapter *adapter = hw->back;
4472
4473         pci_write_config_word(adapter->pdev, reg, *value);
4474 }
4475
4476 int32_t
4477 e1000_read_pcie_cap_reg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4478 {
4479     struct e1000_adapter *adapter = hw->back;
4480     uint16_t cap_offset;
4481
4482     cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
4483     if (!cap_offset)
4484         return -E1000_ERR_CONFIG;
4485
4486     pci_read_config_word(adapter->pdev, cap_offset + reg, value);
4487
4488     return E1000_SUCCESS;
4489 }
4490
4491
4492 void
4493 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4494 {
4495         outl(value, port);
4496 }
4497
4498 static void
4499 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4500 {
4501         struct e1000_adapter *adapter = netdev_priv(netdev);
4502         uint32_t ctrl, rctl;
4503
4504         e1000_irq_disable(adapter);
4505         adapter->vlgrp = grp;
4506
4507         if (grp) {
4508                 /* enable VLAN tag insert/strip */
4509                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4510                 ctrl |= E1000_CTRL_VME;
4511                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4512
4513                 if (adapter->hw.mac_type != e1000_ich8lan) {
4514                 /* enable VLAN receive filtering */
4515                 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4516                 rctl |= E1000_RCTL_VFE;
4517                 rctl &= ~E1000_RCTL_CFIEN;
4518                 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4519                 e1000_update_mng_vlan(adapter);
4520                 }
4521         } else {
4522                 /* disable VLAN tag insert/strip */
4523                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4524                 ctrl &= ~E1000_CTRL_VME;
4525                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4526
4527                 if (adapter->hw.mac_type != e1000_ich8lan) {
4528                 /* disable VLAN filtering */
4529                 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4530                 rctl &= ~E1000_RCTL_VFE;
4531                 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4532                 if (adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) {
4533                         e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4534                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4535                 }
4536                 }
4537         }
4538
4539         e1000_irq_enable(adapter);
4540 }
4541
4542 static void
4543 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4544 {
4545         struct e1000_adapter *adapter = netdev_priv(netdev);
4546         uint32_t vfta, index;
4547
4548         if ((adapter->hw.mng_cookie.status &
4549              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4550             (vid == adapter->mng_vlan_id))
4551                 return;
4552         /* add VID to filter table */
4553         index = (vid >> 5) & 0x7F;
4554         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4555         vfta |= (1 << (vid & 0x1F));
4556         e1000_write_vfta(&adapter->hw, index, vfta);
4557 }
4558
4559 static void
4560 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
4561 {
4562         struct e1000_adapter *adapter = netdev_priv(netdev);
4563         uint32_t vfta, index;
4564
4565         e1000_irq_disable(adapter);
4566
4567         if (adapter->vlgrp)
4568                 adapter->vlgrp->vlan_devices[vid] = NULL;
4569
4570         e1000_irq_enable(adapter);
4571
4572         if ((adapter->hw.mng_cookie.status &
4573              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4574             (vid == adapter->mng_vlan_id)) {
4575                 /* release control to f/w */
4576                 e1000_release_hw_control(adapter);
4577                 return;
4578         }
4579
4580         /* remove VID from filter table */
4581         index = (vid >> 5) & 0x7F;
4582         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4583         vfta &= ~(1 << (vid & 0x1F));
4584         e1000_write_vfta(&adapter->hw, index, vfta);
4585 }
4586
4587 static void
4588 e1000_restore_vlan(struct e1000_adapter *adapter)
4589 {
4590         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4591
4592         if (adapter->vlgrp) {
4593                 uint16_t vid;
4594                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4595                         if (!adapter->vlgrp->vlan_devices[vid])
4596                                 continue;
4597                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
4598                 }
4599         }
4600 }
4601
4602 int
4603 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
