]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/e1000/e1000_main.c
Mostly revert "e1000/e1000e: Move PCI-Express device IDs over to e1000e"
[linux-2.6-omap-h63xx.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #ifndef CONFIG_E1000_NAPI
35 #define DRIVERNAPI
36 #else
37 #define DRIVERNAPI "-NAPI"
38 #endif
39 #define DRV_VERSION "7.3.20-k2"DRIVERNAPI
40 const char e1000_driver_version[] = DRV_VERSION;
41 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
42
43 /* e1000_pci_tbl - PCI Device ID Table
44  *
45  * Last entry must be all 0s
46  *
47  * Macro expands to...
48  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
49  */
50 static struct pci_device_id e1000_pci_tbl[] = {
51         INTEL_E1000_ETHERNET_DEVICE(0x1000),
52         INTEL_E1000_ETHERNET_DEVICE(0x1001),
53         INTEL_E1000_ETHERNET_DEVICE(0x1004),
54         INTEL_E1000_ETHERNET_DEVICE(0x1008),
55         INTEL_E1000_ETHERNET_DEVICE(0x1009),
56         INTEL_E1000_ETHERNET_DEVICE(0x100C),
57         INTEL_E1000_ETHERNET_DEVICE(0x100D),
58         INTEL_E1000_ETHERNET_DEVICE(0x100E),
59         INTEL_E1000_ETHERNET_DEVICE(0x100F),
60         INTEL_E1000_ETHERNET_DEVICE(0x1010),
61         INTEL_E1000_ETHERNET_DEVICE(0x1011),
62         INTEL_E1000_ETHERNET_DEVICE(0x1012),
63         INTEL_E1000_ETHERNET_DEVICE(0x1013),
64         INTEL_E1000_ETHERNET_DEVICE(0x1014),
65         INTEL_E1000_ETHERNET_DEVICE(0x1015),
66         INTEL_E1000_ETHERNET_DEVICE(0x1016),
67         INTEL_E1000_ETHERNET_DEVICE(0x1017),
68         INTEL_E1000_ETHERNET_DEVICE(0x1018),
69         INTEL_E1000_ETHERNET_DEVICE(0x1019),
70         INTEL_E1000_ETHERNET_DEVICE(0x101A),
71         INTEL_E1000_ETHERNET_DEVICE(0x101D),
72         INTEL_E1000_ETHERNET_DEVICE(0x101E),
73         INTEL_E1000_ETHERNET_DEVICE(0x1026),
74         INTEL_E1000_ETHERNET_DEVICE(0x1027),
75         INTEL_E1000_ETHERNET_DEVICE(0x1028),
76         INTEL_E1000_ETHERNET_DEVICE(0x1049),
77         INTEL_E1000_ETHERNET_DEVICE(0x104A),
78         INTEL_E1000_ETHERNET_DEVICE(0x104B),
79         INTEL_E1000_ETHERNET_DEVICE(0x104C),
80         INTEL_E1000_ETHERNET_DEVICE(0x104D),
81         INTEL_E1000_ETHERNET_DEVICE(0x105E),
82         INTEL_E1000_ETHERNET_DEVICE(0x105F),
83         INTEL_E1000_ETHERNET_DEVICE(0x1060),
84         INTEL_E1000_ETHERNET_DEVICE(0x1075),
85         INTEL_E1000_ETHERNET_DEVICE(0x1076),
86         INTEL_E1000_ETHERNET_DEVICE(0x1077),
87         INTEL_E1000_ETHERNET_DEVICE(0x1078),
88         INTEL_E1000_ETHERNET_DEVICE(0x1079),
89         INTEL_E1000_ETHERNET_DEVICE(0x107A),
90         INTEL_E1000_ETHERNET_DEVICE(0x107B),
91         INTEL_E1000_ETHERNET_DEVICE(0x107C),
92         INTEL_E1000_ETHERNET_DEVICE(0x107D),
93         INTEL_E1000_ETHERNET_DEVICE(0x107E),
94         INTEL_E1000_ETHERNET_DEVICE(0x107F),
95         INTEL_E1000_ETHERNET_DEVICE(0x108A),
96         INTEL_E1000_ETHERNET_DEVICE(0x108B),
97         INTEL_E1000_ETHERNET_DEVICE(0x108C),
98         INTEL_E1000_ETHERNET_DEVICE(0x1096),
99         INTEL_E1000_ETHERNET_DEVICE(0x1098),
100         INTEL_E1000_ETHERNET_DEVICE(0x1099),
101         INTEL_E1000_ETHERNET_DEVICE(0x109A),
102         INTEL_E1000_ETHERNET_DEVICE(0x10A4),
103         INTEL_E1000_ETHERNET_DEVICE(0x10A5),
104         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
105         INTEL_E1000_ETHERNET_DEVICE(0x10B9),
106         INTEL_E1000_ETHERNET_DEVICE(0x10BA),
107         INTEL_E1000_ETHERNET_DEVICE(0x10BB),
108         INTEL_E1000_ETHERNET_DEVICE(0x10BC),
109         INTEL_E1000_ETHERNET_DEVICE(0x10C4),
110         INTEL_E1000_ETHERNET_DEVICE(0x10C5),
111         INTEL_E1000_ETHERNET_DEVICE(0x10D5),
112         INTEL_E1000_ETHERNET_DEVICE(0x10D9),
113         INTEL_E1000_ETHERNET_DEVICE(0x10DA),
114         /* required last entry */
115         {0,}
116 };
117
118 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
119
120 int e1000_up(struct e1000_adapter *adapter);
121 void e1000_down(struct e1000_adapter *adapter);
122 void e1000_reinit_locked(struct e1000_adapter *adapter);
123 void e1000_reset(struct e1000_adapter *adapter);
124 int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
125 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
126 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
127 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
128 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
129 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
130                              struct e1000_tx_ring *txdr);
131 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
132                              struct e1000_rx_ring *rxdr);
133 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
134                              struct e1000_tx_ring *tx_ring);
135 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
136                              struct e1000_rx_ring *rx_ring);
137 void e1000_update_stats(struct e1000_adapter *adapter);
138
139 static int e1000_init_module(void);
140 static void e1000_exit_module(void);
141 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
142 static void __devexit e1000_remove(struct pci_dev *pdev);
143 static int e1000_alloc_queues(struct e1000_adapter *adapter);
144 static int e1000_sw_init(struct e1000_adapter *adapter);
145 static int e1000_open(struct net_device *netdev);
146 static int e1000_close(struct net_device *netdev);
147 static void e1000_configure_tx(struct e1000_adapter *adapter);
148 static void e1000_configure_rx(struct e1000_adapter *adapter);
149 static void e1000_setup_rctl(struct e1000_adapter *adapter);
150 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
151 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
152 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
153                                 struct e1000_tx_ring *tx_ring);
154 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
155                                 struct e1000_rx_ring *rx_ring);
156 static void e1000_set_rx_mode(struct net_device *netdev);
157 static void e1000_update_phy_info(unsigned long data);
158 static void e1000_watchdog(unsigned long data);
159 static void e1000_82547_tx_fifo_stall(unsigned long data);
160 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
161 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
162 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
163 static int e1000_set_mac(struct net_device *netdev, void *p);
164 static irqreturn_t e1000_intr(int irq, void *data);
165 static irqreturn_t e1000_intr_msi(int irq, void *data);
166 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
167                                     struct e1000_tx_ring *tx_ring);
168 #ifdef CONFIG_E1000_NAPI
169 static int e1000_clean(struct napi_struct *napi, int budget);
170 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
171                                     struct e1000_rx_ring *rx_ring,
172                                     int *work_done, int work_to_do);
173 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
174                                        struct e1000_rx_ring *rx_ring,
175                                        int *work_done, int work_to_do);
176 #else
177 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
178                                     struct e1000_rx_ring *rx_ring);
179 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
180                                        struct e1000_rx_ring *rx_ring);
181 #endif
182 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
183                                    struct e1000_rx_ring *rx_ring,
184                                    int cleaned_count);
185 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
186                                       struct e1000_rx_ring *rx_ring,
187                                       int cleaned_count);
188 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
189 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
190                            int cmd);
191 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
192 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
193 static void e1000_tx_timeout(struct net_device *dev);
194 static void e1000_reset_task(struct work_struct *work);
195 static void e1000_smartspeed(struct e1000_adapter *adapter);
196 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
197                                        struct sk_buff *skb);
198
199 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
200 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
201 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
202 static void e1000_restore_vlan(struct e1000_adapter *adapter);
203
204 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
205 #ifdef CONFIG_PM
206 static int e1000_resume(struct pci_dev *pdev);
207 #endif
208 static void e1000_shutdown(struct pci_dev *pdev);
209
210 #ifdef CONFIG_NET_POLL_CONTROLLER
211 /* for netdump / net console */
212 static void e1000_netpoll (struct net_device *netdev);
213 #endif
214
215 #define COPYBREAK_DEFAULT 256
216 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
217 module_param(copybreak, uint, 0644);
218 MODULE_PARM_DESC(copybreak,
219         "Maximum size of packet that is copied to a new buffer on receive");
220
221 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
222                      pci_channel_state_t state);
223 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
224 static void e1000_io_resume(struct pci_dev *pdev);
225
226 static struct pci_error_handlers e1000_err_handler = {
227         .error_detected = e1000_io_error_detected,
228         .slot_reset = e1000_io_slot_reset,
229         .resume = e1000_io_resume,
230 };
231
232 static struct pci_driver e1000_driver = {
233         .name     = e1000_driver_name,
234         .id_table = e1000_pci_tbl,
235         .probe    = e1000_probe,
236         .remove   = __devexit_p(e1000_remove),
237 #ifdef CONFIG_PM
238         /* Power Managment Hooks */
239         .suspend  = e1000_suspend,
240         .resume   = e1000_resume,
241 #endif
242         .shutdown = e1000_shutdown,
243         .err_handler = &e1000_err_handler
244 };
245
246 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
247 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
248 MODULE_LICENSE("GPL");
249 MODULE_VERSION(DRV_VERSION);
250
251 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
252 module_param(debug, int, 0);
253 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
254
255 /**
256  * e1000_init_module - Driver Registration Routine
257  *
258  * e1000_init_module is the first routine called when the driver is
259  * loaded. All it does is register with the PCI subsystem.
