]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/e1000/e1000_main.c
80e3a65b44229df1d11b469a9d889545ab4a7192
[linux-2.6-omap-h63xx.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #ifndef CONFIG_E1000_NAPI
35 #define DRIVERNAPI
36 #else
37 #define DRIVERNAPI "-NAPI"
38 #endif
39 #define DRV_VERSION "7.3.20-k2"DRIVERNAPI
40 const char e1000_driver_version[] = DRV_VERSION;
41 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
42
43 /* e1000_pci_tbl - PCI Device ID Table
44  *
45  * Last entry must be all 0s
46  *
47  * Macro expands to...
48  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
49  */
50 static struct pci_device_id e1000_pci_tbl[] = {
51         INTEL_E1000_ETHERNET_DEVICE(0x1000),
52         INTEL_E1000_ETHERNET_DEVICE(0x1001),
53         INTEL_E1000_ETHERNET_DEVICE(0x1004),
54         INTEL_E1000_ETHERNET_DEVICE(0x1008),
55         INTEL_E1000_ETHERNET_DEVICE(0x1009),
56         INTEL_E1000_ETHERNET_DEVICE(0x100C),
57         INTEL_E1000_ETHERNET_DEVICE(0x100D),
58         INTEL_E1000_ETHERNET_DEVICE(0x100E),
59         INTEL_E1000_ETHERNET_DEVICE(0x100F),
60         INTEL_E1000_ETHERNET_DEVICE(0x1010),
61         INTEL_E1000_ETHERNET_DEVICE(0x1011),
62         INTEL_E1000_ETHERNET_DEVICE(0x1012),
63         INTEL_E1000_ETHERNET_DEVICE(0x1013),
64         INTEL_E1000_ETHERNET_DEVICE(0x1014),
65         INTEL_E1000_ETHERNET_DEVICE(0x1015),
66         INTEL_E1000_ETHERNET_DEVICE(0x1016),
67         INTEL_E1000_ETHERNET_DEVICE(0x1017),
68         INTEL_E1000_ETHERNET_DEVICE(0x1018),
69         INTEL_E1000_ETHERNET_DEVICE(0x1019),
70         INTEL_E1000_ETHERNET_DEVICE(0x101A),
71         INTEL_E1000_ETHERNET_DEVICE(0x101D),
72         INTEL_E1000_ETHERNET_DEVICE(0x101E),
73         INTEL_E1000_ETHERNET_DEVICE(0x1026),
74         INTEL_E1000_ETHERNET_DEVICE(0x1027),
75         INTEL_E1000_ETHERNET_DEVICE(0x1028),
76         INTEL_E1000_ETHERNET_DEVICE(0x1075),
77         INTEL_E1000_ETHERNET_DEVICE(0x1076),
78         INTEL_E1000_ETHERNET_DEVICE(0x1077),
79         INTEL_E1000_ETHERNET_DEVICE(0x1078),
80         INTEL_E1000_ETHERNET_DEVICE(0x1079),
81         INTEL_E1000_ETHERNET_DEVICE(0x107A),
82         INTEL_E1000_ETHERNET_DEVICE(0x107B),
83         INTEL_E1000_ETHERNET_DEVICE(0x107C),
84         INTEL_E1000_ETHERNET_DEVICE(0x108A),
85         INTEL_E1000_ETHERNET_DEVICE(0x1099),
86         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
87         /* required last entry */
88         {0,}
89 };
90
91 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
92
93 int e1000_up(struct e1000_adapter *adapter);
94 void e1000_down(struct e1000_adapter *adapter);
95 void e1000_reinit_locked(struct e1000_adapter *adapter);
96 void e1000_reset(struct e1000_adapter *adapter);
97 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx);
98 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
99 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
100 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
101 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
102 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
103                              struct e1000_tx_ring *txdr);
104 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
105                              struct e1000_rx_ring *rxdr);
106 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
107                              struct e1000_tx_ring *tx_ring);
108 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
109                              struct e1000_rx_ring *rx_ring);
110 void e1000_update_stats(struct e1000_adapter *adapter);
111
112 static int e1000_init_module(void);
113 static void e1000_exit_module(void);
114 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
115 static void __devexit e1000_remove(struct pci_dev *pdev);
116 static int e1000_alloc_queues(struct e1000_adapter *adapter);
117 static int e1000_sw_init(struct e1000_adapter *adapter);
118 static int e1000_open(struct net_device *netdev);
119 static int e1000_close(struct net_device *netdev);
120 static void e1000_configure_tx(struct e1000_adapter *adapter);
121 static void e1000_configure_rx(struct e1000_adapter *adapter);
122 static void e1000_setup_rctl(struct e1000_adapter *adapter);
123 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
124 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
125 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
126                                 struct e1000_tx_ring *tx_ring);
127 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
128                                 struct e1000_rx_ring *rx_ring);
129 static void e1000_set_rx_mode(struct net_device *netdev);
130 static void e1000_update_phy_info(unsigned long data);
131 static void e1000_watchdog(unsigned long data);
132 static void e1000_82547_tx_fifo_stall(unsigned long data);
133 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
134 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
135 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
136 static int e1000_set_mac(struct net_device *netdev, void *p);
137 static irqreturn_t e1000_intr(int irq, void *data);
138 static irqreturn_t e1000_intr_msi(int irq, void *data);
139 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
140                                struct e1000_tx_ring *tx_ring);
141 #ifdef CONFIG_E1000_NAPI
142 static int e1000_clean(struct napi_struct *napi, int budget);
143 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
144                                struct e1000_rx_ring *rx_ring,
145                                int *work_done, int work_to_do);
146 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
147                                   struct e1000_rx_ring *rx_ring,
148                                   int *work_done, int work_to_do);
149 #else
150 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
151                                struct e1000_rx_ring *rx_ring);
152 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
153                                   struct e1000_rx_ring *rx_ring);
154 #endif
155 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
156                                    struct e1000_rx_ring *rx_ring,
157                                    int cleaned_count);
158 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
159                                       struct e1000_rx_ring *rx_ring,
160                                       int cleaned_count);
161 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
162 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
163                            int cmd);
164 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
165 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
166 static void e1000_tx_timeout(struct net_device *dev);
167 static void e1000_reset_task(struct work_struct *work);
168 static void e1000_smartspeed(struct e1000_adapter *adapter);
169 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
170                                        struct sk_buff *skb);
171
172 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
173 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
174 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
175 static void e1000_restore_vlan(struct e1000_adapter *adapter);
176
177 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
178 #ifdef CONFIG_PM
179 static int e1000_resume(struct pci_dev *pdev);
180 #endif
181 static void e1000_shutdown(struct pci_dev *pdev);
182
183 #ifdef CONFIG_NET_POLL_CONTROLLER
184 /* for netdump / net console */
185 static void e1000_netpoll (struct net_device *netdev);
186 #endif
187
188 #define COPYBREAK_DEFAULT 256
189 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
190 module_param(copybreak, uint, 0644);
191 MODULE_PARM_DESC(copybreak,
192         "Maximum size of packet that is copied to a new buffer on receive");
193
194 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
195                      pci_channel_state_t state);
196 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
197 static void e1000_io_resume(struct pci_dev *pdev);
198
199 static struct pci_error_handlers e1000_err_handler = {
200         .error_detected = e1000_io_error_detected,
201         .slot_reset = e1000_io_slot_reset,
202         .resume = e1000_io_resume,
203 };
204
205 static struct pci_driver e1000_driver = {
206         .name     = e1000_driver_name,
207         .id_table = e1000_pci_tbl,
208         .probe    = e1000_probe,
209         .remove   = __devexit_p(e1000_remove),
210 #ifdef CONFIG_PM
211         /* Power Managment Hooks */
212         .suspend  = e1000_suspend,
213         .resume   = e1000_resume,
214 #endif
215         .shutdown = e1000_shutdown,
216         .err_handler = &e1000_err_handler
217 };
218
219 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
220 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
221 MODULE_LICENSE("GPL");
222 MODULE_VERSION(DRV_VERSION);
223
224 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
225 module_param(debug, int, 0);
226 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
227
228 /**
229  * e1000_init_module - Driver Registration Routine
230  *
231  * e1000_init_module is the first routine called when the driver is
232  * loaded. All it does is register with the PCI subsystem.
233  **/
234
235 static int __init
236 e1000_init_module(void)
237 {
238         int ret;
239         printk(KERN_INFO "%s - version %s\n",
240                e1000_driver_string, e1000_driver_version);
241
242         printk(KERN_INFO "%s\n", e1000_copyright);
243
244         ret = pci_register_driver(&e1000_driver);
245         if (copybreak != COPYBREAK_DEFAULT) {
246                 if (copybreak == 0)
247                         printk(KERN_INFO "e1000: copybreak disabled\n");
248                 else
249                         printk(KERN_INFO "e1000: copybreak enabled for "
250                                "packets <= %u bytes\n", copybreak);
251         }
252         return ret;
253 }
254
255 module_init(e1000_init_module);
256
257 /**
258  * e1000_exit_module - Driver Exit Cleanup Routine
259  *
260  * e1000_exit_module is called just before the driver is removed
261  * from memory.
262  **/
263
264 static void __exit
265 e1000_exit_module(void)
266 {
267         pci_unregister_driver(&e1000_driver);
268 }
269
270 module_exit(e1000_exit_module);
271
272 static int e1000_request_irq(struct e1000_adapter *adapter)
273 {
274         struct net_device *netdev = adapter->netdev;
275         irq_handler_t handler = e1000_intr;
276         int irq_flags = IRQF_SHARED;
277         int err;
278
279         if (adapter->hw.mac_type >= e1000_82571) {
280                 adapter->have_msi = !pci_enable_msi(adapter->pdev);
281                 if (adapter->have_msi) {
282                         handler = e1000_intr_msi;
283                         irq_flags = 0;
284                 }
285         }
286
287         err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
288                           netdev);
289         if (err) {
290                 if (adapter->have_msi)
291                         pci_disable_msi(adapter->pdev);
292                 DPRINTK(PROBE, ERR,
293                         "Unable to allocate interrupt Error: %d\n", err);
294         }
295
296         return err;
297 }
298
299 static void e1000_free_irq(struct e1000_adapter *adapter)
300 {
301         struct net_device *netdev = adapter->netdev;
302
303         free_irq(adapter->pdev->irq, netdev);
304
305         if (adapter->have_msi)
306                 pci_disable_msi(adapter->pdev);
307 }
308
309 /**
310  * e1000_irq_disable - Mask off interrupt generation on the NIC
311  * @adapter: board private structure
312  **/
313
314 static void
315 e1000_irq_disable(struct e1000_adapter *adapter)
316 {
317         E1000_WRITE_REG(&adapter->hw, IMC, ~0);
318         E1000_WRITE_FLUSH(&adapter->hw);
319         synchronize_irq(adapter->pdev->irq);
320 }
321
322 /**
323  * e1000_irq_enable - Enable default interrupt generation settings
324  * @adapter: board private structure
325  **/
326
327 static void
328 e1000_irq_enable(struct e1000_adapter *adapter)
329 {
330         E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
331         E1000_WRITE_FLUSH(&adapter->hw);
332 }
333
334 static void
335 e1000_update_mng_vlan(struct e1000_adapter *adapter)
336 {
337         struct net_device *netdev = adapter->netdev;
338         u16 vid = adapter->hw.mng_cookie.vlan_id;
339         u16 old_vid = adapter->mng_vlan_id;
340         if (adapter->vlgrp) {
341                 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
342                         if (adapter->hw.mng_cookie.status &
343                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
344                                 e1000_vlan_rx_add_vid(netdev, vid);
345                                 adapter->mng_vlan_id = vid;
346                         } else
347                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
348
349                         if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
350                                         (vid != old_vid) &&
351                             !vlan_group_get_device(adapter->vlgrp, old_vid))
352                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
353                 } else
354                         adapter->mng_vlan_id = vid;
355         }
356 }
357
358 /**
359  * e1000_release_hw_control - release control of the h/w to f/w
360  * @adapter: address of board private structure
361  *
362  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
363  * For ASF and Pass Through versions of f/w this means that the
364  * driver is no longer loaded. For AMT version (only with 82573) i
365  * of the f/w this means that the network i/f is closed.
366  *
367  **/
368
369 static void
370 e1000_release_hw_control(struct e1000_adapter *adapter)
371 {
372         u32 ctrl_ext;
373         u32 swsm;
374
375         /* Let firmware taken over control of h/w */
376         switch (adapter->hw.mac_type) {
377         case e1000_82573:
378                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
379                 E1000_WRITE_REG(&adapter->hw, SWSM,
380                                 swsm & ~E1000_SWSM_DRV_LOAD);
381                 break;
382         case e1000_82571:
383         case e1000_82572:
384         case e1000_80003es2lan:
385         case e1000_ich8lan:
386                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
387                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
388                                 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
389                 break;
390         default:
391                 break;
392         }
393 }
394
395 /**
396  * e1000_get_hw_control - get control of the h/w from f/w
397  * @adapter: address of board private structure
398  *
399  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
400  * For ASF and Pass Through versions of f/w this means that
401  * the driver is loaded. For AMT version (only with 82573)
402  * of the f/w this means that the network i/f is open.
403  *
404  **/
405
406 static void
407 e1000_get_hw_control(struct e1000_adapter *adapter)
408 {
409         u32 ctrl_ext;
410         u32 swsm;
411
412         /* Let firmware know the driver has taken over */
413         switch (adapter->hw.mac_type) {
414         case e1000_82573:
415                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
416                 E1000_WRITE_REG(&adapter->hw, SWSM,
417                                 swsm | E1000_SWSM_DRV_LOAD);
418                 break;
419         case e1000_82571:
420         case e1000_82572:
421         case e1000_80003es2lan:
422         case e1000_ich8lan:
423                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
424                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
425                                 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
426                 break;
427         default:
428                 break;
429         }
430 }
431
432 static void
433 e1000_init_manageability(struct e1000_adapter *adapter)
434 {
435         if (adapter->en_mng_pt) {
436                 u32 manc = E1000_READ_REG(&adapter->hw, MANC);
437
438                 /* disable hardware interception of ARP */
439                 manc &= ~(E1000_MANC_ARP_EN);
440
441                 /* enable receiving management packets to the host */
442                 /* this will probably generate destination unreachable messages
443                  * from the host OS, but the packets will be handled on SMBUS */
444                 if (adapter->hw.has_manc2h) {
445                         u32 manc2h = E1000_READ_REG(&adapter->hw, MANC2H);
446
447                         manc |= E1000_MANC_EN_MNG2HOST;
448 #define E1000_MNG2HOST_PORT_623 (1 << 5)
449 #define E1000_MNG2HOST_PORT_664 (1 << 6)
450                         manc2h |= E1000_MNG2HOST_PORT_623;
451                         manc2h |= E1000_MNG2HOST_PORT_664;
452                         E1000_WRITE_REG(&adapter->hw, MANC2H, manc2h);
453                 }
454
455                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
456         }
457 }
458
459 static void
460 e1000_release_manageability(struct e1000_adapter *adapter)
461 {
462         if (adapter->en_mng_pt) {
463                 u32 manc = E1000_READ_REG(&adapter->hw, MANC);
464
465                 /* re-enable hardware interception of ARP */
466                 manc |= E1000_MANC_ARP_EN;
467
468                 if (adapter->hw.has_manc2h)
469                         manc &= ~E1000_MANC_EN_MNG2HOST;
470
471                 /* don't explicitly have to mess with MANC2H since
472                  * MANC has an enable disable that gates MANC2H */
473
474                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
475         }
476 }
477
478 /**
479  * e1000_configure - configure the hardware for RX and TX
480  * @adapter = private board structure
481  **/
482 static void e1000_configure(struct e1000_adapter *adapter)
483 {
484         struct net_device *netdev = adapter->netdev;
485         int i;
486
487         e1000_set_rx_mode(netdev);
488
489         e1000_restore_vlan(adapter);
490         e1000_init_manageability(adapter);
491
492         e1000_configure_tx(adapter);
493         e1000_setup_rctl(adapter);
494         e1000_configure_rx(adapter);
495         /* call E1000_DESC_UNUSED which always leaves
496          * at least 1 descriptor unused to make sure
497          * next_to_use != next_to_clean */
498         for (i = 0; i < adapter->num_rx_queues; i++) {
499                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
500                 adapter->alloc_rx_buf(adapter, ring,
501                                       E1000_DESC_UNUSED(ring));
502         }
503
504         adapter->tx_queue_len = netdev->tx_queue_len;
505 }
506
507 int e1000_up(struct e1000_adapter *adapter)
508 {
509         /* hardware has been reset, we need to reload some things */
510         e1000_configure(adapter);
511
512         clear_bit(__E1000_DOWN, &adapter->flags);
513
514 #ifdef CONFIG_E1000_NAPI
515         napi_enable(&adapter->napi);
516 #endif
517         e1000_irq_enable(adapter);
518
519         /* fire a link change interrupt to start the watchdog */
520         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_LSC);
521         return 0;
522 }
523
524 /**
525  * e1000_power_up_phy - restore link in case the phy was powered down
526  * @adapter: address of board private structure
527  *
528  * The phy may be powered down to save power and turn off link when the
529  * driver is unloaded and wake on lan is not enabled (among others)
530  * *** this routine MUST be followed by a call to e1000_reset ***
531  *
532  **/
533
534 void e1000_power_up_phy(struct e1000_adapter *adapter)
535 {
536         u16 mii_reg = 0;
537
538         /* Just clear the power down bit to wake the phy back up */
539         if (adapter->hw.media_type == e1000_media_type_copper) {
540                 /* according to the manual, the phy will retain its
541                  * settings across a power-down/up cycle */
542                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
543                 mii_reg &= ~MII_CR_POWER_DOWN;
544                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
545         }
546 }
547
548 static void e1000_power_down_phy(struct e1000_adapter *adapter)
549 {
550         /* Power down the PHY so no link is implied when interface is down *
551          * The PHY cannot be powered down if any of the following is true *
552          * (a) WoL is enabled
553          * (b) AMT is active
554          * (c) SoL/IDER session is active */
555         if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
556            adapter->hw.media_type == e1000_media_type_copper) {
557                 u16 mii_reg = 0;
558
559                 switch (adapter->hw.mac_type) {
560                 case e1000_82540:
561                 case e1000_82545:
562                 case e1000_82545_rev_3:
563                 case e1000_82546:
564                 case e1000_82546_rev_3:
565                 case e1000_82541:
566                 case e1000_82541_rev_2:
567                 case e1000_82547:
568                 case e1000_82547_rev_2:
569                         if (E1000_READ_REG(&adapter->hw, MANC) &
570                             E1000_MANC_SMBUS_EN)
571                                 goto out;
572                         break;
573                 case e1000_82571:
574                 case e1000_82572:
575                 case e1000_82573:
576                 case e1000_80003es2lan:
577                 case e1000_ich8lan:
578                         if (e1000_check_mng_mode(&adapter->hw) ||
579                             e1000_check_phy_reset_block(&adapter->hw))
580                                 goto out;
581                         break;
582                 default:
583                         goto out;
584                 }
585                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
586                 mii_reg |= MII_CR_POWER_DOWN;
587                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
588                 mdelay(1);
589         }
590 out:
591         return;
592 }
593
594 void
595 e1000_down(struct e1000_adapter *adapter)
596 {
597         struct net_device *netdev = adapter->netdev;
598
599         /* signal that we're down so the interrupt handler does not
600          * reschedule our watchdog timer */
601         set_bit(__E1000_DOWN, &adapter->flags);
602
603 #ifdef CONFIG_E1000_NAPI
604         napi_disable(&adapter->napi);
605 #endif
606         e1000_irq_disable(adapter);
607
608         del_timer_sync(&adapter->tx_fifo_stall_timer);
609         del_timer_sync(&adapter->watchdog_timer);
610         del_timer_sync(&adapter->phy_info_timer);
611
612         netdev->tx_queue_len = adapter->tx_queue_len;
613         adapter->link_speed = 0;
614         adapter->link_duplex = 0;
615         netif_carrier_off(netdev);
616         netif_stop_queue(netdev);
617
618         e1000_reset(adapter);
619         e1000_clean_all_tx_rings(adapter);
620         e1000_clean_all_rx_rings(adapter);
621 }
622
623 void
624 e1000_reinit_locked(struct e1000_adapter *adapter)
625 {
626         WARN_ON(in_interrupt());
627         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
628                 msleep(1);
629         e1000_down(adapter);
630         e1000_up(adapter);
631         clear_bit(__E1000_RESETTING, &adapter->flags);
632 }
633
634 void
635 e1000_reset(struct e1000_adapter *adapter)
636 {
637         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
638         u16 fc_high_water_mark = E1000_FC_HIGH_DIFF;
639         bool legacy_pba_adjust = false;
640
641         /* Repartition Pba for greater than 9k mtu
642          * To take effect CTRL.RST is required.
