]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/e1000/e1000_main.c
e1000: Remove 0x1000 as supported device
[linux-2.6-omap-h63xx.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   
4   Copyright(c) 1999 - 2006 Intel Corporation. All rights reserved.
5   
6   This program is free software; you can redistribute it and/or modify it 
7   under the terms of the GNU General Public License as published by the Free 
8   Software Foundation; either version 2 of the License, or (at your option) 
9   any later version.
10   
11   This program is distributed in the hope that it will be useful, but WITHOUT 
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
14   more details.
15   
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc., 59 
18   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
19   
20   The full GNU General Public License is included in this distribution in the
21   file called LICENSE.
22   
23   Contact Information:
24   Linux NICS <linux.nics@intel.com>
25   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
26   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27
28 *******************************************************************************/
29
30 #include "e1000.h"
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #ifndef CONFIG_E1000_NAPI
35 #define DRIVERNAPI
36 #else
37 #define DRIVERNAPI "-NAPI"
38 #endif
39 #define DRV_VERSION "7.1.9-k4"DRIVERNAPI
40 char e1000_driver_version[] = DRV_VERSION;
41 static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
42
43 /* e1000_pci_tbl - PCI Device ID Table
44  *
45  * Last entry must be all 0s
46  *
47  * Macro expands to...
48  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
49  */
50 static struct pci_device_id e1000_pci_tbl[] = {
51         INTEL_E1000_ETHERNET_DEVICE(0x1001),
52         INTEL_E1000_ETHERNET_DEVICE(0x1004),
53         INTEL_E1000_ETHERNET_DEVICE(0x1008),
54         INTEL_E1000_ETHERNET_DEVICE(0x1009),
55         INTEL_E1000_ETHERNET_DEVICE(0x100C),
56         INTEL_E1000_ETHERNET_DEVICE(0x100D),
57         INTEL_E1000_ETHERNET_DEVICE(0x100E),
58         INTEL_E1000_ETHERNET_DEVICE(0x100F),
59         INTEL_E1000_ETHERNET_DEVICE(0x1010),
60         INTEL_E1000_ETHERNET_DEVICE(0x1011),
61         INTEL_E1000_ETHERNET_DEVICE(0x1012),
62         INTEL_E1000_ETHERNET_DEVICE(0x1013),
63         INTEL_E1000_ETHERNET_DEVICE(0x1014),
64         INTEL_E1000_ETHERNET_DEVICE(0x1015),
65         INTEL_E1000_ETHERNET_DEVICE(0x1016),
66         INTEL_E1000_ETHERNET_DEVICE(0x1017),
67         INTEL_E1000_ETHERNET_DEVICE(0x1018),
68         INTEL_E1000_ETHERNET_DEVICE(0x1019),
69         INTEL_E1000_ETHERNET_DEVICE(0x101A),
70         INTEL_E1000_ETHERNET_DEVICE(0x101D),
71         INTEL_E1000_ETHERNET_DEVICE(0x101E),
72         INTEL_E1000_ETHERNET_DEVICE(0x1026),
73         INTEL_E1000_ETHERNET_DEVICE(0x1027),
74         INTEL_E1000_ETHERNET_DEVICE(0x1028),
75         INTEL_E1000_ETHERNET_DEVICE(0x1049),
76         INTEL_E1000_ETHERNET_DEVICE(0x104A),
77         INTEL_E1000_ETHERNET_DEVICE(0x104B),
78         INTEL_E1000_ETHERNET_DEVICE(0x104C),
79         INTEL_E1000_ETHERNET_DEVICE(0x104D),
80         INTEL_E1000_ETHERNET_DEVICE(0x105E),
81         INTEL_E1000_ETHERNET_DEVICE(0x105F),
82         INTEL_E1000_ETHERNET_DEVICE(0x1060),
83         INTEL_E1000_ETHERNET_DEVICE(0x1075),
84         INTEL_E1000_ETHERNET_DEVICE(0x1076),
85         INTEL_E1000_ETHERNET_DEVICE(0x1077),
86         INTEL_E1000_ETHERNET_DEVICE(0x1078),
87         INTEL_E1000_ETHERNET_DEVICE(0x1079),
88         INTEL_E1000_ETHERNET_DEVICE(0x107A),
89         INTEL_E1000_ETHERNET_DEVICE(0x107B),
90         INTEL_E1000_ETHERNET_DEVICE(0x107C),
91         INTEL_E1000_ETHERNET_DEVICE(0x107D),
92         INTEL_E1000_ETHERNET_DEVICE(0x107E),
93         INTEL_E1000_ETHERNET_DEVICE(0x107F),
94         INTEL_E1000_ETHERNET_DEVICE(0x108A),
95         INTEL_E1000_ETHERNET_DEVICE(0x108B),
96         INTEL_E1000_ETHERNET_DEVICE(0x108C),
97         INTEL_E1000_ETHERNET_DEVICE(0x1096),
98         INTEL_E1000_ETHERNET_DEVICE(0x1098),
99         INTEL_E1000_ETHERNET_DEVICE(0x1099),
100         INTEL_E1000_ETHERNET_DEVICE(0x109A),
101         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
102         INTEL_E1000_ETHERNET_DEVICE(0x10B9),
103         INTEL_E1000_ETHERNET_DEVICE(0x10BA),
104         INTEL_E1000_ETHERNET_DEVICE(0x10BB),
105         /* required last entry */
106         {0,}
107 };
108
109 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
110
111 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
112                                     struct e1000_tx_ring *txdr);
113 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
114                                     struct e1000_rx_ring *rxdr);
115 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
116                                     struct e1000_tx_ring *tx_ring);
117 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
118                                     struct e1000_rx_ring *rx_ring);
119
120 /* Local Function Prototypes */
121
122 static int e1000_init_module(void);
123 static void e1000_exit_module(void);
124 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
125 static void __devexit e1000_remove(struct pci_dev *pdev);
126 static int e1000_alloc_queues(struct e1000_adapter *adapter);
127 static int e1000_sw_init(struct e1000_adapter *adapter);
128 static int e1000_open(struct net_device *netdev);
129 static int e1000_close(struct net_device *netdev);
130 static void e1000_configure_tx(struct e1000_adapter *adapter);
131 static void e1000_configure_rx(struct e1000_adapter *adapter);
132 static void e1000_setup_rctl(struct e1000_adapter *adapter);
133 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
134 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
135 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
136                                 struct e1000_tx_ring *tx_ring);
137 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
138                                 struct e1000_rx_ring *rx_ring);
139 static void e1000_set_multi(struct net_device *netdev);
140 static void e1000_update_phy_info(unsigned long data);
141 static void e1000_watchdog(unsigned long data);
142 static void e1000_82547_tx_fifo_stall(unsigned long data);
143 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
144 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
145 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
146 static int e1000_set_mac(struct net_device *netdev, void *p);
147 static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
148 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
149                                     struct e1000_tx_ring *tx_ring);
150 #ifdef CONFIG_E1000_NAPI
151 static int e1000_clean(struct net_device *poll_dev, int *budget);
152 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
153                                     struct e1000_rx_ring *rx_ring,
154                                     int *work_done, int work_to_do);
155 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
156                                        struct e1000_rx_ring *rx_ring,
157                                        int *work_done, int work_to_do);
158 #else
159 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
160                                     struct e1000_rx_ring *rx_ring);
161 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
162                                        struct e1000_rx_ring *rx_ring);
163 #endif
164 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
165                                    struct e1000_rx_ring *rx_ring,
166                                    int cleaned_count);
167 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
168                                       struct e1000_rx_ring *rx_ring,
169                                       int cleaned_count);
170 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
171 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
172                            int cmd);
173 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
174 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
175 static void e1000_tx_timeout(struct net_device *dev);
176 static void e1000_reset_task(struct net_device *dev);
177 static void e1000_smartspeed(struct e1000_adapter *adapter);
178 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
179                                        struct sk_buff *skb);
180
181 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
182 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
183 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
184 static void e1000_restore_vlan(struct e1000_adapter *adapter);
185
186 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
187 #ifdef CONFIG_PM
188 static int e1000_resume(struct pci_dev *pdev);
189 #endif
190 static void e1000_shutdown(struct pci_dev *pdev);
191
192 #ifdef CONFIG_NET_POLL_CONTROLLER
193 /* for netdump / net console */
194 static void e1000_netpoll (struct net_device *netdev);
195 #endif
196
197 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
198                      pci_channel_state_t state);
199 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
200 static void e1000_io_resume(struct pci_dev *pdev);
201
202 static struct pci_error_handlers e1000_err_handler = {
203         .error_detected = e1000_io_error_detected,
204         .slot_reset = e1000_io_slot_reset,
205         .resume = e1000_io_resume,
206 };
207
208 static struct pci_driver e1000_driver = {
209         .name     = e1000_driver_name,
210         .id_table = e1000_pci_tbl,
211         .probe    = e1000_probe,
212         .remove   = __devexit_p(e1000_remove),
213         /* Power Managment Hooks */
214         .suspend  = e1000_suspend,
215 #ifdef CONFIG_PM
216         .resume   = e1000_resume,
217 #endif
218         .shutdown = e1000_shutdown,
219         .err_handler = &e1000_err_handler
220 };
221
222 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
223 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
224 MODULE_LICENSE("GPL");
225 MODULE_VERSION(DRV_VERSION);
226
227 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
228 module_param(debug, int, 0);
229 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
230
231 /**
232  * e1000_init_module - Driver Registration Routine
233  *
234  * e1000_init_module is the first routine called when the driver is
235  * loaded. All it does is register with the PCI subsystem.
236  **/
237
238 static int __init
239 e1000_init_module(void)
240 {
241         int ret;
242         printk(KERN_INFO "%s - version %s\n",
243                e1000_driver_string, e1000_driver_version);
244
245         printk(KERN_INFO "%s\n", e1000_copyright);
246
247         ret = pci_module_init(&e1000_driver);
248
249         return ret;
250 }
251
252 module_init(e1000_init_module);
253
254 /**
255  * e1000_exit_module - Driver Exit Cleanup Routine
256  *
257  * e1000_exit_module is called just before the driver is removed
258  * from memory.
259  **/
260
261 static void __exit
262 e1000_exit_module(void)
263 {
264         pci_unregister_driver(&e1000_driver);
265 }
266
267 module_exit(e1000_exit_module);
268
269 static int e1000_request_irq(struct e1000_adapter *adapter)
270 {
271         struct net_device *netdev = adapter->netdev;
272         int flags, err = 0;
273
274         flags = IRQF_SHARED;
275 #ifdef CONFIG_PCI_MSI
276         if (adapter->hw.mac_type > e1000_82547_rev_2) {
277                 adapter->have_msi = TRUE;
278                 if ((err = pci_enable_msi(adapter->pdev))) {
279                         DPRINTK(PROBE, ERR,
280                          "Unable to allocate MSI interrupt Error: %d\n", err);
281                         adapter->have_msi = FALSE;
282                 }
283         }
284         if (adapter->have_msi)
285                 flags &= ~IRQF_SHARED;
286 #endif
287         if ((err = request_irq(adapter->pdev->irq, &e1000_intr, flags,
288                                netdev->name, netdev)))
289                 DPRINTK(PROBE, ERR,
290                         "Unable to allocate interrupt Error: %d\n", err);
291
292         return err;
293 }
294
295 static void e1000_free_irq(struct e1000_adapter *adapter)
296 {
297         struct net_device *netdev = adapter->netdev;
298
299         free_irq(adapter->pdev->irq, netdev);
300
301 #ifdef CONFIG_PCI_MSI
302         if (adapter->have_msi)
303                 pci_disable_msi(adapter->pdev);
304 #endif
305 }
306
307 /**
308  * e1000_irq_disable - Mask off interrupt generation on the NIC
309  * @adapter: board private structure
310  **/
311
312 static void
313 e1000_irq_disable(struct e1000_adapter *adapter)
314 {
315         atomic_inc(&adapter->irq_sem);
316         E1000_WRITE_REG(&adapter->hw, IMC, ~0);
317         E1000_WRITE_FLUSH(&adapter->hw);
318         synchronize_irq(adapter->pdev->irq);
319 }
320
321 /**
322  * e1000_irq_enable - Enable default interrupt generation settings
323  * @adapter: board private structure
324  **/
325
326 static void
327 e1000_irq_enable(struct e1000_adapter *adapter)
328 {
329         if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
330                 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
331                 E1000_WRITE_FLUSH(&adapter->hw);
332         }
333 }
334
335 static void
336 e1000_update_mng_vlan(struct e1000_adapter *adapter)
337 {
338         struct net_device *netdev = adapter->netdev;
339         uint16_t vid = adapter->hw.mng_cookie.vlan_id;
340         uint16_t old_vid = adapter->mng_vlan_id;
341         if (adapter->vlgrp) {
342                 if (!adapter->vlgrp->vlan_devices[vid]) {
343                         if (adapter->hw.mng_cookie.status &
344                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
345                                 e1000_vlan_rx_add_vid(netdev, vid);
346                                 adapter->mng_vlan_id = vid;
347                         } else
348                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
349
350                         if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
351                                         (vid != old_vid) &&
352                                         !adapter->vlgrp->vlan_devices[old_vid])
353                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
354                 } else
355                         adapter->mng_vlan_id = vid;
356         }
357 }
358
359 /**
360  * e1000_release_hw_control - release control of the h/w to f/w
361  * @adapter: address of board private structure
362  *
363  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
364  * For ASF and Pass Through versions of f/w this means that the
365  * driver is no longer loaded. For AMT version (only with 82573) i
366  * of the f/w this means that the netowrk i/f is closed.
367  *
368  **/
369
370 static void
371 e1000_release_hw_control(struct e1000_adapter *adapter)
372 {
373         uint32_t ctrl_ext;
374         uint32_t swsm;
375         uint32_t extcnf;
376
377         /* Let firmware taken over control of h/w */
378         switch (adapter->hw.mac_type) {
379         case e1000_82571:
380         case e1000_82572:
381         case e1000_80003es2lan:
382                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
383                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
384                                 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
385                 break;
386         case e1000_82573:
387                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
388                 E1000_WRITE_REG(&adapter->hw, SWSM,
389                                 swsm & ~E1000_SWSM_DRV_LOAD);
390         case e1000_ich8lan:
391                 extcnf = E1000_READ_REG(&adapter->hw, CTRL_EXT);
392                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
393                                 extcnf & ~E1000_CTRL_EXT_DRV_LOAD);
394                 break;
395         default:
396                 break;
397         }
398 }
399
400 /**
401  * e1000_get_hw_control - get control of the h/w from f/w
402  * @adapter: address of board private structure
403  *
404  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
405  * For ASF and Pass Through versions of f/w this means that
406  * the driver is loaded. For AMT version (only with 82573)
407  * of the f/w this means that the netowrk i/f is open.
408  *
409  **/
410
411 static void
412 e1000_get_hw_control(struct e1000_adapter *adapter)
413 {
414         uint32_t ctrl_ext;
415         uint32_t swsm;
416         uint32_t extcnf;
417         /* Let firmware know the driver has taken over */
418         switch (adapter->hw.mac_type) {
419         case e1000_82571:
420         case e1000_82572:
421         case e1000_80003es2lan:
422                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
423                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
424                                 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
425                 break;
426         case e1000_82573:
427                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
428                 E1000_WRITE_REG(&adapter->hw, SWSM,
429                                 swsm | E1000_SWSM_DRV_LOAD);
430                 break;
431         case e1000_ich8lan:
432                 extcnf = E1000_READ_REG(&adapter->hw, EXTCNF_CTRL);
433                 E1000_WRITE_REG(&adapter->hw, EXTCNF_CTRL,
434                                 extcnf | E1000_EXTCNF_CTRL_SWFLAG);
435                 break;
436         default:
437                 break;
438         }
439 }
440
441 int
442 e1000_up(struct e1000_adapter *adapter)
443 {
444         struct net_device *netdev = adapter->netdev;
445         int i;
446
447         /* hardware has been reset, we need to reload some things */
448
449         e1000_set_multi(netdev);
450
451         e1000_restore_vlan(adapter);
452
453         e1000_configure_tx(adapter);
454         e1000_setup_rctl(adapter);
455         e1000_configure_rx(adapter);
456         /* call E1000_DESC_UNUSED which always leaves
457          * at least 1 descriptor unused to make sure
458          * next_to_use != next_to_clean */
459         for (i = 0; i < adapter->num_rx_queues; i++) {
460                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
461                 adapter->alloc_rx_buf(adapter, ring,
462                                       E1000_DESC_UNUSED(ring));
463         }
464
465         adapter->tx_queue_len = netdev->tx_queue_len;
466
467         mod_timer(&adapter->watchdog_timer, jiffies);
468
469 #ifdef CONFIG_E1000_NAPI
470         netif_poll_enable(netdev);
471 #endif
472         e1000_irq_enable(adapter);
473
474         return 0;
475 }
476
477 /**
478  * e1000_power_up_phy - restore link in case the phy was powered down
479  * @adapter: address of board private structure
480  *
481  * The phy may be powered down to save power and turn off link when the
482  * driver is unloaded and wake on lan is not enabled (among others)
483  * *** this routine MUST be followed by a call to e1000_reset ***
484  *
485  **/
486
487 static void e1000_power_up_phy(struct e1000_adapter *adapter)
488 {
489         uint16_t mii_reg = 0;
490
491         /* Just clear the power down bit to wake the phy back up */
492         if (adapter->hw.media_type == e1000_media_type_copper) {
493                 /* according to the manual, the phy will retain its
494                  * settings across a power-down/up cycle */
495                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
496                 mii_reg &= ~MII_CR_POWER_DOWN;
497                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
498         }
499 }
500
501 static void e1000_power_down_phy(struct e1000_adapter *adapter)
502 {
503         boolean_t mng_mode_enabled = (adapter->hw.mac_type >= e1000_82571) &&
504                                       e1000_check_mng_mode(&adapter->hw);
505         /* Power down the PHY so no link is implied when interface is down
506          * The PHY cannot be powered down if any of the following is TRUE
507          * (a) WoL is enabled
508          * (b) AMT is active
509          * (c) SoL/IDER session is active */
510         if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
511             adapter->hw.mac_type != e1000_ich8lan &&
512             adapter->hw.media_type == e1000_media_type_copper &&
513             !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN) &&
514             !mng_mode_enabled &&
515             !e1000_check_phy_reset_block(&adapter->hw)) {
516                 uint16_t mii_reg = 0;
517                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
518                 mii_reg |= MII_CR_POWER_DOWN;
519                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
520                 mdelay(1);
521         }
522 }
523
524 void
525 e1000_down(struct e1000_adapter *adapter)
526 {
527         struct net_device *netdev = adapter->netdev;
528
529         e1000_irq_disable(adapter);
530
531         del_timer_sync(&adapter->tx_fifo_stall_timer);
532         del_timer_sync(&adapter->watchdog_timer);
533         del_timer_sync(&adapter->phy_info_timer);
534
535 #ifdef CONFIG_E1000_NAPI
536         netif_poll_disable(netdev);
537 #endif
538         netdev->tx_queue_len = adapter->tx_queue_len;
539         adapter->link_speed = 0;
540         adapter->link_duplex = 0;
541         netif_carrier_off(netdev);
542         netif_stop_queue(netdev);
543
544         e1000_reset(adapter);
545         e1000_clean_all_tx_rings(adapter);
546         e1000_clean_all_rx_rings(adapter);
547 }
548
549 void
550 e1000_reinit_locked(struct e1000_adapter *adapter)
551 {
552         WARN_ON(in_interrupt());
553         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
554                 msleep(1);
555         e1000_down(adapter);
556         e1000_up(adapter);
557         clear_bit(__E1000_RESETTING, &adapter->flags);
558 }
559
560 void
561 e1000_reset(struct e1000_adapter *adapter)
562 {
563         uint32_t pba, manc;
564         uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
565
566         /* Repartition Pba for greater than 9k mtu
567          * To take effect CTRL.RST is required.