260  **/
261
262 static int __init
263 e1000_init_module(void)
264 {
265         int ret;
266         printk(KERN_INFO "%s - version %s\n",
267                e1000_driver_string, e1000_driver_version);
268
269         printk(KERN_INFO "%s\n", e1000_copyright);
270
271         ret = pci_register_driver(&e1000_driver);
272         if (copybreak != COPYBREAK_DEFAULT) {
273                 if (copybreak == 0)
274                         printk(KERN_INFO "e1000: copybreak disabled\n");
275                 else
276                         printk(KERN_INFO "e1000: copybreak enabled for "
277                                "packets <= %u bytes\n", copybreak);
278         }
279         return ret;
280 }
281
282 module_init(e1000_init_module);
283
284 /**
285  * e1000_exit_module - Driver Exit Cleanup Routine
286  *
287  * e1000_exit_module is called just before the driver is removed
288  * from memory.
289  **/
290
291 static void __exit
292 e1000_exit_module(void)
293 {
294         pci_unregister_driver(&e1000_driver);
295 }
296
297 module_exit(e1000_exit_module);
298
299 static int e1000_request_irq(struct e1000_adapter *adapter)
300 {
301         struct net_device *netdev = adapter->netdev;
302         irq_handler_t handler = e1000_intr;
303         int irq_flags = IRQF_SHARED;
304         int err;
305
306         if (adapter->hw.mac_type >= e1000_82571) {
307                 adapter->have_msi = !pci_enable_msi(adapter->pdev);
308                 if (adapter->have_msi) {
309                         handler = e1000_intr_msi;
310                         irq_flags = 0;
311                 }
312         }
313
314         err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
315                           netdev);
316         if (err) {
317                 if (adapter->have_msi)
318                         pci_disable_msi(adapter->pdev);
319                 DPRINTK(PROBE, ERR,
320                         "Unable to allocate interrupt Error: %d\n", err);
321         }
322
323         return err;
324 }
325
326 static void e1000_free_irq(struct e1000_adapter *adapter)
327 {
328         struct net_device *netdev = adapter->netdev;
329
330         free_irq(adapter->pdev->irq, netdev);
331
332         if (adapter->have_msi)
333                 pci_disable_msi(adapter->pdev);
334 }
335
336 /**
337  * e1000_irq_disable - Mask off interrupt generation on the NIC
338  * @adapter: board private structure
339  **/
340
341 static void
342 e1000_irq_disable(struct e1000_adapter *adapter)
343 {
344         atomic_inc(&adapter->irq_sem);
345         E1000_WRITE_REG(&adapter->hw, IMC, ~0);
346         E1000_WRITE_FLUSH(&adapter->hw);
347         synchronize_irq(adapter->pdev->irq);
348 }
349
350 /**
351  * e1000_irq_enable - Enable default interrupt generation settings
352  * @adapter: board private structure
353  **/
354
355 static void
356 e1000_irq_enable(struct e1000_adapter *adapter)
357 {
358         if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
359                 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
360                 E1000_WRITE_FLUSH(&adapter->hw);
361         }
362 }
363
364 static void
365 e1000_update_mng_vlan(struct e1000_adapter *adapter)
366 {
367         struct net_device *netdev = adapter->netdev;
368         uint16_t vid = adapter->hw.mng_cookie.vlan_id;
369         uint16_t old_vid = adapter->mng_vlan_id;
370         if (adapter->vlgrp) {
371                 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
372                         if (adapter->hw.mng_cookie.status &
373                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
374                                 e1000_vlan_rx_add_vid(netdev, vid);
375                                 adapter->mng_vlan_id = vid;
376                         } else
377                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
378
379                         if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
380                                         (vid != old_vid) &&
381                             !vlan_group_get_device(adapter->vlgrp, old_vid))
382                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
383                 } else
384                         adapter->mng_vlan_id = vid;
385         }
386 }
387
388 /**
389  * e1000_release_hw_control - release control of the h/w to f/w
390  * @adapter: address of board private structure
391  *
392  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
393  * For ASF and Pass Through versions of f/w this means that the
394  * driver is no longer loaded. For AMT version (only with 82573) i
395  * of the f/w this means that the network i/f is closed.
396  *
397  **/
398
399 static void
400 e1000_release_hw_control(struct e1000_adapter *adapter)
401 {
402         uint32_t ctrl_ext;
403         uint32_t swsm;
404
405         /* Let firmware taken over control of h/w */
406         switch (adapter->hw.mac_type) {
407         case e1000_82573:
408                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
409                 E1000_WRITE_REG(&adapter->hw, SWSM,
410                                 swsm & ~E1000_SWSM_DRV_LOAD);
411                 break;
412         case e1000_82571:
413         case e1000_82572:
414         case e1000_80003es2lan:
415         case e1000_ich8lan:
416                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
417                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
418                                 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
419                 break;
420         default:
421                 break;
422         }
423 }
424
425 /**
426  * e1000_get_hw_control - get control of the h/w from f/w
427  * @adapter: address of board private structure
428  *
429  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
430  * For ASF and Pass Through versions of f/w this means that
431  * the driver is loaded. For AMT version (only with 82573)
432  * of the f/w this means that the network i/f is open.
433  *
434  **/
435
436 static void
437 e1000_get_hw_control(struct e1000_adapter *adapter)
438 {
439         uint32_t ctrl_ext;
440         uint32_t swsm;
441
442         /* Let firmware know the driver has taken over */
443         switch (adapter->hw.mac_type) {
444         case e1000_82573:
445                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
446                 E1000_WRITE_REG(&adapter->hw, SWSM,
447                                 swsm | E1000_SWSM_DRV_LOAD);
448                 break;
449         case e1000_82571:
450         case e1000_82572:
451         case e1000_80003es2lan:
452         case e1000_ich8lan:
453                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
454                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
455                                 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
456                 break;
457         default:
458                 break;
459         }
460 }
461
462 static void
463 e1000_init_manageability(struct e1000_adapter *adapter)
464 {
465         if (adapter->en_mng_pt) {
466                 uint32_t manc = E1000_READ_REG(&adapter->hw, MANC);
467
468                 /* disable hardware interception of ARP */
469                 manc &= ~(E1000_MANC_ARP_EN);
470
471                 /* enable receiving management packets to the host */
472                 /* this will probably generate destination unreachable messages
473                  * from the host OS, but the packets will be handled on SMBUS */
474                 if (adapter->hw.has_manc2h) {
475                         uint32_t manc2h = E1000_READ_REG(&adapter->hw, MANC2H);
476
477                         manc |= E1000_MANC_EN_MNG2HOST;
478 #define E1000_MNG2HOST_PORT_623 (1 << 5)
479 #define E1000_MNG2HOST_PORT_664 (1 << 6)
480                         manc2h |= E1000_MNG2HOST_PORT_623;
481                         manc2h |= E1000_MNG2HOST_PORT_664;
482                         E1000_WRITE_REG(&adapter->hw, MANC2H, manc2h);
483                 }
484
485                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
486         }
487 }
488
489 static void
490 e1000_release_manageability(struct e1000_adapter *adapter)
491 {
492         if (adapter->en_mng_pt) {
493                 uint32_t manc = E1000_READ_REG(&adapter->hw, MANC);
494
495                 /* re-enable hardware interception of ARP */
496                 manc |= E1000_MANC_ARP_EN;
497
498                 if (adapter->hw.has_manc2h)
499                         manc &= ~E1000_MANC_EN_MNG2HOST;
500
501                 /* don't explicitly have to mess with MANC2H since
502                  * MANC has an enable disable that gates MANC2H */
503
504                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
505         }
506 }
507
508 /**
509  * e1000_configure - configure the hardware for RX and TX
510  * @adapter = private board structure
511  **/
512 static void e1000_configure(struct e1000_adapter *adapter)
513 {
514         struct net_device *netdev = adapter->netdev;
515         int i;
516
517         e1000_set_rx_mode(netdev);
518
519         e1000_restore_vlan(adapter);
520         e1000_init_manageability(adapter);
521
522         e1000_configure_tx(adapter);
523         e1000_setup_rctl(adapter);
524         e1000_configure_rx(adapter);
525         /* call E1000_DESC_UNUSED which always leaves
526          * at least 1 descriptor unused to make sure
527          * next_to_use != next_to_clean */
528         for (i = 0; i < adapter->num_rx_queues; i++) {
529                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
530                 adapter->alloc_rx_buf(adapter, ring,
531                                       E1000_DESC_UNUSED(ring));
532         }
533
534         adapter->tx_queue_len = netdev->tx_queue_len;
535 }
536
537 int e1000_up(struct e1000_adapter *adapter)
538 {
539         /* hardware has been reset, we need to reload some things */
540         e1000_configure(adapter);