4604 {
4605         adapter->hw.autoneg = 0;
4606
4607         /* Fiber NICs only allow 1000 gbps Full duplex */
4608         if ((adapter->hw.media_type == e1000_media_type_fiber) &&
4609                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4610                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4611                 return -EINVAL;
4612         }
4613
4614         switch (spddplx) {
4615         case SPEED_10 + DUPLEX_HALF:
4616                 adapter->hw.forced_speed_duplex = e1000_10_half;
4617                 break;
4618         case SPEED_10 + DUPLEX_FULL:
4619                 adapter->hw.forced_speed_duplex = e1000_10_full;
4620                 break;
4621         case SPEED_100 + DUPLEX_HALF:
4622                 adapter->hw.forced_speed_duplex = e1000_100_half;
4623                 break;
4624         case SPEED_100 + DUPLEX_FULL:
4625                 adapter->hw.forced_speed_duplex = e1000_100_full;
4626                 break;
4627         case SPEED_1000 + DUPLEX_FULL:
4628                 adapter->hw.autoneg = 1;
4629                 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
4630                 break;
4631         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4632         default:
4633                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4634                 return -EINVAL;
4635         }
4636         return 0;
4637 }
4638
4639 #ifdef CONFIG_PM
4640 /* Save/restore 16 or 64 dwords of PCI config space depending on which
4641  * bus we're on (PCI(X) vs. PCI-E)
4642  */
4643 #define PCIE_CONFIG_SPACE_LEN 256
4644 #define PCI_CONFIG_SPACE_LEN 64
4645 static int
4646 e1000_pci_save_state(struct e1000_adapter *adapter)
4647 {
4648         struct pci_dev *dev = adapter->pdev;
4649         int size;
4650         int i;
4651
4652         if (adapter->hw.mac_type >= e1000_82571)
4653                 size = PCIE_CONFIG_SPACE_LEN;
4654         else
4655                 size = PCI_CONFIG_SPACE_LEN;
4656
4657         WARN_ON(adapter->config_space != NULL);
4658
4659         adapter->config_space = kmalloc(size, GFP_KERNEL);
4660         if (!adapter->config_space) {
4661                 DPRINTK(PROBE, ERR, "unable to allocate %d bytes\n", size);
4662                 return -ENOMEM;
4663         }
4664         for (i = 0; i < (size / 4); i++)
4665                 pci_read_config_dword(dev, i * 4, &adapter->config_space[i]);
4666         return 0;
4667 }
4668
4669 static void
4670 e1000_pci_restore_state(struct e1000_adapter *adapter)
4671 {
4672         struct pci_dev *dev = adapter->pdev;
4673         int size;
4674         int i;
4675
4676         if (adapter->config_space == NULL)
4677                 return;
4678
4679         if (adapter->hw.mac_type >= e1000_82571)
4680                 size = PCIE_CONFIG_SPACE_LEN;
4681         else
4682                 size = PCI_CONFIG_SPACE_LEN;
4683         for (i = 0; i < (size / 4); i++)
4684                 pci_write_config_dword(dev, i * 4, adapter->config_space[i]);
4685         kfree(adapter->config_space);
4686         adapter->config_space = NULL;
4687         return;
4688 }
4689 #endif /* CONFIG_PM */
4690
4691 static int
4692 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4693 {
4694         struct net_device *netdev = pci_get_drvdata(pdev);
4695         struct e1000_adapter *adapter = netdev_priv(netdev);
4696         uint32_t ctrl, ctrl_ext, rctl, manc, status;
4697         uint32_t wufc = adapter->wol;
4698 #ifdef CONFIG_PM
4699         int retval = 0;
4700 #endif
4701
4702         netif_device_detach(netdev);
4703
4704         if (netif_running(netdev)) {
4705                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4706                 e1000_down(adapter);
4707         }
4708
4709 #ifdef CONFIG_PM
4710         /* Implement our own version of pci_save_state(pdev) because pci-
4711          * express adapters have 256-byte config spaces. */
4712         retval = e1000_pci_save_state(adapter);
4713         if (retval)
4714                 return retval;
4715 #endif
4716
4717         status = E1000_READ_REG(&adapter->hw, STATUS);
4718         if (status & E1000_STATUS_LU)
4719                 wufc &= ~E1000_WUFC_LNKC;
4720
4721         if (wufc) {
4722                 e1000_setup_rctl(adapter);
4723                 e1000_set_multi(netdev);
4724
4725                 /* turn on all-multi mode if wake on multicast is enabled */
4726                 if (wufc & E1000_WUFC_MC) {
4727                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4728                         rctl |= E1000_RCTL_MPE;
4729                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4730                 }
4731
4732                 if (adapter->hw.mac_type >= e1000_82540) {