643          */
644
645         switch (adapter->hw.mac_type) {
646         case e1000_82542_rev2_0:
647         case e1000_82542_rev2_1:
648         case e1000_82543:
649         case e1000_82544:
650         case e1000_82540:
651         case e1000_82541:
652         case e1000_82541_rev_2:
653                 legacy_pba_adjust = true;
654                 pba = E1000_PBA_48K;
655                 break;
656         case e1000_82545:
657         case e1000_82545_rev_3:
658         case e1000_82546:
659         case e1000_82546_rev_3:
660                 pba = E1000_PBA_48K;
661                 break;
662         case e1000_82547:
663         case e1000_82547_rev_2:
664                 legacy_pba_adjust = true;
665                 pba = E1000_PBA_30K;
666                 break;
667         case e1000_82571:
668         case e1000_82572:
669         case e1000_80003es2lan:
670                 pba = E1000_PBA_38K;
671                 break;
672         case e1000_82573:
673                 pba = E1000_PBA_20K;
674                 break;
675         case e1000_ich8lan:
676                 pba = E1000_PBA_8K;
677         case e1000_undefined:
678         case e1000_num_macs:
679                 break;
680         }
681
682         if (legacy_pba_adjust) {
683                 if (adapter->netdev->mtu > E1000_RXBUFFER_8192)
684                         pba -= 8; /* allocate more FIFO for Tx */
685
686                 if (adapter->hw.mac_type == e1000_82547) {
687                         adapter->tx_fifo_head = 0;
688                         adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
689                         adapter->tx_fifo_size =
690                                 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
691                         atomic_set(&adapter->tx_fifo_stall, 0);
692                 }
693         } else if (adapter->hw.max_frame_size > MAXIMUM_ETHERNET_FRAME_SIZE) {
694                 /* adjust PBA for jumbo frames */
695                 E1000_WRITE_REG(&adapter->hw, PBA, pba);
696
697                 /* To maintain wire speed transmits, the Tx FIFO should be
698                  * large enough to accomodate two full transmit packets,
699                  * rounded up to the next 1KB and expressed in KB.  Likewise,
700                  * the Rx FIFO should be large enough to accomodate at least
701                  * one full receive packet and is similarly rounded up and
702                  * expressed in KB. */
703                 pba = E1000_READ_REG(&adapter->hw, PBA);
704                 /* upper 16 bits has Tx packet buffer allocation size in KB */
705                 tx_space = pba >> 16;
706                 /* lower 16 bits has Rx packet buffer allocation size in KB */
707                 pba &= 0xffff;
708                 /* don't include ethernet FCS because hardware appends/strips */
709                 min_rx_space = adapter->netdev->mtu + ENET_HEADER_SIZE +
710                                VLAN_TAG_SIZE;
711                 min_tx_space = min_rx_space;
712                 min_tx_space *= 2;
713                 min_tx_space = ALIGN(min_tx_space, 1024);
714                 min_tx_space >>= 10;
715                 min_rx_space = ALIGN(min_rx_space, 1024);
716                 min_rx_space >>= 10;
717
718                 /* If current Tx allocation is less than the min Tx FIFO size,
719                  * and the min Tx FIFO size is less than the current Rx FIFO
720                  * allocation, take space away from current Rx allocation */
721                 if (tx_space < min_tx_space &&
722                     ((min_tx_space - tx_space) < pba)) {
723                         pba = pba - (min_tx_space - tx_space);
724
725                         /* PCI/PCIx hardware has PBA alignment constraints */
726                         switch (adapter->hw.mac_type) {
727                         case e1000_82545 ... e1000_82546_rev_3:
728                                 pba &= ~(E1000_PBA_8K - 1);
729                                 break;
730                         default:
731                                 break;
732                         }
733
734                         /* if short on rx space, rx wins and must trump tx
735                          * adjustment or use Early Receive if available */
736                         if (pba < min_rx_space) {
737                                 switch (adapter->hw.mac_type) {
738                                 case e1000_82573:
739                                         /* ERT enabled in e1000_configure_rx */
740                                         break;
741                                 default:
742                                         pba = min_rx_space;
743                                         break;
744                                 }
745                         }
746                 }
747         }
748
749         E1000_WRITE_REG(&adapter->hw, PBA, pba);
750
751         /* flow control settings */
752         /* Set the FC high water mark to 90% of the FIFO size.
753          * Required to clear last 3 LSB */
754         fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
755         /* We can't use 90% on small FIFOs because the remainder
756          * would be less than 1 full frame.  In this case, we size
757          * it to allow at least a full frame above the high water
758          *  mark. */
759         if (pba < E1000_PBA_16K)
760                 fc_high_water_mark = (pba * 1024) - 1600;
761
762         adapter->hw.fc_high_water = fc_high_water_mark;
763         adapter->hw.fc_low_water = fc_high_water_mark - 8;
764         if (adapter->hw.mac_type == e1000_80003es2lan)
765                 adapter->hw.fc_pause_time = 0xFFFF;
766         else
767                 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
768         adapter->hw.fc_send_xon = 1;
769         adapter->hw.fc = adapter->hw.original_fc;
770
771         /* Allow time for pending master requests to run */
772         e1000_reset_hw(&adapter->hw);
773         if (adapter->hw.mac_type >= e1000_82544)
774                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
775
776         if (e1000_init_hw(&adapter->hw))
777                 DPRINTK(PROBE, ERR, "Hardware Error\n");
778         e1000_update_mng_vlan(adapter);
779
780         /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
781         if (adapter->hw.mac_type >= e1000_82544 &&
782             adapter->hw.mac_type <= e1000_82547_rev_2 &&
783             adapter->hw.autoneg == 1 &&
784             adapter->hw.autoneg_advertised == ADVERTISE_1000_FULL) {
785                 u32 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
786                 /* clear phy power management bit if we are in gig only mode,
787                  * which if enabled will attempt negotiation to 100Mb, which
788                  * can cause a loss of link at power off or driver unload */
789                 ctrl &= ~E1000_CTRL_SWDPIN3;
790                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
791         }
792
793         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
794         E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
795
796         e1000_reset_adaptive(&adapter->hw);
797         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
798
799         if (!adapter->smart_power_down &&
800             (adapter->hw.mac_type == e1000_82571 ||
801              adapter->hw.mac_type == e1000_82572)) {
802                 u16 phy_data = 0;
803                 /* speed up time to link by disabling smart power down, ignore
804                  * the return value of this function because there is nothing
805                  * different we would do if it failed */
806                 e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
807                                    &phy_data);
808                 phy_data &= ~IGP02E1000_PM_SPD;
809                 e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
810                                     phy_data);
811         }
812
813         e1000_release_manageability(adapter);
814 }
815
816 /**
817  *  Dump the eeprom for users having checksum issues
818  **/
819 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
820 {
821         struct net_device *netdev = adapter->netdev;
822         struct ethtool_eeprom eeprom;
823         const struct ethtool_ops *ops = netdev->ethtool_ops;
824         u8 *data;
825         int i;
826         u16 csum_old, csum_new = 0;
827
828         eeprom.len = ops->get_eeprom_len(netdev);
829         eeprom.offset = 0;
830
831         data = kmalloc(eeprom.len, GFP_KERNEL);
832         if (!data) {
833                 printk(KERN_ERR "Unable to allocate memory to dump EEPROM"
834                        " data\n");
835                 return;
836         }
837
838         ops->get_eeprom(netdev, &eeprom, data);
839
840         csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
841                    (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
842         for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
843                 csum_new += data[i] + (data[i + 1] << 8);
844         csum_new = EEPROM_SUM - csum_new;
845
846         printk(KERN_ERR "/*********************/\n");
847         printk(KERN_ERR "Current EEPROM Checksum : 0x%04x\n", csum_old);
848         printk(KERN_ERR "Calculated              : 0x%04x\n", csum_new);
849
850         printk(KERN_ERR "Offset    Values\n");
851         printk(KERN_ERR "========  ======\n");
852         print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
853
854         printk(KERN_ERR "Include this output when contacting your support "
855                "provider.\n");
856         printk(KERN_ERR "This is not a software error! Something bad "
857                "happened to your hardware or\n");
858         printk(KERN_ERR "EEPROM image. Ignoring this "
859                "problem could result in further problems,\n");
860         printk(KERN_ERR "possibly loss of data, corruption or system hangs!\n");
861         printk(KERN_ERR "The MAC Address will be reset to 00:00:00:00:00:00, "
862                "which is invalid\n");
863         printk(KERN_ERR "and requires you to set the proper MAC "
864                "address manually before continuing\n");
865         printk(KERN_ERR "to enable this network device.\n");
866         printk(KERN_ERR "Please inspect the EEPROM dump and report the issue "
867                "to your hardware vendor\n");
868         printk(KERN_ERR "or Intel Customer Support: linux-nics@intel.com\n");
869         printk(KERN_ERR "/*********************/\n");
870
871         kfree(data);
872 }
873
874 /**
875  * e1000_probe - Device Initialization Routine
876  * @pdev: PCI device information struct
877  * @ent: entry in e1000_pci_tbl
878  *
879  * Returns 0 on success, negative on failure
880  *
881  * e1000_probe initializes an adapter identified by a pci_dev structure.
882  * The OS initialization, configuring of the adapter private structure,
883  * and a hardware reset occur.
884  **/
885
886 static int __devinit
887 e1000_probe(struct pci_dev *pdev,
888             const struct pci_device_id *ent)
889 {
890         struct net_device *netdev;
891         struct e1000_adapter *adapter;
892
893         static int cards_found = 0;
894         static int global_quad_port_a = 0; /* global ksp3 port a indication */
895         int i, err, pci_using_dac;
896         u16 eeprom_data = 0;
897         u16 eeprom_apme_mask = E1000_EEPROM_APME;
898         DECLARE_MAC_BUF(mac);
899
900         if ((err = pci_enable_device(pdev)))
901                 return err;
902
903         if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
904             !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
905                 pci_using_dac = 1;
906         } else {
907                 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) &&
908                     (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
909                         E1000_ERR("No usable DMA configuration, aborting\n");
910                         goto err_dma;
911                 }
912                 pci_using_dac = 0;
913         }
914
915         if ((err = pci_request_regions(pdev, e1000_driver_name)))
916                 goto err_pci_reg;
917
918         pci_set_master(pdev);
919
920         err = -ENOMEM;
921         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
922         if (!netdev)
923                 goto err_alloc_etherdev;
924
925         SET_NETDEV_DEV(netdev, &pdev->dev);
926
927         pci_set_drvdata(pdev, netdev);
928         adapter = netdev_priv(netdev);
929         adapter->netdev = netdev;
930         adapter->pdev = pdev;
931         adapter->hw.back = adapter;
932         adapter->msg_enable = (1 << debug) - 1;
933
934         err = -EIO;
935         adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, BAR_0),
936                                       pci_resource_len(pdev, BAR_0));
937         if (!adapter->hw.hw_addr)
938                 goto err_ioremap;
939
940         for (i = BAR_1; i <= BAR_5; i++) {
941                 if (pci_resource_len(pdev, i) == 0)
942                         continue;
943                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
944                         adapter->hw.io_base = pci_resource_start(pdev, i);
945                         break;
946                 }
947         }
948
949         netdev->open = &e1000_open;
950         netdev->stop = &e1000_close;
951         netdev->hard_start_xmit = &e1000_xmit_frame;
952         netdev->get_stats = &e1000_get_stats;
953         netdev->set_rx_mode = &e1000_set_rx_mode;
954         netdev->set_mac_address = &e1000_set_mac;
955         netdev->change_mtu = &e1000_change_mtu;
956         netdev->do_ioctl = &e1000_ioctl;
957         e1000_set_ethtool_ops(netdev);
958         netdev->tx_timeout = &e1000_tx_timeout;
959         netdev->watchdog_timeo = 5 * HZ;
960 #ifdef CONFIG_E1000_NAPI
961         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
962 #endif
963         netdev->vlan_rx_register = e1000_vlan_rx_register;
964         netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
965         netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
966 #ifdef CONFIG_NET_POLL_CONTROLLER
967         netdev->poll_controller = e1000_netpoll;
968 #endif
969         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
970
971         adapter->bd_number = cards_found;
972
973         /* setup the private structure */
974
975         if ((err = e1000_sw_init(adapter)))
976                 goto err_sw_init;
977
978         err = -EIO;
979         /* Flash BAR mapping must happen after e1000_sw_init
980          * because it depends on mac_type */
981         if ((adapter->hw.mac_type == e1000_ich8lan) &&
982            (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
983                 adapter->hw.flash_address =
984                         ioremap(pci_resource_start(pdev, 1),
985                                 pci_resource_len(pdev, 1));
986                 if (!adapter->hw.flash_address)
987                         goto err_flashmap;
988         }
989
990         if (e1000_check_phy_reset_block(&adapter->hw))
991                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
992
993         if (adapter->hw.mac_type >= e1000_82543) {
994                 netdev->features = NETIF_F_SG |
995                                    NETIF_F_HW_CSUM |
996                                    NETIF_F_HW_VLAN_TX |
997                                    NETIF_F_HW_VLAN_RX |
998                                    NETIF_F_HW_VLAN_FILTER;
999                 if (adapter->hw.mac_type == e1000_ich8lan)
1000                         netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
1001         }
1002
1003         if ((adapter->hw.mac_type >= e1000_82544) &&
1004            (adapter->hw.mac_type != e1000_82547))
1005                 netdev->features |= NETIF_F_TSO;
1006
1007         if (adapter->hw.mac_type > e1000_82547_rev_2)
1008                 netdev->features |= NETIF_F_TSO6;
1009         if (pci_using_dac)
1010                 netdev->features |= NETIF_F_HIGHDMA;
1011
1012         netdev->features |= NETIF_F_LLTX;
1013
1014         adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
1015
1016         /* initialize eeprom parameters */
1017         if (e1000_init_eeprom_params(&adapter->hw)) {
1018                 E1000_ERR("EEPROM initialization failed\n");
1019                 goto err_eeprom;
1020         }
1021
1022         /* before reading the EEPROM, reset the controller to
1023          * put the device in a known good starting state */
1024
1025         e1000_reset_hw(&adapter->hw);
1026
1027         /* make sure the EEPROM is good */
1028         if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
1029                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
1030                 e1000_dump_eeprom(adapter);
1031                 /*
1032                  * set MAC address to all zeroes to invalidate and temporary
1033                  * disable this device for the user. This blocks regular
1034                  * traffic while still permitting ethtool ioctls from reaching
1035                  * the hardware as well as allowing the user to run the
1036                  * interface after manually setting a hw addr using
1037                  * `ip set address`
1038                  */
1039                 memset(adapter->hw.mac_addr, 0, netdev->addr_len);
1040         } else {
1041                 /* copy the MAC address out of the EEPROM */
1042                 if (e1000_read_mac_addr(&adapter->hw))
1043                         DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
1044         }
1045         /* don't block initalization here due to bad MAC address */
1046         memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
1047         memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
1048
1049         if (!is_valid_ether_addr(netdev->perm_addr))
1050                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
1051
1052         e1000_get_bus_info(&adapter->hw);
1053
1054         init_timer(&adapter->tx_fifo_stall_timer);
1055         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
1056         adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
1057
1058         init_timer(&adapter->watchdog_timer);
1059         adapter->watchdog_timer.function = &e1000_watchdog;
1060         adapter->watchdog_timer.data = (unsigned long) adapter;
1061
1062         init_timer(&adapter->phy_info_timer);
1063         adapter->phy_info_timer.function = &e1000_update_phy_info;
1064         adapter->phy_info_timer.data = (unsigned long) adapter;
1065
1066         INIT_WORK(&adapter->reset_task, e1000_reset_task);
1067
1068         e1000_check_options(adapter);
1069
1070         /* Initial Wake on LAN setting
1071          * If APM wake is enabled in the EEPROM,
1072          * enable the ACPI Magic Packet filter
1073          */
1074
1075         switch (adapter->hw.mac_type) {
1076         case e1000_82542_rev2_0:
1077         case e1000_82542_rev2_1:
1078         case e1000_82543:
1079                 break;
1080         case e1000_82544:
1081                 e1000_read_eeprom(&adapter->hw,
1082                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1083                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1084                 break;
1085         case e1000_ich8lan:
1086                 e1000_read_eeprom(&adapter->hw,
1087                         EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
1088                 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
1089                 break;
1090         case e1000_82546:
1091         case e1000_82546_rev_3:
1092         case e1000_82571:
1093         case e1000_80003es2lan:
1094                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
1095                         e1000_read_eeprom(&adapter->hw,
1096                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1097                         break;
1098                 }
1099                 /* Fall Through */
1100         default:
1101                 e1000_read_eeprom(&adapter->hw,
1102                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1103                 break;
1104         }
1105         if (eeprom_data & eeprom_apme_mask)
1106                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1107
1108         /* now that we have the eeprom settings, apply the special cases
1109          * where the eeprom may be wrong or the board simply won't support
1110          * wake on lan on a particular port */
1111         switch (pdev->device) {
1112         case E1000_DEV_ID_82546GB_PCIE:
1113                 adapter->eeprom_wol = 0;
1114                 break;
1115         case E1000_DEV_ID_82546EB_FIBER:
1116         case E1000_DEV_ID_82546GB_FIBER:
1117         case E1000_DEV_ID_82571EB_FIBER:
1118                 /* Wake events only supported on port A for dual fiber
1119                  * regardless of eeprom setting */
1120                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
1121                         adapter->eeprom_wol = 0;
1122                 break;
1123         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1124         case E1000_DEV_ID_82571EB_QUAD_COPPER:
1125         case E1000_DEV_ID_82571EB_QUAD_FIBER:
1126         case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1127         case E1000_DEV_ID_82571PT_QUAD_COPPER:
1128                 /* if quad port adapter, disable WoL on all but port A */
1129                 if (global_quad_port_a != 0)
1130                         adapter->eeprom_wol = 0;
1131                 else
1132                         adapter->quad_port_a = 1;
1133                 /* Reset for multiple quad port adapters */
1134                 if (++global_quad_port_a == 4)
1135                         global_quad_port_a = 0;
1136                 break;
1137         }
1138
1139         /* initialize the wol settings based on the eeprom settings */
1140         adapter->wol = adapter->eeprom_wol;
1141
1142         /* print bus type/speed/width info */
1143         {
1144         struct e1000_hw *hw = &adapter->hw;
1145         DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
1146                 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
1147                  (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
1148                 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1149                  (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
1150                  (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
1151                  (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
1152                  (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
1153                 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
1154                  (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
1155                  (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
1156                  "32-bit"));
1157         }
1158
1159         printk("%s\n", print_mac(mac, netdev->dev_addr));
1160
1161         if (adapter->hw.bus_type == e1000_bus_type_pci_express) {
1162                 DPRINTK(PROBE, WARNING, "This device (id %04x:%04x) will no "
1163                         "longer be supported by this driver in the future.\n",
1164                         pdev->vendor, pdev->device);
1165                 DPRINTK(PROBE, WARNING, "please use the \"e1000e\" "
1166                         "driver instead.\n");
1167         }
1168
1169         /* reset the hardware with the new settings */
1170         e1000_reset(adapter);
1171
1172         /* If the controller is 82573 and f/w is AMT, do not set
1173          * DRV_LOAD until the interface is up.  For all other cases,
1174          * let the f/w know that the h/w is now under the control
1175          * of the driver. */
1176         if (adapter->hw.mac_type != e1000_82573 ||
1177             !e1000_check_mng_mode(&adapter->hw))
1178                 e1000_get_hw_control(adapter);
1179
1180         /* tell the stack to leave us alone until e1000_open() is called */
1181         netif_carrier_off(netdev);
1182         netif_stop_queue(netdev);
1183
1184         strcpy(netdev->name, "eth%d");
1185         if ((err = register_netdev(netdev)))
1186                 goto err_register;
1187
1188         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1189
1190         cards_found++;
1191         return 0;
1192
1193 err_register:
1194         e1000_release_hw_control(adapter);
1195 err_eeprom:
1196         if (!e1000_check_phy_reset_block(&adapter->hw))
1197                 e1000_phy_hw_reset(&adapter->hw);
1198
1199         if (adapter->hw.flash_address)
1200                 iounmap(adapter->hw.flash_address);
1201 err_flashmap:
1202 #ifdef CONFIG_E1000_NAPI
1203         for (i = 0; i < adapter->num_rx_queues; i++)
1204                 dev_put(&adapter->polling_netdev[i]);
1205 #endif
1206
1207         kfree(adapter->tx_ring);
1208         kfree(adapter->rx_ring);
1209 #ifdef CONFIG_E1000_NAPI
1210         kfree(adapter->polling_netdev);
1211 #endif
1212 err_sw_init:
1213         iounmap(adapter->hw.hw_addr);
1214 err_ioremap:
1215         free_netdev(netdev);
1216 err_alloc_etherdev:
1217         pci_release_regions(pdev);
1218 err_pci_reg:
1219 err_dma:
1220         pci_disable_device(pdev);
1221         return err;
1222 }
1223
1224 /**
1225  * e1000_remove - Device Removal Routine
1226  * @pdev: PCI device information struct
1227  *
1228  * e1000_remove is called by the PCI subsystem to alert the driver
1229  * that it should release a PCI device.  The could be caused by a
1230  * Hot-Plug event, or because the driver is going to be removed from
1231  * memory.
1232  **/
1233
1234 static void __devexit
1235 e1000_remove(struct pci_dev *pdev)
1236 {
1237         struct net_device *netdev = pci_get_drvdata(pdev);
1238         struct e1000_adapter *adapter = netdev_priv(netdev);
1239 #ifdef CONFIG_E1000_NAPI
1240         int i;
1241 #endif
1242
1243         cancel_work_sync(&adapter->reset_task);
1244
1245         e1000_release_manageability(adapter);
1246
1247         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1248          * would have already happened in close and is redundant. */
1249         e1000_release_hw_control(adapter);
1250
1251 #ifdef CONFIG_E1000_NAPI
1252         for (i = 0; i < adapter->num_rx_queues; i++)
1253                 dev_put(&adapter->polling_netdev[i]);
1254 #endif
1255
1256         unregister_netdev(netdev);
1257
1258         if (!e1000_check_phy_reset_block(&adapter->hw))
1259                 e1000_phy_hw_reset(&adapter->hw);
1260
1261         kfree(adapter->tx_ring);
1262         kfree(adapter->rx_ring);
1263 #ifdef CONFIG_E1000_NAPI
1264         kfree(adapter->polling_netdev);
1265 #endif
1266
1267         iounmap(adapter->hw.hw_addr);
1268         if (adapter->hw.flash_address)
1269                 iounmap(adapter->hw.flash_address);
1270         pci_release_regions(pdev);
1271
1272         free_netdev(netdev);
1273
1274         pci_disable_device(pdev);
1275 }
1276
1277 /**
1278  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1279  * @adapter: board private structure to initialize
1280  *
1281  * e1000_sw_init initializes the Adapter private data structure.
1282  * Fields are initialized based on PCI device information and
1283  * OS network device settings (MTU size).