541
542         clear_bit(__E1000_DOWN, &adapter->flags);
543
544 #ifdef CONFIG_E1000_NAPI
545         napi_enable(&adapter->napi);
546 #endif
547         e1000_irq_enable(adapter);
548
549         /* fire a link change interrupt to start the watchdog */
550         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_LSC);
551         return 0;
552 }
553
554 /**
555  * e1000_power_up_phy - restore link in case the phy was powered down
556  * @adapter: address of board private structure
557  *
558  * The phy may be powered down to save power and turn off link when the
559  * driver is unloaded and wake on lan is not enabled (among others)
560  * *** this routine MUST be followed by a call to e1000_reset ***
561  *
562  **/
563
564 void e1000_power_up_phy(struct e1000_adapter *adapter)
565 {
566         uint16_t mii_reg = 0;
567
568         /* Just clear the power down bit to wake the phy back up */
569         if (adapter->hw.media_type == e1000_media_type_copper) {
570                 /* according to the manual, the phy will retain its
571                  * settings across a power-down/up cycle */
572                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
573                 mii_reg &= ~MII_CR_POWER_DOWN;
574                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
575         }
576 }
577
578 static void e1000_power_down_phy(struct e1000_adapter *adapter)
579 {
580         /* Power down the PHY so no link is implied when interface is down *
581          * The PHY cannot be powered down if any of the following is TRUE *
582          * (a) WoL is enabled
583          * (b) AMT is active
584          * (c) SoL/IDER session is active */
585         if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
586            adapter->hw.media_type == e1000_media_type_copper) {
587                 uint16_t mii_reg = 0;
588
589                 switch (adapter->hw.mac_type) {
590                 case e1000_82540:
591                 case e1000_82545:
592                 case e1000_82545_rev_3:
593                 case e1000_82546:
594                 case e1000_82546_rev_3:
595                 case e1000_82541:
596                 case e1000_82541_rev_2:
597                 case e1000_82547:
598                 case e1000_82547_rev_2:
599                         if (E1000_READ_REG(&adapter->hw, MANC) &
600                             E1000_MANC_SMBUS_EN)
601                                 goto out;
602                         break;
603                 case e1000_82571:
604                 case e1000_82572:
605                 case e1000_82573:
606                 case e1000_80003es2lan:
607                 case e1000_ich8lan:
608                         if (e1000_check_mng_mode(&adapter->hw) ||
609                             e1000_check_phy_reset_block(&adapter->hw))
610                                 goto out;
611                         break;
612                 default:
613                         goto out;
614                 }
615                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
616                 mii_reg |= MII_CR_POWER_DOWN;
617                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
618                 mdelay(1);
619         }
620 out:
621         return;
622 }
623
624 void
625 e1000_down(struct e1000_adapter *adapter)
626 {
627         struct net_device *netdev = adapter->netdev;
628
629         /* signal that we're down so the interrupt handler does not
630          * reschedule our watchdog timer */
631         set_bit(__E1000_DOWN, &adapter->flags);
632
633 #ifdef CONFIG_E1000_NAPI
634         napi_disable(&adapter->napi);
635         atomic_set(&adapter->irq_sem, 0);
636 #endif
637         e1000_irq_disable(adapter);
638
639         del_timer_sync(&adapter->tx_fifo_stall_timer);
640         del_timer_sync(&adapter->watchdog_timer);
641         del_timer_sync(&adapter->phy_info_timer);
642
643         netdev->tx_queue_len = adapter->tx_queue_len;
644         adapter->link_speed = 0;
645         adapter->link_duplex = 0;
646         netif_carrier_off(netdev);
647         netif_stop_queue(netdev);
648
649         e1000_reset(adapter);
650         e1000_clean_all_tx_rings(adapter);
651         e1000_clean_all_rx_rings(adapter);
652 }
653
654 void
655 e1000_reinit_locked(struct e1000_adapter *adapter)
656 {
657         WARN_ON(in_interrupt());
658         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
659                 msleep(1);
660         e1000_down(adapter);
661         e1000_up(adapter);
662         clear_bit(__E1000_RESETTING, &adapter->flags);
663 }
664
665 void
666 e1000_reset(struct e1000_adapter *adapter)
667 {
668         uint32_t pba = 0, tx_space, min_tx_space, min_rx_space;
669         uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
670         boolean_t legacy_pba_adjust = FALSE;
671
672         /* Repartition Pba for greater than 9k mtu
673          * To take effect CTRL.RST is required.
674          */
675
676         switch (adapter->hw.mac_type) {
677         case e1000_82542_rev2_0:
678         case e1000_82542_rev2_1:
679         case e1000_82543:
680         case e1000_82544:
681         case e1000_82540:
682         case e1000_82541:
683         case e1000_82541_rev_2:
684                 legacy_pba_adjust = TRUE;
685                 pba = E1000_PBA_48K;
686                 break;
687         case e1000_82545:
688         case e1000_82545_rev_3:
689         case e1000_82546:
690         case e1000_82546_rev_3:
691                 pba = E1000_PBA_48K;
692                 break;
693         case e1000_82547:
694         case e1000_82547_rev_2:
695                 legacy_pba_adjust = TRUE;
696                 pba = E1000_PBA_30K;
697                 break;
698         case e1000_82571:
699         case e1000_82572:
700         case e1000_80003es2lan:
701                 pba = E1000_PBA_38K;
702                 break;
703         case e1000_82573:
704                 pba = E1000_PBA_20K;
705                 break;
706         case e1000_ich8lan:
707                 pba = E1000_PBA_8K;
708         case e1000_undefined:
709         case e1000_num_macs:
710                 break;
711         }
712
713         if (legacy_pba_adjust == TRUE) {
714                 if (adapter->netdev->mtu > E1000_RXBUFFER_8192)
715                         pba -= 8; /* allocate more FIFO for Tx */
716
717                 if (adapter->hw.mac_type == e1000_82547) {
718                         adapter->tx_fifo_head = 0;
719                         adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
720                         adapter->tx_fifo_size =
721                                 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
722                         atomic_set(&adapter->tx_fifo_stall, 0);
723                 }
724         } else if (adapter->hw.max_frame_size > MAXIMUM_ETHERNET_FRAME_SIZE) {
725                 /* adjust PBA for jumbo frames */
726                 E1000_WRITE_REG(&adapter->hw, PBA, pba);
727
728                 /* To maintain wire speed transmits, the Tx FIFO should be
729                  * large enough to accomodate two full transmit packets,
730                  * rounded up to the next 1KB and expressed in KB.  Likewise,
731                  * the Rx FIFO should be large enough to accomodate at least
732                  * one full receive packet and is similarly rounded up and
733                  * expressed in KB. */
734                 pba = E1000_READ_REG(&adapter->hw, PBA);
735                 /* upper 16 bits has Tx packet buffer allocation size in KB */
736                 tx_space = pba >> 16;
737                 /* lower 16 bits has Rx packet buffer allocation size in KB */
738                 pba &= 0xffff;
739                 /* don't include ethernet FCS because hardware appends/strips */
740                 min_rx_space = adapter->netdev->mtu + ENET_HEADER_SIZE +
741                                VLAN_TAG_SIZE;
742                 min_tx_space = min_rx_space;
743                 min_tx_space *= 2;
744                 min_tx_space = ALIGN(min_tx_space, 1024);
745                 min_tx_space >>= 10;
746                 min_rx_space = ALIGN(min_rx_space, 1024);
747                 min_rx_space >>= 10;
748
749                 /* If current Tx allocation is less than the min Tx FIFO size,
750                  * and the min Tx FIFO size is less than the current Rx FIFO
751                  * allocation, take space away from current Rx allocation */
752                 if (tx_space < min_tx_space &&
753                     ((min_tx_space - tx_space) < pba)) {
754                         pba = pba - (min_tx_space - tx_space);
755
756                         /* PCI/PCIx hardware has PBA alignment constraints */
757                         switch (adapter->hw.mac_type) {
758                         case e1000_82545 ... e1000_82546_rev_3:
759                                 pba &= ~(E1000_PBA_8K - 1);
760                                 break;
761                         default:
762                                 break;
763                         }
764
765                         /* if short on rx space, rx wins and must trump tx
766                          * adjustment or use Early Receive if available */
767                         if (pba < min_rx_space) {
768                                 switch (adapter->hw.mac_type) {
769                                 case e1000_82573:
770                                         /* ERT enabled in e1000_configure_rx */
771                                         break;
772                                 default:
773                                         pba = min_rx_space;
774                                         break;
775                                 }
776                         }
777                 }
778         }
779
780         E1000_WRITE_REG(&adapter->hw, PBA, pba);
781
782         /* flow control settings */
783         /* Set the FC high water mark to 90% of the FIFO size.
