]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/e1000/e1000_main.c
4945a41e3aea83dcd68317a896f10b265b0dd86c
[linux-2.6-omap-h63xx.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   
4   Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
5   
6   This program is free software; you can redistribute it and/or modify it 
7   under the terms of the GNU General Public License as published by the Free 
8   Software Foundation; either version 2 of the License, or (at your option) 
9   any later version.
10   
11   This program is distributed in the hope that it will be useful, but WITHOUT 
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
14   more details.
15   
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc., 59 
18   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
19   
20   The full GNU General Public License is included in this distribution in the
21   file called LICENSE.
22   
23   Contact Information:
24   Linux NICS <linux.nics@intel.com>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30
31 /* Change Log
32  * 6.0.58       4/20/05
33  *   o Accepted ethtool cleanup patch from Stephen Hemminger 
34  * 6.0.44+      2/15/05
35  *   o applied Anton's patch to resolve tx hang in hardware
36  *   o Applied Andrew Mortons patch - e1000 stops working after resume
37  */
38
39 char e1000_driver_name[] = "e1000";
40 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
41 #ifndef CONFIG_E1000_NAPI
42 #define DRIVERNAPI
43 #else
44 #define DRIVERNAPI "-NAPI"
45 #endif
46 #define DRV_VERSION "6.3.9-k2"DRIVERNAPI
47 char e1000_driver_version[] = DRV_VERSION;
48 static char e1000_copyright[] = "Copyright (c) 1999-2005 Intel Corporation.";
49
50 /* e1000_pci_tbl - PCI Device ID Table
51  *
52  * Last entry must be all 0s
53  *
54  * Macro expands to...
55  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
56  */
57 static struct pci_device_id e1000_pci_tbl[] = {
58         INTEL_E1000_ETHERNET_DEVICE(0x1000),
59         INTEL_E1000_ETHERNET_DEVICE(0x1001),
60         INTEL_E1000_ETHERNET_DEVICE(0x1004),
61         INTEL_E1000_ETHERNET_DEVICE(0x1008),
62         INTEL_E1000_ETHERNET_DEVICE(0x1009),
63         INTEL_E1000_ETHERNET_DEVICE(0x100C),
64         INTEL_E1000_ETHERNET_DEVICE(0x100D),
65         INTEL_E1000_ETHERNET_DEVICE(0x100E),
66         INTEL_E1000_ETHERNET_DEVICE(0x100F),
67         INTEL_E1000_ETHERNET_DEVICE(0x1010),
68         INTEL_E1000_ETHERNET_DEVICE(0x1011),
69         INTEL_E1000_ETHERNET_DEVICE(0x1012),
70         INTEL_E1000_ETHERNET_DEVICE(0x1013),
71         INTEL_E1000_ETHERNET_DEVICE(0x1014),
72         INTEL_E1000_ETHERNET_DEVICE(0x1015),
73         INTEL_E1000_ETHERNET_DEVICE(0x1016),
74         INTEL_E1000_ETHERNET_DEVICE(0x1017),
75         INTEL_E1000_ETHERNET_DEVICE(0x1018),
76         INTEL_E1000_ETHERNET_DEVICE(0x1019),
77         INTEL_E1000_ETHERNET_DEVICE(0x101A),
78         INTEL_E1000_ETHERNET_DEVICE(0x101D),
79         INTEL_E1000_ETHERNET_DEVICE(0x101E),
80         INTEL_E1000_ETHERNET_DEVICE(0x1026),
81         INTEL_E1000_ETHERNET_DEVICE(0x1027),
82         INTEL_E1000_ETHERNET_DEVICE(0x1028),
83         INTEL_E1000_ETHERNET_DEVICE(0x105E),
84         INTEL_E1000_ETHERNET_DEVICE(0x105F),
85         INTEL_E1000_ETHERNET_DEVICE(0x1060),
86         INTEL_E1000_ETHERNET_DEVICE(0x1075),
87         INTEL_E1000_ETHERNET_DEVICE(0x1076),
88         INTEL_E1000_ETHERNET_DEVICE(0x1077),
89         INTEL_E1000_ETHERNET_DEVICE(0x1078),
90         INTEL_E1000_ETHERNET_DEVICE(0x1079),
91         INTEL_E1000_ETHERNET_DEVICE(0x107A),
92         INTEL_E1000_ETHERNET_DEVICE(0x107B),
93         INTEL_E1000_ETHERNET_DEVICE(0x107C),
94         INTEL_E1000_ETHERNET_DEVICE(0x107D),
95         INTEL_E1000_ETHERNET_DEVICE(0x107E),
96         INTEL_E1000_ETHERNET_DEVICE(0x107F),
97         INTEL_E1000_ETHERNET_DEVICE(0x108A),
98         INTEL_E1000_ETHERNET_DEVICE(0x108B),
99         INTEL_E1000_ETHERNET_DEVICE(0x108C),
100         INTEL_E1000_ETHERNET_DEVICE(0x109A),
101         /* required last entry */
102         {0,}
103 };
104
105 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
106
107 int e1000_up(struct e1000_adapter *adapter);
108 void e1000_down(struct e1000_adapter *adapter);
109 void e1000_reset(struct e1000_adapter *adapter);
110 int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
111 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
112 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
113 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
114 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
115 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
116                                     struct e1000_tx_ring *txdr);
117 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
118                                     struct e1000_rx_ring *rxdr);
119 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
120                                     struct e1000_tx_ring *tx_ring);
121 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
122                                     struct e1000_rx_ring *rx_ring);
123 void e1000_update_stats(struct e1000_adapter *adapter);
124
125 /* Local Function Prototypes */
126
127 static int e1000_init_module(void);
128 static void e1000_exit_module(void);
129 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
130 static void __devexit e1000_remove(struct pci_dev *pdev);
131 static int e1000_alloc_queues(struct e1000_adapter *adapter);
132 #ifdef CONFIG_E1000_MQ
133 static void e1000_setup_queue_mapping(struct e1000_adapter *adapter);
134 #endif
135 static int e1000_sw_init(struct e1000_adapter *adapter);
136 static int e1000_open(struct net_device *netdev);
137 static int e1000_close(struct net_device *netdev);
138 static void e1000_configure_tx(struct e1000_adapter *adapter);
139 static void e1000_configure_rx(struct e1000_adapter *adapter);
140 static void e1000_setup_rctl(struct e1000_adapter *adapter);
141 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
142 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
143 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
144                                 struct e1000_tx_ring *tx_ring);
145 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
146                                 struct e1000_rx_ring *rx_ring);
147 static void e1000_set_multi(struct net_device *netdev);
148 static void e1000_update_phy_info(unsigned long data);
149 static void e1000_watchdog(unsigned long data);
150 static void e1000_watchdog_task(struct e1000_adapter *adapter);
151 static void e1000_82547_tx_fifo_stall(unsigned long data);
152 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
153 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
154 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
155 static int e1000_set_mac(struct net_device *netdev, void *p);
156 static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
157 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
158                                     struct e1000_tx_ring *tx_ring);
159 #ifdef CONFIG_E1000_NAPI
160 static int e1000_clean(struct net_device *poll_dev, int *budget);
161 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
162                                     struct e1000_rx_ring *rx_ring,
163                                     int *work_done, int work_to_do);
164 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
165                                        struct e1000_rx_ring *rx_ring,
166                                        int *work_done, int work_to_do);
167 #else
168 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
169                                     struct e1000_rx_ring *rx_ring);
170 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
171                                        struct e1000_rx_ring *rx_ring);
172 #endif
173 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
174                                    struct e1000_rx_ring *rx_ring);
175 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
176                                       struct e1000_rx_ring *rx_ring);
177 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
178 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
179                            int cmd);
180 void e1000_set_ethtool_ops(struct net_device *netdev);
181 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
182 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
183 static void e1000_tx_timeout(struct net_device *dev);
184 static void e1000_tx_timeout_task(struct net_device *dev);
185 static void e1000_smartspeed(struct e1000_adapter *adapter);
186 static inline int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
187                                               struct sk_buff *skb);
188
189 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
190 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
191 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
192 static void e1000_restore_vlan(struct e1000_adapter *adapter);
193
194 #ifdef CONFIG_PM
195 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
196 static int e1000_resume(struct pci_dev *pdev);
197 #endif
198
199 #ifdef CONFIG_NET_POLL_CONTROLLER
200 /* for netdump / net console */
201 static void e1000_netpoll (struct net_device *netdev);
202 #endif
203
204 #ifdef CONFIG_E1000_MQ
205 /* for multiple Rx queues */
206 void e1000_rx_schedule(void *data);
207 #endif
208
209 /* Exported from other modules */
210
211 extern void e1000_check_options(struct e1000_adapter *adapter);
212
213 static struct pci_driver e1000_driver = {
214         .name     = e1000_driver_name,
215         .id_table = e1000_pci_tbl,
216         .probe    = e1000_probe,
217         .remove   = __devexit_p(e1000_remove),
218         /* Power Managment Hooks */
219 #ifdef CONFIG_PM
220         .suspend  = e1000_suspend,
221         .resume   = e1000_resume
222 #endif
223 };
224
225 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
226 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
227 MODULE_LICENSE("GPL");
228 MODULE_VERSION(DRV_VERSION);
229
230 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
231 module_param(debug, int, 0);
232 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
233
234 /**
235  * e1000_init_module - Driver Registration Routine
236  *
237  * e1000_init_module is the first routine called when the driver is
238  * loaded. All it does is register with the PCI subsystem.
239  **/
240
241 static int __init
242 e1000_init_module(void)
243 {
244         int ret;
245         printk(KERN_INFO "%s - version %s\n",
246                e1000_driver_string, e1000_driver_version);
247
248         printk(KERN_INFO "%s\n", e1000_copyright);
249
250         ret = pci_module_init(&e1000_driver);
251
252         return ret;
253 }
254
255 module_init(e1000_init_module);
256
257 /**
258  * e1000_exit_module - Driver Exit Cleanup Routine
259  *
260  * e1000_exit_module is called just before the driver is removed
261  * from memory.
262  **/
263
264 static void __exit
265 e1000_exit_module(void)
266 {
267         pci_unregister_driver(&e1000_driver);
268 }
269
270 module_exit(e1000_exit_module);
271
272 /**
273  * e1000_irq_disable - Mask off interrupt generation on the NIC
274  * @adapter: board private structure
275  **/
276
277 static inline void
278 e1000_irq_disable(struct e1000_adapter *adapter)
279 {
280         atomic_inc(&adapter->irq_sem);
281         E1000_WRITE_REG(&adapter->hw, IMC, ~0);
282         E1000_WRITE_FLUSH(&adapter->hw);
283         synchronize_irq(adapter->pdev->irq);
284 }
285
286 /**
287  * e1000_irq_enable - Enable default interrupt generation settings
288  * @adapter: board private structure
289  **/
290
291 static inline void
292 e1000_irq_enable(struct e1000_adapter *adapter)
293 {
294         if(likely(atomic_dec_and_test(&adapter->irq_sem))) {
295                 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
296                 E1000_WRITE_FLUSH(&adapter->hw);
297         }
298 }
299
300 static void
301 e1000_update_mng_vlan(struct e1000_adapter *adapter)
302 {
303         struct net_device *netdev = adapter->netdev;
304         uint16_t vid = adapter->hw.mng_cookie.vlan_id;
305         uint16_t old_vid = adapter->mng_vlan_id;
306         if(adapter->vlgrp) {
307                 if(!adapter->vlgrp->vlan_devices[vid]) {
308                         if(adapter->hw.mng_cookie.status &
309                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
310                                 e1000_vlan_rx_add_vid(netdev, vid);
311                                 adapter->mng_vlan_id = vid;
312                         } else
313                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
314                                 
315                         if((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
316                                         (vid != old_vid) && 
317                                         !adapter->vlgrp->vlan_devices[old_vid])
318                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
319                 }
320         }
321 }
322         
323 int
324 e1000_up(struct e1000_adapter *adapter)
325 {
326         struct net_device *netdev = adapter->netdev;
327         int i, err;
328
329         /* hardware has been reset, we need to reload some things */
330
331         /* Reset the PHY if it was previously powered down */
332         if(adapter->hw.media_type == e1000_media_type_copper) {
333                 uint16_t mii_reg;
334                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
335                 if(mii_reg & MII_CR_POWER_DOWN)
336                         e1000_phy_reset(&adapter->hw);
337         }
338
339         e1000_set_multi(netdev);
340
341         e1000_restore_vlan(adapter);
342
343         e1000_configure_tx(adapter);
344         e1000_setup_rctl(adapter);
345         e1000_configure_rx(adapter);
346         for (i = 0; i < adapter->num_queues; i++)
347                 adapter->alloc_rx_buf(adapter, &adapter->rx_ring[i]);
348
349 #ifdef CONFIG_PCI_MSI
350         if(adapter->hw.mac_type > e1000_82547_rev_2) {
351                 adapter->have_msi = TRUE;
352                 if((err = pci_enable_msi(adapter->pdev))) {
353                         DPRINTK(PROBE, ERR,
354                          "Unable to allocate MSI interrupt Error: %d\n", err);
355                         adapter->have_msi = FALSE;
356                 }
357         }
358 #endif
359         if((err = request_irq(adapter->pdev->irq, &e1000_intr,
360                               SA_SHIRQ | SA_SAMPLE_RANDOM,
361                               netdev->name, netdev))) {
362                 DPRINTK(PROBE, ERR,
363                     "Unable to allocate interrupt Error: %d\n", err);
364                 return err;
365         }
366
367         mod_timer(&adapter->watchdog_timer, jiffies);
368
369 #ifdef CONFIG_E1000_NAPI
370         netif_poll_enable(netdev);
371 #endif
372         e1000_irq_enable(adapter);
373
374         return 0;
375 }
376
377 void
378 e1000_down(struct e1000_adapter *adapter)
379 {
380         struct net_device *netdev = adapter->netdev;
381
382         e1000_irq_disable(adapter);
383 #ifdef CONFIG_E1000_MQ
384         while (atomic_read(&adapter->rx_sched_call_data.count) != 0);
385 #endif
386         free_irq(adapter->pdev->irq, netdev);
387 #ifdef CONFIG_PCI_MSI
388         if(adapter->hw.mac_type > e1000_82547_rev_2 &&
389            adapter->have_msi == TRUE)
390                 pci_disable_msi(adapter->pdev);
391 #endif
392         del_timer_sync(&adapter->tx_fifo_stall_timer);
393         del_timer_sync(&adapter->watchdog_timer);
394         del_timer_sync(&adapter->phy_info_timer);
395
396 #ifdef CONFIG_E1000_NAPI
397         netif_poll_disable(netdev);
398 #endif
399         adapter->link_speed = 0;
400         adapter->link_duplex = 0;
401         netif_carrier_off(netdev);
402         netif_stop_queue(netdev);
403
404         e1000_reset(adapter);
405         e1000_clean_all_tx_rings(adapter);
406         e1000_clean_all_rx_rings(adapter);
407
408         /* If WoL is not enabled and management mode is not IAMT
409          * Power down the PHY so no link is implied when interface is down */
410         if(!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
411            adapter->hw.media_type == e1000_media_type_copper &&
412            !e1000_check_mng_mode(&adapter->hw) &&
413            !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN)) {
414                 uint16_t mii_reg;
415                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
416                 mii_reg |= MII_CR_POWER_DOWN;
417                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
418                 mdelay(1);
419         }
420 }
421
422 void
423 e1000_reset(struct e1000_adapter *adapter)
424 {
425         struct net_device *netdev = adapter->netdev;
426         uint32_t pba, manc;
427         uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
428         uint16_t fc_low_water_mark = E1000_FC_LOW_DIFF;
429
430         /* Repartition Pba for greater than 9k mtu
431          * To take effect CTRL.RST is required.
432          */
433
434         switch (adapter->hw.mac_type) {
435         case e1000_82547:
436         case e1000_82547_rev_2:
437                 pba = E1000_PBA_30K;
438                 break;
439         case e1000_82571:
440         case e1000_82572:
441                 pba = E1000_PBA_38K;
442                 break;
443         case e1000_82573:
444                 pba = E1000_PBA_12K;
445                 break;
446         default:
447                 pba = E1000_PBA_48K;
448                 break;
449         }
450
451         if((adapter->hw.mac_type != e1000_82573) &&
452            (adapter->netdev->mtu > E1000_RXBUFFER_8192)) {
453                 pba -= 8; /* allocate more FIFO for Tx */
454                 /* send an XOFF when there is enough space in the
455                  * Rx FIFO to hold one extra full size Rx packet 
456                 */
457                 fc_high_water_mark = netdev->mtu + ENET_HEADER_SIZE + 
458                                         ETHERNET_FCS_SIZE + 1;
459                 fc_low_water_mark = fc_high_water_mark + 8;
460         }
461
462
463         if(adapter->hw.mac_type == e1000_82547) {
464                 adapter->tx_fifo_head = 0;
465                 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
466                 adapter->tx_fifo_size =
467                         (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
468                 atomic_set(&adapter->tx_fifo_stall, 0);
469         }
470
471         E1000_WRITE_REG(&adapter->hw, PBA, pba);
472
473         /* flow control settings */
474         adapter->hw.fc_high_water = (pba << E1000_PBA_BYTES_SHIFT) -
475                                     fc_high_water_mark;
476         adapter->hw.fc_low_water = (pba << E1000_PBA_BYTES_SHIFT) -
477                                    fc_low_water_mark;
478         adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
479         adapter->hw.fc_send_xon = 1;
480         adapter->hw.fc = adapter->hw.original_fc;
481
482         /* Allow time for pending master requests to run */
483         e1000_reset_hw(&adapter->hw);
484         if(adapter->hw.mac_type >= e1000_82544)
485                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
486         if(e1000_init_hw(&adapter->hw))
487                 DPRINTK(PROBE, ERR, "Hardware Error\n");
488         e1000_update_mng_vlan(adapter);
489         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
490         E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
491
492         e1000_reset_adaptive(&adapter->hw);
493         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
494         if (adapter->en_mng_pt) {
495                 manc = E1000_READ_REG(&adapter->hw, MANC);
496                 manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
497                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
498         }
499 }
500
501 /**
502  * e1000_probe - Device Initialization Routine
503  * @pdev: PCI device information struct
504  * @ent: entry in e1000_pci_tbl
505  *
506  * Returns 0 on success, negative on failure
507  *
508  * e1000_probe initializes an adapter identified by a pci_dev structure.
509  * The OS initialization, configuring of the adapter private structure,
510  * and a hardware reset occur.