568          */
569
570         switch (adapter->hw.mac_type) {
571         case e1000_82547:
572         case e1000_82547_rev_2:
573                 pba = E1000_PBA_30K;
574                 break;
575         case e1000_82571:
576         case e1000_82572:
577         case e1000_80003es2lan:
578                 pba = E1000_PBA_38K;
579                 break;
580         case e1000_82573:
581                 pba = E1000_PBA_12K;
582                 break;
583         case e1000_ich8lan:
584                 pba = E1000_PBA_8K;
585                 break;
586         default:
587                 pba = E1000_PBA_48K;
588                 break;
589         }
590
591         if ((adapter->hw.mac_type != e1000_82573) &&
592            (adapter->netdev->mtu > E1000_RXBUFFER_8192))
593                 pba -= 8; /* allocate more FIFO for Tx */
594
595
596         if (adapter->hw.mac_type == e1000_82547) {
597                 adapter->tx_fifo_head = 0;
598                 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
599                 adapter->tx_fifo_size =
600                         (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
601                 atomic_set(&adapter->tx_fifo_stall, 0);
602         }
603
604         E1000_WRITE_REG(&adapter->hw, PBA, pba);
605
606         /* flow control settings */
607         /* Set the FC high water mark to 90% of the FIFO size.
608          * Required to clear last 3 LSB */
609         fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
610         /* We can't use 90% on small FIFOs because the remainder
611          * would be less than 1 full frame.  In this case, we size
612          * it to allow at least a full frame above the high water
613          *  mark. */
614         if (pba < E1000_PBA_16K)
615                 fc_high_water_mark = (pba * 1024) - 1600;
616
617         adapter->hw.fc_high_water = fc_high_water_mark;
618         adapter->hw.fc_low_water = fc_high_water_mark - 8;
619         if (adapter->hw.mac_type == e1000_80003es2lan)
620                 adapter->hw.fc_pause_time = 0xFFFF;
621         else
622                 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
623         adapter->hw.fc_send_xon = 1;
624         adapter->hw.fc = adapter->hw.original_fc;
625
626         /* Allow time for pending master requests to run */
627         e1000_reset_hw(&adapter->hw);
628         if (adapter->hw.mac_type >= e1000_82544)
629                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
630         if (e1000_init_hw(&adapter->hw))
631                 DPRINTK(PROBE, ERR, "Hardware Error\n");
632         e1000_update_mng_vlan(adapter);
633         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
634         E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
635
636         e1000_reset_adaptive(&adapter->hw);
637         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
638
639         if (!adapter->smart_power_down &&
640             (adapter->hw.mac_type == e1000_82571 ||
641              adapter->hw.mac_type == e1000_82572)) {
642                 uint16_t phy_data = 0;
643                 /* speed up time to link by disabling smart power down, ignore
644                  * the return value of this function because there is nothing
645                  * different we would do if it failed */
646                 e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
647                                    &phy_data);
648                 phy_data &= ~IGP02E1000_PM_SPD;
649                 e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
650                                     phy_data);
651         }
652
653         if (adapter->hw.mac_type < e1000_ich8lan)
654         /* FIXME: this code is duplicate and wrong for PCI Express */
655         if (adapter->en_mng_pt) {
656                 manc = E1000_READ_REG(&adapter->hw, MANC);
657                 manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
658                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
659         }
660 }
661
662 /**
663  * e1000_probe - Device Initialization Routine
664  * @pdev: PCI device information struct
665  * @ent: entry in e1000_pci_tbl
666  *
667  * Returns 0 on success, negative on failure
668  *
669  * e1000_probe initializes an adapter identified by a pci_dev structure.
670  * The OS initialization, configuring of the adapter private structure,
671  * and a hardware reset occur.
672  **/
673
674 static int __devinit
675 e1000_probe(struct pci_dev *pdev,
676             const struct pci_device_id *ent)
677 {
678         struct net_device *netdev;
679         struct e1000_adapter *adapter;
680         unsigned long mmio_start, mmio_len;
681         unsigned long flash_start, flash_len;
682
683         static int cards_found = 0;
684         static int e1000_ksp3_port_a = 0; /* global ksp3 port a indication */
685         int i, err, pci_using_dac;
686         uint16_t eeprom_data;
687         uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
688         if ((err = pci_enable_device(pdev)))
689                 return err;
690
691         if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
692             !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
693                 pci_using_dac = 1;
694         } else {
695                 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) &&
696                     (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
697                         E1000_ERR("No usable DMA configuration, aborting\n");
698                         return err;
699                 }
700                 pci_using_dac = 0;
701         }
702
703         if ((err = pci_request_regions(pdev, e1000_driver_name)))
704                 return err;
705
706         pci_set_master(pdev);
707
708         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
709         if (!netdev) {
710                 err = -ENOMEM;
711                 goto err_alloc_etherdev;
712         }
713
714         SET_MODULE_OWNER(netdev);
715         SET_NETDEV_DEV(netdev, &pdev->dev);
716
717         pci_set_drvdata(pdev, netdev);
718         adapter = netdev_priv(netdev);
719         adapter->netdev = netdev;
720         adapter->pdev = pdev;
721         adapter->hw.back = adapter;
722         adapter->msg_enable = (1 << debug) - 1;
723
724         mmio_start = pci_resource_start(pdev, BAR_0);
725         mmio_len = pci_resource_len(pdev, BAR_0);
726
727         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
728         if (!adapter->hw.hw_addr) {
729                 err = -EIO;
730                 goto err_ioremap;
731         }
732
733         for (i = BAR_1; i <= BAR_5; i++) {
734                 if (pci_resource_len(pdev, i) == 0)
735                         continue;
736                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
737                         adapter->hw.io_base = pci_resource_start(pdev, i);
738                         break;
739                 }
740         }
741
742         netdev->open = &e1000_open;
743         netdev->stop = &e1000_close;
744         netdev->hard_start_xmit = &e1000_xmit_frame;
745         netdev->get_stats = &e1000_get_stats;
746         netdev->set_multicast_list = &e1000_set_multi;
747         netdev->set_mac_address = &e1000_set_mac;
748         netdev->change_mtu = &e1000_change_mtu;
749         netdev->do_ioctl = &e1000_ioctl;
750         e1000_set_ethtool_ops(netdev);
751         netdev->tx_timeout = &e1000_tx_timeout;
752         netdev->watchdog_timeo = 5 * HZ;
753 #ifdef CONFIG_E1000_NAPI
754         netdev->poll = &e1000_clean;
755         netdev->weight = 64;
756 #endif
757         netdev->vlan_rx_register = e1000_vlan_rx_register;
758         netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
759         netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
760 #ifdef CONFIG_NET_POLL_CONTROLLER
761         netdev->poll_controller = e1000_netpoll;
762 #endif
763         strcpy(netdev->name, pci_name(pdev));
764
765         netdev->mem_start = mmio_start;
766         netdev->mem_end = mmio_start + mmio_len;
767         netdev->base_addr = adapter->hw.io_base;
768
769         adapter->bd_number = cards_found;
770
771         /* setup the private structure */
772
773         if ((err = e1000_sw_init(adapter)))
774                 goto err_sw_init;
775
776         /* Flash BAR mapping must happen after e1000_sw_init
777          * because it depends on mac_type */
778         if ((adapter->hw.mac_type == e1000_ich8lan) &&
779            (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
780                 flash_start = pci_resource_start(pdev, 1);
781                 flash_len = pci_resource_len(pdev, 1);
782                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
783                 if (!adapter->hw.flash_address) {
784                         err = -EIO;
785                         goto err_flashmap;
786                 }
787         }
788
789         if ((err = e1000_check_phy_reset_block(&adapter->hw)))
790                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
791
792         /* if ksp3, indicate if it's port a being setup */
793         if (pdev->device == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 &&
794                         e1000_ksp3_port_a == 0)
795                 adapter->ksp3_port_a = 1;
796         e1000_ksp3_port_a++;
797         /* Reset for multiple KP3 adapters */
798         if (e1000_ksp3_port_a == 4)
799                 e1000_ksp3_port_a = 0;
800
801         if (adapter->hw.mac_type >= e1000_82543) {
802                 netdev->features = NETIF_F_SG |
803                                    NETIF_F_HW_CSUM |
804                                    NETIF_F_HW_VLAN_TX |
805                                    NETIF_F_HW_VLAN_RX |
806                                    NETIF_F_HW_VLAN_FILTER;
807                 if (adapter->hw.mac_type == e1000_ich8lan)
808                         netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
809         }
810
811 #ifdef NETIF_F_TSO
812         if ((adapter->hw.mac_type >= e1000_82544) &&
813            (adapter->hw.mac_type != e1000_82547))
814                 netdev->features |= NETIF_F_TSO;
815
816 #ifdef NETIF_F_TSO_IPV6
817         if (adapter->hw.mac_type > e1000_82547_rev_2)
818                 netdev->features |= NETIF_F_TSO_IPV6;
819 #endif
820 #endif
821         if (pci_using_dac)
822                 netdev->features |= NETIF_F_HIGHDMA;
823
824         netdev->features |= NETIF_F_LLTX;
825
826         adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
827
828         /* initialize eeprom parameters */
829
830         if (e1000_init_eeprom_params(&adapter->hw)) {
831                 E1000_ERR("EEPROM initialization failed\n");
832                 return -EIO;
833         }
834
835         /* before reading the EEPROM, reset the controller to
836          * put the device in a known good starting state */
837
838         e1000_reset_hw(&adapter->hw);
839
840         /* make sure the EEPROM is good */
841
842         if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
843                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
844                 err = -EIO;
845                 goto err_eeprom;
846         }
847
848         /* copy the MAC address out of the EEPROM */
849
850         if (e1000_read_mac_addr(&adapter->hw))
851                 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
852         memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
853         memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
854
855         if (!is_valid_ether_addr(netdev->perm_addr)) {
856                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
857                 err = -EIO;
858                 goto err_eeprom;
859         }
860
861         e1000_read_part_num(&adapter->hw, &(adapter->part_num));
862
863         e1000_get_bus_info(&adapter->hw);
864
865         init_timer(&adapter->tx_fifo_stall_timer);
866         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
867         adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
868
869         init_timer(&adapter->watchdog_timer);
870         adapter->watchdog_timer.function = &e1000_watchdog;
871         adapter->watchdog_timer.data = (unsigned long) adapter;
872
873         init_timer(&adapter->phy_info_timer);
874         adapter->phy_info_timer.function = &e1000_update_phy_info;
875         adapter->phy_info_timer.data = (unsigned long) adapter;
876
877         INIT_WORK(&adapter->reset_task,
878                 (void (*)(void *))e1000_reset_task, netdev);
879
880         /* we're going to reset, so assume we have no link for now */
881
882         netif_carrier_off(netdev);
883         netif_stop_queue(netdev);
884
885         e1000_check_options(adapter);
886
887         /* Initial Wake on LAN setting
888          * If APM wake is enabled in the EEPROM,
889          * enable the ACPI Magic Packet filter
890          */
891
892         switch (adapter->hw.mac_type) {
893         case e1000_82542_rev2_0:
894         case e1000_82542_rev2_1:
895         case e1000_82543:
896                 break;
897         case e1000_82544:
898                 e1000_read_eeprom(&adapter->hw,
899                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
900                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
901                 break;
902         case e1000_ich8lan:
903                 e1000_read_eeprom(&adapter->hw,
904                         EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
905                 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
906                 break;
907         case e1000_82546:
908         case e1000_82546_rev_3:
909         case e1000_82571:
910         case e1000_80003es2lan:
911                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
912                         e1000_read_eeprom(&adapter->hw,
913                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
914                         break;
915                 }
916                 /* Fall Through */
917         default:
918                 e1000_read_eeprom(&adapter->hw,
919                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
920                 break;
921         }
922         if (eeprom_data & eeprom_apme_mask)
923                 adapter->wol |= E1000_WUFC_MAG;
924
925         /* print bus type/speed/width info */
926         {
927         struct e1000_hw *hw = &adapter->hw;
928         DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
929                 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
930                  (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
931                 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
932                  (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
933                  (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
934                  (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
935                  (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
936                 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
937                  (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
938                  (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
939                  "32-bit"));
940         }
941
942         for (i = 0; i < 6; i++)
943                 printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
944
945         /* reset the hardware with the new settings */
946         e1000_reset(adapter);
947
948         /* If the controller is 82573 and f/w is AMT, do not set
949          * DRV_LOAD until the interface is up.  For all other cases,
950          * let the f/w know that the h/w is now under the control
951          * of the driver. */
952         if (adapter->hw.mac_type != e1000_82573 ||
953             !e1000_check_mng_mode(&adapter->hw))
954                 e1000_get_hw_control(adapter);
955
956         strcpy(netdev->name, "eth%d");
957         if ((err = register_netdev(netdev)))
958                 goto err_register;
959
960         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
961
962         cards_found++;
963         return 0;
964
965 err_register:
966         if (adapter->hw.flash_address)
967                 iounmap(adapter->hw.flash_address);
968 err_flashmap:
969 err_sw_init:
970 err_eeprom:
971         iounmap(adapter->hw.hw_addr);
972 err_ioremap:
973         free_netdev(netdev);
974 err_alloc_etherdev:
975         pci_release_regions(pdev);
976         return err;
977 }
978
979 /**
980  * e1000_remove - Device Removal Routine
981  * @pdev: PCI device information struct
982  *
983  * e1000_remove is called by the PCI subsystem to alert the driver
984  * that it should release a PCI device.  The could be caused by a
985  * Hot-Plug event, or because the driver is going to be removed from
986  * memory.
987  **/
988
989 static void __devexit
990 e1000_remove(struct pci_dev *pdev)
991 {
992         struct net_device *netdev = pci_get_drvdata(pdev);
993         struct e1000_adapter *adapter = netdev_priv(netdev);
994         uint32_t manc;
995 #ifdef CONFIG_E1000_NAPI
996         int i;
997 #endif
998
999         flush_scheduled_work();
1000
1001         if (adapter->hw.mac_type >= e1000_82540 &&
1002            adapter->hw.mac_type != e1000_ich8lan &&
1003            adapter->hw.media_type == e1000_media_type_copper) {
1004                 manc = E1000_READ_REG(&adapter->hw, MANC);
1005                 if (manc & E1000_MANC_SMBUS_EN) {
1006                         manc |= E1000_MANC_ARP_EN;
1007                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
1008                 }
1009         }
1010
1011         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1012          * would have already happened in close and is redundant. */
1013         e1000_release_hw_control(adapter);
1014
1015         unregister_netdev(netdev);
1016 #ifdef CONFIG_E1000_NAPI
1017         for (i = 0; i < adapter->num_rx_queues; i++)
1018                 dev_put(&adapter->polling_netdev[i]);
1019 #endif
1020
1021         if (!e1000_check_phy_reset_block(&adapter->hw))
1022                 e1000_phy_hw_reset(&adapter->hw);
1023
1024         kfree(adapter->tx_ring);
1025         kfree(adapter->rx_ring);
1026 #ifdef CONFIG_E1000_NAPI
1027         kfree(adapter->polling_netdev);
1028 #endif
1029
1030         iounmap(adapter->hw.hw_addr);
1031         if (adapter->hw.flash_address)
1032                 iounmap(adapter->hw.flash_address);
1033         pci_release_regions(pdev);
1034
1035         free_netdev(netdev);
1036
1037         pci_disable_device(pdev);
1038 }
1039
1040 /**
1041  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1042  * @adapter: board private structure to initialize
1043  *
1044  * e1000_sw_init initializes the Adapter private data structure.
1045  * Fields are initialized based on PCI device information and
1046  * OS network device settings (MTU size).
1047  **/
1048
1049 static int __devinit
1050 e1000_sw_init(struct e1000_adapter *adapter)
1051 {
1052         struct e1000_hw *hw = &adapter->hw;
1053         struct net_device *netdev = adapter->netdev;
1054         struct pci_dev *pdev = adapter->pdev;
1055 #ifdef CONFIG_E1000_NAPI
1056         int i;
1057 #endif
1058
1059         /* PCI config space info */
1060
1061         hw->vendor_id = pdev->vendor;
1062         hw->device_id = pdev->device;
1063         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1064         hw->subsystem_id = pdev->subsystem_device;
1065
1066         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
1067
1068         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1069
1070         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1071         adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
1072         hw->max_frame_size = netdev->mtu +
1073                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1074         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1075
1076         /* identify the MAC */
1077
1078         if (e1000_set_mac_type(hw)) {
1079                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1080                 return -EIO;
1081         }
1082
1083         switch (hw->mac_type) {
1084         default:
1085                 break;
1086         case e1000_82541:
1087         case e1000_82547:
1088         case e1000_82541_rev_2:
1089         case e1000_82547_rev_2:
1090                 hw->phy_init_script = 1;
1091                 break;
1092         }
1093
1094         e1000_set_media_type(hw);
1095
1096         hw->wait_autoneg_complete = FALSE;
1097         hw->tbi_compatibility_en = TRUE;
1098         hw->adaptive_ifs = TRUE;
1099
1100         /* Copper options */
1101
1102         if (hw->media_type == e1000_media_type_copper) {
1103                 hw->mdix = AUTO_ALL_MODES;
1104                 hw->disable_polarity_correction = FALSE;
1105                 hw->master_slave = E1000_MASTER_SLAVE;
1106         }
1107
1108         adapter->num_tx_queues = 1;
1109         adapter->num_rx_queues = 1;
1110
1111         if (e1000_alloc_queues(adapter)) {
1112                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1113                 return -ENOMEM;
1114         }
1115
1116 #ifdef CONFIG_E1000_NAPI
1117         for (i = 0; i < adapter->num_rx_queues; i++) {
1118                 adapter->polling_netdev[i].priv = adapter;
1119                 adapter->polling_netdev[i].poll = &e1000_clean;
1120                 adapter->polling_netdev[i].weight = 64;
1121                 dev_hold(&adapter->polling_netdev[i]);
1122                 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1123         }
1124         spin_lock_init(&adapter->tx_queue_lock);
1125 #endif
1126
1127         atomic_set(&adapter->irq_sem, 1);
1128         spin_lock_init(&adapter->stats_lock);
1129
1130         return 0;
1131 }
1132
1133 /**
1134  * e1000_alloc_queues - Allocate memory for all rings
1135  * @adapter: board private structure to initialize
1136  *
1137  * We allocate one ring per queue at run-time since we don't know the
1138  * number of queues at compile-time.  The polling_netdev array is
1139  * intended for Multiqueue, but should work fine with a single queue.
1140  **/
1141
1142 static int __devinit
1143 e1000_alloc_queues(struct e1000_adapter *adapter)
1144 {
1145         int size;
1146
1147         size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
1148         adapter->tx_ring = kmalloc(size, GFP_KERNEL);
1149         if (!adapter->tx_ring)
1150                 return -ENOMEM;
1151         memset(adapter->tx_ring, 0, size);
1152
1153         size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
1154         adapter->rx_ring = kmalloc(size, GFP_KERNEL);
1155         if (!adapter->rx_ring) {
1156                 kfree(adapter->tx_ring);
1157                 return -ENOMEM;
1158         }
1159         memset(adapter->rx_ring, 0, size);
1160
1161 #ifdef CONFIG_E1000_NAPI
1162         size = sizeof(struct net_device) * adapter->num_rx_queues;
1163         adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
1164         if (!adapter->polling_netdev) {
1165                 kfree(adapter->tx_ring);
1166                 kfree(adapter->rx_ring);
1167                 return -ENOMEM;
1168         }
1169         memset(adapter->polling_netdev, 0, size);
1170 #endif
1171
1172         return E1000_SUCCESS;
1173 }
1174
1175 /**
1176  * e1000_open - Called when a network interface is made active
1177  * @netdev: network interface device structure
1178  *
1179  * Returns 0 on success, negative value on failure
1180  *
1181  * The open entry point is called when a network interface is made
1182  * active by the system (IFF_UP).  At this point all resources needed
1183  * for transmit and receive operations are allocated, the interrupt
1184  * handler is registered with the OS, the watchdog timer is started,
1185  * and the stack is notified that the interface is ready.