784          * Required to clear last 3 LSB */
785         fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
786         /* We can't use 90% on small FIFOs because the remainder
787          * would be less than 1 full frame.  In this case, we size
788          * it to allow at least a full frame above the high water
789          *  mark. */
790         if (pba < E1000_PBA_16K)
791                 fc_high_water_mark = (pba * 1024) - 1600;
792
793         adapter->hw.fc_high_water = fc_high_water_mark;
794         adapter->hw.fc_low_water = fc_high_water_mark - 8;
795         if (adapter->hw.mac_type == e1000_80003es2lan)
796                 adapter->hw.fc_pause_time = 0xFFFF;
797         else
798                 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
799         adapter->hw.fc_send_xon = 1;
800         adapter->hw.fc = adapter->hw.original_fc;
801
802         /* Allow time for pending master requests to run */
803         e1000_reset_hw(&adapter->hw);
804         if (adapter->hw.mac_type >= e1000_82544)
805                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
806
807         if (e1000_init_hw(&adapter->hw))
808                 DPRINTK(PROBE, ERR, "Hardware Error\n");
809         e1000_update_mng_vlan(adapter);
810
811         /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
812         if (adapter->hw.mac_type >= e1000_82544 &&
813             adapter->hw.mac_type <= e1000_82547_rev_2 &&
814             adapter->hw.autoneg == 1 &&
815             adapter->hw.autoneg_advertised == ADVERTISE_1000_FULL) {
816                 uint32_t ctrl = E1000_READ_REG(&adapter->hw, CTRL);
817                 /* clear phy power management bit if we are in gig only mode,
818                  * which if enabled will attempt negotiation to 100Mb, which
819                  * can cause a loss of link at power off or driver unload */
820                 ctrl &= ~E1000_CTRL_SWDPIN3;
821                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
822         }
823
824         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
825         E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
826
827         e1000_reset_adaptive(&adapter->hw);
828         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
829
830         if (!adapter->smart_power_down &&
831             (adapter->hw.mac_type == e1000_82571 ||
832              adapter->hw.mac_type == e1000_82572)) {
833                 uint16_t phy_data = 0;
834                 /* speed up time to link by disabling smart power down, ignore
835                  * the return value of this function because there is nothing
836                  * different we would do if it failed */
837                 e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
838                                    &phy_data);
839                 phy_data &= ~IGP02E1000_PM_SPD;
840                 e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
841                                     phy_data);
842         }
843
844         e1000_release_manageability(adapter);
845 }
846
847 /**
848  *  Dump the eeprom for users having checksum issues
849  **/
850 void e1000_dump_eeprom(struct e1000_adapter *adapter)
851 {
852         struct net_device *netdev = adapter->netdev;
853         struct ethtool_eeprom eeprom;
854         const struct ethtool_ops *ops = netdev->ethtool_ops;
855         u8 *data;
856         int i;
857         u16 csum_old, csum_new = 0;
858
859         eeprom.len = ops->get_eeprom_len(netdev);
860         eeprom.offset = 0;
861
862         data = kmalloc(eeprom.len, GFP_KERNEL);
863         if (!data) {
864                 printk(KERN_ERR "Unable to allocate memory to dump EEPROM"
865                        " data\n");
866                 return;
867         }
868
869         ops->get_eeprom(netdev, &eeprom, data);
870
871         csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
872                    (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
873         for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
874                 csum_new += data[i] + (data[i + 1] << 8);
875         csum_new = EEPROM_SUM - csum_new;
876
877         printk(KERN_ERR "/*********************/\n");
878         printk(KERN_ERR "Current EEPROM Checksum : 0x%04x\n", csum_old);
879         printk(KERN_ERR "Calculated              : 0x%04x\n", csum_new);
880
881         printk(KERN_ERR "Offset    Values\n");
882         printk(KERN_ERR "========  ======\n");
883         print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
884
885         printk(KERN_ERR "Include this output when contacting your support "
886                "provider.\n");
887         printk(KERN_ERR "This is not a software error! Something bad "
888                "happened to your hardware or\n");
889         printk(KERN_ERR "EEPROM image. Ignoring this "
890                "problem could result in further problems,\n");
891         printk(KERN_ERR "possibly loss of data, corruption or system hangs!\n");
892         printk(KERN_ERR "The MAC Address will be reset to 00:00:00:00:00:00, "
893                "which is invalid\n");
894         printk(KERN_ERR "and requires you to set the proper MAC "
895                "address manually before continuing\n");
896         printk(KERN_ERR "to enable this network device.\n");
897         printk(KERN_ERR "Please inspect the EEPROM dump and report the issue "
898                "to your hardware vendor\n");
899         printk(KERN_ERR "or Intel Customer Support: linux-nics@intel.com\n");
900         printk(KERN_ERR "/*********************/\n");
901
902         kfree(data);
903 }
904
905 /**
906  * e1000_probe - Device Initialization Routine
907  * @pdev: PCI device information struct
908  * @ent: entry in e1000_pci_tbl
909  *
910  * Returns 0 on success, negative on failure
911  *
912  * e1000_probe initializes an adapter identified by a pci_dev structure.
913  * The OS initialization, configuring of the adapter private structure,
914  * and a hardware reset occur.
915  **/
916
917 static int __devinit
918 e1000_probe(struct pci_dev *pdev,
919             const struct pci_device_id *ent)
920 {
921         struct net_device *netdev;
922         struct e1000_adapter *adapter;
923         unsigned long mmio_start, mmio_len;
924         unsigned long flash_start, flash_len;
925
926         static int cards_found = 0;
927         static int global_quad_port_a = 0; /* global ksp3 port a indication */
928         int i, err, pci_using_dac;
929         uint16_t eeprom_data = 0;
930         uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
931         DECLARE_MAC_BUF(mac);
932
933         if ((err = pci_enable_device(pdev)))
934                 return err;
935
936         if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
937             !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
938                 pci_using_dac = 1;
939         } else {
940                 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) &&
941                     (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
942                         E1000_ERR("No usable DMA configuration, aborting\n");
943                         goto err_dma;
944                 }
945                 pci_using_dac = 0;
946         }
947
948         if ((err = pci_request_regions(pdev, e1000_driver_name)))
949                 goto err_pci_reg;
950
951         pci_set_master(pdev);
952
953         err = -ENOMEM;
954         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
955         if (!netdev)
956                 goto err_alloc_etherdev;
957
958         SET_NETDEV_DEV(netdev, &pdev->dev);
959
960         pci_set_drvdata(pdev, netdev);
961         adapter = netdev_priv(netdev);
962         adapter->netdev = netdev;
963         adapter->pdev = pdev;
964         adapter->hw.back = adapter;
965         adapter->msg_enable = (1 << debug) - 1;
966
967         mmio_start = pci_resource_start(pdev, BAR_0);
968         mmio_len = pci_resource_len(pdev, BAR_0);
969
970         err = -EIO;
971         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
972         if (!adapter->hw.hw_addr)
973                 goto err_ioremap;
974
975         for (i = BAR_1; i <= BAR_5; i++) {
976                 if (pci_resource_len(pdev, i) == 0)
977                         continue;
978                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
979                         adapter->hw.io_base = pci_resource_start(pdev, i);
980                         break;
981                 }
982         }
983
984         netdev->open = &e1000_open;
985         netdev->stop = &e1000_close;
986         netdev->hard_start_xmit = &e1000_xmit_frame;
987         netdev->get_stats = &e1000_get_stats;
988         netdev->set_rx_mode = &e1000_set_rx_mode;
989         netdev->set_mac_address = &e1000_set_mac;
990         netdev->change_mtu = &e1000_change_mtu;
991         netdev->do_ioctl = &e1000_ioctl;
992         e1000_set_ethtool_ops(netdev);
993         netdev->tx_timeout = &e1000_tx_timeout;
994         netdev->watchdog_timeo = 5 * HZ;
995 #ifdef CONFIG_E1000_NAPI
996         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
997 #endif
998         netdev->vlan_rx_register = e1000_vlan_rx_register;
999         netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
1000         netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
1001 #ifdef CONFIG_NET_POLL_CONTROLLER
1002         netdev->poll_controller = e1000_netpoll;
1003 #endif
1004         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1005
1006         netdev->mem_start = mmio_start;
1007         netdev->mem_end = mmio_start + mmio_len;
1008         netdev->base_addr = adapter->hw.io_base;
1009
1010         adapter->bd_number = cards_found;
1011
1012         /* setup the private structure */
1013
1014         if ((err = e1000_sw_init(adapter)))
1015                 goto err_sw_init;
1016
1017         err = -EIO;
1018         /* Flash BAR mapping must happen after e1000_sw_init
1019          * because it depends on mac_type */
1020         if ((adapter->hw.mac_type == e1000_ich8lan) &&
1021            (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
1022                 flash_start = pci_resource_start(pdev, 1);
1023                 flash_len = pci_resource_len(pdev, 1);
1024                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
1025                 if (!adapter->hw.flash_address)
1026                         goto err_flashmap;
1027         }
1028
1029         if (e1000_check_phy_reset_block(&adapter->hw))
1030                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
1031
1032         if (adapter->hw.mac_type >= e1000_82543) {
1033                 netdev->features = NETIF_F_SG |
1034                                    NETIF_F_HW_CSUM |
1035                                    NETIF_F_HW_VLAN_TX |
1036                                    NETIF_F_HW_VLAN_RX |
1037                                    NETIF_F_HW_VLAN_FILTER;
1038                 if (adapter->hw.mac_type == e1000_ich8lan)
1039                         netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
1040         }
1041
