]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/e1000/e1000_main.c
b2c3e4cc0cb455f82526c7002654eda81fecd1ea
[linux-2.6-omap-h63xx.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #ifndef CONFIG_E1000_NAPI
35 #define DRIVERNAPI
36 #else
37 #define DRIVERNAPI "-NAPI"
38 #endif
39 #define DRV_VERSION "7.3.20-k2"DRIVERNAPI
40 const char e1000_driver_version[] = DRV_VERSION;
41 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
42
43 /* e1000_pci_tbl - PCI Device ID Table
44  *
45  * Last entry must be all 0s
46  *
47  * Macro expands to...
48  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
49  */
50 static struct pci_device_id e1000_pci_tbl[] = {
51         INTEL_E1000_ETHERNET_DEVICE(0x1000),
52         INTEL_E1000_ETHERNET_DEVICE(0x1001),
53         INTEL_E1000_ETHERNET_DEVICE(0x1004),
54         INTEL_E1000_ETHERNET_DEVICE(0x1008),
55         INTEL_E1000_ETHERNET_DEVICE(0x1009),
56         INTEL_E1000_ETHERNET_DEVICE(0x100C),
57         INTEL_E1000_ETHERNET_DEVICE(0x100D),
58         INTEL_E1000_ETHERNET_DEVICE(0x100E),
59         INTEL_E1000_ETHERNET_DEVICE(0x100F),
60         INTEL_E1000_ETHERNET_DEVICE(0x1010),
61         INTEL_E1000_ETHERNET_DEVICE(0x1011),
62         INTEL_E1000_ETHERNET_DEVICE(0x1012),
63         INTEL_E1000_ETHERNET_DEVICE(0x1013),
64         INTEL_E1000_ETHERNET_DEVICE(0x1014),
65         INTEL_E1000_ETHERNET_DEVICE(0x1015),
66         INTEL_E1000_ETHERNET_DEVICE(0x1016),
67         INTEL_E1000_ETHERNET_DEVICE(0x1017),
68         INTEL_E1000_ETHERNET_DEVICE(0x1018),
69         INTEL_E1000_ETHERNET_DEVICE(0x1019),
70         INTEL_E1000_ETHERNET_DEVICE(0x101A),
71         INTEL_E1000_ETHERNET_DEVICE(0x101D),
72         INTEL_E1000_ETHERNET_DEVICE(0x101E),
73         INTEL_E1000_ETHERNET_DEVICE(0x1026),
74         INTEL_E1000_ETHERNET_DEVICE(0x1027),
75         INTEL_E1000_ETHERNET_DEVICE(0x1028),
76         INTEL_E1000_ETHERNET_DEVICE(0x1075),
77         INTEL_E1000_ETHERNET_DEVICE(0x1076),
78         INTEL_E1000_ETHERNET_DEVICE(0x1077),
79         INTEL_E1000_ETHERNET_DEVICE(0x1078),
80         INTEL_E1000_ETHERNET_DEVICE(0x1079),
81         INTEL_E1000_ETHERNET_DEVICE(0x107A),
82         INTEL_E1000_ETHERNET_DEVICE(0x107B),
83         INTEL_E1000_ETHERNET_DEVICE(0x107C),
84         INTEL_E1000_ETHERNET_DEVICE(0x108A),
85         INTEL_E1000_ETHERNET_DEVICE(0x1099),
86         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
87         /* required last entry */
88         {0,}
89 };
90
91 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
92
93 int e1000_up(struct e1000_adapter *adapter);
94 void e1000_down(struct e1000_adapter *adapter);
95 void e1000_reinit_locked(struct e1000_adapter *adapter);
96 void e1000_reset(struct e1000_adapter *adapter);
97 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx);
98 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
99 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
100 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
101 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
102 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
103                              struct e1000_tx_ring *txdr);
104 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
105                              struct e1000_rx_ring *rxdr);
106 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
107                              struct e1000_tx_ring *tx_ring);
108 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
109                              struct e1000_rx_ring *rx_ring);
110 void e1000_update_stats(struct e1000_adapter *adapter);
111
112 static int e1000_init_module(void);
113 static void e1000_exit_module(void);
114 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
115 static void __devexit e1000_remove(struct pci_dev *pdev);
116 static int e1000_alloc_queues(struct e1000_adapter *adapter);
117 static int e1000_sw_init(struct e1000_adapter *adapter);
118 static int e1000_open(struct net_device *netdev);
119 static int e1000_close(struct net_device *netdev);
120 static void e1000_configure_tx(struct e1000_adapter *adapter);
121 static void e1000_configure_rx(struct e1000_adapter *adapter);
122 static void e1000_setup_rctl(struct e1000_adapter *adapter);
123 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
124 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
125 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
126                                 struct e1000_tx_ring *tx_ring);
127 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
128                                 struct e1000_rx_ring *rx_ring);
129 static void e1000_set_rx_mode(struct net_device *netdev);
130 static void e1000_update_phy_info(unsigned long data);
131 static void e1000_watchdog(unsigned long data);
132 static void e1000_82547_tx_fifo_stall(unsigned long data);
133 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
134 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
135 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
136 static int e1000_set_mac(struct net_device *netdev, void *p);
137 static irqreturn_t e1000_intr(int irq, void *data);
138 static irqreturn_t e1000_intr_msi(int irq, void *data);
139 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
140                                struct e1000_tx_ring *tx_ring);
141 #ifdef CONFIG_E1000_NAPI
142 static int e1000_clean(struct napi_struct *napi, int budget);
143 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
144                                struct e1000_rx_ring *rx_ring,
145                                int *work_done, int work_to_do);
146 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
147                                   struct e1000_rx_ring *rx_ring,
148                                   int *work_done, int work_to_do);
149 #else
150 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
151                                struct e1000_rx_ring *rx_ring);
152 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
153                                   struct e1000_rx_ring *rx_ring);
154 #endif
155 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
156                                    struct e1000_rx_ring *rx_ring,
157                                    int cleaned_count);
158 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
159                                       struct e1000_rx_ring *rx_ring,
160                                       int cleaned_count);
161 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
162 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
163                            int cmd);
164 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
165 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
166 static void e1000_tx_timeout(struct net_device *dev);
167 static void e1000_reset_task(struct work_struct *work);
168 static void e1000_smartspeed(struct e1000_adapter *adapter);
169 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
170                                        struct sk_buff *skb);
171
172 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
173 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
174 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
175 static void e1000_restore_vlan(struct e1000_adapter *adapter);
176
177 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
178 #ifdef CONFIG_PM
179 static int e1000_resume(struct pci_dev *pdev);
180 #endif
181 static void e1000_shutdown(struct pci_dev *pdev);
182
183 #ifdef CONFIG_NET_POLL_CONTROLLER
184 /* for netdump / net console */
185 static void e1000_netpoll (struct net_device *netdev);
186 #endif
187
188 #define COPYBREAK_DEFAULT 256
189 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
190 module_param(copybreak, uint, 0644);
191 MODULE_PARM_DESC(copybreak,
192         "Maximum size of packet that is copied to a new buffer on receive");
193
194 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
195                      pci_channel_state_t state);
196 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
197 static void e1000_io_resume(struct pci_dev *pdev);
198
199 static struct pci_error_handlers e1000_err_handler = {
200         .error_detected = e1000_io_error_detected,
201         .slot_reset = e1000_io_slot_reset,
202         .resume = e1000_io_resume,
203 };
204
205 static struct pci_driver e1000_driver = {
206         .name     = e1000_driver_name,
207         .id_table = e1000_pci_tbl,
208         .probe    = e1000_probe,
209         .remove   = __devexit_p(e1000_remove),
210 #ifdef CONFIG_PM
211         /* Power Managment Hooks */
212         .suspend  = e1000_suspend,
213         .resume   = e1000_resume,
214 #endif
215         .shutdown = e1000_shutdown,
216         .err_handler = &e1000_err_handler
217 };
218
219 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
220 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
221 MODULE_LICENSE("GPL");
222 MODULE_VERSION(DRV_VERSION);
223
224 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
225 module_param(debug, int, 0);
226 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
227
228 /**
229  * e1000_init_module - Driver Registration Routine
230  *
231  * e1000_init_module is the first routine called when the driver is
232  * loaded. All it does is register with the PCI subsystem.
233  **/
234
235 static int __init e1000_init_module(void)
236 {
237         int ret;
238         printk(KERN_INFO "%s - version %s\n",
239                e1000_driver_string, e1000_driver_version);
240
241         printk(KERN_INFO "%s\n", e1000_copyright);
242
243         ret = pci_register_driver(&e1000_driver);
244         if (copybreak != COPYBREAK_DEFAULT) {
245                 if (copybreak == 0)
246                         printk(KERN_INFO "e1000: copybreak disabled\n");
247                 else
248                         printk(KERN_INFO "e1000: copybreak enabled for "
249                                "packets <= %u bytes\n", copybreak);
250         }
251         return ret;
252 }
253
254 module_init(e1000_init_module);
255
256 /**
257  * e1000_exit_module - Driver Exit Cleanup Routine
258  *
259  * e1000_exit_module is called just before the driver is removed
260  * from memory.
261  **/
262
263 static void __exit e1000_exit_module(void)
264 {
265         pci_unregister_driver(&e1000_driver);
266 }
267
268 module_exit(e1000_exit_module);
269
270 static int e1000_request_irq(struct e1000_adapter *adapter)
271 {
272         struct e1000_hw *hw = &adapter->hw;
273         struct net_device *netdev = adapter->netdev;
274         irq_handler_t handler = e1000_intr;
275         int irq_flags = IRQF_SHARED;
276         int err;
277
278         if (hw->mac_type >= e1000_82571) {
279                 adapter->have_msi = !pci_enable_msi(adapter->pdev);
280                 if (adapter->have_msi) {
281                         handler = e1000_intr_msi;
282                         irq_flags = 0;
283                 }
284         }
285
286         err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
287                           netdev);
288         if (err) {
289                 if (adapter->have_msi)
290                         pci_disable_msi(adapter->pdev);
291                 DPRINTK(PROBE, ERR,
292                         "Unable to allocate interrupt Error: %d\n", err);
293         }
294
295         return err;
296 }
297
298 static void e1000_free_irq(struct e1000_adapter *adapter)
299 {
300         struct net_device *netdev = adapter->netdev;
301
302         free_irq(adapter->pdev->irq, netdev);
303
304         if (adapter->have_msi)
305                 pci_disable_msi(adapter->pdev);
306 }
307
308 /**
309  * e1000_irq_disable - Mask off interrupt generation on the NIC
310  * @adapter: board private structure
311  **/
312
313 static void e1000_irq_disable(struct e1000_adapter *adapter)
314 {
315         struct e1000_hw *hw = &adapter->hw;
316
317         ew32(IMC, ~0);
318         E1000_WRITE_FLUSH();
319         synchronize_irq(adapter->pdev->irq);
320 }
321
322 /**
323  * e1000_irq_enable - Enable default interrupt generation settings
324  * @adapter: board private structure
325  **/
326
327 static void e1000_irq_enable(struct e1000_adapter *adapter)
328 {
329         struct e1000_hw *hw = &adapter->hw;
330
331         ew32(IMS, IMS_ENABLE_MASK);
332         E1000_WRITE_FLUSH();
333 }
334
335 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
336 {
337         struct e1000_hw *hw = &adapter->hw;
338         struct net_device *netdev = adapter->netdev;
339         u16 vid = hw->mng_cookie.vlan_id;
340         u16 old_vid = adapter->mng_vlan_id;
341         if (adapter->vlgrp) {
342                 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
343                         if (hw->mng_cookie.status &
344                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
345                                 e1000_vlan_rx_add_vid(netdev, vid);
346                                 adapter->mng_vlan_id = vid;
347                         } else
348                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
349
350                         if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
351                                         (vid != old_vid) &&
352                             !vlan_group_get_device(adapter->vlgrp, old_vid))
353                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
354                 } else
355                         adapter->mng_vlan_id = vid;
356         }
357 }
358
359 /**
360  * e1000_release_hw_control - release control of the h/w to f/w
361  * @adapter: address of board private structure
362  *
363  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
364  * For ASF and Pass Through versions of f/w this means that the
365  * driver is no longer loaded. For AMT version (only with 82573) i
366  * of the f/w this means that the network i/f is closed.
367  *
368  **/
369
370 static void e1000_release_hw_control(struct e1000_adapter *adapter)
371 {
372         u32 ctrl_ext;
373         u32 swsm;
374         struct e1000_hw *hw = &adapter->hw;
375
376         /* Let firmware taken over control of h/w */
377         switch (hw->mac_type) {
378         case e1000_82573:
379                 swsm = er32(SWSM);
380                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
381                 break;
382         case e1000_82571:
383         case e1000_82572:
384         case e1000_80003es2lan:
385         case e1000_ich8lan:
386                 ctrl_ext = er32(CTRL_EXT);
387                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
388                 break;
389         default:
390                 break;
391         }
392 }
393
394 /**
395  * e1000_get_hw_control - get control of the h/w from f/w
396  * @adapter: address of board private structure
397  *
398  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
399  * For ASF and Pass Through versions of f/w this means that
400  * the driver is loaded. For AMT version (only with 82573)
401  * of the f/w this means that the network i/f is open.
402  *
403  **/
404
405 static void e1000_get_hw_control(struct e1000_adapter *adapter)
406 {
407         u32 ctrl_ext;
408         u32 swsm;
409         struct e1000_hw *hw = &adapter->hw;
410
411         /* Let firmware know the driver has taken over */
412         switch (hw->mac_type) {
413         case e1000_82573:
414                 swsm = er32(SWSM);
415                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
416                 break;
417         case e1000_82571:
418         case e1000_82572:
419         case e1000_80003es2lan:
420         case e1000_ich8lan:
421                 ctrl_ext = er32(CTRL_EXT);
422                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
423                 break;
424         default:
425                 break;
426         }
427 }
428
429 static void e1000_init_manageability(struct e1000_adapter *adapter)
430 {
431         struct e1000_hw *hw = &adapter->hw;
432
433         if (adapter->en_mng_pt) {
434                 u32 manc = er32(MANC);
435
436                 /* disable hardware interception of ARP */
437                 manc &= ~(E1000_MANC_ARP_EN);
438
439                 /* enable receiving management packets to the host */
440                 /* this will probably generate destination unreachable messages
441                  * from the host OS, but the packets will be handled on SMBUS */
442                 if (hw->has_manc2h) {
443                         u32 manc2h = er32(MANC2H);
444
445                         manc |= E1000_MANC_EN_MNG2HOST;
446 #define E1000_MNG2HOST_PORT_623 (1 << 5)
447 #define E1000_MNG2HOST_PORT_664 (1 << 6)
448                         manc2h |= E1000_MNG2HOST_PORT_623;
449                         manc2h |= E1000_MNG2HOST_PORT_664;
450                         ew32(MANC2H, manc2h);
451                 }
452
453                 ew32(MANC, manc);
454         }
455 }
456
457 static void e1000_release_manageability(struct e1000_adapter *adapter)
458 {
459         struct e1000_hw *hw = &adapter->hw;
460
461         if (adapter->en_mng_pt) {
462                 u32 manc = er32(MANC);
463
464                 /* re-enable hardware interception of ARP */
465                 manc |= E1000_MANC_ARP_EN;
466
467                 if (hw->has_manc2h)
468                         manc &= ~E1000_MANC_EN_MNG2HOST;
469
470                 /* don't explicitly have to mess with MANC2H since
471                  * MANC has an enable disable that gates MANC2H */
472
473                 ew32(MANC, manc);
474         }
475 }
476
477 /**
478  * e1000_configure - configure the hardware for RX and TX
479  * @adapter = private board structure
480  **/
481 static void e1000_configure(struct e1000_adapter *adapter)
482 {
483         struct net_device *netdev = adapter->netdev;
484         int i;
485
486         e1000_set_rx_mode(netdev);
487
488         e1000_restore_vlan(adapter);
489         e1000_init_manageability(adapter);
490
491         e1000_configure_tx(adapter);
492         e1000_setup_rctl(adapter);
493         e1000_configure_rx(adapter);
494         /* call E1000_DESC_UNUSED which always leaves
495          * at least 1 descriptor unused to make sure
496          * next_to_use != next_to_clean */
497         for (i = 0; i < adapter->num_rx_queues; i++) {
498                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
499                 adapter->alloc_rx_buf(adapter, ring,
500                                       E1000_DESC_UNUSED(ring));
501         }
502
503         adapter->tx_queue_len = netdev->tx_queue_len;
504 }
505
506 int e1000_up(struct e1000_adapter *adapter)
507 {
508         struct e1000_hw *hw = &adapter->hw;
509
510         /* hardware has been reset, we need to reload some things */
511         e1000_configure(adapter);
512
513         clear_bit(__E1000_DOWN, &adapter->flags);
514
515 #ifdef CONFIG_E1000_NAPI
516         napi_enable(&adapter->napi);
517 #endif
518         e1000_irq_enable(adapter);
519
520         /* fire a link change interrupt to start the watchdog */
521         ew32(ICS, E1000_ICS_LSC);
522         return 0;
523 }
524
525 /**
526  * e1000_power_up_phy - restore link in case the phy was powered down
527  * @adapter: address of board private structure
528  *
529  * The phy may be powered down to save power and turn off link when the
530  * driver is unloaded and wake on lan is not enabled (among others)
531  * *** this routine MUST be followed by a call to e1000_reset ***
532  *
533  **/
534
535 void e1000_power_up_phy(struct e1000_adapter *adapter)
536 {
537         struct e1000_hw *hw = &adapter->hw;
538         u16 mii_reg = 0;
539
540         /* Just clear the power down bit to wake the phy back up */
541         if (hw->media_type == e1000_media_type_copper) {
542                 /* according to the manual, the phy will retain its
543                  * settings across a power-down/up cycle */
544                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
545                 mii_reg &= ~MII_CR_POWER_DOWN;
546                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
547         }
548 }
549
550 static void e1000_power_down_phy(struct e1000_adapter *adapter)
551 {
552         struct e1000_hw *hw = &adapter->hw;
553
554         /* Power down the PHY so no link is implied when interface is down *
555          * The PHY cannot be powered down if any of the following is true *
556          * (a) WoL is enabled
557          * (b) AMT is active
558          * (c) SoL/IDER session is active */
559         if (!adapter->wol && hw->mac_type >= e1000_82540 &&
560            hw->media_type == e1000_media_type_copper) {
561                 u16 mii_reg = 0;
562
563                 switch (hw->mac_type) {
564                 case e1000_82540:
565                 case e1000_82545:
566                 case e1000_82545_rev_3:
567                 case e1000_82546:
568                 case e1000_82546_rev_3:
569                 case e1000_82541:
570                 case e1000_82541_rev_2:
571                 case e1000_82547:
572                 case e1000_82547_rev_2:
573                         if (er32(MANC) & E1000_MANC_SMBUS_EN)
574                                 goto out;
575                         break;
576                 case e1000_82571:
577                 case e1000_82572:
578                 case e1000_82573:
579                 case e1000_80003es2lan:
580                 case e1000_ich8lan:
581                         if (e1000_check_mng_mode(hw) ||
582                             e1000_check_phy_reset_block(hw))
583                                 goto out;
584                         break;
585                 default:
586                         goto out;
587                 }
588                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
589                 mii_reg |= MII_CR_POWER_DOWN;
590                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
591                 mdelay(1);
592         }
593 out:
594         return;
595 }
596
597 void e1000_down(struct e1000_adapter *adapter)
598 {
599         struct net_device *netdev = adapter->netdev;
600
601         /* signal that we're down so the interrupt handler does not
602          * reschedule our watchdog timer */
603         set_bit(__E1000_DOWN, &adapter->flags);
604
605 #ifdef CONFIG_E1000_NAPI
606         napi_disable(&adapter->napi);
607 #endif
608         e1000_irq_disable(adapter);
609
610         del_timer_sync(&adapter->tx_fifo_stall_timer);
611         del_timer_sync(&adapter->watchdog_timer);
612         del_timer_sync(&adapter->phy_info_timer);
613
614         netdev->tx_queue_len = adapter->tx_queue_len;
615         adapter->link_speed = 0;
616         adapter->link_duplex = 0;
617         netif_carrier_off(netdev);
618         netif_stop_queue(netdev);
619
620         e1000_reset(adapter);
621         e1000_clean_all_tx_rings(adapter);
622         e1000_clean_all_rx_rings(adapter);
623 }
624
625 void e1000_reinit_locked(struct e1000_adapter *adapter)
626 {
627         WARN_ON(in_interrupt());
628         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
629                 msleep(1);
630         e1000_down(adapter);
631         e1000_up(adapter);
632         clear_bit(__E1000_RESETTING, &adapter->flags);
633 }
634
635 void e1000_reset(struct e1000_adapter *adapter)
636 {
637         struct e1000_hw *hw = &adapter->hw;
638         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
639         u16 fc_high_water_mark = E1000_FC_HIGH_DIFF;
640         bool legacy_pba_adjust = false;
641
642         /* Repartition Pba for greater than 9k mtu
643          * To take effect CTRL.RST is required.