511  **/
512
513 static int __devinit
514 e1000_probe(struct pci_dev *pdev,
515             const struct pci_device_id *ent)
516 {
517         struct net_device *netdev;
518         struct e1000_adapter *adapter;
519         unsigned long mmio_start, mmio_len;
520         uint32_t ctrl_ext;
521         uint32_t swsm;
522
523         static int cards_found = 0;
524         int i, err, pci_using_dac;
525         uint16_t eeprom_data;
526         uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
527         if((err = pci_enable_device(pdev)))
528                 return err;
529
530         if(!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
531                 pci_using_dac = 1;
532         } else {
533                 if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
534                         E1000_ERR("No usable DMA configuration, aborting\n");
535                         return err;
536                 }
537                 pci_using_dac = 0;
538         }
539
540         if((err = pci_request_regions(pdev, e1000_driver_name)))
541                 return err;
542
543         pci_set_master(pdev);
544
545         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
546         if(!netdev) {
547                 err = -ENOMEM;
548                 goto err_alloc_etherdev;
549         }
550
551         SET_MODULE_OWNER(netdev);
552         SET_NETDEV_DEV(netdev, &pdev->dev);
553
554         pci_set_drvdata(pdev, netdev);
555         adapter = netdev_priv(netdev);
556         adapter->netdev = netdev;
557         adapter->pdev = pdev;
558         adapter->hw.back = adapter;
559         adapter->msg_enable = (1 << debug) - 1;
560
561         mmio_start = pci_resource_start(pdev, BAR_0);
562         mmio_len = pci_resource_len(pdev, BAR_0);
563
564         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
565         if(!adapter->hw.hw_addr) {
566                 err = -EIO;
567                 goto err_ioremap;
568         }
569
570         for(i = BAR_1; i <= BAR_5; i++) {
571                 if(pci_resource_len(pdev, i) == 0)
572                         continue;
573                 if(pci_resource_flags(pdev, i) & IORESOURCE_IO) {
574                         adapter->hw.io_base = pci_resource_start(pdev, i);
575                         break;
576                 }
577         }
578
579         netdev->open = &e1000_open;
580         netdev->stop = &e1000_close;
581         netdev->hard_start_xmit = &e1000_xmit_frame;
582         netdev->get_stats = &e1000_get_stats;
583         netdev->set_multicast_list = &e1000_set_multi;
584         netdev->set_mac_address = &e1000_set_mac;
585         netdev->change_mtu = &e1000_change_mtu;
586         netdev->do_ioctl = &e1000_ioctl;
587         e1000_set_ethtool_ops(netdev);
588         netdev->tx_timeout = &e1000_tx_timeout;
589         netdev->watchdog_timeo = 5 * HZ;
590 #ifdef CONFIG_E1000_NAPI
591         netdev->poll = &e1000_clean;
592         netdev->weight = 64;
593 #endif
594         netdev->vlan_rx_register = e1000_vlan_rx_register;
595         netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
596         netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
597 #ifdef CONFIG_NET_POLL_CONTROLLER
598         netdev->poll_controller = e1000_netpoll;
599 #endif
600         strcpy(netdev->name, pci_name(pdev));
601
602         netdev->mem_start = mmio_start;
603         netdev->mem_end = mmio_start + mmio_len;
604         netdev->base_addr = adapter->hw.io_base;
605
606         adapter->bd_number = cards_found;
607
608         /* setup the private structure */
609
610         if((err = e1000_sw_init(adapter)))
611                 goto err_sw_init;
612
613         if((err = e1000_check_phy_reset_block(&adapter->hw)))
614                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
615
616         if(adapter->hw.mac_type >= e1000_82543) {
617                 netdev->features = NETIF_F_SG |
618                                    NETIF_F_HW_CSUM |
619                                    NETIF_F_HW_VLAN_TX |
620                                    NETIF_F_HW_VLAN_RX |
621                                    NETIF_F_HW_VLAN_FILTER;
622         }
623
624 #ifdef NETIF_F_TSO
625         if((adapter->hw.mac_type >= e1000_82544) &&
626            (adapter->hw.mac_type != e1000_82547))
627                 netdev->features |= NETIF_F_TSO;
628
629 #ifdef NETIF_F_TSO_IPV6
630         if(adapter->hw.mac_type > e1000_82547_rev_2)
631                 netdev->features |= NETIF_F_TSO_IPV6;
632 #endif
633 #endif
634         if(pci_using_dac)
635                 netdev->features |= NETIF_F_HIGHDMA;
636
637         /* hard_start_xmit is safe against parallel locking */
638         netdev->features |= NETIF_F_LLTX; 
639  
640         adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
641
642         /* before reading the EEPROM, reset the controller to 
643          * put the device in a known good starting state */
644         
645         e1000_reset_hw(&adapter->hw);
646
647         /* make sure the EEPROM is good */
648
649         if(e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
650                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
651                 err = -EIO;
652                 goto err_eeprom;
653         }
654
655         /* copy the MAC address out of the EEPROM */
656
657         if(e1000_read_mac_addr(&adapter->hw))
658                 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
659         memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
660         memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
661
662         if(!is_valid_ether_addr(netdev->perm_addr)) {
663                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
664                 err = -EIO;
665                 goto err_eeprom;
666         }
667
668         e1000_read_part_num(&adapter->hw, &(adapter->part_num));
669
670         e1000_get_bus_info(&adapter->hw);
671
672         init_timer(&adapter->tx_fifo_stall_timer);
673         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
674         adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
675
676         init_timer(&adapter->watchdog_timer);
677         adapter->watchdog_timer.function = &e1000_watchdog;
678         adapter->watchdog_timer.data = (unsigned long) adapter;
679
680         INIT_WORK(&adapter->watchdog_task,
681                 (void (*)(void *))e1000_watchdog_task, adapter);
682
683         init_timer(&adapter->phy_info_timer);
684         adapter->phy_info_timer.function = &e1000_update_phy_info;
685         adapter->phy_info_timer.data = (unsigned long) adapter;
686
687         INIT_WORK(&adapter->tx_timeout_task,
688                 (void (*)(void *))e1000_tx_timeout_task, netdev);
689
690         /* we're going to reset, so assume we have no link for now */
691
692         netif_carrier_off(netdev);
693         netif_stop_queue(netdev);
694
695         e1000_check_options(adapter);
696
697         /* Initial Wake on LAN setting
698          * If APM wake is enabled in the EEPROM,
699          * enable the ACPI Magic Packet filter
700          */
701
702         switch(adapter->hw.mac_type) {
703         case e1000_82542_rev2_0:
704         case e1000_82542_rev2_1:
705         case e1000_82543:
706                 break;
707         case e1000_82544:
708                 e1000_read_eeprom(&adapter->hw,
709                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
710                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
711                 break;
712         case e1000_82546:
713         case e1000_82546_rev_3:
714         case e1000_82571:
715                 if((E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
716                    && (adapter->hw.media_type == e1000_media_type_copper)) {
717                         e1000_read_eeprom(&adapter->hw,
718                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
719                         break;
720                 }
721                 /* Fall Through */
722         default:
723                 e1000_read_eeprom(&adapter->hw,
724                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
725                 break;
726         }
727         if(eeprom_data & eeprom_apme_mask)
728                 adapter->wol |= E1000_WUFC_MAG;
729
730         /* reset the hardware with the new settings */
731         e1000_reset(adapter);
732
733         /* Let firmware know the driver has taken over */
734         switch(adapter->hw.mac_type) {
735         case e1000_82571:
736         case e1000_82572:
737                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
738                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
739                                 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
740                 break;
741         case e1000_82573:
742                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
743                 E1000_WRITE_REG(&adapter->hw, SWSM,
744                                 swsm | E1000_SWSM_DRV_LOAD);
745                 break;
746         default:
747                 break;
748         }
749
750         strcpy(netdev->name, "eth%d");
751         if((err = register_netdev(netdev)))
752                 goto err_register;
753
754         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
755
756         cards_found++;
757         return 0;
758
759 err_register:
760 err_sw_init:
761 err_eeprom:
762         iounmap(adapter->hw.hw_addr);
763 err_ioremap:
764         free_netdev(netdev);
765 err_alloc_etherdev:
766         pci_release_regions(pdev);
767         return err;
768 }
769
770 /**
771  * e1000_remove - Device Removal Routine
772  * @pdev: PCI device information struct
773  *
774  * e1000_remove is called by the PCI subsystem to alert the driver
775  * that it should release a PCI device.  The could be caused by a
776  * Hot-Plug event, or because the driver is going to be removed from
777  * memory.
778  **/
779
780 static void __devexit
781 e1000_remove(struct pci_dev *pdev)
782 {
783         struct net_device *netdev = pci_get_drvdata(pdev);
784         struct e1000_adapter *adapter = netdev_priv(netdev);
785         uint32_t ctrl_ext;
786         uint32_t manc, swsm;
787 #ifdef CONFIG_E1000_NAPI
788         int i;
789 #endif
790
791         flush_scheduled_work();
792
793         if(adapter->hw.mac_type >= e1000_82540 &&
794            adapter->hw.media_type == e1000_media_type_copper) {
795                 manc = E1000_READ_REG(&adapter->hw, MANC);
796                 if(manc & E1000_MANC_SMBUS_EN) {
797                         manc |= E1000_MANC_ARP_EN;
798                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
799                 }
800         }
801
802         switch(adapter->hw.mac_type) {
803         case e1000_82571:
804         case e1000_82572:
805                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
806                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
807                                 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
808                 break;
809         case e1000_82573:
810                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
811                 E1000_WRITE_REG(&adapter->hw, SWSM,
812                                 swsm & ~E1000_SWSM_DRV_LOAD);
813                 break;
814
815         default:
816                 break;
817         }
818
819         unregister_netdev(netdev);
820 #ifdef CONFIG_E1000_NAPI
821         for (i = 0; i < adapter->num_queues; i++)
822                 __dev_put(&adapter->polling_netdev[i]);
823 #endif
824
825         if(!e1000_check_phy_reset_block(&adapter->hw))
826                 e1000_phy_hw_reset(&adapter->hw);
827
828         kfree(adapter->tx_ring);
829         kfree(adapter->rx_ring);
830 #ifdef CONFIG_E1000_NAPI
831         kfree(adapter->polling_netdev);
832 #endif
833
834         iounmap(adapter->hw.hw_addr);
835         pci_release_regions(pdev);
836
837 #ifdef CONFIG_E1000_MQ
838         free_percpu(adapter->cpu_netdev);
839         free_percpu(adapter->cpu_tx_ring);
840 #endif
841         free_netdev(netdev);
842
843         pci_disable_device(pdev);
844 }
845
846 /**
847  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
848  * @adapter: board private structure to initialize
849  *
850  * e1000_sw_init initializes the Adapter private data structure.
851  * Fields are initialized based on PCI device information and
852  * OS network device settings (MTU size).
853  **/
854
855 static int __devinit
856 e1000_sw_init(struct e1000_adapter *adapter)
857 {
858         struct e1000_hw *hw = &adapter->hw;
859         struct net_device *netdev = adapter->netdev;
860         struct pci_dev *pdev = adapter->pdev;
861 #ifdef CONFIG_E1000_NAPI
862         int i;
863 #endif
864
865         /* PCI config space info */
866
867         hw->vendor_id = pdev->vendor;
868         hw->device_id = pdev->device;
869         hw->subsystem_vendor_id = pdev->subsystem_vendor;
870         hw->subsystem_id = pdev->subsystem_device;
871
872         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
873
874         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
875
876         adapter->rx_buffer_len = E1000_RXBUFFER_2048;
877         adapter->rx_ps_bsize0 = E1000_RXBUFFER_256;
878         hw->max_frame_size = netdev->mtu +
879                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
880         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
881
882         /* identify the MAC */
883
884         if(e1000_set_mac_type(hw)) {
885                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
886                 return -EIO;
887         }
888
889         /* initialize eeprom parameters */
890
891         if(e1000_init_eeprom_params(hw)) {
892                 E1000_ERR("EEPROM initialization failed\n");
893                 return -EIO;
894         }
895
896         switch(hw->mac_type) {
897         default:
898                 break;
899         case e1000_82541:
900         case e1000_82547:
901         case e1000_82541_rev_2:
902         case e1000_82547_rev_2:
903                 hw->phy_init_script = 1;
904                 break;
905         }
906
907         e1000_set_media_type(hw);
908
909         hw->wait_autoneg_complete = FALSE;
910         hw->tbi_compatibility_en = TRUE;
911         hw->adaptive_ifs = TRUE;
912
913         /* Copper options */
914
915         if(hw->media_type == e1000_media_type_copper) {
916                 hw->mdix = AUTO_ALL_MODES;
917                 hw->disable_polarity_correction = FALSE;
918                 hw->master_slave = E1000_MASTER_SLAVE;
919         }
920
921 #ifdef CONFIG_E1000_MQ
922         /* Number of supported queues */
923         switch (hw->mac_type) {
924         case e1000_82571:
925         case e1000_82572:
926                 adapter->num_queues = 2;
927                 break;
928         default:
929                 adapter->num_queues = 1;
930                 break;
931         }
932         adapter->num_queues = min(adapter->num_queues, num_online_cpus());
933 #else
934         adapter->num_queues = 1;
935 #endif
936
937         if (e1000_alloc_queues(adapter)) {
938                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
939                 return -ENOMEM;
940         }
941
942 #ifdef CONFIG_E1000_NAPI
943         for (i = 0; i < adapter->num_queues; i++) {
944                 adapter->polling_netdev[i].priv = adapter;
945                 adapter->polling_netdev[i].poll = &e1000_clean;
946                 adapter->polling_netdev[i].weight = 64;
947                 dev_hold(&adapter->polling_netdev[i]);
948                 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
949         }
950 #endif
951
952 #ifdef CONFIG_E1000_MQ
953         e1000_setup_queue_mapping(adapter);
954 #endif
955
956         atomic_set(&adapter->irq_sem, 1);
957         spin_lock_init(&adapter->stats_lock);
958
959         return 0;
960 }
961
962 /**
963  * e1000_alloc_queues - Allocate memory for all rings
964  * @adapter: board private structure to initialize
965  *
966  * We allocate one ring per queue at run-time since we don't know the
967  * number of queues at compile-time.  The polling_netdev array is
968  * intended for Multiqueue, but should work fine with a single queue.
969  **/
970
971 static int __devinit
972 e1000_alloc_queues(struct e1000_adapter *adapter)
973 {
974         int size;
975
976         size = sizeof(struct e1000_tx_ring) * adapter->num_queues;
977         adapter->tx_ring = kmalloc(size, GFP_KERNEL);
978         if (!adapter->tx_ring)
979                 return -ENOMEM;
980         memset(adapter->tx_ring, 0, size);
981
982         size = sizeof(struct e1000_rx_ring) * adapter->num_queues;
983         adapter->rx_ring = kmalloc(size, GFP_KERNEL);
984         if (!adapter->rx_ring) {
985                 kfree(adapter->tx_ring);
986                 return -ENOMEM;
987         }
988         memset(adapter->rx_ring, 0, size);
989
990 #ifdef CONFIG_E1000_NAPI
991         size = sizeof(struct net_device) * adapter->num_queues;
992         adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
993         if (!adapter->polling_netdev) {
994                 kfree(adapter->tx_ring);
995                 kfree(adapter->rx_ring);
996                 return -ENOMEM;
997         }
998         memset(adapter->polling_netdev, 0, size);
999 #endif
1000
1001         return E1000_SUCCESS;
1002 }
1003
1004 #ifdef CONFIG_E1000_MQ
1005 static void __devinit
1006 e1000_setup_queue_mapping(struct e1000_adapter *adapter)
1007 {
1008         int i, cpu;
1009
1010         adapter->rx_sched_call_data.func = e1000_rx_schedule;
1011         adapter->rx_sched_call_data.info = adapter->netdev;
1012         cpus_clear(adapter->rx_sched_call_data.cpumask);
1013
1014         adapter->cpu_netdev = alloc_percpu(struct net_device *);
1015         adapter->cpu_tx_ring = alloc_percpu(struct e1000_tx_ring *);
1016
1017         lock_cpu_hotplug();
1018         i = 0;
1019         for_each_online_cpu(cpu) {
1020                 *per_cpu_ptr(adapter->cpu_tx_ring, cpu) = &adapter->tx_ring[i % adapter->num_queues];
1021                 /* This is incomplete because we'd like to assign separate
1022                  * physical cpus to these netdev polling structures and
1023                  * avoid saturating a subset of cpus.
1024                  */
1025                 if (i < adapter->num_queues) {
1026                         *per_cpu_ptr(adapter->cpu_netdev, cpu) = &adapter->polling_netdev[i];
1027                         adapter->cpu_for_queue[i] = cpu;
1028                 } else
1029                         *per_cpu_ptr(adapter->cpu_netdev, cpu) = NULL;
1030
1031                 i++;
1032         }
1033         unlock_cpu_hotplug();
1034 }
1035 #endif
1036
1037 /**
1038  * e1000_open - Called when a network interface is made active
1039  * @netdev: network interface device structure
1040  *
1041  * Returns 0 on success, negative value on failure
1042  *
1043  * The open entry point is called when a network interface is made
1044  * active by the system (IFF_UP).  At this point all resources needed
1045  * for transmit and receive operations are allocated, the interrupt
1046  * handler is registered with the OS, the watchdog timer is started,
1047  * and the stack is notified that the interface is ready.
1048  **/
1049
1050 static int
1051 e1000_open(struct net_device *netdev)
1052 {
1053         struct e1000_adapter *adapter = netdev_priv(netdev);
1054         int err;
1055
1056         /* allocate transmit descriptors */
1057
1058         if ((err = e1000_setup_all_tx_resources(adapter)))
1059                 goto err_setup_tx;
1060
1061         /* allocate receive descriptors */
1062
1063         if ((err = e1000_setup_all_rx_resources(adapter)))
1064                 goto err_setup_rx;
1065
1066         if((err = e1000_up(adapter)))
1067                 goto err_up;
1068         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1069         if((adapter->hw.mng_cookie.status &
1070                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1071                 e1000_update_mng_vlan(adapter);
1072         }
1073
1074         return E1000_SUCCESS;
1075
1076 err_up:
1077         e1000_free_all_rx_resources(adapter);
1078 err_setup_rx:
1079         e1000_free_all_tx_resources(adapter);
1080 err_setup_tx:
1081         e1000_reset(adapter);
1082
1083         return err;
1084 }
1085
1086 /**
1087  * e1000_close - Disables a network interface
1088  * @netdev: network interface device structure
1089  *
1090  * Returns 0, this is not allowed to fail
1091  *
1092  * The close entry point is called when an interface is de-activated
1093  * by the OS.  The hardware is still under the drivers control, but
1094  * needs to be disabled.  A global MAC reset is issued to stop the
1095  * hardware, and all transmit and receive resources are freed.