1042         if ((adapter->hw.mac_type >= e1000_82544) &&
1043            (adapter->hw.mac_type != e1000_82547))
1044                 netdev->features |= NETIF_F_TSO;
1045
1046         if (adapter->hw.mac_type > e1000_82547_rev_2)
1047                 netdev->features |= NETIF_F_TSO6;
1048         if (pci_using_dac)
1049                 netdev->features |= NETIF_F_HIGHDMA;
1050
1051         netdev->features |= NETIF_F_LLTX;
1052
1053         adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
1054
1055         /* initialize eeprom parameters */
1056         if (e1000_init_eeprom_params(&adapter->hw)) {
1057                 E1000_ERR("EEPROM initialization failed\n");
1058                 goto err_eeprom;
1059         }
1060
1061         /* before reading the EEPROM, reset the controller to
1062          * put the device in a known good starting state */
1063
1064         e1000_reset_hw(&adapter->hw);
1065
1066         /* make sure the EEPROM is good */
1067         if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
1068                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
1069                 e1000_dump_eeprom(adapter);
1070                 /*
1071                  * set MAC address to all zeroes to invalidate and temporary
1072                  * disable this device for the user. This blocks regular
1073                  * traffic while still permitting ethtool ioctls from reaching
1074                  * the hardware as well as allowing the user to run the
1075                  * interface after manually setting a hw addr using
1076                  * `ip set address`
1077                  */
1078                 memset(adapter->hw.mac_addr, 0, netdev->addr_len);
1079         } else {
1080                 /* copy the MAC address out of the EEPROM */
1081                 if (e1000_read_mac_addr(&adapter->hw))
1082                         DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
1083         }
1084         /* don't block initalization here due to bad MAC address */
1085         memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
1086         memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
1087
1088         if (!is_valid_ether_addr(netdev->perm_addr))
1089                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
1090
1091         e1000_get_bus_info(&adapter->hw);
1092
1093         init_timer(&adapter->tx_fifo_stall_timer);
1094         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
1095         adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
1096
1097         init_timer(&adapter->watchdog_timer);
1098         adapter->watchdog_timer.function = &e1000_watchdog;
1099         adapter->watchdog_timer.data = (unsigned long) adapter;
1100
1101         init_timer(&adapter->phy_info_timer);
1102         adapter->phy_info_timer.function = &e1000_update_phy_info;
1103         adapter->phy_info_timer.data = (unsigned long) adapter;
1104
1105         INIT_WORK(&adapter->reset_task, e1000_reset_task);
1106
1107         e1000_check_options(adapter);
1108
1109         /* Initial Wake on LAN setting
1110          * If APM wake is enabled in the EEPROM,
1111          * enable the ACPI Magic Packet filter
1112          */
1113
1114         switch (adapter->hw.mac_type) {
1115         case e1000_82542_rev2_0:
1116         case e1000_82542_rev2_1:
1117         case e1000_82543:
1118                 break;
1119         case e1000_82544:
1120                 e1000_read_eeprom(&adapter->hw,
1121                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1122                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1123                 break;
1124         case e1000_ich8lan:
1125                 e1000_read_eeprom(&adapter->hw,
1126                         EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
1127                 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
1128                 break;
1129         case e1000_82546:
1130         case e1000_82546_rev_3:
1131         case e1000_82571:
1132         case e1000_80003es2lan:
1133                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
1134                         e1000_read_eeprom(&adapter->hw,
1135                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1136                         break;
1137                 }
1138                 /* Fall Through */
1139         default:
1140                 e1000_read_eeprom(&adapter->hw,
1141                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1142                 break;
1143         }
1144         if (eeprom_data & eeprom_apme_mask)
1145                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1146
1147         /* now that we have the eeprom settings, apply the special cases
1148          * where the eeprom may be wrong or the board simply won't support
1149          * wake on lan on a particular port */
1150         switch (pdev->device) {
1151         case E1000_DEV_ID_82546GB_PCIE:
1152                 adapter->eeprom_wol = 0;
1153                 break;
1154         case E1000_DEV_ID_82546EB_FIBER:
1155         case E1000_DEV_ID_82546GB_FIBER:
1156         case E1000_DEV_ID_82571EB_FIBER:
1157                 /* Wake events only supported on port A for dual fiber
1158                  * regardless of eeprom setting */
1159                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
1160                         adapter->eeprom_wol = 0;
1161                 break;
1162         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1163         case E1000_DEV_ID_82571EB_QUAD_COPPER:
1164         case E1000_DEV_ID_82571EB_QUAD_FIBER:
1165         case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1166         case E1000_DEV_ID_82571PT_QUAD_COPPER:
1167                 /* if quad port adapter, disable WoL on all but port A */
1168                 if (global_quad_port_a != 0)
1169                         adapter->eeprom_wol = 0;
1170                 else
1171                         adapter->quad_port_a = 1;
1172                 /* Reset for multiple quad port adapters */
1173                 if (++global_quad_port_a == 4)
1174                         global_quad_port_a = 0;
1175                 break;
1176         }
1177
1178         /* initialize the wol settings based on the eeprom settings */
1179         adapter->wol = adapter->eeprom_wol;
1180
1181         /* print bus type/speed/width info */
1182         {
1183         struct e1000_hw *hw = &adapter->hw;
1184         DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
1185                 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
1186                  (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
1187                 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1188                  (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
1189                  (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
1190                  (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
1191                  (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
1192                 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
1193                  (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
1194                  (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
1195                  "32-bit"));
1196         }
1197
1198         printk("%s\n", print_mac(mac, netdev->dev_addr));
1199
1200         /* reset the hardware with the new settings */
1201         e1000_reset(adapter);
1202
1203         /* If the controller is 82573 and f/w is AMT, do not set
1204          * DRV_LOAD until the interface is up.  For all other cases,
1205          * let the f/w know that the h/w is now under the control
1206          * of the driver. */
1207         if (adapter->hw.mac_type != e1000_82573 ||
1208             !e1000_check_mng_mode(&adapter->hw))
1209                 e1000_get_hw_control(adapter);
1210
1211         /* tell the stack to leave us alone until e1000_open() is called */
1212         netif_carrier_off(netdev);
1213         netif_stop_queue(netdev);
1214
1215         strcpy(netdev->name, "eth%d");
1216         if ((err = register_netdev(netdev)))
1217                 goto err_register;
1218
1219         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1220
1221         cards_found++;
1222         return 0;
1223
1224 err_register:
1225         e1000_release_hw_control(adapter);
1226 err_eeprom:
1227         if (!e1000_check_phy_reset_block(&adapter->hw))
1228                 e1000_phy_hw_reset(&adapter->hw);
1229
1230         if (adapter->hw.flash_address)
1231                 iounmap(adapter->hw.flash_address);
1232 err_flashmap:
1233 #ifdef CONFIG_E1000_NAPI
1234         for (i = 0; i < adapter->num_rx_queues; i++)
1235                 dev_put(&adapter->polling_netdev[i]);
1236 #endif
1237
1238         kfree(adapter->tx_ring);
1239         kfree(adapter->rx_ring);
1240 #ifdef CONFIG_E1000_NAPI
1241         kfree(adapter->polling_netdev);
1242 #endif
1243 err_sw_init:
1244         iounmap(adapter->hw.hw_addr);
1245 err_ioremap:
1246         free_netdev(netdev);
1247 err_alloc_etherdev:
1248         pci_release_regions(pdev);
1249 err_pci_reg:
1250 err_dma:
1251         pci_disable_device(pdev);
1252         return err;
1253 }
1254
1255 /**
1256  * e1000_remove - Device Removal Routine
1257  * @pdev: PCI device information struct
1258  *
1259  * e1000_remove is called by the PCI subsystem to alert the driver
1260  * that it should release a PCI device.  The could be caused by a
1261  * Hot-Plug event, or because the driver is going to be removed from
1262  * memory.
1263  **/
1264
1265 static void __devexit
1266 e1000_remove(struct pci_dev *pdev)
1267 {
1268         struct net_device *netdev = pci_get_drvdata(pdev);
1269         struct e1000_adapter *adapter = netdev_priv(netdev);
1270 #ifdef CONFIG_E1000_NAPI
1271         int i;
1272 #endif
1273
1274         cancel_work_sync(&adapter->reset_task);
1275
1276         e1000_release_manageability(adapter);
1277
1278         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1279          * would have already happened in close and is redundant. */
1280         e1000_release_hw_control(adapter);
1281
1282 #ifdef CONFIG_E1000_NAPI
1283         for (i = 0; i < adapter->num_rx_queues; i++)
1284                 dev_put(&adapter->polling_netdev[i]);
1285 #endif
1286
1287         unregister_netdev(netdev);
1288
1289         if (!e1000_check_phy_reset_block(&adapter->hw))
1290                 e1000_phy_hw_reset(&adapter->hw);
1291
1292         kfree(adapter->tx_ring);
1293         kfree(adapter->rx_ring);
1294 #ifdef CONFIG_E1000_NAPI
1295         kfree(adapter->polling_netdev);
1296 #endif
1297
1298         iounmap(adapter->hw.hw_addr);
1299         if (adapter->hw.flash_address)
1300                 iounmap(adapter->hw.flash_address);
1301         pci_release_regions(pdev);
1302
1303         free_netdev(netdev);
1304
1305         pci_disable_device(pdev);
1306 }
1307
1308 /**
1309  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1310  * @adapter: board private structure to initialize
1311  *
1312  * e1000_sw_init initializes the Adapter private data structure.