644          */
645
646         switch (hw->mac_type) {
647         case e1000_82542_rev2_0:
648         case e1000_82542_rev2_1:
649         case e1000_82543:
650         case e1000_82544:
651         case e1000_82540:
652         case e1000_82541:
653         case e1000_82541_rev_2:
654                 legacy_pba_adjust = true;
655                 pba = E1000_PBA_48K;
656                 break;
657         case e1000_82545:
658         case e1000_82545_rev_3:
659         case e1000_82546:
660         case e1000_82546_rev_3:
661                 pba = E1000_PBA_48K;
662                 break;
663         case e1000_82547:
664         case e1000_82547_rev_2:
665                 legacy_pba_adjust = true;
666                 pba = E1000_PBA_30K;
667                 break;
668         case e1000_82571:
669         case e1000_82572:
670         case e1000_80003es2lan:
671                 pba = E1000_PBA_38K;
672                 break;
673         case e1000_82573:
674                 pba = E1000_PBA_20K;
675                 break;
676         case e1000_ich8lan:
677                 pba = E1000_PBA_8K;
678         case e1000_undefined:
679         case e1000_num_macs:
680                 break;
681         }
682
683         if (legacy_pba_adjust) {
684                 if (adapter->netdev->mtu > E1000_RXBUFFER_8192)
685                         pba -= 8; /* allocate more FIFO for Tx */
686
687                 if (hw->mac_type == e1000_82547) {
688                         adapter->tx_fifo_head = 0;
689                         adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
690                         adapter->tx_fifo_size =
691                                 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
692                         atomic_set(&adapter->tx_fifo_stall, 0);
693                 }
694         } else if (hw->max_frame_size > MAXIMUM_ETHERNET_FRAME_SIZE) {
695                 /* adjust PBA for jumbo frames */
696                 ew32(PBA, pba);
697
698                 /* To maintain wire speed transmits, the Tx FIFO should be
699                  * large enough to accomodate two full transmit packets,
700                  * rounded up to the next 1KB and expressed in KB.  Likewise,
701                  * the Rx FIFO should be large enough to accomodate at least
702                  * one full receive packet and is similarly rounded up and
703                  * expressed in KB. */
704                 pba = er32(PBA);
705                 /* upper 16 bits has Tx packet buffer allocation size in KB */
706                 tx_space = pba >> 16;
707                 /* lower 16 bits has Rx packet buffer allocation size in KB */
708                 pba &= 0xffff;
709                 /* don't include ethernet FCS because hardware appends/strips */
710                 min_rx_space = adapter->netdev->mtu + ENET_HEADER_SIZE +
711                                VLAN_TAG_SIZE;
712                 min_tx_space = min_rx_space;
713                 min_tx_space *= 2;
714                 min_tx_space = ALIGN(min_tx_space, 1024);
715                 min_tx_space >>= 10;
716                 min_rx_space = ALIGN(min_rx_space, 1024);
717                 min_rx_space >>= 10;
718
719                 /* If current Tx allocation is less than the min Tx FIFO size,
720                  * and the min Tx FIFO size is less than the current Rx FIFO
721                  * allocation, take space away from current Rx allocation */
722                 if (tx_space < min_tx_space &&
723                     ((min_tx_space - tx_space) < pba)) {
724                         pba = pba - (min_tx_space - tx_space);
725
726                         /* PCI/PCIx hardware has PBA alignment constraints */
727                         switch (hw->mac_type) {
728                         case e1000_82545 ... e1000_82546_rev_3:
729                                 pba &= ~(E1000_PBA_8K - 1);
730                                 break;
731                         default:
732                                 break;
733                         }
734
735                         /* if short on rx space, rx wins and must trump tx
736                          * adjustment or use Early Receive if available */
737                         if (pba < min_rx_space) {
738                                 switch (hw->mac_type) {
739                                 case e1000_82573:
740                                         /* ERT enabled in e1000_configure_rx */
741                                         break;
742                                 default:
743                                         pba = min_rx_space;
744                                         break;
745                                 }
746                         }
747                 }
748         }
749
750         ew32(PBA, pba);
751
752         /* flow control settings */
753         /* Set the FC high water mark to 90% of the FIFO size.
754          * Required to clear last 3 LSB */
755         fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
756         /* We can't use 90% on small FIFOs because the remainder
757          * would be less than 1 full frame.  In this case, we size
758          * it to allow at least a full frame above the high water
759          *  mark. */
760         if (pba < E1000_PBA_16K)
761                 fc_high_water_mark = (pba * 1024) - 1600;
762
763         hw->fc_high_water = fc_high_water_mark;
764         hw->fc_low_water = fc_high_water_mark - 8;
765         if (hw->mac_type == e1000_80003es2lan)
766                 hw->fc_pause_time = 0xFFFF;
767         else
768                 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
769         hw->fc_send_xon = 1;
770         hw->fc = hw->original_fc;
771
772         /* Allow time for pending master requests to run */
773         e1000_reset_hw(hw);
774         if (hw->mac_type >= e1000_82544)
775                 ew32(WUC, 0);
776
777         if (e1000_init_hw(hw))
778                 DPRINTK(PROBE, ERR, "Hardware Error\n");
779         e1000_update_mng_vlan(adapter);
780
781         /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
782         if (hw->mac_type >= e1000_82544 &&
783             hw->mac_type <= e1000_82547_rev_2 &&
784             hw->autoneg == 1 &&
785             hw->autoneg_advertised == ADVERTISE_1000_FULL) {
786                 u32 ctrl = er32(CTRL);
787                 /* clear phy power management bit if we are in gig only mode,
788                  * which if enabled will attempt negotiation to 100Mb, which
789                  * can cause a loss of link at power off or driver unload */
790                 ctrl &= ~E1000_CTRL_SWDPIN3;
791                 ew32(CTRL, ctrl);
792         }
793
794         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
795         ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
796
797         e1000_reset_adaptive(hw);
798         e1000_phy_get_info(hw, &adapter->phy_info);
799
800         if (!adapter->smart_power_down &&
801             (hw->mac_type == e1000_82571 ||
802              hw->mac_type == e1000_82572)) {
803                 u16 phy_data = 0;
804                 /* speed up time to link by disabling smart power down, ignore
805                  * the return value of this function because there is nothing
806                  * different we would do if it failed */
807                 e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
808                                    &phy_data);
809                 phy_data &= ~IGP02E1000_PM_SPD;
810                 e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
811                                     phy_data);
812         }
813
814         e1000_release_manageability(adapter);
815 }
816
817 /**
818  *  Dump the eeprom for users having checksum issues
819  **/
820 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
821 {
822         struct net_device *netdev = adapter->netdev;
823         struct ethtool_eeprom eeprom;
824         const struct ethtool_ops *ops = netdev->ethtool_ops;
825         u8 *data;
826         int i;
827         u16 csum_old, csum_new = 0;
828
829         eeprom.len = ops->get_eeprom_len(netdev);
830         eeprom.offset = 0;
831
832         data = kmalloc(eeprom.len, GFP_KERNEL);
833         if (!data) {
834                 printk(KERN_ERR "Unable to allocate memory to dump EEPROM"
835                        " data\n");
836                 return;
837         }
838
839         ops->get_eeprom(netdev, &eeprom, data);
840
841         csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
842                    (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
843         for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
844                 csum_new += data[i] + (data[i + 1] << 8);
845         csum_new = EEPROM_SUM - csum_new;
846
847         printk(KERN_ERR "/*********************/\n");
848         printk(KERN_ERR "Current EEPROM Checksum : 0x%04x\n", csum_old);
849         printk(KERN_ERR "Calculated              : 0x%04x\n", csum_new);
850
851         printk(KERN_ERR "Offset    Values\n");
852         printk(KERN_ERR "========  ======\n");
853         print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
854
855         printk(KERN_ERR "Include this output when contacting your support "
856                "provider.\n");
857         printk(KERN_ERR "This is not a software error! Something bad "
858                "happened to your hardware or\n");
859         printk(KERN_ERR "EEPROM image. Ignoring this "
860                "problem could result in further problems,\n");
861         printk(KERN_ERR "possibly loss of data, corruption or system hangs!\n");
862         printk(KERN_ERR "The MAC Address will be reset to 00:00:00:00:00:00, "
863                "which is invalid\n");
864         printk(KERN_ERR "and requires you to set the proper MAC "
865                "address manually before continuing\n");
866         printk(KERN_ERR "to enable this network device.\n");
867         printk(KERN_ERR "Please inspect the EEPROM dump and report the issue "
868                "to your hardware vendor\n");
869         printk(KERN_ERR "or Intel Customer Support.\n");
870         printk(KERN_ERR "/*********************/\n");
871
872         kfree(data);
873 }
874
875 /**
876  * e1000_probe - Device Initialization Routine
877  * @pdev: PCI device information struct
878  * @ent: entry in e1000_pci_tbl
879  *
880  * Returns 0 on success, negative on failure
881  *
882  * e1000_probe initializes an adapter identified by a pci_dev structure.
883  * The OS initialization, configuring of the adapter private structure,
884  * and a hardware reset occur.
885  **/
886
887 static int __devinit e1000_probe(struct pci_dev *pdev,
888                                  const struct pci_device_id *ent)
889 {
890         struct net_device *netdev;
891         struct e1000_adapter *adapter;
892         struct e1000_hw *hw;
893
894         static int cards_found = 0;
895         static int global_quad_port_a = 0; /* global ksp3 port a indication */
896         int i, err, pci_using_dac;
897         u16 eeprom_data = 0;
898         u16 eeprom_apme_mask = E1000_EEPROM_APME;
899         DECLARE_MAC_BUF(mac);
900
901         err = pci_enable_device(pdev);
902         if (err)
903                 return err;
904
905         if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK) &&
906             !pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK)) {
907                 pci_using_dac = 1;
908         } else {
909                 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
910                 if (err) {
911                         err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
912                         if (err) {
913                                 E1000_ERR("No usable DMA configuration, "
914                                           "aborting\n");
915                                 goto err_dma;
916                         }
917                 }
918                 pci_using_dac = 0;
919         }
920
921         err = pci_request_regions(pdev, e1000_driver_name);
922         if (err)
923                 goto err_pci_reg;
924
925         pci_set_master(pdev);
926
927         err = -ENOMEM;
928         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
929         if (!netdev)
930                 goto err_alloc_etherdev;
931
932         SET_NETDEV_DEV(netdev, &pdev->dev);
933
934         pci_set_drvdata(pdev, netdev);
935         adapter = netdev_priv(netdev);
936         adapter->netdev = netdev;
937         adapter->pdev = pdev;
938         adapter->msg_enable = (1 << debug) - 1;
939
940         hw = &adapter->hw;
941         hw->back = adapter;
942
943         err = -EIO;
944         hw->hw_addr = ioremap(pci_resource_start(pdev, BAR_0),
945                               pci_resource_len(pdev, BAR_0));
946         if (!hw->hw_addr)
947                 goto err_ioremap;
948
949         for (i = BAR_1; i <= BAR_5; i++) {
950                 if (pci_resource_len(pdev, i) == 0)
951                         continue;
952                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
953                         hw->io_base = pci_resource_start(pdev, i);
954                         break;
955                 }
956         }
957
958         netdev->open = &e1000_open;
959         netdev->stop = &e1000_close;
960         netdev->hard_start_xmit = &e1000_xmit_frame;
961         netdev->get_stats = &e1000_get_stats;
962         netdev->set_rx_mode = &e1000_set_rx_mode;
963         netdev->set_mac_address = &e1000_set_mac;
964         netdev->change_mtu = &e1000_change_mtu;
965         netdev->do_ioctl = &e1000_ioctl;
966         e1000_set_ethtool_ops(netdev);
967         netdev->tx_timeout = &e1000_tx_timeout;
968         netdev->watchdog_timeo = 5 * HZ;
969 #ifdef CONFIG_E1000_NAPI
970         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
971 #endif
972         netdev->vlan_rx_register = e1000_vlan_rx_register;
973         netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
974         netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
975 #ifdef CONFIG_NET_POLL_CONTROLLER
976         netdev->poll_controller = e1000_netpoll;
977 #endif
978         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
979
980         adapter->bd_number = cards_found;
981
982         /* setup the private structure */
983
984         err = e1000_sw_init(adapter);
985         if (err)
986                 goto err_sw_init;
987
988         err = -EIO;
989         /* Flash BAR mapping must happen after e1000_sw_init
990          * because it depends on mac_type */
991         if ((hw->mac_type == e1000_ich8lan) &&
992            (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
993                 hw->flash_address =
994                         ioremap(pci_resource_start(pdev, 1),
995                                 pci_resource_len(pdev, 1));
996                 if (!hw->flash_address)
997                         goto err_flashmap;
998         }
999
1000         if (e1000_check_phy_reset_block(hw))
1001                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
1002
1003         if (hw->mac_type >= e1000_82543) {
1004                 netdev->features = NETIF_F_SG |
1005                                    NETIF_F_HW_CSUM |
1006                                    NETIF_F_HW_VLAN_TX |
1007                                    NETIF_F_HW_VLAN_RX |
1008                                    NETIF_F_HW_VLAN_FILTER;
1009                 if (hw->mac_type == e1000_ich8lan)
1010                         netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
1011         }
1012
1013         if ((hw->mac_type >= e1000_82544) &&
1014            (hw->mac_type != e1000_82547))
1015                 netdev->features |= NETIF_F_TSO;
1016
1017         if (hw->mac_type > e1000_82547_rev_2)
1018                 netdev->features |= NETIF_F_TSO6;
1019         if (pci_using_dac)
1020                 netdev->features |= NETIF_F_HIGHDMA;
1021
1022         netdev->features |= NETIF_F_LLTX;
1023
1024         adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1025
1026         /* initialize eeprom parameters */
1027         if (e1000_init_eeprom_params(hw)) {
1028                 E1000_ERR("EEPROM initialization failed\n");
1029                 goto err_eeprom;
1030         }
1031
1032         /* before reading the EEPROM, reset the controller to
1033          * put the device in a known good starting state */
1034
1035         e1000_reset_hw(hw);
1036
1037         /* make sure the EEPROM is good */
1038         if (e1000_validate_eeprom_checksum(hw) < 0) {
1039                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
1040                 e1000_dump_eeprom(adapter);
1041                 /*
1042                  * set MAC address to all zeroes to invalidate and temporary
1043                  * disable this device for the user. This blocks regular
1044                  * traffic while still permitting ethtool ioctls from reaching
1045                  * the hardware as well as allowing the user to run the
1046                  * interface after manually setting a hw addr using
1047                  * `ip set address`
1048                  */
1049                 memset(hw->mac_addr, 0, netdev->addr_len);
1050         } else {
1051                 /* copy the MAC address out of the EEPROM */
1052                 if (e1000_read_mac_addr(hw))
1053                         DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
1054         }
1055         /* don't block initalization here due to bad MAC address */
1056         memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1057         memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
1058
1059         if (!is_valid_ether_addr(netdev->perm_addr))
1060                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
1061
1062         e1000_get_bus_info(hw);
1063
1064         init_timer(&adapter->tx_fifo_stall_timer);
1065         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
1066         adapter->tx_fifo_stall_timer.data = (unsigned long)adapter;
1067
1068         init_timer(&adapter->watchdog_timer);
1069         adapter->watchdog_timer.function = &e1000_watchdog;
1070         adapter->watchdog_timer.data = (unsigned long) adapter;
1071
1072         init_timer(&adapter->phy_info_timer);
1073         adapter->phy_info_timer.function = &e1000_update_phy_info;
1074         adapter->phy_info_timer.data = (unsigned long)adapter;
1075
1076         INIT_WORK(&adapter->reset_task, e1000_reset_task);
1077
1078         e1000_check_options(adapter);
1079
1080         /* Initial Wake on LAN setting
1081          * If APM wake is enabled in the EEPROM,
1082          * enable the ACPI Magic Packet filter
1083          */
1084
1085         switch (hw->mac_type) {
1086         case e1000_82542_rev2_0:
1087         case e1000_82542_rev2_1:
1088         case e1000_82543:
1089                 break;
1090         case e1000_82544:
1091                 e1000_read_eeprom(hw,
1092                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1093                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1094                 break;
1095         case e1000_ich8lan:
1096                 e1000_read_eeprom(hw,
1097                         EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
1098                 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
1099                 break;
1100         case e1000_82546:
1101         case e1000_82546_rev_3:
1102         case e1000_82571:
1103         case e1000_80003es2lan:
1104                 if (er32(STATUS) & E1000_STATUS_FUNC_1){
1105                         e1000_read_eeprom(hw,
1106                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1107                         break;
1108                 }
1109                 /* Fall Through */
1110         default:
1111                 e1000_read_eeprom(hw,
1112                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1113                 break;
1114         }
1115         if (eeprom_data & eeprom_apme_mask)
1116                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1117
1118         /* now that we have the eeprom settings, apply the special cases
1119          * where the eeprom may be wrong or the board simply won't support
1120          * wake on lan on a particular port */
1121         switch (pdev->device) {
1122         case E1000_DEV_ID_82546GB_PCIE:
1123                 adapter->eeprom_wol = 0;
1124                 break;
1125         case E1000_DEV_ID_82546EB_FIBER:
1126         case E1000_DEV_ID_82546GB_FIBER:
1127         case E1000_DEV_ID_82571EB_FIBER:
1128                 /* Wake events only supported on port A for dual fiber
1129                  * regardless of eeprom setting */
1130                 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1131                         adapter->eeprom_wol = 0;
1132                 break;
1133         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1134         case E1000_DEV_ID_82571EB_QUAD_COPPER:
1135         case E1000_DEV_ID_82571EB_QUAD_FIBER:
1136         case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1137         case E1000_DEV_ID_82571PT_QUAD_COPPER:
1138                 /* if quad port adapter, disable WoL on all but port A */
1139                 if (global_quad_port_a != 0)
1140                         adapter->eeprom_wol = 0;
1141                 else
1142                         adapter->quad_port_a = 1;
1143                 /* Reset for multiple quad port adapters */
1144                 if (++global_quad_port_a == 4)
1145                         global_quad_port_a = 0;
1146                 break;
1147         }
1148
1149         /* initialize the wol settings based on the eeprom settings */
1150         adapter->wol = adapter->eeprom_wol;
1151
1152         /* print bus type/speed/width info */
1153         DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
1154                 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
1155                  (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
1156                 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1157                  (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
1158                  (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
1159                  (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
1160                  (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
1161                 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
1162                  (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
1163                  (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
1164                  "32-bit"));
1165
1166         printk("%s\n", print_mac(mac, netdev->dev_addr));
1167
1168         if (hw->bus_type == e1000_bus_type_pci_express) {
1169                 DPRINTK(PROBE, WARNING, "This device (id %04x:%04x) will no "
1170                         "longer be supported by this driver in the future.\n",
1171                         pdev->vendor, pdev->device);
1172                 DPRINTK(PROBE, WARNING, "please use the \"e1000e\" "
1173                         "driver instead.\n");
1174         }
1175
1176         /* reset the hardware with the new settings */
1177         e1000_reset(adapter);
1178
1179         /* If the controller is 82573 and f/w is AMT, do not set
1180          * DRV_LOAD until the interface is up.  For all other cases,
1181          * let the f/w know that the h/w is now under the control
1182          * of the driver. */
1183         if (hw->mac_type != e1000_82573 ||
1184             !e1000_check_mng_mode(hw))
1185                 e1000_get_hw_control(adapter);
1186
1187         /* tell the stack to leave us alone until e1000_open() is called */
1188         netif_carrier_off(netdev);
1189         netif_stop_queue(netdev);
1190
1191         strcpy(netdev->name, "eth%d");
1192         err = register_netdev(netdev);
1193         if (err)
1194                 goto err_register;
1195
1196         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1197
1198         cards_found++;
1199         return 0;
1200
1201 err_register:
1202         e1000_release_hw_control(adapter);
1203 err_eeprom:
1204         if (!e1000_check_phy_reset_block(hw))
1205                 e1000_phy_hw_reset(hw);
1206
1207         if (hw->flash_address)
1208                 iounmap(hw->flash_address);
1209 err_flashmap:
1210 #ifdef CONFIG_E1000_NAPI
1211         for (i = 0; i < adapter->num_rx_queues; i++)
1212                 dev_put(&adapter->polling_netdev[i]);
1213 #endif
1214
1215         kfree(adapter->tx_ring);
1216         kfree(adapter->rx_ring);
1217 #ifdef CONFIG_E1000_NAPI
1218         kfree(adapter->polling_netdev);
1219 #endif
1220 err_sw_init:
1221         iounmap(hw->hw_addr);
1222 err_ioremap:
1223         free_netdev(netdev);
1224 err_alloc_etherdev:
1225         pci_release_regions(pdev);
1226 err_pci_reg:
1227 err_dma:
1228         pci_disable_device(pdev);
1229         return err;
1230 }
1231
1232 /**
1233  * e1000_remove - Device Removal Routine
1234  * @pdev: PCI device information struct
1235  *
1236  * e1000_remove is called by the PCI subsystem to alert the driver
1237  * that it should release a PCI device.  The could be caused by a
1238  * Hot-Plug event, or because the driver is going to be removed from
1239  * memory.
1240  **/
1241
1242 static void __devexit e1000_remove(struct pci_dev *pdev)
1243 {
1244         struct net_device *netdev = pci_get_drvdata(pdev);
1245         struct e1000_adapter *adapter = netdev_priv(netdev);
1246         struct e1000_hw *hw = &adapter->hw;
1247 #ifdef CONFIG_E1000_NAPI
1248         int i;
1249 #endif
1250
1251         cancel_work_sync(&adapter->reset_task);
1252
1253         e1000_release_manageability(adapter);
1254
1255         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1256          * would have already happened in close and is redundant. */
1257         e1000_release_hw_control(adapter);
1258
1259 #ifdef CONFIG_E1000_NAPI
1260         for (i = 0; i < adapter->num_rx_queues; i++)
1261                 dev_put(&adapter->polling_netdev[i]);
1262 #endif
1263
1264         unregister_netdev(netdev);
1265
1266         if (!e1000_check_phy_reset_block(hw))
1267                 e1000_phy_hw_reset(hw);
1268
1269         kfree(adapter->tx_ring);
1270         kfree(adapter->rx_ring);
1271 #ifdef CONFIG_E1000_NAPI
1272         kfree(adapter->polling_netdev);
1273 #endif
1274
1275         iounmap(hw->hw_addr);
1276         if (hw->flash_address)
1277                 iounmap(hw->flash_address);
1278         pci_release_regions(pdev);
1279
1280         free_netdev(netdev);
1281
1282         pci_disable_device(pdev);
1283 }
1284
1285 /**
1286  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1287  * @adapter: board private structure to initialize
1288  *
1289  * e1000_sw_init initializes the Adapter private data structure.
1290  * Fields are initialized based on PCI device information and
1291  * OS network device settings (MTU size).
1292  **/
1293
1294 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
1295 {
1296         struct e1000_hw *hw = &adapter->hw;
1297         struct net_device *netdev = adapter->netdev;
1298         struct pci_dev *pdev = adapter->pdev;
1299 #ifdef CONFIG_E1000_NAPI
1300         int i;
1301 #endif
1302
1303         /* PCI config space info */
1304
1305         hw->vendor_id = pdev->vendor;
1306         hw->device_id = pdev->device;
1307         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1308         hw->subsystem_id = pdev->subsystem_device;
1309         hw->revision_id = pdev->revision;
1310
1311         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1312
1313         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1314         adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
1315         hw->max_frame_size = netdev->mtu +
1316                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1317         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1318
1319         /* identify the MAC */
1320
1321         if (e1000_set_mac_type(hw)) {
1322                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1323                 return -EIO;
1324         }
1325
1326         switch (hw->mac_type) {
1327         default:
1328                 break;
1329         case e1000_82541:
1330         case e1000_82547:
1331         case e1000_82541_rev_2:
1332         case e1000_82547_rev_2:
1333                 hw->phy_init_script = 1;
1334                 break;
1335         }
1336
1337         e1000_set_media_type(hw);
1338
1339         hw->wait_autoneg_complete = false;
1340         hw->tbi_compatibility_en = true;
1341         hw->adaptive_ifs = true;
1342
1343         /* Copper options */
1344
1345         if (hw->media_type == e1000_media_type_copper) {
1346                 hw->mdix = AUTO_ALL_MODES;
1347                 hw->disable_polarity_correction = false;
1348                 hw->master_slave = E1000_MASTER_SLAVE;
1349         }
1350
1351         adapter->num_tx_queues = 1;
1352         adapter->num_rx_queues = 1;
1353
1354         if (e1000_alloc_queues(adapter)) {
1355                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1356                 return -ENOMEM;
1357         }
1358
1359 #ifdef CONFIG_E1000_NAPI
1360         for (i = 0; i < adapter->num_rx_queues; i++) {
1361                 adapter->polling_netdev[i].priv = adapter;
1362                 dev_hold(&adapter->polling_netdev[i]);
1363                 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1364         }
1365         spin_lock_init(&adapter->tx_queue_lock);
1366 #endif
1367
1368         /* Explicitly disable IRQ since the NIC can be in any state. */
1369         e1000_irq_disable(adapter);
1370
1371         spin_lock_init(&adapter->stats_lock);
1372
1373         set_bit(__E1000_DOWN, &adapter->flags);
1374
1375         return 0;
1376 }
1377
1378 /**
1379  * e1000_alloc_queues - Allocate memory for all rings
1380  * @adapter: board private structure to initialize
1381  *
1382  * We allocate one ring per queue at run-time since we don't know the
1383  * number of queues at compile-time.  The polling_netdev array is
1384  * intended for Multiqueue, but should work fine with a single queue.