4733                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4734                         /* advertise wake from D3Cold */
4735                         #define E1000_CTRL_ADVD3WUC 0x00100000
4736                         /* phy power management enable */
4737                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4738                         ctrl |= E1000_CTRL_ADVD3WUC |
4739                                 E1000_CTRL_EN_PHY_PWR_MGMT;
4740                         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4741                 }
4742
4743                 if (adapter->hw.media_type == e1000_media_type_fiber ||
4744                    adapter->hw.media_type == e1000_media_type_internal_serdes) {
4745                         /* keep the laser running in D3 */
4746                         ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
4747                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4748                         E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
4749                 }
4750
4751                 /* Allow time for pending master requests to run */
4752                 e1000_disable_pciex_master(&adapter->hw);
4753
4754                 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
4755                 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
4756                 pci_enable_wake(pdev, PCI_D3hot, 1);
4757                 pci_enable_wake(pdev, PCI_D3cold, 1);
4758         } else {
4759                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
4760                 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
4761                 pci_enable_wake(pdev, PCI_D3hot, 0);
4762                 pci_enable_wake(pdev, PCI_D3cold, 0);
4763         }
4764
4765         if (adapter->hw.mac_type < e1000_82571 &&
4766            adapter->hw.media_type == e1000_media_type_copper) {
4767                 manc = E1000_READ_REG(&adapter->hw, MANC);
4768                 if (manc & E1000_MANC_SMBUS_EN) {
4769                         manc |= E1000_MANC_ARP_EN;
4770                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
4771                         pci_enable_wake(pdev, PCI_D3hot, 1);
4772                         pci_enable_wake(pdev, PCI_D3cold, 1);
4773                 }
4774         }
4775
4776         if (adapter->hw.phy_type == e1000_phy_igp_3)
4777                 e1000_phy_powerdown_workaround(&adapter->hw);
4778
4779         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
4780          * would have already happened in close and is redundant. */
4781         e1000_release_hw_control(adapter);
4782
4783         pci_disable_device(pdev);
4784
4785         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4786
4787         return 0;
4788 }
4789
4790 #ifdef CONFIG_PM
4791 static int
4792 e1000_resume(struct pci_dev *pdev)
4793 {
4794         struct net_device *netdev = pci_get_drvdata(pdev);
4795         struct e1000_adapter *adapter = netdev_priv(netdev);
4796         uint32_t manc, err;
4797
4798         pci_set_power_state(pdev, PCI_D0);
4799         e1000_pci_restore_state(adapter);
4800         if ((err = pci_enable_device(pdev))) {
4801                 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
4802                 return err;
4803         }
4804         pci_set_master(pdev);
4805
4806         pci_enable_wake(pdev, PCI_D3hot, 0);
4807         pci_enable_wake(pdev, PCI_D3cold, 0);
4808
4809         e1000_reset(adapter);
4810         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4811
4812         if (netif_running(netdev))
4813                 e1000_up(adapter);
4814
4815         netif_device_attach(netdev);
4816
4817         if (adapter->hw.mac_type < e1000_82571 &&
4818            adapter->hw.media_type == e1000_media_type_copper) {
4819                 manc = E1000_READ_REG(&adapter->hw, MANC);
4820                 manc &= ~(E1000_MANC_ARP_EN);
4821                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4822         }
4823
4824         /* If the controller is 82573 and f/w is AMT, do not set
4825          * DRV_LOAD until the interface is up.  For all other cases,
4826          * let the f/w know that the h/w is now under the control
4827          * of the driver. */
4828         if (adapter->hw.mac_type != e1000_82573 ||
4829             !e1000_check_mng_mode(&adapter->hw))
4830                 e1000_get_hw_control(adapter);
4831
4832         return 0;
4833 }
4834 #endif
4835
4836 static void e1000_shutdown(struct pci_dev *pdev)
4837 {
4838         e1000_suspend(pdev, PMSG_SUSPEND);
4839 }
4840
4841 #ifdef CONFIG_NET_POLL_CONTROLLER
4842 /*
4843  * Polling 'interrupt' - used by things like netconsole to send skbs
4844  * without having to re-enable interrupts. It's not called while
4845  * the interrupt routine is executing.