1186  **/
1187
1188 static int
1189 e1000_open(struct net_device *netdev)
1190 {
1191         struct e1000_adapter *adapter = netdev_priv(netdev);
1192         int err;
1193
1194         /* disallow open during test */
1195         if (test_bit(__E1000_DRIVER_TESTING, &adapter->flags))
1196                 return -EBUSY;
1197
1198         /* allocate transmit descriptors */
1199
1200         if ((err = e1000_setup_all_tx_resources(adapter)))
1201                 goto err_setup_tx;
1202
1203         /* allocate receive descriptors */
1204
1205         if ((err = e1000_setup_all_rx_resources(adapter)))
1206                 goto err_setup_rx;
1207
1208         err = e1000_request_irq(adapter);
1209         if (err)
1210                 goto err_up;
1211
1212         e1000_power_up_phy(adapter);
1213
1214         if ((err = e1000_up(adapter)))
1215                 goto err_up;
1216         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1217         if ((adapter->hw.mng_cookie.status &
1218                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1219                 e1000_update_mng_vlan(adapter);
1220         }
1221
1222         /* If AMT is enabled, let the firmware know that the network
1223          * interface is now open */
1224         if (adapter->hw.mac_type == e1000_82573 &&
1225             e1000_check_mng_mode(&adapter->hw))
1226                 e1000_get_hw_control(adapter);
1227
1228         return E1000_SUCCESS;
1229
1230 err_up:
1231         e1000_free_all_rx_resources(adapter);
1232 err_setup_rx:
1233         e1000_free_all_tx_resources(adapter);
1234 err_setup_tx:
1235         e1000_reset(adapter);
1236
1237         return err;
1238 }
1239
1240 /**
1241  * e1000_close - Disables a network interface
1242  * @netdev: network interface device structure
1243  *
1244  * Returns 0, this is not allowed to fail
1245  *
1246  * The close entry point is called when an interface is de-activated
1247  * by the OS.  The hardware is still under the drivers control, but
1248  * needs to be disabled.  A global MAC reset is issued to stop the
1249  * hardware, and all transmit and receive resources are freed.
1250  **/
1251
1252 static int
1253 e1000_close(struct net_device *netdev)
1254 {
1255         struct e1000_adapter *adapter = netdev_priv(netdev);
1256
1257         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1258         e1000_down(adapter);
1259         e1000_power_down_phy(adapter);
1260         e1000_free_irq(adapter);
1261
1262         e1000_free_all_tx_resources(adapter);
1263         e1000_free_all_rx_resources(adapter);
1264
1265         if ((adapter->hw.mng_cookie.status &
1266                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1267                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1268         }
1269
1270         /* If AMT is enabled, let the firmware know that the network
1271          * interface is now closed */
1272         if (adapter->hw.mac_type == e1000_82573 &&
1273             e1000_check_mng_mode(&adapter->hw))
1274                 e1000_release_hw_control(adapter);
1275
1276         return 0;
1277 }
1278
1279 /**
1280  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1281  * @adapter: address of board private structure
1282  * @start: address of beginning of memory
1283  * @len: length of memory
1284  **/
1285 static boolean_t
1286 e1000_check_64k_bound(struct e1000_adapter *adapter,
1287                       void *start, unsigned long len)
1288 {
1289         unsigned long begin = (unsigned long) start;
1290         unsigned long end = begin + len;
1291
1292         /* First rev 82545 and 82546 need to not allow any memory
1293          * write location to cross 64k boundary due to errata 23 */
1294         if (adapter->hw.mac_type == e1000_82545 ||
1295             adapter->hw.mac_type == e1000_82546) {
1296                 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1297         }
1298
1299         return TRUE;
1300 }
1301
1302 /**
1303  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1304  * @adapter: board private structure
1305  * @txdr:    tx descriptor ring (for a specific queue) to setup
1306  *
1307  * Return 0 on success, negative on failure
1308  **/
1309
1310 static int
1311 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1312                          struct e1000_tx_ring *txdr)
1313 {
1314         struct pci_dev *pdev = adapter->pdev;
1315         int size;
1316
1317         size = sizeof(struct e1000_buffer) * txdr->count;
1318         txdr->buffer_info = vmalloc(size);
1319         if (!txdr->buffer_info) {
1320                 DPRINTK(PROBE, ERR,
1321                 "Unable to allocate memory for the transmit descriptor ring\n");
1322                 return -ENOMEM;
1323         }
1324         memset(txdr->buffer_info, 0, size);
1325
1326         /* round up to nearest 4K */
1327
1328         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1329         E1000_ROUNDUP(txdr->size, 4096);
1330
1331         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1332         if (!txdr->desc) {
1333 setup_tx_desc_die:
1334                 vfree(txdr->buffer_info);
1335                 DPRINTK(PROBE, ERR,
1336                 "Unable to allocate memory for the transmit descriptor ring\n");
1337                 return -ENOMEM;
1338         }
1339
1340         /* Fix for errata 23, can't cross 64kB boundary */
1341         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1342                 void *olddesc = txdr->desc;
1343                 dma_addr_t olddma = txdr->dma;
1344                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1345                                      "at %p\n", txdr->size, txdr->desc);
1346                 /* Try again, without freeing the previous */
1347                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1348                 /* Failed allocation, critical failure */
1349                 if (!txdr->desc) {
1350                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1351                         goto setup_tx_desc_die;
1352                 }
1353
1354                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1355                         /* give up */
1356                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1357                                             txdr->dma);
1358                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1359                         DPRINTK(PROBE, ERR,
1360                                 "Unable to allocate aligned memory "
1361                                 "for the transmit descriptor ring\n");
1362                         vfree(txdr->buffer_info);
1363                         return -ENOMEM;
1364                 } else {
1365                         /* Free old allocation, new allocation was successful */
1366                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1367                 }
1368         }
1369         memset(txdr->desc, 0, txdr->size);
1370
1371         txdr->next_to_use = 0;
1372         txdr->next_to_clean = 0;
1373         spin_lock_init(&txdr->tx_lock);
1374
1375         return 0;
1376 }
1377
1378 /**
1379  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1380  *                                (Descriptors) for all queues
1381  * @adapter: board private structure
1382  *
1383  * If this function returns with an error, then it's possible one or
1384  * more of the rings is populated (while the rest are not).  It is the
1385  * callers duty to clean those orphaned rings.
1386  *
1387  * Return 0 on success, negative on failure
1388  **/
1389
1390 int
1391 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1392 {
1393         int i, err = 0;
1394
1395         for (i = 0; i < adapter->num_tx_queues; i++) {
1396                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1397                 if (err) {
1398                         DPRINTK(PROBE, ERR,
1399                                 "Allocation for Tx Queue %u failed\n", i);
1400                         break;
1401                 }
1402         }
1403
1404         return err;
1405 }
1406
1407 /**
1408  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1409  * @adapter: board private structure
1410  *
1411  * Configure the Tx unit of the MAC after a reset.
1412  **/
1413
1414 static void
1415 e1000_configure_tx(struct e1000_adapter *adapter)
1416 {
1417         uint64_t tdba;
1418         struct e1000_hw *hw = &adapter->hw;
1419         uint32_t tdlen, tctl, tipg, tarc;
1420         uint32_t ipgr1, ipgr2;
1421
1422         /* Setup the HW Tx Head and Tail descriptor pointers */
1423
1424         switch (adapter->num_tx_queues) {
1425         case 1:
1426         default:
1427                 tdba = adapter->tx_ring[0].dma;
1428                 tdlen = adapter->tx_ring[0].count *
1429                         sizeof(struct e1000_tx_desc);
1430                 E1000_WRITE_REG(hw, TDLEN, tdlen);
1431                 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1432                 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1433                 E1000_WRITE_REG(hw, TDT, 0);
1434                 E1000_WRITE_REG(hw, TDH, 0);
1435                 adapter->tx_ring[0].tdh = E1000_TDH;
1436                 adapter->tx_ring[0].tdt = E1000_TDT;
1437                 break;
1438         }
1439
1440         /* Set the default values for the Tx Inter Packet Gap timer */
1441
1442         if (hw->media_type == e1000_media_type_fiber ||
1443             hw->media_type == e1000_media_type_internal_serdes)
1444                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1445         else
1446                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1447
1448         switch (hw->mac_type) {
1449         case e1000_82542_rev2_0:
1450         case e1000_82542_rev2_1:
1451                 tipg = DEFAULT_82542_TIPG_IPGT;
1452                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1453                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1454                 break;
1455         case e1000_80003es2lan:
1456                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1457                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1458                 break;
1459         default:
1460                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1461                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1462                 break;
1463         }
1464         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1465         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1466         E1000_WRITE_REG(hw, TIPG, tipg);
1467
1468         /* Set the Tx Interrupt Delay register */
1469
1470         E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1471         if (hw->mac_type >= e1000_82540)
1472                 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1473
1474         /* Program the Transmit Control Register */
1475
1476         tctl = E1000_READ_REG(hw, TCTL);
1477
1478         tctl &= ~E1000_TCTL_CT;
1479         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1480                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1481
1482 #ifdef DISABLE_MULR
1483         /* disable Multiple Reads for debugging */
1484         tctl &= ~E1000_TCTL_MULR;
1485 #endif
1486
1487         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1488                 tarc = E1000_READ_REG(hw, TARC0);
1489                 tarc |= ((1 << 25) | (1 << 21));
1490                 E1000_WRITE_REG(hw, TARC0, tarc);
1491                 tarc = E1000_READ_REG(hw, TARC1);
1492                 tarc |= (1 << 25);
1493                 if (tctl & E1000_TCTL_MULR)
1494                         tarc &= ~(1 << 28);
1495                 else
1496                         tarc |= (1 << 28);
1497                 E1000_WRITE_REG(hw, TARC1, tarc);
1498         } else if (hw->mac_type == e1000_80003es2lan) {
1499                 tarc = E1000_READ_REG(hw, TARC0);
1500                 tarc |= 1;
1501                 if (hw->media_type == e1000_media_type_internal_serdes)
1502                         tarc |= (1 << 20);
1503                 E1000_WRITE_REG(hw, TARC0, tarc);
1504                 tarc = E1000_READ_REG(hw, TARC1);
1505                 tarc |= 1;
1506                 E1000_WRITE_REG(hw, TARC1, tarc);
1507         }
1508
1509         e1000_config_collision_dist(hw);
1510
1511         /* Setup Transmit Descriptor Settings for eop descriptor */
1512         adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
1513                 E1000_TXD_CMD_IFCS;
1514
1515         if (hw->mac_type < e1000_82543)
1516                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1517         else
1518                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1519
1520         /* Cache if we're 82544 running in PCI-X because we'll
1521          * need this to apply a workaround later in the send path. */
1522         if (hw->mac_type == e1000_82544 &&
1523             hw->bus_type == e1000_bus_type_pcix)
1524                 adapter->pcix_82544 = 1;
1525
1526         E1000_WRITE_REG(hw, TCTL, tctl);
1527
1528 }
1529
1530 /**
1531  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1532  * @adapter: board private structure
1533  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1534  *
1535  * Returns 0 on success, negative on failure
1536  **/
1537
1538 static int
1539 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1540                          struct e1000_rx_ring *rxdr)
1541 {
1542         struct pci_dev *pdev = adapter->pdev;
1543         int size, desc_len;
1544
1545         size = sizeof(struct e1000_buffer) * rxdr->count;
1546         rxdr->buffer_info = vmalloc(size);
1547         if (!rxdr->buffer_info) {
1548                 DPRINTK(PROBE, ERR,
1549                 "Unable to allocate memory for the receive descriptor ring\n");
1550                 return -ENOMEM;
1551         }
1552         memset(rxdr->buffer_info, 0, size);
1553
1554         size = sizeof(struct e1000_ps_page) * rxdr->count;
1555         rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1556         if (!rxdr->ps_page) {
1557                 vfree(rxdr->buffer_info);
1558                 DPRINTK(PROBE, ERR,
1559                 "Unable to allocate memory for the receive descriptor ring\n");
1560                 return -ENOMEM;
1561         }
1562         memset(rxdr->ps_page, 0, size);
1563
1564         size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1565         rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1566         if (!rxdr->ps_page_dma) {
1567                 vfree(rxdr->buffer_info);
1568                 kfree(rxdr->ps_page);
1569                 DPRINTK(PROBE, ERR,
1570                 "Unable to allocate memory for the receive descriptor ring\n");
1571                 return -ENOMEM;
1572         }
1573         memset(rxdr->ps_page_dma, 0, size);
1574
1575         if (adapter->hw.mac_type <= e1000_82547_rev_2)
1576                 desc_len = sizeof(struct e1000_rx_desc);
1577         else
1578                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1579
1580         /* Round up to nearest 4K */
1581
1582         rxdr->size = rxdr->count * desc_len;
1583         E1000_ROUNDUP(rxdr->size, 4096);
1584
1585         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1586
1587         if (!rxdr->desc) {
1588                 DPRINTK(PROBE, ERR,
1589                 "Unable to allocate memory for the receive descriptor ring\n");
1590 setup_rx_desc_die:
1591                 vfree(rxdr->buffer_info);
1592                 kfree(rxdr->ps_page);
1593                 kfree(rxdr->ps_page_dma);
1594                 return -ENOMEM;
1595         }
1596
1597         /* Fix for errata 23, can't cross 64kB boundary */
1598         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1599                 void *olddesc = rxdr->desc;
1600                 dma_addr_t olddma = rxdr->dma;
1601                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1602                                      "at %p\n", rxdr->size, rxdr->desc);
1603                 /* Try again, without freeing the previous */
1604                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1605                 /* Failed allocation, critical failure */
1606                 if (!rxdr->desc) {
1607                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1608                         DPRINTK(PROBE, ERR,
1609                                 "Unable to allocate memory "
1610                                 "for the receive descriptor ring\n");
1611                         goto setup_rx_desc_die;
1612                 }
1613
1614                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1615                         /* give up */
1616                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1617                                             rxdr->dma);
1618                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1619                         DPRINTK(PROBE, ERR,
1620                                 "Unable to allocate aligned memory "
1621                                 "for the receive descriptor ring\n");
1622                         goto setup_rx_desc_die;
1623                 } else {
1624                         /* Free old allocation, new allocation was successful */
1625                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1626                 }
1627         }
1628         memset(rxdr->desc, 0, rxdr->size);
1629
1630         rxdr->next_to_clean = 0;
1631         rxdr->next_to_use = 0;
1632
1633         return 0;
1634 }
1635
1636 /**
1637  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1638  *                                (Descriptors) for all queues
1639  * @adapter: board private structure
1640  *
1641  * If this function returns with an error, then it's possible one or
1642  * more of the rings is populated (while the rest are not).  It is the
1643  * callers duty to clean those orphaned rings.
1644  *
1645  * Return 0 on success, negative on failure
1646  **/
1647
1648 int
1649 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1650 {
1651         int i, err = 0;
1652
1653         for (i = 0; i < adapter->num_rx_queues; i++) {
1654                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1655                 if (err) {
1656                         DPRINTK(PROBE, ERR,
1657                                 "Allocation for Rx Queue %u failed\n", i);
1658                         break;
1659                 }
1660         }
1661
1662         return err;
1663 }
1664
1665 /**
1666  * e1000_setup_rctl - configure the receive control registers
1667  * @adapter: Board private structure
1668  **/
1669 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1670                         (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1671 static void
1672 e1000_setup_rctl(struct e1000_adapter *adapter)
1673 {
1674         uint32_t rctl, rfctl;
1675         uint32_t psrctl = 0;
1676 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1677         uint32_t pages = 0;
1678 #endif
1679
1680         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1681
1682         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1683
1684         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1685                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1686                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1687
1688         if (adapter->hw.tbi_compatibility_on == 1)
1689                 rctl |= E1000_RCTL_SBP;
1690         else
1691                 rctl &= ~E1000_RCTL_SBP;
1692
1693         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1694                 rctl &= ~E1000_RCTL_LPE;
1695         else
1696                 rctl |= E1000_RCTL_LPE;
1697
1698         /* Setup buffer sizes */
1699         rctl &= ~E1000_RCTL_SZ_4096;
1700         rctl |= E1000_RCTL_BSEX;
1701         switch (adapter->rx_buffer_len) {
1702                 case E1000_RXBUFFER_256:
1703                         rctl |= E1000_RCTL_SZ_256;
1704                         rctl &= ~E1000_RCTL_BSEX;
1705                         break;
1706                 case E1000_RXBUFFER_512:
1707                         rctl |= E1000_RCTL_SZ_512;
1708                         rctl &= ~E1000_RCTL_BSEX;
1709                         break;
1710                 case E1000_RXBUFFER_1024:
1711                         rctl |= E1000_RCTL_SZ_1024;
1712                         rctl &= ~E1000_RCTL_BSEX;
1713                         break;
1714                 case E1000_RXBUFFER_2048:
1715                 default:
1716                         rctl |= E1000_RCTL_SZ_2048;
1717                         rctl &= ~E1000_RCTL_BSEX;
1718                         break;
1719                 case E1000_RXBUFFER_4096:
1720                         rctl |= E1000_RCTL_SZ_4096;
1721                         break;
1722                 case E1000_RXBUFFER_8192:
1723                         rctl |= E1000_RCTL_SZ_8192;
1724                         break;
1725                 case E1000_RXBUFFER_16384:
1726                         rctl |= E1000_RCTL_SZ_16384;
1727                         break;
1728         }
1729
1730 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1731         /* 82571 and greater support packet-split where the protocol
1732          * header is placed in skb->data and the packet data is
1733          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1734          * In the case of a non-split, skb->data is linearly filled,
1735          * followed by the page buffers.  Therefore, skb->data is
1736          * sized to hold the largest protocol header.
1737          */
1738         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1739         if ((adapter->hw.mac_type > e1000_82547_rev_2) && (pages <= 3) &&
1740             PAGE_SIZE <= 16384)
1741                 adapter->rx_ps_pages = pages;
1742         else
1743                 adapter->rx_ps_pages = 0;
1744 #endif
1745         if (adapter->rx_ps_pages) {
1746                 /* Configure extra packet-split registers */
1747                 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1748                 rfctl |= E1000_RFCTL_EXTEN;
1749                 /* disable IPv6 packet split support */
1750                 rfctl |= E1000_RFCTL_IPV6_DIS;
1751                 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1752
1753                 rctl |= E1000_RCTL_DTYP_PS;
1754
1755                 psrctl |= adapter->rx_ps_bsize0 >>
1756                         E1000_PSRCTL_BSIZE0_SHIFT;
1757
1758                 switch (adapter->rx_ps_pages) {
1759                 case 3:
1760                         psrctl |= PAGE_SIZE <<
1761                                 E1000_PSRCTL_BSIZE3_SHIFT;
1762                 case 2:
1763                         psrctl |= PAGE_SIZE <<
1764                                 E1000_PSRCTL_BSIZE2_SHIFT;
1765                 case 1:
1766                         psrctl |= PAGE_SIZE >>
1767                                 E1000_PSRCTL_BSIZE1_SHIFT;
1768                         break;
1769                 }
1770
1771                 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1772         }
1773
1774         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1775 }
1776
1777 /**
1778  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1779  * @adapter: board private structure
1780  *
1781  * Configure the Rx unit of the MAC after a reset.