1385  **/
1386
1387 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1388 {
1389         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1390                                    sizeof(struct e1000_tx_ring), GFP_KERNEL);
1391         if (!adapter->tx_ring)
1392                 return -ENOMEM;
1393
1394         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1395                                    sizeof(struct e1000_rx_ring), GFP_KERNEL);
1396         if (!adapter->rx_ring) {
1397                 kfree(adapter->tx_ring);
1398                 return -ENOMEM;
1399         }
1400
1401 #ifdef CONFIG_E1000_NAPI
1402         adapter->polling_netdev = kcalloc(adapter->num_rx_queues,
1403                                           sizeof(struct net_device),
1404                                           GFP_KERNEL);
1405         if (!adapter->polling_netdev) {
1406                 kfree(adapter->tx_ring);
1407                 kfree(adapter->rx_ring);
1408                 return -ENOMEM;
1409         }
1410 #endif
1411
1412         return E1000_SUCCESS;
1413 }
1414
1415 /**
1416  * e1000_open - Called when a network interface is made active
1417  * @netdev: network interface device structure
1418  *
1419  * Returns 0 on success, negative value on failure
1420  *
1421  * The open entry point is called when a network interface is made
1422  * active by the system (IFF_UP).  At this point all resources needed
1423  * for transmit and receive operations are allocated, the interrupt
1424  * handler is registered with the OS, the watchdog timer is started,
1425  * and the stack is notified that the interface is ready.
1426  **/
1427
1428 static int e1000_open(struct net_device *netdev)
1429 {
1430         struct e1000_adapter *adapter = netdev_priv(netdev);
1431         struct e1000_hw *hw = &adapter->hw;
1432         int err;
1433
1434         /* disallow open during test */
1435         if (test_bit(__E1000_TESTING, &adapter->flags))
1436                 return -EBUSY;
1437
1438         /* allocate transmit descriptors */
1439         err = e1000_setup_all_tx_resources(adapter);
1440         if (err)
1441                 goto err_setup_tx;
1442
1443         /* allocate receive descriptors */
1444         err = e1000_setup_all_rx_resources(adapter);
1445         if (err)
1446                 goto err_setup_rx;
1447
1448         e1000_power_up_phy(adapter);
1449
1450         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1451         if ((hw->mng_cookie.status &
1452                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1453                 e1000_update_mng_vlan(adapter);
1454         }
1455
1456         /* If AMT is enabled, let the firmware know that the network
1457          * interface is now open */
1458         if (hw->mac_type == e1000_82573 &&
1459             e1000_check_mng_mode(hw))
1460                 e1000_get_hw_control(adapter);
1461
1462         /* before we allocate an interrupt, we must be ready to handle it.
1463          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1464          * as soon as we call pci_request_irq, so we have to setup our
1465          * clean_rx handler before we do so.  */
1466         e1000_configure(adapter);
1467
1468         err = e1000_request_irq(adapter);
1469         if (err)
1470                 goto err_req_irq;
1471
1472         /* From here on the code is the same as e1000_up() */
1473         clear_bit(__E1000_DOWN, &adapter->flags);
1474
1475 #ifdef CONFIG_E1000_NAPI
1476         napi_enable(&adapter->napi);
1477 #endif
1478
1479         e1000_irq_enable(adapter);
1480
1481         netif_start_queue(netdev);
1482
1483         /* fire a link status change interrupt to start the watchdog */
1484         ew32(ICS, E1000_ICS_LSC);
1485
1486         return E1000_SUCCESS;
1487
1488 err_req_irq:
1489         e1000_release_hw_control(adapter);
1490         e1000_power_down_phy(adapter);
1491         e1000_free_all_rx_resources(adapter);
1492 err_setup_rx:
1493         e1000_free_all_tx_resources(adapter);
1494 err_setup_tx:
1495         e1000_reset(adapter);
1496
1497         return err;
1498 }
1499
1500 /**
1501  * e1000_close - Disables a network interface
1502  * @netdev: network interface device structure
1503  *
1504  * Returns 0, this is not allowed to fail
1505  *
1506  * The close entry point is called when an interface is de-activated
1507  * by the OS.  The hardware is still under the drivers control, but
1508  * needs to be disabled.  A global MAC reset is issued to stop the
1509  * hardware, and all transmit and receive resources are freed.
1510  **/
1511
1512 static int e1000_close(struct net_device *netdev)
1513 {
1514         struct e1000_adapter *adapter = netdev_priv(netdev);
1515         struct e1000_hw *hw = &adapter->hw;
1516
1517         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1518         e1000_down(adapter);
1519         e1000_power_down_phy(adapter);
1520         e1000_free_irq(adapter);
1521
1522         e1000_free_all_tx_resources(adapter);
1523         e1000_free_all_rx_resources(adapter);
1524
1525         /* kill manageability vlan ID if supported, but not if a vlan with
1526          * the same ID is registered on the host OS (let 8021q kill it) */
1527         if ((hw->mng_cookie.status &
1528                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1529              !(adapter->vlgrp &&
1530                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
1531                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1532         }
1533
1534         /* If AMT is enabled, let the firmware know that the network
1535          * interface is now closed */
1536         if (hw->mac_type == e1000_82573 &&
1537             e1000_check_mng_mode(hw))
1538                 e1000_release_hw_control(adapter);
1539
1540         return 0;
1541 }
1542
1543 /**
1544  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1545  * @adapter: address of board private structure
1546  * @start: address of beginning of memory
1547  * @len: length of memory
1548  **/
1549 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1550                                   unsigned long len)
1551 {
1552         struct e1000_hw *hw = &adapter->hw;
1553         unsigned long begin = (unsigned long)start;
1554         unsigned long end = begin + len;
1555
1556         /* First rev 82545 and 82546 need to not allow any memory
1557          * write location to cross 64k boundary due to errata 23 */
1558         if (hw->mac_type == e1000_82545 ||
1559             hw->mac_type == e1000_82546) {
1560                 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1561         }
1562
1563         return true;
1564 }
1565
1566 /**
1567  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1568  * @adapter: board private structure
1569  * @txdr:    tx descriptor ring (for a specific queue) to setup
1570  *
1571  * Return 0 on success, negative on failure
1572  **/
1573
1574 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1575                                     struct e1000_tx_ring *txdr)
1576 {
1577         struct pci_dev *pdev = adapter->pdev;
1578         int size;
1579
1580         size = sizeof(struct e1000_buffer) * txdr->count;
1581         txdr->buffer_info = vmalloc(size);
1582         if (!txdr->buffer_info) {
1583                 DPRINTK(PROBE, ERR,
1584                 "Unable to allocate memory for the transmit descriptor ring\n");
1585                 return -ENOMEM;
1586         }
1587         memset(txdr->buffer_info, 0, size);
1588
1589         /* round up to nearest 4K */
1590
1591         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1592         txdr->size = ALIGN(txdr->size, 4096);
1593
1594         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1595         if (!txdr->desc) {
1596 setup_tx_desc_die:
1597                 vfree(txdr->buffer_info);
1598                 DPRINTK(PROBE, ERR,
1599                 "Unable to allocate memory for the transmit descriptor ring\n");
1600                 return -ENOMEM;
1601         }
1602
1603         /* Fix for errata 23, can't cross 64kB boundary */
1604         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1605                 void *olddesc = txdr->desc;
1606                 dma_addr_t olddma = txdr->dma;
1607                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1608                                      "at %p\n", txdr->size, txdr->desc);
1609                 /* Try again, without freeing the previous */
1610                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1611                 /* Failed allocation, critical failure */
1612                 if (!txdr->desc) {
1613                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1614                         goto setup_tx_desc_die;
1615                 }
1616
1617                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1618                         /* give up */
1619                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1620                                             txdr->dma);
1621                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1622                         DPRINTK(PROBE, ERR,
1623                                 "Unable to allocate aligned memory "
1624                                 "for the transmit descriptor ring\n");
1625                         vfree(txdr->buffer_info);
1626                         return -ENOMEM;
1627                 } else {
1628                         /* Free old allocation, new allocation was successful */
1629                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1630                 }
1631         }
1632         memset(txdr->desc, 0, txdr->size);
1633
1634         txdr->next_to_use = 0;
1635         txdr->next_to_clean = 0;
1636         spin_lock_init(&txdr->tx_lock);
1637
1638         return 0;
1639 }
1640
1641 /**
1642  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1643  *                                (Descriptors) for all queues
1644  * @adapter: board private structure
1645  *
1646  * Return 0 on success, negative on failure
1647  **/
1648
1649 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1650 {
1651         int i, err = 0;
1652
1653         for (i = 0; i < adapter->num_tx_queues; i++) {
1654                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1655                 if (err) {
1656                         DPRINTK(PROBE, ERR,
1657                                 "Allocation for Tx Queue %u failed\n", i);
1658                         for (i-- ; i >= 0; i--)
1659                                 e1000_free_tx_resources(adapter,
1660                                                         &adapter->tx_ring[i]);
1661                         break;
1662                 }
1663         }
1664
1665         return err;
1666 }
1667
1668 /**
1669  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1670  * @adapter: board private structure
1671  *
1672  * Configure the Tx unit of the MAC after a reset.
1673  **/
1674
1675 static void e1000_configure_tx(struct e1000_adapter *adapter)
1676 {
1677         u64 tdba;
1678         struct e1000_hw *hw = &adapter->hw;
1679         u32 tdlen, tctl, tipg, tarc;
1680         u32 ipgr1, ipgr2;
1681
1682         /* Setup the HW Tx Head and Tail descriptor pointers */
1683
1684         switch (adapter->num_tx_queues) {
1685         case 1:
1686         default:
1687                 tdba = adapter->tx_ring[0].dma;
1688                 tdlen = adapter->tx_ring[0].count *
1689                         sizeof(struct e1000_tx_desc);
1690                 ew32(TDLEN, tdlen);
1691                 ew32(TDBAH, (tdba >> 32));
1692                 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1693                 ew32(TDT, 0);
1694                 ew32(TDH, 0);
1695                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1696                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1697                 break;
1698         }
1699
1700         /* Set the default values for the Tx Inter Packet Gap timer */
1701         if (hw->mac_type <= e1000_82547_rev_2 &&
1702             (hw->media_type == e1000_media_type_fiber ||
1703              hw->media_type == e1000_media_type_internal_serdes))
1704                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1705         else
1706                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1707
1708         switch (hw->mac_type) {
1709         case e1000_82542_rev2_0:
1710         case e1000_82542_rev2_1:
1711                 tipg = DEFAULT_82542_TIPG_IPGT;
1712                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1713                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1714                 break;
1715         case e1000_80003es2lan:
1716                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1717                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1718                 break;
1719         default:
1720                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1721                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1722                 break;
1723         }
1724         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1725         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1726         ew32(TIPG, tipg);
1727
1728         /* Set the Tx Interrupt Delay register */
1729
1730         ew32(TIDV, adapter->tx_int_delay);
1731         if (hw->mac_type >= e1000_82540)
1732                 ew32(TADV, adapter->tx_abs_int_delay);
1733
1734         /* Program the Transmit Control Register */
1735
1736         tctl = er32(TCTL);
1737         tctl &= ~E1000_TCTL_CT;
1738         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1739                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1740
1741         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1742                 tarc = er32(TARC0);
1743                 /* set the speed mode bit, we'll clear it if we're not at
1744                  * gigabit link later */
1745                 tarc |= (1 << 21);
1746                 ew32(TARC0, tarc);
1747         } else if (hw->mac_type == e1000_80003es2lan) {
1748                 tarc = er32(TARC0);
1749                 tarc |= 1;
1750                 ew32(TARC0, tarc);
1751                 tarc = er32(TARC1);
1752                 tarc |= 1;
1753                 ew32(TARC1, tarc);
1754         }
1755
1756         e1000_config_collision_dist(hw);
1757
1758         /* Setup Transmit Descriptor Settings for eop descriptor */
1759         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1760
1761         /* only set IDE if we are delaying interrupts using the timers */
1762         if (adapter->tx_int_delay)
1763                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1764
1765         if (hw->mac_type < e1000_82543)
1766                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1767         else
1768                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1769
1770         /* Cache if we're 82544 running in PCI-X because we'll
1771          * need this to apply a workaround later in the send path. */
1772         if (hw->mac_type == e1000_82544 &&
1773             hw->bus_type == e1000_bus_type_pcix)
1774                 adapter->pcix_82544 = 1;
1775
1776         ew32(TCTL, tctl);
1777
1778 }
1779
1780 /**
1781  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1782  * @adapter: board private structure
1783  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1784  *
1785  * Returns 0 on success, negative on failure
1786  **/
1787
1788 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1789                                     struct e1000_rx_ring *rxdr)
1790 {
1791         struct e1000_hw *hw = &adapter->hw;
1792         struct pci_dev *pdev = adapter->pdev;
1793         int size, desc_len;
1794
1795         size = sizeof(struct e1000_buffer) * rxdr->count;
1796         rxdr->buffer_info = vmalloc(size);
1797         if (!rxdr->buffer_info) {
1798                 DPRINTK(PROBE, ERR,
1799                 "Unable to allocate memory for the receive descriptor ring\n");
1800                 return -ENOMEM;
1801         }
1802         memset(rxdr->buffer_info, 0, size);
1803
1804         rxdr->ps_page = kcalloc(rxdr->count, sizeof(struct e1000_ps_page),
1805                                 GFP_KERNEL);
1806         if (!rxdr->ps_page) {
1807                 vfree(rxdr->buffer_info);
1808                 DPRINTK(PROBE, ERR,
1809                 "Unable to allocate memory for the receive descriptor ring\n");
1810                 return -ENOMEM;
1811         }
1812
1813         rxdr->ps_page_dma = kcalloc(rxdr->count,
1814                                     sizeof(struct e1000_ps_page_dma),
1815                                     GFP_KERNEL);
1816         if (!rxdr->ps_page_dma) {
1817                 vfree(rxdr->buffer_info);
1818                 kfree(rxdr->ps_page);
1819                 DPRINTK(PROBE, ERR,
1820                 "Unable to allocate memory for the receive descriptor ring\n");
1821                 return -ENOMEM;
1822         }
1823
1824         if (hw->mac_type <= e1000_82547_rev_2)
1825                 desc_len = sizeof(struct e1000_rx_desc);
1826         else
1827                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1828
1829         /* Round up to nearest 4K */
1830
1831         rxdr->size = rxdr->count * desc_len;
1832         rxdr->size = ALIGN(rxdr->size, 4096);
1833
1834         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1835
1836         if (!rxdr->desc) {
1837                 DPRINTK(PROBE, ERR,
1838                 "Unable to allocate memory for the receive descriptor ring\n");
1839 setup_rx_desc_die:
1840                 vfree(rxdr->buffer_info);
1841                 kfree(rxdr->ps_page);
1842                 kfree(rxdr->ps_page_dma);
1843                 return -ENOMEM;
1844         }
1845
1846         /* Fix for errata 23, can't cross 64kB boundary */
1847         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1848                 void *olddesc = rxdr->desc;
1849                 dma_addr_t olddma = rxdr->dma;
1850                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1851                                      "at %p\n", rxdr->size, rxdr->desc);
1852                 /* Try again, without freeing the previous */
1853                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1854                 /* Failed allocation, critical failure */
1855                 if (!rxdr->desc) {
1856                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1857                         DPRINTK(PROBE, ERR,
1858                                 "Unable to allocate memory "
1859                                 "for the receive descriptor ring\n");
1860                         goto setup_rx_desc_die;
1861                 }
1862
1863                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1864                         /* give up */
1865                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1866                                             rxdr->dma);
1867                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1868                         DPRINTK(PROBE, ERR,
1869                                 "Unable to allocate aligned memory "
1870                                 "for the receive descriptor ring\n");
1871                         goto setup_rx_desc_die;
1872                 } else {
1873                         /* Free old allocation, new allocation was successful */
1874                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1875                 }
1876         }
1877         memset(rxdr->desc, 0, rxdr->size);
1878
1879         rxdr->next_to_clean = 0;
1880         rxdr->next_to_use = 0;
1881
1882         return 0;
1883 }
1884
1885 /**
1886  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1887  *                                (Descriptors) for all queues
1888  * @adapter: board private structure
1889  *
1890  * Return 0 on success, negative on failure
1891  **/
1892
1893 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1894 {
1895         int i, err = 0;
1896
1897         for (i = 0; i < adapter->num_rx_queues; i++) {
1898                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1899                 if (err) {
1900                         DPRINTK(PROBE, ERR,
1901                                 "Allocation for Rx Queue %u failed\n", i);
1902                         for (i-- ; i >= 0; i--)
1903                                 e1000_free_rx_resources(adapter,
1904                                                         &adapter->rx_ring[i]);
1905                         break;
1906                 }
1907         }
1908
1909         return err;
1910 }
1911
1912 /**
1913  * e1000_setup_rctl - configure the receive control registers
1914  * @adapter: Board private structure
1915  **/
1916 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1917                         (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1918 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1919 {
1920         struct e1000_hw *hw = &adapter->hw;
1921         u32 rctl, rfctl;
1922         u32 psrctl = 0;
1923 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1924         u32 pages = 0;
1925 #endif
1926
1927         rctl = er32(RCTL);
1928
1929         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1930
1931         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1932                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1933                 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1934
1935         if (hw->tbi_compatibility_on == 1)
1936                 rctl |= E1000_RCTL_SBP;
1937         else
1938                 rctl &= ~E1000_RCTL_SBP;
1939
1940         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1941                 rctl &= ~E1000_RCTL_LPE;
1942         else
1943                 rctl |= E1000_RCTL_LPE;
1944
1945         /* Setup buffer sizes */
1946         rctl &= ~E1000_RCTL_SZ_4096;
1947         rctl |= E1000_RCTL_BSEX;
1948         switch (adapter->rx_buffer_len) {
1949                 case E1000_RXBUFFER_256:
1950                         rctl |= E1000_RCTL_SZ_256;
1951                         rctl &= ~E1000_RCTL_BSEX;
1952                         break;
1953                 case E1000_RXBUFFER_512:
1954                         rctl |= E1000_RCTL_SZ_512;
1955                         rctl &= ~E1000_RCTL_BSEX;
1956                         break;
1957                 case E1000_RXBUFFER_1024:
1958                         rctl |= E1000_RCTL_SZ_1024;
1959                         rctl &= ~E1000_RCTL_BSEX;
1960                         break;
1961                 case E1000_RXBUFFER_2048:
1962                 default:
1963                         rctl |= E1000_RCTL_SZ_2048;
1964                         rctl &= ~E1000_RCTL_BSEX;
1965                         break;
1966                 case E1000_RXBUFFER_4096:
1967                         rctl |= E1000_RCTL_SZ_4096;
1968                         break;
1969                 case E1000_RXBUFFER_8192:
1970                         rctl |= E1000_RCTL_SZ_8192;
1971                         break;
1972                 case E1000_RXBUFFER_16384:
1973                         rctl |= E1000_RCTL_SZ_16384;
1974                         break;
1975         }
1976
1977 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1978         /* 82571 and greater support packet-split where the protocol
1979          * header is placed in skb->data and the packet data is
1980          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1981          * In the case of a non-split, skb->data is linearly filled,
1982          * followed by the page buffers.  Therefore, skb->data is
1983          * sized to hold the largest protocol header.
1984          */
1985         /* allocations using alloc_page take too long for regular MTU
1986          * so only enable packet split for jumbo frames */
1987         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1988         if ((hw->mac_type >= e1000_82571) && (pages <= 3) &&
1989             PAGE_SIZE <= 16384 && (rctl & E1000_RCTL_LPE))
1990                 adapter->rx_ps_pages = pages;
1991         else
1992                 adapter->rx_ps_pages = 0;
1993 #endif
1994         if (adapter->rx_ps_pages) {
1995                 /* Configure extra packet-split registers */
1996                 rfctl = er32(RFCTL);
1997                 rfctl |= E1000_RFCTL_EXTEN;
1998                 /* disable packet split support for IPv6 extension headers,
1999                  * because some malformed IPv6 headers can hang the RX */
2000                 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
2001                           E1000_RFCTL_NEW_IPV6_EXT_DIS);
2002
2003                 ew32(RFCTL, rfctl);
2004
2005                 rctl |= E1000_RCTL_DTYP_PS;
2006
2007                 psrctl |= adapter->rx_ps_bsize0 >>
2008                         E1000_PSRCTL_BSIZE0_SHIFT;
2009
2010                 switch (adapter->rx_ps_pages) {
2011                 case 3:
2012                         psrctl |= PAGE_SIZE <<
2013                                 E1000_PSRCTL_BSIZE3_SHIFT;
2014                 case 2:
2015                         psrctl |= PAGE_SIZE <<
2016                                 E1000_PSRCTL_BSIZE2_SHIFT;
2017                 case 1:
2018                         psrctl |= PAGE_SIZE >>
2019                                 E1000_PSRCTL_BSIZE1_SHIFT;
2020                         break;
2021                 }
2022
2023                 ew32(PSRCTL, psrctl);
2024         }
2025
2026         ew32(RCTL, rctl);
2027 }
2028
2029 /**
2030  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
2031  * @adapter: board private structure
2032  *
2033  * Configure the Rx unit of the MAC after a reset.