4846  */
4847 static void
4848 e1000_netpoll(struct net_device *netdev)
4849 {
4850         struct e1000_adapter *adapter = netdev_priv(netdev);
4851
4852         disable_irq(adapter->pdev->irq);
4853         e1000_intr(adapter->pdev->irq, netdev, NULL);
4854         e1000_clean_tx_irq(adapter, adapter->tx_ring);
4855 #ifndef CONFIG_E1000_NAPI
4856         adapter->clean_rx(adapter, adapter->rx_ring);
4857 #endif
4858         enable_irq(adapter->pdev->irq);
4859 }
4860 #endif
4861
4862 /**
4863  * e1000_io_error_detected - called when PCI error is detected
4864  * @pdev: Pointer to PCI device
4865  * @state: The current pci conneection state
4866  *
4867  * This function is called after a PCI bus error affecting
4868  * this device has been detected.
4869  */
4870 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
4871 {
4872         struct net_device *netdev = pci_get_drvdata(pdev);
4873         struct e1000_adapter *adapter = netdev->priv;
4874
4875         netif_device_detach(netdev);
4876
4877         if (netif_running(netdev))
4878                 e1000_down(adapter);
4879         pci_disable_device(pdev);
4880
4881         /* Request a slot slot reset. */
4882         return PCI_ERS_RESULT_NEED_RESET;
4883 }
4884
4885 /**
4886  * e1000_io_slot_reset - called after the pci bus has been reset.
4887  * @pdev: Pointer to PCI device
4888  *
4889  * Restart the card from scratch, as if from a cold-boot. Implementation
4890  * resembles the first-half of the e1000_resume routine.
4891  */
4892 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4893 {
4894         struct net_device *netdev = pci_get_drvdata(pdev);
4895         struct e1000_adapter *adapter = netdev->priv;
4896
4897         if (pci_enable_device(pdev)) {
4898                 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
4899                 return PCI_ERS_RESULT_DISCONNECT;
4900         }
4901         pci_set_master(pdev);
4902
4903         pci_enable_wake(pdev, 3, 0);
4904         pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
4905
4906         /* Perform card reset only on one instance of the card */
4907         if (PCI_FUNC (pdev->devfn) != 0)
4908                 return PCI_ERS_RESULT_RECOVERED;
4909
4910         e1000_reset(adapter);
4911         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4912
4913         return PCI_ERS_RESULT_RECOVERED;
4914 }
4915
4916 /**
4917  * e1000_io_resume - called when traffic can start flowing again.
4918  * @pdev: Pointer to PCI device
4919  *
4920  * This callback is called when the error recovery driver tells us that
4921  * its OK to resume normal operation. Implementation resembles the
4922  * second-half of the e1000_resume routine.
4923  */
4924 static void e1000_io_resume(struct pci_dev *pdev)
4925 {
4926         struct net_device *netdev = pci_get_drvdata(pdev);
4927         struct e1000_adapter *adapter = netdev->priv;
4928         uint32_t manc, swsm;
4929
4930         if (netif_running(netdev)) {
4931                 if (e1000_up(adapter)) {
4932                         printk("e1000: can't bring device back up after reset\n");
4933                         return;
4934                 }
4935         }
4936
4937         netif_device_attach(netdev);
4938
4939         if (adapter->hw.mac_type >= e1000_82540 &&
4940             adapter->hw.media_type == e1000_media_type_copper) {
4941                 manc = E1000_READ_REG(&adapter->hw, MANC);
4942                 manc &= ~(E1000_MANC_ARP_EN);
4943                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4944         }
4945
4946         switch (adapter->hw.mac_type) {
4947         case e1000_82573:
4948                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
4949                 E1000_WRITE_REG(&adapter->hw, SWSM,
4950                                 swsm | E1000_SWSM_DRV_LOAD);
4951                 break;
4952         default:
4953                 break;
4954         }
4955
4956         if (netif_running(netdev))
4957                 mod_timer(&adapter->watchdog_timer, jiffies);
4958 }
4959
4960 /* e1000_main.c */