1782  **/
1783
1784 static void
1785 e1000_configure_rx(struct e1000_adapter *adapter)
1786 {
1787         uint64_t rdba;
1788         struct e1000_hw *hw = &adapter->hw;
1789         uint32_t rdlen, rctl, rxcsum, ctrl_ext;
1790
1791         if (adapter->rx_ps_pages) {
1792                 /* this is a 32 byte descriptor */
1793                 rdlen = adapter->rx_ring[0].count *
1794                         sizeof(union e1000_rx_desc_packet_split);
1795                 adapter->clean_rx = e1000_clean_rx_irq_ps;
1796                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1797         } else {
1798                 rdlen = adapter->rx_ring[0].count *
1799                         sizeof(struct e1000_rx_desc);
1800                 adapter->clean_rx = e1000_clean_rx_irq;
1801                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1802         }
1803
1804         /* disable receives while setting up the descriptors */
1805         rctl = E1000_READ_REG(hw, RCTL);
1806         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
1807
1808         /* set the Receive Delay Timer Register */
1809         E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
1810
1811         if (hw->mac_type >= e1000_82540) {
1812                 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
1813                 if (adapter->itr > 1)
1814                         E1000_WRITE_REG(hw, ITR,
1815                                 1000000000 / (adapter->itr * 256));
1816         }
1817
1818         if (hw->mac_type >= e1000_82571) {
1819                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1820                 /* Reset delay timers after every interrupt */
1821                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1822 #ifdef CONFIG_E1000_NAPI
1823                 /* Auto-Mask interrupts upon ICR read. */
1824                 ctrl_ext |= E1000_CTRL_EXT_IAME;
1825 #endif
1826                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1827                 E1000_WRITE_REG(hw, IAM, ~0);
1828                 E1000_WRITE_FLUSH(hw);
1829         }
1830
1831         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1832          * the Base and Length of the Rx Descriptor Ring */
1833         switch (adapter->num_rx_queues) {
1834         case 1:
1835         default:
1836                 rdba = adapter->rx_ring[0].dma;
1837                 E1000_WRITE_REG(hw, RDLEN, rdlen);
1838                 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
1839                 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1840                 E1000_WRITE_REG(hw, RDT, 0);
1841                 E1000_WRITE_REG(hw, RDH, 0);
1842                 adapter->rx_ring[0].rdh = E1000_RDH;
1843                 adapter->rx_ring[0].rdt = E1000_RDT;
1844                 break;
1845         }
1846
1847         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1848         if (hw->mac_type >= e1000_82543) {
1849                 rxcsum = E1000_READ_REG(hw, RXCSUM);
1850                 if (adapter->rx_csum == TRUE) {
1851                         rxcsum |= E1000_RXCSUM_TUOFL;
1852
1853                         /* Enable 82571 IPv4 payload checksum for UDP fragments
1854                          * Must be used in conjunction with packet-split. */
1855                         if ((hw->mac_type >= e1000_82571) &&
1856                             (adapter->rx_ps_pages)) {
1857                                 rxcsum |= E1000_RXCSUM_IPPCSE;
1858                         }
1859                 } else {
1860                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1861                         /* don't need to clear IPPCSE as it defaults to 0 */
1862                 }
1863                 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1864         }
1865
1866         /* Enable Receives */
1867         E1000_WRITE_REG(hw, RCTL, rctl);
1868 }
1869
1870 /**
1871  * e1000_free_tx_resources - Free Tx Resources per Queue
1872  * @adapter: board private structure
1873  * @tx_ring: Tx descriptor ring for a specific queue
1874  *
1875  * Free all transmit software resources
1876  **/
1877
1878 static void
1879 e1000_free_tx_resources(struct e1000_adapter *adapter,
1880                         struct e1000_tx_ring *tx_ring)
1881 {
1882         struct pci_dev *pdev = adapter->pdev;
1883
1884         e1000_clean_tx_ring(adapter, tx_ring);
1885
1886         vfree(tx_ring->buffer_info);
1887         tx_ring->buffer_info = NULL;
1888
1889         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1890
1891         tx_ring->desc = NULL;
1892 }
1893
1894 /**
1895  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1896  * @adapter: board private structure
1897  *
1898  * Free all transmit software resources
1899  **/
1900
1901 void
1902 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1903 {
1904         int i;
1905
1906         for (i = 0; i < adapter->num_tx_queues; i++)
1907                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1908 }
1909
1910 static void
1911 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1912                         struct e1000_buffer *buffer_info)
1913 {
1914         if (buffer_info->dma) {
1915                 pci_unmap_page(adapter->pdev,
1916                                 buffer_info->dma,
1917                                 buffer_info->length,
1918                                 PCI_DMA_TODEVICE);
1919         }
1920         if (buffer_info->skb)
1921                 dev_kfree_skb_any(buffer_info->skb);
1922         memset(buffer_info, 0, sizeof(struct e1000_buffer));
1923 }
1924
1925 /**
1926  * e1000_clean_tx_ring - Free Tx Buffers
1927  * @adapter: board private structure
1928  * @tx_ring: ring to be cleaned
1929  **/
1930
1931 static void
1932 e1000_clean_tx_ring(struct e1000_adapter *adapter,
1933                     struct e1000_tx_ring *tx_ring)
1934 {
1935         struct e1000_buffer *buffer_info;
1936         unsigned long size;
1937         unsigned int i;
1938
1939         /* Free all the Tx ring sk_buffs */
1940
1941         for (i = 0; i < tx_ring->count; i++) {
1942                 buffer_info = &tx_ring->buffer_info[i];
1943                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1944         }
1945
1946         size = sizeof(struct e1000_buffer) * tx_ring->count;
1947         memset(tx_ring->buffer_info, 0, size);
1948
1949         /* Zero out the descriptor ring */
1950
1951         memset(tx_ring->desc, 0, tx_ring->size);
1952
1953         tx_ring->next_to_use = 0;
1954         tx_ring->next_to_clean = 0;
1955         tx_ring->last_tx_tso = 0;
1956
1957         writel(0, adapter->hw.hw_addr + tx_ring->tdh);
1958         writel(0, adapter->hw.hw_addr + tx_ring->tdt);
1959 }
1960
1961 /**
1962  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
1963  * @adapter: board private structure
1964  **/
1965
1966 static void
1967 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
1968 {
1969         int i;
1970
1971         for (i = 0; i < adapter->num_tx_queues; i++)
1972                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1973 }
1974
1975 /**
1976  * e1000_free_rx_resources - Free Rx Resources
1977  * @adapter: board private structure
1978  * @rx_ring: ring to clean the resources from
1979  *
1980  * Free all receive software resources
1981  **/
1982
1983 static void
1984 e1000_free_rx_resources(struct e1000_adapter *adapter,
1985                         struct e1000_rx_ring *rx_ring)
1986 {
1987         struct pci_dev *pdev = adapter->pdev;
1988
1989         e1000_clean_rx_ring(adapter, rx_ring);
1990
1991         vfree(rx_ring->buffer_info);
1992         rx_ring->buffer_info = NULL;
1993         kfree(rx_ring->ps_page);
1994         rx_ring->ps_page = NULL;
1995         kfree(rx_ring->ps_page_dma);
1996         rx_ring->ps_page_dma = NULL;
1997
1998         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
1999
2000         rx_ring->desc = NULL;
2001 }
2002
2003 /**
2004  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2005  * @adapter: board private structure
2006  *
2007  * Free all receive software resources
2008  **/
2009
2010 void
2011 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2012 {
2013         int i;
2014
2015         for (i = 0; i < adapter->num_rx_queues; i++)
2016                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2017 }
2018
2019 /**
2020  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2021  * @adapter: board private structure
2022  * @rx_ring: ring to free buffers from
2023  **/
2024
2025 static void
2026 e1000_clean_rx_ring(struct e1000_adapter *adapter,
2027                     struct e1000_rx_ring *rx_ring)
2028 {
2029         struct e1000_buffer *buffer_info;
2030         struct e1000_ps_page *ps_page;
2031         struct e1000_ps_page_dma *ps_page_dma;
2032         struct pci_dev *pdev = adapter->pdev;
2033         unsigned long size;
2034         unsigned int i, j;
2035
2036         /* Free all the Rx ring sk_buffs */
2037         for (i = 0; i < rx_ring->count; i++) {
2038                 buffer_info = &rx_ring->buffer_info[i];
2039                 if (buffer_info->skb) {
2040                         pci_unmap_single(pdev,
2041                                          buffer_info->dma,
2042                                          buffer_info->length,
2043                                          PCI_DMA_FROMDEVICE);
2044
2045                         dev_kfree_skb(buffer_info->skb);
2046                         buffer_info->skb = NULL;
2047                 }
2048                 ps_page = &rx_ring->ps_page[i];
2049                 ps_page_dma = &rx_ring->ps_page_dma[i];
2050                 for (j = 0; j < adapter->rx_ps_pages; j++) {
2051                         if (!ps_page->ps_page[j]) break;
2052                         pci_unmap_page(pdev,
2053                                        ps_page_dma->ps_page_dma[j],
2054                                        PAGE_SIZE, PCI_DMA_FROMDEVICE);
2055                         ps_page_dma->ps_page_dma[j] = 0;
2056                         put_page(ps_page->ps_page[j]);
2057                         ps_page->ps_page[j] = NULL;
2058                 }
2059         }
2060
2061         size = sizeof(struct e1000_buffer) * rx_ring->count;
2062         memset(rx_ring->buffer_info, 0, size);
2063         size = sizeof(struct e1000_ps_page) * rx_ring->count;
2064         memset(rx_ring->ps_page, 0, size);
2065         size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
2066         memset(rx_ring->ps_page_dma, 0, size);
2067
2068         /* Zero out the descriptor ring */
2069
2070         memset(rx_ring->desc, 0, rx_ring->size);
2071
2072         rx_ring->next_to_clean = 0;
2073         rx_ring->next_to_use = 0;
2074
2075         writel(0, adapter->hw.hw_addr + rx_ring->rdh);
2076         writel(0, adapter->hw.hw_addr + rx_ring->rdt);
2077 }
2078
2079 /**
2080  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2081  * @adapter: board private structure
2082  **/
2083
2084 static void
2085 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2086 {
2087         int i;
2088
2089         for (i = 0; i < adapter->num_rx_queues; i++)
2090                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2091 }
2092
2093 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2094  * and memory write and invalidate disabled for certain operations
2095  */
2096 static void
2097 e1000_enter_82542_rst(struct e1000_adapter *adapter)
2098 {
2099         struct net_device *netdev = adapter->netdev;
2100         uint32_t rctl;
2101
2102         e1000_pci_clear_mwi(&adapter->hw);
2103
2104         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2105         rctl |= E1000_RCTL_RST;
2106         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2107         E1000_WRITE_FLUSH(&adapter->hw);
2108         mdelay(5);
2109
2110         if (netif_running(netdev))
2111                 e1000_clean_all_rx_rings(adapter);
2112 }
2113
2114 static void
2115 e1000_leave_82542_rst(struct e1000_adapter *adapter)
2116 {
2117         struct net_device *netdev = adapter->netdev;
2118         uint32_t rctl;
2119
2120         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2121         rctl &= ~E1000_RCTL_RST;
2122         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2123         E1000_WRITE_FLUSH(&adapter->hw);
2124         mdelay(5);
2125
2126         if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2127                 e1000_pci_set_mwi(&adapter->hw);
2128
2129         if (netif_running(netdev)) {
2130                 /* No need to loop, because 82542 supports only 1 queue */
2131                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2132                 e1000_configure_rx(adapter);
2133                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2134         }
2135 }
2136
2137 /**
2138  * e1000_set_mac - Change the Ethernet Address of the NIC
2139  * @netdev: network interface device structure
2140  * @p: pointer to an address structure
2141  *
2142  * Returns 0 on success, negative on failure
2143  **/
2144
2145 static int
2146 e1000_set_mac(struct net_device *netdev, void *p)
2147 {
2148         struct e1000_adapter *adapter = netdev_priv(netdev);
2149         struct sockaddr *addr = p;
2150
2151         if (!is_valid_ether_addr(addr->sa_data))
2152                 return -EADDRNOTAVAIL;
2153
2154         /* 82542 2.0 needs to be in reset to write receive address registers */
2155
2156         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2157                 e1000_enter_82542_rst(adapter);
2158
2159         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2160         memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2161
2162         e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2163
2164         /* With 82571 controllers, LAA may be overwritten (with the default)
2165          * due to controller reset from the other port. */
2166         if (adapter->hw.mac_type == e1000_82571) {
2167                 /* activate the work around */
2168                 adapter->hw.laa_is_present = 1;
2169
2170                 /* Hold a copy of the LAA in RAR[14] This is done so that
2171                  * between the time RAR[0] gets clobbered  and the time it
2172                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2173                  * of the RARs and no incoming packets directed to this port
2174                  * are dropped. Eventaully the LAA will be in RAR[0] and
2175                  * RAR[14] */
2176                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2177                                         E1000_RAR_ENTRIES - 1);
2178         }
2179
2180         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2181                 e1000_leave_82542_rst(adapter);
2182
2183         return 0;
2184 }
2185
2186 /**
2187  * e1000_set_multi - Multicast and Promiscuous mode set
2188  * @netdev: network interface device structure
2189  *
2190  * The set_multi entry point is called whenever the multicast address
2191  * list or the network interface flags are updated.  This routine is
2192  * responsible for configuring the hardware for proper multicast,
2193  * promiscuous mode, and all-multi behavior.
2194  **/
2195
2196 static void
2197 e1000_set_multi(struct net_device *netdev)
2198 {
2199         struct e1000_adapter *adapter = netdev_priv(netdev);
2200         struct e1000_hw *hw = &adapter->hw;
2201         struct dev_mc_list *mc_ptr;
2202         uint32_t rctl;
2203         uint32_t hash_value;
2204         int i, rar_entries = E1000_RAR_ENTRIES;
2205         int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2206                                 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2207                                 E1000_NUM_MTA_REGISTERS;
2208
2209         if (adapter->hw.mac_type == e1000_ich8lan)
2210                 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2211
2212         /* reserve RAR[14] for LAA over-write work-around */
2213         if (adapter->hw.mac_type == e1000_82571)
2214                 rar_entries--;
2215
2216         /* Check for Promiscuous and All Multicast modes */
2217
2218         rctl = E1000_READ_REG(hw, RCTL);
2219
2220         if (netdev->flags & IFF_PROMISC) {
2221                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2222         } else if (netdev->flags & IFF_ALLMULTI) {
2223                 rctl |= E1000_RCTL_MPE;
2224                 rctl &= ~E1000_RCTL_UPE;
2225         } else {
2226                 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2227         }
2228
2229         E1000_WRITE_REG(hw, RCTL, rctl);
2230
2231         /* 82542 2.0 needs to be in reset to write receive address registers */
2232
2233         if (hw->mac_type == e1000_82542_rev2_0)
2234                 e1000_enter_82542_rst(adapter);
2235
2236         /* load the first 14 multicast address into the exact filters 1-14
2237          * RAR 0 is used for the station MAC adddress
2238          * if there are not 14 addresses, go ahead and clear the filters
2239          * -- with 82571 controllers only 0-13 entries are filled here
2240          */
2241         mc_ptr = netdev->mc_list;
2242
2243         for (i = 1; i < rar_entries; i++) {
2244                 if (mc_ptr) {
2245                         e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2246                         mc_ptr = mc_ptr->next;
2247                 } else {
2248                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2249                         E1000_WRITE_FLUSH(hw);
2250                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2251                         E1000_WRITE_FLUSH(hw);
2252                 }
2253         }
2254
2255         /* clear the old settings from the multicast hash table */
2256
2257         for (i = 0; i < mta_reg_count; i++) {
2258                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2259                 E1000_WRITE_FLUSH(hw);
2260         }
2261
2262         /* load any remaining addresses into the hash table */
2263
2264         for (; mc_ptr; mc_ptr = mc_ptr->next) {
2265                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2266                 e1000_mta_set(hw, hash_value);
2267         }
2268
2269         if (hw->mac_type == e1000_82542_rev2_0)
2270                 e1000_leave_82542_rst(adapter);
2271 }
2272
2273 /* Need to wait a few seconds after link up to get diagnostic information from
2274  * the phy */
2275
2276 static void
2277 e1000_update_phy_info(unsigned long data)
2278 {
2279         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2280         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2281 }
2282
2283 /**
2284  * e1000_82547_tx_fifo_stall - Timer Call-back
2285  * @data: pointer to adapter cast into an unsigned long
2286  **/
2287
2288 static void
2289 e1000_82547_tx_fifo_stall(unsigned long data)
2290 {
2291         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2292         struct net_device *netdev = adapter->netdev;
2293         uint32_t tctl;
2294
2295         if (atomic_read(&adapter->tx_fifo_stall)) {
2296                 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2297                     E1000_READ_REG(&adapter->hw, TDH)) &&
2298                    (E1000_READ_REG(&adapter->hw, TDFT) ==
2299                     E1000_READ_REG(&adapter->hw, TDFH)) &&
2300                    (E1000_READ_REG(&adapter->hw, TDFTS) ==
2301                     E1000_READ_REG(&adapter->hw, TDFHS))) {
2302                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2303                         E1000_WRITE_REG(&adapter->hw, TCTL,
2304                                         tctl & ~E1000_TCTL_EN);
2305                         E1000_WRITE_REG(&adapter->hw, TDFT,
2306                                         adapter->tx_head_addr);
2307                         E1000_WRITE_REG(&adapter->hw, TDFH,
2308                                         adapter->tx_head_addr);
2309                         E1000_WRITE_REG(&adapter->hw, TDFTS,
2310                                         adapter->tx_head_addr);
2311                         E1000_WRITE_REG(&adapter->hw, TDFHS,
2312                                         adapter->tx_head_addr);
2313                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2314                         E1000_WRITE_FLUSH(&adapter->hw);
2315
2316                         adapter->tx_fifo_head = 0;
2317                         atomic_set(&adapter->tx_fifo_stall, 0);
2318                         netif_wake_queue(netdev);
2319                 } else {
2320                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2321                 }
2322         }
2323 }
2324
2325 /**
2326  * e1000_watchdog - Timer Call-back
2327  * @data: pointer to adapter cast into an unsigned long
2328  **/
2329 static void
2330 e1000_watchdog(unsigned long data)
2331 {
2332         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2333         struct net_device *netdev = adapter->netdev;
2334         struct e1000_tx_ring *txdr = adapter->tx_ring;
2335         uint32_t link, tctl;
2336         int32_t ret_val;
2337
2338         ret_val = e1000_check_for_link(&adapter->hw);
2339         if ((ret_val == E1000_ERR_PHY) &&
2340             (adapter->hw.phy_type == e1000_phy_igp_3) &&
2341             (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2342                 /* See e1000_kumeran_lock_loss_workaround() */
2343                 DPRINTK(LINK, INFO,
2344                         "Gigabit has been disabled, downgrading speed\n");
2345         }
2346         if (adapter->hw.mac_type == e1000_82573) {
2347                 e1000_enable_tx_pkt_filtering(&adapter->hw);
2348                 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2349                         e1000_update_mng_vlan(adapter);
2350         }
2351
2352         if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2353            !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2354                 link = !adapter->hw.serdes_link_down;
2355         else
2356                 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2357
2358         if (link) {
2359                 if (!netif_carrier_ok(netdev)) {
2360                         boolean_t txb2b = 1;
2361                         e1000_get_speed_and_duplex(&adapter->hw,
2362                                                    &adapter->link_speed,
2363                                                    &adapter->link_duplex);
2364
2365                         DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
2366                                adapter->link_speed,
2367                                adapter->link_duplex == FULL_DUPLEX ?
2368                                "Full Duplex" : "Half Duplex");
2369
2370                         /* tweak tx_queue_len according to speed/duplex
2371                          * and adjust the timeout factor */
2372                         netdev->tx_queue_len = adapter->tx_queue_len;
2373                         adapter->tx_timeout_factor = 1;
2374                         switch (adapter->link_speed) {
2375                         case SPEED_10:
2376                                 txb2b = 0;
2377                                 netdev->tx_queue_len = 10;
2378                                 adapter->tx_timeout_factor = 8;
2379                                 break;
2380                         case SPEED_100:
2381                                 txb2b = 0;
2382                                 netdev->tx_queue_len = 100;
2383                                 /* maybe add some timeout factor ? */
2384                                 break;
2385                         }
2386
2387                         if ((adapter->hw.mac_type == e1000_82571 ||
2388                              adapter->hw.mac_type == e1000_82572) &&
2389                             txb2b == 0) {
2390 #define SPEED_MODE_BIT (1 << 21)
2391                                 uint32_t tarc0;
2392                                 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
2393                                 tarc0 &= ~SPEED_MODE_BIT;
2394                                 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
2395                         }
2396                                 
2397 #ifdef NETIF_F_TSO
2398                         /* disable TSO for pcie and 10/100 speeds, to avoid
2399                          * some hardware issues */
2400                         if (!adapter->tso_force &&
2401                             adapter->hw.bus_type == e1000_bus_type_pci_express){
2402                                 switch (adapter->link_speed) {
2403                                 case SPEED_10:
2404                                 case SPEED_100:
2405                                         DPRINTK(PROBE,INFO,
2406                                         "10/100 speed: disabling TSO\n");
2407                                         netdev->features &= ~NETIF_F_TSO;
2408                                         break;
2409                                 case SPEED_1000:
2410                                         netdev->features |= NETIF_F_TSO;
2411                                         break;
2412                                 default:
2413                                         /* oops */
2414                                         break;
2415                                 }
2416                         }
2417 #endif
2418
2419                         /* enable transmits in the hardware, need to do this
2420                          * after setting TARC0 */
2421                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2422                         tctl |= E1000_TCTL_EN;
2423                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2424
2425                         netif_carrier_on(netdev);
2426                         netif_wake_queue(netdev);
2427                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2428                         adapter->smartspeed = 0;
2429                 }
2430         } else {
2431                 if (netif_carrier_ok(netdev)) {
2432                         adapter->link_speed = 0;
2433                         adapter->link_duplex = 0;
2434                         DPRINTK(LINK, INFO, "NIC Link is Down\n");
2435                         netif_carrier_off(netdev);
2436                         netif_stop_queue(netdev);
2437                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2438
2439                         /* 80003ES2LAN workaround--
2440                          * For packet buffer work-around on link down event;
2441                          * disable receives in the ISR and
2442                          * reset device here in the watchdog
2443                          */
2444                         if (adapter->hw.mac_type == e1000_80003es2lan) {
2445                                 /* reset device */
2446                                 schedule_work(&adapter->reset_task);
2447                         }
2448                 }
2449
2450                 e1000_smartspeed(adapter);
2451         }
2452
2453         e1000_update_stats(adapter);
2454
2455         adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2456         adapter->tpt_old = adapter->stats.tpt;
2457         adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2458         adapter->colc_old = adapter->stats.colc;
2459
2460         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2461         adapter->gorcl_old = adapter->stats.gorcl;
2462         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2463         adapter->gotcl_old = adapter->stats.gotcl;
2464
2465         e1000_update_adaptive(&adapter->hw);
2466
2467         if (!netif_carrier_ok(netdev)) {
2468                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2469                         /* We've lost link, so the controller stops DMA,
2470                          * but we've got queued Tx work that's never going
2471                          * to get done, so reset controller to flush Tx.