2034  **/
2035
2036 static void e1000_configure_rx(struct e1000_adapter *adapter)
2037 {
2038         u64 rdba;
2039         struct e1000_hw *hw = &adapter->hw;
2040         u32 rdlen, rctl, rxcsum, ctrl_ext;
2041
2042         if (adapter->rx_ps_pages) {
2043                 /* this is a 32 byte descriptor */
2044                 rdlen = adapter->rx_ring[0].count *
2045                         sizeof(union e1000_rx_desc_packet_split);
2046                 adapter->clean_rx = e1000_clean_rx_irq_ps;
2047                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2048         } else {
2049                 rdlen = adapter->rx_ring[0].count *
2050                         sizeof(struct e1000_rx_desc);
2051                 adapter->clean_rx = e1000_clean_rx_irq;
2052                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2053         }
2054
2055         /* disable receives while setting up the descriptors */
2056         rctl = er32(RCTL);
2057         ew32(RCTL, rctl & ~E1000_RCTL_EN);
2058
2059         /* set the Receive Delay Timer Register */
2060         ew32(RDTR, adapter->rx_int_delay);
2061
2062         if (hw->mac_type >= e1000_82540) {
2063                 ew32(RADV, adapter->rx_abs_int_delay);
2064                 if (adapter->itr_setting != 0)
2065                         ew32(ITR, 1000000000 / (adapter->itr * 256));
2066         }
2067
2068         if (hw->mac_type >= e1000_82571) {
2069                 ctrl_ext = er32(CTRL_EXT);
2070                 /* Reset delay timers after every interrupt */
2071                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
2072 #ifdef CONFIG_E1000_NAPI
2073                 /* Auto-Mask interrupts upon ICR access */
2074                 ctrl_ext |= E1000_CTRL_EXT_IAME;
2075                 ew32(IAM, 0xffffffff);
2076 #endif
2077                 ew32(CTRL_EXT, ctrl_ext);
2078                 E1000_WRITE_FLUSH();
2079         }
2080
2081         /* Setup the HW Rx Head and Tail Descriptor Pointers and
2082          * the Base and Length of the Rx Descriptor Ring */
2083         switch (adapter->num_rx_queues) {
2084         case 1:
2085         default:
2086                 rdba = adapter->rx_ring[0].dma;
2087                 ew32(RDLEN, rdlen);
2088                 ew32(RDBAH, (rdba >> 32));
2089                 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
2090                 ew32(RDT, 0);
2091                 ew32(RDH, 0);
2092                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
2093                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
2094                 break;
2095         }
2096
2097         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
2098         if (hw->mac_type >= e1000_82543) {
2099                 rxcsum = er32(RXCSUM);
2100                 if (adapter->rx_csum) {
2101                         rxcsum |= E1000_RXCSUM_TUOFL;
2102
2103                         /* Enable 82571 IPv4 payload checksum for UDP fragments
2104                          * Must be used in conjunction with packet-split. */
2105                         if ((hw->mac_type >= e1000_82571) &&
2106                             (adapter->rx_ps_pages)) {
2107                                 rxcsum |= E1000_RXCSUM_IPPCSE;
2108                         }
2109                 } else {
2110                         rxcsum &= ~E1000_RXCSUM_TUOFL;
2111                         /* don't need to clear IPPCSE as it defaults to 0 */
2112                 }
2113                 ew32(RXCSUM, rxcsum);
2114         }
2115
2116         /* enable early receives on 82573, only takes effect if using > 2048
2117          * byte total frame size.  for example only for jumbo frames */
2118 #define E1000_ERT_2048 0x100
2119         if (hw->mac_type == e1000_82573)
2120                 ew32(ERT, E1000_ERT_2048);
2121
2122         /* Enable Receives */
2123         ew32(RCTL, rctl);
2124 }
2125
2126 /**
2127  * e1000_free_tx_resources - Free Tx Resources per Queue
2128  * @adapter: board private structure
2129  * @tx_ring: Tx descriptor ring for a specific queue
2130  *
2131  * Free all transmit software resources
2132  **/
2133
2134 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
2135                                     struct e1000_tx_ring *tx_ring)
2136 {
2137         struct pci_dev *pdev = adapter->pdev;
2138
2139         e1000_clean_tx_ring(adapter, tx_ring);
2140
2141         vfree(tx_ring->buffer_info);
2142         tx_ring->buffer_info = NULL;
2143
2144         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2145
2146         tx_ring->desc = NULL;
2147 }
2148
2149 /**
2150  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
2151  * @adapter: board private structure
2152  *
2153  * Free all transmit software resources
2154  **/
2155
2156 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
2157 {
2158         int i;
2159
2160         for (i = 0; i < adapter->num_tx_queues; i++)
2161                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
2162 }
2163
2164 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
2165                                              struct e1000_buffer *buffer_info)
2166 {
2167         if (buffer_info->dma) {
2168                 pci_unmap_page(adapter->pdev,
2169                                 buffer_info->dma,
2170                                 buffer_info->length,
2171                                 PCI_DMA_TODEVICE);
2172                 buffer_info->dma = 0;
2173         }
2174         if (buffer_info->skb) {
2175                 dev_kfree_skb_any(buffer_info->skb);
2176                 buffer_info->skb = NULL;
2177         }
2178         /* buffer_info must be completely set up in the transmit path */
2179 }
2180
2181 /**
2182  * e1000_clean_tx_ring - Free Tx Buffers
2183  * @adapter: board private structure
2184  * @tx_ring: ring to be cleaned
2185  **/
2186
2187 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
2188                                 struct e1000_tx_ring *tx_ring)
2189 {
2190         struct e1000_hw *hw = &adapter->hw;
2191         struct e1000_buffer *buffer_info;
2192         unsigned long size;
2193         unsigned int i;
2194
2195         /* Free all the Tx ring sk_buffs */
2196
2197         for (i = 0; i < tx_ring->count; i++) {
2198                 buffer_info = &tx_ring->buffer_info[i];
2199                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2200         }
2201
2202         size = sizeof(struct e1000_buffer) * tx_ring->count;
2203         memset(tx_ring->buffer_info, 0, size);
2204
2205         /* Zero out the descriptor ring */
2206
2207         memset(tx_ring->desc, 0, tx_ring->size);
2208
2209         tx_ring->next_to_use = 0;
2210         tx_ring->next_to_clean = 0;
2211         tx_ring->last_tx_tso = 0;
2212
2213         writel(0, hw->hw_addr + tx_ring->tdh);
2214         writel(0, hw->hw_addr + tx_ring->tdt);
2215 }
2216
2217 /**
2218  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2219  * @adapter: board private structure
2220  **/
2221
2222 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2223 {
2224         int i;
2225
2226         for (i = 0; i < adapter->num_tx_queues; i++)
2227                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2228 }
2229
2230 /**
2231  * e1000_free_rx_resources - Free Rx Resources
2232  * @adapter: board private structure
2233  * @rx_ring: ring to clean the resources from
2234  *
2235  * Free all receive software resources
2236  **/
2237
2238 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2239                                     struct e1000_rx_ring *rx_ring)
2240 {
2241         struct pci_dev *pdev = adapter->pdev;
2242
2243         e1000_clean_rx_ring(adapter, rx_ring);
2244
2245         vfree(rx_ring->buffer_info);
2246         rx_ring->buffer_info = NULL;
2247         kfree(rx_ring->ps_page);
2248         rx_ring->ps_page = NULL;
2249         kfree(rx_ring->ps_page_dma);
2250         rx_ring->ps_page_dma = NULL;
2251
2252         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2253
2254         rx_ring->desc = NULL;
2255 }
2256
2257 /**
2258  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2259  * @adapter: board private structure
2260  *
2261  * Free all receive software resources
2262  **/
2263
2264 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2265 {
2266         int i;
2267
2268         for (i = 0; i < adapter->num_rx_queues; i++)
2269                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2270 }
2271
2272 /**
2273  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2274  * @adapter: board private structure
2275  * @rx_ring: ring to free buffers from
2276  **/
2277
2278 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2279                                 struct e1000_rx_ring *rx_ring)
2280 {
2281         struct e1000_hw *hw = &adapter->hw;
2282         struct e1000_buffer *buffer_info;
2283         struct e1000_ps_page *ps_page;
2284         struct e1000_ps_page_dma *ps_page_dma;
2285         struct pci_dev *pdev = adapter->pdev;
2286         unsigned long size;
2287         unsigned int i, j;
2288
2289         /* Free all the Rx ring sk_buffs */
2290         for (i = 0; i < rx_ring->count; i++) {
2291                 buffer_info = &rx_ring->buffer_info[i];
2292                 if (buffer_info->skb) {
2293                         pci_unmap_single(pdev,
2294                                          buffer_info->dma,
2295                                          buffer_info->length,
2296                                          PCI_DMA_FROMDEVICE);
2297
2298                         dev_kfree_skb(buffer_info->skb);
2299                         buffer_info->skb = NULL;
2300                 }
2301                 ps_page = &rx_ring->ps_page[i];
2302                 ps_page_dma = &rx_ring->ps_page_dma[i];
2303                 for (j = 0; j < adapter->rx_ps_pages; j++) {
2304                         if (!ps_page->ps_page[j]) break;
2305                         pci_unmap_page(pdev,
2306                                        ps_page_dma->ps_page_dma[j],
2307                                        PAGE_SIZE, PCI_DMA_FROMDEVICE);
2308                         ps_page_dma->ps_page_dma[j] = 0;
2309                         put_page(ps_page->ps_page[j]);
2310                         ps_page->ps_page[j] = NULL;
2311                 }
2312         }
2313
2314         size = sizeof(struct e1000_buffer) * rx_ring->count;
2315         memset(rx_ring->buffer_info, 0, size);
2316         size = sizeof(struct e1000_ps_page) * rx_ring->count;
2317         memset(rx_ring->ps_page, 0, size);
2318         size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
2319         memset(rx_ring->ps_page_dma, 0, size);
2320
2321         /* Zero out the descriptor ring */
2322
2323         memset(rx_ring->desc, 0, rx_ring->size);
2324
2325         rx_ring->next_to_clean = 0;
2326         rx_ring->next_to_use = 0;
2327
2328         writel(0, hw->hw_addr + rx_ring->rdh);
2329         writel(0, hw->hw_addr + rx_ring->rdt);
2330 }
2331
2332 /**
2333  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2334  * @adapter: board private structure
2335  **/
2336
2337 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2338 {
2339         int i;
2340
2341         for (i = 0; i < adapter->num_rx_queues; i++)
2342                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2343 }
2344
2345 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2346  * and memory write and invalidate disabled for certain operations
2347  */
2348 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2349 {
2350         struct e1000_hw *hw = &adapter->hw;
2351         struct net_device *netdev = adapter->netdev;
2352         u32 rctl;
2353
2354         e1000_pci_clear_mwi(hw);
2355
2356         rctl = er32(RCTL);
2357         rctl |= E1000_RCTL_RST;
2358         ew32(RCTL, rctl);
2359         E1000_WRITE_FLUSH();
2360         mdelay(5);
2361
2362         if (netif_running(netdev))
2363                 e1000_clean_all_rx_rings(adapter);
2364 }
2365
2366 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2367 {
2368         struct e1000_hw *hw = &adapter->hw;
2369         struct net_device *netdev = adapter->netdev;
2370         u32 rctl;
2371
2372         rctl = er32(RCTL);
2373         rctl &= ~E1000_RCTL_RST;
2374         ew32(RCTL, rctl);
2375         E1000_WRITE_FLUSH();
2376         mdelay(5);
2377
2378         if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2379                 e1000_pci_set_mwi(hw);
2380
2381         if (netif_running(netdev)) {
2382                 /* No need to loop, because 82542 supports only 1 queue */
2383                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2384                 e1000_configure_rx(adapter);
2385                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2386         }
2387 }
2388
2389 /**
2390  * e1000_set_mac - Change the Ethernet Address of the NIC
2391  * @netdev: network interface device structure
2392  * @p: pointer to an address structure
2393  *
2394  * Returns 0 on success, negative on failure
2395  **/
2396
2397 static int e1000_set_mac(struct net_device *netdev, void *p)
2398 {
2399         struct e1000_adapter *adapter = netdev_priv(netdev);
2400         struct e1000_hw *hw = &adapter->hw;
2401         struct sockaddr *addr = p;
2402
2403         if (!is_valid_ether_addr(addr->sa_data))
2404                 return -EADDRNOTAVAIL;
2405
2406         /* 82542 2.0 needs to be in reset to write receive address registers */
2407
2408         if (hw->mac_type == e1000_82542_rev2_0)
2409                 e1000_enter_82542_rst(adapter);
2410
2411         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2412         memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2413
2414         e1000_rar_set(hw, hw->mac_addr, 0);
2415
2416         /* With 82571 controllers, LAA may be overwritten (with the default)
2417          * due to controller reset from the other port. */
2418         if (hw->mac_type == e1000_82571) {
2419                 /* activate the work around */
2420                 hw->laa_is_present = 1;
2421
2422                 /* Hold a copy of the LAA in RAR[14] This is done so that
2423                  * between the time RAR[0] gets clobbered  and the time it
2424                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2425                  * of the RARs and no incoming packets directed to this port
2426                  * are dropped. Eventaully the LAA will be in RAR[0] and
2427                  * RAR[14] */
2428                 e1000_rar_set(hw, hw->mac_addr,
2429                                         E1000_RAR_ENTRIES - 1);
2430         }
2431
2432         if (hw->mac_type == e1000_82542_rev2_0)
2433                 e1000_leave_82542_rst(adapter);
2434
2435         return 0;
2436 }
2437
2438 /**
2439  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2440  * @netdev: network interface device structure
2441  *
2442  * The set_rx_mode entry point is called whenever the unicast or multicast
2443  * address lists or the network interface flags are updated. This routine is
2444  * responsible for configuring the hardware for proper unicast, multicast,
2445  * promiscuous mode, and all-multi behavior.
2446  **/
2447
2448 static void e1000_set_rx_mode(struct net_device *netdev)
2449 {
2450         struct e1000_adapter *adapter = netdev_priv(netdev);
2451         struct e1000_hw *hw = &adapter->hw;
2452         struct dev_addr_list *uc_ptr;
2453         struct dev_addr_list *mc_ptr;
2454         u32 rctl;
2455         u32 hash_value;
2456         int i, rar_entries = E1000_RAR_ENTRIES;
2457         int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2458                                 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2459                                 E1000_NUM_MTA_REGISTERS;
2460
2461         if (hw->mac_type == e1000_ich8lan)
2462                 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2463
2464         /* reserve RAR[14] for LAA over-write work-around */
2465         if (hw->mac_type == e1000_82571)
2466                 rar_entries--;
2467
2468         /* Check for Promiscuous and All Multicast modes */
2469
2470         rctl = er32(RCTL);
2471
2472         if (netdev->flags & IFF_PROMISC) {
2473                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2474                 rctl &= ~E1000_RCTL_VFE;
2475         } else {
2476                 if (netdev->flags & IFF_ALLMULTI) {
2477                         rctl |= E1000_RCTL_MPE;
2478                 } else {
2479                         rctl &= ~E1000_RCTL_MPE;
2480                 }
2481                 if (adapter->hw.mac_type != e1000_ich8lan)
2482                         rctl |= E1000_RCTL_VFE;
2483         }
2484
2485         uc_ptr = NULL;
2486         if (netdev->uc_count > rar_entries - 1) {
2487                 rctl |= E1000_RCTL_UPE;
2488         } else if (!(netdev->flags & IFF_PROMISC)) {
2489                 rctl &= ~E1000_RCTL_UPE;
2490                 uc_ptr = netdev->uc_list;
2491         }
2492
2493         ew32(RCTL, rctl);
2494
2495         /* 82542 2.0 needs to be in reset to write receive address registers */
2496
2497         if (hw->mac_type == e1000_82542_rev2_0)
2498                 e1000_enter_82542_rst(adapter);
2499
2500         /* load the first 14 addresses into the exact filters 1-14. Unicast
2501          * addresses take precedence to avoid disabling unicast filtering
2502          * when possible.
2503          *
2504          * RAR 0 is used for the station MAC adddress
2505          * if there are not 14 addresses, go ahead and clear the filters
2506          * -- with 82571 controllers only 0-13 entries are filled here
2507          */
2508         mc_ptr = netdev->mc_list;
2509
2510         for (i = 1; i < rar_entries; i++) {
2511                 if (uc_ptr) {
2512                         e1000_rar_set(hw, uc_ptr->da_addr, i);
2513                         uc_ptr = uc_ptr->next;
2514                 } else if (mc_ptr) {
2515                         e1000_rar_set(hw, mc_ptr->da_addr, i);
2516                         mc_ptr = mc_ptr->next;
2517                 } else {
2518                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2519                         E1000_WRITE_FLUSH();
2520                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2521                         E1000_WRITE_FLUSH();
2522                 }
2523         }
2524         WARN_ON(uc_ptr != NULL);
2525
2526         /* clear the old settings from the multicast hash table */
2527
2528         for (i = 0; i < mta_reg_count; i++) {
2529                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2530                 E1000_WRITE_FLUSH();
2531         }
2532
2533         /* load any remaining addresses into the hash table */
2534
2535         for (; mc_ptr; mc_ptr = mc_ptr->next) {
2536                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->da_addr);
2537                 e1000_mta_set(hw, hash_value);
2538         }
2539
2540         if (hw->mac_type == e1000_82542_rev2_0)
2541                 e1000_leave_82542_rst(adapter);
2542 }
2543
2544 /* Need to wait a few seconds after link up to get diagnostic information from
2545  * the phy */
2546
2547 static void e1000_update_phy_info(unsigned long data)
2548 {
2549         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2550         struct e1000_hw *hw = &adapter->hw;
2551         e1000_phy_get_info(hw, &adapter->phy_info);
2552 }
2553
2554 /**
2555  * e1000_82547_tx_fifo_stall - Timer Call-back
2556  * @data: pointer to adapter cast into an unsigned long
2557  **/
2558
2559 static void e1000_82547_tx_fifo_stall(unsigned long data)
2560 {
2561         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2562         struct e1000_hw *hw = &adapter->hw;
2563         struct net_device *netdev = adapter->netdev;
2564         u32 tctl;
2565
2566         if (atomic_read(&adapter->tx_fifo_stall)) {
2567                 if ((er32(TDT) == er32(TDH)) &&
2568                    (er32(TDFT) == er32(TDFH)) &&
2569                    (er32(TDFTS) == er32(TDFHS))) {
2570                         tctl = er32(TCTL);
2571                         ew32(TCTL, tctl & ~E1000_TCTL_EN);
2572                         ew32(TDFT, adapter->tx_head_addr);
2573                         ew32(TDFH, adapter->tx_head_addr);
2574                         ew32(TDFTS, adapter->tx_head_addr);
2575                         ew32(TDFHS, adapter->tx_head_addr);
2576                         ew32(TCTL, tctl);
2577                         E1000_WRITE_FLUSH();
2578
2579                         adapter->tx_fifo_head = 0;
2580                         atomic_set(&adapter->tx_fifo_stall, 0);
2581                         netif_wake_queue(netdev);
2582                 } else {
2583                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2584                 }
2585         }
2586 }
2587
2588 /**
2589  * e1000_watchdog - Timer Call-back
2590  * @data: pointer to adapter cast into an unsigned long
2591  **/
2592 static void e1000_watchdog(unsigned long data)
2593 {
2594         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2595         struct e1000_hw *hw = &adapter->hw;
2596         struct net_device *netdev = adapter->netdev;
2597         struct e1000_tx_ring *txdr = adapter->tx_ring;
2598         u32 link, tctl;
2599         s32 ret_val;
2600
2601         ret_val = e1000_check_for_link(hw);
2602         if ((ret_val == E1000_ERR_PHY) &&
2603             (hw->phy_type == e1000_phy_igp_3) &&
2604             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2605                 /* See e1000_kumeran_lock_loss_workaround() */
2606                 DPRINTK(LINK, INFO,
2607                         "Gigabit has been disabled, downgrading speed\n");
2608         }
2609
2610         if (hw->mac_type == e1000_82573) {
2611                 e1000_enable_tx_pkt_filtering(hw);
2612                 if (adapter->mng_vlan_id != hw->mng_cookie.vlan_id)
2613                         e1000_update_mng_vlan(adapter);
2614         }
2615
2616         if ((hw->media_type == e1000_media_type_internal_serdes) &&
2617            !(er32(TXCW) & E1000_TXCW_ANE))
2618                 link = !hw->serdes_link_down;
2619         else
2620                 link = er32(STATUS) & E1000_STATUS_LU;
2621
2622         if (link) {
2623                 if (!netif_carrier_ok(netdev)) {
2624                         u32 ctrl;
2625                         bool txb2b = true;
2626                         e1000_get_speed_and_duplex(hw,
2627                                                    &adapter->link_speed,
2628                                                    &adapter->link_duplex);
2629
2630                         ctrl = er32(CTRL);
2631                         DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s, "
2632                                 "Flow Control: %s\n",
2633                                 adapter->link_speed,
2634                                 adapter->link_duplex == FULL_DUPLEX ?
2635                                 "Full Duplex" : "Half Duplex",
2636                                 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2637                                 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2638                                 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2639                                 E1000_CTRL_TFCE) ? "TX" : "None" )));
2640
2641                         /* tweak tx_queue_len according to speed/duplex
2642                          * and adjust the timeout factor */
2643                         netdev->tx_queue_len = adapter->tx_queue_len;
2644                         adapter->tx_timeout_factor = 1;
2645                         switch (adapter->link_speed) {
2646                         case SPEED_10:
2647                                 txb2b = false;
2648                                 netdev->tx_queue_len = 10;
2649                                 adapter->tx_timeout_factor = 8;
2650                                 break;
2651                         case SPEED_100:
2652                                 txb2b = false;
2653                                 netdev->tx_queue_len = 100;
2654                                 /* maybe add some timeout factor ? */
2655                                 break;
2656                         }
2657
2658                         if ((hw->mac_type == e1000_82571 ||
2659                              hw->mac_type == e1000_82572) &&
2660                             !txb2b) {
2661                                 u32 tarc0;
2662                                 tarc0 = er32(TARC0);
2663                                 tarc0 &= ~(1 << 21);
2664                                 ew32(TARC0, tarc0);
2665                         }
2666
2667                         /* disable TSO for pcie and 10/100 speeds, to avoid
2668                          * some hardware issues */
2669                         if (!adapter->tso_force &&
2670                             hw->bus_type == e1000_bus_type_pci_express){
2671                                 switch (adapter->link_speed) {
2672                                 case SPEED_10:
2673                                 case SPEED_100:
2674                                         DPRINTK(PROBE,INFO,
2675                                         "10/100 speed: disabling TSO\n");
2676                                         netdev->features &= ~NETIF_F_TSO;
2677                                         netdev->features &= ~NETIF_F_TSO6;
2678                                         break;
2679                                 case SPEED_1000:
2680                                         netdev->features |= NETIF_F_TSO;
2681                                         netdev->features |= NETIF_F_TSO6;
2682                                         break;
2683                                 default:
2684                                         /* oops */
2685                                         break;
2686                                 }
2687                         }
2688
2689                         /* enable transmits in the hardware, need to do this
2690                          * after setting TARC0 */
2691                         tctl = er32(TCTL);
2692                         tctl |= E1000_TCTL_EN;
2693                         ew32(TCTL, tctl);
2694
2695                         netif_carrier_on(netdev);
2696                         netif_wake_queue(netdev);
2697                         mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2698                         adapter->smartspeed = 0;
2699                 } else {
2700                         /* make sure the receive unit is started */
2701                         if (hw->rx_needs_kicking) {
2702                                 u32 rctl = er32(RCTL);
2703                                 ew32(RCTL, rctl | E1000_RCTL_EN);
2704                         }
2705                 }
2706         } else {
2707                 if (netif_carrier_ok(netdev)) {
2708                         adapter->link_speed = 0;
2709                         adapter->link_duplex = 0;
2710                         DPRINTK(LINK, INFO, "NIC Link is Down\n");
2711                         netif_carrier_off(netdev);
2712                         netif_stop_queue(netdev);
2713                         mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2714
2715                         /* 80003ES2LAN workaround--
2716                          * For packet buffer work-around on link down event;
2717                          * disable receives in the ISR and
2718                          * reset device here in the watchdog
2719                          */
2720                         if (hw->mac_type == e1000_80003es2lan)
2721                                 /* reset device */
2722                                 schedule_work(&adapter->reset_task);
2723                 }
2724
2725                 e1000_smartspeed(adapter);
2726         }
2727
2728         e1000_update_stats(adapter);
2729
2730         hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2731         adapter->tpt_old = adapter->stats.tpt;
2732         hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2733         adapter->colc_old = adapter->stats.colc;
2734
2735         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2736         adapter->gorcl_old = adapter->stats.gorcl;
2737         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2738         adapter->gotcl_old = adapter->stats.gotcl;
2739
2740         e1000_update_adaptive(hw);
2741
2742         if (!netif_carrier_ok(netdev)) {
2743                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2744                         /* We've lost link, so the controller stops DMA,
2745                          * but we've got queued Tx work that's never going
2746                          * to get done, so reset controller to flush Tx.