1284  **/
1285
1286 static int __devinit
1287 e1000_sw_init(struct e1000_adapter *adapter)
1288 {
1289         struct e1000_hw *hw = &adapter->hw;
1290         struct net_device *netdev = adapter->netdev;
1291         struct pci_dev *pdev = adapter->pdev;
1292 #ifdef CONFIG_E1000_NAPI
1293         int i;
1294 #endif
1295
1296         /* PCI config space info */
1297
1298         hw->vendor_id = pdev->vendor;
1299         hw->device_id = pdev->device;
1300         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1301         hw->subsystem_id = pdev->subsystem_device;
1302         hw->revision_id = pdev->revision;
1303
1304         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1305
1306         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1307         adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
1308         hw->max_frame_size = netdev->mtu +
1309                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1310         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1311
1312         /* identify the MAC */
1313
1314         if (e1000_set_mac_type(hw)) {
1315                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1316                 return -EIO;
1317         }
1318
1319         switch (hw->mac_type) {
1320         default:
1321                 break;
1322         case e1000_82541:
1323         case e1000_82547:
1324         case e1000_82541_rev_2:
1325         case e1000_82547_rev_2:
1326                 hw->phy_init_script = 1;
1327                 break;
1328         }
1329
1330         e1000_set_media_type(hw);
1331
1332         hw->wait_autoneg_complete = false;
1333         hw->tbi_compatibility_en = true;
1334         hw->adaptive_ifs = true;
1335
1336         /* Copper options */
1337
1338         if (hw->media_type == e1000_media_type_copper) {
1339                 hw->mdix = AUTO_ALL_MODES;
1340                 hw->disable_polarity_correction = false;
1341                 hw->master_slave = E1000_MASTER_SLAVE;
1342         }
1343
1344         adapter->num_tx_queues = 1;
1345         adapter->num_rx_queues = 1;
1346
1347         if (e1000_alloc_queues(adapter)) {
1348                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1349                 return -ENOMEM;
1350         }
1351
1352 #ifdef CONFIG_E1000_NAPI
1353         for (i = 0; i < adapter->num_rx_queues; i++) {
1354                 adapter->polling_netdev[i].priv = adapter;
1355                 dev_hold(&adapter->polling_netdev[i]);
1356                 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1357         }
1358         spin_lock_init(&adapter->tx_queue_lock);
1359 #endif
1360
1361         /* Explicitly disable IRQ since the NIC can be in any state. */
1362         e1000_irq_disable(adapter);
1363
1364         spin_lock_init(&adapter->stats_lock);
1365
1366         set_bit(__E1000_DOWN, &adapter->flags);
1367
1368         return 0;
1369 }
1370
1371 /**
1372  * e1000_alloc_queues - Allocate memory for all rings
1373  * @adapter: board private structure to initialize
1374  *
1375  * We allocate one ring per queue at run-time since we don't know the
1376  * number of queues at compile-time.  The polling_netdev array is
1377  * intended for Multiqueue, but should work fine with a single queue.
1378  **/
1379
1380 static int __devinit
1381 e1000_alloc_queues(struct e1000_adapter *adapter)
1382 {
1383         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1384                                    sizeof(struct e1000_tx_ring), GFP_KERNEL);
1385         if (!adapter->tx_ring)
1386                 return -ENOMEM;
1387
1388         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1389                                    sizeof(struct e1000_rx_ring), GFP_KERNEL);
1390         if (!adapter->rx_ring) {
1391                 kfree(adapter->tx_ring);
1392                 return -ENOMEM;
1393         }
1394
1395 #ifdef CONFIG_E1000_NAPI
1396         adapter->polling_netdev = kcalloc(adapter->num_rx_queues,
1397                                           sizeof(struct net_device),
1398                                           GFP_KERNEL);
1399         if (!adapter->polling_netdev) {
1400                 kfree(adapter->tx_ring);
1401                 kfree(adapter->rx_ring);
1402                 return -ENOMEM;
1403         }
1404 #endif
1405
1406         return E1000_SUCCESS;
1407 }
1408
1409 /**
1410  * e1000_open - Called when a network interface is made active
1411  * @netdev: network interface device structure
1412  *
1413  * Returns 0 on success, negative value on failure
1414  *
1415  * The open entry point is called when a network interface is made
1416  * active by the system (IFF_UP).  At this point all resources needed
1417  * for transmit and receive operations are allocated, the interrupt
1418  * handler is registered with the OS, the watchdog timer is started,
1419  * and the stack is notified that the interface is ready.
1420  **/
1421
1422 static int
1423 e1000_open(struct net_device *netdev)
1424 {
1425         struct e1000_adapter *adapter = netdev_priv(netdev);
1426         int err;
1427
1428         /* disallow open during test */
1429         if (test_bit(__E1000_TESTING, &adapter->flags))
1430                 return -EBUSY;
1431
1432         /* allocate transmit descriptors */
1433         err = e1000_setup_all_tx_resources(adapter);
1434         if (err)
1435                 goto err_setup_tx;
1436
1437         /* allocate receive descriptors */
1438         err = e1000_setup_all_rx_resources(adapter);
1439         if (err)
1440                 goto err_setup_rx;
1441
1442         e1000_power_up_phy(adapter);
1443
1444         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1445         if ((adapter->hw.mng_cookie.status &
1446                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1447                 e1000_update_mng_vlan(adapter);
1448         }
1449
1450         /* If AMT is enabled, let the firmware know that the network
1451          * interface is now open */
1452         if (adapter->hw.mac_type == e1000_82573 &&
1453             e1000_check_mng_mode(&adapter->hw))
1454                 e1000_get_hw_control(adapter);
1455
1456         /* before we allocate an interrupt, we must be ready to handle it.
1457          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1458          * as soon as we call pci_request_irq, so we have to setup our
1459          * clean_rx handler before we do so.  */
1460         e1000_configure(adapter);
1461
1462         err = e1000_request_irq(adapter);
1463         if (err)
1464                 goto err_req_irq;
1465
1466         /* From here on the code is the same as e1000_up() */
1467         clear_bit(__E1000_DOWN, &adapter->flags);
1468
1469 #ifdef CONFIG_E1000_NAPI
1470         napi_enable(&adapter->napi);
1471 #endif
1472
1473         e1000_irq_enable(adapter);
1474
1475         /* fire a link status change interrupt to start the watchdog */
1476         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_LSC);
1477
1478         return E1000_SUCCESS;
1479
1480 err_req_irq:
1481         e1000_release_hw_control(adapter);
1482         e1000_power_down_phy(adapter);
1483         e1000_free_all_rx_resources(adapter);
1484 err_setup_rx:
1485         e1000_free_all_tx_resources(adapter);
1486 err_setup_tx:
1487         e1000_reset(adapter);
1488
1489         return err;
1490 }
1491
1492 /**
1493  * e1000_close - Disables a network interface
1494  * @netdev: network interface device structure
1495  *
1496  * Returns 0, this is not allowed to fail
1497  *
1498  * The close entry point is called when an interface is de-activated
1499  * by the OS.  The hardware is still under the drivers control, but
1500  * needs to be disabled.  A global MAC reset is issued to stop the
1501  * hardware, and all transmit and receive resources are freed.
1502  **/
1503
1504 static int
1505 e1000_close(struct net_device *netdev)
1506 {
1507         struct e1000_adapter *adapter = netdev_priv(netdev);
1508
1509         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1510         e1000_down(adapter);
1511         e1000_power_down_phy(adapter);
1512         e1000_free_irq(adapter);
1513
1514         e1000_free_all_tx_resources(adapter);
1515         e1000_free_all_rx_resources(adapter);
1516
1517         /* kill manageability vlan ID if supported, but not if a vlan with
1518          * the same ID is registered on the host OS (let 8021q kill it) */
1519         if ((adapter->hw.mng_cookie.status &
1520                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1521              !(adapter->vlgrp &&
1522                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
1523                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1524         }
1525
1526         /* If AMT is enabled, let the firmware know that the network
1527          * interface is now closed */
1528         if (adapter->hw.mac_type == e1000_82573 &&
1529             e1000_check_mng_mode(&adapter->hw))
1530                 e1000_release_hw_control(adapter);
1531
1532         return 0;
1533 }
1534
1535 /**
1536  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1537  * @adapter: address of board private structure
1538  * @start: address of beginning of memory
1539  * @len: length of memory
1540  **/
1541 static bool
1542 e1000_check_64k_bound(struct e1000_adapter *adapter,
1543                       void *start, unsigned long len)
1544 {
1545         unsigned long begin = (unsigned long) start;
1546         unsigned long end = begin + len;
1547
1548         /* First rev 82545 and 82546 need to not allow any memory
1549          * write location to cross 64k boundary due to errata 23 */
1550         if (adapter->hw.mac_type == e1000_82545 ||
1551             adapter->hw.mac_type == e1000_82546) {
1552                 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1553         }
1554
1555         return true;
1556 }
1557
1558 /**
1559  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1560  * @adapter: board private structure
1561  * @txdr:    tx descriptor ring (for a specific queue) to setup
1562  *
1563  * Return 0 on success, negative on failure
1564  **/
1565
1566 static int
1567 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1568                          struct e1000_tx_ring *txdr)
1569 {
1570         struct pci_dev *pdev = adapter->pdev;
1571         int size;
1572
1573         size = sizeof(struct e1000_buffer) * txdr->count;
1574         txdr->buffer_info = vmalloc(size);
1575         if (!txdr->buffer_info) {
1576                 DPRINTK(PROBE, ERR,
1577                 "Unable to allocate memory for the transmit descriptor ring\n");
1578                 return -ENOMEM;
1579         }
1580         memset(txdr->buffer_info, 0, size);
1581
1582         /* round up to nearest 4K */
1583
1584         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1585         txdr->size = ALIGN(txdr->size, 4096);
1586
1587         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1588         if (!txdr->desc) {
1589 setup_tx_desc_die:
1590                 vfree(txdr->buffer_info);
1591                 DPRINTK(PROBE, ERR,
1592                 "Unable to allocate memory for the transmit descriptor ring\n");
1593                 return -ENOMEM;
1594         }
1595
1596         /* Fix for errata 23, can't cross 64kB boundary */
1597         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1598                 void *olddesc = txdr->desc;
1599                 dma_addr_t olddma = txdr->dma;
1600                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1601                                      "at %p\n", txdr->size, txdr->desc);
1602                 /* Try again, without freeing the previous */
1603                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1604                 /* Failed allocation, critical failure */
1605                 if (!txdr->desc) {
1606                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1607                         goto setup_tx_desc_die;
1608                 }
1609
1610                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1611                         /* give up */
1612                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1613                                             txdr->dma);
1614                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1615                         DPRINTK(PROBE, ERR,
1616                                 "Unable to allocate aligned memory "
1617                                 "for the transmit descriptor ring\n");
1618                         vfree(txdr->buffer_info);
1619                         return -ENOMEM;
1620                 } else {
1621                         /* Free old allocation, new allocation was successful */
1622                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1623                 }
1624         }
1625         memset(txdr->desc, 0, txdr->size);
1626
1627         txdr->next_to_use = 0;
1628         txdr->next_to_clean = 0;
1629         spin_lock_init(&txdr->tx_lock);
1630
1631         return 0;
1632 }
1633
1634 /**
1635  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1636  *                                (Descriptors) for all queues
1637  * @adapter: board private structure
1638  *
1639  * Return 0 on success, negative on failure
1640  **/
1641
1642 int
1643 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1644 {
1645         int i, err = 0;
1646
1647         for (i = 0; i < adapter->num_tx_queues; i++) {
1648                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1649                 if (err) {
1650                         DPRINTK(PROBE, ERR,
1651                                 "Allocation for Tx Queue %u failed\n", i);
1652                         for (i-- ; i >= 0; i--)
1653                                 e1000_free_tx_resources(adapter,
1654                                                         &adapter->tx_ring[i]);
1655                         break;
1656                 }
1657         }
1658
1659         return err;
1660 }
1661
1662 /**
1663  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1664  * @adapter: board private structure
1665  *
1666  * Configure the Tx unit of the MAC after a reset.
1667  **/
1668
1669 static void
1670 e1000_configure_tx(struct e1000_adapter *adapter)
1671 {
1672         u64 tdba;
1673         struct e1000_hw *hw = &adapter->hw;
1674         u32 tdlen, tctl, tipg, tarc;
1675         u32 ipgr1, ipgr2;
1676
1677         /* Setup the HW Tx Head and Tail descriptor pointers */
1678
1679         switch (adapter->num_tx_queues) {
1680         case 1:
1681         default:
1682                 tdba = adapter->tx_ring[0].dma;
1683                 tdlen = adapter->tx_ring[0].count *
1684                         sizeof(struct e1000_tx_desc);
1685                 E1000_WRITE_REG(hw, TDLEN, tdlen);
1686                 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1687                 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1688                 E1000_WRITE_REG(hw, TDT, 0);
1689                 E1000_WRITE_REG(hw, TDH, 0);
1690                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1691                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1692                 break;
1693         }
1694
1695         /* Set the default values for the Tx Inter Packet Gap timer */
1696         if (adapter->hw.mac_type <= e1000_82547_rev_2 &&
1697             (hw->media_type == e1000_media_type_fiber ||
1698              hw->media_type == e1000_media_type_internal_serdes))
1699                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1700         else
1701                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1702
1703         switch (hw->mac_type) {
1704         case e1000_82542_rev2_0:
1705         case e1000_82542_rev2_1:
1706                 tipg = DEFAULT_82542_TIPG_IPGT;
1707                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1708                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1709                 break;
1710         case e1000_80003es2lan:
1711                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1712                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1713                 break;
1714         default:
1715                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1716                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1717                 break;
1718         }
1719         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1720         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1721         E1000_WRITE_REG(hw, TIPG, tipg);
1722
1723         /* Set the Tx Interrupt Delay register */
1724
1725         E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1726         if (hw->mac_type >= e1000_82540)
1727                 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1728
1729         /* Program the Transmit Control Register */
1730
1731         tctl = E1000_READ_REG(hw, TCTL);
1732         tctl &= ~E1000_TCTL_CT;
1733         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1734                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1735
1736         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1737                 tarc = E1000_READ_REG(hw, TARC0);
1738                 /* set the speed mode bit, we'll clear it if we're not at
1739                  * gigabit link later */
1740                 tarc |= (1 << 21);
1741                 E1000_WRITE_REG(hw, TARC0, tarc);
1742         } else if (hw->mac_type == e1000_80003es2lan) {
1743                 tarc = E1000_READ_REG(hw, TARC0);
1744                 tarc |= 1;
1745                 E1000_WRITE_REG(hw, TARC0, tarc);
1746                 tarc = E1000_READ_REG(hw, TARC1);
1747                 tarc |= 1;
1748                 E1000_WRITE_REG(hw, TARC1, tarc);
1749         }
1750
1751         e1000_config_collision_dist(hw);
1752
1753         /* Setup Transmit Descriptor Settings for eop descriptor */
1754         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1755
1756         /* only set IDE if we are delaying interrupts using the timers */
1757         if (adapter->tx_int_delay)
1758                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1759
1760         if (hw->mac_type < e1000_82543)
1761                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1762         else
1763                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1764
1765         /* Cache if we're 82544 running in PCI-X because we'll
1766          * need this to apply a workaround later in the send path. */
1767         if (hw->mac_type == e1000_82544 &&
1768             hw->bus_type == e1000_bus_type_pcix)
1769                 adapter->pcix_82544 = 1;
1770
1771         E1000_WRITE_REG(hw, TCTL, tctl);
1772
1773 }
1774
1775 /**
1776  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1777  * @adapter: board private structure
1778  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1779  *
1780  * Returns 0 on success, negative on failure
1781  **/
1782
1783 static int
1784 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1785                          struct e1000_rx_ring *rxdr)
1786 {
1787         struct pci_dev *pdev = adapter->pdev;
1788         int size, desc_len;
1789
1790         size = sizeof(struct e1000_buffer) * rxdr->count;
1791         rxdr->buffer_info = vmalloc(size);
1792         if (!rxdr->buffer_info) {
1793                 DPRINTK(PROBE, ERR,
1794                 "Unable to allocate memory for the receive descriptor ring\n");
1795                 return -ENOMEM;
1796         }
1797         memset(rxdr->buffer_info, 0, size);
1798
1799         rxdr->ps_page = kcalloc(rxdr->count, sizeof(struct e1000_ps_page),
1800                                 GFP_KERNEL);
1801         if (!rxdr->ps_page) {
1802                 vfree(rxdr->buffer_info);
1803                 DPRINTK(PROBE, ERR,
1804                 "Unable to allocate memory for the receive descriptor ring\n");
1805                 return -ENOMEM;
1806         }
1807
1808         rxdr->ps_page_dma = kcalloc(rxdr->count,
1809                                     sizeof(struct e1000_ps_page_dma),
1810                                     GFP_KERNEL);
1811         if (!rxdr->ps_page_dma) {
1812                 vfree(rxdr->buffer_info);
1813                 kfree(rxdr->ps_page);
1814                 DPRINTK(PROBE, ERR,
1815                 "Unable to allocate memory for the receive descriptor ring\n");
1816                 return -ENOMEM;
1817         }
1818
1819         if (adapter->hw.mac_type <= e1000_82547_rev_2)
1820                 desc_len = sizeof(struct e1000_rx_desc);
1821         else
1822                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1823
1824         /* Round up to nearest 4K */
1825
1826         rxdr->size = rxdr->count * desc_len;
1827         rxdr->size = ALIGN(rxdr->size, 4096);
1828
1829         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1830
1831         if (!rxdr->desc) {
1832                 DPRINTK(PROBE, ERR,
1833                 "Unable to allocate memory for the receive descriptor ring\n");
1834 setup_rx_desc_die:
1835                 vfree(rxdr->buffer_info);
1836                 kfree(rxdr->ps_page);
1837                 kfree(rxdr->ps_page_dma);
1838                 return -ENOMEM;
1839         }
1840
1841         /* Fix for errata 23, can't cross 64kB boundary */
1842         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1843                 void *olddesc = rxdr->desc;
1844                 dma_addr_t olddma = rxdr->dma;
1845                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1846                                      "at %p\n", rxdr->size, rxdr->desc);
1847                 /* Try again, without freeing the previous */
1848                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1849                 /* Failed allocation, critical failure */
1850                 if (!rxdr->desc) {
1851                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1852                         DPRINTK(PROBE, ERR,
1853                                 "Unable to allocate memory "
1854                                 "for the receive descriptor ring\n");
1855                         goto setup_rx_desc_die;
1856                 }
1857
1858                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1859                         /* give up */
1860                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1861                                             rxdr->dma);
1862                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1863                         DPRINTK(PROBE, ERR,
1864                                 "Unable to allocate aligned memory "
1865                                 "for the receive descriptor ring\n");
1866                         goto setup_rx_desc_die;
1867                 } else {
1868                         /* Free old allocation, new allocation was successful */
1869                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1870                 }
1871         }
1872         memset(rxdr->desc, 0, rxdr->size);
1873
1874         rxdr->next_to_clean = 0;
1875         rxdr->next_to_use = 0;
1876
1877         return 0;
1878 }
1879
1880 /**
1881  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1882  *                                (Descriptors) for all queues
1883  * @adapter: board private structure
1884  *
1885  * Return 0 on success, negative on failure
1886  **/
1887
1888 int
1889 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1890 {
1891         int i, err = 0;
1892
1893         for (i = 0; i < adapter->num_rx_queues; i++) {
1894                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1895                 if (err) {
1896                         DPRINTK(PROBE, ERR,
1897                                 "Allocation for Rx Queue %u failed\n", i);
1898                         for (i-- ; i >= 0; i--)
1899                                 e1000_free_rx_resources(adapter,
1900                                                         &adapter->rx_ring[i]);
1901                         break;
1902                 }
1903         }
1904
1905         return err;
1906 }
1907
1908 /**
1909  * e1000_setup_rctl - configure the receive control registers
1910  * @adapter: Board private structure
1911  **/
1912 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1913                         (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1914 static void
1915 e1000_setup_rctl(struct e1000_adapter *adapter)
1916 {
1917         u32 rctl, rfctl;
1918         u32 psrctl = 0;
1919 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1920         u32 pages = 0;
1921 #endif
1922
1923         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1924
1925         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1926
1927         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1928                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1929                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1930
1931         if (adapter->hw.tbi_compatibility_on == 1)
1932                 rctl |= E1000_RCTL_SBP;
1933         else
1934                 rctl &= ~E1000_RCTL_SBP;
1935
1936         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1937                 rctl &= ~E1000_RCTL_LPE;
1938         else
1939                 rctl |= E1000_RCTL_LPE;
1940
1941         /* Setup buffer sizes */
1942         rctl &= ~E1000_RCTL_SZ_4096;
1943         rctl |= E1000_RCTL_BSEX;
1944         switch (adapter->rx_buffer_len) {
1945                 case E1000_RXBUFFER_256:
1946                         rctl |= E1000_RCTL_SZ_256;
1947                         rctl &= ~E1000_RCTL_BSEX;
1948                         break;
1949                 case E1000_RXBUFFER_512:
1950                         rctl |= E1000_RCTL_SZ_512;
1951                         rctl &= ~E1000_RCTL_BSEX;
1952                         break;
1953                 case E1000_RXBUFFER_1024:
1954                         rctl |= E1000_RCTL_SZ_1024;
1955                         rctl &= ~E1000_RCTL_BSEX;
1956                         break;
1957                 case E1000_RXBUFFER_2048:
1958                 default:
1959                         rctl |= E1000_RCTL_SZ_2048;
1960                         rctl &= ~E1000_RCTL_BSEX;
1961                         break;
1962                 case E1000_RXBUFFER_4096:
1963                         rctl |= E1000_RCTL_SZ_4096;
1964                         break;
1965                 case E1000_RXBUFFER_8192:
1966                         rctl |= E1000_RCTL_SZ_8192;
1967                         break;
1968                 case E1000_RXBUFFER_16384:
1969                         rctl |= E1000_RCTL_SZ_16384;
1970                         break;
1971         }
1972
1973 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1974         /* 82571 and greater support packet-split where the protocol
1975          * header is placed in skb->data and the packet data is
1976          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1977          * In the case of a non-split, skb->data is linearly filled,
1978          * followed by the page buffers.  Therefore, skb->data is
1979          * sized to hold the largest protocol header.
1980          */
1981         /* allocations using alloc_page take too long for regular MTU
1982          * so only enable packet split for jumbo frames */
1983         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1984         if ((adapter->hw.mac_type >= e1000_82571) && (pages <= 3) &&
1985             PAGE_SIZE <= 16384 && (rctl & E1000_RCTL_LPE))
1986                 adapter->rx_ps_pages = pages;
1987         else
1988                 adapter->rx_ps_pages = 0;
1989 #endif
1990         if (adapter->rx_ps_pages) {
1991                 /* Configure extra packet-split registers */
1992                 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1993                 rfctl |= E1000_RFCTL_EXTEN;
1994                 /* disable packet split support for IPv6 extension headers,
1995                  * because some malformed IPv6 headers can hang the RX */
1996                 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
1997                           E1000_RFCTL_NEW_IPV6_EXT_DIS);
1998
1999                 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
2000
2001                 rctl |= E1000_RCTL_DTYP_PS;
2002
2003                 psrctl |= adapter->rx_ps_bsize0 >>
2004                         E1000_PSRCTL_BSIZE0_SHIFT;
2005
2006                 switch (adapter->rx_ps_pages) {
2007                 case 3:
2008                         psrctl |= PAGE_SIZE <<
2009                                 E1000_PSRCTL_BSIZE3_SHIFT;
2010                 case 2:
2011                         psrctl |= PAGE_SIZE <<
2012                                 E1000_PSRCTL_BSIZE2_SHIFT;
2013                 case 1:
2014                         psrctl |= PAGE_SIZE >>
2015                                 E1000_PSRCTL_BSIZE1_SHIFT;
2016                         break;
2017                 }
2018
2019                 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
2020         }
2021
2022         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2023 }
2024
2025 /**
2026  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
2027  * @adapter: board private structure
2028  *
2029  * Configure the Rx unit of the MAC after a reset.