2472                          * (Do the reset outside of interrupt context). */
2473                         adapter->tx_timeout_count++;
2474                         schedule_work(&adapter->reset_task);
2475                 }
2476         }
2477
2478         /* Dynamic mode for Interrupt Throttle Rate (ITR) */
2479         if (adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
2480                 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
2481                  * asymmetrical Tx or Rx gets ITR=8000; everyone
2482                  * else is between 2000-8000. */
2483                 uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
2484                 uint32_t dif = (adapter->gotcl > adapter->gorcl ?
2485                         adapter->gotcl - adapter->gorcl :
2486                         adapter->gorcl - adapter->gotcl) / 10000;
2487                 uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2488                 E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
2489         }
2490
2491         /* Cause software interrupt to ensure rx ring is cleaned */
2492         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2493
2494         /* Force detection of hung controller every watchdog period */
2495         adapter->detect_tx_hung = TRUE;
2496
2497         /* With 82571 controllers, LAA may be overwritten due to controller
2498          * reset from the other port. Set the appropriate LAA in RAR[0] */
2499         if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2500                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2501
2502         /* Reset the timer */
2503         mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2504 }
2505
2506 #define E1000_TX_FLAGS_CSUM             0x00000001
2507 #define E1000_TX_FLAGS_VLAN             0x00000002
2508 #define E1000_TX_FLAGS_TSO              0x00000004
2509 #define E1000_TX_FLAGS_IPV4             0x00000008
2510 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2511 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2512
2513 static int
2514 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2515           struct sk_buff *skb)
2516 {
2517 #ifdef NETIF_F_TSO
2518         struct e1000_context_desc *context_desc;
2519         struct e1000_buffer *buffer_info;
2520         unsigned int i;
2521         uint32_t cmd_length = 0;
2522         uint16_t ipcse = 0, tucse, mss;
2523         uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2524         int err;
2525
2526         if (skb_is_gso(skb)) {
2527                 if (skb_header_cloned(skb)) {
2528                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2529                         if (err)
2530                                 return err;
2531                 }
2532
2533                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2534                 mss = skb_shinfo(skb)->gso_size;
2535                 if (skb->protocol == htons(ETH_P_IP)) {
2536                         skb->nh.iph->tot_len = 0;
2537                         skb->nh.iph->check = 0;
2538                         skb->h.th->check =
2539                                 ~csum_tcpudp_magic(skb->nh.iph->saddr,
2540                                                    skb->nh.iph->daddr,
2541                                                    0,
2542                                                    IPPROTO_TCP,
2543                                                    0);
2544                         cmd_length = E1000_TXD_CMD_IP;
2545                         ipcse = skb->h.raw - skb->data - 1;
2546 #ifdef NETIF_F_TSO_IPV6
2547                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2548                         skb->nh.ipv6h->payload_len = 0;
2549                         skb->h.th->check =
2550                                 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
2551                                                  &skb->nh.ipv6h->daddr,
2552                                                  0,
2553                                                  IPPROTO_TCP,
2554                                                  0);
2555                         ipcse = 0;
2556 #endif
2557                 }
2558                 ipcss = skb->nh.raw - skb->data;
2559                 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
2560                 tucss = skb->h.raw - skb->data;
2561                 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
2562                 tucse = 0;
2563
2564                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2565                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2566
2567                 i = tx_ring->next_to_use;
2568                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2569                 buffer_info = &tx_ring->buffer_info[i];
2570
2571                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2572                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2573                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2574                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2575                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2576                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2577                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2578                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2579                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2580
2581                 buffer_info->time_stamp = jiffies;
2582
2583                 if (++i == tx_ring->count) i = 0;
2584                 tx_ring->next_to_use = i;
2585
2586                 return TRUE;
2587         }
2588 #endif
2589
2590         return FALSE;
2591 }
2592
2593 static boolean_t
2594 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2595               struct sk_buff *skb)
2596 {
2597         struct e1000_context_desc *context_desc;
2598         struct e1000_buffer *buffer_info;
2599         unsigned int i;
2600         uint8_t css;
2601
2602         if (likely(skb->ip_summed == CHECKSUM_HW)) {
2603                 css = skb->h.raw - skb->data;
2604
2605                 i = tx_ring->next_to_use;
2606                 buffer_info = &tx_ring->buffer_info[i];
2607                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2608
2609                 context_desc->upper_setup.tcp_fields.tucss = css;
2610                 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
2611                 context_desc->upper_setup.tcp_fields.tucse = 0;
2612                 context_desc->tcp_seg_setup.data = 0;
2613                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2614
2615                 buffer_info->time_stamp = jiffies;
2616
2617                 if (unlikely(++i == tx_ring->count)) i = 0;
2618                 tx_ring->next_to_use = i;
2619
2620                 return TRUE;
2621         }
2622
2623         return FALSE;
2624 }
2625
2626 #define E1000_MAX_TXD_PWR       12
2627 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2628
2629 static int
2630 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2631              struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2632              unsigned int nr_frags, unsigned int mss)
2633 {
2634         struct e1000_buffer *buffer_info;
2635         unsigned int len = skb->len;
2636         unsigned int offset = 0, size, count = 0, i;
2637         unsigned int f;
2638         len -= skb->data_len;
2639
2640         i = tx_ring->next_to_use;
2641
2642         while (len) {
2643                 buffer_info = &tx_ring->buffer_info[i];
2644                 size = min(len, max_per_txd);
2645 #ifdef NETIF_F_TSO
2646                 /* Workaround for Controller erratum --
2647                  * descriptor for non-tso packet in a linear SKB that follows a
2648                  * tso gets written back prematurely before the data is fully
2649                  * DMA'd to the controller */
2650                 if (!skb->data_len && tx_ring->last_tx_tso &&
2651                     !skb_is_gso(skb)) {
2652                         tx_ring->last_tx_tso = 0;
2653                         size -= 4;
2654                 }
2655
2656                 /* Workaround for premature desc write-backs
2657                  * in TSO mode.  Append 4-byte sentinel desc */
2658                 if (unlikely(mss && !nr_frags && size == len && size > 8))
2659                         size -= 4;
2660 #endif
2661                 /* work-around for errata 10 and it applies
2662                  * to all controllers in PCI-X mode
2663                  * The fix is to make sure that the first descriptor of a
2664                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2665                  */
2666                 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2667                                 (size > 2015) && count == 0))
2668                         size = 2015;
2669
2670                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2671                  * terminating buffers within evenly-aligned dwords. */
2672                 if (unlikely(adapter->pcix_82544 &&
2673                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2674                    size > 4))
2675                         size -= 4;
2676
2677                 buffer_info->length = size;
2678                 buffer_info->dma =
2679                         pci_map_single(adapter->pdev,
2680                                 skb->data + offset,
2681                                 size,
2682                                 PCI_DMA_TODEVICE);
2683                 buffer_info->time_stamp = jiffies;
2684
2685                 len -= size;
2686                 offset += size;
2687                 count++;
2688                 if (unlikely(++i == tx_ring->count)) i = 0;
2689         }
2690
2691         for (f = 0; f < nr_frags; f++) {
2692                 struct skb_frag_struct *frag;
2693
2694                 frag = &skb_shinfo(skb)->frags[f];
2695                 len = frag->size;
2696                 offset = frag->page_offset;
2697
2698                 while (len) {
2699                         buffer_info = &tx_ring->buffer_info[i];
2700                         size = min(len, max_per_txd);
2701 #ifdef NETIF_F_TSO
2702                         /* Workaround for premature desc write-backs
2703                          * in TSO mode.  Append 4-byte sentinel desc */
2704                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2705                                 size -= 4;
2706 #endif
2707                         /* Workaround for potential 82544 hang in PCI-X.
2708                          * Avoid terminating buffers within evenly-aligned
2709                          * dwords. */
2710                         if (unlikely(adapter->pcix_82544 &&
2711                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
2712                            size > 4))
2713                                 size -= 4;
2714
2715                         buffer_info->length = size;
2716                         buffer_info->dma =
2717                                 pci_map_page(adapter->pdev,
2718                                         frag->page,
2719                                         offset,
2720                                         size,
2721                                         PCI_DMA_TODEVICE);
2722                         buffer_info->time_stamp = jiffies;
2723
2724                         len -= size;
2725                         offset += size;
2726                         count++;
2727                         if (unlikely(++i == tx_ring->count)) i = 0;
2728                 }
2729         }
2730
2731         i = (i == 0) ? tx_ring->count - 1 : i - 1;
2732         tx_ring->buffer_info[i].skb = skb;
2733         tx_ring->buffer_info[first].next_to_watch = i;
2734
2735         return count;
2736 }
2737
2738 static void
2739 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2740                int tx_flags, int count)
2741 {
2742         struct e1000_tx_desc *tx_desc = NULL;
2743         struct e1000_buffer *buffer_info;
2744         uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2745         unsigned int i;
2746
2747         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2748                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2749                              E1000_TXD_CMD_TSE;
2750                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2751
2752                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2753                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2754         }
2755
2756         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2757                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2758                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2759         }
2760
2761         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2762                 txd_lower |= E1000_TXD_CMD_VLE;
2763                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2764         }
2765
2766         i = tx_ring->next_to_use;
2767
2768         while (count--) {
2769                 buffer_info = &tx_ring->buffer_info[i];
2770                 tx_desc = E1000_TX_DESC(*tx_ring, i);
2771                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2772                 tx_desc->lower.data =
2773                         cpu_to_le32(txd_lower | buffer_info->length);
2774                 tx_desc->upper.data = cpu_to_le32(txd_upper);
2775                 if (unlikely(++i == tx_ring->count)) i = 0;
2776         }
2777
2778         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2779
2780         /* Force memory writes to complete before letting h/w
2781          * know there are new descriptors to fetch.  (Only
2782          * applicable for weak-ordered memory model archs,
2783          * such as IA-64). */
2784         wmb();
2785
2786         tx_ring->next_to_use = i;
2787         writel(i, adapter->hw.hw_addr + tx_ring->tdt);
2788 }
2789
2790 /**
2791  * 82547 workaround to avoid controller hang in half-duplex environment.
2792  * The workaround is to avoid queuing a large packet that would span
2793  * the internal Tx FIFO ring boundary by notifying the stack to resend
2794  * the packet at a later time.  This gives the Tx FIFO an opportunity to
2795  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
2796  * to the beginning of the Tx FIFO.
2797  **/
2798
2799 #define E1000_FIFO_HDR                  0x10
2800 #define E1000_82547_PAD_LEN             0x3E0
2801
2802 static int
2803 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
2804 {
2805         uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2806         uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
2807
2808         E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
2809
2810         if (adapter->link_duplex != HALF_DUPLEX)
2811                 goto no_fifo_stall_required;
2812
2813         if (atomic_read(&adapter->tx_fifo_stall))
2814                 return 1;
2815
2816         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2817                 atomic_set(&adapter->tx_fifo_stall, 1);
2818                 return 1;
2819         }
2820
2821 no_fifo_stall_required:
2822         adapter->tx_fifo_head += skb_fifo_len;
2823         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
2824                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2825         return 0;
2826 }
2827
2828 #define MINIMUM_DHCP_PACKET_SIZE 282
2829 static int
2830 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
2831 {
2832         struct e1000_hw *hw =  &adapter->hw;
2833         uint16_t length, offset;
2834         if (vlan_tx_tag_present(skb)) {
2835                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
2836                         ( adapter->hw.mng_cookie.status &
2837                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
2838                         return 0;
2839         }
2840         if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
2841                 struct ethhdr *eth = (struct ethhdr *) skb->data;
2842                 if ((htons(ETH_P_IP) == eth->h_proto)) {
2843                         const struct iphdr *ip =
2844                                 (struct iphdr *)((uint8_t *)skb->data+14);
2845                         if (IPPROTO_UDP == ip->protocol) {
2846                                 struct udphdr *udp =
2847                                         (struct udphdr *)((uint8_t *)ip +
2848                                                 (ip->ihl << 2));
2849                                 if (ntohs(udp->dest) == 67) {
2850                                         offset = (uint8_t *)udp + 8 - skb->data;
2851                                         length = skb->len - offset;
2852
2853                                         return e1000_mng_write_dhcp_info(hw,
2854                                                         (uint8_t *)udp + 8,
2855                                                         length);
2856                                 }
2857                         }
2858                 }
2859         }
2860         return 0;
2861 }
2862
2863 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2864 static int
2865 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2866 {
2867         struct e1000_adapter *adapter = netdev_priv(netdev);
2868         struct e1000_tx_ring *tx_ring;
2869         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2870         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2871         unsigned int tx_flags = 0;
2872         unsigned int len = skb->len;
2873         unsigned long flags;
2874         unsigned int nr_frags = 0;
2875         unsigned int mss = 0;
2876         int count = 0;
2877         int tso;
2878         unsigned int f;
2879         len -= skb->data_len;
2880
2881         tx_ring = adapter->tx_ring;
2882
2883         if (unlikely(skb->len <= 0)) {
2884                 dev_kfree_skb_any(skb);
2885                 return NETDEV_TX_OK;
2886         }
2887
2888 #ifdef NETIF_F_TSO
2889         mss = skb_shinfo(skb)->gso_size;
2890         /* The controller does a simple calculation to
2891          * make sure there is enough room in the FIFO before
2892          * initiating the DMA for each buffer.  The calc is:
2893          * 4 = ceil(buffer len/mss).  To make sure we don't
2894          * overrun the FIFO, adjust the max buffer len if mss
2895          * drops. */
2896         if (mss) {
2897                 uint8_t hdr_len;
2898                 max_per_txd = min(mss << 2, max_per_txd);
2899                 max_txd_pwr = fls(max_per_txd) - 1;
2900
2901         /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
2902          * points to just header, pull a few bytes of payload from
2903          * frags into skb->data */
2904                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2905                 if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
2906                         switch (adapter->hw.mac_type) {
2907                                 unsigned int pull_size;
2908                         case e1000_82571:
2909                         case e1000_82572:
2910                         case e1000_82573:
2911                         case e1000_ich8lan:
2912                                 pull_size = min((unsigned int)4, skb->data_len);
2913                                 if (!__pskb_pull_tail(skb, pull_size)) {
2914                                         DPRINTK(DRV, ERR,
2915                                                 "__pskb_pull_tail failed.\n");
2916                                         dev_kfree_skb_any(skb);
2917                                         return NETDEV_TX_OK;
2918                                 }
2919                                 len = skb->len - skb->data_len;
2920                                 break;
2921                         default:
2922                                 /* do nothing */
2923                                 break;
2924                         }
2925                 }
2926         }
2927
2928         /* reserve a descriptor for the offload context */
2929         if ((mss) || (skb->ip_summed == CHECKSUM_HW))
2930                 count++;
2931         count++;
2932 #else
2933         if (skb->ip_summed == CHECKSUM_HW)
2934                 count++;
2935 #endif
2936
2937 #ifdef NETIF_F_TSO
2938         /* Controller Erratum workaround */
2939         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
2940                 count++;
2941 #endif
2942
2943         count += TXD_USE_COUNT(len, max_txd_pwr);
2944
2945         if (adapter->pcix_82544)
2946                 count++;
2947
2948         /* work-around for errata 10 and it applies to all controllers
2949          * in PCI-X mode, so add one more descriptor to the count
2950          */
2951         if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2952                         (len > 2015)))
2953                 count++;
2954
2955         nr_frags = skb_shinfo(skb)->nr_frags;
2956         for (f = 0; f < nr_frags; f++)
2957                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
2958                                        max_txd_pwr);
2959         if (adapter->pcix_82544)
2960                 count += nr_frags;
2961
2962
2963         if (adapter->hw.tx_pkt_filtering &&
2964             (adapter->hw.mac_type == e1000_82573))
2965                 e1000_transfer_dhcp_info(adapter, skb);
2966
2967         local_irq_save(flags);
2968         if (!spin_trylock(&tx_ring->tx_lock)) {
2969                 /* Collision - tell upper layer to requeue */
2970                 local_irq_restore(flags);
2971                 return NETDEV_TX_LOCKED;
2972         }
2973
2974         /* need: count + 2 desc gap to keep tail from touching
2975          * head, otherwise try next time */
2976         if (unlikely(E1000_DESC_UNUSED(tx_ring) < count + 2)) {
2977                 netif_stop_queue(netdev);
2978                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2979                 return NETDEV_TX_BUSY;
2980         }
2981
2982         if (unlikely(adapter->hw.mac_type == e1000_82547)) {
2983                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
2984                         netif_stop_queue(netdev);
2985                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
2986                         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2987                         return NETDEV_TX_BUSY;
2988                 }
2989         }
2990
2991         if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
2992                 tx_flags |= E1000_TX_FLAGS_VLAN;
2993                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
2994         }
2995
2996         first = tx_ring->next_to_use;
2997
2998         tso = e1000_tso(adapter, tx_ring, skb);
2999         if (tso < 0) {
3000                 dev_kfree_skb_any(skb);
3001                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3002                 return NETDEV_TX_OK;
3003         }
3004
3005         if (likely(tso)) {
3006                 tx_ring->last_tx_tso = 1;
3007                 tx_flags |= E1000_TX_FLAGS_TSO;
3008         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3009                 tx_flags |= E1000_TX_FLAGS_CSUM;
3010
3011         /* Old method was to assume IPv4 packet by default if TSO was enabled.
3012          * 82571 hardware supports TSO capabilities for IPv6 as well...
3013          * no longer assume, we must. */
3014         if (likely(skb->protocol == htons(ETH_P_IP)))
3015                 tx_flags |= E1000_TX_FLAGS_IPV4;
3016
3017         e1000_tx_queue(adapter, tx_ring, tx_flags,
3018                        e1000_tx_map(adapter, tx_ring, skb, first,
3019                                     max_per_txd, nr_frags, mss));
3020
3021         netdev->trans_start = jiffies;
3022
3023         /* Make sure there is space in the ring for the next send. */
3024         if (unlikely(E1000_DESC_UNUSED(tx_ring) < MAX_SKB_FRAGS + 2))
3025                 netif_stop_queue(netdev);
3026
3027         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3028         return NETDEV_TX_OK;
3029 }
3030
3031 /**
3032  * e1000_tx_timeout - Respond to a Tx Hang
3033  * @netdev: network interface device structure
3034  **/
3035
3036 static void
3037 e1000_tx_timeout(struct net_device *netdev)
3038 {
3039         struct e1000_adapter *adapter = netdev_priv(netdev);
3040
3041         /* Do the reset outside of interrupt context */
3042         adapter->tx_timeout_count++;
3043         schedule_work(&adapter->reset_task);
3044 }
3045
3046 static void
3047 e1000_reset_task(struct net_device *netdev)
3048 {
3049         struct e1000_adapter *adapter = netdev_priv(netdev);
3050
3051         e1000_reinit_locked(adapter);
3052 }
3053
3054 /**
3055  * e1000_get_stats - Get System Network Statistics
3056  * @netdev: network interface device structure
3057  *
3058  * Returns the address of the device statistics structure.