2747                          * (Do the reset outside of interrupt context). */
2748                         adapter->tx_timeout_count++;
2749                         schedule_work(&adapter->reset_task);
2750                 }
2751         }
2752
2753         /* Cause software interrupt to ensure rx ring is cleaned */
2754         ew32(ICS, E1000_ICS_RXDMT0);
2755
2756         /* Force detection of hung controller every watchdog period */
2757         adapter->detect_tx_hung = true;
2758
2759         /* With 82571 controllers, LAA may be overwritten due to controller
2760          * reset from the other port. Set the appropriate LAA in RAR[0] */
2761         if (hw->mac_type == e1000_82571 && hw->laa_is_present)
2762                 e1000_rar_set(hw, hw->mac_addr, 0);
2763
2764         /* Reset the timer */
2765         mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 2 * HZ));
2766 }
2767
2768 enum latency_range {
2769         lowest_latency = 0,
2770         low_latency = 1,
2771         bulk_latency = 2,
2772         latency_invalid = 255
2773 };
2774
2775 /**
2776  * e1000_update_itr - update the dynamic ITR value based on statistics
2777  *      Stores a new ITR value based on packets and byte
2778  *      counts during the last interrupt.  The advantage of per interrupt
2779  *      computation is faster updates and more accurate ITR for the current
2780  *      traffic pattern.  Constants in this function were computed
2781  *      based on theoretical maximum wire speed and thresholds were set based
2782  *      on testing data as well as attempting to minimize response time
2783  *      while increasing bulk throughput.
2784  *      this functionality is controlled by the InterruptThrottleRate module
2785  *      parameter (see e1000_param.c)
2786  * @adapter: pointer to adapter
2787  * @itr_setting: current adapter->itr
2788  * @packets: the number of packets during this measurement interval
2789  * @bytes: the number of bytes during this measurement interval
2790  **/
2791 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2792                                      u16 itr_setting, int packets, int bytes)
2793 {
2794         unsigned int retval = itr_setting;
2795         struct e1000_hw *hw = &adapter->hw;
2796
2797         if (unlikely(hw->mac_type < e1000_82540))
2798                 goto update_itr_done;
2799
2800         if (packets == 0)
2801                 goto update_itr_done;
2802
2803         switch (itr_setting) {
2804         case lowest_latency:
2805                 /* jumbo frames get bulk treatment*/
2806                 if (bytes/packets > 8000)
2807                         retval = bulk_latency;
2808                 else if ((packets < 5) && (bytes > 512))
2809                         retval = low_latency;
2810                 break;
2811         case low_latency:  /* 50 usec aka 20000 ints/s */
2812                 if (bytes > 10000) {
2813                         /* jumbo frames need bulk latency setting */
2814                         if (bytes/packets > 8000)
2815                                 retval = bulk_latency;
2816                         else if ((packets < 10) || ((bytes/packets) > 1200))
2817                                 retval = bulk_latency;
2818                         else if ((packets > 35))
2819                                 retval = lowest_latency;
2820                 } else if (bytes/packets > 2000)
2821                         retval = bulk_latency;
2822                 else if (packets <= 2 && bytes < 512)
2823                         retval = lowest_latency;
2824                 break;
2825         case bulk_latency: /* 250 usec aka 4000 ints/s */
2826                 if (bytes > 25000) {
2827                         if (packets > 35)
2828                                 retval = low_latency;
2829                 } else if (bytes < 6000) {
2830                         retval = low_latency;
2831                 }
2832                 break;
2833         }
2834
2835 update_itr_done:
2836         return retval;
2837 }
2838
2839 static void e1000_set_itr(struct e1000_adapter *adapter)
2840 {
2841         struct e1000_hw *hw = &adapter->hw;
2842         u16 current_itr;
2843         u32 new_itr = adapter->itr;
2844
2845         if (unlikely(hw->mac_type < e1000_82540))
2846                 return;
2847
2848         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2849         if (unlikely(adapter->link_speed != SPEED_1000)) {
2850                 current_itr = 0;
2851                 new_itr = 4000;
2852                 goto set_itr_now;
2853         }
2854
2855         adapter->tx_itr = e1000_update_itr(adapter,
2856                                     adapter->tx_itr,
2857                                     adapter->total_tx_packets,
2858                                     adapter->total_tx_bytes);
2859         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2860         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2861                 adapter->tx_itr = low_latency;
2862
2863         adapter->rx_itr = e1000_update_itr(adapter,
2864                                     adapter->rx_itr,
2865                                     adapter->total_rx_packets,
2866                                     adapter->total_rx_bytes);
2867         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2868         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2869                 adapter->rx_itr = low_latency;
2870
2871         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2872
2873         switch (current_itr) {
2874         /* counts and packets in update_itr are dependent on these numbers */
2875         case lowest_latency:
2876                 new_itr = 70000;
2877                 break;
2878         case low_latency:
2879                 new_itr = 20000; /* aka hwitr = ~200 */
2880                 break;
2881         case bulk_latency:
2882                 new_itr = 4000;
2883                 break;
2884         default:
2885                 break;
2886         }
2887
2888 set_itr_now:
2889         if (new_itr != adapter->itr) {
2890                 /* this attempts to bias the interrupt rate towards Bulk
2891                  * by adding intermediate steps when interrupt rate is
2892                  * increasing */
2893                 new_itr = new_itr > adapter->itr ?
2894                              min(adapter->itr + (new_itr >> 2), new_itr) :
2895                              new_itr;
2896                 adapter->itr = new_itr;
2897                 ew32(ITR, 1000000000 / (new_itr * 256));
2898         }
2899
2900         return;
2901 }
2902
2903 #define E1000_TX_FLAGS_CSUM             0x00000001
2904 #define E1000_TX_FLAGS_VLAN             0x00000002
2905 #define E1000_TX_FLAGS_TSO              0x00000004
2906 #define E1000_TX_FLAGS_IPV4             0x00000008
2907 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2908 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2909
2910 static int e1000_tso(struct e1000_adapter *adapter,
2911                      struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2912 {
2913         struct e1000_context_desc *context_desc;
2914         struct e1000_buffer *buffer_info;
2915         unsigned int i;
2916         u32 cmd_length = 0;
2917         u16 ipcse = 0, tucse, mss;
2918         u8 ipcss, ipcso, tucss, tucso, hdr_len;
2919         int err;
2920
2921         if (skb_is_gso(skb)) {
2922                 if (skb_header_cloned(skb)) {
2923                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2924                         if (err)
2925                                 return err;
2926                 }
2927
2928                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2929                 mss = skb_shinfo(skb)->gso_size;
2930                 if (skb->protocol == htons(ETH_P_IP)) {
2931                         struct iphdr *iph = ip_hdr(skb);
2932                         iph->tot_len = 0;
2933                         iph->check = 0;
2934                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2935                                                                  iph->daddr, 0,
2936                                                                  IPPROTO_TCP,
2937                                                                  0);
2938                         cmd_length = E1000_TXD_CMD_IP;
2939                         ipcse = skb_transport_offset(skb) - 1;
2940                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2941                         ipv6_hdr(skb)->payload_len = 0;
2942                         tcp_hdr(skb)->check =
2943                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2944                                                  &ipv6_hdr(skb)->daddr,
2945                                                  0, IPPROTO_TCP, 0);
2946                         ipcse = 0;
2947                 }
2948                 ipcss = skb_network_offset(skb);
2949                 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2950                 tucss = skb_transport_offset(skb);
2951                 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2952                 tucse = 0;
2953
2954                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2955                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2956
2957                 i = tx_ring->next_to_use;
2958                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2959                 buffer_info = &tx_ring->buffer_info[i];
2960
2961                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2962                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2963                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2964                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2965                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2966                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2967                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2968                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2969                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2970
2971                 buffer_info->time_stamp = jiffies;
2972                 buffer_info->next_to_watch = i;
2973
2974                 if (++i == tx_ring->count) i = 0;
2975                 tx_ring->next_to_use = i;
2976
2977                 return true;
2978         }
2979         return false;
2980 }
2981
2982 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2983                           struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2984 {
2985         struct e1000_context_desc *context_desc;
2986         struct e1000_buffer *buffer_info;
2987         unsigned int i;
2988         u8 css;
2989
2990         if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2991                 css = skb_transport_offset(skb);
2992
2993                 i = tx_ring->next_to_use;
2994                 buffer_info = &tx_ring->buffer_info[i];
2995                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2996
2997                 context_desc->lower_setup.ip_config = 0;
2998                 context_desc->upper_setup.tcp_fields.tucss = css;
2999                 context_desc->upper_setup.tcp_fields.tucso =
3000                         css + skb->csum_offset;
3001                 context_desc->upper_setup.tcp_fields.tucse = 0;
3002                 context_desc->tcp_seg_setup.data = 0;
3003                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
3004
3005                 buffer_info->time_stamp = jiffies;
3006                 buffer_info->next_to_watch = i;
3007
3008                 if (unlikely(++i == tx_ring->count)) i = 0;
3009                 tx_ring->next_to_use = i;
3010
3011                 return true;
3012         }
3013
3014         return false;
3015 }
3016
3017 #define E1000_MAX_TXD_PWR       12
3018 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
3019
3020 static int e1000_tx_map(struct e1000_adapter *adapter,
3021                         struct e1000_tx_ring *tx_ring,
3022                         struct sk_buff *skb, unsigned int first,
3023                         unsigned int max_per_txd, unsigned int nr_frags,
3024                         unsigned int mss)
3025 {
3026         struct e1000_hw *hw = &adapter->hw;
3027         struct e1000_buffer *buffer_info;
3028         unsigned int len = skb->len;
3029         unsigned int offset = 0, size, count = 0, i;
3030         unsigned int f;
3031         len -= skb->data_len;
3032
3033         i = tx_ring->next_to_use;
3034
3035         while (len) {
3036                 buffer_info = &tx_ring->buffer_info[i];
3037                 size = min(len, max_per_txd);
3038                 /* Workaround for Controller erratum --
3039                  * descriptor for non-tso packet in a linear SKB that follows a
3040                  * tso gets written back prematurely before the data is fully
3041                  * DMA'd to the controller */
3042                 if (!skb->data_len && tx_ring->last_tx_tso &&
3043                     !skb_is_gso(skb)) {
3044                         tx_ring->last_tx_tso = 0;
3045                         size -= 4;
3046                 }
3047
3048                 /* Workaround for premature desc write-backs
3049                  * in TSO mode.  Append 4-byte sentinel desc */
3050                 if (unlikely(mss && !nr_frags && size == len && size > 8))
3051                         size -= 4;
3052                 /* work-around for errata 10 and it applies
3053                  * to all controllers in PCI-X mode
3054                  * The fix is to make sure that the first descriptor of a
3055                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
3056                  */
3057                 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3058                                 (size > 2015) && count == 0))
3059                         size = 2015;
3060
3061                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
3062                  * terminating buffers within evenly-aligned dwords. */
3063                 if (unlikely(adapter->pcix_82544 &&
3064                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
3065                    size > 4))
3066                         size -= 4;
3067
3068                 buffer_info->length = size;
3069                 buffer_info->dma =
3070                         pci_map_single(adapter->pdev,
3071                                 skb->data + offset,
3072                                 size,
3073                                 PCI_DMA_TODEVICE);
3074                 buffer_info->time_stamp = jiffies;
3075                 buffer_info->next_to_watch = i;
3076
3077                 len -= size;
3078                 offset += size;
3079                 count++;
3080                 if (unlikely(++i == tx_ring->count)) i = 0;
3081         }
3082
3083         for (f = 0; f < nr_frags; f++) {
3084                 struct skb_frag_struct *frag;
3085
3086                 frag = &skb_shinfo(skb)->frags[f];
3087                 len = frag->size;
3088                 offset = frag->page_offset;
3089
3090                 while (len) {
3091                         buffer_info = &tx_ring->buffer_info[i];
3092                         size = min(len, max_per_txd);
3093                         /* Workaround for premature desc write-backs
3094                          * in TSO mode.  Append 4-byte sentinel desc */
3095                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
3096                                 size -= 4;
3097                         /* Workaround for potential 82544 hang in PCI-X.
3098                          * Avoid terminating buffers within evenly-aligned
3099                          * dwords. */
3100                         if (unlikely(adapter->pcix_82544 &&
3101                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
3102                            size > 4))
3103                                 size -= 4;
3104
3105                         buffer_info->length = size;
3106                         buffer_info->dma =
3107                                 pci_map_page(adapter->pdev,
3108                                         frag->page,
3109                                         offset,
3110                                         size,
3111                                         PCI_DMA_TODEVICE);
3112                         buffer_info->time_stamp = jiffies;
3113                         buffer_info->next_to_watch = i;
3114
3115                         len -= size;
3116                         offset += size;
3117                         count++;
3118                         if (unlikely(++i == tx_ring->count)) i = 0;
3119                 }
3120         }
3121
3122         i = (i == 0) ? tx_ring->count - 1 : i - 1;
3123         tx_ring->buffer_info[i].skb = skb;
3124         tx_ring->buffer_info[first].next_to_watch = i;
3125
3126         return count;
3127 }
3128
3129 static void e1000_tx_queue(struct e1000_adapter *adapter,
3130                            struct e1000_tx_ring *tx_ring, int tx_flags,
3131                            int count)
3132 {
3133         struct e1000_hw *hw = &adapter->hw;
3134         struct e1000_tx_desc *tx_desc = NULL;
3135         struct e1000_buffer *buffer_info;
3136         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3137         unsigned int i;
3138
3139         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
3140                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3141                              E1000_TXD_CMD_TSE;
3142                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3143
3144                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3145                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3146         }
3147
3148         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3149                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3150                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3151         }
3152
3153         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3154                 txd_lower |= E1000_TXD_CMD_VLE;
3155                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3156         }
3157
3158         i = tx_ring->next_to_use;
3159
3160         while (count--) {
3161                 buffer_info = &tx_ring->buffer_info[i];
3162                 tx_desc = E1000_TX_DESC(*tx_ring, i);
3163                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3164                 tx_desc->lower.data =
3165                         cpu_to_le32(txd_lower | buffer_info->length);
3166                 tx_desc->upper.data = cpu_to_le32(txd_upper);
3167                 if (unlikely(++i == tx_ring->count)) i = 0;
3168         }
3169
3170         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3171
3172         /* Force memory writes to complete before letting h/w
3173          * know there are new descriptors to fetch.  (Only
3174          * applicable for weak-ordered memory model archs,
3175          * such as IA-64). */
3176         wmb();
3177
3178         tx_ring->next_to_use = i;
3179         writel(i, hw->hw_addr + tx_ring->tdt);
3180         /* we need this if more than one processor can write to our tail
3181          * at a time, it syncronizes IO on IA64/Altix systems */
3182         mmiowb();
3183 }
3184
3185 /**
3186  * 82547 workaround to avoid controller hang in half-duplex environment.
3187  * The workaround is to avoid queuing a large packet that would span
3188  * the internal Tx FIFO ring boundary by notifying the stack to resend
3189  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3190  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3191  * to the beginning of the Tx FIFO.
3192  **/
3193
3194 #define E1000_FIFO_HDR                  0x10
3195 #define E1000_82547_PAD_LEN             0x3E0
3196
3197 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3198                                        struct sk_buff *skb)
3199 {
3200         u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3201         u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3202
3203         skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3204
3205         if (adapter->link_duplex != HALF_DUPLEX)
3206                 goto no_fifo_stall_required;
3207
3208         if (atomic_read(&adapter->tx_fifo_stall))
3209                 return 1;
3210
3211         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3212                 atomic_set(&adapter->tx_fifo_stall, 1);
3213                 return 1;
3214         }
3215
3216 no_fifo_stall_required:
3217         adapter->tx_fifo_head += skb_fifo_len;
3218         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3219                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3220         return 0;
3221 }
3222
3223 #define MINIMUM_DHCP_PACKET_SIZE 282
3224 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
3225                                     struct sk_buff *skb)
3226 {
3227         struct e1000_hw *hw =  &adapter->hw;
3228         u16 length, offset;
3229         if (vlan_tx_tag_present(skb)) {
3230                 if (!((vlan_tx_tag_get(skb) == hw->mng_cookie.vlan_id) &&
3231                         ( hw->mng_cookie.status &
3232                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
3233                         return 0;
3234         }
3235         if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
3236                 struct ethhdr *eth = (struct ethhdr *)skb->data;
3237                 if ((htons(ETH_P_IP) == eth->h_proto)) {
3238                         const struct iphdr *ip =
3239                                 (struct iphdr *)((u8 *)skb->data+14);
3240                         if (IPPROTO_UDP == ip->protocol) {
3241                                 struct udphdr *udp =
3242                                         (struct udphdr *)((u8 *)ip +
3243                                                 (ip->ihl << 2));
3244                                 if (ntohs(udp->dest) == 67) {
3245                                         offset = (u8 *)udp + 8 - skb->data;
3246                                         length = skb->len - offset;
3247
3248                                         return e1000_mng_write_dhcp_info(hw,
3249                                                         (u8 *)udp + 8,
3250                                                         length);
3251                                 }
3252                         }
3253                 }
3254         }
3255         return 0;
3256 }
3257
3258 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3259 {
3260         struct e1000_adapter *adapter = netdev_priv(netdev);
3261         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3262
3263         netif_stop_queue(netdev);
3264         /* Herbert's original patch had:
3265          *  smp_mb__after_netif_stop_queue();
3266          * but since that doesn't exist yet, just open code it. */
3267         smp_mb();
3268
3269         /* We need to check again in a case another CPU has just
3270          * made room available. */
3271         if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3272                 return -EBUSY;
3273
3274         /* A reprieve! */
3275         netif_start_queue(netdev);
3276         ++adapter->restart_queue;
3277         return 0;
3278 }
3279
3280 static int e1000_maybe_stop_tx(struct net_device *netdev,
3281                                struct e1000_tx_ring *tx_ring, int size)
3282 {
3283         if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3284                 return 0;
3285         return __e1000_maybe_stop_tx(netdev, size);
3286 }
3287
3288 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3289 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3290 {
3291         struct e1000_adapter *adapter = netdev_priv(netdev);
3292         struct e1000_hw *hw = &adapter->hw;
3293         struct e1000_tx_ring *tx_ring;
3294         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3295         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3296         unsigned int tx_flags = 0;
3297         unsigned int len = skb->len - skb->data_len;
3298         unsigned long flags;
3299         unsigned int nr_frags;
3300         unsigned int mss;
3301         int count = 0;
3302         int tso;
3303         unsigned int f;
3304
3305         /* This goes back to the question of how to logically map a tx queue
3306          * to a flow.  Right now, performance is impacted slightly negatively
3307          * if using multiple tx queues.  If the stack breaks away from a
3308          * single qdisc implementation, we can look at this again. */
3309         tx_ring = adapter->tx_ring;
3310
3311         if (unlikely(skb->len <= 0)) {
3312                 dev_kfree_skb_any(skb);
3313                 return NETDEV_TX_OK;
3314         }
3315
3316         /* 82571 and newer doesn't need the workaround that limited descriptor
3317          * length to 4kB */
3318         if (hw->mac_type >= e1000_82571)
3319                 max_per_txd = 8192;
3320
3321         mss = skb_shinfo(skb)->gso_size;
3322         /* The controller does a simple calculation to
3323          * make sure there is enough room in the FIFO before
3324          * initiating the DMA for each buffer.  The calc is:
3325          * 4 = ceil(buffer len/mss).  To make sure we don't
3326          * overrun the FIFO, adjust the max buffer len if mss
3327          * drops. */
3328         if (mss) {
3329                 u8 hdr_len;
3330                 max_per_txd = min(mss << 2, max_per_txd);
3331                 max_txd_pwr = fls(max_per_txd) - 1;
3332
3333                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3334                 * points to just header, pull a few bytes of payload from
3335                 * frags into skb->data */
3336                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3337                 if (skb->data_len && hdr_len == len) {
3338                         switch (hw->mac_type) {
3339                                 unsigned int pull_size;
3340                         case e1000_82544:
3341                                 /* Make sure we have room to chop off 4 bytes,
3342                                  * and that the end alignment will work out to
3343                                  * this hardware's requirements
3344                                  * NOTE: this is a TSO only workaround
3345                                  * if end byte alignment not correct move us
3346                                  * into the next dword */
3347                                 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
3348                                         break;
3349                                 /* fall through */
3350                         case e1000_82571:
3351                         case e1000_82572:
3352                         case e1000_82573:
3353                         case e1000_ich8lan:
3354                                 pull_size = min((unsigned int)4, skb->data_len);
3355                                 if (!__pskb_pull_tail(skb, pull_size)) {
3356                                         DPRINTK(DRV, ERR,
3357                                                 "__pskb_pull_tail failed.\n");
3358                                         dev_kfree_skb_any(skb);
3359                                         return NETDEV_TX_OK;
3360                                 }
3361                                 len = skb->len - skb->data_len;
3362                                 break;
3363                         default:
3364                                 /* do nothing */
3365                                 break;
3366                         }
3367                 }
3368         }
3369
3370         /* reserve a descriptor for the offload context */
3371         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3372                 count++;
3373         count++;
3374
3375         /* Controller Erratum workaround */
3376         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3377                 count++;
3378
3379         count += TXD_USE_COUNT(len, max_txd_pwr);
3380
3381         if (adapter->pcix_82544)
3382                 count++;
3383
3384         /* work-around for errata 10 and it applies to all controllers
3385          * in PCI-X mode, so add one more descriptor to the count
3386          */
3387         if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3388                         (len > 2015)))
3389                 count++;
3390
3391         nr_frags = skb_shinfo(skb)->nr_frags;
3392         for (f = 0; f < nr_frags; f++)
3393                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3394                                        max_txd_pwr);
3395         if (adapter->pcix_82544)
3396                 count += nr_frags;
3397
3398
3399         if (hw->tx_pkt_filtering &&
3400             (hw->mac_type == e1000_82573))
3401                 e1000_transfer_dhcp_info(adapter, skb);
3402
3403         if (!spin_trylock_irqsave(&tx_ring->tx_lock, flags))
3404                 /* Collision - tell upper layer to requeue */
3405                 return NETDEV_TX_LOCKED;
3406
3407         /* need: count + 2 desc gap to keep tail from touching
3408          * head, otherwise try next time */
3409         if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) {
3410                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3411                 return NETDEV_TX_BUSY;
3412         }
3413
3414         if (unlikely(hw->mac_type == e1000_82547)) {
3415                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3416                         netif_stop_queue(netdev);
3417                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
3418                         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3419                         return NETDEV_TX_BUSY;
3420                 }
3421         }
3422
3423         if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3424                 tx_flags |= E1000_TX_FLAGS_VLAN;
3425                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3426         }
3427
3428         first = tx_ring->next_to_use;
3429
3430         tso = e1000_tso(adapter, tx_ring, skb);
3431         if (tso < 0) {
3432                 dev_kfree_skb_any(skb);
3433                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3434                 return NETDEV_TX_OK;
3435         }
3436
3437         if (likely(tso)) {
3438                 tx_ring->last_tx_tso = 1;
3439                 tx_flags |= E1000_TX_FLAGS_TSO;
3440         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3441                 tx_flags |= E1000_TX_FLAGS_CSUM;
3442
3443         /* Old method was to assume IPv4 packet by default if TSO was enabled.