1096  **/
1097
1098 static int
1099 e1000_close(struct net_device *netdev)
1100 {
1101         struct e1000_adapter *adapter = netdev_priv(netdev);
1102
1103         e1000_down(adapter);
1104
1105         e1000_free_all_tx_resources(adapter);
1106         e1000_free_all_rx_resources(adapter);
1107
1108         if((adapter->hw.mng_cookie.status &
1109                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1110                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1111         }
1112         return 0;
1113 }
1114
1115 /**
1116  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1117  * @adapter: address of board private structure
1118  * @start: address of beginning of memory
1119  * @len: length of memory
1120  **/
1121 static inline boolean_t
1122 e1000_check_64k_bound(struct e1000_adapter *adapter,
1123                       void *start, unsigned long len)
1124 {
1125         unsigned long begin = (unsigned long) start;
1126         unsigned long end = begin + len;
1127
1128         /* First rev 82545 and 82546 need to not allow any memory
1129          * write location to cross 64k boundary due to errata 23 */
1130         if (adapter->hw.mac_type == e1000_82545 ||
1131             adapter->hw.mac_type == e1000_82546) {
1132                 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1133         }
1134
1135         return TRUE;
1136 }
1137
1138 /**
1139  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1140  * @adapter: board private structure
1141  * @txdr:    tx descriptor ring (for a specific queue) to setup
1142  *
1143  * Return 0 on success, negative on failure
1144  **/
1145
1146 static int
1147 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1148                          struct e1000_tx_ring *txdr)
1149 {
1150         struct pci_dev *pdev = adapter->pdev;
1151         int size;
1152
1153         size = sizeof(struct e1000_buffer) * txdr->count;
1154
1155         txdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus));
1156         if(!txdr->buffer_info) {
1157                 DPRINTK(PROBE, ERR,
1158                 "Unable to allocate memory for the transmit descriptor ring\n");
1159                 return -ENOMEM;
1160         }
1161         memset(txdr->buffer_info, 0, size);
1162
1163         /* round up to nearest 4K */
1164
1165         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1166         E1000_ROUNDUP(txdr->size, 4096);
1167
1168         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1169         if(!txdr->desc) {
1170 setup_tx_desc_die:
1171                 vfree(txdr->buffer_info);
1172                 DPRINTK(PROBE, ERR,
1173                 "Unable to allocate memory for the transmit descriptor ring\n");
1174                 return -ENOMEM;
1175         }
1176
1177         /* Fix for errata 23, can't cross 64kB boundary */
1178         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1179                 void *olddesc = txdr->desc;
1180                 dma_addr_t olddma = txdr->dma;
1181                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1182                                      "at %p\n", txdr->size, txdr->desc);
1183                 /* Try again, without freeing the previous */
1184                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1185                 if(!txdr->desc) {
1186                 /* Failed allocation, critical failure */
1187                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1188                         goto setup_tx_desc_die;
1189                 }
1190
1191                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1192                         /* give up */
1193                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1194                                             txdr->dma);
1195                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1196                         DPRINTK(PROBE, ERR,
1197                                 "Unable to allocate aligned memory "
1198                                 "for the transmit descriptor ring\n");
1199                         vfree(txdr->buffer_info);
1200                         return -ENOMEM;
1201                 } else {
1202                         /* Free old allocation, new allocation was successful */
1203                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1204                 }
1205         }
1206         memset(txdr->desc, 0, txdr->size);
1207
1208         txdr->next_to_use = 0;
1209         txdr->next_to_clean = 0;
1210         spin_lock_init(&txdr->tx_lock);
1211
1212         return 0;
1213 }
1214
1215 /**
1216  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1217  *                                (Descriptors) for all queues
1218  * @adapter: board private structure
1219  *
1220  * If this function returns with an error, then it's possible one or
1221  * more of the rings is populated (while the rest are not).  It is the
1222  * callers duty to clean those orphaned rings.
1223  *
1224  * Return 0 on success, negative on failure
1225  **/
1226
1227 int
1228 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1229 {
1230         int i, err = 0;
1231
1232         for (i = 0; i < adapter->num_queues; i++) {
1233                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1234                 if (err) {
1235                         DPRINTK(PROBE, ERR,
1236                                 "Allocation for Tx Queue %u failed\n", i);
1237                         break;
1238                 }
1239         }
1240
1241         return err;
1242 }
1243
1244 /**
1245  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1246  * @adapter: board private structure
1247  *
1248  * Configure the Tx unit of the MAC after a reset.
1249  **/
1250
1251 static void
1252 e1000_configure_tx(struct e1000_adapter *adapter)
1253 {
1254         uint64_t tdba;
1255         struct e1000_hw *hw = &adapter->hw;
1256         uint32_t tdlen, tctl, tipg, tarc;
1257
1258         /* Setup the HW Tx Head and Tail descriptor pointers */
1259
1260         switch (adapter->num_queues) {
1261         case 2:
1262                 tdba = adapter->tx_ring[1].dma;
1263                 tdlen = adapter->tx_ring[1].count *
1264                         sizeof(struct e1000_tx_desc);
1265                 E1000_WRITE_REG(hw, TDBAL1, (tdba & 0x00000000ffffffffULL));
1266                 E1000_WRITE_REG(hw, TDBAH1, (tdba >> 32));
1267                 E1000_WRITE_REG(hw, TDLEN1, tdlen);
1268                 E1000_WRITE_REG(hw, TDH1, 0);
1269                 E1000_WRITE_REG(hw, TDT1, 0);
1270                 adapter->tx_ring[1].tdh = E1000_TDH1;
1271                 adapter->tx_ring[1].tdt = E1000_TDT1;
1272                 /* Fall Through */
1273         case 1:
1274         default:
1275                 tdba = adapter->tx_ring[0].dma;
1276                 tdlen = adapter->tx_ring[0].count *
1277                         sizeof(struct e1000_tx_desc);
1278                 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1279                 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1280                 E1000_WRITE_REG(hw, TDLEN, tdlen);
1281                 E1000_WRITE_REG(hw, TDH, 0);
1282                 E1000_WRITE_REG(hw, TDT, 0);
1283                 adapter->tx_ring[0].tdh = E1000_TDH;
1284                 adapter->tx_ring[0].tdt = E1000_TDT;
1285                 break;
1286         }
1287
1288         /* Set the default values for the Tx Inter Packet Gap timer */
1289
1290         switch (hw->mac_type) {
1291         case e1000_82542_rev2_0:
1292         case e1000_82542_rev2_1:
1293                 tipg = DEFAULT_82542_TIPG_IPGT;
1294                 tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
1295                 tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
1296                 break;
1297         default:
1298                 if (hw->media_type == e1000_media_type_fiber ||
1299                     hw->media_type == e1000_media_type_internal_serdes)
1300                         tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1301                 else
1302                         tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1303                 tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
1304                 tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
1305         }
1306         E1000_WRITE_REG(hw, TIPG, tipg);
1307
1308         /* Set the Tx Interrupt Delay register */
1309
1310         E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1311         if (hw->mac_type >= e1000_82540)
1312                 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1313
1314         /* Program the Transmit Control Register */
1315
1316         tctl = E1000_READ_REG(hw, TCTL);
1317
1318         tctl &= ~E1000_TCTL_CT;
1319         tctl |= E1000_TCTL_EN | E1000_TCTL_PSP | E1000_TCTL_RTLC |
1320                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1321
1322         E1000_WRITE_REG(hw, TCTL, tctl);
1323
1324         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1325                 tarc = E1000_READ_REG(hw, TARC0);
1326                 tarc |= ((1 << 25) | (1 << 21));
1327                 E1000_WRITE_REG(hw, TARC0, tarc);
1328                 tarc = E1000_READ_REG(hw, TARC1);
1329                 tarc |= (1 << 25);
1330                 if (tctl & E1000_TCTL_MULR)
1331                         tarc &= ~(1 << 28);
1332                 else
1333                         tarc |= (1 << 28);
1334                 E1000_WRITE_REG(hw, TARC1, tarc);
1335         }
1336
1337         e1000_config_collision_dist(hw);
1338
1339         /* Setup Transmit Descriptor Settings for eop descriptor */
1340         adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
1341                 E1000_TXD_CMD_IFCS;
1342
1343         if (hw->mac_type < e1000_82543)
1344                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1345         else
1346                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1347
1348         /* Cache if we're 82544 running in PCI-X because we'll
1349          * need this to apply a workaround later in the send path. */
1350         if (hw->mac_type == e1000_82544 &&
1351             hw->bus_type == e1000_bus_type_pcix)
1352                 adapter->pcix_82544 = 1;
1353 }
1354
1355 /**
1356  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1357  * @adapter: board private structure
1358  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1359  *
1360  * Returns 0 on success, negative on failure
1361  **/
1362
1363 static int
1364 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1365                          struct e1000_rx_ring *rxdr)
1366 {
1367         struct pci_dev *pdev = adapter->pdev;
1368         int size, desc_len;
1369
1370         size = sizeof(struct e1000_buffer) * rxdr->count;
1371         rxdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus));
1372         if (!rxdr->buffer_info) {
1373                 DPRINTK(PROBE, ERR,
1374                 "Unable to allocate memory for the receive descriptor ring\n");
1375                 return -ENOMEM;
1376         }
1377         memset(rxdr->buffer_info, 0, size);
1378
1379         size = sizeof(struct e1000_ps_page) * rxdr->count;
1380         rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1381         if(!rxdr->ps_page) {
1382                 vfree(rxdr->buffer_info);
1383                 DPRINTK(PROBE, ERR,
1384                 "Unable to allocate memory for the receive descriptor ring\n");
1385                 return -ENOMEM;
1386         }
1387         memset(rxdr->ps_page, 0, size);
1388
1389         size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1390         rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1391         if(!rxdr->ps_page_dma) {
1392                 vfree(rxdr->buffer_info);
1393                 kfree(rxdr->ps_page);
1394                 DPRINTK(PROBE, ERR,
1395                 "Unable to allocate memory for the receive descriptor ring\n");
1396                 return -ENOMEM;
1397         }
1398         memset(rxdr->ps_page_dma, 0, size);
1399
1400         if(adapter->hw.mac_type <= e1000_82547_rev_2)
1401                 desc_len = sizeof(struct e1000_rx_desc);
1402         else
1403                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1404
1405         /* Round up to nearest 4K */
1406
1407         rxdr->size = rxdr->count * desc_len;
1408         E1000_ROUNDUP(rxdr->size, 4096);
1409
1410         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1411
1412         if (!rxdr->desc) {
1413                 DPRINTK(PROBE, ERR,
1414                 "Unable to allocate memory for the receive descriptor ring\n");
1415 setup_rx_desc_die:
1416                 vfree(rxdr->buffer_info);
1417                 kfree(rxdr->ps_page);
1418                 kfree(rxdr->ps_page_dma);
1419                 return -ENOMEM;
1420         }
1421
1422         /* Fix for errata 23, can't cross 64kB boundary */
1423         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1424                 void *olddesc = rxdr->desc;
1425                 dma_addr_t olddma = rxdr->dma;
1426                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1427                                      "at %p\n", rxdr->size, rxdr->desc);
1428                 /* Try again, without freeing the previous */
1429                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1430                 /* Failed allocation, critical failure */
1431                 if (!rxdr->desc) {
1432                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1433                         DPRINTK(PROBE, ERR,
1434                                 "Unable to allocate memory "
1435                                 "for the receive descriptor ring\n");
1436                         goto setup_rx_desc_die;
1437                 }
1438
1439                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1440                         /* give up */
1441                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1442                                             rxdr->dma);
1443                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1444                         DPRINTK(PROBE, ERR,
1445                                 "Unable to allocate aligned memory "
1446                                 "for the receive descriptor ring\n");
1447                         goto setup_rx_desc_die;
1448                 } else {
1449                         /* Free old allocation, new allocation was successful */
1450                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1451                 }
1452         }
1453         memset(rxdr->desc, 0, rxdr->size);
1454
1455         rxdr->next_to_clean = 0;
1456         rxdr->next_to_use = 0;
1457
1458         return 0;
1459 }
1460
1461 /**
1462  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1463  *                                (Descriptors) for all queues
1464  * @adapter: board private structure
1465  *
1466  * If this function returns with an error, then it's possible one or
1467  * more of the rings is populated (while the rest are not).  It is the
1468  * callers duty to clean those orphaned rings.
1469  *
1470  * Return 0 on success, negative on failure
1471  **/
1472
1473 int
1474 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1475 {
1476         int i, err = 0;
1477
1478         for (i = 0; i < adapter->num_queues; i++) {
1479                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1480                 if (err) {
1481                         DPRINTK(PROBE, ERR,
1482                                 "Allocation for Rx Queue %u failed\n", i);
1483                         break;
1484                 }
1485         }
1486
1487         return err;
1488 }
1489
1490 /**
1491  * e1000_setup_rctl - configure the receive control registers
1492  * @adapter: Board private structure
1493  **/
1494 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1495                         (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1496 static void
1497 e1000_setup_rctl(struct e1000_adapter *adapter)
1498 {
1499         uint32_t rctl, rfctl;
1500         uint32_t psrctl = 0;
1501 #ifdef CONFIG_E1000_PACKET_SPLIT
1502         uint32_t pages = 0;
1503 #endif
1504
1505         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1506
1507         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1508
1509         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1510                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1511                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1512
1513         if(adapter->hw.tbi_compatibility_on == 1)
1514                 rctl |= E1000_RCTL_SBP;
1515         else
1516                 rctl &= ~E1000_RCTL_SBP;
1517
1518         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1519                 rctl &= ~E1000_RCTL_LPE;
1520         else
1521                 rctl |= E1000_RCTL_LPE;
1522
1523         /* Setup buffer sizes */
1524         if(adapter->hw.mac_type >= e1000_82571) {
1525                 /* We can now specify buffers in 1K increments.
1526                  * BSIZE and BSEX are ignored in this case. */
1527                 rctl |= adapter->rx_buffer_len << 0x11;
1528         } else {
1529                 rctl &= ~E1000_RCTL_SZ_4096;
1530                 rctl |= E1000_RCTL_BSEX; 
1531                 switch (adapter->rx_buffer_len) {
1532                 case E1000_RXBUFFER_2048:
1533                 default:
1534                         rctl |= E1000_RCTL_SZ_2048;
1535                         rctl &= ~E1000_RCTL_BSEX;
1536                         break;
1537                 case E1000_RXBUFFER_4096:
1538                         rctl |= E1000_RCTL_SZ_4096;
1539                         break;
1540                 case E1000_RXBUFFER_8192:
1541                         rctl |= E1000_RCTL_SZ_8192;
1542                         break;
1543                 case E1000_RXBUFFER_16384:
1544                         rctl |= E1000_RCTL_SZ_16384;
1545                         break;
1546                 }
1547         }
1548
1549 #ifdef CONFIG_E1000_PACKET_SPLIT
1550         /* 82571 and greater support packet-split where the protocol
1551          * header is placed in skb->data and the packet data is
1552          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1553          * In the case of a non-split, skb->data is linearly filled,
1554          * followed by the page buffers.  Therefore, skb->data is
1555          * sized to hold the largest protocol header.
1556          */
1557         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1558         if ((adapter->hw.mac_type > e1000_82547_rev_2) && (pages <= 3) &&
1559             PAGE_SIZE <= 16384)
1560                 adapter->rx_ps_pages = pages;
1561         else
1562                 adapter->rx_ps_pages = 0;
1563 #endif
1564         if (adapter->rx_ps_pages) {
1565                 /* Configure extra packet-split registers */
1566                 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1567                 rfctl |= E1000_RFCTL_EXTEN;
1568                 /* disable IPv6 packet split support */
1569                 rfctl |= E1000_RFCTL_IPV6_DIS;
1570                 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1571
1572                 rctl |= E1000_RCTL_DTYP_PS | E1000_RCTL_SECRC;
1573                 
1574                 psrctl |= adapter->rx_ps_bsize0 >>
1575                         E1000_PSRCTL_BSIZE0_SHIFT;
1576
1577                 switch (adapter->rx_ps_pages) {
1578                 case 3:
1579                         psrctl |= PAGE_SIZE <<
1580                                 E1000_PSRCTL_BSIZE3_SHIFT;
1581                 case 2:
1582                         psrctl |= PAGE_SIZE <<
1583                                 E1000_PSRCTL_BSIZE2_SHIFT;
1584                 case 1:
1585                         psrctl |= PAGE_SIZE >>
1586                                 E1000_PSRCTL_BSIZE1_SHIFT;
1587                         break;
1588                 }
1589
1590                 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1591         }
1592
1593         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1594 }
1595
1596 /**
1597  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1598  * @adapter: board private structure
1599  *
1600  * Configure the Rx unit of the MAC after a reset.