1313  * Fields are initialized based on PCI device information and
1314  * OS network device settings (MTU size).
1315  **/
1316
1317 static int __devinit
1318 e1000_sw_init(struct e1000_adapter *adapter)
1319 {
1320         struct e1000_hw *hw = &adapter->hw;
1321         struct net_device *netdev = adapter->netdev;
1322         struct pci_dev *pdev = adapter->pdev;
1323 #ifdef CONFIG_E1000_NAPI
1324         int i;
1325 #endif
1326
1327         /* PCI config space info */
1328
1329         hw->vendor_id = pdev->vendor;
1330         hw->device_id = pdev->device;
1331         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1332         hw->subsystem_id = pdev->subsystem_device;
1333         hw->revision_id = pdev->revision;
1334
1335         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1336
1337         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1338         adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
1339         hw->max_frame_size = netdev->mtu +
1340                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1341         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1342
1343         /* identify the MAC */
1344
1345         if (e1000_set_mac_type(hw)) {
1346                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1347                 return -EIO;
1348         }
1349
1350         switch (hw->mac_type) {
1351         default:
1352                 break;
1353         case e1000_82541:
1354         case e1000_82547:
1355         case e1000_82541_rev_2:
1356         case e1000_82547_rev_2:
1357                 hw->phy_init_script = 1;
1358                 break;
1359         }
1360
1361         e1000_set_media_type(hw);
1362
1363         hw->wait_autoneg_complete = FALSE;
1364         hw->tbi_compatibility_en = TRUE;
1365         hw->adaptive_ifs = TRUE;
1366
1367         /* Copper options */
1368
1369         if (hw->media_type == e1000_media_type_copper) {
1370                 hw->mdix = AUTO_ALL_MODES;
1371                 hw->disable_polarity_correction = FALSE;
1372                 hw->master_slave = E1000_MASTER_SLAVE;
1373         }
1374
1375         adapter->num_tx_queues = 1;
1376         adapter->num_rx_queues = 1;
1377
1378         if (e1000_alloc_queues(adapter)) {
1379                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1380                 return -ENOMEM;
1381         }
1382
1383 #ifdef CONFIG_E1000_NAPI
1384         for (i = 0; i < adapter->num_rx_queues; i++) {
1385                 adapter->polling_netdev[i].priv = adapter;
1386                 dev_hold(&adapter->polling_netdev[i]);
1387                 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1388         }
1389         spin_lock_init(&adapter->tx_queue_lock);
1390 #endif
1391
1392         /* Explicitly disable IRQ since the NIC can be in any state. */
1393         atomic_set(&adapter->irq_sem, 0);
1394         e1000_irq_disable(adapter);
1395
1396         spin_lock_init(&adapter->stats_lock);
1397
1398         set_bit(__E1000_DOWN, &adapter->flags);
1399
1400         return 0;
1401 }
1402
1403 /**
1404  * e1000_alloc_queues - Allocate memory for all rings
1405  * @adapter: board private structure to initialize
1406  *
1407  * We allocate one ring per queue at run-time since we don't know the
1408  * number of queues at compile-time.  The polling_netdev array is
1409  * intended for Multiqueue, but should work fine with a single queue.
1410  **/
1411
1412 static int __devinit
1413 e1000_alloc_queues(struct e1000_adapter *adapter)
1414 {
1415         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1416                                    sizeof(struct e1000_tx_ring), GFP_KERNEL);
1417         if (!adapter->tx_ring)
1418                 return -ENOMEM;
1419
1420         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1421                                    sizeof(struct e1000_rx_ring), GFP_KERNEL);
1422         if (!adapter->rx_ring) {
1423                 kfree(adapter->tx_ring);
1424                 return -ENOMEM;
1425         }
1426
1427 #ifdef CONFIG_E1000_NAPI
1428         adapter->polling_netdev = kcalloc(adapter->num_rx_queues,
1429                                           sizeof(struct net_device),
1430                                           GFP_KERNEL);
1431         if (!adapter->polling_netdev) {
1432                 kfree(adapter->tx_ring);
1433                 kfree(adapter->rx_ring);
1434                 return -ENOMEM;
1435         }
1436 #endif
1437
1438         return E1000_SUCCESS;
1439 }
1440
1441 /**
1442  * e1000_open - Called when a network interface is made active
1443  * @netdev: network interface device structure
1444  *
1445  * Returns 0 on success, negative value on failure
1446  *
1447  * The open entry point is called when a network interface is made
1448  * active by the system (IFF_UP).  At this point all resources needed
1449  * for transmit and receive operations are allocated, the interrupt
1450  * handler is registered with the OS, the watchdog timer is started,
1451  * and the stack is notified that the interface is ready.
1452  **/
1453
1454 static int
1455 e1000_open(struct net_device *netdev)
1456 {
1457         struct e1000_adapter *adapter = netdev_priv(netdev);
1458         int err;
1459
1460         /* disallow open during test */
1461         if (test_bit(__E1000_TESTING, &adapter->flags))
1462                 return -EBUSY;
1463
1464         /* allocate transmit descriptors */
1465         err = e1000_setup_all_tx_resources(adapter);
1466         if (err)
1467                 goto err_setup_tx;
1468
1469         /* allocate receive descriptors */
1470         err = e1000_setup_all_rx_resources(adapter);
1471         if (err)
1472                 goto err_setup_rx;
1473
1474         e1000_power_up_phy(adapter);
1475
1476         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1477         if ((adapter->hw.mng_cookie.status &
1478                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1479                 e1000_update_mng_vlan(adapter);
1480         }
1481
1482         /* If AMT is enabled, let the firmware know that the network
1483          * interface is now open */
1484         if (adapter->hw.mac_type == e1000_82573 &&
1485             e1000_check_mng_mode(&adapter->hw))
1486                 e1000_get_hw_control(adapter);
1487
1488         /* before we allocate an interrupt, we must be ready to handle it.
1489          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1490          * as soon as we call pci_request_irq, so we have to setup our
1491          * clean_rx handler before we do so.  */
1492         e1000_configure(adapter);
1493
1494         err = e1000_request_irq(adapter);
1495         if (err)
1496                 goto err_req_irq;
1497
1498         /* From here on the code is the same as e1000_up() */
1499         clear_bit(__E1000_DOWN, &adapter->flags);
1500
1501 #ifdef CONFIG_E1000_NAPI
1502         napi_enable(&adapter->napi);
1503 #endif
1504
1505         e1000_irq_enable(adapter);
1506
1507         /* fire a link status change interrupt to start the watchdog */
1508         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_LSC);
1509
1510         return E1000_SUCCESS;
1511
1512 err_req_irq:
1513         e1000_release_hw_control(adapter);
1514         e1000_power_down_phy(adapter);
1515         e1000_free_all_rx_resources(adapter);
1516 err_setup_rx:
1517         e1000_free_all_tx_resources(adapter);
1518 err_setup_tx:
1519         e1000_reset(adapter);
1520
1521         return err;
1522 }
1523
1524 /**
1525  * e1000_close - Disables a network interface
1526  * @netdev: network interface device structure
1527  *
1528  * Returns 0, this is not allowed to fail
1529  *
1530  * The close entry point is called when an interface is de-activated
1531  * by the OS.  The hardware is still under the drivers control, but
1532  * needs to be disabled.  A global MAC reset is issued to stop the
1533  * hardware, and all transmit and receive resources are freed.