2030  **/
2031
2032 static void
2033 e1000_configure_rx(struct e1000_adapter *adapter)
2034 {
2035         u64 rdba;
2036         struct e1000_hw *hw = &adapter->hw;
2037         u32 rdlen, rctl, rxcsum, ctrl_ext;
2038
2039         if (adapter->rx_ps_pages) {
2040                 /* this is a 32 byte descriptor */
2041                 rdlen = adapter->rx_ring[0].count *
2042                         sizeof(union e1000_rx_desc_packet_split);
2043                 adapter->clean_rx = e1000_clean_rx_irq_ps;
2044                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2045         } else {
2046                 rdlen = adapter->rx_ring[0].count *
2047                         sizeof(struct e1000_rx_desc);
2048                 adapter->clean_rx = e1000_clean_rx_irq;
2049                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2050         }
2051
2052         /* disable receives while setting up the descriptors */
2053         rctl = E1000_READ_REG(hw, RCTL);
2054         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
2055
2056         /* set the Receive Delay Timer Register */
2057         E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
2058
2059         if (hw->mac_type >= e1000_82540) {
2060                 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
2061                 if (adapter->itr_setting != 0)
2062                         E1000_WRITE_REG(hw, ITR,
2063                                 1000000000 / (adapter->itr * 256));
2064         }
2065
2066         if (hw->mac_type >= e1000_82571) {
2067                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
2068                 /* Reset delay timers after every interrupt */
2069                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
2070 #ifdef CONFIG_E1000_NAPI
2071                 /* Auto-Mask interrupts upon ICR access */
2072                 ctrl_ext |= E1000_CTRL_EXT_IAME;
2073                 E1000_WRITE_REG(hw, IAM, 0xffffffff);
2074 #endif
2075                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
2076                 E1000_WRITE_FLUSH(hw);
2077         }
2078
2079         /* Setup the HW Rx Head and Tail Descriptor Pointers and
2080          * the Base and Length of the Rx Descriptor Ring */
2081         switch (adapter->num_rx_queues) {
2082         case 1:
2083         default:
2084                 rdba = adapter->rx_ring[0].dma;
2085                 E1000_WRITE_REG(hw, RDLEN, rdlen);
2086                 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
2087                 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
2088                 E1000_WRITE_REG(hw, RDT, 0);
2089                 E1000_WRITE_REG(hw, RDH, 0);
2090                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
2091                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
2092                 break;
2093         }
2094
2095         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
2096         if (hw->mac_type >= e1000_82543) {
2097                 rxcsum = E1000_READ_REG(hw, RXCSUM);
2098                 if (adapter->rx_csum) {
2099                         rxcsum |= E1000_RXCSUM_TUOFL;
2100
2101                         /* Enable 82571 IPv4 payload checksum for UDP fragments
2102                          * Must be used in conjunction with packet-split. */
2103                         if ((hw->mac_type >= e1000_82571) &&
2104                             (adapter->rx_ps_pages)) {
2105                                 rxcsum |= E1000_RXCSUM_IPPCSE;
2106                         }
2107                 } else {
2108                         rxcsum &= ~E1000_RXCSUM_TUOFL;
2109                         /* don't need to clear IPPCSE as it defaults to 0 */
2110                 }
2111                 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
2112         }
2113
2114         /* enable early receives on 82573, only takes effect if using > 2048
2115          * byte total frame size.  for example only for jumbo frames */
2116 #define E1000_ERT_2048 0x100
2117         if (hw->mac_type == e1000_82573)
2118                 E1000_WRITE_REG(hw, ERT, E1000_ERT_2048);
2119
2120         /* Enable Receives */
2121         E1000_WRITE_REG(hw, RCTL, rctl);
2122 }
2123
2124 /**
2125  * e1000_free_tx_resources - Free Tx Resources per Queue
2126  * @adapter: board private structure
2127  * @tx_ring: Tx descriptor ring for a specific queue
2128  *
2129  * Free all transmit software resources
2130  **/
2131
2132 static void
2133 e1000_free_tx_resources(struct e1000_adapter *adapter,
2134                         struct e1000_tx_ring *tx_ring)
2135 {
2136         struct pci_dev *pdev = adapter->pdev;
2137
2138         e1000_clean_tx_ring(adapter, tx_ring);
2139
2140         vfree(tx_ring->buffer_info);
2141         tx_ring->buffer_info = NULL;
2142
2143         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2144
2145         tx_ring->desc = NULL;
2146 }
2147
2148 /**
2149  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
2150  * @adapter: board private structure
2151  *
2152  * Free all transmit software resources
2153  **/
2154
2155 void
2156 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
2157 {
2158         int i;
2159
2160         for (i = 0; i < adapter->num_tx_queues; i++)
2161                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
2162 }
2163
2164 static void
2165 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
2166                         struct e1000_buffer *buffer_info)
2167 {
2168         if (buffer_info->dma) {
2169                 pci_unmap_page(adapter->pdev,
2170                                 buffer_info->dma,
2171                                 buffer_info->length,
2172                                 PCI_DMA_TODEVICE);
2173                 buffer_info->dma = 0;
2174         }
2175         if (buffer_info->skb) {
2176                 dev_kfree_skb_any(buffer_info->skb);
2177                 buffer_info->skb = NULL;
2178         }
2179         /* buffer_info must be completely set up in the transmit path */
2180 }
2181
2182 /**
2183  * e1000_clean_tx_ring - Free Tx Buffers
2184  * @adapter: board private structure
2185  * @tx_ring: ring to be cleaned
2186  **/
2187
2188 static void
2189 e1000_clean_tx_ring(struct e1000_adapter *adapter,
2190                     struct e1000_tx_ring *tx_ring)
2191 {
2192         struct e1000_buffer *buffer_info;
2193         unsigned long size;
2194         unsigned int i;
2195
2196         /* Free all the Tx ring sk_buffs */
2197
2198         for (i = 0; i < tx_ring->count; i++) {
2199                 buffer_info = &tx_ring->buffer_info[i];
2200                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2201         }
2202
2203         size = sizeof(struct e1000_buffer) * tx_ring->count;
2204         memset(tx_ring->buffer_info, 0, size);
2205
2206         /* Zero out the descriptor ring */
2207
2208         memset(tx_ring->desc, 0, tx_ring->size);
2209
2210         tx_ring->next_to_use = 0;
2211         tx_ring->next_to_clean = 0;
2212         tx_ring->last_tx_tso = 0;
2213
2214         writel(0, adapter->hw.hw_addr + tx_ring->tdh);
2215         writel(0, adapter->hw.hw_addr + tx_ring->tdt);
2216 }
2217
2218 /**
2219  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2220  * @adapter: board private structure
2221  **/
2222
2223 static void
2224 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2225 {
2226         int i;
2227
2228         for (i = 0; i < adapter->num_tx_queues; i++)
2229                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2230 }
2231
2232 /**
2233  * e1000_free_rx_resources - Free Rx Resources
2234  * @adapter: board private structure
2235  * @rx_ring: ring to clean the resources from
2236  *
2237  * Free all receive software resources
2238  **/
2239
2240 static void
2241 e1000_free_rx_resources(struct e1000_adapter *adapter,
2242                         struct e1000_rx_ring *rx_ring)
2243 {
2244         struct pci_dev *pdev = adapter->pdev;
2245
2246         e1000_clean_rx_ring(adapter, rx_ring);
2247
2248         vfree(rx_ring->buffer_info);
2249         rx_ring->buffer_info = NULL;
2250         kfree(rx_ring->ps_page);
2251         rx_ring->ps_page = NULL;
2252         kfree(rx_ring->ps_page_dma);
2253         rx_ring->ps_page_dma = NULL;
2254
2255         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2256
2257         rx_ring->desc = NULL;
2258 }
2259
2260 /**
2261  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2262  * @adapter: board private structure
2263  *
2264  * Free all receive software resources
2265  **/
2266
2267 void
2268 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2269 {
2270         int i;
2271
2272         for (i = 0; i < adapter->num_rx_queues; i++)
2273                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2274 }
2275
2276 /**
2277  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2278  * @adapter: board private structure
2279  * @rx_ring: ring to free buffers from
2280  **/
2281
2282 static void
2283 e1000_clean_rx_ring(struct e1000_adapter *adapter,
2284                     struct e1000_rx_ring *rx_ring)
2285 {
2286         struct e1000_buffer *buffer_info;
2287         struct e1000_ps_page *ps_page;
2288         struct e1000_ps_page_dma *ps_page_dma;
2289         struct pci_dev *pdev = adapter->pdev;
2290         unsigned long size;
2291         unsigned int i, j;
2292
2293         /* Free all the Rx ring sk_buffs */
2294         for (i = 0; i < rx_ring->count; i++) {
2295                 buffer_info = &rx_ring->buffer_info[i];
2296                 if (buffer_info->skb) {
2297                         pci_unmap_single(pdev,
2298                                          buffer_info->dma,
2299                                          buffer_info->length,
2300                                          PCI_DMA_FROMDEVICE);
2301
2302                         dev_kfree_skb(buffer_info->skb);
2303                         buffer_info->skb = NULL;
2304                 }
2305                 ps_page = &rx_ring->ps_page[i];
2306                 ps_page_dma = &rx_ring->ps_page_dma[i];
2307                 for (j = 0; j < adapter->rx_ps_pages; j++) {
2308                         if (!ps_page->ps_page[j]) break;
2309                         pci_unmap_page(pdev,
2310                                        ps_page_dma->ps_page_dma[j],
2311                                        PAGE_SIZE, PCI_DMA_FROMDEVICE);
2312                         ps_page_dma->ps_page_dma[j] = 0;
2313                         put_page(ps_page->ps_page[j]);
2314                         ps_page->ps_page[j] = NULL;
2315                 }
2316         }
2317
2318         size = sizeof(struct e1000_buffer) * rx_ring->count;
2319         memset(rx_ring->buffer_info, 0, size);
2320         size = sizeof(struct e1000_ps_page) * rx_ring->count;
2321         memset(rx_ring->ps_page, 0, size);
2322         size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
2323         memset(rx_ring->ps_page_dma, 0, size);
2324
2325         /* Zero out the descriptor ring */
2326
2327         memset(rx_ring->desc, 0, rx_ring->size);
2328
2329         rx_ring->next_to_clean = 0;
2330         rx_ring->next_to_use = 0;
2331
2332         writel(0, adapter->hw.hw_addr + rx_ring->rdh);
2333         writel(0, adapter->hw.hw_addr + rx_ring->rdt);
2334 }
2335
2336 /**
2337  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2338  * @adapter: board private structure
2339  **/
2340
2341 static void
2342 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2343 {
2344         int i;
2345
2346         for (i = 0; i < adapter->num_rx_queues; i++)
2347                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2348 }
2349
2350 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2351  * and memory write and invalidate disabled for certain operations
2352  */
2353 static void
2354 e1000_enter_82542_rst(struct e1000_adapter *adapter)
2355 {
2356         struct net_device *netdev = adapter->netdev;
2357         u32 rctl;
2358
2359         e1000_pci_clear_mwi(&adapter->hw);
2360
2361         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2362         rctl |= E1000_RCTL_RST;
2363         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2364         E1000_WRITE_FLUSH(&adapter->hw);
2365         mdelay(5);
2366
2367         if (netif_running(netdev))
2368                 e1000_clean_all_rx_rings(adapter);
2369 }
2370
2371 static void
2372 e1000_leave_82542_rst(struct e1000_adapter *adapter)
2373 {
2374         struct net_device *netdev = adapter->netdev;
2375         u32 rctl;
2376
2377         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2378         rctl &= ~E1000_RCTL_RST;
2379         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2380         E1000_WRITE_FLUSH(&adapter->hw);
2381         mdelay(5);
2382
2383         if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2384                 e1000_pci_set_mwi(&adapter->hw);
2385
2386         if (netif_running(netdev)) {
2387                 /* No need to loop, because 82542 supports only 1 queue */
2388                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2389                 e1000_configure_rx(adapter);
2390                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2391         }
2392 }
2393
2394 /**
2395  * e1000_set_mac - Change the Ethernet Address of the NIC
2396  * @netdev: network interface device structure
2397  * @p: pointer to an address structure
2398  *
2399  * Returns 0 on success, negative on failure
2400  **/
2401
2402 static int
2403 e1000_set_mac(struct net_device *netdev, void *p)
2404 {
2405         struct e1000_adapter *adapter = netdev_priv(netdev);
2406         struct sockaddr *addr = p;
2407
2408         if (!is_valid_ether_addr(addr->sa_data))
2409                 return -EADDRNOTAVAIL;
2410
2411         /* 82542 2.0 needs to be in reset to write receive address registers */
2412
2413         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2414                 e1000_enter_82542_rst(adapter);
2415
2416         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2417         memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2418
2419         e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2420
2421         /* With 82571 controllers, LAA may be overwritten (with the default)
2422          * due to controller reset from the other port. */
2423         if (adapter->hw.mac_type == e1000_82571) {
2424                 /* activate the work around */
2425                 adapter->hw.laa_is_present = 1;
2426
2427                 /* Hold a copy of the LAA in RAR[14] This is done so that
2428                  * between the time RAR[0] gets clobbered  and the time it
2429                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2430                  * of the RARs and no incoming packets directed to this port
2431                  * are dropped. Eventaully the LAA will be in RAR[0] and
2432                  * RAR[14] */
2433                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2434                                         E1000_RAR_ENTRIES - 1);
2435         }
2436
2437         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2438                 e1000_leave_82542_rst(adapter);
2439
2440         return 0;
2441 }
2442
2443 /**
2444  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2445  * @netdev: network interface device structure
2446  *
2447  * The set_rx_mode entry point is called whenever the unicast or multicast
2448  * address lists or the network interface flags are updated. This routine is
2449  * responsible for configuring the hardware for proper unicast, multicast,
2450  * promiscuous mode, and all-multi behavior.
2451  **/
2452
2453 static void
2454 e1000_set_rx_mode(struct net_device *netdev)
2455 {
2456         struct e1000_adapter *adapter = netdev_priv(netdev);
2457         struct e1000_hw *hw = &adapter->hw;
2458         struct dev_addr_list *uc_ptr;
2459         struct dev_addr_list *mc_ptr;
2460         u32 rctl;
2461         u32 hash_value;
2462         int i, rar_entries = E1000_RAR_ENTRIES;
2463         int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2464                                 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2465                                 E1000_NUM_MTA_REGISTERS;
2466
2467         if (adapter->hw.mac_type == e1000_ich8lan)
2468                 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2469
2470         /* reserve RAR[14] for LAA over-write work-around */
2471         if (adapter->hw.mac_type == e1000_82571)
2472                 rar_entries--;
2473
2474         /* Check for Promiscuous and All Multicast modes */
2475
2476         rctl = E1000_READ_REG(hw, RCTL);
2477
2478         if (netdev->flags & IFF_PROMISC) {
2479                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2480                 rctl &= ~E1000_RCTL_VFE;
2481         } else {
2482                 if (netdev->flags & IFF_ALLMULTI) {
2483                         rctl |= E1000_RCTL_MPE;
2484                 } else {
2485                         rctl &= ~E1000_RCTL_MPE;
2486                 }
2487                 if (adapter->vlgrp && adapter->hw.mac_type != e1000_ich8lan)
2488                         rctl |= E1000_RCTL_VFE;
2489         }
2490
2491         uc_ptr = NULL;
2492         if (netdev->uc_count > rar_entries - 1) {
2493                 rctl |= E1000_RCTL_UPE;
2494         } else if (!(netdev->flags & IFF_PROMISC)) {
2495                 rctl &= ~E1000_RCTL_UPE;
2496                 uc_ptr = netdev->uc_list;
2497         }
2498
2499         E1000_WRITE_REG(hw, RCTL, rctl);
2500
2501         /* 82542 2.0 needs to be in reset to write receive address registers */
2502
2503         if (hw->mac_type == e1000_82542_rev2_0)
2504                 e1000_enter_82542_rst(adapter);
2505
2506         /* load the first 14 addresses into the exact filters 1-14. Unicast
2507          * addresses take precedence to avoid disabling unicast filtering
2508          * when possible.
2509          *
2510          * RAR 0 is used for the station MAC adddress
2511          * if there are not 14 addresses, go ahead and clear the filters
2512          * -- with 82571 controllers only 0-13 entries are filled here
2513          */
2514         mc_ptr = netdev->mc_list;
2515
2516         for (i = 1; i < rar_entries; i++) {
2517                 if (uc_ptr) {
2518                         e1000_rar_set(hw, uc_ptr->da_addr, i);
2519                         uc_ptr = uc_ptr->next;
2520                 } else if (mc_ptr) {
2521                         e1000_rar_set(hw, mc_ptr->da_addr, i);
2522                         mc_ptr = mc_ptr->next;
2523                 } else {
2524                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2525                         E1000_WRITE_FLUSH(hw);
2526                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2527                         E1000_WRITE_FLUSH(hw);
2528                 }
2529         }
2530         WARN_ON(uc_ptr != NULL);
2531
2532         /* clear the old settings from the multicast hash table */
2533
2534         for (i = 0; i < mta_reg_count; i++) {
2535                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2536                 E1000_WRITE_FLUSH(hw);
2537         }
2538
2539         /* load any remaining addresses into the hash table */
2540
2541         for (; mc_ptr; mc_ptr = mc_ptr->next) {
2542                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->da_addr);
2543                 e1000_mta_set(hw, hash_value);
2544         }
2545
2546         if (hw->mac_type == e1000_82542_rev2_0)
2547                 e1000_leave_82542_rst(adapter);
2548 }
2549
2550 /* Need to wait a few seconds after link up to get diagnostic information from
2551  * the phy */
2552
2553 static void
2554 e1000_update_phy_info(unsigned long data)
2555 {
2556         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2557         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2558 }
2559
2560 /**
2561  * e1000_82547_tx_fifo_stall - Timer Call-back
2562  * @data: pointer to adapter cast into an unsigned long
2563  **/
2564
2565 static void
2566 e1000_82547_tx_fifo_stall(unsigned long data)
2567 {
2568         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2569         struct net_device *netdev = adapter->netdev;
2570         u32 tctl;
2571
2572         if (atomic_read(&adapter->tx_fifo_stall)) {
2573                 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2574                     E1000_READ_REG(&adapter->hw, TDH)) &&
2575                    (E1000_READ_REG(&adapter->hw, TDFT) ==
2576                     E1000_READ_REG(&adapter->hw, TDFH)) &&
2577                    (E1000_READ_REG(&adapter->hw, TDFTS) ==
2578                     E1000_READ_REG(&adapter->hw, TDFHS))) {
2579                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2580                         E1000_WRITE_REG(&adapter->hw, TCTL,
2581                                         tctl & ~E1000_TCTL_EN);
2582                         E1000_WRITE_REG(&adapter->hw, TDFT,
2583                                         adapter->tx_head_addr);
2584                         E1000_WRITE_REG(&adapter->hw, TDFH,
2585                                         adapter->tx_head_addr);
2586                         E1000_WRITE_REG(&adapter->hw, TDFTS,
2587                                         adapter->tx_head_addr);
2588                         E1000_WRITE_REG(&adapter->hw, TDFHS,
2589                                         adapter->tx_head_addr);
2590                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2591                         E1000_WRITE_FLUSH(&adapter->hw);
2592
2593                         adapter->tx_fifo_head = 0;
2594                         atomic_set(&adapter->tx_fifo_stall, 0);
2595                         netif_wake_queue(netdev);
2596                 } else {
2597                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2598                 }
2599         }
2600 }
2601
2602 /**
2603  * e1000_watchdog - Timer Call-back
2604  * @data: pointer to adapter cast into an unsigned long
2605  **/
2606 static void
2607 e1000_watchdog(unsigned long data)
2608 {
2609         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2610         struct net_device *netdev = adapter->netdev;
2611         struct e1000_tx_ring *txdr = adapter->tx_ring;
2612         u32 link, tctl;
2613         s32 ret_val;
2614
2615         ret_val = e1000_check_for_link(&adapter->hw);
2616         if ((ret_val == E1000_ERR_PHY) &&
2617             (adapter->hw.phy_type == e1000_phy_igp_3) &&
2618             (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2619                 /* See e1000_kumeran_lock_loss_workaround() */
2620                 DPRINTK(LINK, INFO,
2621                         "Gigabit has been disabled, downgrading speed\n");
2622         }
2623
2624         if (adapter->hw.mac_type == e1000_82573) {
2625                 e1000_enable_tx_pkt_filtering(&adapter->hw);
2626                 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2627                         e1000_update_mng_vlan(adapter);
2628         }
2629
2630         if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2631            !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2632                 link = !adapter->hw.serdes_link_down;
2633         else
2634                 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2635
2636         if (link) {
2637                 if (!netif_carrier_ok(netdev)) {
2638                         u32 ctrl;
2639                         bool txb2b = true;
2640                         e1000_get_speed_and_duplex(&adapter->hw,
2641                                                    &adapter->link_speed,
2642                                                    &adapter->link_duplex);
2643
2644                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
2645                         DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s, "
2646                                 "Flow Control: %s\n",
2647                                 adapter->link_speed,
2648                                 adapter->link_duplex == FULL_DUPLEX ?