1601  **/
1602
1603 static void
1604 e1000_configure_rx(struct e1000_adapter *adapter)
1605 {
1606         uint64_t rdba;
1607         struct e1000_hw *hw = &adapter->hw;
1608         uint32_t rdlen, rctl, rxcsum, ctrl_ext;
1609 #ifdef CONFIG_E1000_MQ
1610         uint32_t reta, mrqc;
1611         int i;
1612 #endif
1613
1614         if (adapter->rx_ps_pages) {
1615                 rdlen = adapter->rx_ring[0].count *
1616                         sizeof(union e1000_rx_desc_packet_split);
1617                 adapter->clean_rx = e1000_clean_rx_irq_ps;
1618                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1619         } else {
1620                 rdlen = adapter->rx_ring[0].count *
1621                         sizeof(struct e1000_rx_desc);
1622                 adapter->clean_rx = e1000_clean_rx_irq;
1623                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1624         }
1625
1626         /* disable receives while setting up the descriptors */
1627         rctl = E1000_READ_REG(hw, RCTL);
1628         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
1629
1630         /* set the Receive Delay Timer Register */
1631         E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
1632
1633         if (hw->mac_type >= e1000_82540) {
1634                 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
1635                 if(adapter->itr > 1)
1636                         E1000_WRITE_REG(hw, ITR,
1637                                 1000000000 / (adapter->itr * 256));
1638         }
1639
1640         if (hw->mac_type >= e1000_82571) {
1641                 /* Reset delay timers after every interrupt */
1642                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1643                 ctrl_ext |= E1000_CTRL_EXT_CANC;
1644                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1645                 E1000_WRITE_FLUSH(hw);
1646         }
1647
1648         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1649          * the Base and Length of the Rx Descriptor Ring */
1650         switch (adapter->num_queues) {
1651 #ifdef CONFIG_E1000_MQ
1652         case 2:
1653                 rdba = adapter->rx_ring[1].dma;
1654                 E1000_WRITE_REG(hw, RDBAL1, (rdba & 0x00000000ffffffffULL));
1655                 E1000_WRITE_REG(hw, RDBAH1, (rdba >> 32));
1656                 E1000_WRITE_REG(hw, RDLEN1, rdlen);
1657                 E1000_WRITE_REG(hw, RDH1, 0);
1658                 E1000_WRITE_REG(hw, RDT1, 0);
1659                 adapter->rx_ring[1].rdh = E1000_RDH1;
1660                 adapter->rx_ring[1].rdt = E1000_RDT1;
1661                 /* Fall Through */
1662 #endif
1663         case 1:
1664         default:
1665                 rdba = adapter->rx_ring[0].dma;
1666                 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1667                 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
1668                 E1000_WRITE_REG(hw, RDLEN, rdlen);
1669                 E1000_WRITE_REG(hw, RDH, 0);
1670                 E1000_WRITE_REG(hw, RDT, 0);
1671                 adapter->rx_ring[0].rdh = E1000_RDH;
1672                 adapter->rx_ring[0].rdt = E1000_RDT;
1673                 break;
1674         }
1675
1676 #ifdef CONFIG_E1000_MQ
1677         if (adapter->num_queues > 1) {
1678                 uint32_t random[10];
1679
1680                 get_random_bytes(&random[0], 40);
1681
1682                 if (hw->mac_type <= e1000_82572) {
1683                         E1000_WRITE_REG(hw, RSSIR, 0);
1684                         E1000_WRITE_REG(hw, RSSIM, 0);
1685                 }
1686
1687                 switch (adapter->num_queues) {
1688                 case 2:
1689                 default:
1690                         reta = 0x00800080;
1691                         mrqc = E1000_MRQC_ENABLE_RSS_2Q;
1692                         break;
1693                 }
1694
1695                 /* Fill out redirection table */
1696                 for (i = 0; i < 32; i++)
1697                         E1000_WRITE_REG_ARRAY(hw, RETA, i, reta);
1698                 /* Fill out hash function seeds */
1699                 for (i = 0; i < 10; i++)
1700                         E1000_WRITE_REG_ARRAY(hw, RSSRK, i, random[i]);
1701
1702                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
1703                          E1000_MRQC_RSS_FIELD_IPV4_TCP);
1704                 E1000_WRITE_REG(hw, MRQC, mrqc);
1705         }
1706
1707         /* Multiqueue and packet checksumming are mutually exclusive. */
1708         if (hw->mac_type >= e1000_82571) {
1709                 rxcsum = E1000_READ_REG(hw, RXCSUM);
1710                 rxcsum |= E1000_RXCSUM_PCSD;
1711                 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1712         }
1713
1714 #else
1715
1716         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1717         if (hw->mac_type >= e1000_82543) {
1718                 rxcsum = E1000_READ_REG(hw, RXCSUM);
1719                 if(adapter->rx_csum == TRUE) {
1720                         rxcsum |= E1000_RXCSUM_TUOFL;
1721
1722                         /* Enable 82571 IPv4 payload checksum for UDP fragments
1723                          * Must be used in conjunction with packet-split. */
1724                         if ((hw->mac_type >= e1000_82571) && 
1725                            (adapter->rx_ps_pages)) {
1726                                 rxcsum |= E1000_RXCSUM_IPPCSE;
1727                         }
1728                 } else {
1729                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1730                         /* don't need to clear IPPCSE as it defaults to 0 */
1731                 }
1732                 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1733         }
1734 #endif /* CONFIG_E1000_MQ */
1735
1736         if (hw->mac_type == e1000_82573)
1737                 E1000_WRITE_REG(hw, ERT, 0x0100);
1738
1739         /* Enable Receives */
1740         E1000_WRITE_REG(hw, RCTL, rctl);
1741 }
1742
1743 /**
1744  * e1000_free_tx_resources - Free Tx Resources per Queue
1745  * @adapter: board private structure
1746  * @tx_ring: Tx descriptor ring for a specific queue
1747  *
1748  * Free all transmit software resources
1749  **/
1750
1751 static void
1752 e1000_free_tx_resources(struct e1000_adapter *adapter,
1753                         struct e1000_tx_ring *tx_ring)
1754 {
1755         struct pci_dev *pdev = adapter->pdev;
1756
1757         e1000_clean_tx_ring(adapter, tx_ring);
1758
1759         vfree(tx_ring->buffer_info);
1760         tx_ring->buffer_info = NULL;
1761
1762         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1763
1764         tx_ring->desc = NULL;
1765 }
1766
1767 /**
1768  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1769  * @adapter: board private structure
1770  *
1771  * Free all transmit software resources
1772  **/
1773
1774 void
1775 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1776 {
1777         int i;
1778
1779         for (i = 0; i < adapter->num_queues; i++)
1780                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1781 }
1782
1783 static inline void
1784 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1785                         struct e1000_buffer *buffer_info)
1786 {
1787         if(buffer_info->dma) {
1788                 pci_unmap_page(adapter->pdev,
1789                                 buffer_info->dma,
1790                                 buffer_info->length,
1791                                 PCI_DMA_TODEVICE);
1792                 buffer_info->dma = 0;
1793         }
1794         if(buffer_info->skb) {
1795                 dev_kfree_skb_any(buffer_info->skb);
1796                 buffer_info->skb = NULL;
1797         }
1798 }
1799
1800 /**
1801  * e1000_clean_tx_ring - Free Tx Buffers
1802  * @adapter: board private structure
1803  * @tx_ring: ring to be cleaned
1804  **/
1805
1806 static void
1807 e1000_clean_tx_ring(struct e1000_adapter *adapter,
1808                     struct e1000_tx_ring *tx_ring)
1809 {
1810         struct e1000_buffer *buffer_info;
1811         unsigned long size;
1812         unsigned int i;
1813
1814         /* Free all the Tx ring sk_buffs */
1815
1816         for(i = 0; i < tx_ring->count; i++) {
1817                 buffer_info = &tx_ring->buffer_info[i];
1818                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1819         }
1820
1821         size = sizeof(struct e1000_buffer) * tx_ring->count;
1822         memset(tx_ring->buffer_info, 0, size);
1823
1824         /* Zero out the descriptor ring */
1825
1826         memset(tx_ring->desc, 0, tx_ring->size);
1827
1828         tx_ring->next_to_use = 0;
1829         tx_ring->next_to_clean = 0;
1830         tx_ring->last_tx_tso = 0;
1831
1832         writel(0, adapter->hw.hw_addr + tx_ring->tdh);
1833         writel(0, adapter->hw.hw_addr + tx_ring->tdt);
1834 }
1835
1836 /**
1837  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
1838  * @adapter: board private structure
1839  **/
1840
1841 static void
1842 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
1843 {
1844         int i;
1845
1846         for (i = 0; i < adapter->num_queues; i++)
1847                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1848 }
1849
1850 /**
1851  * e1000_free_rx_resources - Free Rx Resources
1852  * @adapter: board private structure
1853  * @rx_ring: ring to clean the resources from
1854  *
1855  * Free all receive software resources
1856  **/
1857
1858 static void
1859 e1000_free_rx_resources(struct e1000_adapter *adapter,
1860                         struct e1000_rx_ring *rx_ring)
1861 {
1862         struct pci_dev *pdev = adapter->pdev;
1863
1864         e1000_clean_rx_ring(adapter, rx_ring);
1865
1866         vfree(rx_ring->buffer_info);
1867         rx_ring->buffer_info = NULL;
1868         kfree(rx_ring->ps_page);
1869         rx_ring->ps_page = NULL;
1870         kfree(rx_ring->ps_page_dma);
1871         rx_ring->ps_page_dma = NULL;
1872
1873         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
1874
1875         rx_ring->desc = NULL;
1876 }
1877
1878 /**
1879  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
1880  * @adapter: board private structure
1881  *
1882  * Free all receive software resources
1883  **/
1884
1885 void
1886 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
1887 {
1888         int i;
1889
1890         for (i = 0; i < adapter->num_queues; i++)
1891                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
1892 }
1893
1894 /**
1895  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1896  * @adapter: board private structure
1897  * @rx_ring: ring to free buffers from
1898  **/
1899
1900 static void
1901 e1000_clean_rx_ring(struct e1000_adapter *adapter,
1902                     struct e1000_rx_ring *rx_ring)
1903 {
1904         struct e1000_buffer *buffer_info;
1905         struct e1000_ps_page *ps_page;
1906         struct e1000_ps_page_dma *ps_page_dma;
1907         struct pci_dev *pdev = adapter->pdev;
1908         unsigned long size;
1909         unsigned int i, j;
1910
1911         /* Free all the Rx ring sk_buffs */
1912
1913         for(i = 0; i < rx_ring->count; i++) {
1914                 buffer_info = &rx_ring->buffer_info[i];
1915                 if(buffer_info->skb) {
1916                         ps_page = &rx_ring->ps_page[i];
1917                         ps_page_dma = &rx_ring->ps_page_dma[i];
1918                         pci_unmap_single(pdev,
1919                                          buffer_info->dma,
1920                                          buffer_info->length,
1921                                          PCI_DMA_FROMDEVICE);
1922
1923                         dev_kfree_skb(buffer_info->skb);
1924                         buffer_info->skb = NULL;
1925
1926                         for(j = 0; j < adapter->rx_ps_pages; j++) {
1927                                 if(!ps_page->ps_page[j]) break;
1928                                 pci_unmap_single(pdev,
1929                                                  ps_page_dma->ps_page_dma[j],
1930                                                  PAGE_SIZE, PCI_DMA_FROMDEVICE);
1931                                 ps_page_dma->ps_page_dma[j] = 0;
1932                                 put_page(ps_page->ps_page[j]);
1933                                 ps_page->ps_page[j] = NULL;
1934                         }
1935                 }
1936         }
1937
1938         size = sizeof(struct e1000_buffer) * rx_ring->count;
1939         memset(rx_ring->buffer_info, 0, size);
1940         size = sizeof(struct e1000_ps_page) * rx_ring->count;
1941         memset(rx_ring->ps_page, 0, size);
1942         size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
1943         memset(rx_ring->ps_page_dma, 0, size);
1944
1945         /* Zero out the descriptor ring */
1946
1947         memset(rx_ring->desc, 0, rx_ring->size);
1948
1949         rx_ring->next_to_clean = 0;
1950         rx_ring->next_to_use = 0;
1951
1952         writel(0, adapter->hw.hw_addr + rx_ring->rdh);
1953         writel(0, adapter->hw.hw_addr + rx_ring->rdt);
1954 }
1955
1956 /**
1957  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
1958  * @adapter: board private structure
1959  **/
1960
1961 static void
1962 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
1963 {
1964         int i;
1965
1966         for (i = 0; i < adapter->num_queues; i++)
1967                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
1968 }
1969
1970 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
1971  * and memory write and invalidate disabled for certain operations
1972  */
1973 static void
1974 e1000_enter_82542_rst(struct e1000_adapter *adapter)
1975 {
1976         struct net_device *netdev = adapter->netdev;
1977         uint32_t rctl;
1978
1979         e1000_pci_clear_mwi(&adapter->hw);
1980
1981         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1982         rctl |= E1000_RCTL_RST;
1983         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1984         E1000_WRITE_FLUSH(&adapter->hw);
1985         mdelay(5);
1986
1987         if(netif_running(netdev))
1988                 e1000_clean_all_rx_rings(adapter);
1989 }
1990
1991 static void
1992 e1000_leave_82542_rst(struct e1000_adapter *adapter)
1993 {
1994         struct net_device *netdev = adapter->netdev;
1995         uint32_t rctl;
1996
1997         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1998         rctl &= ~E1000_RCTL_RST;
1999         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2000         E1000_WRITE_FLUSH(&adapter->hw);
2001         mdelay(5);
2002
2003         if(adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2004                 e1000_pci_set_mwi(&adapter->hw);
2005
2006         if(netif_running(netdev)) {
2007                 e1000_configure_rx(adapter);
2008                 e1000_alloc_rx_buffers(adapter, &adapter->rx_ring[0]);
2009         }
2010 }
2011
2012 /**
2013  * e1000_set_mac - Change the Ethernet Address of the NIC
2014  * @netdev: network interface device structure
2015  * @p: pointer to an address structure
2016  *
2017  * Returns 0 on success, negative on failure
2018  **/
2019
2020 static int
2021 e1000_set_mac(struct net_device *netdev, void *p)
2022 {
2023         struct e1000_adapter *adapter = netdev_priv(netdev);
2024         struct sockaddr *addr = p;
2025
2026         if(!is_valid_ether_addr(addr->sa_data))
2027                 return -EADDRNOTAVAIL;
2028
2029         /* 82542 2.0 needs to be in reset to write receive address registers */
2030
2031         if(adapter->hw.mac_type == e1000_82542_rev2_0)
2032                 e1000_enter_82542_rst(adapter);
2033
2034         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2035         memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2036
2037         e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2038
2039         /* With 82571 controllers, LAA may be overwritten (with the default)
2040          * due to controller reset from the other port. */
2041         if (adapter->hw.mac_type == e1000_82571) {
2042                 /* activate the work around */
2043                 adapter->hw.laa_is_present = 1;
2044
2045                 /* Hold a copy of the LAA in RAR[14] This is done so that 
2046                  * between the time RAR[0] gets clobbered  and the time it 
2047                  * gets fixed (in e1000_watchdog), the actual LAA is in one 
2048                  * of the RARs and no incoming packets directed to this port
2049                  * are dropped. Eventaully the LAA will be in RAR[0] and 
2050                  * RAR[14] */
2051                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 
2052                                         E1000_RAR_ENTRIES - 1);
2053         }
2054
2055         if(adapter->hw.mac_type == e1000_82542_rev2_0)
2056                 e1000_leave_82542_rst(adapter);
2057
2058         return 0;
2059 }
2060
2061 /**
2062  * e1000_set_multi - Multicast and Promiscuous mode set
2063  * @netdev: network interface device structure
2064  *
2065  * The set_multi entry point is called whenever the multicast address
2066  * list or the network interface flags are updated.  This routine is
2067  * responsible for configuring the hardware for proper multicast,
2068  * promiscuous mode, and all-multi behavior.
2069  **/
2070
2071 static void
2072 e1000_set_multi(struct net_device *netdev)
2073 {
2074         struct e1000_adapter *adapter = netdev_priv(netdev);
2075         struct e1000_hw *hw = &adapter->hw;
2076         struct dev_mc_list *mc_ptr;
2077         uint32_t rctl;
2078         uint32_t hash_value;
2079         int i, rar_entries = E1000_RAR_ENTRIES;
2080
2081         /* reserve RAR[14] for LAA over-write work-around */
2082         if (adapter->hw.mac_type == e1000_82571)
2083                 rar_entries--;
2084
2085         /* Check for Promiscuous and All Multicast modes */
2086
2087         rctl = E1000_READ_REG(hw, RCTL);
2088
2089         if(netdev->flags & IFF_PROMISC) {
2090                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2091         } else if(netdev->flags & IFF_ALLMULTI) {
2092                 rctl |= E1000_RCTL_MPE;
2093                 rctl &= ~E1000_RCTL_UPE;
2094         } else {
2095                 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2096         }
2097
2098         E1000_WRITE_REG(hw, RCTL, rctl);
2099
2100         /* 82542 2.0 needs to be in reset to write receive address registers */
2101
2102         if(hw->mac_type == e1000_82542_rev2_0)
2103                 e1000_enter_82542_rst(adapter);
2104
2105         /* load the first 14 multicast address into the exact filters 1-14
2106          * RAR 0 is used for the station MAC adddress
2107          * if there are not 14 addresses, go ahead and clear the filters
2108          * -- with 82571 controllers only 0-13 entries are filled here
2109          */
2110         mc_ptr = netdev->mc_list;
2111
2112         for(i = 1; i < rar_entries; i++) {
2113                 if (mc_ptr) {
2114                         e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2115                         mc_ptr = mc_ptr->next;
2116                 } else {
2117                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2118                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2119                 }
2120         }
2121
2122         /* clear the old settings from the multicast hash table */
2123
2124         for(i = 0; i < E1000_NUM_MTA_REGISTERS; i++)
2125                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2126
2127         /* load any remaining addresses into the hash table */
2128
2129         for(; mc_ptr; mc_ptr = mc_ptr->next) {
2130                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2131                 e1000_mta_set(hw, hash_value);
2132         }
2133
2134         if(hw->mac_type == e1000_82542_rev2_0)
2135                 e1000_leave_82542_rst(adapter);
2136 }
2137
2138 /* Need to wait a few seconds after link up to get diagnostic information from
2139  * the phy */
2140
2141 static void
2142 e1000_update_phy_info(unsigned long data)
2143 {
2144         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2145         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2146 }
2147
2148 /**
2149  * e1000_82547_tx_fifo_stall - Timer Call-back
2150  * @data: pointer to adapter cast into an unsigned long
2151  **/
2152
2153 static void
2154 e1000_82547_tx_fifo_stall(unsigned long data)
2155 {
2156         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2157         struct net_device *netdev = adapter->netdev;
2158         uint32_t tctl;
2159
2160         if(atomic_read(&adapter->tx_fifo_stall)) {
2161                 if((E1000_READ_REG(&adapter->hw, TDT) ==
2162                     E1000_READ_REG(&adapter->hw, TDH)) &&
2163                    (E1000_READ_REG(&adapter->hw, TDFT) ==
2164                     E1000_READ_REG(&adapter->hw, TDFH)) &&
2165                    (E1000_READ_REG(&adapter->hw, TDFTS) ==
2166                     E1000_READ_REG(&adapter->hw, TDFHS))) {
2167                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2168                         E1000_WRITE_REG(&adapter->hw, TCTL,
2169                                         tctl & ~E1000_TCTL_EN);
2170                         E1000_WRITE_REG(&adapter->hw, TDFT,
2171                                         adapter->tx_head_addr);
2172                         E1000_WRITE_REG(&adapter->hw, TDFH,
2173                                         adapter->tx_head_addr);
2174                         E1000_WRITE_REG(&adapter->hw, TDFTS,
2175                                         adapter->tx_head_addr);
2176                         E1000_WRITE_REG(&adapter->hw, TDFHS,
2177                                         adapter->tx_head_addr);
2178                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2179                         E1000_WRITE_FLUSH(&adapter->hw);
2180
2181                         adapter->tx_fifo_head = 0;
2182                         atomic_set(&adapter->tx_fifo_stall, 0);
2183                         netif_wake_queue(netdev);
2184                 } else {
2185                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2186                 }
2187         }
2188 }
2189
2190 /**
2191  * e1000_watchdog - Timer Call-back
2192  * @data: pointer to adapter cast into an unsigned long
2193  **/
2194 static void
2195 e1000_watchdog(unsigned long data)
2196 {
2197         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2198
2199         /* Do the rest outside of interrupt context */
2200         schedule_work(&adapter->watchdog_task);
2201 }
2202
2203 static void
2204 e1000_watchdog_task(struct e1000_adapter *adapter)
2205 {
2206         struct net_device *netdev = adapter->netdev;
2207         struct e1000_tx_ring *txdr = &adapter->tx_ring[0];
2208         uint32_t link;
2209
2210         e1000_check_for_link(&adapter->hw);
2211         if (adapter->hw.mac_type == e1000_82573) {
2212                 e1000_enable_tx_pkt_filtering(&adapter->hw);
2213                 if(adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2214                         e1000_update_mng_vlan(adapter);
2215         }       
2216
2217         if((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2218            !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2219                 link = !adapter->hw.serdes_link_down;
2220         else
2221                 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2222
2223         if(link) {
2224                 if(!netif_carrier_ok(netdev)) {
2225                         e1000_get_speed_and_duplex(&adapter->hw,
2226                                                    &adapter->link_speed,
2227                                                    &adapter->link_duplex);
2228
2229                         DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
2230                                adapter->link_speed,
2231                                adapter->link_duplex == FULL_DUPLEX ?