3059  * The statistics are actually updated from the timer callback.
3060  **/
3061
3062 static struct net_device_stats *
3063 e1000_get_stats(struct net_device *netdev)
3064 {
3065         struct e1000_adapter *adapter = netdev_priv(netdev);
3066
3067         /* only return the current stats */
3068         return &adapter->net_stats;
3069 }
3070
3071 /**
3072  * e1000_change_mtu - Change the Maximum Transfer Unit
3073  * @netdev: network interface device structure
3074  * @new_mtu: new value for maximum frame size
3075  *
3076  * Returns 0 on success, negative on failure
3077  **/
3078
3079 static int
3080 e1000_change_mtu(struct net_device *netdev, int new_mtu)
3081 {
3082         struct e1000_adapter *adapter = netdev_priv(netdev);
3083         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3084         uint16_t eeprom_data = 0;
3085
3086         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3087             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3088                 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3089                 return -EINVAL;
3090         }
3091
3092         /* Adapter-specific max frame size limits. */
3093         switch (adapter->hw.mac_type) {
3094         case e1000_undefined ... e1000_82542_rev2_1:
3095         case e1000_ich8lan:
3096                 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3097                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3098                         return -EINVAL;
3099                 }
3100                 break;
3101         case e1000_82573:
3102                 /* only enable jumbo frames if ASPM is disabled completely
3103                  * this means both bits must be zero in 0x1A bits 3:2 */
3104                 e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
3105                                   &eeprom_data);
3106                 if (eeprom_data & EEPROM_WORD1A_ASPM_MASK) {
3107                         if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3108                                 DPRINTK(PROBE, ERR,
3109                                         "Jumbo Frames not supported.\n");
3110                                 return -EINVAL;
3111                         }
3112                         break;
3113                 }
3114                 /* fall through to get support */
3115         case e1000_82571:
3116         case e1000_82572:
3117         case e1000_80003es2lan:
3118 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3119                 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3120                         DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3121                         return -EINVAL;
3122                 }
3123                 break;
3124         default:
3125                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3126                 break;
3127         }
3128
3129         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3130          * means we reserve 2 more, this pushes us to allocate from the next
3131          * larger slab size
3132          * i.e. RXBUFFER_2048 --> size-4096 slab */
3133
3134         if (max_frame <= E1000_RXBUFFER_256)
3135                 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3136         else if (max_frame <= E1000_RXBUFFER_512)
3137                 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3138         else if (max_frame <= E1000_RXBUFFER_1024)
3139                 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3140         else if (max_frame <= E1000_RXBUFFER_2048)
3141                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3142         else if (max_frame <= E1000_RXBUFFER_4096)
3143                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3144         else if (max_frame <= E1000_RXBUFFER_8192)
3145                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3146         else if (max_frame <= E1000_RXBUFFER_16384)
3147                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3148
3149         /* adjust allocation if LPE protects us, and we aren't using SBP */
3150         if (!adapter->hw.tbi_compatibility_on &&
3151             ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3152              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3153                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3154
3155         netdev->mtu = new_mtu;
3156
3157         if (netif_running(netdev))
3158                 e1000_reinit_locked(adapter);
3159
3160         adapter->hw.max_frame_size = max_frame;
3161
3162         return 0;
3163 }
3164
3165 /**
3166  * e1000_update_stats - Update the board statistics counters
3167  * @adapter: board private structure
3168  **/
3169
3170 void
3171 e1000_update_stats(struct e1000_adapter *adapter)
3172 {
3173         struct e1000_hw *hw = &adapter->hw;
3174         struct pci_dev *pdev = adapter->pdev;
3175         unsigned long flags;
3176         uint16_t phy_tmp;
3177
3178 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3179
3180         /*
3181          * Prevent stats update while adapter is being reset, or if the pci
3182          * connection is down.
3183          */
3184         if (adapter->link_speed == 0)
3185                 return;
3186         if (pdev->error_state && pdev->error_state != pci_channel_io_normal)
3187                 return;
3188
3189         spin_lock_irqsave(&adapter->stats_lock, flags);
3190
3191         /* these counters are modified from e1000_adjust_tbi_stats,
3192          * called from the interrupt context, so they must only
3193          * be written while holding adapter->stats_lock
3194          */
3195
3196         adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3197         adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3198         adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3199         adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3200         adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3201         adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3202         adapter->stats.roc += E1000_READ_REG(hw, ROC);
3203
3204         if (adapter->hw.mac_type != e1000_ich8lan) {
3205         adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3206         adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3207         adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3208         adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3209         adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3210         adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3211         }
3212
3213         adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3214         adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3215         adapter->stats.scc += E1000_READ_REG(hw, SCC);
3216         adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3217         adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3218         adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3219         adapter->stats.dc += E1000_READ_REG(hw, DC);
3220         adapter->stats.sec += E1000_READ_REG(hw, SEC);
3221         adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3222         adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3223         adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3224         adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3225         adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3226         adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3227         adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3228         adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3229         adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3230         adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3231         adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3232         adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3233         adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3234         adapter->stats.torl += E1000_READ_REG(hw, TORL);
3235         adapter->stats.torh += E1000_READ_REG(hw, TORH);
3236         adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3237         adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3238         adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3239
3240         if (adapter->hw.mac_type != e1000_ich8lan) {
3241         adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3242         adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3243         adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3244         adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3245         adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3246         adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3247         }
3248
3249         adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3250         adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3251
3252         /* used for adaptive IFS */
3253
3254         hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3255         adapter->stats.tpt += hw->tx_packet_delta;
3256         hw->collision_delta = E1000_READ_REG(hw, COLC);
3257         adapter->stats.colc += hw->collision_delta;
3258
3259         if (hw->mac_type >= e1000_82543) {
3260                 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3261                 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3262                 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3263                 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3264                 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3265                 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3266         }
3267         if (hw->mac_type > e1000_82547_rev_2) {
3268                 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3269                 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3270
3271                 if (adapter->hw.mac_type != e1000_ich8lan) {
3272                 adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3273                 adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3274                 adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3275                 adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3276                 adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3277                 adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3278                 adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3279                 }
3280         }
3281
3282         /* Fill out the OS statistics structure */
3283
3284         adapter->net_stats.rx_packets = adapter->stats.gprc;
3285         adapter->net_stats.tx_packets = adapter->stats.gptc;
3286         adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3287         adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3288         adapter->net_stats.multicast = adapter->stats.mprc;
3289         adapter->net_stats.collisions = adapter->stats.colc;
3290
3291         /* Rx Errors */
3292
3293         /* RLEC on some newer hardware can be incorrect so build
3294         * our own version based on RUC and ROC */
3295         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3296                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3297                 adapter->stats.ruc + adapter->stats.roc +
3298                 adapter->stats.cexterr;
3299         adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3300                                               adapter->stats.roc;
3301         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3302         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3303         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3304
3305         /* Tx Errors */
3306
3307         adapter->net_stats.tx_errors = adapter->stats.ecol +
3308                                        adapter->stats.latecol;
3309         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3310         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3311         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3312
3313         /* Tx Dropped needs to be maintained elsewhere */
3314
3315         /* Phy Stats */
3316
3317         if (hw->media_type == e1000_media_type_copper) {
3318                 if ((adapter->link_speed == SPEED_1000) &&
3319                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3320                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3321                         adapter->phy_stats.idle_errors += phy_tmp;
3322                 }
3323
3324                 if ((hw->mac_type <= e1000_82546) &&
3325                    (hw->phy_type == e1000_phy_m88) &&
3326                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3327                         adapter->phy_stats.receive_errors += phy_tmp;
3328         }
3329
3330         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3331 }
3332
3333 /**
3334  * e1000_intr - Interrupt Handler
3335  * @irq: interrupt number
3336  * @data: pointer to a network interface device structure
3337  * @pt_regs: CPU registers structure
3338  **/
3339
3340 static irqreturn_t
3341 e1000_intr(int irq, void *data, struct pt_regs *regs)
3342 {
3343         struct net_device *netdev = data;
3344         struct e1000_adapter *adapter = netdev_priv(netdev);
3345         struct e1000_hw *hw = &adapter->hw;
3346         uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
3347 #ifndef CONFIG_E1000_NAPI
3348         int i;
3349 #else
3350         /* Interrupt Auto-Mask...upon reading ICR,
3351          * interrupts are masked.  No need for the
3352          * IMC write, but it does mean we should
3353          * account for it ASAP. */
3354         if (likely(hw->mac_type >= e1000_82571))
3355                 atomic_inc(&adapter->irq_sem);
3356 #endif
3357
3358         if (unlikely(!icr)) {
3359 #ifdef CONFIG_E1000_NAPI
3360                 if (hw->mac_type >= e1000_82571)
3361                         e1000_irq_enable(adapter);
3362 #endif
3363                 return IRQ_NONE;  /* Not our interrupt */
3364         }
3365
3366         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3367                 hw->get_link_status = 1;
3368                 /* 80003ES2LAN workaround--
3369                  * For packet buffer work-around on link down event;
3370                  * disable receives here in the ISR and
3371                  * reset adapter in watchdog
3372                  */
3373                 if (netif_carrier_ok(netdev) &&
3374                     (adapter->hw.mac_type == e1000_80003es2lan)) {
3375                         /* disable receives */
3376                         rctl = E1000_READ_REG(hw, RCTL);
3377                         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3378                 }
3379                 mod_timer(&adapter->watchdog_timer, jiffies);
3380         }
3381
3382 #ifdef CONFIG_E1000_NAPI
3383         if (unlikely(hw->mac_type < e1000_82571)) {
3384                 atomic_inc(&adapter->irq_sem);
3385                 E1000_WRITE_REG(hw, IMC, ~0);
3386                 E1000_WRITE_FLUSH(hw);
3387         }
3388         if (likely(netif_rx_schedule_prep(netdev)))
3389                 __netif_rx_schedule(netdev);
3390         else
3391                 e1000_irq_enable(adapter);
3392 #else
3393         /* Writing IMC and IMS is needed for 82547.
3394          * Due to Hub Link bus being occupied, an interrupt
3395          * de-assertion message is not able to be sent.
3396          * When an interrupt assertion message is generated later,
3397          * two messages are re-ordered and sent out.
3398          * That causes APIC to think 82547 is in de-assertion
3399          * state, while 82547 is in assertion state, resulting
3400          * in dead lock. Writing IMC forces 82547 into
3401          * de-assertion state.
3402          */
3403         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
3404                 atomic_inc(&adapter->irq_sem);
3405                 E1000_WRITE_REG(hw, IMC, ~0);
3406         }
3407
3408         for (i = 0; i < E1000_MAX_INTR; i++)
3409                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3410                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3411                         break;
3412
3413         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3414                 e1000_irq_enable(adapter);
3415
3416 #endif
3417
3418         return IRQ_HANDLED;
3419 }
3420
3421 #ifdef CONFIG_E1000_NAPI
3422 /**
3423  * e1000_clean - NAPI Rx polling callback
3424  * @adapter: board private structure
3425  **/
3426
3427 static int
3428 e1000_clean(struct net_device *poll_dev, int *budget)
3429 {
3430         struct e1000_adapter *adapter;
3431         int work_to_do = min(*budget, poll_dev->quota);
3432         int tx_cleaned = 0, work_done = 0;
3433
3434         /* Must NOT use netdev_priv macro here. */
3435         adapter = poll_dev->priv;
3436
3437         /* Keep link state information with original netdev */
3438         if (!netif_carrier_ok(poll_dev))
3439                 goto quit_polling;
3440
3441         /* e1000_clean is called per-cpu.  This lock protects
3442          * tx_ring[0] from being cleaned by multiple cpus
3443          * simultaneously.  A failure obtaining the lock means
3444          * tx_ring[0] is currently being cleaned anyway. */
3445         if (spin_trylock(&adapter->tx_queue_lock)) {
3446                 tx_cleaned = e1000_clean_tx_irq(adapter,
3447                                                 &adapter->tx_ring[0]);
3448                 spin_unlock(&adapter->tx_queue_lock);
3449         }
3450
3451         adapter->clean_rx(adapter, &adapter->rx_ring[0],
3452                           &work_done, work_to_do);
3453
3454         *budget -= work_done;
3455         poll_dev->quota -= work_done;
3456
3457         /* If no Tx and not enough Rx work done, exit the polling mode */
3458         if ((!tx_cleaned && (work_done == 0)) ||
3459            !netif_running(poll_dev)) {
3460 quit_polling:
3461                 netif_rx_complete(poll_dev);
3462                 e1000_irq_enable(adapter);
3463                 return 0;
3464         }
3465
3466         return 1;
3467 }
3468
3469 #endif
3470 /**
3471  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3472  * @adapter: board private structure
3473  **/
3474
3475 static boolean_t
3476 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3477                    struct e1000_tx_ring *tx_ring)
3478 {
3479         struct net_device *netdev = adapter->netdev;
3480         struct e1000_tx_desc *tx_desc, *eop_desc;
3481         struct e1000_buffer *buffer_info;
3482         unsigned int i, eop;
3483 #ifdef CONFIG_E1000_NAPI
3484         unsigned int count = 0;
3485 #endif
3486         boolean_t cleaned = FALSE;
3487
3488         i = tx_ring->next_to_clean;
3489         eop = tx_ring->buffer_info[i].next_to_watch;
3490         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3491
3492         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3493                 for (cleaned = FALSE; !cleaned; ) {
3494                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3495                         buffer_info = &tx_ring->buffer_info[i];
3496                         cleaned = (i == eop);
3497
3498                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3499                         memset(tx_desc, 0, sizeof(struct e1000_tx_desc));
3500
3501                         if (unlikely(++i == tx_ring->count)) i = 0;
3502                 }
3503
3504
3505                 eop = tx_ring->buffer_info[i].next_to_watch;
3506                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3507 #ifdef CONFIG_E1000_NAPI
3508 #define E1000_TX_WEIGHT 64
3509                 /* weight of a sort for tx, to avoid endless transmit cleanup */
3510                 if (count++ == E1000_TX_WEIGHT) break;
3511 #endif
3512         }
3513
3514         tx_ring->next_to_clean = i;
3515
3516 #define TX_WAKE_THRESHOLD 32
3517         if (unlikely(cleaned && netif_queue_stopped(netdev) &&
3518                      netif_carrier_ok(netdev))) {
3519                 spin_lock(&tx_ring->tx_lock);
3520                 if (netif_queue_stopped(netdev) &&
3521                     (E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))
3522                         netif_wake_queue(netdev);
3523                 spin_unlock(&tx_ring->tx_lock);
3524         }
3525
3526         if (adapter->detect_tx_hung) {
3527                 /* Detect a transmit hang in hardware, this serializes the
3528                  * check with the clearing of time_stamp and movement of i */
3529                 adapter->detect_tx_hung = FALSE;
3530                 if (tx_ring->buffer_info[eop].dma &&
3531                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3532                                (adapter->tx_timeout_factor * HZ))
3533                     && !(E1000_READ_REG(&adapter->hw, STATUS) &
3534                          E1000_STATUS_TXOFF)) {
3535
3536                         /* detected Tx unit hang */
3537                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3538                                         "  Tx Queue             <%lu>\n"
3539                                         "  TDH                  <%x>\n"
3540                                         "  TDT                  <%x>\n"
3541                                         "  next_to_use          <%x>\n"
3542                                         "  next_to_clean        <%x>\n"
3543                                         "buffer_info[next_to_clean]\n"
3544                                         "  time_stamp           <%lx>\n"
3545                                         "  next_to_watch        <%x>\n"
3546                                         "  jiffies              <%lx>\n"
3547                                         "  next_to_watch.status <%x>\n",
3548                                 (unsigned long)((tx_ring - adapter->tx_ring) /
3549                                         sizeof(struct e1000_tx_ring)),
3550                                 readl(adapter->hw.hw_addr + tx_ring->tdh),
3551                                 readl(adapter->hw.hw_addr + tx_ring->tdt),
3552                                 tx_ring->next_to_use,
3553                                 tx_ring->next_to_clean,
3554                                 tx_ring->buffer_info[eop].time_stamp,
3555                                 eop,
3556                                 jiffies,
3557                                 eop_desc->upper.fields.status);
3558                         netif_stop_queue(netdev);
3559                 }
3560         }
3561         return cleaned;
3562 }
3563
3564 /**
3565  * e1000_rx_checksum - Receive Checksum Offload for 82543
3566  * @adapter:     board private structure
3567  * @status_err:  receive descriptor status and error fields
3568  * @csum:        receive descriptor csum field
3569  * @sk_buff:     socket buffer with received data
3570  **/
3571
3572 static void
3573 e1000_rx_checksum(struct e1000_adapter *adapter,
3574                   uint32_t status_err, uint32_t csum,
3575                   struct sk_buff *skb)
3576 {
3577         uint16_t status = (uint16_t)status_err;
3578         uint8_t errors = (uint8_t)(status_err >> 24);
3579         skb->ip_summed = CHECKSUM_NONE;
3580
3581         /* 82543 or newer only */
3582         if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
3583         /* Ignore Checksum bit is set */
3584         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3585         /* TCP/UDP checksum error bit is set */
3586         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3587                 /* let the stack verify checksum errors */
3588                 adapter->hw_csum_err++;
3589                 return;
3590         }
3591         /* TCP/UDP Checksum has not been calculated */
3592         if (adapter->hw.mac_type <= e1000_82547_rev_2) {
3593                 if (!(status & E1000_RXD_STAT_TCPCS))
3594                         return;
3595         } else {
3596                 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3597                         return;
3598         }
3599         /* It must be a TCP or UDP packet with a valid checksum */
3600         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3601                 /* TCP checksum is good */
3602                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3603         } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
3604                 /* IP fragment with UDP payload */
3605                 /* Hardware complements the payload checksum, so we undo it
3606                  * and then put the value in host order for further stack use.