2649                                 "Full Duplex" : "Half Duplex",
2650                                 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2651                                 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2652                                 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2653                                 E1000_CTRL_TFCE) ? "TX" : "None" )));
2654
2655                         /* tweak tx_queue_len according to speed/duplex
2656                          * and adjust the timeout factor */
2657                         netdev->tx_queue_len = adapter->tx_queue_len;
2658                         adapter->tx_timeout_factor = 1;
2659                         switch (adapter->link_speed) {
2660                         case SPEED_10:
2661                                 txb2b = false;
2662                                 netdev->tx_queue_len = 10;
2663                                 adapter->tx_timeout_factor = 8;
2664                                 break;
2665                         case SPEED_100:
2666                                 txb2b = false;
2667                                 netdev->tx_queue_len = 100;
2668                                 /* maybe add some timeout factor ? */
2669                                 break;
2670                         }
2671
2672                         if ((adapter->hw.mac_type == e1000_82571 ||
2673                              adapter->hw.mac_type == e1000_82572) &&
2674                             !txb2b) {
2675                                 u32 tarc0;
2676                                 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
2677                                 tarc0 &= ~(1 << 21);
2678                                 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
2679                         }
2680
2681                         /* disable TSO for pcie and 10/100 speeds, to avoid
2682                          * some hardware issues */
2683                         if (!adapter->tso_force &&
2684                             adapter->hw.bus_type == e1000_bus_type_pci_express){
2685                                 switch (adapter->link_speed) {
2686                                 case SPEED_10:
2687                                 case SPEED_100:
2688                                         DPRINTK(PROBE,INFO,
2689                                         "10/100 speed: disabling TSO\n");
2690                                         netdev->features &= ~NETIF_F_TSO;
2691                                         netdev->features &= ~NETIF_F_TSO6;
2692                                         break;
2693                                 case SPEED_1000:
2694                                         netdev->features |= NETIF_F_TSO;
2695                                         netdev->features |= NETIF_F_TSO6;
2696                                         break;
2697                                 default:
2698                                         /* oops */
2699                                         break;
2700                                 }
2701                         }
2702
2703                         /* enable transmits in the hardware, need to do this
2704                          * after setting TARC0 */
2705                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2706                         tctl |= E1000_TCTL_EN;
2707                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2708
2709                         netif_carrier_on(netdev);
2710                         netif_wake_queue(netdev);
2711                         mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2712                         adapter->smartspeed = 0;
2713                 } else {
2714                         /* make sure the receive unit is started */
2715                         if (adapter->hw.rx_needs_kicking) {
2716                                 struct e1000_hw *hw = &adapter->hw;
2717                                 u32 rctl = E1000_READ_REG(hw, RCTL);
2718                                 E1000_WRITE_REG(hw, RCTL, rctl | E1000_RCTL_EN);
2719                         }
2720                 }
2721         } else {
2722                 if (netif_carrier_ok(netdev)) {
2723                         adapter->link_speed = 0;
2724                         adapter->link_duplex = 0;
2725                         DPRINTK(LINK, INFO, "NIC Link is Down\n");
2726                         netif_carrier_off(netdev);
2727                         netif_stop_queue(netdev);
2728                         mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2729
2730                         /* 80003ES2LAN workaround--
2731                          * For packet buffer work-around on link down event;
2732                          * disable receives in the ISR and
2733                          * reset device here in the watchdog
2734                          */
2735                         if (adapter->hw.mac_type == e1000_80003es2lan)
2736                                 /* reset device */
2737                                 schedule_work(&adapter->reset_task);
2738                 }
2739
2740                 e1000_smartspeed(adapter);
2741         }
2742
2743         e1000_update_stats(adapter);
2744
2745         adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2746         adapter->tpt_old = adapter->stats.tpt;
2747         adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2748         adapter->colc_old = adapter->stats.colc;
2749
2750         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2751         adapter->gorcl_old = adapter->stats.gorcl;
2752         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2753         adapter->gotcl_old = adapter->stats.gotcl;
2754
2755         e1000_update_adaptive(&adapter->hw);
2756
2757         if (!netif_carrier_ok(netdev)) {
2758                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2759                         /* We've lost link, so the controller stops DMA,
2760                          * but we've got queued Tx work that's never going
2761                          * to get done, so reset controller to flush Tx.
2762                          * (Do the reset outside of interrupt context). */
2763                         adapter->tx_timeout_count++;
2764                         schedule_work(&adapter->reset_task);
2765                 }
2766         }
2767
2768         /* Cause software interrupt to ensure rx ring is cleaned */
2769         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2770
2771         /* Force detection of hung controller every watchdog period */
2772         adapter->detect_tx_hung = true;
2773
2774         /* With 82571 controllers, LAA may be overwritten due to controller
2775          * reset from the other port. Set the appropriate LAA in RAR[0] */
2776         if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2777                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2778
2779         /* Reset the timer */
2780         mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 2 * HZ));
2781 }
2782
2783 enum latency_range {
2784         lowest_latency = 0,
2785         low_latency = 1,
2786         bulk_latency = 2,
2787         latency_invalid = 255
2788 };
2789
2790 /**
2791  * e1000_update_itr - update the dynamic ITR value based on statistics
2792  *      Stores a new ITR value based on packets and byte
2793  *      counts during the last interrupt.  The advantage of per interrupt
2794  *      computation is faster updates and more accurate ITR for the current
2795  *      traffic pattern.  Constants in this function were computed
2796  *      based on theoretical maximum wire speed and thresholds were set based
2797  *      on testing data as well as attempting to minimize response time
2798  *      while increasing bulk throughput.
2799  *      this functionality is controlled by the InterruptThrottleRate module
2800  *      parameter (see e1000_param.c)
2801  * @adapter: pointer to adapter
2802  * @itr_setting: current adapter->itr
2803  * @packets: the number of packets during this measurement interval
2804  * @bytes: the number of bytes during this measurement interval
2805  **/
2806 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2807                                    u16 itr_setting,
2808                                    int packets,
2809                                    int bytes)
2810 {
2811         unsigned int retval = itr_setting;
2812         struct e1000_hw *hw = &adapter->hw;
2813
2814         if (unlikely(hw->mac_type < e1000_82540))
2815                 goto update_itr_done;
2816
2817         if (packets == 0)
2818                 goto update_itr_done;
2819
2820         switch (itr_setting) {
2821         case lowest_latency:
2822                 /* jumbo frames get bulk treatment*/
2823                 if (bytes/packets > 8000)
2824                         retval = bulk_latency;
2825                 else if ((packets < 5) && (bytes > 512))
2826                         retval = low_latency;
2827                 break;
2828         case low_latency:  /* 50 usec aka 20000 ints/s */
2829                 if (bytes > 10000) {
2830                         /* jumbo frames need bulk latency setting */
2831                         if (bytes/packets > 8000)
2832                                 retval = bulk_latency;
2833                         else if ((packets < 10) || ((bytes/packets) > 1200))
2834                                 retval = bulk_latency;
2835                         else if ((packets > 35))
2836                                 retval = lowest_latency;
2837                 } else if (bytes/packets > 2000)
2838                         retval = bulk_latency;
2839                 else if (packets <= 2 && bytes < 512)
2840                         retval = lowest_latency;
2841                 break;
2842         case bulk_latency: /* 250 usec aka 4000 ints/s */
2843                 if (bytes > 25000) {
2844                         if (packets > 35)
2845                                 retval = low_latency;
2846                 } else if (bytes < 6000) {
2847                         retval = low_latency;
2848                 }
2849                 break;
2850         }
2851
2852 update_itr_done:
2853         return retval;
2854 }
2855
2856 static void e1000_set_itr(struct e1000_adapter *adapter)
2857 {
2858         struct e1000_hw *hw = &adapter->hw;
2859         u16 current_itr;
2860         u32 new_itr = adapter->itr;
2861
2862         if (unlikely(hw->mac_type < e1000_82540))
2863                 return;
2864
2865         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2866         if (unlikely(adapter->link_speed != SPEED_1000)) {
2867                 current_itr = 0;
2868                 new_itr = 4000;
2869                 goto set_itr_now;
2870         }
2871
2872         adapter->tx_itr = e1000_update_itr(adapter,
2873                                     adapter->tx_itr,
2874                                     adapter->total_tx_packets,
2875                                     adapter->total_tx_bytes);
2876         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2877         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2878                 adapter->tx_itr = low_latency;
2879
2880         adapter->rx_itr = e1000_update_itr(adapter,
2881                                     adapter->rx_itr,
2882                                     adapter->total_rx_packets,
2883                                     adapter->total_rx_bytes);
2884         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2885         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2886                 adapter->rx_itr = low_latency;
2887
2888         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2889
2890         switch (current_itr) {
2891         /* counts and packets in update_itr are dependent on these numbers */
2892         case lowest_latency:
2893                 new_itr = 70000;
2894                 break;
2895         case low_latency:
2896                 new_itr = 20000; /* aka hwitr = ~200 */
2897                 break;
2898         case bulk_latency:
2899                 new_itr = 4000;
2900                 break;
2901         default:
2902                 break;
2903         }
2904
2905 set_itr_now:
2906         if (new_itr != adapter->itr) {
2907                 /* this attempts to bias the interrupt rate towards Bulk
2908                  * by adding intermediate steps when interrupt rate is
2909                  * increasing */
2910                 new_itr = new_itr > adapter->itr ?
2911                              min(adapter->itr + (new_itr >> 2), new_itr) :
2912                              new_itr;
2913                 adapter->itr = new_itr;
2914                 E1000_WRITE_REG(hw, ITR, 1000000000 / (new_itr * 256));
2915         }
2916
2917         return;
2918 }
2919
2920 #define E1000_TX_FLAGS_CSUM             0x00000001
2921 #define E1000_TX_FLAGS_VLAN             0x00000002
2922 #define E1000_TX_FLAGS_TSO              0x00000004
2923 #define E1000_TX_FLAGS_IPV4             0x00000008
2924 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2925 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2926
2927 static int
2928 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2929           struct sk_buff *skb)
2930 {
2931         struct e1000_context_desc *context_desc;
2932         struct e1000_buffer *buffer_info;
2933         unsigned int i;
2934         u32 cmd_length = 0;
2935         u16 ipcse = 0, tucse, mss;
2936         u8 ipcss, ipcso, tucss, tucso, hdr_len;
2937         int err;
2938
2939         if (skb_is_gso(skb)) {
2940                 if (skb_header_cloned(skb)) {
2941                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2942                         if (err)
2943                                 return err;
2944                 }
2945
2946                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2947                 mss = skb_shinfo(skb)->gso_size;
2948                 if (skb->protocol == htons(ETH_P_IP)) {
2949                         struct iphdr *iph = ip_hdr(skb);
2950                         iph->tot_len = 0;
2951                         iph->check = 0;
2952                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2953                                                                  iph->daddr, 0,
2954                                                                  IPPROTO_TCP,
2955                                                                  0);
2956                         cmd_length = E1000_TXD_CMD_IP;
2957                         ipcse = skb_transport_offset(skb) - 1;
2958                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2959                         ipv6_hdr(skb)->payload_len = 0;
2960                         tcp_hdr(skb)->check =
2961                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2962                                                  &ipv6_hdr(skb)->daddr,
2963                                                  0, IPPROTO_TCP, 0);
2964                         ipcse = 0;
2965                 }
2966                 ipcss = skb_network_offset(skb);
2967                 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2968                 tucss = skb_transport_offset(skb);
2969                 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2970                 tucse = 0;
2971
2972                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2973                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2974
2975                 i = tx_ring->next_to_use;
2976                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2977                 buffer_info = &tx_ring->buffer_info[i];
2978
2979                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2980                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2981                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2982                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2983                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2984                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2985                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2986                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2987                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2988
2989                 buffer_info->time_stamp = jiffies;
2990                 buffer_info->next_to_watch = i;
2991
2992                 if (++i == tx_ring->count) i = 0;
2993                 tx_ring->next_to_use = i;
2994
2995                 return true;
2996         }
2997         return false;
2998 }
2999
3000 static bool
3001 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
3002               struct sk_buff *skb)
3003 {
3004         struct e1000_context_desc *context_desc;
3005         struct e1000_buffer *buffer_info;
3006         unsigned int i;
3007         u8 css;
3008
3009         if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
3010                 css = skb_transport_offset(skb);
3011
3012                 i = tx_ring->next_to_use;
3013                 buffer_info = &tx_ring->buffer_info[i];
3014                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3015
3016                 context_desc->lower_setup.ip_config = 0;
3017                 context_desc->upper_setup.tcp_fields.tucss = css;
3018                 context_desc->upper_setup.tcp_fields.tucso =
3019                         css + skb->csum_offset;
3020                 context_desc->upper_setup.tcp_fields.tucse = 0;
3021                 context_desc->tcp_seg_setup.data = 0;
3022                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
3023
3024                 buffer_info->time_stamp = jiffies;
3025                 buffer_info->next_to_watch = i;
3026
3027                 if (unlikely(++i == tx_ring->count)) i = 0;
3028                 tx_ring->next_to_use = i;
3029
3030                 return true;
3031         }
3032
3033         return false;
3034 }
3035
3036 #define E1000_MAX_TXD_PWR       12
3037 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
3038
3039 static int
3040 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
3041              struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
3042              unsigned int nr_frags, unsigned int mss)
3043 {
3044         struct e1000_buffer *buffer_info;
3045         unsigned int len = skb->len;
3046         unsigned int offset = 0, size, count = 0, i;
3047         unsigned int f;
3048         len -= skb->data_len;
3049
3050         i = tx_ring->next_to_use;
3051
3052         while (len) {
3053                 buffer_info = &tx_ring->buffer_info[i];
3054                 size = min(len, max_per_txd);
3055                 /* Workaround for Controller erratum --
3056                  * descriptor for non-tso packet in a linear SKB that follows a
3057                  * tso gets written back prematurely before the data is fully
3058                  * DMA'd to the controller */
3059                 if (!skb->data_len && tx_ring->last_tx_tso &&
3060                     !skb_is_gso(skb)) {
3061                         tx_ring->last_tx_tso = 0;
3062                         size -= 4;
3063                 }
3064
3065                 /* Workaround for premature desc write-backs
3066                  * in TSO mode.  Append 4-byte sentinel desc */
3067                 if (unlikely(mss && !nr_frags && size == len && size > 8))
3068                         size -= 4;
3069                 /* work-around for errata 10 and it applies
3070                  * to all controllers in PCI-X mode
3071                  * The fix is to make sure that the first descriptor of a
3072                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
3073                  */
3074                 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
3075                                 (size > 2015) && count == 0))
3076                         size = 2015;
3077
3078                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
3079                  * terminating buffers within evenly-aligned dwords. */
3080                 if (unlikely(adapter->pcix_82544 &&
3081                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
3082                    size > 4))
3083                         size -= 4;
3084
3085                 buffer_info->length = size;
3086                 buffer_info->dma =
3087                         pci_map_single(adapter->pdev,
3088                                 skb->data + offset,
3089                                 size,
3090                                 PCI_DMA_TODEVICE);
3091                 buffer_info->time_stamp = jiffies;
3092                 buffer_info->next_to_watch = i;
3093
3094                 len -= size;
3095                 offset += size;
3096                 count++;
3097                 if (unlikely(++i == tx_ring->count)) i = 0;
3098         }
3099
3100         for (f = 0; f < nr_frags; f++) {
3101                 struct skb_frag_struct *frag;
3102
3103                 frag = &skb_shinfo(skb)->frags[f];
3104                 len = frag->size;
3105                 offset = frag->page_offset;
3106
3107                 while (len) {
3108                         buffer_info = &tx_ring->buffer_info[i];
3109                         size = min(len, max_per_txd);
3110                         /* Workaround for premature desc write-backs
3111                          * in TSO mode.  Append 4-byte sentinel desc */
3112                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
3113                                 size -= 4;
3114                         /* Workaround for potential 82544 hang in PCI-X.
3115                          * Avoid terminating buffers within evenly-aligned
3116                          * dwords. */
3117                         if (unlikely(adapter->pcix_82544 &&
3118                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
3119                            size > 4))
3120                                 size -= 4;
3121
3122                         buffer_info->length = size;
3123                         buffer_info->dma =
3124                                 pci_map_page(adapter->pdev,
3125                                         frag->page,
3126                                         offset,
3127                                         size,
3128                                         PCI_DMA_TODEVICE);
3129                         buffer_info->time_stamp = jiffies;
3130                         buffer_info->next_to_watch = i;
3131
3132                         len -= size;
3133                         offset += size;
3134                         count++;
3135                         if (unlikely(++i == tx_ring->count)) i = 0;
3136                 }
3137         }
3138
3139         i = (i == 0) ? tx_ring->count - 1 : i - 1;
3140         tx_ring->buffer_info[i].skb = skb;
3141         tx_ring->buffer_info[first].next_to_watch = i;
3142
3143         return count;
3144 }
3145
3146 static void
3147 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
3148                int tx_flags, int count)
3149 {
3150         struct e1000_tx_desc *tx_desc = NULL;
3151         struct e1000_buffer *buffer_info;
3152         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3153         unsigned int i;
3154
3155         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
3156                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3157                              E1000_TXD_CMD_TSE;
3158                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3159
3160                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3161                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3162         }
3163
3164         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3165                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3166                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3167         }
3168
3169         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3170                 txd_lower |= E1000_TXD_CMD_VLE;
3171                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3172         }
3173
3174         i = tx_ring->next_to_use;
3175
3176         while (count--) {
3177                 buffer_info = &tx_ring->buffer_info[i];
3178                 tx_desc = E1000_TX_DESC(*tx_ring, i);
3179                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3180                 tx_desc->lower.data =
3181                         cpu_to_le32(txd_lower | buffer_info->length);
3182                 tx_desc->upper.data = cpu_to_le32(txd_upper);
3183                 if (unlikely(++i == tx_ring->count)) i = 0;
3184         }
3185
3186         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3187
3188         /* Force memory writes to complete before letting h/w
3189          * know there are new descriptors to fetch.  (Only
3190          * applicable for weak-ordered memory model archs,
3191          * such as IA-64). */
3192         wmb();
3193
3194         tx_ring->next_to_use = i;
3195         writel(i, adapter->hw.hw_addr + tx_ring->tdt);
3196         /* we need this if more than one processor can write to our tail
3197          * at a time, it syncronizes IO on IA64/Altix systems */
3198         mmiowb();
3199 }
3200
3201 /**
3202  * 82547 workaround to avoid controller hang in half-duplex environment.
3203  * The workaround is to avoid queuing a large packet that would span
3204  * the internal Tx FIFO ring boundary by notifying the stack to resend
3205  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3206  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3207  * to the beginning of the Tx FIFO.
3208  **/
3209
3210 #define E1000_FIFO_HDR                  0x10
3211 #define E1000_82547_PAD_LEN             0x3E0
3212
3213 static int
3214 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
3215 {
3216         u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3217         u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3218
3219         skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3220
3221         if (adapter->link_duplex != HALF_DUPLEX)
3222                 goto no_fifo_stall_required;
3223
3224         if (atomic_read(&adapter->tx_fifo_stall))
3225                 return 1;
3226
3227         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3228                 atomic_set(&adapter->tx_fifo_stall, 1);
3229                 return 1;
3230         }
3231
3232 no_fifo_stall_required:
3233         adapter->tx_fifo_head += skb_fifo_len;
3234         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3235                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3236         return 0;
3237 }
3238
3239 #define MINIMUM_DHCP_PACKET_SIZE 282
3240 static int
3241 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
3242 {
3243         struct e1000_hw *hw =  &adapter->hw;
3244         u16 length, offset;
3245         if (vlan_tx_tag_present(skb)) {
3246                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
3247                         ( adapter->hw.mng_cookie.status &
3248                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
3249                         return 0;
3250         }
3251         if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
3252                 struct ethhdr *eth = (struct ethhdr *) skb->data;
3253                 if ((htons(ETH_P_IP) == eth->h_proto)) {
3254                         const struct iphdr *ip =
3255                                 (struct iphdr *)((u8 *)skb->data+14);
3256                         if (IPPROTO_UDP == ip->protocol) {
3257                                 struct udphdr *udp =
3258                                         (struct udphdr *)((u8 *)ip +
3259                                                 (ip->ihl << 2));
3260                                 if (ntohs(udp->dest) == 67) {
3261                                         offset = (u8 *)udp + 8 - skb->data;
3262                                         length = skb->len - offset;
3263
3264                                         return e1000_mng_write_dhcp_info(hw,
3265                                                         (u8 *)udp + 8,
3266                                                         length);
3267                                 }
3268                         }
3269                 }
3270         }
3271         return 0;
3272 }
3273
3274 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3275 {
3276         struct e1000_adapter *adapter = netdev_priv(netdev);
3277         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3278
3279         netif_stop_queue(netdev);
3280         /* Herbert's original patch had:
3281          *  smp_mb__after_netif_stop_queue();
3282          * but since that doesn't exist yet, just open code it. */
3283         smp_mb();
3284
3285         /* We need to check again in a case another CPU has just
3286          * made room available. */
3287         if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3288                 return -EBUSY;
3289
3290         /* A reprieve! */
3291         netif_start_queue(netdev);
3292         ++adapter->restart_queue;
3293         return 0;
3294 }
3295
3296 static int e1000_maybe_stop_tx(struct net_device *netdev,
3297                                struct e1000_tx_ring *tx_ring, int size)
3298 {
3299         if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3300                 return 0;
3301         return __e1000_maybe_stop_tx(netdev, size);
3302 }
3303
3304 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3305 static int
3306 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3307 {
3308         struct e1000_adapter *adapter = netdev_priv(netdev);
3309         struct e1000_tx_ring *tx_ring;
3310         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3311         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3312         unsigned int tx_flags = 0;
3313         unsigned int len = skb->len - skb->data_len;
3314         unsigned long flags;
3315         unsigned int nr_frags;
3316         unsigned int mss;
3317         int count = 0;
3318         int tso;
3319         unsigned int f;
3320
3321         /* This goes back to the question of how to logically map a tx queue
3322          * to a flow.  Right now, performance is impacted slightly negatively
3323          * if using multiple tx queues.  If the stack breaks away from a
3324          * single qdisc implementation, we can look at this again. */
3325         tx_ring = adapter->tx_ring;
3326
3327         if (unlikely(skb->len <= 0)) {
3328                 dev_kfree_skb_any(skb);
3329                 return NETDEV_TX_OK;
3330         }
3331
3332         /* 82571 and newer doesn't need the workaround that limited descriptor
3333          * length to 4kB */
3334         if (adapter->hw.mac_type >= e1000_82571)
3335                 max_per_txd = 8192;
3336
3337         mss = skb_shinfo(skb)->gso_size;
3338         /* The controller does a simple calculation to
3339          * make sure there is enough room in the FIFO before
3340          * initiating the DMA for each buffer.  The calc is:
3341          * 4 = ceil(buffer len/mss).  To make sure we don't
3342          * overrun the FIFO, adjust the max buffer len if mss
3343          * drops. */
3344         if (mss) {
3345                 u8 hdr_len;
3346                 max_per_txd = min(mss << 2, max_per_txd);
3347                 max_txd_pwr = fls(max_per_txd) - 1;
3348
3349                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3350                 * points to just header, pull a few bytes of payload from
3351                 * frags into skb->data */
3352                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3353                 if (skb->data_len && hdr_len == len) {
3354                         switch (adapter->hw.mac_type) {
3355                                 unsigned int pull_size;
3356                         case e1000_82544:
3357                                 /* Make sure we have room to chop off 4 bytes,
3358                                  * and that the end alignment will work out to
3359                                  * this hardware's requirements
3360                                  * NOTE: this is a TSO only workaround
3361                                  * if end byte alignment not correct move us
3362                                  * into the next dword */
3363                                 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
3364                                         break;
3365                                 /* fall through */
3366                         case e1000_82571:
3367                         case e1000_82572:
3368                         case e1000_82573:
3369                         case e1000_ich8lan:
3370                                 pull_size = min((unsigned int)4, skb->data_len);
3371                                 if (!__pskb_pull_tail(skb, pull_size)) {
3372                                         DPRINTK(DRV, ERR,
3373                                                 "__pskb_pull_tail failed.\n");
3374                                         dev_kfree_skb_any(skb);
3375                                         return NETDEV_TX_OK;
3376                                 }
3377                                 len = skb->len - skb->data_len;
3378                                 break;
3379                         default:
3380                                 /* do nothing */
3381                                 break;
3382                         }
3383                 }
3384         }
3385
3386         /* reserve a descriptor for the offload context */
3387         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3388                 count++;
3389         count++;
3390
3391         /* Controller Erratum workaround */
3392         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3393                 count++;
3394
3395         count += TXD_USE_COUNT(len, max_txd_pwr);
3396
3397         if (adapter->pcix_82544)
3398                 count++;
3399
3400         /* work-around for errata 10 and it applies to all controllers
3401          * in PCI-X mode, so add one more descriptor to the count
3402          */
3403         if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
3404                         (len > 2015)))
3405                 count++;
3406
3407         nr_frags = skb_shinfo(skb)->nr_frags;
3408         for (f = 0; f < nr_frags; f++)
3409                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3410                                        max_txd_pwr);
3411         if (adapter->pcix_82544)
3412                 count += nr_frags;
3413
3414
3415         if (adapter->hw.tx_pkt_filtering &&
3416             (adapter->hw.mac_type == e1000_82573))
3417                 e1000_transfer_dhcp_info(adapter, skb);
3418
3419         if (!spin_trylock_irqsave(&tx_ring->tx_lock, flags))
3420                 /* Collision - tell upper layer to requeue */
3421                 return NETDEV_TX_LOCKED;
3422
3423         /* need: count + 2 desc gap to keep tail from touching
3424          * head, otherwise try next time */
3425         if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) {
3426                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3427                 return NETDEV_TX_BUSY;
3428         }
3429
3430         if (unlikely(adapter->hw.mac_type == e1000_82547)) {
3431                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3432                         netif_stop_queue(netdev);
3433                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
3434                         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3435                         return NETDEV_TX_BUSY;
3436                 }
3437         }
3438
3439         if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3440                 tx_flags |= E1000_TX_FLAGS_VLAN;
3441                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3442         }
3443
3444         first = tx_ring->next_to_use;
3445
3446         tso = e1000_tso(adapter, tx_ring, skb);
3447         if (tso < 0) {
3448                 dev_kfree_skb_any(skb);
3449                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3450                 return NETDEV_TX_OK;
3451         }
3452
3453         if (likely(tso)) {
3454                 tx_ring->last_tx_tso = 1;
3455                 tx_flags |= E1000_TX_FLAGS_TSO;
3456         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3457                 tx_flags |= E1000_TX_FLAGS_CSUM;
3458
3459         /* Old method was to assume IPv4 packet by default if TSO was enabled.