2232                                "Full Duplex" : "Half Duplex");
2233
2234                         netif_carrier_on(netdev);
2235                         netif_wake_queue(netdev);
2236                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2237                         adapter->smartspeed = 0;
2238                 }
2239         } else {
2240                 if(netif_carrier_ok(netdev)) {
2241                         adapter->link_speed = 0;
2242                         adapter->link_duplex = 0;
2243                         DPRINTK(LINK, INFO, "NIC Link is Down\n");
2244                         netif_carrier_off(netdev);
2245                         netif_stop_queue(netdev);
2246                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2247                 }
2248
2249                 e1000_smartspeed(adapter);
2250         }
2251
2252         e1000_update_stats(adapter);
2253
2254         adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2255         adapter->tpt_old = adapter->stats.tpt;
2256         adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2257         adapter->colc_old = adapter->stats.colc;
2258
2259         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2260         adapter->gorcl_old = adapter->stats.gorcl;
2261         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2262         adapter->gotcl_old = adapter->stats.gotcl;
2263
2264         e1000_update_adaptive(&adapter->hw);
2265
2266         if (adapter->num_queues == 1 && !netif_carrier_ok(netdev)) {
2267                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2268                         /* We've lost link, so the controller stops DMA,
2269                          * but we've got queued Tx work that's never going
2270                          * to get done, so reset controller to flush Tx.
2271                          * (Do the reset outside of interrupt context). */
2272                         schedule_work(&adapter->tx_timeout_task);
2273                 }
2274         }
2275
2276         /* Dynamic mode for Interrupt Throttle Rate (ITR) */
2277         if(adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
2278                 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
2279                  * asymmetrical Tx or Rx gets ITR=8000; everyone
2280                  * else is between 2000-8000. */
2281                 uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
2282                 uint32_t dif = (adapter->gotcl > adapter->gorcl ? 
2283                         adapter->gotcl - adapter->gorcl :
2284                         adapter->gorcl - adapter->gotcl) / 10000;
2285                 uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2286                 E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
2287         }
2288
2289         /* Cause software interrupt to ensure rx ring is cleaned */
2290         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2291
2292         /* Force detection of hung controller every watchdog period */
2293         adapter->detect_tx_hung = TRUE;
2294
2295         /* With 82571 controllers, LAA may be overwritten due to controller 
2296          * reset from the other port. Set the appropriate LAA in RAR[0] */
2297         if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2298                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2299
2300         /* Reset the timer */
2301         mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2302 }
2303
2304 #define E1000_TX_FLAGS_CSUM             0x00000001
2305 #define E1000_TX_FLAGS_VLAN             0x00000002
2306 #define E1000_TX_FLAGS_TSO              0x00000004
2307 #define E1000_TX_FLAGS_IPV4             0x00000008
2308 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2309 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2310
2311 static inline int
2312 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2313           struct sk_buff *skb)
2314 {
2315 #ifdef NETIF_F_TSO
2316         struct e1000_context_desc *context_desc;
2317         unsigned int i;
2318         uint32_t cmd_length = 0;
2319         uint16_t ipcse = 0, tucse, mss;
2320         uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2321         int err;
2322
2323         if(skb_shinfo(skb)->tso_size) {
2324                 if (skb_header_cloned(skb)) {
2325                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2326                         if (err)
2327                                 return err;
2328                 }
2329
2330                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2331                 mss = skb_shinfo(skb)->tso_size;
2332                 if(skb->protocol == ntohs(ETH_P_IP)) {
2333                         skb->nh.iph->tot_len = 0;
2334                         skb->nh.iph->check = 0;
2335                         skb->h.th->check =
2336                                 ~csum_tcpudp_magic(skb->nh.iph->saddr,
2337                                                    skb->nh.iph->daddr,
2338                                                    0,
2339                                                    IPPROTO_TCP,
2340                                                    0);
2341                         cmd_length = E1000_TXD_CMD_IP;
2342                         ipcse = skb->h.raw - skb->data - 1;
2343 #ifdef NETIF_F_TSO_IPV6
2344                 } else if(skb->protocol == ntohs(ETH_P_IPV6)) {
2345                         skb->nh.ipv6h->payload_len = 0;
2346                         skb->h.th->check =
2347                                 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
2348                                                  &skb->nh.ipv6h->daddr,
2349                                                  0,
2350                                                  IPPROTO_TCP,
2351                                                  0);
2352                         ipcse = 0;
2353 #endif
2354                 }
2355                 ipcss = skb->nh.raw - skb->data;
2356                 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
2357                 tucss = skb->h.raw - skb->data;
2358                 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
2359                 tucse = 0;
2360
2361                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2362                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2363
2364                 i = tx_ring->next_to_use;
2365                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2366
2367                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2368                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2369                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2370                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2371                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2372                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2373                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2374                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2375                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2376
2377                 if (++i == tx_ring->count) i = 0;
2378                 tx_ring->next_to_use = i;
2379
2380                 return 1;
2381         }
2382 #endif
2383
2384         return 0;
2385 }
2386
2387 static inline boolean_t
2388 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2389               struct sk_buff *skb)
2390 {
2391         struct e1000_context_desc *context_desc;
2392         unsigned int i;
2393         uint8_t css;
2394
2395         if(likely(skb->ip_summed == CHECKSUM_HW)) {
2396                 css = skb->h.raw - skb->data;
2397
2398                 i = tx_ring->next_to_use;
2399                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2400
2401                 context_desc->upper_setup.tcp_fields.tucss = css;
2402                 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
2403                 context_desc->upper_setup.tcp_fields.tucse = 0;
2404                 context_desc->tcp_seg_setup.data = 0;
2405                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2406
2407                 if (unlikely(++i == tx_ring->count)) i = 0;
2408                 tx_ring->next_to_use = i;
2409
2410                 return TRUE;
2411         }
2412
2413         return FALSE;
2414 }
2415
2416 #define E1000_MAX_TXD_PWR       12
2417 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2418
2419 static inline int
2420 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2421              struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2422              unsigned int nr_frags, unsigned int mss)
2423 {
2424         struct e1000_buffer *buffer_info;
2425         unsigned int len = skb->len;
2426         unsigned int offset = 0, size, count = 0, i;
2427         unsigned int f;
2428         len -= skb->data_len;
2429
2430         i = tx_ring->next_to_use;
2431
2432         while(len) {
2433                 buffer_info = &tx_ring->buffer_info[i];
2434                 size = min(len, max_per_txd);
2435 #ifdef NETIF_F_TSO
2436                 /* Workaround for Controller erratum --
2437                  * descriptor for non-tso packet in a linear SKB that follows a
2438                  * tso gets written back prematurely before the data is fully
2439                  * DMAd to the controller */
2440                 if (!skb->data_len && tx_ring->last_tx_tso &&
2441                                 !skb_shinfo(skb)->tso_size) {
2442                         tx_ring->last_tx_tso = 0;
2443                         size -= 4;
2444                 }
2445
2446                 /* Workaround for premature desc write-backs
2447                  * in TSO mode.  Append 4-byte sentinel desc */
2448                 if(unlikely(mss && !nr_frags && size == len && size > 8))
2449                         size -= 4;
2450 #endif
2451                 /* work-around for errata 10 and it applies
2452                  * to all controllers in PCI-X mode
2453                  * The fix is to make sure that the first descriptor of a
2454                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2455                  */
2456                 if(unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2457                                 (size > 2015) && count == 0))
2458                         size = 2015;
2459                                                                                 
2460                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2461                  * terminating buffers within evenly-aligned dwords. */
2462                 if(unlikely(adapter->pcix_82544 &&
2463                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2464                    size > 4))
2465                         size -= 4;
2466
2467                 buffer_info->length = size;
2468                 buffer_info->dma =
2469                         pci_map_single(adapter->pdev,
2470                                 skb->data + offset,
2471                                 size,
2472                                 PCI_DMA_TODEVICE);
2473                 buffer_info->time_stamp = jiffies;
2474
2475                 len -= size;
2476                 offset += size;
2477                 count++;
2478                 if(unlikely(++i == tx_ring->count)) i = 0;
2479         }
2480
2481         for(f = 0; f < nr_frags; f++) {
2482                 struct skb_frag_struct *frag;
2483
2484                 frag = &skb_shinfo(skb)->frags[f];
2485                 len = frag->size;
2486                 offset = frag->page_offset;
2487
2488                 while(len) {
2489                         buffer_info = &tx_ring->buffer_info[i];
2490                         size = min(len, max_per_txd);
2491 #ifdef NETIF_F_TSO
2492                         /* Workaround for premature desc write-backs
2493                          * in TSO mode.  Append 4-byte sentinel desc */
2494                         if(unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2495                                 size -= 4;
2496 #endif
2497                         /* Workaround for potential 82544 hang in PCI-X.
2498                          * Avoid terminating buffers within evenly-aligned
2499                          * dwords. */
2500                         if(unlikely(adapter->pcix_82544 &&
2501                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
2502                            size > 4))
2503                                 size -= 4;
2504
2505                         buffer_info->length = size;
2506                         buffer_info->dma =
2507                                 pci_map_page(adapter->pdev,
2508                                         frag->page,
2509                                         offset,
2510                                         size,
2511                                         PCI_DMA_TODEVICE);
2512                         buffer_info->time_stamp = jiffies;
2513
2514                         len -= size;
2515                         offset += size;
2516                         count++;
2517                         if(unlikely(++i == tx_ring->count)) i = 0;
2518                 }
2519         }
2520
2521         i = (i == 0) ? tx_ring->count - 1 : i - 1;
2522         tx_ring->buffer_info[i].skb = skb;
2523         tx_ring->buffer_info[first].next_to_watch = i;
2524
2525         return count;
2526 }
2527
2528 static inline void
2529 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2530                int tx_flags, int count)
2531 {
2532         struct e1000_tx_desc *tx_desc = NULL;
2533         struct e1000_buffer *buffer_info;
2534         uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2535         unsigned int i;
2536
2537         if(likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2538                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2539                              E1000_TXD_CMD_TSE;
2540                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2541
2542                 if(likely(tx_flags & E1000_TX_FLAGS_IPV4))
2543                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2544         }
2545
2546         if(likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2547                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2548                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2549         }
2550
2551         if(unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2552                 txd_lower |= E1000_TXD_CMD_VLE;
2553                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2554         }
2555
2556         i = tx_ring->next_to_use;
2557
2558         while(count--) {
2559                 buffer_info = &tx_ring->buffer_info[i];
2560                 tx_desc = E1000_TX_DESC(*tx_ring, i);
2561                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2562                 tx_desc->lower.data =
2563                         cpu_to_le32(txd_lower | buffer_info->length);
2564                 tx_desc->upper.data = cpu_to_le32(txd_upper);
2565                 if(unlikely(++i == tx_ring->count)) i = 0;
2566         }
2567
2568         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2569
2570         /* Force memory writes to complete before letting h/w
2571          * know there are new descriptors to fetch.  (Only
2572          * applicable for weak-ordered memory model archs,
2573          * such as IA-64). */
2574         wmb();
2575
2576         tx_ring->next_to_use = i;
2577         writel(i, adapter->hw.hw_addr + tx_ring->tdt);
2578 }
2579
2580 /**
2581  * 82547 workaround to avoid controller hang in half-duplex environment.
2582  * The workaround is to avoid queuing a large packet that would span
2583  * the internal Tx FIFO ring boundary by notifying the stack to resend
2584  * the packet at a later time.  This gives the Tx FIFO an opportunity to
2585  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
2586  * to the beginning of the Tx FIFO.
2587  **/
2588
2589 #define E1000_FIFO_HDR                  0x10
2590 #define E1000_82547_PAD_LEN             0x3E0
2591
2592 static inline int
2593 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
2594 {
2595         uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2596         uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
2597
2598         E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
2599
2600         if(adapter->link_duplex != HALF_DUPLEX)
2601                 goto no_fifo_stall_required;
2602
2603         if(atomic_read(&adapter->tx_fifo_stall))
2604                 return 1;
2605
2606         if(skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2607                 atomic_set(&adapter->tx_fifo_stall, 1);
2608                 return 1;
2609         }
2610
2611 no_fifo_stall_required:
2612         adapter->tx_fifo_head += skb_fifo_len;
2613         if(adapter->tx_fifo_head >= adapter->tx_fifo_size)
2614                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2615         return 0;
2616 }
2617
2618 #define MINIMUM_DHCP_PACKET_SIZE 282
2619 static inline int
2620 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
2621 {
2622         struct e1000_hw *hw =  &adapter->hw;
2623         uint16_t length, offset;
2624         if(vlan_tx_tag_present(skb)) {
2625                 if(!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
2626                         ( adapter->hw.mng_cookie.status &
2627                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
2628                         return 0;
2629         }
2630         if ((skb->len > MINIMUM_DHCP_PACKET_SIZE) && (!skb->protocol)) {
2631                 struct ethhdr *eth = (struct ethhdr *) skb->data;
2632                 if((htons(ETH_P_IP) == eth->h_proto)) {
2633                         const struct iphdr *ip = 
2634                                 (struct iphdr *)((uint8_t *)skb->data+14);
2635                         if(IPPROTO_UDP == ip->protocol) {
2636                                 struct udphdr *udp = 
2637                                         (struct udphdr *)((uint8_t *)ip + 
2638                                                 (ip->ihl << 2));
2639                                 if(ntohs(udp->dest) == 67) {
2640                                         offset = (uint8_t *)udp + 8 - skb->data;
2641                                         length = skb->len - offset;
2642
2643                                         return e1000_mng_write_dhcp_info(hw,
2644                                                         (uint8_t *)udp + 8, 
2645                                                         length);
2646                                 }
2647                         }
2648                 }
2649         }
2650         return 0;
2651 }
2652
2653 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2654 static int
2655 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2656 {
2657         struct e1000_adapter *adapter = netdev_priv(netdev);
2658         struct e1000_tx_ring *tx_ring;
2659         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2660         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2661         unsigned int tx_flags = 0;
2662         unsigned int len = skb->len;
2663         unsigned long flags;
2664         unsigned int nr_frags = 0;
2665         unsigned int mss = 0;
2666         int count = 0;
2667         int tso;
2668         unsigned int f;
2669         len -= skb->data_len;
2670
2671 #ifdef CONFIG_E1000_MQ
2672         tx_ring = *per_cpu_ptr(adapter->cpu_tx_ring, smp_processor_id());
2673 #else
2674         tx_ring = adapter->tx_ring;
2675 #endif
2676
2677         if (unlikely(skb->len <= 0)) {
2678                 dev_kfree_skb_any(skb);
2679                 return NETDEV_TX_OK;
2680         }
2681
2682 #ifdef NETIF_F_TSO
2683         mss = skb_shinfo(skb)->tso_size;
2684         /* The controller does a simple calculation to 
2685          * make sure there is enough room in the FIFO before
2686          * initiating the DMA for each buffer.  The calc is:
2687          * 4 = ceil(buffer len/mss).  To make sure we don't
2688          * overrun the FIFO, adjust the max buffer len if mss
2689          * drops. */
2690         if(mss) {
2691                 uint8_t hdr_len;
2692                 max_per_txd = min(mss << 2, max_per_txd);
2693                 max_txd_pwr = fls(max_per_txd) - 1;
2694
2695         /* TSO Workaround for 82571/2 Controllers -- if skb->data
2696          * points to just header, pull a few bytes of payload from
2697          * frags into skb->data */
2698                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2699                 if (skb->data_len && (hdr_len == (skb->len - skb->data_len)) &&
2700                         (adapter->hw.mac_type == e1000_82571 ||
2701                         adapter->hw.mac_type == e1000_82572)) {
2702                         len = skb->len - skb->data_len;
2703                 }
2704         }
2705
2706         if((mss) || (skb->ip_summed == CHECKSUM_HW))
2707         /* reserve a descriptor for the offload context */
2708                 count++;
2709         count++;
2710 #else
2711         if(skb->ip_summed == CHECKSUM_HW)
2712                 count++;
2713 #endif
2714
2715 #ifdef NETIF_F_TSO
2716         /* Controller Erratum workaround */
2717         if (!skb->data_len && tx_ring->last_tx_tso &&
2718                 !skb_shinfo(skb)->tso_size)
2719                 count++;
2720 #endif
2721
2722         count += TXD_USE_COUNT(len, max_txd_pwr);
2723
2724         if(adapter->pcix_82544)
2725                 count++;
2726
2727         /* work-around for errata 10 and it applies to all controllers 
2728          * in PCI-X mode, so add one more descriptor to the count
2729          */
2730         if(unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2731                         (len > 2015)))
2732                 count++;
2733
2734         nr_frags = skb_shinfo(skb)->nr_frags;
2735         for(f = 0; f < nr_frags; f++)
2736                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
2737                                        max_txd_pwr);
2738         if(adapter->pcix_82544)
2739                 count += nr_frags;
2740
2741                 unsigned int pull_size;
2742                 pull_size = min((unsigned int)4, skb->data_len);
2743                 if (!__pskb_pull_tail(skb, pull_size)) {
2744                         printk(KERN_ERR "__pskb_pull_tail failed.\n");
2745                         dev_kfree_skb_any(skb);
2746                         return -EFAULT;
2747                 }
2748
2749         if(adapter->hw.tx_pkt_filtering && (adapter->hw.mac_type == e1000_82573) )
2750                 e1000_transfer_dhcp_info(adapter, skb);
2751
2752         local_irq_save(flags);
2753         if (!spin_trylock(&tx_ring->tx_lock)) {
2754                 /* Collision - tell upper layer to requeue */
2755                 local_irq_restore(flags);
2756                 return NETDEV_TX_LOCKED;
2757         }
2758
2759         /* need: count + 2 desc gap to keep tail from touching
2760          * head, otherwise try next time */
2761         if (unlikely(E1000_DESC_UNUSED(tx_ring) < count + 2)) {
2762                 netif_stop_queue(netdev);
2763                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2764                 return NETDEV_TX_BUSY;
2765         }
2766
2767         if(unlikely(adapter->hw.mac_type == e1000_82547)) {
2768                 if(unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
2769                         netif_stop_queue(netdev);
2770                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
2771                         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2772                         return NETDEV_TX_BUSY;
2773                 }
2774         }
2775
2776         if(unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
2777                 tx_flags |= E1000_TX_FLAGS_VLAN;
2778                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
2779         }
2780
2781         first = tx_ring->next_to_use;
2782         
2783         tso = e1000_tso(adapter, tx_ring, skb);
2784         if (tso < 0) {
2785                 dev_kfree_skb_any(skb);
2786                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2787                 return NETDEV_TX_OK;
2788         }
2789
2790         if (likely(tso)) {
2791                 tx_ring->last_tx_tso = 1;
2792                 tx_flags |= E1000_TX_FLAGS_TSO;
2793         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
2794                 tx_flags |= E1000_TX_FLAGS_CSUM;
2795
2796         /* Old method was to assume IPv4 packet by default if TSO was enabled.