1534  **/
1535
1536 static int
1537 e1000_close(struct net_device *netdev)
1538 {
1539         struct e1000_adapter *adapter = netdev_priv(netdev);
1540
1541         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1542         e1000_down(adapter);
1543         e1000_power_down_phy(adapter);
1544         e1000_free_irq(adapter);
1545
1546         e1000_free_all_tx_resources(adapter);
1547         e1000_free_all_rx_resources(adapter);
1548
1549         /* kill manageability vlan ID if supported, but not if a vlan with
1550          * the same ID is registered on the host OS (let 8021q kill it) */
1551         if ((adapter->hw.mng_cookie.status &
1552                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1553              !(adapter->vlgrp &&
1554                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
1555                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1556         }
1557
1558         /* If AMT is enabled, let the firmware know that the network
1559          * interface is now closed */
1560         if (adapter->hw.mac_type == e1000_82573 &&
1561             e1000_check_mng_mode(&adapter->hw))
1562                 e1000_release_hw_control(adapter);
1563
1564         return 0;
1565 }
1566
1567 /**
1568  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1569  * @adapter: address of board private structure
1570  * @start: address of beginning of memory
1571  * @len: length of memory
1572  **/
1573 static boolean_t
1574 e1000_check_64k_bound(struct e1000_adapter *adapter,
1575                       void *start, unsigned long len)
1576 {
1577         unsigned long begin = (unsigned long) start;
1578         unsigned long end = begin + len;
1579
1580         /* First rev 82545 and 82546 need to not allow any memory
1581          * write location to cross 64k boundary due to errata 23 */
1582         if (adapter->hw.mac_type == e1000_82545 ||
1583             adapter->hw.mac_type == e1000_82546) {
1584                 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1585         }
1586
1587         return TRUE;
1588 }
1589
1590 /**
1591  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1592  * @adapter: board private structure
1593  * @txdr:    tx descriptor ring (for a specific queue) to setup
1594  *
1595  * Return 0 on success, negative on failure
1596  **/
1597
1598 static int
1599 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1600                          struct e1000_tx_ring *txdr)
1601 {
1602         struct pci_dev *pdev = adapter->pdev;
1603         int size;
1604
1605         size = sizeof(struct e1000_buffer) * txdr->count;
1606         txdr->buffer_info = vmalloc(size);
1607         if (!txdr->buffer_info) {
1608                 DPRINTK(PROBE, ERR,
1609                 "Unable to allocate memory for the transmit descriptor ring\n");
1610                 return -ENOMEM;
1611         }
1612         memset(txdr->buffer_info, 0, size);
1613
1614         /* round up to nearest 4K */
1615
1616         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1617         txdr->size = ALIGN(txdr->size, 4096);
1618
1619         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1620         if (!txdr->desc) {
1621 setup_tx_desc_die:
1622                 vfree(txdr->buffer_info);
1623                 DPRINTK(PROBE, ERR,
1624                 "Unable to allocate memory for the transmit descriptor ring\n");
1625                 return -ENOMEM;
1626         }
1627
1628         /* Fix for errata 23, can't cross 64kB boundary */
1629         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1630                 void *olddesc = txdr->desc;
1631                 dma_addr_t olddma = txdr->dma;
1632                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1633                                      "at %p\n", txdr->size, txdr->desc);
1634                 /* Try again, without freeing the previous */
1635                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1636                 /* Failed allocation, critical failure */
1637                 if (!txdr->desc) {
1638                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1639                         goto setup_tx_desc_die;
1640                 }
1641
1642                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1643                         /* give up */
1644                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1645                                             txdr->dma);
1646                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1647                         DPRINTK(PROBE, ERR,
1648                                 "Unable to allocate aligned memory "
1649                                 "for the transmit descriptor ring\n");
1650                         vfree(txdr->buffer_info);
1651                         return -ENOMEM;
1652                 } else {
1653                         /* Free old allocation, new allocation was successful */
1654                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1655                 }
1656         }
1657         memset(txdr->desc, 0, txdr->size);
1658
1659         txdr->next_to_use = 0;
1660         txdr->next_to_clean = 0;
1661         spin_lock_init(&txdr->tx_lock);
1662
1663         return 0;
1664 }
1665
1666 /**
1667  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1668  *                                (Descriptors) for all queues
1669  * @adapter: board private structure
1670  *
1671  * Return 0 on success, negative on failure
1672  **/
1673
1674 int
1675 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1676 {
1677         int i, err = 0;
1678
1679         for (i = 0; i < adapter->num_tx_queues; i++) {
1680                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1681                 if (err) {
1682                         DPRINTK(PROBE, ERR,
1683                                 "Allocation for Tx Queue %u failed\n", i);
1684                         for (i-- ; i >= 0; i--)
1685                                 e1000_free_tx_resources(adapter,
1686                                                         &adapter->tx_ring[i]);
1687                         break;
1688                 }
1689         }
1690
1691         return err;
1692 }
1693
1694 /**
1695  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1696  * @adapter: board private structure
1697  *
1698  * Configure the Tx unit of the MAC after a reset.
1699  **/
1700
1701 static void
1702 e1000_configure_tx(struct e1000_adapter *adapter)
1703 {
1704         uint64_t tdba;
1705         struct e1000_hw *hw = &adapter->hw;
1706         uint32_t tdlen, tctl, tipg, tarc;
1707         uint32_t ipgr1, ipgr2;
1708
1709         /* Setup the HW Tx Head and Tail descriptor pointers */
1710
1711         switch (adapter->num_tx_queues) {
1712         case 1:
1713         default:
1714                 tdba = adapter->tx_ring[0].dma;
1715                 tdlen = adapter->tx_ring[0].count *
1716                         sizeof(struct e1000_tx_desc);
1717                 E1000_WRITE_REG(hw, TDLEN, tdlen);
1718                 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1719                 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1720                 E1000_WRITE_REG(hw, TDT, 0);
1721                 E1000_WRITE_REG(hw, TDH, 0);
1722                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1723                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1724                 break;
1725         }
1726
1727         /* Set the default values for the Tx Inter Packet Gap timer */
1728         if (adapter->hw.mac_type <= e1000_82547_rev_2 &&
1729             (hw->media_type == e1000_media_type_fiber ||
1730              hw->media_type == e1000_media_type_internal_serdes))
1731                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1732         else
1733                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1734
1735         switch (hw->mac_type) {
1736         case e1000_82542_rev2_0:
1737         case e1000_82542_rev2_1:
1738                 tipg = DEFAULT_82542_TIPG_IPGT;
1739                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1740                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1741                 break;
1742         case e1000_80003es2lan:
1743                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1744                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1745                 break;
1746         default:
1747                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1748                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1749                 break;
1750         }
1751         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1752         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1753         E1000_WRITE_REG(hw, TIPG, tipg);
1754
1755         /* Set the Tx Interrupt Delay register */
1756
1757         E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1758         if (hw->mac_type >= e1000_82540)
1759                 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1760
1761         /* Program the Transmit Control Register */
1762
1763         tctl = E1000_READ_REG(hw, TCTL);
1764         tctl &= ~E1000_TCTL_CT;
1765         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1766                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1767
1768         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1769                 tarc = E1000_READ_REG(hw, TARC0);
1770                 /* set the speed mode bit, we'll clear it if we're not at
1771                  * gigabit link later */
1772                 tarc |= (1 << 21);
1773                 E1000_WRITE_REG(hw, TARC0, tarc);
1774         } else if (hw->mac_type == e1000_80003es2lan) {
1775                 tarc = E1000_READ_REG(hw, TARC0);
1776                 tarc |= 1;
1777                 E1000_WRITE_REG(hw, TARC0, tarc);
1778                 tarc = E1000_READ_REG(hw, TARC1);
1779                 tarc |= 1;
1780                 E1000_WRITE_REG(hw, TARC1, tarc);
1781         }
1782
1783         e1000_config_collision_dist(hw);
1784
1785         /* Setup Transmit Descriptor Settings for eop descriptor */
1786         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1787
1788         /* only set IDE if we are delaying interrupts using the timers */
1789         if (adapter->tx_int_delay)
1790                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1791
1792         if (hw->mac_type < e1000_82543)
1793                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1794         else
1795                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1796
1797         /* Cache if we're 82544 running in PCI-X because we'll
1798          * need this to apply a workaround later in the send path. */
1799         if (hw->mac_type == e1000_82544 &&
1800             hw->bus_type == e1000_bus_type_pcix)
1801                 adapter->pcix_82544 = 1;
1802
1803         E1000_WRITE_REG(hw, TCTL, tctl);
1804
1805 }
1806
1807 /**
1808  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1809  * @adapter: board private structure
1810  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1811  *
1812  * Returns 0 on success, negative on failure
1813  **/
1814
1815 static int
1816 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1817                          struct e1000_rx_ring *rxdr)
1818 {
1819         struct pci_dev *pdev = adapter->pdev;
1820         int size, desc_len;
1821
1822         size = sizeof(struct e1000_buffer) * rxdr->count;
1823         rxdr->buffer_info = vmalloc(size);
1824         if (!rxdr->buffer_info) {
1825                 DPRINTK(PROBE, ERR,
1826                 "Unable to allocate memory for the receive descriptor ring\n");
1827                 return -ENOMEM;
1828         }
1829         memset(rxdr->buffer_info, 0, size);
1830
1831         rxdr->ps_page = kcalloc(rxdr->count, sizeof(struct e1000_ps_page),
1832                                 GFP_KERNEL);
1833         if (!rxdr->ps_page) {
1834                 vfree(rxdr->buffer_info);
1835                 DPRINTK(PROBE, ERR,
1836                 "Unable to allocate memory for the receive descriptor ring\n");
1837                 return -ENOMEM;
1838         }
1839
1840         rxdr->ps_page_dma = kcalloc(rxdr->count,
1841                                     sizeof(struct e1000_ps_page_dma),
1842                                     GFP_KERNEL);
1843         if (!rxdr->ps_page_dma) {
1844                 vfree(rxdr->buffer_info);
1845                 kfree(rxdr->ps_page);
1846                 DPRINTK(PROBE, ERR,
1847                 "Unable to allocate memory for the receive descriptor ring\n");
1848                 return -ENOMEM;
1849         }
1850