3460          * 82571 hardware supports TSO capabilities for IPv6 as well...
3461          * no longer assume, we must. */
3462         if (likely(skb->protocol == htons(ETH_P_IP)))
3463                 tx_flags |= E1000_TX_FLAGS_IPV4;
3464
3465         e1000_tx_queue(adapter, tx_ring, tx_flags,
3466                        e1000_tx_map(adapter, tx_ring, skb, first,
3467                                     max_per_txd, nr_frags, mss));
3468
3469         netdev->trans_start = jiffies;
3470
3471         /* Make sure there is space in the ring for the next send. */
3472         e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3473
3474         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3475         return NETDEV_TX_OK;
3476 }
3477
3478 /**
3479  * e1000_tx_timeout - Respond to a Tx Hang
3480  * @netdev: network interface device structure
3481  **/
3482
3483 static void
3484 e1000_tx_timeout(struct net_device *netdev)
3485 {
3486         struct e1000_adapter *adapter = netdev_priv(netdev);
3487
3488         /* Do the reset outside of interrupt context */
3489         adapter->tx_timeout_count++;
3490         schedule_work(&adapter->reset_task);
3491 }
3492
3493 static void
3494 e1000_reset_task(struct work_struct *work)
3495 {
3496         struct e1000_adapter *adapter =
3497                 container_of(work, struct e1000_adapter, reset_task);
3498
3499         e1000_reinit_locked(adapter);
3500 }
3501
3502 /**
3503  * e1000_get_stats - Get System Network Statistics
3504  * @netdev: network interface device structure
3505  *
3506  * Returns the address of the device statistics structure.
3507  * The statistics are actually updated from the timer callback.
3508  **/
3509
3510 static struct net_device_stats *
3511 e1000_get_stats(struct net_device *netdev)
3512 {
3513         struct e1000_adapter *adapter = netdev_priv(netdev);
3514
3515         /* only return the current stats */
3516         return &adapter->net_stats;
3517 }
3518
3519 /**
3520  * e1000_change_mtu - Change the Maximum Transfer Unit
3521  * @netdev: network interface device structure
3522  * @new_mtu: new value for maximum frame size
3523  *
3524  * Returns 0 on success, negative on failure
3525  **/
3526
3527 static int
3528 e1000_change_mtu(struct net_device *netdev, int new_mtu)
3529 {
3530         struct e1000_adapter *adapter = netdev_priv(netdev);
3531         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3532         u16 eeprom_data = 0;
3533
3534         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3535             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3536                 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3537                 return -EINVAL;
3538         }
3539
3540         /* Adapter-specific max frame size limits. */
3541         switch (adapter->hw.mac_type) {
3542         case e1000_undefined ... e1000_82542_rev2_1:
3543         case e1000_ich8lan:
3544                 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3545                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3546                         return -EINVAL;
3547                 }
3548                 break;
3549         case e1000_82573:
3550                 /* Jumbo Frames not supported if:
3551                  * - this is not an 82573L device
3552                  * - ASPM is enabled in any way (0x1A bits 3:2) */
3553                 e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
3554                                   &eeprom_data);
3555                 if ((adapter->hw.device_id != E1000_DEV_ID_82573L) ||
3556                     (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3557                         if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3558                                 DPRINTK(PROBE, ERR,
3559                                         "Jumbo Frames not supported.\n");
3560                                 return -EINVAL;
3561                         }
3562                         break;
3563                 }
3564                 /* ERT will be enabled later to enable wire speed receives */
3565
3566                 /* fall through to get support */
3567         case e1000_82571:
3568         case e1000_82572:
3569         case e1000_80003es2lan:
3570 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3571                 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3572                         DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3573                         return -EINVAL;
3574                 }
3575                 break;
3576         default:
3577                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3578                 break;
3579         }
3580
3581         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3582          * means we reserve 2 more, this pushes us to allocate from the next
3583          * larger slab size
3584          * i.e. RXBUFFER_2048 --> size-4096 slab */
3585
3586         if (max_frame <= E1000_RXBUFFER_256)
3587                 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3588         else if (max_frame <= E1000_RXBUFFER_512)
3589                 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3590         else if (max_frame <= E1000_RXBUFFER_1024)
3591                 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3592         else if (max_frame <= E1000_RXBUFFER_2048)
3593                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3594         else if (max_frame <= E1000_RXBUFFER_4096)
3595                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3596         else if (max_frame <= E1000_RXBUFFER_8192)
3597                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3598         else if (max_frame <= E1000_RXBUFFER_16384)
3599                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3600
3601         /* adjust allocation if LPE protects us, and we aren't using SBP */
3602         if (!adapter->hw.tbi_compatibility_on &&
3603             ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3604              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3605                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3606
3607         netdev->mtu = new_mtu;
3608         adapter->hw.max_frame_size = max_frame;
3609
3610         if (netif_running(netdev))
3611                 e1000_reinit_locked(adapter);
3612
3613         return 0;
3614 }
3615
3616 /**
3617  * e1000_update_stats - Update the board statistics counters
3618  * @adapter: board private structure
3619  **/
3620
3621 void
3622 e1000_update_stats(struct e1000_adapter *adapter)
3623 {
3624         struct e1000_hw *hw = &adapter->hw;
3625         struct pci_dev *pdev = adapter->pdev;
3626         unsigned long flags;
3627         u16 phy_tmp;
3628
3629 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3630
3631         /*
3632          * Prevent stats update while adapter is being reset, or if the pci
3633          * connection is down.
3634          */
3635         if (adapter->link_speed == 0)
3636                 return;
3637         if (pci_channel_offline(pdev))
3638                 return;
3639
3640         spin_lock_irqsave(&adapter->stats_lock, flags);
3641
3642         /* these counters are modified from e1000_tbi_adjust_stats,
3643          * called from the interrupt context, so they must only
3644          * be written while holding adapter->stats_lock
3645          */
3646
3647         adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3648         adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3649         adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3650         adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3651         adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3652         adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3653         adapter->stats.roc += E1000_READ_REG(hw, ROC);
3654
3655         if (adapter->hw.mac_type != e1000_ich8lan) {
3656                 adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3657                 adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3658                 adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3659                 adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3660                 adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3661                 adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3662         }
3663
3664         adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3665         adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3666         adapter->stats.scc += E1000_READ_REG(hw, SCC);
3667         adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3668         adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3669         adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3670         adapter->stats.dc += E1000_READ_REG(hw, DC);
3671         adapter->stats.sec += E1000_READ_REG(hw, SEC);
3672         adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3673         adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3674         adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3675         adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3676         adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3677         adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3678         adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3679         adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3680         adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3681         adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3682         adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3683         adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3684         adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3685         adapter->stats.torl += E1000_READ_REG(hw, TORL);
3686         adapter->stats.torh += E1000_READ_REG(hw, TORH);
3687         adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3688         adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3689         adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3690
3691         if (adapter->hw.mac_type != e1000_ich8lan) {
3692                 adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3693                 adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3694                 adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3695                 adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3696                 adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3697                 adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3698         }
3699
3700         adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3701         adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3702
3703         /* used for adaptive IFS */
3704
3705         hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3706         adapter->stats.tpt += hw->tx_packet_delta;
3707         hw->collision_delta = E1000_READ_REG(hw, COLC);
3708         adapter->stats.colc += hw->collision_delta;
3709
3710         if (hw->mac_type >= e1000_82543) {
3711                 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3712                 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3713                 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3714                 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3715                 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3716                 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3717         }
3718         if (hw->mac_type > e1000_82547_rev_2) {
3719                 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3720                 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3721
3722                 if (adapter->hw.mac_type != e1000_ich8lan) {
3723                         adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3724                         adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3725                         adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3726                         adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3727                         adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3728                         adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3729                         adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3730                 }
3731         }
3732
3733         /* Fill out the OS statistics structure */
3734         adapter->net_stats.multicast = adapter->stats.mprc;
3735         adapter->net_stats.collisions = adapter->stats.colc;
3736
3737         /* Rx Errors */
3738
3739         /* RLEC on some newer hardware can be incorrect so build
3740         * our own version based on RUC and ROC */
3741         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3742                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3743                 adapter->stats.ruc + adapter->stats.roc +
3744                 adapter->stats.cexterr;
3745         adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3746         adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3747         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3748         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3749         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3750
3751         /* Tx Errors */
3752         adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3753         adapter->net_stats.tx_errors = adapter->stats.txerrc;
3754         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3755         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3756         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3757         if (adapter->hw.bad_tx_carr_stats_fd &&
3758             adapter->link_duplex == FULL_DUPLEX) {
3759                 adapter->net_stats.tx_carrier_errors = 0;
3760                 adapter->stats.tncrs = 0;
3761         }
3762
3763         /* Tx Dropped needs to be maintained elsewhere */
3764
3765         /* Phy Stats */
3766         if (hw->media_type == e1000_media_type_copper) {
3767                 if ((adapter->link_speed == SPEED_1000) &&
3768                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3769                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3770                         adapter->phy_stats.idle_errors += phy_tmp;
3771                 }
3772
3773                 if ((hw->mac_type <= e1000_82546) &&
3774                    (hw->phy_type == e1000_phy_m88) &&
3775                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3776                         adapter->phy_stats.receive_errors += phy_tmp;
3777         }
3778
3779         /* Management Stats */
3780         if (adapter->hw.has_smbus) {
3781                 adapter->stats.mgptc += E1000_READ_REG(hw, MGTPTC);
3782                 adapter->stats.mgprc += E1000_READ_REG(hw, MGTPRC);
3783                 adapter->stats.mgpdc += E1000_READ_REG(hw, MGTPDC);
3784         }
3785
3786         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3787 }
3788
3789 /**
3790  * e1000_intr_msi - Interrupt Handler
3791  * @irq: interrupt number
3792  * @data: pointer to a network interface device structure
3793  **/
3794
3795 static irqreturn_t
3796 e1000_intr_msi(int irq, void *data)
3797 {
3798         struct net_device *netdev = data;
3799         struct e1000_adapter *adapter = netdev_priv(netdev);
3800         struct e1000_hw *hw = &adapter->hw;
3801 #ifndef CONFIG_E1000_NAPI
3802         int i;
3803 #endif
3804         u32 icr = E1000_READ_REG(hw, ICR);
3805
3806         /* in NAPI mode read ICR disables interrupts using IAM */
3807
3808         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3809                 hw->get_link_status = 1;
3810                 /* 80003ES2LAN workaround-- For packet buffer work-around on
3811                  * link down event; disable receives here in the ISR and reset
3812                  * adapter in watchdog */
3813                 if (netif_carrier_ok(netdev) &&
3814                     (adapter->hw.mac_type == e1000_80003es2lan)) {
3815                         /* disable receives */
3816                         u32 rctl = E1000_READ_REG(hw, RCTL);
3817                         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3818                 }
3819                 /* guard against interrupt when we're going down */
3820                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3821                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3822         }
3823
3824 #ifdef CONFIG_E1000_NAPI
3825         if (likely(netif_rx_schedule_prep(netdev, &adapter->napi))) {
3826                 adapter->total_tx_bytes = 0;
3827                 adapter->total_tx_packets = 0;
3828                 adapter->total_rx_bytes = 0;
3829                 adapter->total_rx_packets = 0;
3830                 __netif_rx_schedule(netdev, &adapter->napi);
3831         } else
3832                 e1000_irq_enable(adapter);
3833 #else
3834         adapter->total_tx_bytes = 0;
3835         adapter->total_rx_bytes = 0;
3836         adapter->total_tx_packets = 0;
3837         adapter->total_rx_packets = 0;
3838
3839         for (i = 0; i < E1000_MAX_INTR; i++)
3840                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3841                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3842                         break;
3843
3844         if (likely(adapter->itr_setting & 3))
3845                 e1000_set_itr(adapter);
3846 #endif
3847
3848         return IRQ_HANDLED;
3849 }
3850
3851 /**
3852  * e1000_intr - Interrupt Handler
3853  * @irq: interrupt number
3854  * @data: pointer to a network interface device structure
3855  **/
3856
3857 static irqreturn_t
3858 e1000_intr(int irq, void *data)
3859 {
3860         struct net_device *netdev = data;
3861         struct e1000_adapter *adapter = netdev_priv(netdev);
3862         struct e1000_hw *hw = &adapter->hw;
3863         u32 rctl, icr = E1000_READ_REG(hw, ICR);
3864 #ifndef CONFIG_E1000_NAPI
3865         int i;
3866 #endif
3867         if (unlikely(!icr))
3868                 return IRQ_NONE;  /* Not our interrupt */
3869
3870 #ifdef CONFIG_E1000_NAPI
3871         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3872          * not set, then the adapter didn't send an interrupt */
3873         if (unlikely(hw->mac_type >= e1000_82571 &&
3874                      !(icr & E1000_ICR_INT_ASSERTED)))
3875                 return IRQ_NONE;
3876
3877         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
3878          * need for the IMC write */
3879 #endif
3880
3881         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3882                 hw->get_link_status = 1;
3883                 /* 80003ES2LAN workaround--
3884                  * For packet buffer work-around on link down event;
3885                  * disable receives here in the ISR and
3886                  * reset adapter in watchdog
3887                  */
3888                 if (netif_carrier_ok(netdev) &&
3889                     (adapter->hw.mac_type == e1000_80003es2lan)) {
3890                         /* disable receives */
3891                         rctl = E1000_READ_REG(hw, RCTL);
3892                         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3893                 }
3894                 /* guard against interrupt when we're going down */
3895                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3896                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3897         }
3898
3899 #ifdef CONFIG_E1000_NAPI
3900         if (unlikely(hw->mac_type < e1000_82571)) {
3901                 /* disable interrupts, without the synchronize_irq bit */
3902                 E1000_WRITE_REG(hw, IMC, ~0);
3903                 E1000_WRITE_FLUSH(hw);
3904         }
3905         if (likely(netif_rx_schedule_prep(netdev, &adapter->napi))) {
3906                 adapter->total_tx_bytes = 0;
3907                 adapter->total_tx_packets = 0;
3908                 adapter->total_rx_bytes = 0;
3909                 adapter->total_rx_packets = 0;
3910                 __netif_rx_schedule(netdev, &adapter->napi);
3911         } else
3912                 /* this really should not happen! if it does it is basically a
3913                  * bug, but not a hard error, so enable ints and continue */
3914                 e1000_irq_enable(adapter);
3915 #else
3916         /* Writing IMC and IMS is needed for 82547.
3917          * Due to Hub Link bus being occupied, an interrupt
3918          * de-assertion message is not able to be sent.
3919          * When an interrupt assertion message is generated later,
3920          * two messages are re-ordered and sent out.
3921          * That causes APIC to think 82547 is in de-assertion
3922          * state, while 82547 is in assertion state, resulting
3923          * in dead lock. Writing IMC forces 82547 into
3924          * de-assertion state.
3925          */
3926         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3927                 E1000_WRITE_REG(hw, IMC, ~0);
3928
3929         adapter->total_tx_bytes = 0;
3930         adapter->total_rx_bytes = 0;
3931         adapter->total_tx_packets = 0;
3932         adapter->total_rx_packets = 0;
3933
3934         for (i = 0; i < E1000_MAX_INTR; i++)
3935                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3936                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3937                         break;
3938
3939         if (likely(adapter->itr_setting & 3))
3940                 e1000_set_itr(adapter);
3941
3942         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3943                 e1000_irq_enable(adapter);
3944
3945 #endif
3946         return IRQ_HANDLED;
3947 }
3948
3949 #ifdef CONFIG_E1000_NAPI
3950 /**
3951  * e1000_clean - NAPI Rx polling callback
3952  * @adapter: board private structure
3953  **/
3954
3955 static int
3956 e1000_clean(struct napi_struct *napi, int budget)
3957 {
3958         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3959         struct net_device *poll_dev = adapter->netdev;
3960         int tx_cleaned = 0, work_done = 0;
3961
3962         /* Must NOT use netdev_priv macro here. */
3963         adapter = poll_dev->priv;
3964
3965         /* e1000_clean is called per-cpu.  This lock protects
3966          * tx_ring[0] from being cleaned by multiple cpus
3967          * simultaneously.  A failure obtaining the lock means
3968          * tx_ring[0] is currently being cleaned anyway. */
3969         if (spin_trylock(&adapter->tx_queue_lock)) {
3970                 tx_cleaned = e1000_clean_tx_irq(adapter,
3971                                                 &adapter->tx_ring[0]);
3972                 spin_unlock(&adapter->tx_queue_lock);
3973         }
3974
3975         adapter->clean_rx(adapter, &adapter->rx_ring[0],
3976                           &work_done, budget);
3977
3978         if (tx_cleaned)
3979                 work_done = budget;
3980
3981         /* If budget not fully consumed, exit the polling mode */
3982         if (work_done < budget) {
3983                 if (likely(adapter->itr_setting & 3))
3984                         e1000_set_itr(adapter);
3985                 netif_rx_complete(poll_dev, napi);
3986                 e1000_irq_enable(adapter);
3987         }
3988
3989         return work_done;
3990 }
3991
3992 #endif
3993 /**
3994  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3995  * @adapter: board private structure
3996  **/
3997
3998 static bool
3999 e1000_clean_tx_irq(struct e1000_adapter *adapter,
4000                    struct e1000_tx_ring *tx_ring)
4001 {
4002         struct net_device *netdev = adapter->netdev;
4003         struct e1000_tx_desc *tx_desc, *eop_desc;
4004         struct e1000_buffer *buffer_info;
4005         unsigned int i, eop;
4006 #ifdef CONFIG_E1000_NAPI
4007         unsigned int count = 0;
4008 #endif
4009         bool cleaned = false;
4010         unsigned int total_tx_bytes=0, total_tx_packets=0;
4011
4012         i = tx_ring->next_to_clean;
4013         eop = tx_ring->buffer_info[i].next_to_watch;
4014         eop_desc = E1000_TX_DESC(*tx_ring, eop);
4015
4016         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
4017                 for (cleaned = false; !cleaned; ) {
4018                         tx_desc = E1000_TX_DESC(*tx_ring, i);
4019                         buffer_info = &tx_ring->buffer_info[i];
4020                         cleaned = (i == eop);
4021
4022                         if (cleaned) {
4023                                 struct sk_buff *skb = buffer_info->skb;
4024                                 unsigned int segs, bytecount;
4025                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
4026                                 /* multiply data chunks by size of headers */
4027                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
4028                                             skb->len;
4029                                 total_tx_packets += segs;
4030                                 total_tx_bytes += bytecount;
4031                         }
4032                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
4033                         tx_desc->upper.data = 0;
4034
4035                         if (unlikely(++i == tx_ring->count)) i = 0;
4036                 }
4037
4038                 eop = tx_ring->buffer_info[i].next_to_watch;
4039                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
4040 #ifdef CONFIG_E1000_NAPI
4041 #define E1000_TX_WEIGHT 64
4042                 /* weight of a sort for tx, to avoid endless transmit cleanup */
4043                 if (count++ == E1000_TX_WEIGHT) break;
4044 #endif
4045         }
4046
4047         tx_ring->next_to_clean = i;
4048
4049 #define TX_WAKE_THRESHOLD 32
4050         if (unlikely(cleaned && netif_carrier_ok(netdev) &&
4051                      E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
4052                 /* Make sure that anybody stopping the queue after this
4053                  * sees the new next_to_clean.