2797          * 82571 hardware supports TSO capabilities for IPv6 as well...
2798          * no longer assume, we must. */
2799         if (likely(skb->protocol == ntohs(ETH_P_IP)))
2800                 tx_flags |= E1000_TX_FLAGS_IPV4;
2801
2802         e1000_tx_queue(adapter, tx_ring, tx_flags,
2803                        e1000_tx_map(adapter, tx_ring, skb, first,
2804                                     max_per_txd, nr_frags, mss));
2805
2806         netdev->trans_start = jiffies;
2807
2808         /* Make sure there is space in the ring for the next send. */
2809         if (unlikely(E1000_DESC_UNUSED(tx_ring) < MAX_SKB_FRAGS + 2))
2810                 netif_stop_queue(netdev);
2811
2812         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2813         return NETDEV_TX_OK;
2814 }
2815
2816 /**
2817  * e1000_tx_timeout - Respond to a Tx Hang
2818  * @netdev: network interface device structure
2819  **/
2820
2821 static void
2822 e1000_tx_timeout(struct net_device *netdev)
2823 {
2824         struct e1000_adapter *adapter = netdev_priv(netdev);
2825
2826         /* Do the reset outside of interrupt context */
2827         schedule_work(&adapter->tx_timeout_task);
2828 }
2829
2830 static void
2831 e1000_tx_timeout_task(struct net_device *netdev)
2832 {
2833         struct e1000_adapter *adapter = netdev_priv(netdev);
2834
2835         e1000_down(adapter);
2836         e1000_up(adapter);
2837 }
2838
2839 /**
2840  * e1000_get_stats - Get System Network Statistics
2841  * @netdev: network interface device structure
2842  *
2843  * Returns the address of the device statistics structure.
2844  * The statistics are actually updated from the timer callback.
2845  **/
2846
2847 static struct net_device_stats *
2848 e1000_get_stats(struct net_device *netdev)
2849 {
2850         struct e1000_adapter *adapter = netdev_priv(netdev);
2851
2852         e1000_update_stats(adapter);
2853         return &adapter->net_stats;
2854 }
2855
2856 /**
2857  * e1000_change_mtu - Change the Maximum Transfer Unit
2858  * @netdev: network interface device structure
2859  * @new_mtu: new value for maximum frame size
2860  *
2861  * Returns 0 on success, negative on failure
2862  **/
2863
2864 static int
2865 e1000_change_mtu(struct net_device *netdev, int new_mtu)
2866 {
2867         struct e1000_adapter *adapter = netdev_priv(netdev);
2868         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
2869
2870         if((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
2871                 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2872                         DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
2873                         return -EINVAL;
2874         }
2875
2876 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2877         /* might want this to be bigger enum check... */
2878         /* 82571 controllers limit jumbo frame size to 10500 bytes */
2879         if ((adapter->hw.mac_type == e1000_82571 || 
2880              adapter->hw.mac_type == e1000_82572) &&
2881             max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2882                 DPRINTK(PROBE, ERR, "MTU > 9216 bytes not supported "
2883                                     "on 82571 and 82572 controllers.\n");
2884                 return -EINVAL;
2885         }
2886
2887         if(adapter->hw.mac_type == e1000_82573 &&
2888             max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
2889                 DPRINTK(PROBE, ERR, "Jumbo Frames not supported "
2890                                     "on 82573\n");
2891                 return -EINVAL;
2892         }
2893
2894         if(adapter->hw.mac_type > e1000_82547_rev_2) {
2895                 adapter->rx_buffer_len = max_frame;
2896                 E1000_ROUNDUP(adapter->rx_buffer_len, 1024);
2897         } else {
2898                 if(unlikely((adapter->hw.mac_type < e1000_82543) &&
2899                    (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE))) {
2900                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported "
2901                                             "on 82542\n");
2902                         return -EINVAL;
2903
2904                 } else {
2905                         if(max_frame <= E1000_RXBUFFER_2048) {
2906                                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
2907                         } else if(max_frame <= E1000_RXBUFFER_4096) {
2908                                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
2909                         } else if(max_frame <= E1000_RXBUFFER_8192) {
2910                                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
2911                         } else if(max_frame <= E1000_RXBUFFER_16384) {
2912                                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
2913                         }
2914                 }
2915         }
2916
2917         netdev->mtu = new_mtu;
2918
2919         if(netif_running(netdev)) {
2920                 e1000_down(adapter);
2921                 e1000_up(adapter);
2922         }
2923
2924         adapter->hw.max_frame_size = max_frame;
2925
2926         return 0;
2927 }
2928
2929 /**
2930  * e1000_update_stats - Update the board statistics counters
2931  * @adapter: board private structure
2932  **/
2933
2934 void
2935 e1000_update_stats(struct e1000_adapter *adapter)
2936 {
2937         struct e1000_hw *hw = &adapter->hw;
2938         unsigned long flags;
2939         uint16_t phy_tmp;
2940
2941 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2942
2943         spin_lock_irqsave(&adapter->stats_lock, flags);
2944
2945         /* these counters are modified from e1000_adjust_tbi_stats,
2946          * called from the interrupt context, so they must only
2947          * be written while holding adapter->stats_lock
2948          */
2949
2950         adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
2951         adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
2952         adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
2953         adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
2954         adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
2955         adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
2956         adapter->stats.roc += E1000_READ_REG(hw, ROC);
2957         adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
2958         adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
2959         adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
2960         adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
2961         adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
2962         adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
2963
2964         adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
2965         adapter->stats.mpc += E1000_READ_REG(hw, MPC);
2966         adapter->stats.scc += E1000_READ_REG(hw, SCC);
2967         adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
2968         adapter->stats.mcc += E1000_READ_REG(hw, MCC);
2969         adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
2970         adapter->stats.dc += E1000_READ_REG(hw, DC);
2971         adapter->stats.sec += E1000_READ_REG(hw, SEC);
2972         adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
2973         adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
2974         adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
2975         adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
2976         adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
2977         adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
2978         adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
2979         adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
2980         adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
2981         adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
2982         adapter->stats.ruc += E1000_READ_REG(hw, RUC);
2983         adapter->stats.rfc += E1000_READ_REG(hw, RFC);
2984         adapter->stats.rjc += E1000_READ_REG(hw, RJC);
2985         adapter->stats.torl += E1000_READ_REG(hw, TORL);
2986         adapter->stats.torh += E1000_READ_REG(hw, TORH);
2987         adapter->stats.totl += E1000_READ_REG(hw, TOTL);
2988         adapter->stats.toth += E1000_READ_REG(hw, TOTH);
2989         adapter->stats.tpr += E1000_READ_REG(hw, TPR);
2990         adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
2991         adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
2992         adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
2993         adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
2994         adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
2995         adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
2996         adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
2997         adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
2998
2999         /* used for adaptive IFS */
3000
3001         hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3002         adapter->stats.tpt += hw->tx_packet_delta;
3003         hw->collision_delta = E1000_READ_REG(hw, COLC);
3004         adapter->stats.colc += hw->collision_delta;
3005
3006         if(hw->mac_type >= e1000_82543) {
3007                 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3008                 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3009                 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3010                 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3011                 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3012                 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3013         }
3014         if(hw->mac_type > e1000_82547_rev_2) {
3015                 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3016                 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3017                 adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3018                 adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3019                 adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3020                 adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3021                 adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3022                 adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3023                 adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3024         }
3025
3026         /* Fill out the OS statistics structure */
3027
3028         adapter->net_stats.rx_packets = adapter->stats.gprc;
3029         adapter->net_stats.tx_packets = adapter->stats.gptc;
3030         adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3031         adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3032         adapter->net_stats.multicast = adapter->stats.mprc;
3033         adapter->net_stats.collisions = adapter->stats.colc;
3034
3035         /* Rx Errors */
3036
3037         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3038                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3039                 adapter->stats.rlec + adapter->stats.mpc + 
3040                 adapter->stats.cexterr;
3041         adapter->net_stats.rx_length_errors = adapter->stats.rlec;
3042         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3043         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3044         adapter->net_stats.rx_fifo_errors = adapter->stats.mpc;
3045         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3046
3047         /* Tx Errors */
3048
3049         adapter->net_stats.tx_errors = adapter->stats.ecol +
3050                                        adapter->stats.latecol;
3051         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3052         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3053         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3054
3055         /* Tx Dropped needs to be maintained elsewhere */
3056
3057         /* Phy Stats */
3058
3059         if(hw->media_type == e1000_media_type_copper) {
3060                 if((adapter->link_speed == SPEED_1000) &&
3061                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3062                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3063                         adapter->phy_stats.idle_errors += phy_tmp;
3064                 }
3065
3066                 if((hw->mac_type <= e1000_82546) &&
3067                    (hw->phy_type == e1000_phy_m88) &&
3068                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3069                         adapter->phy_stats.receive_errors += phy_tmp;
3070         }
3071
3072         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3073 }
3074
3075 #ifdef CONFIG_E1000_MQ
3076 void
3077 e1000_rx_schedule(void *data)
3078 {
3079         struct net_device *poll_dev, *netdev = data;
3080         struct e1000_adapter *adapter = netdev->priv;
3081         int this_cpu = get_cpu();
3082
3083         poll_dev = *per_cpu_ptr(adapter->cpu_netdev, this_cpu);
3084         if (poll_dev == NULL) {
3085                 put_cpu();
3086                 return;
3087         }
3088
3089         if (likely(netif_rx_schedule_prep(poll_dev)))
3090                 __netif_rx_schedule(poll_dev);
3091         else
3092                 e1000_irq_enable(adapter);
3093
3094         put_cpu();
3095 }
3096 #endif
3097
3098 /**
3099  * e1000_intr - Interrupt Handler
3100  * @irq: interrupt number
3101  * @data: pointer to a network interface device structure
3102  * @pt_regs: CPU registers structure
3103  **/
3104
3105 static irqreturn_t
3106 e1000_intr(int irq, void *data, struct pt_regs *regs)
3107 {
3108         struct net_device *netdev = data;
3109         struct e1000_adapter *adapter = netdev_priv(netdev);
3110         struct e1000_hw *hw = &adapter->hw;
3111         uint32_t icr = E1000_READ_REG(hw, ICR);
3112 #if defined(CONFIG_E1000_NAPI) && defined(CONFIG_E1000_MQ) || !defined(CONFIG_E1000_NAPI)
3113         int i;
3114 #endif
3115
3116         if(unlikely(!icr))
3117                 return IRQ_NONE;  /* Not our interrupt */
3118
3119         if(unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3120                 hw->get_link_status = 1;
3121                 mod_timer(&adapter->watchdog_timer, jiffies);
3122         }
3123
3124 #ifdef CONFIG_E1000_NAPI
3125         atomic_inc(&adapter->irq_sem);
3126         E1000_WRITE_REG(hw, IMC, ~0);
3127         E1000_WRITE_FLUSH(hw);
3128 #ifdef CONFIG_E1000_MQ
3129         if (atomic_read(&adapter->rx_sched_call_data.count) == 0) {
3130                 cpu_set(adapter->cpu_for_queue[0],
3131                         adapter->rx_sched_call_data.cpumask);
3132                 for (i = 1; i < adapter->num_queues; i++) {
3133                         cpu_set(adapter->cpu_for_queue[i],
3134                                 adapter->rx_sched_call_data.cpumask);
3135                         atomic_inc(&adapter->irq_sem);
3136                 }
3137                 atomic_set(&adapter->rx_sched_call_data.count, i);
3138                 smp_call_async_mask(&adapter->rx_sched_call_data);
3139         } else {
3140                 printk("call_data.count == %u\n", atomic_read(&adapter->rx_sched_call_data.count));
3141         }
3142 #else /* if !CONFIG_E1000_MQ */
3143         if (likely(netif_rx_schedule_prep(&adapter->polling_netdev[0])))
3144                 __netif_rx_schedule(&adapter->polling_netdev[0]);
3145         else
3146                 e1000_irq_enable(adapter);
3147 #endif /* CONFIG_E1000_MQ */
3148
3149 #else /* if !CONFIG_E1000_NAPI */
3150         /* Writing IMC and IMS is needed for 82547.
3151            Due to Hub Link bus being occupied, an interrupt
3152            de-assertion message is not able to be sent.
3153            When an interrupt assertion message is generated later,
3154            two messages are re-ordered and sent out.
3155            That causes APIC to think 82547 is in de-assertion
3156            state, while 82547 is in assertion state, resulting
3157            in dead lock. Writing IMC forces 82547 into
3158            de-assertion state.
3159         */
3160         if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2){
3161                 atomic_inc(&adapter->irq_sem);
3162                 E1000_WRITE_REG(hw, IMC, ~0);
3163         }
3164
3165         for(i = 0; i < E1000_MAX_INTR; i++)
3166                 if(unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3167                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3168                         break;
3169
3170         if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3171                 e1000_irq_enable(adapter);
3172
3173 #endif /* CONFIG_E1000_NAPI */
3174
3175         return IRQ_HANDLED;
3176 }
3177
3178 #ifdef CONFIG_E1000_NAPI
3179 /**
3180  * e1000_clean - NAPI Rx polling callback
3181  * @adapter: board private structure
3182  **/
3183
3184 static int
3185 e1000_clean(struct net_device *poll_dev, int *budget)
3186 {
3187         struct e1000_adapter *adapter;
3188         int work_to_do = min(*budget, poll_dev->quota);
3189         int tx_cleaned, i = 0, work_done = 0;
3190
3191         /* Must NOT use netdev_priv macro here. */
3192         adapter = poll_dev->priv;
3193
3194         /* Keep link state information with original netdev */
3195         if (!netif_carrier_ok(adapter->netdev))
3196                 goto quit_polling;
3197
3198         while (poll_dev != &adapter->polling_netdev[i]) {
3199                 i++;
3200                 if (unlikely(i == adapter->num_queues))
3201                         BUG();
3202         }
3203
3204         tx_cleaned = e1000_clean_tx_irq(adapter, &adapter->tx_ring[i]);
3205         adapter->clean_rx(adapter, &adapter->rx_ring[i],
3206                           &work_done, work_to_do);
3207
3208         *budget -= work_done;
3209         poll_dev->quota -= work_done;
3210         
3211         /* If no Tx and not enough Rx work done, exit the polling mode */
3212         if((!tx_cleaned && (work_done == 0)) ||
3213            !netif_running(adapter->netdev)) {
3214 quit_polling:
3215                 netif_rx_complete(poll_dev);
3216                 e1000_irq_enable(adapter);
3217                 return 0;
3218         }
3219
3220         return 1;
3221 }
3222
3223 #endif
3224 /**
3225  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3226  * @adapter: board private structure
3227  **/
3228
3229 static boolean_t
3230 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3231                    struct e1000_tx_ring *tx_ring)
3232 {
3233         struct net_device *netdev = adapter->netdev;
3234         struct e1000_tx_desc *tx_desc, *eop_desc;
3235         struct e1000_buffer *buffer_info;
3236         unsigned int i, eop;
3237         boolean_t cleaned = FALSE;
3238
3239         i = tx_ring->next_to_clean;
3240         eop = tx_ring->buffer_info[i].next_to_watch;
3241         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3242
3243         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3244                 for(cleaned = FALSE; !cleaned; ) {
3245                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3246                         buffer_info = &tx_ring->buffer_info[i];
3247                         cleaned = (i == eop);
3248
3249                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3250
3251                         tx_desc->buffer_addr = 0;
3252                         tx_desc->lower.data = 0;
3253                         tx_desc->upper.data = 0;
3254
3255                         if(unlikely(++i == tx_ring->count)) i = 0;
3256                 }
3257
3258                 tx_ring->pkt++;
3259                 
3260                 eop = tx_ring->buffer_info[i].next_to_watch;
3261                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3262         }
3263
3264         tx_ring->next_to_clean = i;
3265
3266         spin_lock(&tx_ring->tx_lock);
3267
3268         if(unlikely(cleaned && netif_queue_stopped(netdev) &&
3269                     netif_carrier_ok(netdev)))
3270                 netif_wake_queue(netdev);
3271
3272         spin_unlock(&tx_ring->tx_lock);
3273
3274         if (adapter->detect_tx_hung) {
3275                 /* Detect a transmit hang in hardware, this serializes the
3276                  * check with the clearing of time_stamp and movement of i */
3277                 adapter->detect_tx_hung = FALSE;
3278                 if (tx_ring->buffer_info[i].dma &&
3279                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp + HZ)
3280                     && !(E1000_READ_REG(&adapter->hw, STATUS) &
3281                         E1000_STATUS_TXOFF)) {
3282
3283                         /* detected Tx unit hang */
3284                         i = tx_ring->next_to_clean;
3285                         eop = tx_ring->buffer_info[i].next_to_watch;
3286                         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3287                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3288                                         "  TDH                  <%x>\n"
3289                                         "  TDT                  <%x>\n"
3290                                         "  next_to_use          <%x>\n"
3291                                         "  next_to_clean        <%x>\n"
3292                                         "buffer_info[next_to_clean]\n"
3293                                         "  dma                  <%llx>\n"
3294                                         "  time_stamp           <%lx>\n"
3295                                         "  next_to_watch        <%x>\n"
3296                                         "  jiffies              <%lx>\n"
3297                                         "  next_to_watch.status <%x>\n",
3298                                 readl(adapter->hw.hw_addr + tx_ring->tdh),
3299                                 readl(adapter->hw.hw_addr + tx_ring->tdt),
3300                                 tx_ring->next_to_use,
3301                                 i,
3302                                 (unsigned long long)tx_ring->buffer_info[i].dma,
3303                                 tx_ring->buffer_info[i].time_stamp,
3304                                 eop,
3305                                 jiffies,
3306                                 eop_desc->upper.fields.status);
3307                         netif_stop_queue(netdev);
3308                 }
3309         }
3310         return cleaned;
3311 }
3312
3313 /**
3314  * e1000_rx_checksum - Receive Checksum Offload for 82543
3315  * @adapter:     board private structure
3316  * @status_err:  receive descriptor status and error fields
3317  * @csum:        receive descriptor csum field
3318  * @sk_buff:     socket buffer with received data
3319  **/
3320
3321 static inline void
3322 e1000_rx_checksum(struct e1000_adapter *adapter,
3323                   uint32_t status_err, uint32_t csum,
3324                   struct sk_buff *skb)
3325 {
3326         uint16_t status = (uint16_t)status_err;
3327         uint8_t errors = (uint8_t)(status_err >> 24);
3328         skb->ip_summed = CHECKSUM_NONE;
3329
3330         /* 82543 or newer only */
3331         if(unlikely(adapter->hw.mac_type < e1000_82543)) return;
3332         /* Ignore Checksum bit is set */
3333         if(unlikely(status & E1000_RXD_STAT_IXSM)) return;
3334         /* TCP/UDP checksum error bit is set */
3335         if(unlikely(errors & E1000_RXD_ERR_TCPE)) {
3336                 /* let the stack verify checksum errors */
3337                 adapter->hw_csum_err++;
3338                 return;
3339         }
3340         /* TCP/UDP Checksum has not been calculated */
3341         if(adapter->hw.mac_type <= e1000_82547_rev_2) {
3342                 if(!(status & E1000_RXD_STAT_TCPCS))
3343                         return;
3344         } else {
3345                 if(!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3346                         return;
3347         }
3348         /* It must be a TCP or UDP packet with a valid checksum */
3349         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3350                 /* TCP checksum is good */
3351                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3352         } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
3353                 /* IP fragment with UDP payload */
3354                 /* Hardware complements the payload checksum, so we undo it
3355                  * and then put the value in host order for further stack use.