3444          * 82571 hardware supports TSO capabilities for IPv6 as well...
3445          * no longer assume, we must. */
3446         if (likely(skb->protocol == htons(ETH_P_IP)))
3447                 tx_flags |= E1000_TX_FLAGS_IPV4;
3448
3449         e1000_tx_queue(adapter, tx_ring, tx_flags,
3450                        e1000_tx_map(adapter, tx_ring, skb, first,
3451                                     max_per_txd, nr_frags, mss));
3452
3453         netdev->trans_start = jiffies;
3454
3455         /* Make sure there is space in the ring for the next send. */
3456         e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3457
3458         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3459         return NETDEV_TX_OK;
3460 }
3461
3462 /**
3463  * e1000_tx_timeout - Respond to a Tx Hang
3464  * @netdev: network interface device structure
3465  **/
3466
3467 static void e1000_tx_timeout(struct net_device *netdev)
3468 {
3469         struct e1000_adapter *adapter = netdev_priv(netdev);
3470
3471         /* Do the reset outside of interrupt context */
3472         adapter->tx_timeout_count++;
3473         schedule_work(&adapter->reset_task);
3474 }
3475
3476 static void e1000_reset_task(struct work_struct *work)
3477 {
3478         struct e1000_adapter *adapter =
3479                 container_of(work, struct e1000_adapter, reset_task);
3480
3481         e1000_reinit_locked(adapter);
3482 }
3483
3484 /**
3485  * e1000_get_stats - Get System Network Statistics
3486  * @netdev: network interface device structure
3487  *
3488  * Returns the address of the device statistics structure.
3489  * The statistics are actually updated from the timer callback.
3490  **/
3491
3492 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3493 {
3494         struct e1000_adapter *adapter = netdev_priv(netdev);
3495
3496         /* only return the current stats */
3497         return &adapter->net_stats;
3498 }
3499
3500 /**
3501  * e1000_change_mtu - Change the Maximum Transfer Unit
3502  * @netdev: network interface device structure
3503  * @new_mtu: new value for maximum frame size
3504  *
3505  * Returns 0 on success, negative on failure
3506  **/
3507
3508 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3509 {
3510         struct e1000_adapter *adapter = netdev_priv(netdev);
3511         struct e1000_hw *hw = &adapter->hw;
3512         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3513         u16 eeprom_data = 0;
3514
3515         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3516             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3517                 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3518                 return -EINVAL;
3519         }
3520
3521         /* Adapter-specific max frame size limits. */
3522         switch (hw->mac_type) {
3523         case e1000_undefined ... e1000_82542_rev2_1:
3524         case e1000_ich8lan:
3525                 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3526                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3527                         return -EINVAL;
3528                 }
3529                 break;
3530         case e1000_82573:
3531                 /* Jumbo Frames not supported if:
3532                  * - this is not an 82573L device
3533                  * - ASPM is enabled in any way (0x1A bits 3:2) */
3534                 e1000_read_eeprom(hw, EEPROM_INIT_3GIO_3, 1,
3535                                   &eeprom_data);
3536                 if ((hw->device_id != E1000_DEV_ID_82573L) ||
3537                     (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3538                         if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3539                                 DPRINTK(PROBE, ERR,
3540                                         "Jumbo Frames not supported.\n");
3541                                 return -EINVAL;
3542                         }
3543                         break;
3544                 }
3545                 /* ERT will be enabled later to enable wire speed receives */
3546
3547                 /* fall through to get support */
3548         case e1000_82571:
3549         case e1000_82572:
3550         case e1000_80003es2lan:
3551 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3552                 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3553                         DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3554                         return -EINVAL;
3555                 }
3556                 break;
3557         default:
3558                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3559                 break;
3560         }
3561
3562         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3563          * means we reserve 2 more, this pushes us to allocate from the next
3564          * larger slab size
3565          * i.e. RXBUFFER_2048 --> size-4096 slab */
3566
3567         if (max_frame <= E1000_RXBUFFER_256)
3568                 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3569         else if (max_frame <= E1000_RXBUFFER_512)
3570                 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3571         else if (max_frame <= E1000_RXBUFFER_1024)
3572                 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3573         else if (max_frame <= E1000_RXBUFFER_2048)
3574                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3575         else if (max_frame <= E1000_RXBUFFER_4096)
3576                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3577         else if (max_frame <= E1000_RXBUFFER_8192)
3578                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3579         else if (max_frame <= E1000_RXBUFFER_16384)
3580                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3581
3582         /* adjust allocation if LPE protects us, and we aren't using SBP */
3583         if (!hw->tbi_compatibility_on &&
3584             ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3585              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3586                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3587
3588         netdev->mtu = new_mtu;
3589         hw->max_frame_size = max_frame;
3590
3591         if (netif_running(netdev))
3592                 e1000_reinit_locked(adapter);
3593
3594         return 0;
3595 }
3596
3597 /**
3598  * e1000_update_stats - Update the board statistics counters
3599  * @adapter: board private structure
3600  **/
3601
3602 void e1000_update_stats(struct e1000_adapter *adapter)
3603 {
3604         struct e1000_hw *hw = &adapter->hw;
3605         struct pci_dev *pdev = adapter->pdev;
3606         unsigned long flags;
3607         u16 phy_tmp;
3608
3609 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3610
3611         /*
3612          * Prevent stats update while adapter is being reset, or if the pci
3613          * connection is down.
3614          */
3615         if (adapter->link_speed == 0)
3616                 return;
3617         if (pci_channel_offline(pdev))
3618                 return;
3619
3620         spin_lock_irqsave(&adapter->stats_lock, flags);
3621
3622         /* these counters are modified from e1000_tbi_adjust_stats,
3623          * called from the interrupt context, so they must only
3624          * be written while holding adapter->stats_lock
3625          */
3626
3627         adapter->stats.crcerrs += er32(CRCERRS);
3628         adapter->stats.gprc += er32(GPRC);
3629         adapter->stats.gorcl += er32(GORCL);
3630         adapter->stats.gorch += er32(GORCH);
3631         adapter->stats.bprc += er32(BPRC);
3632         adapter->stats.mprc += er32(MPRC);
3633         adapter->stats.roc += er32(ROC);
3634
3635         if (hw->mac_type != e1000_ich8lan) {
3636                 adapter->stats.prc64 += er32(PRC64);
3637                 adapter->stats.prc127 += er32(PRC127);
3638                 adapter->stats.prc255 += er32(PRC255);
3639                 adapter->stats.prc511 += er32(PRC511);
3640                 adapter->stats.prc1023 += er32(PRC1023);
3641                 adapter->stats.prc1522 += er32(PRC1522);
3642         }
3643
3644         adapter->stats.symerrs += er32(SYMERRS);
3645         adapter->stats.mpc += er32(MPC);
3646         adapter->stats.scc += er32(SCC);
3647         adapter->stats.ecol += er32(ECOL);
3648         adapter->stats.mcc += er32(MCC);
3649         adapter->stats.latecol += er32(LATECOL);
3650         adapter->stats.dc += er32(DC);
3651         adapter->stats.sec += er32(SEC);
3652         adapter->stats.rlec += er32(RLEC);
3653         adapter->stats.xonrxc += er32(XONRXC);
3654         adapter->stats.xontxc += er32(XONTXC);
3655         adapter->stats.xoffrxc += er32(XOFFRXC);
3656         adapter->stats.xofftxc += er32(XOFFTXC);
3657         adapter->stats.fcruc += er32(FCRUC);
3658         adapter->stats.gptc += er32(GPTC);
3659         adapter->stats.gotcl += er32(GOTCL);
3660         adapter->stats.gotch += er32(GOTCH);
3661         adapter->stats.rnbc += er32(RNBC);
3662         adapter->stats.ruc += er32(RUC);
3663         adapter->stats.rfc += er32(RFC);
3664         adapter->stats.rjc += er32(RJC);
3665         adapter->stats.torl += er32(TORL);
3666         adapter->stats.torh += er32(TORH);
3667         adapter->stats.totl += er32(TOTL);
3668         adapter->stats.toth += er32(TOTH);
3669         adapter->stats.tpr += er32(TPR);
3670
3671         if (hw->mac_type != e1000_ich8lan) {
3672                 adapter->stats.ptc64 += er32(PTC64);
3673                 adapter->stats.ptc127 += er32(PTC127);
3674                 adapter->stats.ptc255 += er32(PTC255);
3675                 adapter->stats.ptc511 += er32(PTC511);
3676                 adapter->stats.ptc1023 += er32(PTC1023);
3677                 adapter->stats.ptc1522 += er32(PTC1522);
3678         }
3679
3680         adapter->stats.mptc += er32(MPTC);
3681         adapter->stats.bptc += er32(BPTC);
3682
3683         /* used for adaptive IFS */
3684
3685         hw->tx_packet_delta = er32(TPT);
3686         adapter->stats.tpt += hw->tx_packet_delta;
3687         hw->collision_delta = er32(COLC);
3688         adapter->stats.colc += hw->collision_delta;
3689
3690         if (hw->mac_type >= e1000_82543) {
3691                 adapter->stats.algnerrc += er32(ALGNERRC);
3692                 adapter->stats.rxerrc += er32(RXERRC);
3693                 adapter->stats.tncrs += er32(TNCRS);
3694                 adapter->stats.cexterr += er32(CEXTERR);
3695                 adapter->stats.tsctc += er32(TSCTC);
3696                 adapter->stats.tsctfc += er32(TSCTFC);
3697         }
3698         if (hw->mac_type > e1000_82547_rev_2) {
3699                 adapter->stats.iac += er32(IAC);
3700                 adapter->stats.icrxoc += er32(ICRXOC);
3701
3702                 if (hw->mac_type != e1000_ich8lan) {
3703                         adapter->stats.icrxptc += er32(ICRXPTC);
3704                         adapter->stats.icrxatc += er32(ICRXATC);
3705                         adapter->stats.ictxptc += er32(ICTXPTC);
3706                         adapter->stats.ictxatc += er32(ICTXATC);
3707                         adapter->stats.ictxqec += er32(ICTXQEC);
3708                         adapter->stats.ictxqmtc += er32(ICTXQMTC);
3709                         adapter->stats.icrxdmtc += er32(ICRXDMTC);
3710                 }
3711         }
3712
3713         /* Fill out the OS statistics structure */
3714         adapter->net_stats.multicast = adapter->stats.mprc;
3715         adapter->net_stats.collisions = adapter->stats.colc;
3716
3717         /* Rx Errors */
3718
3719         /* RLEC on some newer hardware can be incorrect so build
3720         * our own version based on RUC and ROC */
3721         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3722                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3723                 adapter->stats.ruc + adapter->stats.roc +
3724                 adapter->stats.cexterr;
3725         adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3726         adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3727         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3728         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3729         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3730
3731         /* Tx Errors */
3732         adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3733         adapter->net_stats.tx_errors = adapter->stats.txerrc;
3734         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3735         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3736         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3737         if (hw->bad_tx_carr_stats_fd &&
3738             adapter->link_duplex == FULL_DUPLEX) {
3739                 adapter->net_stats.tx_carrier_errors = 0;
3740                 adapter->stats.tncrs = 0;
3741         }
3742
3743         /* Tx Dropped needs to be maintained elsewhere */
3744
3745         /* Phy Stats */
3746         if (hw->media_type == e1000_media_type_copper) {
3747                 if ((adapter->link_speed == SPEED_1000) &&
3748                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3749                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3750                         adapter->phy_stats.idle_errors += phy_tmp;
3751                 }
3752
3753                 if ((hw->mac_type <= e1000_82546) &&
3754                    (hw->phy_type == e1000_phy_m88) &&
3755                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3756                         adapter->phy_stats.receive_errors += phy_tmp;
3757         }
3758
3759         /* Management Stats */
3760         if (hw->has_smbus) {
3761                 adapter->stats.mgptc += er32(MGTPTC);
3762                 adapter->stats.mgprc += er32(MGTPRC);
3763                 adapter->stats.mgpdc += er32(MGTPDC);
3764         }
3765
3766         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3767 }
3768
3769 /**
3770  * e1000_intr_msi - Interrupt Handler
3771  * @irq: interrupt number
3772  * @data: pointer to a network interface device structure
3773  **/
3774
3775 static irqreturn_t e1000_intr_msi(int irq, void *data)
3776 {
3777         struct net_device *netdev = data;
3778         struct e1000_adapter *adapter = netdev_priv(netdev);
3779         struct e1000_hw *hw = &adapter->hw;
3780 #ifndef CONFIG_E1000_NAPI
3781         int i;
3782 #endif
3783         u32 icr = er32(ICR);
3784
3785         /* in NAPI mode read ICR disables interrupts using IAM */
3786
3787         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3788                 hw->get_link_status = 1;
3789                 /* 80003ES2LAN workaround-- For packet buffer work-around on
3790                  * link down event; disable receives here in the ISR and reset
3791                  * adapter in watchdog */
3792                 if (netif_carrier_ok(netdev) &&
3793                     (hw->mac_type == e1000_80003es2lan)) {
3794                         /* disable receives */
3795                         u32 rctl = er32(RCTL);
3796                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3797                 }
3798                 /* guard against interrupt when we're going down */
3799                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3800                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3801         }
3802
3803 #ifdef CONFIG_E1000_NAPI
3804         if (likely(netif_rx_schedule_prep(netdev, &adapter->napi))) {
3805                 adapter->total_tx_bytes = 0;
3806                 adapter->total_tx_packets = 0;
3807                 adapter->total_rx_bytes = 0;
3808                 adapter->total_rx_packets = 0;
3809                 __netif_rx_schedule(netdev, &adapter->napi);
3810         } else
3811                 e1000_irq_enable(adapter);
3812 #else
3813         adapter->total_tx_bytes = 0;
3814         adapter->total_rx_bytes = 0;
3815         adapter->total_tx_packets = 0;
3816         adapter->total_rx_packets = 0;
3817
3818         for (i = 0; i < E1000_MAX_INTR; i++)
3819                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3820                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3821                         break;
3822
3823         if (likely(adapter->itr_setting & 3))
3824                 e1000_set_itr(adapter);
3825 #endif
3826
3827         return IRQ_HANDLED;
3828 }
3829
3830 /**
3831  * e1000_intr - Interrupt Handler
3832  * @irq: interrupt number
3833  * @data: pointer to a network interface device structure
3834  **/
3835
3836 static irqreturn_t e1000_intr(int irq, void *data)
3837 {
3838         struct net_device *netdev = data;
3839         struct e1000_adapter *adapter = netdev_priv(netdev);
3840         struct e1000_hw *hw = &adapter->hw;
3841         u32 rctl, icr = er32(ICR);
3842 #ifndef CONFIG_E1000_NAPI
3843         int i;
3844 #endif
3845         if (unlikely(!icr))
3846                 return IRQ_NONE;  /* Not our interrupt */
3847
3848 #ifdef CONFIG_E1000_NAPI
3849         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3850          * not set, then the adapter didn't send an interrupt */
3851         if (unlikely(hw->mac_type >= e1000_82571 &&
3852                      !(icr & E1000_ICR_INT_ASSERTED)))
3853                 return IRQ_NONE;
3854
3855         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
3856          * need for the IMC write */
3857 #endif
3858
3859         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3860                 hw->get_link_status = 1;
3861                 /* 80003ES2LAN workaround--
3862                  * For packet buffer work-around on link down event;
3863                  * disable receives here in the ISR and
3864                  * reset adapter in watchdog
3865                  */
3866                 if (netif_carrier_ok(netdev) &&
3867                     (hw->mac_type == e1000_80003es2lan)) {
3868                         /* disable receives */
3869                         rctl = er32(RCTL);
3870                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3871                 }
3872                 /* guard against interrupt when we're going down */
3873                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3874                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3875         }
3876
3877 #ifdef CONFIG_E1000_NAPI
3878         if (unlikely(hw->mac_type < e1000_82571)) {
3879                 /* disable interrupts, without the synchronize_irq bit */
3880                 ew32(IMC, ~0);
3881                 E1000_WRITE_FLUSH();
3882         }
3883         if (likely(netif_rx_schedule_prep(netdev, &adapter->napi))) {
3884                 adapter->total_tx_bytes = 0;
3885                 adapter->total_tx_packets = 0;
3886                 adapter->total_rx_bytes = 0;
3887                 adapter->total_rx_packets = 0;
3888                 __netif_rx_schedule(netdev, &adapter->napi);
3889         } else
3890                 /* this really should not happen! if it does it is basically a
3891                  * bug, but not a hard error, so enable ints and continue */
3892                 e1000_irq_enable(adapter);
3893 #else
3894         /* Writing IMC and IMS is needed for 82547.
3895          * Due to Hub Link bus being occupied, an interrupt
3896          * de-assertion message is not able to be sent.
3897          * When an interrupt assertion message is generated later,
3898          * two messages are re-ordered and sent out.
3899          * That causes APIC to think 82547 is in de-assertion
3900          * state, while 82547 is in assertion state, resulting
3901          * in dead lock. Writing IMC forces 82547 into
3902          * de-assertion state.
3903          */
3904         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3905                 ew32(IMC, ~0);
3906
3907         adapter->total_tx_bytes = 0;
3908         adapter->total_rx_bytes = 0;
3909         adapter->total_tx_packets = 0;
3910         adapter->total_rx_packets = 0;
3911
3912         for (i = 0; i < E1000_MAX_INTR; i++)
3913                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3914                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3915                         break;
3916
3917         if (likely(adapter->itr_setting & 3))
3918                 e1000_set_itr(adapter);
3919
3920         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3921                 e1000_irq_enable(adapter);
3922
3923 #endif
3924         return IRQ_HANDLED;
3925 }
3926
3927 #ifdef CONFIG_E1000_NAPI
3928 /**
3929  * e1000_clean - NAPI Rx polling callback
3930  * @adapter: board private structure
3931  **/
3932
3933 static int e1000_clean(struct napi_struct *napi, int budget)
3934 {
3935         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3936         struct net_device *poll_dev = adapter->netdev;
3937         int tx_cleaned = 0, work_done = 0;
3938
3939         /* Must NOT use netdev_priv macro here. */
3940         adapter = poll_dev->priv;
3941
3942         /* e1000_clean is called per-cpu.  This lock protects
3943          * tx_ring[0] from being cleaned by multiple cpus
3944          * simultaneously.  A failure obtaining the lock means
3945          * tx_ring[0] is currently being cleaned anyway. */
3946         if (spin_trylock(&adapter->tx_queue_lock)) {
3947                 tx_cleaned = e1000_clean_tx_irq(adapter,
3948                                                 &adapter->tx_ring[0]);
3949                 spin_unlock(&adapter->tx_queue_lock);
3950         }
3951
3952         adapter->clean_rx(adapter, &adapter->rx_ring[0],
3953                           &work_done, budget);
3954
3955         if (tx_cleaned)
3956                 work_done = budget;
3957
3958         /* If budget not fully consumed, exit the polling mode */
3959         if (work_done < budget) {
3960                 if (likely(adapter->itr_setting & 3))
3961                         e1000_set_itr(adapter);
3962                 netif_rx_complete(poll_dev, napi);
3963                 e1000_irq_enable(adapter);
3964         }
3965
3966         return work_done;
3967 }
3968
3969 #endif
3970 /**
3971  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3972  * @adapter: board private structure
3973  **/
3974
3975 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3976                                struct e1000_tx_ring *tx_ring)
3977 {
3978         struct e1000_hw *hw = &adapter->hw;
3979         struct net_device *netdev = adapter->netdev;
3980         struct e1000_tx_desc *tx_desc, *eop_desc;
3981         struct e1000_buffer *buffer_info;
3982         unsigned int i, eop;
3983 #ifdef CONFIG_E1000_NAPI
3984         unsigned int count = 0;
3985 #endif
3986         bool cleaned = false;
3987         unsigned int total_tx_bytes=0, total_tx_packets=0;
3988
3989         i = tx_ring->next_to_clean;
3990         eop = tx_ring->buffer_info[i].next_to_watch;
3991         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3992
3993         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3994                 for (cleaned = false; !cleaned; ) {
3995                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3996                         buffer_info = &tx_ring->buffer_info[i];
3997                         cleaned = (i == eop);
3998
3999                         if (cleaned) {
4000                                 struct sk_buff *skb = buffer_info->skb;
4001                                 unsigned int segs, bytecount;
4002                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
4003                                 /* multiply data chunks by size of headers */
4004                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
4005                                             skb->len;
4006                                 total_tx_packets += segs;
4007                                 total_tx_bytes += bytecount;
4008                         }
4009                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
4010                         tx_desc->upper.data = 0;
4011
4012                         if (unlikely(++i == tx_ring->count)) i = 0;
4013                 }
4014
4015                 eop = tx_ring->buffer_info[i].next_to_watch;
4016                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
4017 #ifdef CONFIG_E1000_NAPI
4018 #define E1000_TX_WEIGHT 64
4019                 /* weight of a sort for tx, to avoid endless transmit cleanup */
4020                 if (count++ == E1000_TX_WEIGHT) break;
4021 #endif
4022         }
4023
4024         tx_ring->next_to_clean = i;
4025
4026 #define TX_WAKE_THRESHOLD 32
4027         if (unlikely(cleaned && netif_carrier_ok(netdev) &&
4028                      E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
4029                 /* Make sure that anybody stopping the queue after this
4030                  * sees the new next_to_clean.