4054                  */
4055                 smp_mb();
4056                 if (netif_queue_stopped(netdev)) {
4057                         netif_wake_queue(netdev);
4058                         ++adapter->restart_queue;
4059                 }
4060         }
4061
4062         if (adapter->detect_tx_hung) {
4063                 /* Detect a transmit hang in hardware, this serializes the
4064                  * check with the clearing of time_stamp and movement of i */
4065                 adapter->detect_tx_hung = false;
4066                 if (tx_ring->buffer_info[eop].dma &&
4067                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
4068                                (adapter->tx_timeout_factor * HZ))
4069                     && !(E1000_READ_REG(&adapter->hw, STATUS) &
4070                          E1000_STATUS_TXOFF)) {
4071
4072                         /* detected Tx unit hang */
4073                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
4074                                         "  Tx Queue             <%lu>\n"
4075                                         "  TDH                  <%x>\n"
4076                                         "  TDT                  <%x>\n"
4077                                         "  next_to_use          <%x>\n"
4078                                         "  next_to_clean        <%x>\n"
4079                                         "buffer_info[next_to_clean]\n"
4080                                         "  time_stamp           <%lx>\n"
4081                                         "  next_to_watch        <%x>\n"
4082                                         "  jiffies              <%lx>\n"
4083                                         "  next_to_watch.status <%x>\n",
4084                                 (unsigned long)((tx_ring - adapter->tx_ring) /
4085                                         sizeof(struct e1000_tx_ring)),
4086                                 readl(adapter->hw.hw_addr + tx_ring->tdh),
4087                                 readl(adapter->hw.hw_addr + tx_ring->tdt),
4088                                 tx_ring->next_to_use,
4089                                 tx_ring->next_to_clean,
4090                                 tx_ring->buffer_info[eop].time_stamp,
4091                                 eop,
4092                                 jiffies,
4093                                 eop_desc->upper.fields.status);
4094                         netif_stop_queue(netdev);
4095                 }
4096         }
4097         adapter->total_tx_bytes += total_tx_bytes;
4098         adapter->total_tx_packets += total_tx_packets;
4099         adapter->net_stats.tx_bytes += total_tx_bytes;
4100         adapter->net_stats.tx_packets += total_tx_packets;
4101         return cleaned;
4102 }
4103
4104 /**
4105  * e1000_rx_checksum - Receive Checksum Offload for 82543
4106  * @adapter:     board private structure
4107  * @status_err:  receive descriptor status and error fields
4108  * @csum:        receive descriptor csum field
4109  * @sk_buff:     socket buffer with received data
4110  **/
4111
4112 static void
4113 e1000_rx_checksum(struct e1000_adapter *adapter,
4114                   u32 status_err, u32 csum,
4115                   struct sk_buff *skb)
4116 {
4117         u16 status = (u16)status_err;
4118         u8 errors = (u8)(status_err >> 24);
4119         skb->ip_summed = CHECKSUM_NONE;
4120
4121         /* 82543 or newer only */
4122         if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
4123         /* Ignore Checksum bit is set */
4124         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
4125         /* TCP/UDP checksum error bit is set */
4126         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
4127                 /* let the stack verify checksum errors */
4128                 adapter->hw_csum_err++;
4129                 return;
4130         }
4131         /* TCP/UDP Checksum has not been calculated */
4132         if (adapter->hw.mac_type <= e1000_82547_rev_2) {
4133                 if (!(status & E1000_RXD_STAT_TCPCS))
4134                         return;
4135         } else {
4136                 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
4137                         return;
4138         }
4139         /* It must be a TCP or UDP packet with a valid checksum */
4140         if (likely(status & E1000_RXD_STAT_TCPCS)) {
4141                 /* TCP checksum is good */
4142                 skb->ip_summed = CHECKSUM_UNNECESSARY;
4143         } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
4144                 /* IP fragment with UDP payload */
4145                 /* Hardware complements the payload checksum, so we undo it
4146                  * and then put the value in host order for further stack use.
4147                  */
4148                 __sum16 sum = (__force __sum16)htons(csum);
4149                 skb->csum = csum_unfold(~sum);
4150                 skb->ip_summed = CHECKSUM_COMPLETE;
4151         }
4152         adapter->hw_csum_good++;
4153 }
4154
4155 /**
4156  * e1000_clean_rx_irq - Send received data up the network stack; legacy
4157  * @adapter: board private structure
4158  **/
4159
4160 static bool
4161 #ifdef CONFIG_E1000_NAPI
4162 e1000_clean_rx_irq(struct e1000_adapter *adapter,
4163                    struct e1000_rx_ring *rx_ring,
4164                    int *work_done, int work_to_do)
4165 #else
4166 e1000_clean_rx_irq(struct e1000_adapter *adapter,
4167                    struct e1000_rx_ring *rx_ring)
4168 #endif
4169 {
4170         struct net_device *netdev = adapter->netdev;
4171         struct pci_dev *pdev = adapter->pdev;
4172         struct e1000_rx_desc *rx_desc, *next_rxd;
4173         struct e1000_buffer *buffer_info, *next_buffer;
4174         unsigned long flags;
4175         u32 length;
4176         u8 last_byte;
4177         unsigned int i;
4178         int cleaned_count = 0;
4179         bool cleaned = false;
4180         unsigned int total_rx_bytes=0, total_rx_packets=0;
4181
4182         i = rx_ring->next_to_clean;
4183         rx_desc = E1000_RX_DESC(*rx_ring, i);
4184         buffer_info = &rx_ring->buffer_info[i];
4185
4186         while (rx_desc->status & E1000_RXD_STAT_DD) {
4187                 struct sk_buff *skb;
4188                 u8 status;
4189
4190 #ifdef CONFIG_E1000_NAPI
4191                 if (*work_done >= work_to_do)
4192                         break;
4193                 (*work_done)++;
4194 #endif
4195                 status = rx_desc->status;
4196                 skb = buffer_info->skb;
4197                 buffer_info->skb = NULL;
4198
4199                 prefetch(skb->data - NET_IP_ALIGN);
4200
4201                 if (++i == rx_ring->count) i = 0;
4202                 next_rxd = E1000_RX_DESC(*rx_ring, i);
4203                 prefetch(next_rxd);
4204
4205                 next_buffer = &rx_ring->buffer_info[i];
4206
4207                 cleaned = true;
4208                 cleaned_count++;
4209                 pci_unmap_single(pdev,
4210                                  buffer_info->dma,
4211                                  buffer_info->length,
4212                                  PCI_DMA_FROMDEVICE);
4213
4214                 length = le16_to_cpu(rx_desc->length);
4215
4216                 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
4217                         /* All receives must fit into a single buffer */
4218                         E1000_DBG("%s: Receive packet consumed multiple"
4219                                   " buffers\n", netdev->name);
4220                         /* recycle */
4221                         buffer_info->skb = skb;
4222                         goto next_desc;
4223                 }
4224
4225                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4226                         last_byte = *(skb->data + length - 1);
4227                         if (TBI_ACCEPT(&adapter->hw, status,
4228                                       rx_desc->errors, length, last_byte)) {
4229                                 spin_lock_irqsave(&adapter->stats_lock, flags);
4230                                 e1000_tbi_adjust_stats(&adapter->hw,
4231                                                        &adapter->stats,
4232                                                        length, skb->data);
4233                                 spin_unlock_irqrestore(&adapter->stats_lock,
4234                                                        flags);
4235                                 length--;
4236                         } else {
4237                                 /* recycle */
4238                                 buffer_info->skb = skb;
4239                                 goto next_desc;
4240                         }
4241                 }
4242
4243                 /* adjust length to remove Ethernet CRC, this must be
4244                  * done after the TBI_ACCEPT workaround above */
4245                 length -= 4;
4246
4247                 /* probably a little skewed due to removing CRC */
4248                 total_rx_bytes += length;
4249                 total_rx_packets++;
4250
4251                 /* code added for copybreak, this should improve
4252                  * performance for small packets with large amounts
4253                  * of reassembly being done in the stack */
4254                 if (length < copybreak) {
4255                         struct sk_buff *new_skb =
4256                             netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
4257                         if (new_skb) {
4258                                 skb_reserve(new_skb, NET_IP_ALIGN);
4259                                 skb_copy_to_linear_data_offset(new_skb,
4260                                                                -NET_IP_ALIGN,
4261                                                                (skb->data -
4262                                                                 NET_IP_ALIGN),
4263                                                                (length +
4264                                                                 NET_IP_ALIGN));
4265                                 /* save the skb in buffer_info as good */
4266                                 buffer_info->skb = skb;
4267                                 skb = new_skb;
4268                         }
4269                         /* else just continue with the old one */
4270                 }
4271                 /* end copybreak code */
4272                 skb_put(skb, length);
4273
4274                 /* Receive Checksum Offload */
4275                 e1000_rx_checksum(adapter,
4276                                   (u32)(status) |
4277                                   ((u32)(rx_desc->errors) << 24),
4278                                   le16_to_cpu(rx_desc->csum), skb);
4279
4280                 skb->protocol = eth_type_trans(skb, netdev);
4281 #ifdef CONFIG_E1000_NAPI
4282                 if (unlikely(adapter->vlgrp &&
4283                             (status & E1000_RXD_STAT_VP))) {
4284                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4285                                                  le16_to_cpu(rx_desc->special));
4286                 } else {
4287                         netif_receive_skb(skb);
4288                 }
4289 #else /* CONFIG_E1000_NAPI */
4290                 if (unlikely(adapter->vlgrp &&
4291                             (status & E1000_RXD_STAT_VP))) {
4292                         vlan_hwaccel_rx(skb, adapter->vlgrp,
4293                                         le16_to_cpu(rx_desc->special));
4294                 } else {
4295                         netif_rx(skb);
4296                 }
4297 #endif /* CONFIG_E1000_NAPI */
4298                 netdev->last_rx = jiffies;
4299
4300 next_desc:
4301                 rx_desc->status = 0;
4302
4303                 /* return some buffers to hardware, one at a time is too slow */
4304                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4305                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4306                         cleaned_count = 0;
4307                 }
4308
4309                 /* use prefetched values */
4310                 rx_desc = next_rxd;
4311                 buffer_info = next_buffer;
4312         }
4313         rx_ring->next_to_clean = i;
4314
4315         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4316         if (cleaned_count)
4317                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4318
4319         adapter->total_rx_packets += total_rx_packets;
4320         adapter->total_rx_bytes += total_rx_bytes;
4321         adapter->net_stats.rx_bytes += total_rx_bytes;
4322         adapter->net_stats.rx_packets += total_rx_packets;
4323         return cleaned;
4324 }
4325
4326 /**
4327  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
4328  * @adapter: board private structure
4329  **/
4330
4331 static bool
4332 #ifdef CONFIG_E1000_NAPI
4333 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
4334                       struct e1000_rx_ring *rx_ring,
4335                       int *work_done, int work_to_do)
4336 #else
4337 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
4338                       struct e1000_rx_ring *rx_ring)
4339 #endif
4340 {
4341         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
4342         struct net_device *netdev = adapter->netdev;
4343         struct pci_dev *pdev = adapter->pdev;
4344         struct e1000_buffer *buffer_info, *next_buffer;
4345         struct e1000_ps_page *ps_page;
4346         struct e1000_ps_page_dma *ps_page_dma;
4347         struct sk_buff *skb;
4348         unsigned int i, j;
4349         u32 length, staterr;
4350         int cleaned_count = 0;
4351         bool cleaned = false;
4352         unsigned int total_rx_bytes=0, total_rx_packets=0;
4353
4354         i = rx_ring->next_to_clean;
4355         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4356         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4357         buffer_info = &rx_ring->buffer_info[i];
4358
4359         while (staterr & E1000_RXD_STAT_DD) {
4360                 ps_page = &rx_ring->ps_page[i];
4361                 ps_page_dma = &rx_ring->ps_page_dma[i];
4362 #ifdef CONFIG_E1000_NAPI
4363                 if (unlikely(*work_done >= work_to_do))
4364                         break;
4365                 (*work_done)++;
4366 #endif
4367                 skb = buffer_info->skb;
4368
4369                 /* in the packet split case this is header only */
4370                 prefetch(skb->data - NET_IP_ALIGN);
4371
4372                 if (++i == rx_ring->count) i = 0;
4373                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
4374                 prefetch(next_rxd);
4375
4376                 next_buffer = &rx_ring->buffer_info[i];
4377
4378                 cleaned = true;
4379                 cleaned_count++;
4380                 pci_unmap_single(pdev, buffer_info->dma,
4381                                  buffer_info->length,
4382                                  PCI_DMA_FROMDEVICE);
4383
4384                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
4385                         E1000_DBG("%s: Packet Split buffers didn't pick up"
4386                                   " the full packet\n", netdev->name);
4387                         dev_kfree_skb_irq(skb);
4388                         goto next_desc;
4389                 }
4390
4391                 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
4392                         dev_kfree_skb_irq(skb);
4393                         goto next_desc;
4394                 }
4395
4396                 length = le16_to_cpu(rx_desc->wb.middle.length0);
4397
4398                 if (unlikely(!length)) {
4399                         E1000_DBG("%s: Last part of the packet spanning"
4400                                   " multiple descriptors\n", netdev->name);
4401                         dev_kfree_skb_irq(skb);
4402                         goto next_desc;
4403                 }
4404
4405                 /* Good Receive */
4406                 skb_put(skb, length);
4407
4408                 {
4409                 /* this looks ugly, but it seems compiler issues make it
4410                    more efficient than reusing j */
4411                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
4412
4413                 /* page alloc/put takes too long and effects small packet
4414                  * throughput, so unsplit small packets and save the alloc/put*/
4415                 if (l1 && (l1 <= copybreak) && ((length + l1) <= adapter->rx_ps_bsize0)) {
4416                         u8 *vaddr;
4417                         /* there is no documentation about how to call
4418                          * kmap_atomic, so we can't hold the mapping
4419                          * very long */
4420                         pci_dma_sync_single_for_cpu(pdev,
4421                                 ps_page_dma->ps_page_dma[0],
4422                                 PAGE_SIZE,
4423                                 PCI_DMA_FROMDEVICE);
4424                         vaddr = kmap_atomic(ps_page->ps_page[0],
4425                                             KM_SKB_DATA_SOFTIRQ);
4426                         memcpy(skb_tail_pointer(skb), vaddr, l1);
4427                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
4428                         pci_dma_sync_single_for_device(pdev,
4429                                 ps_page_dma->ps_page_dma[0],
4430                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
4431                         /* remove the CRC */
4432                         l1 -= 4;
4433                         skb_put(skb, l1);
4434                         goto copydone;
4435                 } /* if */
4436                 }
4437
4438                 for (j = 0; j < adapter->rx_ps_pages; j++) {
4439                         if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
4440                                 break;
4441                         pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
4442                                         PAGE_SIZE, PCI_DMA_FROMDEVICE);
4443                         ps_page_dma->ps_page_dma[j] = 0;
4444                         skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
4445                                            length);
4446                         ps_page->ps_page[j] = NULL;
4447                         skb->len += length;
4448                         skb->data_len += length;
4449                         skb->truesize += length;
4450                 }
4451
4452                 /* strip the ethernet crc, problem is we're using pages now so
4453                  * this whole operation can get a little cpu intensive */
4454                 pskb_trim(skb, skb->len - 4);
4455
4456 copydone:
4457                 total_rx_bytes += skb->len;
4458                 total_rx_packets++;
4459
4460                 e1000_rx_checksum(adapter, staterr,
4461                                   le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
4462                 skb->protocol = eth_type_trans(skb, netdev);
4463
4464                 if (likely(rx_desc->wb.upper.header_status &
4465                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
4466                         adapter->rx_hdr_split++;
4467 #ifdef CONFIG_E1000_NAPI
4468                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4469                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4470                                 le16_to_cpu(rx_desc->wb.middle.vlan));
4471                 } else {
4472                         netif_receive_skb(skb);
4473                 }
4474 #else /* CONFIG_E1000_NAPI */
4475                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4476                         vlan_hwaccel_rx(skb, adapter->vlgrp,
4477                                 le16_to_cpu(rx_desc->wb.middle.vlan));
4478                 } else {
4479                         netif_rx(skb);
4480                 }
4481 #endif /* CONFIG_E1000_NAPI */
4482                 netdev->last_rx = jiffies;
4483
4484 next_desc:
4485                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
4486                 buffer_info->skb = NULL;
4487
4488                 /* return some buffers to hardware, one at a time is too slow */
4489                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4490                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4491                         cleaned_count = 0;
4492                 }
4493
4494                 /* use prefetched values */
4495                 rx_desc = next_rxd;
4496                 buffer_info = next_buffer;
4497
4498                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4499         }
4500         rx_ring->next_to_clean = i;
4501
4502         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4503         if (cleaned_count)
4504                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4505
4506         adapter->total_rx_packets += total_rx_packets;
4507         adapter->total_rx_bytes += total_rx_bytes;
4508         adapter->net_stats.rx_bytes += total_rx_bytes;
4509         adapter->net_stats.rx_packets += total_rx_packets;
4510         return cleaned;
4511 }
4512
4513 /**
4514  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4515  * @adapter: address of board private structure
4516  **/
4517
4518 static void
4519 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4520                        struct e1000_rx_ring *rx_ring,
4521                        int cleaned_count)
4522 {
4523         struct net_device *netdev = adapter->netdev;
4524         struct pci_dev *pdev = adapter->pdev;
4525         struct e1000_rx_desc *rx_desc;
4526         struct e1000_buffer *buffer_info;
4527         struct sk_buff *skb;
4528         unsigned int i;
4529         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4530
4531         i = rx_ring->next_to_use;
4532         buffer_info = &rx_ring->buffer_info[i];
4533
4534         while (cleaned_count--) {
4535                 skb = buffer_info->skb;
4536                 if (skb) {
4537                         skb_trim(skb, 0);
4538                         goto map_skb;
4539                 }
4540
4541                 skb = netdev_alloc_skb(netdev, bufsz);
4542                 if (unlikely(!skb)) {
4543                         /* Better luck next round */
4544                         adapter->alloc_rx_buff_failed++;
4545                         break;
4546                 }
4547
4548                 /* Fix for errata 23, can't cross 64kB boundary */
4549                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4550                         struct sk_buff *oldskb = skb;
4551                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4552                                              "at %p\n", bufsz, skb->data);
4553                         /* Try again, without freeing the previous */
4554                         skb = netdev_alloc_skb(netdev, bufsz);
4555                         /* Failed allocation, critical failure */
4556                         if (!skb) {
4557                                 dev_kfree_skb(oldskb);
4558                                 break;
4559                         }
4560
4561                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4562                                 /* give up */
4563                                 dev_kfree_skb(skb);
4564                                 dev_kfree_skb(oldskb);
4565                                 break; /* while !buffer_info->skb */
4566                         }
4567
4568                         /* Use new allocation */
4569                         dev_kfree_skb(oldskb);
4570                 }
4571                 /* Make buffer alignment 2 beyond a 16 byte boundary
4572                  * this will result in a 16 byte aligned IP header after
4573                  * the 14 byte MAC header is removed
4574                  */
4575                 skb_reserve(skb, NET_IP_ALIGN);
4576
4577                 buffer_info->skb = skb;
4578                 buffer_info->length = adapter->rx_buffer_len;
4579 map_skb:
4580                 buffer_info->dma = pci_map_single(pdev,
4581                                                   skb->data,
4582                                                   adapter->rx_buffer_len,
4583                                                   PCI_DMA_FROMDEVICE);
4584
4585                 /* Fix for errata 23, can't cross 64kB boundary */
4586                 if (!e1000_check_64k_bound(adapter,
4587                                         (void *)(unsigned long)buffer_info->dma,
4588                                         adapter->rx_buffer_len)) {
4589                         DPRINTK(RX_ERR, ERR,
4590                                 "dma align check failed: %u bytes at %p\n",
4591                                 adapter->rx_buffer_len,
4592                                 (void *)(unsigned long)buffer_info->dma);
4593                         dev_kfree_skb(skb);
4594                         buffer_info->skb = NULL;
4595
4596                         pci_unmap_single(pdev, buffer_info->dma,
4597                                          adapter->rx_buffer_len,
4598                                          PCI_DMA_FROMDEVICE);
4599
4600                         break; /* while !buffer_info->skb */
4601                 }
4602                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4603                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4604
4605                 if (unlikely(++i == rx_ring->count))
4606                         i = 0;
4607                 buffer_info = &rx_ring->buffer_info[i];
4608         }
4609
4610         if (likely(rx_ring->next_to_use != i)) {
4611                 rx_ring->next_to_use = i;
4612                 if (unlikely(i-- == 0))
4613                         i = (rx_ring->count - 1);
4614
4615                 /* Force memory writes to complete before letting h/w
4616                  * know there are new descriptors to fetch.  (Only
4617                  * applicable for weak-ordered memory model archs,
4618                  * such as IA-64). */
4619                 wmb();
4620                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4621         }
4622 }
4623
4624 /**
4625  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
4626  * @adapter: address of board private structure
4627  **/
4628
4629 static void
4630 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
4631                           struct e1000_rx_ring *rx_ring,
4632                           int cleaned_count)
4633 {
4634         struct net_device *netdev = adapter->netdev;
4635         struct pci_dev *pdev = adapter->pdev;
4636         union e1000_rx_desc_packet_split *rx_desc;
4637         struct e1000_buffer *buffer_info;
4638         struct e1000_ps_page *ps_page;
4639         struct e1000_ps_page_dma *ps_page_dma;
4640         struct sk_buff *skb;
4641         unsigned int i, j;
4642
4643         i = rx_ring->next_to_use;
4644         buffer_info = &rx_ring->buffer_info[i];
4645         ps_page = &rx_ring->ps_page[i];
4646         ps_page_dma = &rx_ring->ps_page_dma[i];
4647
4648         while (cleaned_count--) {
4649                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4650
4651                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
4652                         if (j < adapter->rx_ps_pages) {
4653                                 if (likely(!ps_page->ps_page[j])) {
4654                                         ps_page->ps_page[j] =
4655                                                 alloc_page(GFP_ATOMIC);
4656                                         if (unlikely(!ps_page->ps_page[j])) {
4657                                                 adapter->alloc_rx_buff_failed++;
4658                                                 goto no_buffers;
4659                                         }
4660                                         ps_page_dma->ps_page_dma[j] =
4661                                                 pci_map_page(pdev,
4662                                                             ps_page->ps_page[j],
4663                                                             0, PAGE_SIZE,
4664                                                             PCI_DMA_FROMDEVICE);
4665                                 }
4666                                 /* Refresh the desc even if buffer_addrs didn't
4667                                  * change because each write-back erases
4668                                  * this info.