3356                  */
3357                 csum = ntohl(csum ^ 0xFFFF);
3358                 skb->csum = csum;
3359                 skb->ip_summed = CHECKSUM_HW;
3360         }
3361         adapter->hw_csum_good++;
3362 }
3363
3364 /**
3365  * e1000_clean_rx_irq - Send received data up the network stack; legacy
3366  * @adapter: board private structure
3367  **/
3368
3369 static boolean_t
3370 #ifdef CONFIG_E1000_NAPI
3371 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3372                    struct e1000_rx_ring *rx_ring,
3373                    int *work_done, int work_to_do)
3374 #else
3375 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3376                    struct e1000_rx_ring *rx_ring)
3377 #endif
3378 {
3379         struct net_device *netdev = adapter->netdev;
3380         struct pci_dev *pdev = adapter->pdev;
3381         struct e1000_rx_desc *rx_desc;
3382         struct e1000_buffer *buffer_info;
3383         struct sk_buff *skb;
3384         unsigned long flags;
3385         uint32_t length;
3386         uint8_t last_byte;
3387         unsigned int i;
3388         boolean_t cleaned = FALSE;
3389
3390         i = rx_ring->next_to_clean;
3391         rx_desc = E1000_RX_DESC(*rx_ring, i);
3392
3393         while(rx_desc->status & E1000_RXD_STAT_DD) {
3394                 buffer_info = &rx_ring->buffer_info[i];
3395 #ifdef CONFIG_E1000_NAPI
3396                 if(*work_done >= work_to_do)
3397                         break;
3398                 (*work_done)++;
3399 #endif
3400                 cleaned = TRUE;
3401
3402                 pci_unmap_single(pdev,
3403                                  buffer_info->dma,
3404                                  buffer_info->length,
3405                                  PCI_DMA_FROMDEVICE);
3406
3407                 skb = buffer_info->skb;
3408                 length = le16_to_cpu(rx_desc->length);
3409
3410                 if(unlikely(!(rx_desc->status & E1000_RXD_STAT_EOP))) {
3411                         /* All receives must fit into a single buffer */
3412                         E1000_DBG("%s: Receive packet consumed multiple"
3413                                   " buffers\n", netdev->name);
3414                         dev_kfree_skb_irq(skb);
3415                         goto next_desc;
3416                 }
3417
3418                 if(unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3419                         last_byte = *(skb->data + length - 1);
3420                         if(TBI_ACCEPT(&adapter->hw, rx_desc->status,
3421                                       rx_desc->errors, length, last_byte)) {
3422                                 spin_lock_irqsave(&adapter->stats_lock, flags);
3423                                 e1000_tbi_adjust_stats(&adapter->hw,
3424                                                        &adapter->stats,
3425                                                        length, skb->data);
3426                                 spin_unlock_irqrestore(&adapter->stats_lock,
3427                                                        flags);
3428                                 length--;
3429                         } else {
3430                                 dev_kfree_skb_irq(skb);
3431                                 goto next_desc;
3432                         }
3433                 }
3434
3435                 /* Good Receive */
3436                 skb_put(skb, length - ETHERNET_FCS_SIZE);
3437
3438                 /* Receive Checksum Offload */
3439                 e1000_rx_checksum(adapter,
3440                                   (uint32_t)(rx_desc->status) |
3441                                   ((uint32_t)(rx_desc->errors) << 24),
3442                                   rx_desc->csum, skb);
3443                 skb->protocol = eth_type_trans(skb, netdev);
3444 #ifdef CONFIG_E1000_NAPI
3445                 if(unlikely(adapter->vlgrp &&
3446                             (rx_desc->status & E1000_RXD_STAT_VP))) {
3447                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3448                                                  le16_to_cpu(rx_desc->special) &
3449                                                  E1000_RXD_SPC_VLAN_MASK);
3450                 } else {
3451                         netif_receive_skb(skb);
3452                 }
3453 #else /* CONFIG_E1000_NAPI */
3454                 if(unlikely(adapter->vlgrp &&
3455                             (rx_desc->status & E1000_RXD_STAT_VP))) {
3456                         vlan_hwaccel_rx(skb, adapter->vlgrp,
3457                                         le16_to_cpu(rx_desc->special) &
3458                                         E1000_RXD_SPC_VLAN_MASK);
3459                 } else {
3460                         netif_rx(skb);
3461                 }
3462 #endif /* CONFIG_E1000_NAPI */
3463                 netdev->last_rx = jiffies;
3464                 rx_ring->pkt++;
3465
3466 next_desc:
3467                 rx_desc->status = 0;
3468                 buffer_info->skb = NULL;
3469                 if(unlikely(++i == rx_ring->count)) i = 0;
3470
3471                 rx_desc = E1000_RX_DESC(*rx_ring, i);
3472         }
3473         rx_ring->next_to_clean = i;
3474         adapter->alloc_rx_buf(adapter, rx_ring);
3475
3476         return cleaned;
3477 }
3478
3479 /**
3480  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
3481  * @adapter: board private structure
3482  **/
3483
3484 static boolean_t
3485 #ifdef CONFIG_E1000_NAPI
3486 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3487                       struct e1000_rx_ring *rx_ring,
3488                       int *work_done, int work_to_do)
3489 #else
3490 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3491                       struct e1000_rx_ring *rx_ring)
3492 #endif
3493 {
3494         union e1000_rx_desc_packet_split *rx_desc;
3495         struct net_device *netdev = adapter->netdev;
3496         struct pci_dev *pdev = adapter->pdev;
3497         struct e1000_buffer *buffer_info;
3498         struct e1000_ps_page *ps_page;
3499         struct e1000_ps_page_dma *ps_page_dma;
3500         struct sk_buff *skb;
3501         unsigned int i, j;
3502         uint32_t length, staterr;
3503         boolean_t cleaned = FALSE;
3504
3505         i = rx_ring->next_to_clean;
3506         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3507         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3508
3509         while(staterr & E1000_RXD_STAT_DD) {
3510                 buffer_info = &rx_ring->buffer_info[i];
3511                 ps_page = &rx_ring->ps_page[i];
3512                 ps_page_dma = &rx_ring->ps_page_dma[i];
3513 #ifdef CONFIG_E1000_NAPI
3514                 if(unlikely(*work_done >= work_to_do))
3515                         break;
3516                 (*work_done)++;
3517 #endif
3518                 cleaned = TRUE;
3519                 pci_unmap_single(pdev, buffer_info->dma,
3520                                  buffer_info->length,
3521                                  PCI_DMA_FROMDEVICE);
3522
3523                 skb = buffer_info->skb;
3524
3525                 if(unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
3526                         E1000_DBG("%s: Packet Split buffers didn't pick up"
3527                                   " the full packet\n", netdev->name);
3528                         dev_kfree_skb_irq(skb);
3529                         goto next_desc;
3530                 }
3531
3532                 if(unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3533                         dev_kfree_skb_irq(skb);
3534                         goto next_desc;
3535                 }
3536
3537                 length = le16_to_cpu(rx_desc->wb.middle.length0);
3538
3539                 if(unlikely(!length)) {
3540                         E1000_DBG("%s: Last part of the packet spanning"
3541                                   " multiple descriptors\n", netdev->name);
3542                         dev_kfree_skb_irq(skb);
3543                         goto next_desc;
3544                 }
3545
3546                 /* Good Receive */
3547                 skb_put(skb, length);
3548
3549                 for(j = 0; j < adapter->rx_ps_pages; j++) {
3550                         if(!(length = le16_to_cpu(rx_desc->wb.upper.length[j])))
3551                                 break;
3552
3553                         pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
3554                                         PAGE_SIZE, PCI_DMA_FROMDEVICE);
3555                         ps_page_dma->ps_page_dma[j] = 0;
3556                         skb_shinfo(skb)->frags[j].page =
3557                                 ps_page->ps_page[j];
3558                         ps_page->ps_page[j] = NULL;
3559                         skb_shinfo(skb)->frags[j].page_offset = 0;
3560                         skb_shinfo(skb)->frags[j].size = length;
3561                         skb_shinfo(skb)->nr_frags++;
3562                         skb->len += length;
3563                         skb->data_len += length;
3564                 }
3565
3566                 e1000_rx_checksum(adapter, staterr,
3567                                   rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
3568                 skb->protocol = eth_type_trans(skb, netdev);
3569
3570                 if(likely(rx_desc->wb.upper.header_status &
3571                           E1000_RXDPS_HDRSTAT_HDRSP)) {
3572                         adapter->rx_hdr_split++;
3573 #ifdef HAVE_RX_ZERO_COPY
3574                         skb_shinfo(skb)->zero_copy = TRUE;
3575 #endif
3576                 }
3577 #ifdef CONFIG_E1000_NAPI
3578                 if(unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3579                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3580                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
3581                                 E1000_RXD_SPC_VLAN_MASK);
3582                 } else {
3583                         netif_receive_skb(skb);
3584                 }
3585 #else /* CONFIG_E1000_NAPI */
3586                 if(unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3587                         vlan_hwaccel_rx(skb, adapter->vlgrp,
3588                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
3589                                 E1000_RXD_SPC_VLAN_MASK);
3590                 } else {
3591                         netif_rx(skb);
3592                 }
3593 #endif /* CONFIG_E1000_NAPI */
3594                 netdev->last_rx = jiffies;
3595                 rx_ring->pkt++;
3596
3597 next_desc:
3598                 rx_desc->wb.middle.status_error &= ~0xFF;
3599                 buffer_info->skb = NULL;
3600                 if(unlikely(++i == rx_ring->count)) i = 0;
3601
3602                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3603                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3604         }
3605         rx_ring->next_to_clean = i;
3606         adapter->alloc_rx_buf(adapter, rx_ring);
3607
3608         return cleaned;
3609 }
3610
3611 /**
3612  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
3613  * @adapter: address of board private structure
3614  **/
3615
3616 static void
3617 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
3618                        struct e1000_rx_ring *rx_ring)
3619 {
3620         struct net_device *netdev = adapter->netdev;
3621         struct pci_dev *pdev = adapter->pdev;
3622         struct e1000_rx_desc *rx_desc;
3623         struct e1000_buffer *buffer_info;
3624         struct sk_buff *skb;
3625         unsigned int i;
3626         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
3627
3628         i = rx_ring->next_to_use;
3629         buffer_info = &rx_ring->buffer_info[i];
3630
3631         while(!buffer_info->skb) {
3632                 skb = dev_alloc_skb(bufsz);
3633
3634                 if(unlikely(!skb)) {
3635                         /* Better luck next round */
3636                         break;
3637                 }
3638
3639                 /* Fix for errata 23, can't cross 64kB boundary */
3640                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3641                         struct sk_buff *oldskb = skb;
3642                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
3643                                              "at %p\n", bufsz, skb->data);
3644                         /* Try again, without freeing the previous */
3645                         skb = dev_alloc_skb(bufsz);
3646                         /* Failed allocation, critical failure */
3647                         if (!skb) {
3648                                 dev_kfree_skb(oldskb);
3649                                 break;
3650                         }
3651
3652                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3653                                 /* give up */
3654                                 dev_kfree_skb(skb);
3655                                 dev_kfree_skb(oldskb);
3656                                 break; /* while !buffer_info->skb */
3657                         } else {
3658                                 /* Use new allocation */
3659                                 dev_kfree_skb(oldskb);
3660                         }
3661                 }
3662                 /* Make buffer alignment 2 beyond a 16 byte boundary
3663                  * this will result in a 16 byte aligned IP header after
3664                  * the 14 byte MAC header is removed
3665                  */
3666                 skb_reserve(skb, NET_IP_ALIGN);
3667
3668                 skb->dev = netdev;
3669
3670                 buffer_info->skb = skb;
3671                 buffer_info->length = adapter->rx_buffer_len;
3672                 buffer_info->dma = pci_map_single(pdev,
3673                                                   skb->data,
3674                                                   adapter->rx_buffer_len,
3675                                                   PCI_DMA_FROMDEVICE);
3676
3677                 /* Fix for errata 23, can't cross 64kB boundary */
3678                 if (!e1000_check_64k_bound(adapter,
3679                                         (void *)(unsigned long)buffer_info->dma,
3680                                         adapter->rx_buffer_len)) {
3681                         DPRINTK(RX_ERR, ERR,
3682                                 "dma align check failed: %u bytes at %p\n",
3683                                 adapter->rx_buffer_len,
3684                                 (void *)(unsigned long)buffer_info->dma);
3685                         dev_kfree_skb(skb);
3686                         buffer_info->skb = NULL;
3687
3688                         pci_unmap_single(pdev, buffer_info->dma,
3689                                          adapter->rx_buffer_len,
3690                                          PCI_DMA_FROMDEVICE);
3691
3692                         break; /* while !buffer_info->skb */
3693                 }
3694                 rx_desc = E1000_RX_DESC(*rx_ring, i);
3695                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3696
3697                 if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) {
3698                         /* Force memory writes to complete before letting h/w
3699                          * know there are new descriptors to fetch.  (Only
3700                          * applicable for weak-ordered memory model archs,
3701                          * such as IA-64). */
3702                         wmb();
3703                         writel(i, adapter->hw.hw_addr + rx_ring->rdt);
3704                 }
3705
3706                 if(unlikely(++i == rx_ring->count)) i = 0;
3707                 buffer_info = &rx_ring->buffer_info[i];
3708         }
3709
3710         rx_ring->next_to_use = i;
3711 }
3712
3713 /**
3714  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
3715  * @adapter: address of board private structure
3716  **/
3717
3718 static void
3719 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
3720                           struct e1000_rx_ring *rx_ring)
3721 {
3722         struct net_device *netdev = adapter->netdev;
3723         struct pci_dev *pdev = adapter->pdev;
3724         union e1000_rx_desc_packet_split *rx_desc;
3725         struct e1000_buffer *buffer_info;
3726         struct e1000_ps_page *ps_page;
3727         struct e1000_ps_page_dma *ps_page_dma;
3728         struct sk_buff *skb;
3729         unsigned int i, j;
3730
3731         i = rx_ring->next_to_use;
3732         buffer_info = &rx_ring->buffer_info[i];
3733         ps_page = &rx_ring->ps_page[i];
3734         ps_page_dma = &rx_ring->ps_page_dma[i];
3735
3736         while(!buffer_info->skb) {
3737                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3738
3739                 for(j = 0; j < PS_PAGE_BUFFERS; j++) {
3740                         if (j < adapter->rx_ps_pages) {
3741                                 if (likely(!ps_page->ps_page[j])) {
3742                                         ps_page->ps_page[j] =
3743                                                 alloc_page(GFP_ATOMIC);
3744                                         if (unlikely(!ps_page->ps_page[j]))
3745                                                 goto no_buffers;
3746                                         ps_page_dma->ps_page_dma[j] =
3747                                                 pci_map_page(pdev,
3748                                                             ps_page->ps_page[j],
3749                                                             0, PAGE_SIZE,
3750                                                             PCI_DMA_FROMDEVICE);
3751                                 }
3752                                 /* Refresh the desc even if buffer_addrs didn't
3753                                  * change because each write-back erases 
3754                                  * this info.