4031                  */
4032                 smp_mb();
4033                 if (netif_queue_stopped(netdev)) {
4034                         netif_wake_queue(netdev);
4035                         ++adapter->restart_queue;
4036                 }
4037         }
4038
4039         if (adapter->detect_tx_hung) {
4040                 /* Detect a transmit hang in hardware, this serializes the
4041                  * check with the clearing of time_stamp and movement of i */
4042                 adapter->detect_tx_hung = false;
4043                 if (tx_ring->buffer_info[eop].dma &&
4044                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
4045                                (adapter->tx_timeout_factor * HZ))
4046                     && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
4047
4048                         /* detected Tx unit hang */
4049                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
4050                                         "  Tx Queue             <%lu>\n"
4051                                         "  TDH                  <%x>\n"
4052                                         "  TDT                  <%x>\n"
4053                                         "  next_to_use          <%x>\n"
4054                                         "  next_to_clean        <%x>\n"
4055                                         "buffer_info[next_to_clean]\n"
4056                                         "  time_stamp           <%lx>\n"
4057                                         "  next_to_watch        <%x>\n"
4058                                         "  jiffies              <%lx>\n"
4059                                         "  next_to_watch.status <%x>\n",
4060                                 (unsigned long)((tx_ring - adapter->tx_ring) /
4061                                         sizeof(struct e1000_tx_ring)),
4062                                 readl(hw->hw_addr + tx_ring->tdh),
4063                                 readl(hw->hw_addr + tx_ring->tdt),
4064                                 tx_ring->next_to_use,
4065                                 tx_ring->next_to_clean,
4066                                 tx_ring->buffer_info[eop].time_stamp,
4067                                 eop,
4068                                 jiffies,
4069                                 eop_desc->upper.fields.status);
4070                         netif_stop_queue(netdev);
4071                 }
4072         }
4073         adapter->total_tx_bytes += total_tx_bytes;
4074         adapter->total_tx_packets += total_tx_packets;
4075         adapter->net_stats.tx_bytes += total_tx_bytes;
4076         adapter->net_stats.tx_packets += total_tx_packets;
4077         return cleaned;
4078 }
4079
4080 /**
4081  * e1000_rx_checksum - Receive Checksum Offload for 82543
4082  * @adapter:     board private structure
4083  * @status_err:  receive descriptor status and error fields
4084  * @csum:        receive descriptor csum field
4085  * @sk_buff:     socket buffer with received data
4086  **/
4087
4088 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
4089                               u32 csum, struct sk_buff *skb)
4090 {
4091         struct e1000_hw *hw = &adapter->hw;
4092         u16 status = (u16)status_err;
4093         u8 errors = (u8)(status_err >> 24);
4094         skb->ip_summed = CHECKSUM_NONE;
4095
4096         /* 82543 or newer only */
4097         if (unlikely(hw->mac_type < e1000_82543)) return;
4098         /* Ignore Checksum bit is set */
4099         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
4100         /* TCP/UDP checksum error bit is set */
4101         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
4102                 /* let the stack verify checksum errors */
4103                 adapter->hw_csum_err++;
4104                 return;
4105         }
4106         /* TCP/UDP Checksum has not been calculated */
4107         if (hw->mac_type <= e1000_82547_rev_2) {
4108                 if (!(status & E1000_RXD_STAT_TCPCS))
4109                         return;
4110         } else {
4111                 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
4112                         return;
4113         }
4114         /* It must be a TCP or UDP packet with a valid checksum */
4115         if (likely(status & E1000_RXD_STAT_TCPCS)) {
4116                 /* TCP checksum is good */
4117                 skb->ip_summed = CHECKSUM_UNNECESSARY;
4118         } else if (hw->mac_type > e1000_82547_rev_2) {
4119                 /* IP fragment with UDP payload */
4120                 /* Hardware complements the payload checksum, so we undo it
4121                  * and then put the value in host order for further stack use.
4122                  */
4123                 __sum16 sum = (__force __sum16)htons(csum);
4124                 skb->csum = csum_unfold(~sum);
4125                 skb->ip_summed = CHECKSUM_COMPLETE;
4126         }
4127         adapter->hw_csum_good++;
4128 }
4129
4130 /**
4131  * e1000_clean_rx_irq - Send received data up the network stack; legacy
4132  * @adapter: board private structure
4133  **/
4134 #ifdef CONFIG_E1000_NAPI
4135 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4136                                struct e1000_rx_ring *rx_ring,
4137                                int *work_done, int work_to_do)
4138 #else
4139 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4140                                struct e1000_rx_ring *rx_ring)
4141 #endif
4142 {
4143         struct e1000_hw *hw = &adapter->hw;
4144         struct net_device *netdev = adapter->netdev;
4145         struct pci_dev *pdev = adapter->pdev;
4146         struct e1000_rx_desc *rx_desc, *next_rxd;
4147         struct e1000_buffer *buffer_info, *next_buffer;
4148         unsigned long flags;
4149         u32 length;
4150         u8 last_byte;
4151         unsigned int i;
4152         int cleaned_count = 0;
4153         bool cleaned = false;
4154         unsigned int total_rx_bytes=0, total_rx_packets=0;
4155
4156         i = rx_ring->next_to_clean;
4157         rx_desc = E1000_RX_DESC(*rx_ring, i);
4158         buffer_info = &rx_ring->buffer_info[i];
4159
4160         while (rx_desc->status & E1000_RXD_STAT_DD) {
4161                 struct sk_buff *skb;
4162                 u8 status;
4163
4164 #ifdef CONFIG_E1000_NAPI
4165                 if (*work_done >= work_to_do)
4166                         break;
4167                 (*work_done)++;
4168 #endif
4169                 status = rx_desc->status;
4170                 skb = buffer_info->skb;
4171                 buffer_info->skb = NULL;
4172
4173                 prefetch(skb->data - NET_IP_ALIGN);
4174
4175                 if (++i == rx_ring->count) i = 0;
4176                 next_rxd = E1000_RX_DESC(*rx_ring, i);
4177                 prefetch(next_rxd);
4178
4179                 next_buffer = &rx_ring->buffer_info[i];
4180
4181                 cleaned = true;
4182                 cleaned_count++;
4183                 pci_unmap_single(pdev,
4184                                  buffer_info->dma,
4185                                  buffer_info->length,
4186                                  PCI_DMA_FROMDEVICE);
4187
4188                 length = le16_to_cpu(rx_desc->length);
4189
4190                 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
4191                         /* All receives must fit into a single buffer */
4192                         E1000_DBG("%s: Receive packet consumed multiple"
4193                                   " buffers\n", netdev->name);
4194                         /* recycle */
4195                         buffer_info->skb = skb;
4196                         goto next_desc;
4197                 }
4198
4199                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4200                         last_byte = *(skb->data + length - 1);
4201                         if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4202                                        last_byte)) {
4203                                 spin_lock_irqsave(&adapter->stats_lock, flags);
4204                                 e1000_tbi_adjust_stats(hw, &adapter->stats,
4205                                                        length, skb->data);
4206                                 spin_unlock_irqrestore(&adapter->stats_lock,
4207                                                        flags);
4208                                 length--;
4209                         } else {
4210                                 /* recycle */
4211                                 buffer_info->skb = skb;
4212                                 goto next_desc;
4213                         }
4214                 }
4215
4216                 /* adjust length to remove Ethernet CRC, this must be
4217                  * done after the TBI_ACCEPT workaround above */
4218                 length -= 4;
4219
4220                 /* probably a little skewed due to removing CRC */
4221                 total_rx_bytes += length;
4222                 total_rx_packets++;
4223
4224                 /* code added for copybreak, this should improve
4225                  * performance for small packets with large amounts
4226                  * of reassembly being done in the stack */
4227                 if (length < copybreak) {
4228                         struct sk_buff *new_skb =
4229                             netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
4230                         if (new_skb) {
4231                                 skb_reserve(new_skb, NET_IP_ALIGN);
4232                                 skb_copy_to_linear_data_offset(new_skb,
4233                                                                -NET_IP_ALIGN,
4234                                                                (skb->data -
4235                                                                 NET_IP_ALIGN),
4236                                                                (length +
4237                                                                 NET_IP_ALIGN));
4238                                 /* save the skb in buffer_info as good */
4239                                 buffer_info->skb = skb;
4240                                 skb = new_skb;
4241                         }
4242                         /* else just continue with the old one */
4243                 }
4244                 /* end copybreak code */
4245                 skb_put(skb, length);
4246
4247                 /* Receive Checksum Offload */
4248                 e1000_rx_checksum(adapter,
4249                                   (u32)(status) |
4250                                   ((u32)(rx_desc->errors) << 24),
4251                                   le16_to_cpu(rx_desc->csum), skb);
4252
4253                 skb->protocol = eth_type_trans(skb, netdev);
4254 #ifdef CONFIG_E1000_NAPI
4255                 if (unlikely(adapter->vlgrp &&
4256                             (status & E1000_RXD_STAT_VP))) {
4257                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4258                                                  le16_to_cpu(rx_desc->special));
4259                 } else {
4260                         netif_receive_skb(skb);
4261                 }
4262 #else /* CONFIG_E1000_NAPI */
4263                 if (unlikely(adapter->vlgrp &&
4264                             (status & E1000_RXD_STAT_VP))) {
4265                         vlan_hwaccel_rx(skb, adapter->vlgrp,
4266                                         le16_to_cpu(rx_desc->special));
4267                 } else {
4268                         netif_rx(skb);
4269                 }
4270 #endif /* CONFIG_E1000_NAPI */
4271                 netdev->last_rx = jiffies;
4272
4273 next_desc:
4274                 rx_desc->status = 0;
4275
4276                 /* return some buffers to hardware, one at a time is too slow */
4277                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4278                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4279                         cleaned_count = 0;
4280                 }
4281
4282                 /* use prefetched values */
4283                 rx_desc = next_rxd;
4284                 buffer_info = next_buffer;
4285         }
4286         rx_ring->next_to_clean = i;
4287
4288         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4289         if (cleaned_count)
4290                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4291
4292         adapter->total_rx_packets += total_rx_packets;
4293         adapter->total_rx_bytes += total_rx_bytes;
4294         adapter->net_stats.rx_bytes += total_rx_bytes;
4295         adapter->net_stats.rx_packets += total_rx_packets;
4296         return cleaned;
4297 }
4298
4299 /**
4300  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
4301  * @adapter: board private structure
4302  **/
4303
4304 #ifdef CONFIG_E1000_NAPI
4305 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
4306                                   struct e1000_rx_ring *rx_ring,
4307                                   int *work_done, int work_to_do)
4308 #else
4309 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
4310                                   struct e1000_rx_ring *rx_ring)
4311 #endif
4312 {
4313         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
4314         struct net_device *netdev = adapter->netdev;
4315         struct pci_dev *pdev = adapter->pdev;
4316         struct e1000_buffer *buffer_info, *next_buffer;
4317         struct e1000_ps_page *ps_page;
4318         struct e1000_ps_page_dma *ps_page_dma;
4319         struct sk_buff *skb;
4320         unsigned int i, j;
4321         u32 length, staterr;
4322         int cleaned_count = 0;
4323         bool cleaned = false;
4324         unsigned int total_rx_bytes=0, total_rx_packets=0;
4325
4326         i = rx_ring->next_to_clean;
4327         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4328         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4329         buffer_info = &rx_ring->buffer_info[i];
4330
4331         while (staterr & E1000_RXD_STAT_DD) {
4332                 ps_page = &rx_ring->ps_page[i];
4333                 ps_page_dma = &rx_ring->ps_page_dma[i];
4334 #ifdef CONFIG_E1000_NAPI
4335                 if (unlikely(*work_done >= work_to_do))
4336                         break;
4337                 (*work_done)++;
4338 #endif
4339                 skb = buffer_info->skb;
4340
4341                 /* in the packet split case this is header only */
4342                 prefetch(skb->data - NET_IP_ALIGN);
4343
4344                 if (++i == rx_ring->count) i = 0;
4345                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
4346                 prefetch(next_rxd);
4347
4348                 next_buffer = &rx_ring->buffer_info[i];
4349
4350                 cleaned = true;
4351                 cleaned_count++;
4352                 pci_unmap_single(pdev, buffer_info->dma,
4353                                  buffer_info->length,
4354                                  PCI_DMA_FROMDEVICE);
4355
4356                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
4357                         E1000_DBG("%s: Packet Split buffers didn't pick up"
4358                                   " the full packet\n", netdev->name);
4359                         dev_kfree_skb_irq(skb);
4360                         goto next_desc;
4361                 }
4362
4363                 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
4364                         dev_kfree_skb_irq(skb);
4365                         goto next_desc;
4366                 }
4367
4368                 length = le16_to_cpu(rx_desc->wb.middle.length0);
4369
4370                 if (unlikely(!length)) {
4371                         E1000_DBG("%s: Last part of the packet spanning"
4372                                   " multiple descriptors\n", netdev->name);
4373                         dev_kfree_skb_irq(skb);
4374                         goto next_desc;
4375                 }
4376
4377                 /* Good Receive */
4378                 skb_put(skb, length);
4379
4380                 {
4381                 /* this looks ugly, but it seems compiler issues make it
4382                    more efficient than reusing j */
4383                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
4384
4385                 /* page alloc/put takes too long and effects small packet
4386                  * throughput, so unsplit small packets and save the alloc/put*/
4387                 if (l1 && (l1 <= copybreak) && ((length + l1) <= adapter->rx_ps_bsize0)) {
4388                         u8 *vaddr;
4389                         /* there is no documentation about how to call
4390                          * kmap_atomic, so we can't hold the mapping
4391                          * very long */
4392                         pci_dma_sync_single_for_cpu(pdev,
4393                                 ps_page_dma->ps_page_dma[0],
4394                                 PAGE_SIZE,
4395                                 PCI_DMA_FROMDEVICE);
4396                         vaddr = kmap_atomic(ps_page->ps_page[0],
4397                                             KM_SKB_DATA_SOFTIRQ);
4398                         memcpy(skb_tail_pointer(skb), vaddr, l1);
4399                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
4400                         pci_dma_sync_single_for_device(pdev,
4401                                 ps_page_dma->ps_page_dma[0],
4402                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
4403                         /* remove the CRC */
4404                         l1 -= 4;
4405                         skb_put(skb, l1);
4406                         goto copydone;
4407                 } /* if */
4408                 }
4409
4410                 for (j = 0; j < adapter->rx_ps_pages; j++) {
4411                         length = le16_to_cpu(rx_desc->wb.upper.length[j]);
4412                         if (!length)
4413                                 break;
4414                         pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
4415                                         PAGE_SIZE, PCI_DMA_FROMDEVICE);
4416                         ps_page_dma->ps_page_dma[j] = 0;
4417                         skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
4418                                            length);
4419                         ps_page->ps_page[j] = NULL;
4420                         skb->len += length;
4421                         skb->data_len += length;
4422                         skb->truesize += length;
4423                 }
4424
4425                 /* strip the ethernet crc, problem is we're using pages now so
4426                  * this whole operation can get a little cpu intensive */
4427                 pskb_trim(skb, skb->len - 4);
4428
4429 copydone:
4430                 total_rx_bytes += skb->len;
4431                 total_rx_packets++;
4432
4433                 e1000_rx_checksum(adapter, staterr,
4434                                   le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
4435                 skb->protocol = eth_type_trans(skb, netdev);
4436
4437                 if (likely(rx_desc->wb.upper.header_status &
4438                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
4439                         adapter->rx_hdr_split++;
4440 #ifdef CONFIG_E1000_NAPI
4441                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4442                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4443                                 le16_to_cpu(rx_desc->wb.middle.vlan));
4444                 } else {
4445                         netif_receive_skb(skb);
4446                 }
4447 #else /* CONFIG_E1000_NAPI */
4448                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4449                         vlan_hwaccel_rx(skb, adapter->vlgrp,
4450                                 le16_to_cpu(rx_desc->wb.middle.vlan));
4451                 } else {
4452                         netif_rx(skb);
4453                 }
4454 #endif /* CONFIG_E1000_NAPI */
4455                 netdev->last_rx = jiffies;
4456
4457 next_desc:
4458                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
4459                 buffer_info->skb = NULL;
4460
4461                 /* return some buffers to hardware, one at a time is too slow */
4462                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4463                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4464                         cleaned_count = 0;
4465                 }
4466
4467                 /* use prefetched values */
4468                 rx_desc = next_rxd;
4469                 buffer_info = next_buffer;
4470
4471                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4472         }
4473         rx_ring->next_to_clean = i;
4474
4475         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4476         if (cleaned_count)
4477                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4478
4479         adapter->total_rx_packets += total_rx_packets;
4480         adapter->total_rx_bytes += total_rx_bytes;
4481         adapter->net_stats.rx_bytes += total_rx_bytes;
4482         adapter->net_stats.rx_packets += total_rx_packets;
4483         return cleaned;
4484 }
4485
4486 /**
4487  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4488  * @adapter: address of board private structure
4489  **/
4490
4491 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4492                                    struct e1000_rx_ring *rx_ring,
4493                                    int cleaned_count)
4494 {
4495         struct e1000_hw *hw = &adapter->hw;
4496         struct net_device *netdev = adapter->netdev;
4497         struct pci_dev *pdev = adapter->pdev;
4498         struct e1000_rx_desc *rx_desc;
4499         struct e1000_buffer *buffer_info;
4500         struct sk_buff *skb;
4501         unsigned int i;
4502         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4503
4504         i = rx_ring->next_to_use;
4505         buffer_info = &rx_ring->buffer_info[i];
4506
4507         while (cleaned_count--) {
4508                 skb = buffer_info->skb;
4509                 if (skb) {
4510                         skb_trim(skb, 0);
4511                         goto map_skb;
4512                 }
4513
4514                 skb = netdev_alloc_skb(netdev, bufsz);
4515                 if (unlikely(!skb)) {
4516                         /* Better luck next round */
4517                         adapter->alloc_rx_buff_failed++;
4518                         break;
4519                 }
4520
4521                 /* Fix for errata 23, can't cross 64kB boundary */
4522                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4523                         struct sk_buff *oldskb = skb;
4524                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4525                                              "at %p\n", bufsz, skb->data);
4526                         /* Try again, without freeing the previous */
4527                         skb = netdev_alloc_skb(netdev, bufsz);
4528                         /* Failed allocation, critical failure */
4529                         if (!skb) {
4530                                 dev_kfree_skb(oldskb);
4531                                 break;
4532                         }
4533
4534                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4535                                 /* give up */
4536                                 dev_kfree_skb(skb);
4537                                 dev_kfree_skb(oldskb);
4538                                 break; /* while !buffer_info->skb */
4539                         }
4540
4541                         /* Use new allocation */
4542                         dev_kfree_skb(oldskb);
4543                 }
4544                 /* Make buffer alignment 2 beyond a 16 byte boundary
4545                  * this will result in a 16 byte aligned IP header after
4546                  * the 14 byte MAC header is removed
4547                  */
4548                 skb_reserve(skb, NET_IP_ALIGN);
4549
4550                 buffer_info->skb = skb;
4551                 buffer_info->length = adapter->rx_buffer_len;
4552 map_skb:
4553                 buffer_info->dma = pci_map_single(pdev,
4554                                                   skb->data,
4555                                                   adapter->rx_buffer_len,
4556                                                   PCI_DMA_FROMDEVICE);
4557
4558                 /* Fix for errata 23, can't cross 64kB boundary */
4559                 if (!e1000_check_64k_bound(adapter,
4560                                         (void *)(unsigned long)buffer_info->dma,
4561                                         adapter->rx_buffer_len)) {
4562                         DPRINTK(RX_ERR, ERR,
4563                                 "dma align check failed: %u bytes at %p\n",
4564                                 adapter->rx_buffer_len,
4565                                 (void *)(unsigned long)buffer_info->dma);
4566                         dev_kfree_skb(skb);
4567                         buffer_info->skb = NULL;
4568
4569                         pci_unmap_single(pdev, buffer_info->dma,
4570                                          adapter->rx_buffer_len,
4571                                          PCI_DMA_FROMDEVICE);
4572
4573                         break; /* while !buffer_info->skb */
4574                 }
4575                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4576                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4577
4578                 if (unlikely(++i == rx_ring->count))
4579                         i = 0;
4580                 buffer_info = &rx_ring->buffer_info[i];
4581         }
4582
4583         if (likely(rx_ring->next_to_use != i)) {
4584                 rx_ring->next_to_use = i;
4585                 if (unlikely(i-- == 0))
4586                         i = (rx_ring->count - 1);
4587
4588                 /* Force memory writes to complete before letting h/w
4589                  * know there are new descriptors to fetch.  (Only
4590                  * applicable for weak-ordered memory model archs,
4591                  * such as IA-64). */
4592                 wmb();
4593                 writel(i, hw->hw_addr + rx_ring->rdt);
4594         }
4595 }
4596
4597 /**
4598  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
4599  * @adapter: address of board private structure
4600  **/
4601
4602 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
4603                                       struct e1000_rx_ring *rx_ring,
4604                                       int cleaned_count)
4605 {
4606         struct e1000_hw *hw = &adapter->hw;
4607         struct net_device *netdev = adapter->netdev;
4608         struct pci_dev *pdev = adapter->pdev;
4609         union e1000_rx_desc_packet_split *rx_desc;
4610         struct e1000_buffer *buffer_info;
4611         struct e1000_ps_page *ps_page;
4612         struct e1000_ps_page_dma *ps_page_dma;
4613         struct sk_buff *skb;
4614         unsigned int i, j;
4615
4616         i = rx_ring->next_to_use;
4617         buffer_info = &rx_ring->buffer_info[i];
4618         ps_page = &rx_ring->ps_page[i];
4619         ps_page_dma = &rx_ring->ps_page_dma[i];
4620
4621         while (cleaned_count--) {
4622                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4623
4624                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
4625                         if (j < adapter->rx_ps_pages) {
4626                                 if (likely(!ps_page->ps_page[j])) {
4627                                         ps_page->ps_page[j] =
4628                                                 alloc_page(GFP_ATOMIC);
4629                                         if (unlikely(!ps_page->ps_page[j])) {
4630                                                 adapter->alloc_rx_buff_failed++;
4631                                                 goto no_buffers;
4632                                         }
4633                                         ps_page_dma->ps_page_dma[j] =
4634                                                 pci_map_page(pdev,
4635                                                             ps_page->ps_page[j],
4636                                                             0, PAGE_SIZE,
4637                                                             PCI_DMA_FROMDEVICE);
4638                                 }
4639                                 /* Refresh the desc even if buffer_addrs didn't
4640                                  * change because each write-back erases
4641                                  * this info.