3607                  */
3608                 csum = ntohl(csum ^ 0xFFFF);
3609                 skb->csum = csum;
3610                 skb->ip_summed = CHECKSUM_HW;
3611         }
3612         adapter->hw_csum_good++;
3613 }
3614
3615 /**
3616  * e1000_clean_rx_irq - Send received data up the network stack; legacy
3617  * @adapter: board private structure
3618  **/
3619
3620 static boolean_t
3621 #ifdef CONFIG_E1000_NAPI
3622 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3623                    struct e1000_rx_ring *rx_ring,
3624                    int *work_done, int work_to_do)
3625 #else
3626 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3627                    struct e1000_rx_ring *rx_ring)
3628 #endif
3629 {
3630         struct net_device *netdev = adapter->netdev;
3631         struct pci_dev *pdev = adapter->pdev;
3632         struct e1000_rx_desc *rx_desc, *next_rxd;
3633         struct e1000_buffer *buffer_info, *next_buffer;
3634         unsigned long flags;
3635         uint32_t length;
3636         uint8_t last_byte;
3637         unsigned int i;
3638         int cleaned_count = 0;
3639         boolean_t cleaned = FALSE;
3640
3641         i = rx_ring->next_to_clean;
3642         rx_desc = E1000_RX_DESC(*rx_ring, i);
3643         buffer_info = &rx_ring->buffer_info[i];
3644
3645         while (rx_desc->status & E1000_RXD_STAT_DD) {
3646                 struct sk_buff *skb;
3647                 u8 status;
3648 #ifdef CONFIG_E1000_NAPI
3649                 if (*work_done >= work_to_do)
3650                         break;
3651                 (*work_done)++;
3652 #endif
3653                 status = rx_desc->status;
3654                 skb = buffer_info->skb;
3655                 buffer_info->skb = NULL;
3656
3657                 prefetch(skb->data - NET_IP_ALIGN);
3658
3659                 if (++i == rx_ring->count) i = 0;
3660                 next_rxd = E1000_RX_DESC(*rx_ring, i);
3661                 prefetch(next_rxd);
3662
3663                 next_buffer = &rx_ring->buffer_info[i];
3664
3665                 cleaned = TRUE;
3666                 cleaned_count++;
3667                 pci_unmap_single(pdev,
3668                                  buffer_info->dma,
3669                                  buffer_info->length,
3670                                  PCI_DMA_FROMDEVICE);
3671
3672                 length = le16_to_cpu(rx_desc->length);
3673
3674                 /* adjust length to remove Ethernet CRC */
3675                 length -= 4;
3676
3677                 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
3678                         /* All receives must fit into a single buffer */
3679                         E1000_DBG("%s: Receive packet consumed multiple"
3680                                   " buffers\n", netdev->name);
3681                         /* recycle */
3682                         buffer_info-> skb = skb;
3683                         goto next_desc;
3684                 }
3685
3686                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3687                         last_byte = *(skb->data + length - 1);
3688                         if (TBI_ACCEPT(&adapter->hw, status,
3689                                       rx_desc->errors, length, last_byte)) {
3690                                 spin_lock_irqsave(&adapter->stats_lock, flags);
3691                                 e1000_tbi_adjust_stats(&adapter->hw,
3692                                                        &adapter->stats,
3693                                                        length, skb->data);
3694                                 spin_unlock_irqrestore(&adapter->stats_lock,
3695                                                        flags);
3696                                 length--;
3697                         } else {
3698                                 /* recycle */
3699                                 buffer_info->skb = skb;
3700                                 goto next_desc;
3701                         }
3702                 }
3703
3704                 /* code added for copybreak, this should improve
3705                  * performance for small packets with large amounts
3706                  * of reassembly being done in the stack */
3707 #define E1000_CB_LENGTH 256
3708                 if (length < E1000_CB_LENGTH) {
3709                         struct sk_buff *new_skb =
3710                             netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
3711                         if (new_skb) {
3712                                 skb_reserve(new_skb, NET_IP_ALIGN);
3713                                 new_skb->dev = netdev;
3714                                 memcpy(new_skb->data - NET_IP_ALIGN,
3715                                        skb->data - NET_IP_ALIGN,
3716                                        length + NET_IP_ALIGN);
3717                                 /* save the skb in buffer_info as good */
3718                                 buffer_info->skb = skb;
3719                                 skb = new_skb;
3720                                 skb_put(skb, length);
3721                         }
3722                 } else
3723                         skb_put(skb, length);
3724
3725                 /* end copybreak code */
3726
3727                 /* Receive Checksum Offload */
3728                 e1000_rx_checksum(adapter,
3729                                   (uint32_t)(status) |
3730                                   ((uint32_t)(rx_desc->errors) << 24),
3731                                   le16_to_cpu(rx_desc->csum), skb);
3732
3733                 skb->protocol = eth_type_trans(skb, netdev);
3734 #ifdef CONFIG_E1000_NAPI
3735                 if (unlikely(adapter->vlgrp &&
3736                             (status & E1000_RXD_STAT_VP))) {
3737                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3738                                                  le16_to_cpu(rx_desc->special) &
3739                                                  E1000_RXD_SPC_VLAN_MASK);
3740                 } else {
3741                         netif_receive_skb(skb);
3742                 }
3743 #else /* CONFIG_E1000_NAPI */
3744                 if (unlikely(adapter->vlgrp &&
3745                             (status & E1000_RXD_STAT_VP))) {
3746                         vlan_hwaccel_rx(skb, adapter->vlgrp,
3747                                         le16_to_cpu(rx_desc->special) &
3748                                         E1000_RXD_SPC_VLAN_MASK);
3749                 } else {
3750                         netif_rx(skb);
3751                 }
3752 #endif /* CONFIG_E1000_NAPI */
3753                 netdev->last_rx = jiffies;
3754
3755 next_desc:
3756                 rx_desc->status = 0;
3757
3758                 /* return some buffers to hardware, one at a time is too slow */
3759                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3760                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3761                         cleaned_count = 0;
3762                 }
3763
3764                 /* use prefetched values */
3765                 rx_desc = next_rxd;
3766                 buffer_info = next_buffer;
3767         }
3768         rx_ring->next_to_clean = i;
3769
3770         cleaned_count = E1000_DESC_UNUSED(rx_ring);
3771         if (cleaned_count)
3772                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3773
3774         return cleaned;
3775 }
3776
3777 /**
3778  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
3779  * @adapter: board private structure
3780  **/
3781
3782 static boolean_t
3783 #ifdef CONFIG_E1000_NAPI
3784 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3785                       struct e1000_rx_ring *rx_ring,
3786                       int *work_done, int work_to_do)
3787 #else
3788 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3789                       struct e1000_rx_ring *rx_ring)
3790 #endif
3791 {
3792         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
3793         struct net_device *netdev = adapter->netdev;
3794         struct pci_dev *pdev = adapter->pdev;
3795         struct e1000_buffer *buffer_info, *next_buffer;
3796         struct e1000_ps_page *ps_page;
3797         struct e1000_ps_page_dma *ps_page_dma;
3798         struct sk_buff *skb;
3799         unsigned int i, j;
3800         uint32_t length, staterr;
3801         int cleaned_count = 0;
3802         boolean_t cleaned = FALSE;
3803
3804         i = rx_ring->next_to_clean;
3805         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3806         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3807         buffer_info = &rx_ring->buffer_info[i];
3808
3809         while (staterr & E1000_RXD_STAT_DD) {
3810                 ps_page = &rx_ring->ps_page[i];
3811                 ps_page_dma = &rx_ring->ps_page_dma[i];
3812 #ifdef CONFIG_E1000_NAPI
3813                 if (unlikely(*work_done >= work_to_do))
3814                         break;
3815                 (*work_done)++;
3816 #endif
3817                 skb = buffer_info->skb;
3818
3819                 /* in the packet split case this is header only */
3820                 prefetch(skb->data - NET_IP_ALIGN);
3821
3822                 if (++i == rx_ring->count) i = 0;
3823                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
3824                 prefetch(next_rxd);
3825
3826                 next_buffer = &rx_ring->buffer_info[i];
3827
3828                 cleaned = TRUE;
3829                 cleaned_count++;
3830                 pci_unmap_single(pdev, buffer_info->dma,
3831                                  buffer_info->length,
3832                                  PCI_DMA_FROMDEVICE);
3833
3834                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
3835                         E1000_DBG("%s: Packet Split buffers didn't pick up"
3836                                   " the full packet\n", netdev->name);
3837                         dev_kfree_skb_irq(skb);
3838                         goto next_desc;
3839                 }
3840
3841                 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3842                         dev_kfree_skb_irq(skb);
3843                         goto next_desc;
3844                 }
3845
3846                 length = le16_to_cpu(rx_desc->wb.middle.length0);
3847
3848                 if (unlikely(!length)) {
3849                         E1000_DBG("%s: Last part of the packet spanning"
3850                                   " multiple descriptors\n", netdev->name);
3851                         dev_kfree_skb_irq(skb);
3852                         goto next_desc;
3853                 }
3854
3855                 /* Good Receive */
3856                 skb_put(skb, length);
3857
3858                 {
3859                 /* this looks ugly, but it seems compiler issues make it
3860                    more efficient than reusing j */
3861                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
3862
3863                 /* page alloc/put takes too long and effects small packet
3864                  * throughput, so unsplit small packets and save the alloc/put*/
3865                 if (l1 && ((length + l1) <= adapter->rx_ps_bsize0)) {
3866                         u8 *vaddr;
3867                         /* there is no documentation about how to call
3868                          * kmap_atomic, so we can't hold the mapping
3869                          * very long */
3870                         pci_dma_sync_single_for_cpu(pdev,
3871                                 ps_page_dma->ps_page_dma[0],
3872                                 PAGE_SIZE,
3873                                 PCI_DMA_FROMDEVICE);
3874                         vaddr = kmap_atomic(ps_page->ps_page[0],
3875                                             KM_SKB_DATA_SOFTIRQ);
3876                         memcpy(skb->tail, vaddr, l1);
3877                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
3878                         pci_dma_sync_single_for_device(pdev,
3879                                 ps_page_dma->ps_page_dma[0],
3880                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3881                         /* remove the CRC */
3882                         l1 -= 4;
3883                         skb_put(skb, l1);
3884                         goto copydone;
3885                 } /* if */
3886                 }
3887                 
3888                 for (j = 0; j < adapter->rx_ps_pages; j++) {
3889                         if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
3890                                 break;
3891                         pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
3892                                         PAGE_SIZE, PCI_DMA_FROMDEVICE);
3893                         ps_page_dma->ps_page_dma[j] = 0;
3894                         skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
3895                                            length);
3896                         ps_page->ps_page[j] = NULL;
3897                         skb->len += length;
3898                         skb->data_len += length;
3899                         skb->truesize += length;
3900                 }
3901
3902                 /* strip the ethernet crc, problem is we're using pages now so
3903                  * this whole operation can get a little cpu intensive */
3904                 pskb_trim(skb, skb->len - 4);
3905
3906 copydone:
3907                 e1000_rx_checksum(adapter, staterr,
3908                                   le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
3909                 skb->protocol = eth_type_trans(skb, netdev);
3910
3911                 if (likely(rx_desc->wb.upper.header_status &
3912                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
3913                         adapter->rx_hdr_split++;
3914 #ifdef CONFIG_E1000_NAPI
3915                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3916                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3917                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
3918                                 E1000_RXD_SPC_VLAN_MASK);
3919                 } else {
3920                         netif_receive_skb(skb);
3921                 }
3922 #else /* CONFIG_E1000_NAPI */
3923                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3924                         vlan_hwaccel_rx(skb, adapter->vlgrp,
3925                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
3926                                 E1000_RXD_SPC_VLAN_MASK);
3927                 } else {
3928                         netif_rx(skb);
3929                 }
3930 #endif /* CONFIG_E1000_NAPI */
3931                 netdev->last_rx = jiffies;
3932
3933 next_desc:
3934                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
3935                 buffer_info->skb = NULL;
3936
3937                 /* return some buffers to hardware, one at a time is too slow */
3938                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3939                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3940                         cleaned_count = 0;
3941                 }
3942
3943                 /* use prefetched values */
3944                 rx_desc = next_rxd;
3945                 buffer_info = next_buffer;
3946
3947                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3948         }
3949         rx_ring->next_to_clean = i;
3950
3951         cleaned_count = E1000_DESC_UNUSED(rx_ring);
3952         if (cleaned_count)
3953                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3954
3955         return cleaned;
3956 }
3957
3958 /**
3959  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
3960  * @adapter: address of board private structure
3961  **/
3962
3963 static void
3964 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
3965                        struct e1000_rx_ring *rx_ring,
3966                        int cleaned_count)
3967 {
3968         struct net_device *netdev = adapter->netdev;
3969         struct pci_dev *pdev = adapter->pdev;
3970         struct e1000_rx_desc *rx_desc;
3971         struct e1000_buffer *buffer_info;
3972         struct sk_buff *skb;
3973         unsigned int i;
3974         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
3975
3976         i = rx_ring->next_to_use;
3977         buffer_info = &rx_ring->buffer_info[i];
3978
3979         while (cleaned_count--) {
3980                 if (!(skb = buffer_info->skb))
3981                         skb = netdev_alloc_skb(netdev, bufsz);
3982                 else {
3983                         skb_trim(skb, 0);
3984                         goto map_skb;
3985                 }
3986
3987                 if (unlikely(!skb)) {
3988                         /* Better luck next round */
3989                         adapter->alloc_rx_buff_failed++;
3990                         break;
3991                 }
3992
3993                 /* Fix for errata 23, can't cross 64kB boundary */
3994                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3995                         struct sk_buff *oldskb = skb;
3996                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
3997                                              "at %p\n", bufsz, skb->data);
3998                         /* Try again, without freeing the previous */
3999                         skb = netdev_alloc_skb(netdev, bufsz);
4000                         /* Failed allocation, critical failure */
4001                         if (!skb) {
4002                                 dev_kfree_skb(oldskb);
4003                                 break;
4004                         }
4005
4006                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4007                                 /* give up */
4008                                 dev_kfree_skb(skb);
4009                                 dev_kfree_skb(oldskb);
4010                                 break; /* while !buffer_info->skb */
4011                         } else {
4012                                 /* Use new allocation */
4013                                 dev_kfree_skb(oldskb);
4014                         }
4015                 }
4016                 /* Make buffer alignment 2 beyond a 16 byte boundary
4017                  * this will result in a 16 byte aligned IP header after
4018                  * the 14 byte MAC header is removed
4019                  */
4020                 skb_reserve(skb, NET_IP_ALIGN);
4021
4022                 skb->dev = netdev;
4023
4024                 buffer_info->skb = skb;
4025                 buffer_info->length = adapter->rx_buffer_len;
4026 map_skb:
4027                 buffer_info->dma = pci_map_single(pdev,
4028                                                   skb->data,
4029                                                   adapter->rx_buffer_len,
4030                                                   PCI_DMA_FROMDEVICE);
4031
4032                 /* Fix for errata 23, can't cross 64kB boundary */
4033                 if (!e1000_check_64k_bound(adapter,
4034                                         (void *)(unsigned long)buffer_info->dma,
4035                                         adapter->rx_buffer_len)) {
4036                         DPRINTK(RX_ERR, ERR,
4037                                 "dma align check failed: %u bytes at %p\n",
4038                                 adapter->rx_buffer_len,
4039                                 (void *)(unsigned long)buffer_info->dma);
4040                         dev_kfree_skb(skb);
4041                         buffer_info->skb = NULL;
4042
4043                         pci_unmap_single(pdev, buffer_info->dma,
4044                                          adapter->rx_buffer_len,
4045                                          PCI_DMA_FROMDEVICE);
4046
4047                         break; /* while !buffer_info->skb */
4048                 }
4049                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4050                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4051
4052                 if (unlikely(++i == rx_ring->count))
4053                         i = 0;
4054                 buffer_info = &rx_ring->buffer_info[i];
4055         }
4056
4057         if (likely(rx_ring->next_to_use != i)) {
4058                 rx_ring->next_to_use = i;
4059                 if (unlikely(i-- == 0))
4060                         i = (rx_ring->count - 1);
4061
4062                 /* Force memory writes to complete before letting h/w
4063                  * know there are new descriptors to fetch.  (Only
4064                  * applicable for weak-ordered memory model archs,
4065                  * such as IA-64). */
4066                 wmb();
4067                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4068         }
4069 }
4070
4071 /**
4072  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
4073  * @adapter: address of board private structure
4074  **/
4075
4076 static void
4077 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
4078                           struct e1000_rx_ring *rx_ring,
4079                           int cleaned_count)
4080 {
4081         struct net_device *netdev = adapter->netdev;
4082         struct pci_dev *pdev = adapter->pdev;
4083         union e1000_rx_desc_packet_split *rx_desc;
4084         struct e1000_buffer *buffer_info;
4085         struct e1000_ps_page *ps_page;
4086         struct e1000_ps_page_dma *ps_page_dma;
4087         struct sk_buff *skb;
4088         unsigned int i, j;
4089
4090         i = rx_ring->next_to_use;
4091         buffer_info = &rx_ring->buffer_info[i];
4092         ps_page = &rx_ring->ps_page[i];
4093         ps_page_dma = &rx_ring->ps_page_dma[i];
4094
4095         while (cleaned_count--) {
4096                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4097
4098                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
4099                         if (j < adapter->rx_ps_pages) {
4100                                 if (likely(!ps_page->ps_page[j])) {
4101                                         ps_page->ps_page[j] =
4102                                                 alloc_page(GFP_ATOMIC);
4103                                         if (unlikely(!ps_page->ps_page[j])) {
4104                                                 adapter->alloc_rx_buff_failed++;
4105                                                 goto no_buffers;
4106                                         }
4107                                         ps_page_dma->ps_page_dma[j] =
4108                                                 pci_map_page(pdev,
4109                                                             ps_page->ps_page[j],
4110                                                             0, PAGE_SIZE,
4111                                                             PCI_DMA_FROMDEVICE);
4112                                 }
4113                                 /* Refresh the desc even if buffer_addrs didn't
4114                                  * change because each write-back erases
4115                                  * this info.
4116                                  */
4117                                 rx_desc->read.buffer_addr[j+1] =
4118                                      cpu_to_le64(ps_page_dma->ps_page_dma[j]);
4119                         } else
4120                                 rx_desc->read.buffer_addr[j+1] = ~0;
4121                 }
4122
4123                 skb = netdev_alloc_skb(netdev,
4124                                        adapter->rx_ps_bsize0 + NET_IP_ALIGN);
4125
4126                 if (unlikely(!skb)) {
4127                         adapter->alloc_rx_buff_failed++;
4128                         break;
4129                 }
4130
4131                 /* Make buffer alignment 2 beyond a 16 byte boundary
4132                  * this will result in a 16 byte aligned IP header after
4133                  * the 14 byte MAC header is removed
4134                  */
4135                 skb_reserve(skb, NET_IP_ALIGN);
4136
4137                 skb->dev = netdev;
4138
4139                 buffer_info->skb = skb;
4140                 buffer_info->length = adapter->rx_ps_bsize0;
4141                 buffer_info->dma = pci_map_single(pdev, skb->data,
4142                                                   adapter->rx_ps_bsize0,
4143                                                   PCI_DMA_FROMDEVICE);
4144
4145                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
4146
4147                 if (unlikely(++i == rx_ring->count)) i = 0;
4148                 buffer_info = &rx_ring->buffer_info[i];
4149                 ps_page = &rx_ring->ps_page[i];
4150                 ps_page_dma = &rx_ring->ps_page_dma[i];
4151         }
4152
4153 no_buffers:
4154         if (likely(rx_ring->next_to_use != i)) {
4155                 rx_ring->next_to_use = i;
4156                 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4157
4158                 /* Force memory writes to complete before letting h/w
4159                  * know there are new descriptors to fetch.  (Only
4160                  * applicable for weak-ordered memory model archs,
4161                  * such as IA-64). */
4162                 wmb();
4163                 /* Hardware increments by 16 bytes, but packet split
4164                  * descriptors are 32 bytes...so we increment tail
4165                  * twice as much.