4669                                  */
4670                                 rx_desc->read.buffer_addr[j+1] =
4671                                      cpu_to_le64(ps_page_dma->ps_page_dma[j]);
4672                         } else
4673                                 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
4674                 }
4675
4676                 skb = netdev_alloc_skb(netdev,
4677                                        adapter->rx_ps_bsize0 + NET_IP_ALIGN);
4678
4679                 if (unlikely(!skb)) {
4680                         adapter->alloc_rx_buff_failed++;
4681                         break;
4682                 }
4683
4684                 /* Make buffer alignment 2 beyond a 16 byte boundary
4685                  * this will result in a 16 byte aligned IP header after
4686                  * the 14 byte MAC header is removed
4687                  */
4688                 skb_reserve(skb, NET_IP_ALIGN);
4689
4690                 buffer_info->skb = skb;
4691                 buffer_info->length = adapter->rx_ps_bsize0;
4692                 buffer_info->dma = pci_map_single(pdev, skb->data,
4693                                                   adapter->rx_ps_bsize0,
4694                                                   PCI_DMA_FROMDEVICE);
4695
4696                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
4697
4698                 if (unlikely(++i == rx_ring->count)) i = 0;
4699                 buffer_info = &rx_ring->buffer_info[i];
4700                 ps_page = &rx_ring->ps_page[i];
4701                 ps_page_dma = &rx_ring->ps_page_dma[i];
4702         }
4703
4704 no_buffers:
4705         if (likely(rx_ring->next_to_use != i)) {
4706                 rx_ring->next_to_use = i;
4707                 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4708
4709                 /* Force memory writes to complete before letting h/w
4710                  * know there are new descriptors to fetch.  (Only
4711                  * applicable for weak-ordered memory model archs,
4712                  * such as IA-64). */
4713                 wmb();
4714                 /* Hardware increments by 16 bytes, but packet split
4715                  * descriptors are 32 bytes...so we increment tail
4716                  * twice as much.
4717                  */
4718                 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4719         }
4720 }
4721
4722 /**
4723  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4724  * @adapter:
4725  **/
4726
4727 static void
4728 e1000_smartspeed(struct e1000_adapter *adapter)
4729 {
4730         u16 phy_status;
4731         u16 phy_ctrl;
4732
4733         if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4734            !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4735                 return;
4736
4737         if (adapter->smartspeed == 0) {
4738                 /* If Master/Slave config fault is asserted twice,
4739                  * we assume back-to-back */
4740                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4741                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4742                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4743                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4744                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4745                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4746                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4747                         e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4748                                             phy_ctrl);
4749                         adapter->smartspeed++;
4750                         if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4751                            !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4752                                                &phy_ctrl)) {
4753                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4754                                              MII_CR_RESTART_AUTO_NEG);
4755                                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4756                                                     phy_ctrl);
4757                         }
4758                 }
4759                 return;
4760         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4761                 /* If still no link, perhaps using 2/3 pair cable */
4762                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4763                 phy_ctrl |= CR_1000T_MS_ENABLE;
4764                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4765                 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4766                    !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4767                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4768                                      MII_CR_RESTART_AUTO_NEG);
4769                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4770                 }
4771         }
4772         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4773         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4774                 adapter->smartspeed = 0;
4775 }
4776
4777 /**
4778  * e1000_ioctl -
4779  * @netdev:
4780  * @ifreq:
4781  * @cmd:
4782  **/
4783
4784 static int
4785 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4786 {
4787         switch (cmd) {
4788         case SIOCGMIIPHY:
4789         case SIOCGMIIREG:
4790         case SIOCSMIIREG:
4791                 return e1000_mii_ioctl(netdev, ifr, cmd);
4792         default:
4793                 return -EOPNOTSUPP;
4794         }
4795 }
4796
4797 /**
4798  * e1000_mii_ioctl -
4799  * @netdev:
4800  * @ifreq:
4801  * @cmd:
4802  **/
4803
4804 static int
4805 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4806 {
4807         struct e1000_adapter *adapter = netdev_priv(netdev);
4808         struct mii_ioctl_data *data = if_mii(ifr);
4809         int retval;
4810         u16 mii_reg;
4811         u16 spddplx;
4812         unsigned long flags;
4813
4814         if (adapter->hw.media_type != e1000_media_type_copper)
4815                 return -EOPNOTSUPP;
4816
4817         switch (cmd) {
4818         case SIOCGMIIPHY:
4819                 data->phy_id = adapter->hw.phy_addr;
4820                 break;
4821         case SIOCGMIIREG:
4822                 if (!capable(CAP_NET_ADMIN))
4823                         return -EPERM;
4824                 spin_lock_irqsave(&adapter->stats_lock, flags);
4825                 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4826                                    &data->val_out)) {
4827                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4828                         return -EIO;
4829                 }
4830                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4831                 break;
4832         case SIOCSMIIREG:
4833                 if (!capable(CAP_NET_ADMIN))
4834                         return -EPERM;
4835                 if (data->reg_num & ~(0x1F))
4836                         return -EFAULT;
4837                 mii_reg = data->val_in;
4838                 spin_lock_irqsave(&adapter->stats_lock, flags);
4839                 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4840                                         mii_reg)) {
4841                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4842                         return -EIO;
4843                 }
4844                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4845                 if (adapter->hw.media_type == e1000_media_type_copper) {
4846                         switch (data->reg_num) {
4847                         case PHY_CTRL:
4848                                 if (mii_reg & MII_CR_POWER_DOWN)
4849                                         break;
4850                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4851                                         adapter->hw.autoneg = 1;
4852                                         adapter->hw.autoneg_advertised = 0x2F;
4853                                 } else {
4854                                         if (mii_reg & 0x40)
4855                                                 spddplx = SPEED_1000;
4856                                         else if (mii_reg & 0x2000)
4857                                                 spddplx = SPEED_100;
4858                                         else
4859                                                 spddplx = SPEED_10;
4860                                         spddplx += (mii_reg & 0x100)
4861                                                    ? DUPLEX_FULL :
4862                                                    DUPLEX_HALF;
4863                                         retval = e1000_set_spd_dplx(adapter,
4864                                                                     spddplx);
4865                                         if (retval)
4866                                                 return retval;
4867                                 }
4868                                 if (netif_running(adapter->netdev))
4869                                         e1000_reinit_locked(adapter);
4870                                 else
4871                                         e1000_reset(adapter);
4872                                 break;
4873                         case M88E1000_PHY_SPEC_CTRL:
4874                         case M88E1000_EXT_PHY_SPEC_CTRL:
4875                                 if (e1000_phy_reset(&adapter->hw))
4876                                         return -EIO;
4877                                 break;
4878                         }
4879                 } else {
4880                         switch (data->reg_num) {
4881                         case PHY_CTRL:
4882                                 if (mii_reg & MII_CR_POWER_DOWN)
4883                                         break;
4884                                 if (netif_running(adapter->netdev))
4885                                         e1000_reinit_locked(adapter);
4886                                 else
4887                                         e1000_reset(adapter);
4888                                 break;
4889                         }
4890                 }
4891                 break;
4892         default:
4893                 return -EOPNOTSUPP;
4894         }
4895         return E1000_SUCCESS;
4896 }
4897
4898 void
4899 e1000_pci_set_mwi(struct e1000_hw *hw)
4900 {
4901         struct e1000_adapter *adapter = hw->back;
4902         int ret_val = pci_set_mwi(adapter->pdev);
4903
4904         if (ret_val)
4905                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4906 }
4907
4908 void
4909 e1000_pci_clear_mwi(struct e1000_hw *hw)
4910 {
4911         struct e1000_adapter *adapter = hw->back;
4912
4913         pci_clear_mwi(adapter->pdev);
4914 }
4915
4916 int
4917 e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4918 {
4919         struct e1000_adapter *adapter = hw->back;
4920         return pcix_get_mmrbc(adapter->pdev);
4921 }
4922
4923 void
4924 e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4925 {
4926         struct e1000_adapter *adapter = hw->back;
4927         pcix_set_mmrbc(adapter->pdev, mmrbc);
4928 }
4929
4930 s32
4931 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
4932 {
4933     struct e1000_adapter *adapter = hw->back;
4934     u16 cap_offset;
4935
4936     cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
4937     if (!cap_offset)
4938         return -E1000_ERR_CONFIG;
4939
4940     pci_read_config_word(adapter->pdev, cap_offset + reg, value);
4941
4942     return E1000_SUCCESS;
4943 }
4944
4945 void
4946 e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4947 {
4948         outl(value, port);
4949 }
4950
4951 static void
4952 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4953 {
4954         struct e1000_adapter *adapter = netdev_priv(netdev);
4955         u32 ctrl, rctl;
4956
4957         if (!test_bit(__E1000_DOWN, &adapter->flags))
4958                 e1000_irq_disable(adapter);
4959         adapter->vlgrp = grp;
4960
4961         if (grp) {
4962                 /* enable VLAN tag insert/strip */
4963                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4964                 ctrl |= E1000_CTRL_VME;
4965                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4966
4967                 if (adapter->hw.mac_type != e1000_ich8lan) {
4968                         /* enable VLAN receive filtering */
4969                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4970                         if (!(netdev->flags & IFF_PROMISC))
4971                                 rctl |= E1000_RCTL_VFE;
4972                         rctl &= ~E1000_RCTL_CFIEN;
4973                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4974                         e1000_update_mng_vlan(adapter);
4975                 }
4976         } else {
4977                 /* disable VLAN tag insert/strip */
4978                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4979                 ctrl &= ~E1000_CTRL_VME;
4980                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4981
4982                 if (adapter->hw.mac_type != e1000_ich8lan) {
4983                         /* disable VLAN filtering */
4984                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4985                         rctl &= ~E1000_RCTL_VFE;
4986                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4987                         if (adapter->mng_vlan_id !=
4988                             (u16)E1000_MNG_VLAN_NONE) {
4989                                 e1000_vlan_rx_kill_vid(netdev,
4990                                                        adapter->mng_vlan_id);
4991                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4992                         }
4993                 }
4994         }
4995
4996         if (!test_bit(__E1000_DOWN, &adapter->flags))
4997                 e1000_irq_enable(adapter);
4998 }
4999
5000 static void
5001 e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
5002 {
5003         struct e1000_adapter *adapter = netdev_priv(netdev);
5004         u32 vfta, index;
5005
5006         if ((adapter->hw.mng_cookie.status &
5007              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
5008             (vid == adapter->mng_vlan_id))
5009                 return;
5010         /* add VID to filter table */
5011         index = (vid >> 5) & 0x7F;
5012         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
5013         vfta |= (1 << (vid & 0x1F));
5014         e1000_write_vfta(&adapter->hw, index, vfta);
5015 }
5016
5017 static void
5018 e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
5019 {
5020         struct e1000_adapter *adapter = netdev_priv(netdev);
5021         u32 vfta, index;
5022
5023         if (!test_bit(__E1000_DOWN, &adapter->flags))
5024                 e1000_irq_disable(adapter);
5025         vlan_group_set_device(adapter->vlgrp, vid, NULL);
5026         if (!test_bit(__E1000_DOWN, &adapter->flags))
5027                 e1000_irq_enable(adapter);
5028
5029         if ((adapter->hw.mng_cookie.status &
5030              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
5031             (vid == adapter->mng_vlan_id)) {
5032                 /* release control to f/w */
5033                 e1000_release_hw_control(adapter);
5034                 return;
5035         }
5036
5037         /* remove VID from filter table */
5038         index = (vid >> 5) & 0x7F;
5039         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
5040         vfta &= ~(1 << (vid & 0x1F));
5041         e1000_write_vfta(&adapter->hw, index, vfta);
5042 }
5043
5044 static void
5045 e1000_restore_vlan(struct e1000_adapter *adapter)
5046 {
5047         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
5048
5049         if (adapter->vlgrp) {
5050                 u16 vid;
5051                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
5052                         if (!vlan_group_get_device(adapter->vlgrp, vid))
5053                                 continue;
5054                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
5055                 }
5056         }
5057 }
5058
5059 int
5060 e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
5061 {
5062         adapter->hw.autoneg = 0;
5063
5064         /* Fiber NICs only allow 1000 gbps Full duplex */
5065         if ((adapter->hw.media_type == e1000_media_type_fiber) &&
5066                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
5067                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
5068                 return -EINVAL;
5069         }
5070
5071         switch (spddplx) {
5072         case SPEED_10 + DUPLEX_HALF:
5073                 adapter->hw.forced_speed_duplex = e1000_10_half;
5074                 break;
5075         case SPEED_10 + DUPLEX_FULL:
5076                 adapter->hw.forced_speed_duplex = e1000_10_full;
5077                 break;
5078         case SPEED_100 + DUPLEX_HALF:
5079                 adapter->hw.forced_speed_duplex = e1000_100_half;
5080                 break;
5081         case SPEED_100 + DUPLEX_FULL:
5082                 adapter->hw.forced_speed_duplex = e1000_100_full;
5083                 break;
5084         case SPEED_1000 + DUPLEX_FULL:
5085                 adapter->hw.autoneg = 1;
5086                 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
5087                 break;
5088         case SPEED_1000 + DUPLEX_HALF: /* not supported */
5089         default:
5090                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
5091                 return -EINVAL;
5092         }
5093         return 0;
5094 }
5095
5096 static int
5097 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5098 {
5099         struct net_device *netdev = pci_get_drvdata(pdev);
5100         struct e1000_adapter *adapter = netdev_priv(netdev);
5101         u32 ctrl, ctrl_ext, rctl, status;
5102         u32 wufc = adapter->wol;
5103 #ifdef CONFIG_PM
5104         int retval = 0;
5105 #endif
5106
5107         netif_device_detach(netdev);
5108
5109         if (netif_running(netdev)) {
5110                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5111                 e1000_down(adapter);
5112         }
5113
5114 #ifdef CONFIG_PM
5115         retval = pci_save_state(pdev);
5116         if (retval)
5117                 return retval;
5118 #endif
5119
5120         status = E1000_READ_REG(&adapter->hw, STATUS);
5121         if (status & E1000_STATUS_LU)
5122                 wufc &= ~E1000_WUFC_LNKC;
5123
5124         if (wufc) {
5125                 e1000_setup_rctl(adapter);
5126                 e1000_set_rx_mode(netdev);
5127
5128                 /* turn on all-multi mode if wake on multicast is enabled */
5129                 if (wufc & E1000_WUFC_MC) {
5130                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
5131                         rctl |= E1000_RCTL_MPE;
5132                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
5133                 }
5134
5135                 if (adapter->hw.mac_type >= e1000_82540) {
5136                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
5137                         /* advertise wake from D3Cold */
5138                         #define E1000_CTRL_ADVD3WUC 0x00100000
5139                         /* phy power management enable */
5140                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5141                         ctrl |= E1000_CTRL_ADVD3WUC |
5142                                 E1000_CTRL_EN_PHY_PWR_MGMT;
5143                         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
5144                 }
5145
5146                 if (adapter->hw.media_type == e1000_media_type_fiber ||
5147                    adapter->hw.media_type == e1000_media_type_internal_serdes) {
5148                         /* keep the laser running in D3 */
5149                         ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
5150                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5151                         E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
5152                 }
5153
5154                 /* Allow time for pending master requests to run */
5155                 e1000_disable_pciex_master(&adapter->hw);
5156
5157                 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
5158                 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
5159                 pci_enable_wake(pdev, PCI_D3hot, 1);
5160                 pci_enable_wake(pdev, PCI_D3cold, 1);
5161         } else {
5162                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
5163                 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
5164                 pci_enable_wake(pdev, PCI_D3hot, 0);
5165                 pci_enable_wake(pdev, PCI_D3cold, 0);
5166         }
5167
5168         e1000_release_manageability(adapter);
5169
5170         /* make sure adapter isn't asleep if manageability is enabled */
5171         if (adapter->en_mng_pt) {
5172                 pci_enable_wake(pdev, PCI_D3hot, 1);
5173                 pci_enable_wake(pdev, PCI_D3cold, 1);
5174         }
5175
5176         if (adapter->hw.phy_type == e1000_phy_igp_3)
5177                 e1000_phy_powerdown_workaround(&adapter->hw);
5178
5179         if (netif_running(netdev))
5180                 e1000_free_irq(adapter);
5181
5182         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
5183          * would have already happened in close and is redundant. */
5184         e1000_release_hw_control(adapter);
5185
5186         pci_disable_device(pdev);
5187
5188         pci_set_power_state(pdev, pci_choose_state(pdev, state));
5189
5190         return 0;
5191 }
5192
5193 #ifdef CONFIG_PM
5194 static int
5195 e1000_resume(struct pci_dev *pdev)
5196 {
5197         struct net_device *netdev = pci_get_drvdata(pdev);
5198         struct e1000_adapter *adapter = netdev_priv(netdev);
5199         u32 err;
5200
5201         pci_set_power_state(pdev, PCI_D0);
5202         pci_restore_state(pdev);
5203         if ((err = pci_enable_device(pdev))) {
5204                 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
5205                 return err;
5206         }
5207         pci_set_master(pdev);
5208
5209         pci_enable_wake(pdev, PCI_D3hot, 0);
5210         pci_enable_wake(pdev, PCI_D3cold, 0);
5211
5212         if (netif_running(netdev) && (err = e1000_request_irq(adapter)))
5213                 return err;
5214
5215         e1000_power_up_phy(adapter);
5216         e1000_reset(adapter);
5217         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
5218
5219         e1000_init_manageability(adapter);
5220
5221         if (netif_running(netdev))
5222                 e1000_up(adapter);
5223
5224         netif_device_attach(netdev);
5225
5226         /* If the controller is 82573 and f/w is AMT, do not set
5227          * DRV_LOAD until the interface is up.  For all other cases,
5228          * let the f/w know that the h/w is now under the control
5229          * of the driver. */
5230         if (adapter->hw.mac_type != e1000_82573 ||
5231             !e1000_check_mng_mode(&adapter->hw))
5232                 e1000_get_hw_control(adapter);
5233
5234         return 0;
5235 }
5236 #endif
5237
5238 static void e1000_shutdown(struct pci_dev *pdev)
5239 {
5240         e1000_suspend(pdev, PMSG_SUSPEND);
5241 }
5242
5243 #ifdef CONFIG_NET_POLL_CONTROLLER
5244 /*
5245  * Polling 'interrupt' - used by things like netconsole to send skbs
5246  * without having to re-enable interrupts. It's not called while
5247  * the interrupt routine is executing.
5248  */
5249 static void
5250 e1000_netpoll(struct net_device *netdev)
5251 {
5252         struct e1000_adapter *adapter = netdev_priv(netdev);
5253
5254         disable_irq(adapter->pdev->irq);
5255         e1000_intr(adapter->pdev->irq, netdev);
5256 #ifndef CONFIG_E1000_NAPI
5257         adapter->clean_rx(adapter, adapter->rx_ring);
5258 #endif
5259         enable_irq(adapter->pdev->irq);
5260 }
5261 #endif
5262
5263 /**
5264  * e1000_io_error_detected - called when PCI error is detected
5265  * @pdev: Pointer to PCI device
5266  * @state: The current pci conneection state
5267  *
5268  * This function is called after a PCI bus error affecting
5269  * this device has been detected.
5270  */
5271 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
5272 {
5273         struct net_device *netdev = pci_get_drvdata(pdev);
5274         struct e1000_adapter *adapter = netdev->priv;
5275
5276         netif_device_detach(netdev);
5277
5278         if (netif_running(netdev))
5279                 e1000_down(adapter);
5280         pci_disable_device(pdev);
5281
5282         /* Request a slot slot reset. */
5283         return PCI_ERS_RESULT_NEED_RESET;
5284 }
5285
5286 /**
5287  * e1000_io_slot_reset - called after the pci bus has been reset.
5288  * @pdev: Pointer to PCI device
5289  *
5290  * Restart the card from scratch, as if from a cold-boot. Implementation
5291  * resembles the first-half of the e1000_resume routine.
5292  */
5293 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5294 {
5295         struct net_device *netdev = pci_get_drvdata(pdev);
5296         struct e1000_adapter *adapter = netdev->priv;
5297
5298         if (pci_enable_device(pdev)) {
5299                 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
5300                 return PCI_ERS_RESULT_DISCONNECT;
5301         }
5302         pci_set_master(pdev);
5303
5304         pci_enable_wake(pdev, PCI_D3hot, 0);
5305         pci_enable_wake(pdev, PCI_D3cold, 0);
5306
5307         e1000_reset(adapter);
5308         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
5309
5310         return PCI_ERS_RESULT_RECOVERED;
5311 }
5312
5313 /**
5314  * e1000_io_resume - called when traffic can start flowing again.
5315  * @pdev: Pointer to PCI device
5316  *
5317  * This callback is called when the error recovery driver tells us that
5318  * its OK to resume normal operation. Implementation resembles the
5319  * second-half of the e1000_resume routine.
5320  */
5321 static void e1000_io_resume(struct pci_dev *pdev)
5322 {
5323         struct net_device *netdev = pci_get_drvdata(pdev);
5324         struct e1000_adapter *adapter = netdev->priv;
5325
5326         e1000_init_manageability(adapter);
5327
5328         if (netif_running(netdev)) {
5329                 if (e1000_up(adapter)) {
5330                         printk("e1000: can't bring device back up after reset\n");
5331                         return;
5332                 }
5333         }
5334
5335         netif_device_attach(netdev);
5336
5337         /* If the controller is 82573 and f/w is AMT, do not set
5338          * DRV_LOAD until the interface is up.  For all other cases,
5339          * let the f/w know that the h/w is now under the control
5340          * of the driver. */
5341         if (adapter->hw.mac_type != e1000_82573 ||
5342             !e1000_check_mng_mode(&adapter->hw))
5343                 e1000_get_hw_control(adapter);
5344
5345 }
5346
5347 /* e1000_main.c */