4642                                  */
4643                                 rx_desc->read.buffer_addr[j+1] =
4644                                      cpu_to_le64(ps_page_dma->ps_page_dma[j]);
4645                         } else
4646                                 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
4647                 }
4648
4649                 skb = netdev_alloc_skb(netdev,
4650                                        adapter->rx_ps_bsize0 + NET_IP_ALIGN);
4651
4652                 if (unlikely(!skb)) {
4653                         adapter->alloc_rx_buff_failed++;
4654                         break;
4655                 }
4656
4657                 /* Make buffer alignment 2 beyond a 16 byte boundary
4658                  * this will result in a 16 byte aligned IP header after
4659                  * the 14 byte MAC header is removed
4660                  */
4661                 skb_reserve(skb, NET_IP_ALIGN);
4662
4663                 buffer_info->skb = skb;
4664                 buffer_info->length = adapter->rx_ps_bsize0;
4665                 buffer_info->dma = pci_map_single(pdev, skb->data,
4666                                                   adapter->rx_ps_bsize0,
4667                                                   PCI_DMA_FROMDEVICE);
4668
4669                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
4670
4671                 if (unlikely(++i == rx_ring->count)) i = 0;
4672                 buffer_info = &rx_ring->buffer_info[i];
4673                 ps_page = &rx_ring->ps_page[i];
4674                 ps_page_dma = &rx_ring->ps_page_dma[i];
4675         }
4676
4677 no_buffers:
4678         if (likely(rx_ring->next_to_use != i)) {
4679                 rx_ring->next_to_use = i;
4680                 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4681
4682                 /* Force memory writes to complete before letting h/w
4683                  * know there are new descriptors to fetch.  (Only
4684                  * applicable for weak-ordered memory model archs,
4685                  * such as IA-64). */
4686                 wmb();
4687                 /* Hardware increments by 16 bytes, but packet split
4688                  * descriptors are 32 bytes...so we increment tail
4689                  * twice as much.
4690                  */
4691                 writel(i<<1, hw->hw_addr + rx_ring->rdt);
4692         }
4693 }
4694
4695 /**
4696  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4697  * @adapter:
4698  **/
4699
4700 static void e1000_smartspeed(struct e1000_adapter *adapter)
4701 {
4702         struct e1000_hw *hw = &adapter->hw;
4703         u16 phy_status;
4704         u16 phy_ctrl;
4705
4706         if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4707            !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4708                 return;
4709
4710         if (adapter->smartspeed == 0) {
4711                 /* If Master/Slave config fault is asserted twice,
4712                  * we assume back-to-back */
4713                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4714                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4715                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4716                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4717                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4718                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4719                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4720                         e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4721                                             phy_ctrl);
4722                         adapter->smartspeed++;
4723                         if (!e1000_phy_setup_autoneg(hw) &&
4724                            !e1000_read_phy_reg(hw, PHY_CTRL,
4725                                                &phy_ctrl)) {
4726                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4727                                              MII_CR_RESTART_AUTO_NEG);
4728                                 e1000_write_phy_reg(hw, PHY_CTRL,
4729                                                     phy_ctrl);
4730                         }
4731                 }
4732                 return;
4733         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4734                 /* If still no link, perhaps using 2/3 pair cable */
4735                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4736                 phy_ctrl |= CR_1000T_MS_ENABLE;
4737                 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4738                 if (!e1000_phy_setup_autoneg(hw) &&
4739                    !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4740                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4741                                      MII_CR_RESTART_AUTO_NEG);
4742                         e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4743                 }
4744         }
4745         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4746         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4747                 adapter->smartspeed = 0;
4748 }
4749
4750 /**
4751  * e1000_ioctl -
4752  * @netdev:
4753  * @ifreq:
4754  * @cmd:
4755  **/
4756
4757 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4758 {
4759         switch (cmd) {
4760         case SIOCGMIIPHY:
4761         case SIOCGMIIREG:
4762         case SIOCSMIIREG:
4763                 return e1000_mii_ioctl(netdev, ifr, cmd);
4764         default:
4765                 return -EOPNOTSUPP;
4766         }
4767 }
4768
4769 /**
4770  * e1000_mii_ioctl -
4771  * @netdev:
4772  * @ifreq:
4773  * @cmd:
4774  **/
4775
4776 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4777                            int cmd)
4778 {
4779         struct e1000_adapter *adapter = netdev_priv(netdev);
4780         struct e1000_hw *hw = &adapter->hw;
4781         struct mii_ioctl_data *data = if_mii(ifr);
4782         int retval;
4783         u16 mii_reg;
4784         u16 spddplx;
4785         unsigned long flags;
4786
4787         if (hw->media_type != e1000_media_type_copper)
4788                 return -EOPNOTSUPP;
4789
4790         switch (cmd) {
4791         case SIOCGMIIPHY:
4792                 data->phy_id = hw->phy_addr;
4793                 break;
4794         case SIOCGMIIREG:
4795                 if (!capable(CAP_NET_ADMIN))
4796                         return -EPERM;
4797                 spin_lock_irqsave(&adapter->stats_lock, flags);
4798                 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4799                                    &data->val_out)) {
4800                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4801                         return -EIO;
4802                 }
4803                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4804                 break;
4805         case SIOCSMIIREG:
4806                 if (!capable(CAP_NET_ADMIN))
4807                         return -EPERM;
4808                 if (data->reg_num & ~(0x1F))
4809                         return -EFAULT;
4810                 mii_reg = data->val_in;
4811                 spin_lock_irqsave(&adapter->stats_lock, flags);
4812                 if (e1000_write_phy_reg(hw, data->reg_num,
4813                                         mii_reg)) {
4814                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4815                         return -EIO;
4816                 }
4817                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4818                 if (hw->media_type == e1000_media_type_copper) {
4819                         switch (data->reg_num) {
4820                         case PHY_CTRL:
4821                                 if (mii_reg & MII_CR_POWER_DOWN)
4822                                         break;
4823                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4824                                         hw->autoneg = 1;
4825                                         hw->autoneg_advertised = 0x2F;
4826                                 } else {
4827                                         if (mii_reg & 0x40)
4828                                                 spddplx = SPEED_1000;
4829                                         else if (mii_reg & 0x2000)
4830                                                 spddplx = SPEED_100;
4831                                         else
4832                                                 spddplx = SPEED_10;
4833                                         spddplx += (mii_reg & 0x100)
4834                                                    ? DUPLEX_FULL :
4835                                                    DUPLEX_HALF;
4836                                         retval = e1000_set_spd_dplx(adapter,
4837                                                                     spddplx);
4838                                         if (retval)
4839                                                 return retval;
4840                                 }
4841                                 if (netif_running(adapter->netdev))
4842                                         e1000_reinit_locked(adapter);
4843                                 else
4844                                         e1000_reset(adapter);
4845                                 break;
4846                         case M88E1000_PHY_SPEC_CTRL:
4847                         case M88E1000_EXT_PHY_SPEC_CTRL:
4848                                 if (e1000_phy_reset(hw))
4849                                         return -EIO;
4850                                 break;
4851                         }
4852                 } else {
4853                         switch (data->reg_num) {
4854                         case PHY_CTRL:
4855                                 if (mii_reg & MII_CR_POWER_DOWN)
4856                                         break;
4857                                 if (netif_running(adapter->netdev))
4858                                         e1000_reinit_locked(adapter);
4859                                 else
4860                                         e1000_reset(adapter);
4861                                 break;
4862                         }
4863                 }
4864                 break;
4865         default:
4866                 return -EOPNOTSUPP;
4867         }
4868         return E1000_SUCCESS;
4869 }
4870
4871 void e1000_pci_set_mwi(struct e1000_hw *hw)
4872 {
4873         struct e1000_adapter *adapter = hw->back;
4874         int ret_val = pci_set_mwi(adapter->pdev);
4875
4876         if (ret_val)
4877                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4878 }
4879
4880 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4881 {
4882         struct e1000_adapter *adapter = hw->back;
4883
4884         pci_clear_mwi(adapter->pdev);
4885 }
4886
4887 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4888 {
4889         struct e1000_adapter *adapter = hw->back;
4890         return pcix_get_mmrbc(adapter->pdev);
4891 }
4892
4893 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4894 {
4895         struct e1000_adapter *adapter = hw->back;
4896         pcix_set_mmrbc(adapter->pdev, mmrbc);
4897 }
4898
4899 s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
4900 {
4901     struct e1000_adapter *adapter = hw->back;
4902     u16 cap_offset;
4903
4904     cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
4905     if (!cap_offset)
4906         return -E1000_ERR_CONFIG;
4907
4908     pci_read_config_word(adapter->pdev, cap_offset + reg, value);
4909
4910     return E1000_SUCCESS;
4911 }
4912
4913 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4914 {
4915         outl(value, port);
4916 }
4917
4918 static void e1000_vlan_rx_register(struct net_device *netdev,
4919                                    struct vlan_group *grp)
4920 {
4921         struct e1000_adapter *adapter = netdev_priv(netdev);
4922         struct e1000_hw *hw = &adapter->hw;
4923         u32 ctrl, rctl;
4924
4925         if (!test_bit(__E1000_DOWN, &adapter->flags))
4926                 e1000_irq_disable(adapter);
4927         adapter->vlgrp = grp;
4928
4929         if (grp) {
4930                 /* enable VLAN tag insert/strip */
4931                 ctrl = er32(CTRL);
4932                 ctrl |= E1000_CTRL_VME;
4933                 ew32(CTRL, ctrl);
4934
4935                 if (adapter->hw.mac_type != e1000_ich8lan) {
4936                         /* enable VLAN receive filtering */
4937                         rctl = er32(RCTL);
4938                         rctl &= ~E1000_RCTL_CFIEN;
4939                         ew32(RCTL, rctl);
4940                         e1000_update_mng_vlan(adapter);
4941                 }
4942         } else {
4943                 /* disable VLAN tag insert/strip */
4944                 ctrl = er32(CTRL);
4945                 ctrl &= ~E1000_CTRL_VME;
4946                 ew32(CTRL, ctrl);
4947
4948                 if (adapter->hw.mac_type != e1000_ich8lan) {
4949                         if (adapter->mng_vlan_id !=
4950                             (u16)E1000_MNG_VLAN_NONE) {
4951                                 e1000_vlan_rx_kill_vid(netdev,
4952                                                        adapter->mng_vlan_id);
4953                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4954                         }
4955                 }
4956         }
4957
4958         if (!test_bit(__E1000_DOWN, &adapter->flags))
4959                 e1000_irq_enable(adapter);
4960 }
4961
4962 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4963 {
4964         struct e1000_adapter *adapter = netdev_priv(netdev);
4965         struct e1000_hw *hw = &adapter->hw;
4966         u32 vfta, index;
4967
4968         if ((hw->mng_cookie.status &
4969              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4970             (vid == adapter->mng_vlan_id))
4971                 return;
4972         /* add VID to filter table */
4973         index = (vid >> 5) & 0x7F;
4974         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4975         vfta |= (1 << (vid & 0x1F));
4976         e1000_write_vfta(hw, index, vfta);
4977 }
4978
4979 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4980 {
4981         struct e1000_adapter *adapter = netdev_priv(netdev);
4982         struct e1000_hw *hw = &adapter->hw;
4983         u32 vfta, index;
4984
4985         if (!test_bit(__E1000_DOWN, &adapter->flags))
4986                 e1000_irq_disable(adapter);
4987         vlan_group_set_device(adapter->vlgrp, vid, NULL);
4988         if (!test_bit(__E1000_DOWN, &adapter->flags))
4989                 e1000_irq_enable(adapter);
4990
4991         if ((hw->mng_cookie.status &
4992              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4993             (vid == adapter->mng_vlan_id)) {
4994                 /* release control to f/w */
4995                 e1000_release_hw_control(adapter);
4996                 return;
4997         }
4998
4999         /* remove VID from filter table */
5000         index = (vid >> 5) & 0x7F;
5001         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
5002         vfta &= ~(1 << (vid & 0x1F));
5003         e1000_write_vfta(hw, index, vfta);
5004 }
5005
5006 static void e1000_restore_vlan(struct e1000_adapter *adapter)
5007 {
5008         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
5009
5010         if (adapter->vlgrp) {
5011                 u16 vid;
5012                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
5013                         if (!vlan_group_get_device(adapter->vlgrp, vid))
5014                                 continue;
5015                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
5016                 }
5017         }
5018 }
5019
5020 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
5021 {
5022         struct e1000_hw *hw = &adapter->hw;
5023
5024         hw->autoneg = 0;
5025
5026         /* Fiber NICs only allow 1000 gbps Full duplex */
5027         if ((hw->media_type == e1000_media_type_fiber) &&
5028                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
5029                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
5030                 return -EINVAL;
5031         }
5032
5033         switch (spddplx) {
5034         case SPEED_10 + DUPLEX_HALF:
5035                 hw->forced_speed_duplex = e1000_10_half;
5036                 break;
5037         case SPEED_10 + DUPLEX_FULL:
5038                 hw->forced_speed_duplex = e1000_10_full;
5039                 break;
5040         case SPEED_100 + DUPLEX_HALF:
5041                 hw->forced_speed_duplex = e1000_100_half;
5042                 break;
5043         case SPEED_100 + DUPLEX_FULL:
5044                 hw->forced_speed_duplex = e1000_100_full;
5045                 break;
5046         case SPEED_1000 + DUPLEX_FULL:
5047                 hw->autoneg = 1;
5048                 hw->autoneg_advertised = ADVERTISE_1000_FULL;
5049                 break;
5050         case SPEED_1000 + DUPLEX_HALF: /* not supported */
5051         default:
5052                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
5053                 return -EINVAL;
5054         }
5055         return 0;
5056 }
5057
5058 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5059 {
5060         struct net_device *netdev = pci_get_drvdata(pdev);
5061         struct e1000_adapter *adapter = netdev_priv(netdev);
5062         struct e1000_hw *hw = &adapter->hw;
5063         u32 ctrl, ctrl_ext, rctl, status;
5064         u32 wufc = adapter->wol;
5065 #ifdef CONFIG_PM
5066         int retval = 0;
5067 #endif
5068
5069         netif_device_detach(netdev);
5070
5071         if (netif_running(netdev)) {
5072                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5073                 e1000_down(adapter);
5074         }
5075
5076 #ifdef CONFIG_PM
5077         retval = pci_save_state(pdev);
5078         if (retval)
5079                 return retval;
5080 #endif
5081
5082         status = er32(STATUS);
5083         if (status & E1000_STATUS_LU)
5084                 wufc &= ~E1000_WUFC_LNKC;
5085
5086         if (wufc) {
5087                 e1000_setup_rctl(adapter);
5088                 e1000_set_rx_mode(netdev);
5089
5090                 /* turn on all-multi mode if wake on multicast is enabled */
5091                 if (wufc & E1000_WUFC_MC) {
5092                         rctl = er32(RCTL);
5093                         rctl |= E1000_RCTL_MPE;
5094                         ew32(RCTL, rctl);
5095                 }
5096
5097                 if (hw->mac_type >= e1000_82540) {
5098                         ctrl = er32(CTRL);
5099                         /* advertise wake from D3Cold */
5100                         #define E1000_CTRL_ADVD3WUC 0x00100000
5101                         /* phy power management enable */
5102                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5103                         ctrl |= E1000_CTRL_ADVD3WUC |
5104                                 E1000_CTRL_EN_PHY_PWR_MGMT;
5105                         ew32(CTRL, ctrl);
5106                 }
5107
5108                 if (hw->media_type == e1000_media_type_fiber ||
5109                    hw->media_type == e1000_media_type_internal_serdes) {
5110                         /* keep the laser running in D3 */
5111                         ctrl_ext = er32(CTRL_EXT);
5112                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5113                         ew32(CTRL_EXT, ctrl_ext);
5114                 }
5115
5116                 /* Allow time for pending master requests to run */
5117                 e1000_disable_pciex_master(hw);
5118
5119                 ew32(WUC, E1000_WUC_PME_EN);
5120                 ew32(WUFC, wufc);
5121                 pci_enable_wake(pdev, PCI_D3hot, 1);
5122                 pci_enable_wake(pdev, PCI_D3cold, 1);
5123         } else {
5124                 ew32(WUC, 0);
5125                 ew32(WUFC, 0);
5126                 pci_enable_wake(pdev, PCI_D3hot, 0);
5127                 pci_enable_wake(pdev, PCI_D3cold, 0);
5128         }
5129
5130         e1000_release_manageability(adapter);
5131
5132         /* make sure adapter isn't asleep if manageability is enabled */
5133         if (adapter->en_mng_pt) {
5134                 pci_enable_wake(pdev, PCI_D3hot, 1);
5135                 pci_enable_wake(pdev, PCI_D3cold, 1);
5136         }
5137
5138         if (hw->phy_type == e1000_phy_igp_3)
5139                 e1000_phy_powerdown_workaround(hw);
5140
5141         if (netif_running(netdev))
5142                 e1000_free_irq(adapter);
5143
5144         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
5145          * would have already happened in close and is redundant. */
5146         e1000_release_hw_control(adapter);
5147
5148         pci_disable_device(pdev);
5149
5150         pci_set_power_state(pdev, pci_choose_state(pdev, state));
5151
5152         return 0;
5153 }
5154
5155 #ifdef CONFIG_PM
5156 static int e1000_resume(struct pci_dev *pdev)
5157 {
5158         struct net_device *netdev = pci_get_drvdata(pdev);
5159         struct e1000_adapter *adapter = netdev_priv(netdev);
5160         struct e1000_hw *hw = &adapter->hw;
5161         u32 err;
5162
5163         pci_set_power_state(pdev, PCI_D0);
5164         pci_restore_state(pdev);
5165         err = pci_enable_device(pdev);
5166         if (err) {
5167                 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
5168                 return err;
5169         }
5170         pci_set_master(pdev);
5171
5172         pci_enable_wake(pdev, PCI_D3hot, 0);
5173         pci_enable_wake(pdev, PCI_D3cold, 0);
5174
5175         if (netif_running(netdev)) {
5176                 err = e1000_request_irq(adapter);
5177                 if (err)
5178                         return err;
5179         }
5180
5181         e1000_power_up_phy(adapter);
5182         e1000_reset(adapter);
5183         ew32(WUS, ~0);
5184
5185         e1000_init_manageability(adapter);
5186
5187         if (netif_running(netdev))
5188                 e1000_up(adapter);
5189
5190         netif_device_attach(netdev);
5191
5192         /* If the controller is 82573 and f/w is AMT, do not set
5193          * DRV_LOAD until the interface is up.  For all other cases,
5194          * let the f/w know that the h/w is now under the control
5195          * of the driver. */
5196         if (hw->mac_type != e1000_82573 ||
5197             !e1000_check_mng_mode(hw))
5198                 e1000_get_hw_control(adapter);
5199
5200         return 0;
5201 }
5202 #endif
5203
5204 static void e1000_shutdown(struct pci_dev *pdev)
5205 {
5206         e1000_suspend(pdev, PMSG_SUSPEND);
5207 }
5208
5209 #ifdef CONFIG_NET_POLL_CONTROLLER
5210 /*
5211  * Polling 'interrupt' - used by things like netconsole to send skbs
5212  * without having to re-enable interrupts. It's not called while
5213  * the interrupt routine is executing.
5214  */
5215 static void e1000_netpoll(struct net_device *netdev)
5216 {
5217         struct e1000_adapter *adapter = netdev_priv(netdev);
5218
5219         disable_irq(adapter->pdev->irq);
5220         e1000_intr(adapter->pdev->irq, netdev);
5221 #ifndef CONFIG_E1000_NAPI
5222         adapter->clean_rx(adapter, adapter->rx_ring);
5223 #endif
5224         enable_irq(adapter->pdev->irq);
5225 }
5226 #endif
5227
5228 /**
5229  * e1000_io_error_detected - called when PCI error is detected
5230  * @pdev: Pointer to PCI device
5231  * @state: The current pci conneection state
5232  *
5233  * This function is called after a PCI bus error affecting
5234  * this device has been detected.
5235  */
5236 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5237                                                 pci_channel_state_t state)
5238 {
5239         struct net_device *netdev = pci_get_drvdata(pdev);
5240         struct e1000_adapter *adapter = netdev->priv;
5241
5242         netif_device_detach(netdev);
5243
5244         if (netif_running(netdev))
5245                 e1000_down(adapter);
5246         pci_disable_device(pdev);
5247
5248         /* Request a slot slot reset. */
5249         return PCI_ERS_RESULT_NEED_RESET;
5250 }
5251
5252 /**
5253  * e1000_io_slot_reset - called after the pci bus has been reset.
5254  * @pdev: Pointer to PCI device
5255  *
5256  * Restart the card from scratch, as if from a cold-boot. Implementation
5257  * resembles the first-half of the e1000_resume routine.
5258  */
5259 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5260 {
5261         struct net_device *netdev = pci_get_drvdata(pdev);
5262         struct e1000_adapter *adapter = netdev->priv;
5263         struct e1000_hw *hw = &adapter->hw;
5264
5265         if (pci_enable_device(pdev)) {
5266                 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
5267                 return PCI_ERS_RESULT_DISCONNECT;
5268         }
5269         pci_set_master(pdev);
5270
5271         pci_enable_wake(pdev, PCI_D3hot, 0);
5272         pci_enable_wake(pdev, PCI_D3cold, 0);
5273
5274         e1000_reset(adapter);
5275         ew32(WUS, ~0);
5276
5277         return PCI_ERS_RESULT_RECOVERED;
5278 }
5279
5280 /**
5281  * e1000_io_resume - called when traffic can start flowing again.
5282  * @pdev: Pointer to PCI device
5283  *
5284  * This callback is called when the error recovery driver tells us that
5285  * its OK to resume normal operation. Implementation resembles the
5286  * second-half of the e1000_resume routine.
5287  */
5288 static void e1000_io_resume(struct pci_dev *pdev)
5289 {
5290         struct net_device *netdev = pci_get_drvdata(pdev);
5291         struct e1000_adapter *adapter = netdev->priv;
5292         struct e1000_hw *hw = &adapter->hw;
5293
5294         e1000_init_manageability(adapter);
5295
5296         if (netif_running(netdev)) {
5297                 if (e1000_up(adapter)) {
5298                         printk("e1000: can't bring device back up after reset\n");
5299                         return;
5300                 }
5301         }
5302
5303         netif_device_attach(netdev);
5304
5305         /* If the controller is 82573 and f/w is AMT, do not set
5306          * DRV_LOAD until the interface is up.  For all other cases,
5307          * let the f/w know that the h/w is now under the control
5308          * of the driver. */
5309         if (hw->mac_type != e1000_82573 ||
5310             !e1000_check_mng_mode(hw))
5311                 e1000_get_hw_control(adapter);
5312
5313 }
5314
5315 /* e1000_main.c */