4166                  */
4167                 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4168         }
4169 }
4170
4171 /**
4172  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4173  * @adapter:
4174  **/
4175
4176 static void
4177 e1000_smartspeed(struct e1000_adapter *adapter)
4178 {
4179         uint16_t phy_status;
4180         uint16_t phy_ctrl;
4181
4182         if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4183            !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4184                 return;
4185
4186         if (adapter->smartspeed == 0) {
4187                 /* If Master/Slave config fault is asserted twice,
4188                  * we assume back-to-back */
4189                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4190                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4191                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4192                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4193                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4194                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4195                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4196                         e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4197                                             phy_ctrl);
4198                         adapter->smartspeed++;
4199                         if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4200                            !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4201                                                &phy_ctrl)) {
4202                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4203                                              MII_CR_RESTART_AUTO_NEG);
4204                                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4205                                                     phy_ctrl);
4206                         }
4207                 }
4208                 return;
4209         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4210                 /* If still no link, perhaps using 2/3 pair cable */
4211                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4212                 phy_ctrl |= CR_1000T_MS_ENABLE;
4213                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4214                 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4215                    !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4216                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4217                                      MII_CR_RESTART_AUTO_NEG);
4218                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4219                 }
4220         }
4221         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4222         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4223                 adapter->smartspeed = 0;
4224 }
4225
4226 /**
4227  * e1000_ioctl -
4228  * @netdev:
4229  * @ifreq:
4230  * @cmd:
4231  **/
4232
4233 static int
4234 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4235 {
4236         switch (cmd) {
4237         case SIOCGMIIPHY:
4238         case SIOCGMIIREG:
4239         case SIOCSMIIREG:
4240                 return e1000_mii_ioctl(netdev, ifr, cmd);
4241         default:
4242                 return -EOPNOTSUPP;
4243         }
4244 }
4245
4246 /**
4247  * e1000_mii_ioctl -
4248  * @netdev:
4249  * @ifreq:
4250  * @cmd:
4251  **/
4252
4253 static int
4254 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4255 {
4256         struct e1000_adapter *adapter = netdev_priv(netdev);
4257         struct mii_ioctl_data *data = if_mii(ifr);
4258         int retval;
4259         uint16_t mii_reg;
4260         uint16_t spddplx;
4261         unsigned long flags;
4262
4263         if (adapter->hw.media_type != e1000_media_type_copper)
4264                 return -EOPNOTSUPP;
4265
4266         switch (cmd) {
4267         case SIOCGMIIPHY:
4268                 data->phy_id = adapter->hw.phy_addr;
4269                 break;
4270         case SIOCGMIIREG:
4271                 if (!capable(CAP_NET_ADMIN))
4272                         return -EPERM;
4273                 spin_lock_irqsave(&adapter->stats_lock, flags);
4274                 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4275                                    &data->val_out)) {
4276                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4277                         return -EIO;
4278                 }
4279                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4280                 break;
4281         case SIOCSMIIREG:
4282                 if (!capable(CAP_NET_ADMIN))
4283                         return -EPERM;
4284                 if (data->reg_num & ~(0x1F))
4285                         return -EFAULT;
4286                 mii_reg = data->val_in;
4287                 spin_lock_irqsave(&adapter->stats_lock, flags);
4288                 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4289                                         mii_reg)) {
4290                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4291                         return -EIO;
4292                 }
4293                 if (adapter->hw.media_type == e1000_media_type_copper) {
4294                         switch (data->reg_num) {
4295                         case PHY_CTRL:
4296                                 if (mii_reg & MII_CR_POWER_DOWN)
4297                                         break;
4298                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4299                                         adapter->hw.autoneg = 1;
4300                                         adapter->hw.autoneg_advertised = 0x2F;
4301                                 } else {
4302                                         if (mii_reg & 0x40)
4303                                                 spddplx = SPEED_1000;
4304                                         else if (mii_reg & 0x2000)
4305                                                 spddplx = SPEED_100;
4306                                         else
4307                                                 spddplx = SPEED_10;
4308                                         spddplx += (mii_reg & 0x100)
4309                                                    ? DUPLEX_FULL :
4310                                                    DUPLEX_HALF;
4311                                         retval = e1000_set_spd_dplx(adapter,
4312                                                                     spddplx);
4313                                         if (retval) {
4314                                                 spin_unlock_irqrestore(
4315                                                         &adapter->stats_lock,
4316                                                         flags);
4317                                                 return retval;
4318                                         }
4319                                 }
4320                                 if (netif_running(adapter->netdev))
4321                                         e1000_reinit_locked(adapter);
4322                                 else
4323                                         e1000_reset(adapter);
4324                                 break;
4325                         case M88E1000_PHY_SPEC_CTRL:
4326                         case M88E1000_EXT_PHY_SPEC_CTRL:
4327                                 if (e1000_phy_reset(&adapter->hw)) {
4328                                         spin_unlock_irqrestore(
4329                                                 &adapter->stats_lock, flags);
4330                                         return -EIO;
4331                                 }
4332                                 break;
4333                         }
4334                 } else {
4335                         switch (data->reg_num) {
4336                         case PHY_CTRL:
4337                                 if (mii_reg & MII_CR_POWER_DOWN)
4338                                         break;
4339                                 if (netif_running(adapter->netdev))
4340                                         e1000_reinit_locked(adapter);
4341                                 else
4342                                         e1000_reset(adapter);
4343                                 break;
4344                         }
4345                 }
4346                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4347                 break;
4348         default:
4349                 return -EOPNOTSUPP;
4350         }
4351         return E1000_SUCCESS;
4352 }
4353
4354 void
4355 e1000_pci_set_mwi(struct e1000_hw *hw)
4356 {
4357         struct e1000_adapter *adapter = hw->back;
4358         int ret_val = pci_set_mwi(adapter->pdev);
4359
4360         if (ret_val)
4361                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4362 }
4363
4364 void
4365 e1000_pci_clear_mwi(struct e1000_hw *hw)
4366 {
4367         struct e1000_adapter *adapter = hw->back;
4368
4369         pci_clear_mwi(adapter->pdev);
4370 }
4371
4372 void
4373 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4374 {
4375         struct e1000_adapter *adapter = hw->back;
4376
4377         pci_read_config_word(adapter->pdev, reg, value);
4378 }
4379
4380 void
4381 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4382 {
4383         struct e1000_adapter *adapter = hw->back;
4384
4385         pci_write_config_word(adapter->pdev, reg, *value);
4386 }
4387
4388 uint32_t
4389 e1000_io_read(struct e1000_hw *hw, unsigned long port)
4390 {
4391         return inl(port);
4392 }
4393
4394 void
4395 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4396 {
4397         outl(value, port);
4398 }
4399
4400 static void
4401 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4402 {
4403         struct e1000_adapter *adapter = netdev_priv(netdev);
4404         uint32_t ctrl, rctl;
4405
4406         e1000_irq_disable(adapter);
4407         adapter->vlgrp = grp;
4408
4409         if (grp) {
4410                 /* enable VLAN tag insert/strip */
4411                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4412                 ctrl |= E1000_CTRL_VME;
4413                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4414
4415                 if (adapter->hw.mac_type != e1000_ich8lan) {
4416                 /* enable VLAN receive filtering */
4417                 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4418                 rctl |= E1000_RCTL_VFE;
4419                 rctl &= ~E1000_RCTL_CFIEN;
4420                 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4421                 e1000_update_mng_vlan(adapter);
4422                 }
4423         } else {
4424                 /* disable VLAN tag insert/strip */
4425                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4426                 ctrl &= ~E1000_CTRL_VME;
4427                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4428
4429                 if (adapter->hw.mac_type != e1000_ich8lan) {
4430                 /* disable VLAN filtering */
4431                 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4432                 rctl &= ~E1000_RCTL_VFE;
4433                 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4434                 if (adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) {
4435                         e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4436                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4437                 }
4438                 }
4439         }
4440
4441         e1000_irq_enable(adapter);
4442 }
4443
4444 static void
4445 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4446 {
4447         struct e1000_adapter *adapter = netdev_priv(netdev);
4448         uint32_t vfta, index;
4449
4450         if ((adapter->hw.mng_cookie.status &
4451              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4452             (vid == adapter->mng_vlan_id))
4453                 return;
4454         /* add VID to filter table */
4455         index = (vid >> 5) & 0x7F;
4456         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4457         vfta |= (1 << (vid & 0x1F));
4458         e1000_write_vfta(&adapter->hw, index, vfta);
4459 }
4460
4461 static void
4462 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
4463 {
4464         struct e1000_adapter *adapter = netdev_priv(netdev);
4465         uint32_t vfta, index;
4466
4467         e1000_irq_disable(adapter);
4468
4469         if (adapter->vlgrp)
4470                 adapter->vlgrp->vlan_devices[vid] = NULL;
4471
4472         e1000_irq_enable(adapter);
4473
4474         if ((adapter->hw.mng_cookie.status &
4475              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4476             (vid == adapter->mng_vlan_id)) {
4477                 /* release control to f/w */
4478                 e1000_release_hw_control(adapter);
4479                 return;
4480         }
4481
4482         /* remove VID from filter table */
4483         index = (vid >> 5) & 0x7F;
4484         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4485         vfta &= ~(1 << (vid & 0x1F));
4486         e1000_write_vfta(&adapter->hw, index, vfta);
4487 }
4488
4489 static void
4490 e1000_restore_vlan(struct e1000_adapter *adapter)
4491 {
4492         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4493
4494         if (adapter->vlgrp) {
4495                 uint16_t vid;
4496                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4497                         if (!adapter->vlgrp->vlan_devices[vid])
4498                                 continue;
4499                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
4500                 }
4501         }
4502 }
4503
4504 int
4505 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
4506 {
4507         adapter->hw.autoneg = 0;
4508
4509         /* Fiber NICs only allow 1000 gbps Full duplex */
4510         if ((adapter->hw.media_type == e1000_media_type_fiber) &&
4511                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4512                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4513                 return -EINVAL;
4514         }
4515
4516         switch (spddplx) {
4517         case SPEED_10 + DUPLEX_HALF:
4518                 adapter->hw.forced_speed_duplex = e1000_10_half;
4519                 break;
4520         case SPEED_10 + DUPLEX_FULL:
4521                 adapter->hw.forced_speed_duplex = e1000_10_full;
4522                 break;
4523         case SPEED_100 + DUPLEX_HALF:
4524                 adapter->hw.forced_speed_duplex = e1000_100_half;
4525                 break;
4526         case SPEED_100 + DUPLEX_FULL:
4527                 adapter->hw.forced_speed_duplex = e1000_100_full;
4528                 break;
4529         case SPEED_1000 + DUPLEX_FULL:
4530                 adapter->hw.autoneg = 1;
4531                 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
4532                 break;
4533         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4534         default:
4535                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4536                 return -EINVAL;
4537         }
4538         return 0;
4539 }
4540
4541 #ifdef CONFIG_PM
4542 /* Save/restore 16 or 64 dwords of PCI config space depending on which
4543  * bus we're on (PCI(X) vs. PCI-E)
4544  */
4545 #define PCIE_CONFIG_SPACE_LEN 256
4546 #define PCI_CONFIG_SPACE_LEN 64
4547 static int
4548 e1000_pci_save_state(struct e1000_adapter *adapter)
4549 {
4550         struct pci_dev *dev = adapter->pdev;
4551         int size;
4552         int i;
4553
4554         if (adapter->hw.mac_type >= e1000_82571)
4555                 size = PCIE_CONFIG_SPACE_LEN;
4556         else
4557                 size = PCI_CONFIG_SPACE_LEN;
4558
4559         WARN_ON(adapter->config_space != NULL);
4560
4561         adapter->config_space = kmalloc(size, GFP_KERNEL);
4562         if (!adapter->config_space) {
4563                 DPRINTK(PROBE, ERR, "unable to allocate %d bytes\n", size);
4564                 return -ENOMEM;
4565         }
4566         for (i = 0; i < (size / 4); i++)
4567                 pci_read_config_dword(dev, i * 4, &adapter->config_space[i]);
4568         return 0;
4569 }
4570
4571 static void
4572 e1000_pci_restore_state(struct e1000_adapter *adapter)
4573 {
4574         struct pci_dev *dev = adapter->pdev;
4575         int size;
4576         int i;
4577
4578         if (adapter->config_space == NULL)
4579                 return;
4580
4581         if (adapter->hw.mac_type >= e1000_82571)
4582                 size = PCIE_CONFIG_SPACE_LEN;
4583         else
4584                 size = PCI_CONFIG_SPACE_LEN;
4585         for (i = 0; i < (size / 4); i++)
4586                 pci_write_config_dword(dev, i * 4, adapter->config_space[i]);
4587         kfree(adapter->config_space);
4588         adapter->config_space = NULL;
4589         return;
4590 }
4591 #endif /* CONFIG_PM */
4592
4593 static int
4594 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4595 {
4596         struct net_device *netdev = pci_get_drvdata(pdev);
4597         struct e1000_adapter *adapter = netdev_priv(netdev);
4598         uint32_t ctrl, ctrl_ext, rctl, manc, status;
4599         uint32_t wufc = adapter->wol;
4600 #ifdef CONFIG_PM
4601         int retval = 0;
4602 #endif
4603
4604         netif_device_detach(netdev);
4605
4606         if (netif_running(netdev)) {
4607                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4608                 e1000_down(adapter);
4609         }
4610
4611 #ifdef CONFIG_PM
4612         /* Implement our own version of pci_save_state(pdev) because pci-
4613          * express adapters have 256-byte config spaces. */
4614         retval = e1000_pci_save_state(adapter);
4615         if (retval)
4616                 return retval;
4617 #endif
4618
4619         status = E1000_READ_REG(&adapter->hw, STATUS);
4620         if (status & E1000_STATUS_LU)
4621                 wufc &= ~E1000_WUFC_LNKC;
4622
4623         if (wufc) {
4624                 e1000_setup_rctl(adapter);
4625                 e1000_set_multi(netdev);
4626
4627                 /* turn on all-multi mode if wake on multicast is enabled */
4628                 if (adapter->wol & E1000_WUFC_MC) {
4629                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4630                         rctl |= E1000_RCTL_MPE;
4631                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4632                 }
4633
4634                 if (adapter->hw.mac_type >= e1000_82540) {
4635                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4636                         /* advertise wake from D3Cold */
4637                         #define E1000_CTRL_ADVD3WUC 0x00100000
4638                         /* phy power management enable */
4639                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4640                         ctrl |= E1000_CTRL_ADVD3WUC |
4641                                 E1000_CTRL_EN_PHY_PWR_MGMT;
4642                         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4643                 }
4644
4645                 if (adapter->hw.media_type == e1000_media_type_fiber ||
4646                    adapter->hw.media_type == e1000_media_type_internal_serdes) {
4647                         /* keep the laser running in D3 */
4648                         ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
4649                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4650                         E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
4651                 }
4652
4653                 /* Allow time for pending master requests to run */
4654                 e1000_disable_pciex_master(&adapter->hw);
4655
4656                 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
4657                 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
4658                 pci_enable_wake(pdev, PCI_D3hot, 1);
4659                 pci_enable_wake(pdev, PCI_D3cold, 1);
4660         } else {
4661                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
4662                 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
4663                 pci_enable_wake(pdev, PCI_D3hot, 0);
4664                 pci_enable_wake(pdev, PCI_D3cold, 0);
4665         }
4666
4667         /* FIXME: this code is incorrect for PCI Express */
4668         if (adapter->hw.mac_type >= e1000_82540 &&
4669            adapter->hw.mac_type != e1000_ich8lan &&
4670            adapter->hw.media_type == e1000_media_type_copper) {
4671                 manc = E1000_READ_REG(&adapter->hw, MANC);
4672                 if (manc & E1000_MANC_SMBUS_EN) {
4673                         manc |= E1000_MANC_ARP_EN;
4674                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
4675                         pci_enable_wake(pdev, PCI_D3hot, 1);
4676                         pci_enable_wake(pdev, PCI_D3cold, 1);
4677                 }
4678         }
4679
4680         if (adapter->hw.phy_type == e1000_phy_igp_3)
4681                 e1000_phy_powerdown_workaround(&adapter->hw);
4682
4683         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
4684          * would have already happened in close and is redundant. */
4685         e1000_release_hw_control(adapter);
4686
4687         pci_disable_device(pdev);
4688
4689         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4690
4691         return 0;
4692 }
4693
4694 #ifdef CONFIG_PM
4695 static int
4696 e1000_resume(struct pci_dev *pdev)
4697 {
4698         struct net_device *netdev = pci_get_drvdata(pdev);
4699         struct e1000_adapter *adapter = netdev_priv(netdev);
4700         uint32_t manc, ret_val;
4701
4702         pci_set_power_state(pdev, PCI_D0);
4703         e1000_pci_restore_state(adapter);
4704         ret_val = pci_enable_device(pdev);
4705         pci_set_master(pdev);
4706
4707         pci_enable_wake(pdev, PCI_D3hot, 0);
4708         pci_enable_wake(pdev, PCI_D3cold, 0);
4709
4710         e1000_reset(adapter);
4711         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4712
4713         if (netif_running(netdev))
4714                 e1000_up(adapter);
4715
4716         netif_device_attach(netdev);
4717
4718         /* FIXME: this code is incorrect for PCI Express */
4719         if (adapter->hw.mac_type >= e1000_82540 &&
4720            adapter->hw.mac_type != e1000_ich8lan &&
4721            adapter->hw.media_type == e1000_media_type_copper) {
4722                 manc = E1000_READ_REG(&adapter->hw, MANC);
4723                 manc &= ~(E1000_MANC_ARP_EN);
4724                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4725         }
4726
4727         /* If the controller is 82573 and f/w is AMT, do not set
4728          * DRV_LOAD until the interface is up.  For all other cases,
4729          * let the f/w know that the h/w is now under the control
4730          * of the driver. */
4731         if (adapter->hw.mac_type != e1000_82573 ||
4732             !e1000_check_mng_mode(&adapter->hw))
4733                 e1000_get_hw_control(adapter);
4734
4735         return 0;
4736 }
4737 #endif
4738
4739 static void e1000_shutdown(struct pci_dev *pdev)
4740 {
4741         e1000_suspend(pdev, PMSG_SUSPEND);
4742 }
4743
4744 #ifdef CONFIG_NET_POLL_CONTROLLER
4745 /*
4746  * Polling 'interrupt' - used by things like netconsole to send skbs
4747  * without having to re-enable interrupts. It's not called while
4748  * the interrupt routine is executing.
4749  */
4750 static void
4751 e1000_netpoll(struct net_device *netdev)
4752 {
4753         struct e1000_adapter *adapter = netdev_priv(netdev);
4754
4755         disable_irq(adapter->pdev->irq);
4756         e1000_intr(adapter->pdev->irq, netdev, NULL);
4757         e1000_clean_tx_irq(adapter, adapter->tx_ring);
4758 #ifndef CONFIG_E1000_NAPI
4759         adapter->clean_rx(adapter, adapter->rx_ring);
4760 #endif
4761         enable_irq(adapter->pdev->irq);
4762 }
4763 #endif
4764
4765 /**
4766  * e1000_io_error_detected - called when PCI error is detected
4767  * @pdev: Pointer to PCI device
4768  * @state: The current pci conneection state
4769  *
4770  * This function is called after a PCI bus error affecting
4771  * this device has been detected.
4772  */
4773 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
4774 {
4775         struct net_device *netdev = pci_get_drvdata(pdev);
4776         struct e1000_adapter *adapter = netdev->priv;
4777
4778         netif_device_detach(netdev);
4779
4780         if (netif_running(netdev))
4781                 e1000_down(adapter);
4782
4783         /* Request a slot slot reset. */
4784         return PCI_ERS_RESULT_NEED_RESET;
4785 }
4786
4787 /**
4788  * e1000_io_slot_reset - called after the pci bus has been reset.
4789  * @pdev: Pointer to PCI device
4790  *
4791  * Restart the card from scratch, as if from a cold-boot. Implementation
4792  * resembles the first-half of the e1000_resume routine.
4793  */
4794 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4795 {
4796         struct net_device *netdev = pci_get_drvdata(pdev);
4797         struct e1000_adapter *adapter = netdev->priv;
4798
4799         if (pci_enable_device(pdev)) {
4800                 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
4801                 return PCI_ERS_RESULT_DISCONNECT;
4802         }
4803         pci_set_master(pdev);
4804
4805         pci_enable_wake(pdev, 3, 0);
4806         pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
4807
4808         /* Perform card reset only on one instance of the card */
4809         if (PCI_FUNC (pdev->devfn) != 0)
4810                 return PCI_ERS_RESULT_RECOVERED;
4811
4812         e1000_reset(adapter);
4813         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4814
4815         return PCI_ERS_RESULT_RECOVERED;
4816 }
4817
4818 /**
4819  * e1000_io_resume - called when traffic can start flowing again.
4820  * @pdev: Pointer to PCI device
4821  *
4822  * This callback is called when the error recovery driver tells us that
4823  * its OK to resume normal operation. Implementation resembles the
4824  * second-half of the e1000_resume routine.
4825  */
4826 static void e1000_io_resume(struct pci_dev *pdev)
4827 {
4828         struct net_device *netdev = pci_get_drvdata(pdev);
4829         struct e1000_adapter *adapter = netdev->priv;
4830         uint32_t manc, swsm;
4831
4832         if (netif_running(netdev)) {
4833                 if (e1000_up(adapter)) {
4834                         printk("e1000: can't bring device back up after reset\n");
4835                         return;
4836                 }
4837         }
4838
4839         netif_device_attach(netdev);
4840
4841         if (adapter->hw.mac_type >= e1000_82540 &&
4842             adapter->hw.media_type == e1000_media_type_copper) {
4843                 manc = E1000_READ_REG(&adapter->hw, MANC);
4844                 manc &= ~(E1000_MANC_ARP_EN);
4845                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4846         }
4847
4848         switch (adapter->hw.mac_type) {
4849         case e1000_82573:
4850                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
4851                 E1000_WRITE_REG(&adapter->hw, SWSM,
4852                                 swsm | E1000_SWSM_DRV_LOAD);
4853                 break;
4854         default:
4855                 break;
4856         }
4857
4858         if (netif_running(netdev))
4859                 mod_timer(&adapter->watchdog_timer, jiffies);
4860 }
4861
4862 /* e1000_main.c */