3755                                  */
3756                                 rx_desc->read.buffer_addr[j+1] =
3757                                      cpu_to_le64(ps_page_dma->ps_page_dma[j]);
3758                         } else
3759                                 rx_desc->read.buffer_addr[j+1] = ~0;
3760                 }
3761
3762                 skb = dev_alloc_skb(adapter->rx_ps_bsize0 + NET_IP_ALIGN);
3763
3764                 if(unlikely(!skb))
3765                         break;
3766
3767                 /* Make buffer alignment 2 beyond a 16 byte boundary
3768                  * this will result in a 16 byte aligned IP header after
3769                  * the 14 byte MAC header is removed
3770                  */
3771                 skb_reserve(skb, NET_IP_ALIGN);
3772
3773                 skb->dev = netdev;
3774
3775                 buffer_info->skb = skb;
3776                 buffer_info->length = adapter->rx_ps_bsize0;
3777                 buffer_info->dma = pci_map_single(pdev, skb->data,
3778                                                   adapter->rx_ps_bsize0,
3779                                                   PCI_DMA_FROMDEVICE);
3780
3781                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
3782
3783                 if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) {
3784                         /* Force memory writes to complete before letting h/w
3785                          * know there are new descriptors to fetch.  (Only
3786                          * applicable for weak-ordered memory model archs,
3787                          * such as IA-64). */
3788                         wmb();
3789                         /* Hardware increments by 16 bytes, but packet split
3790                          * descriptors are 32 bytes...so we increment tail
3791                          * twice as much.
3792                          */
3793                         writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
3794                 }
3795
3796                 if(unlikely(++i == rx_ring->count)) i = 0;
3797                 buffer_info = &rx_ring->buffer_info[i];
3798                 ps_page = &rx_ring->ps_page[i];
3799                 ps_page_dma = &rx_ring->ps_page_dma[i];
3800         }
3801
3802 no_buffers:
3803         rx_ring->next_to_use = i;
3804 }
3805
3806 /**
3807  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
3808  * @adapter:
3809  **/
3810
3811 static void
3812 e1000_smartspeed(struct e1000_adapter *adapter)
3813 {
3814         uint16_t phy_status;
3815         uint16_t phy_ctrl;
3816
3817         if((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
3818            !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
3819                 return;
3820
3821         if(adapter->smartspeed == 0) {
3822                 /* If Master/Slave config fault is asserted twice,
3823                  * we assume back-to-back */
3824                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
3825                 if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
3826                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
3827                 if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
3828                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
3829                 if(phy_ctrl & CR_1000T_MS_ENABLE) {
3830                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
3831                         e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
3832                                             phy_ctrl);
3833                         adapter->smartspeed++;
3834                         if(!e1000_phy_setup_autoneg(&adapter->hw) &&
3835                            !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
3836                                                &phy_ctrl)) {
3837                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
3838                                              MII_CR_RESTART_AUTO_NEG);
3839                                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
3840                                                     phy_ctrl);
3841                         }
3842                 }
3843                 return;
3844         } else if(adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
3845                 /* If still no link, perhaps using 2/3 pair cable */
3846                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
3847                 phy_ctrl |= CR_1000T_MS_ENABLE;
3848                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
3849                 if(!e1000_phy_setup_autoneg(&adapter->hw) &&
3850                    !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
3851                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
3852                                      MII_CR_RESTART_AUTO_NEG);
3853                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
3854                 }
3855         }
3856         /* Restart process after E1000_SMARTSPEED_MAX iterations */
3857         if(adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
3858                 adapter->smartspeed = 0;
3859 }
3860
3861 /**
3862  * e1000_ioctl -
3863  * @netdev:
3864  * @ifreq:
3865  * @cmd:
3866  **/
3867
3868 static int
3869 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3870 {
3871         switch (cmd) {
3872         case SIOCGMIIPHY:
3873         case SIOCGMIIREG:
3874         case SIOCSMIIREG:
3875                 return e1000_mii_ioctl(netdev, ifr, cmd);
3876         default:
3877                 return -EOPNOTSUPP;
3878         }
3879 }
3880
3881 /**
3882  * e1000_mii_ioctl -
3883  * @netdev:
3884  * @ifreq:
3885  * @cmd:
3886  **/
3887
3888 static int
3889 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3890 {
3891         struct e1000_adapter *adapter = netdev_priv(netdev);
3892         struct mii_ioctl_data *data = if_mii(ifr);
3893         int retval;
3894         uint16_t mii_reg;
3895         uint16_t spddplx;
3896         unsigned long flags;
3897
3898         if(adapter->hw.media_type != e1000_media_type_copper)
3899                 return -EOPNOTSUPP;
3900
3901         switch (cmd) {
3902         case SIOCGMIIPHY:
3903                 data->phy_id = adapter->hw.phy_addr;
3904                 break;
3905         case SIOCGMIIREG:
3906                 if(!capable(CAP_NET_ADMIN))
3907                         return -EPERM;
3908                 spin_lock_irqsave(&adapter->stats_lock, flags);
3909                 if(e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
3910                                    &data->val_out)) {
3911                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3912                         return -EIO;
3913                 }
3914                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3915                 break;
3916         case SIOCSMIIREG:
3917                 if(!capable(CAP_NET_ADMIN))
3918                         return -EPERM;
3919                 if(data->reg_num & ~(0x1F))
3920                         return -EFAULT;
3921                 mii_reg = data->val_in;
3922                 spin_lock_irqsave(&adapter->stats_lock, flags);
3923                 if(e1000_write_phy_reg(&adapter->hw, data->reg_num,
3924                                         mii_reg)) {
3925                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3926                         return -EIO;
3927                 }
3928                 if(adapter->hw.phy_type == e1000_phy_m88) {
3929                         switch (data->reg_num) {
3930                         case PHY_CTRL:
3931                                 if(mii_reg & MII_CR_POWER_DOWN)
3932                                         break;
3933                                 if(mii_reg & MII_CR_AUTO_NEG_EN) {
3934                                         adapter->hw.autoneg = 1;
3935                                         adapter->hw.autoneg_advertised = 0x2F;
3936                                 } else {
3937                                         if (mii_reg & 0x40)
3938                                                 spddplx = SPEED_1000;
3939                                         else if (mii_reg & 0x2000)
3940                                                 spddplx = SPEED_100;
3941                                         else
3942                                                 spddplx = SPEED_10;
3943                                         spddplx += (mii_reg & 0x100)
3944                                                    ? FULL_DUPLEX :
3945                                                    HALF_DUPLEX;
3946                                         retval = e1000_set_spd_dplx(adapter,
3947                                                                     spddplx);
3948                                         if(retval) {
3949                                                 spin_unlock_irqrestore(
3950                                                         &adapter->stats_lock, 
3951                                                         flags);
3952                                                 return retval;
3953                                         }
3954                                 }
3955                                 if(netif_running(adapter->netdev)) {
3956                                         e1000_down(adapter);
3957                                         e1000_up(adapter);
3958                                 } else
3959                                         e1000_reset(adapter);
3960                                 break;
3961                         case M88E1000_PHY_SPEC_CTRL:
3962                         case M88E1000_EXT_PHY_SPEC_CTRL:
3963                                 if(e1000_phy_reset(&adapter->hw)) {
3964                                         spin_unlock_irqrestore(
3965                                                 &adapter->stats_lock, flags);
3966                                         return -EIO;
3967                                 }
3968                                 break;
3969                         }
3970                 } else {
3971                         switch (data->reg_num) {
3972                         case PHY_CTRL:
3973                                 if(mii_reg & MII_CR_POWER_DOWN)
3974                                         break;
3975                                 if(netif_running(adapter->netdev)) {
3976                                         e1000_down(adapter);
3977                                         e1000_up(adapter);
3978                                 } else
3979                                         e1000_reset(adapter);
3980                                 break;
3981                         }
3982                 }
3983                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3984                 break;
3985         default:
3986                 return -EOPNOTSUPP;
3987         }
3988         return E1000_SUCCESS;
3989 }
3990
3991 void
3992 e1000_pci_set_mwi(struct e1000_hw *hw)
3993 {
3994         struct e1000_adapter *adapter = hw->back;
3995         int ret_val = pci_set_mwi(adapter->pdev);
3996
3997         if(ret_val)
3998                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
3999 }
4000
4001 void
4002 e1000_pci_clear_mwi(struct e1000_hw *hw)
4003 {
4004         struct e1000_adapter *adapter = hw->back;
4005
4006         pci_clear_mwi(adapter->pdev);
4007 }
4008
4009 void
4010 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4011 {
4012         struct e1000_adapter *adapter = hw->back;
4013
4014         pci_read_config_word(adapter->pdev, reg, value);
4015 }
4016
4017 void
4018 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4019 {
4020         struct e1000_adapter *adapter = hw->back;
4021
4022         pci_write_config_word(adapter->pdev, reg, *value);
4023 }
4024
4025 uint32_t
4026 e1000_io_read(struct e1000_hw *hw, unsigned long port)
4027 {
4028         return inl(port);
4029 }
4030
4031 void
4032 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4033 {
4034         outl(value, port);
4035 }
4036
4037 static void
4038 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4039 {
4040         struct e1000_adapter *adapter = netdev_priv(netdev);
4041         uint32_t ctrl, rctl;
4042
4043         e1000_irq_disable(adapter);
4044         adapter->vlgrp = grp;
4045
4046         if(grp) {
4047                 /* enable VLAN tag insert/strip */
4048                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4049                 ctrl |= E1000_CTRL_VME;
4050                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4051
4052                 /* enable VLAN receive filtering */
4053                 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4054                 rctl |= E1000_RCTL_VFE;
4055                 rctl &= ~E1000_RCTL_CFIEN;
4056                 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4057                 e1000_update_mng_vlan(adapter);
4058         } else {
4059                 /* disable VLAN tag insert/strip */
4060                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4061                 ctrl &= ~E1000_CTRL_VME;
4062                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4063
4064                 /* disable VLAN filtering */
4065                 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4066                 rctl &= ~E1000_RCTL_VFE;
4067                 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4068                 if(adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) {
4069                         e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4070                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4071                 }
4072         }
4073
4074         e1000_irq_enable(adapter);
4075 }
4076
4077 static void
4078 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4079 {
4080         struct e1000_adapter *adapter = netdev_priv(netdev);
4081         uint32_t vfta, index;
4082         if((adapter->hw.mng_cookie.status &
4083                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4084                 (vid == adapter->mng_vlan_id))
4085                 return;
4086         /* add VID to filter table */
4087         index = (vid >> 5) & 0x7F;
4088         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4089         vfta |= (1 << (vid & 0x1F));
4090         e1000_write_vfta(&adapter->hw, index, vfta);
4091 }
4092
4093 static void
4094 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
4095 {
4096         struct e1000_adapter *adapter = netdev_priv(netdev);
4097         uint32_t vfta, index;
4098
4099         e1000_irq_disable(adapter);
4100
4101         if(adapter->vlgrp)
4102                 adapter->vlgrp->vlan_devices[vid] = NULL;
4103
4104         e1000_irq_enable(adapter);
4105
4106         if((adapter->hw.mng_cookie.status &
4107                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4108                 (vid == adapter->mng_vlan_id))
4109                 return;
4110         /* remove VID from filter table */
4111         index = (vid >> 5) & 0x7F;
4112         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4113         vfta &= ~(1 << (vid & 0x1F));
4114         e1000_write_vfta(&adapter->hw, index, vfta);
4115 }
4116
4117 static void
4118 e1000_restore_vlan(struct e1000_adapter *adapter)
4119 {
4120         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4121
4122         if(adapter->vlgrp) {
4123                 uint16_t vid;
4124                 for(vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4125                         if(!adapter->vlgrp->vlan_devices[vid])
4126                                 continue;
4127                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
4128                 }
4129         }
4130 }
4131
4132 int
4133 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
4134 {
4135         adapter->hw.autoneg = 0;
4136
4137         /* Fiber NICs only allow 1000 gbps Full duplex */
4138         if((adapter->hw.media_type == e1000_media_type_fiber) &&
4139                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4140                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4141                 return -EINVAL;
4142         }
4143
4144         switch(spddplx) {
4145         case SPEED_10 + DUPLEX_HALF:
4146                 adapter->hw.forced_speed_duplex = e1000_10_half;
4147                 break;
4148         case SPEED_10 + DUPLEX_FULL:
4149                 adapter->hw.forced_speed_duplex = e1000_10_full;
4150                 break;
4151         case SPEED_100 + DUPLEX_HALF:
4152                 adapter->hw.forced_speed_duplex = e1000_100_half;
4153                 break;
4154         case SPEED_100 + DUPLEX_FULL:
4155                 adapter->hw.forced_speed_duplex = e1000_100_full;
4156                 break;
4157         case SPEED_1000 + DUPLEX_FULL:
4158                 adapter->hw.autoneg = 1;
4159                 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
4160                 break;
4161         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4162         default:
4163                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4164                 return -EINVAL;
4165         }
4166         return 0;
4167 }
4168
4169 #ifdef CONFIG_PM
4170 static int
4171 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4172 {
4173         struct net_device *netdev = pci_get_drvdata(pdev);
4174         struct e1000_adapter *adapter = netdev_priv(netdev);
4175         uint32_t ctrl, ctrl_ext, rctl, manc, status, swsm;
4176         uint32_t wufc = adapter->wol;
4177
4178         netif_device_detach(netdev);
4179
4180         if(netif_running(netdev))
4181                 e1000_down(adapter);
4182
4183         status = E1000_READ_REG(&adapter->hw, STATUS);
4184         if(status & E1000_STATUS_LU)
4185                 wufc &= ~E1000_WUFC_LNKC;
4186
4187         if(wufc) {
4188                 e1000_setup_rctl(adapter);
4189                 e1000_set_multi(netdev);
4190
4191                 /* turn on all-multi mode if wake on multicast is enabled */
4192                 if(adapter->wol & E1000_WUFC_MC) {
4193                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4194                         rctl |= E1000_RCTL_MPE;
4195                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4196                 }
4197
4198                 if(adapter->hw.mac_type >= e1000_82540) {
4199                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4200                         /* advertise wake from D3Cold */
4201                         #define E1000_CTRL_ADVD3WUC 0x00100000
4202                         /* phy power management enable */
4203                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4204                         ctrl |= E1000_CTRL_ADVD3WUC |
4205                                 E1000_CTRL_EN_PHY_PWR_MGMT;
4206                         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4207                 }
4208
4209                 if(adapter->hw.media_type == e1000_media_type_fiber ||
4210                    adapter->hw.media_type == e1000_media_type_internal_serdes) {
4211                         /* keep the laser running in D3 */
4212                         ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
4213                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4214                         E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
4215                 }
4216
4217                 /* Allow time for pending master requests to run */
4218                 e1000_disable_pciex_master(&adapter->hw);
4219
4220                 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
4221                 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
4222                 pci_enable_wake(pdev, 3, 1);
4223                 pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
4224         } else {
4225                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
4226                 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
4227                 pci_enable_wake(pdev, 3, 0);
4228                 pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
4229         }
4230
4231         pci_save_state(pdev);
4232
4233         if(adapter->hw.mac_type >= e1000_82540 &&
4234            adapter->hw.media_type == e1000_media_type_copper) {
4235                 manc = E1000_READ_REG(&adapter->hw, MANC);
4236                 if(manc & E1000_MANC_SMBUS_EN) {
4237                         manc |= E1000_MANC_ARP_EN;
4238                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
4239                         pci_enable_wake(pdev, 3, 1);
4240                         pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
4241                 }
4242         }
4243
4244         switch(adapter->hw.mac_type) {
4245         case e1000_82571:
4246         case e1000_82572:
4247                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
4248                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
4249                                 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
4250                 break;
4251         case e1000_82573:
4252                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
4253                 E1000_WRITE_REG(&adapter->hw, SWSM,
4254                                 swsm & ~E1000_SWSM_DRV_LOAD);
4255                 break;
4256         default:
4257                 break;
4258         }
4259
4260         pci_disable_device(pdev);
4261         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4262
4263         return 0;
4264 }
4265
4266 static int
4267 e1000_resume(struct pci_dev *pdev)
4268 {
4269         struct net_device *netdev = pci_get_drvdata(pdev);
4270         struct e1000_adapter *adapter = netdev_priv(netdev);
4271         uint32_t manc, ret_val, swsm;
4272         uint32_t ctrl_ext;
4273
4274         pci_set_power_state(pdev, PCI_D0);
4275         pci_restore_state(pdev);
4276         ret_val = pci_enable_device(pdev);
4277         pci_set_master(pdev);
4278
4279         pci_enable_wake(pdev, PCI_D3hot, 0);
4280         pci_enable_wake(pdev, PCI_D3cold, 0);
4281
4282         e1000_reset(adapter);
4283         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4284
4285         if(netif_running(netdev))
4286                 e1000_up(adapter);
4287
4288         netif_device_attach(netdev);
4289
4290         if(adapter->hw.mac_type >= e1000_82540 &&
4291            adapter->hw.media_type == e1000_media_type_copper) {
4292                 manc = E1000_READ_REG(&adapter->hw, MANC);
4293                 manc &= ~(E1000_MANC_ARP_EN);
4294                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4295         }
4296
4297         switch(adapter->hw.mac_type) {
4298         case e1000_82571:
4299         case e1000_82572:
4300                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
4301                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
4302                                 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
4303                 break;
4304         case e1000_82573:
4305                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
4306                 E1000_WRITE_REG(&adapter->hw, SWSM,
4307                                 swsm | E1000_SWSM_DRV_LOAD);
4308                 break;
4309         default:
4310                 break;
4311         }
4312
4313         return 0;
4314 }
4315 #endif
4316 #ifdef CONFIG_NET_POLL_CONTROLLER
4317 /*
4318  * Polling 'interrupt' - used by things like netconsole to send skbs
4319  * without having to re-enable interrupts. It's not called while
4320  * the interrupt routine is executing.
4321  */
4322 static void
4323 e1000_netpoll(struct net_device *netdev)
4324 {
4325         struct e1000_adapter *adapter = netdev_priv(netdev);
4326         disable_irq(adapter->pdev->irq);
4327         e1000_intr(adapter->pdev->irq, netdev, NULL);
4328         e1000_clean_tx_irq(adapter, adapter->tx_ring);
4329         enable_irq(adapter->pdev->irq);
4330 }
4331 #endif
4332
4333 /* e1000_main.c */