1851         if (adapter->hw.mac_type <= e1000_82547_rev_2)
1852                 desc_len = sizeof(struct e1000_rx_desc);
1853         else
1854                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1855
1856         /* Round up to nearest 4K */
1857
1858         rxdr->size = rxdr->count * desc_len;
1859         rxdr->size = ALIGN(rxdr->size, 4096);
1860
1861         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1862
1863         if (!rxdr->desc) {
1864                 DPRINTK(PROBE, ERR,
1865                 "Unable to allocate memory for the receive descriptor ring\n");
1866 setup_rx_desc_die:
1867                 vfree(rxdr->buffer_info);
1868                 kfree(rxdr->ps_page);
1869                 kfree(rxdr->ps_page_dma);
1870                 return -ENOMEM;
1871         }
1872
1873         /* Fix for errata 23, can't cross 64kB boundary */
1874         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1875                 void *olddesc = rxdr->desc;
1876                 dma_addr_t olddma = rxdr->dma;
1877                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1878                                      "at %p\n", rxdr->size, rxdr->desc);
1879                 /* Try again, without freeing the previous */
1880                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1881                 /* Failed allocation, critical failure */
1882                 if (!rxdr->desc) {
1883                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1884                         DPRINTK(PROBE, ERR,
1885                                 "Unable to allocate memory "
1886                                 "for the receive descriptor ring\n");
1887                         goto setup_rx_desc_die;
1888                 }
1889
1890                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1891                         /* give up */
1892                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1893                                             rxdr->dma);
1894                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1895                         DPRINTK(PROBE, ERR,
1896                                 "Unable to allocate aligned memory "
1897                                 "for the receive descriptor ring\n");
1898                         goto setup_rx_desc_die;
1899                 } else {
1900                         /* Free old allocation, new allocation was successful */
1901                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1902                 }
1903         }
1904         memset(rxdr->desc, 0, rxdr->size);
1905
1906         rxdr->next_to_clean = 0;
1907         rxdr->next_to_use = 0;
1908
1909         return 0;
1910 }
1911
1912 /**
1913  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1914  *                                (Descriptors) for all queues
1915  * @adapter: board private structure
1916  *
1917  * Return 0 on success, negative on failure
1918  **/
1919
1920 int
1921 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1922 {
1923         int i, err = 0;
1924
1925         for (i = 0; i < adapter->num_rx_queues; i++) {
1926                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1927                 if (err) {
1928                         DPRINTK(PROBE, ERR,
1929                                 "Allocation for Rx Queue %u failed\n", i);
1930                         for (i-- ; i >= 0; i--)
1931                                 e1000_free_rx_resources(adapter,
1932                                                         &adapter->rx_ring[i]);
1933                         break;
1934                 }
1935         }
1936
1937         return err;
1938 }
1939
1940 /**
1941  * e1000_setup_rctl - configure the receive control registers
1942  * @adapter: Board private structure
1943  **/
1944 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1945                         (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1946 static void
1947 e1000_setup_rctl(struct e1000_adapter *adapter)
1948 {
1949         uint32_t rctl, rfctl;
1950         uint32_t psrctl = 0;
1951 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1952         uint32_t pages = 0;
1953 #endif
1954
1955         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1956
1957         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1958
1959         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1960                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1961                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1962
1963         if (adapter->hw.tbi_compatibility_on == 1)
1964                 rctl |= E1000_RCTL_SBP;
1965         else
1966                 rctl &= ~E1000_RCTL_SBP;
1967
1968         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1969                 rctl &= ~E1000_RCTL_LPE;
1970         else
1971                 rctl |= E1000_RCTL_LPE;
1972
1973         /* Setup buffer sizes */
1974         rctl &= ~E1000_RCTL_SZ_4096;
1975         rctl |= E1000_RCTL_BSEX;
1976         switch (adapter->rx_buffer_len) {
1977                 case E1000_RXBUFFER_256:
1978                         rctl |= E1000_RCTL_SZ_256;
1979                         rctl &= ~E1000_RCTL_BSEX;
1980                         break;
1981                 case E1000_RXBUFFER_512:
1982                         rctl |= E1000_RCTL_SZ_512;
1983                         rctl &= ~E1000_RCTL_BSEX;
1984                         break;
1985                 case E1000_RXBUFFER_1024:
1986                         rctl |= E1000_RCTL_SZ_1024;
1987                         rctl &= ~E1000_RCTL_BSEX;
1988                         break;
1989                 case E1000_RXBUFFER_2048:
1990                 default:
1991                         rctl |= E1000_RCTL_SZ_2048;
1992                         rctl &= ~E1000_RCTL_BSEX;
1993                         break;
1994                 case E1000_RXBUFFER_4096:
1995                         rctl |= E1000_RCTL_SZ_4096;
1996                         break;
1997                 case E1000_RXBUFFER_8192:
1998                         rctl |= E1000_RCTL_SZ_8192;
1999                         break;
2000                 case E1000_RXBUFFER_16384:
2001                         rctl |= E1000_RCTL_SZ_16384;
2002                         break;
2003         }
2004
2005 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
2006         /* 82571 and greater support packet-split where the protocol
2007          * header is placed in skb->data and the packet data is
2008          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2009          * In the case of a non-split, skb->data is linearly filled,
2010          * followed by the page buffers.  Therefore, skb->data is
2011          * sized to hold the largest protocol header.
2012          */
2013         /* allocations using alloc_page take too long for regular MTU
2014          * so only enable packet split for jumbo frames */
2015         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2016         if ((adapter->hw.mac_type >= e1000_82571) && (pages <= 3) &&
2017             PAGE_SIZE <= 16384 && (rctl & E1000_RCTL_LPE))
2018                 adapter->rx_ps_pages = pages;
2019         else
2020                 adapter->rx_ps_pages = 0;
2021 #endif
2022         if (adapter->rx_ps_pages) {
2023                 /* Configure extra packet-split registers */
2024                 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
2025                 rfctl |= E1000_RFCTL_EXTEN;
2026                 /* disable packet split support for IPv6 extension headers,
2027                  * because some malformed IPv6 headers can hang the RX */
2028                 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
2029                           E1000_RFCTL_NEW_IPV6_EXT_DIS);
2030
2031                 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
2032
2033                 rctl |= E1000_RCTL_DTYP_PS;
2034
2035                 psrctl |= adapter->rx_ps_bsize0 >>
2036                         E1000_PSRCTL_BSIZE0_SHIFT;
2037
2038                 switch (adapter->rx_ps_pages) {
2039                 case 3:
2040                         psrctl |= PAGE_SIZE <<
2041                                 E1000_PSRCTL_BSIZE3_SHIFT;
2042                 case 2:
2043                         psrctl |= PAGE_SIZE <<
2044                                 E1000_PSRCTL_BSIZE2_SHIFT;
2045                 case 1:
2046                         psrctl |= PAGE_SIZE >>
2047                                 E1000_PSRCTL_BSIZE1_SHIFT;
2048                         break;
2049                 }
2050
2051                 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
2052         }
2053
2054         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2055 }
2056
2057 /**
2058  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
2059  * @adapter: board private structure
2060  *
2061  * Configure the Rx unit of the MAC after a reset.
2062  **/
2063
2064 static void
2065 e1000_configure_rx(struct e1000_adapter *adapter)
2066 {
2067         uint64_t rdba;
2068         struct e1000_hw *hw = &adapter->hw;
2069         uint32_t rdlen, rctl, rxcsum, ctrl_ext;
2070
2071         if (adapter->rx_ps_pages) {
2072                 /* this is a 32 byte descriptor */
2073                 rdlen = adapter->rx_ring[0].count *
2074                         sizeof(union e1000_rx_desc_packet_split);
2075                 adapter->clean_rx = e1000_clean_rx_irq_ps;
2076                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2077         } else {
2078                 rdlen = adapter->rx_ring[0].count *
2079                         sizeof(struct e1000_rx_desc);
2080                 adapter->clean_rx = e1000_clean_rx_irq;
2081                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2082         }
2083
2084         /* disable receives while setting up the descriptors */
2085         rctl = E1000_READ_REG(hw, RCTL);
2086         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
2087
2088         /* set the Receive Delay Timer Register */
2089         E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
2090
2091         if (hw->mac_type >= e1000_82540) {
2092                 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
2093                 if (adapter->itr_setting != 0)
2094                         E1000_WRITE_REG(hw, ITR,
2095                                 1000000000 / (adapter->itr * 256));
2096         }
2097
2098         if (hw->mac_type >= e1000_82571) {
2099                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
2100                 /* Reset delay timers after every interrupt */
2101                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
2102 #ifdef CONFIG_E1000_NAPI
2103                 /* Auto-Mask interrupts upon ICR access */
2104                 ctrl_ext |= E1000_CTRL_EXT_IAME;
2105                 E1000_WRITE_REG(hw, IAM, 0xffffffff);
2106 #endif
2107                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
2108                 E1000_WRITE_FLUSH(hw);
2109         }
2110
2111         /* Setup the HW Rx Head and Tail Descriptor Pointers and
2112          * the Base and Length of the Rx Descriptor Ring */
2113         switch (adapter->num_rx_queues) {
2114         case 1:
2115         default:
2116                 rdba = adapter->rx_ring[0].dma;
2117                 E1000_WRITE_REG(hw, RDLEN, rdlen);
2118                 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
2119                 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
2120                 E1000_WRITE_REG(hw, RDT, 0);
2121                 E1000_WRITE_REG(hw, RDH, 0);
2122                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
2123                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
2124                 break;
2125         }
2126
2127         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
2128         if (hw->mac_type >= e1000_82543) {
2129                 rxcsum = E1000_READ_REG(hw, RXCSUM);
2130                 if (adapter->rx_csum == TRUE) {
2131                         rxcsum |= E1000_RXCSUM_TUOFL;
2132
2133                         /* Enable 82571 IPv4 payload checksum for UDP fragments
2134                          * Must be used in conjunction with packet-split. */
2135                         if ((hw->mac_type >= e1000_82571) &&
2136                             (adapter->rx_ps_pages)) {
2137                                 rxcsum |= E1000_RXCSUM_IPPCSE;
2138                         }
2139                 } else {
2140                         rxcsum &= ~E1000_RXCSUM_TUOFL;
2141                         /* don't need to clear IPPCSE as it defaults to 0 */
2142                 }
2143                 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
2144         }
2145
2146         /* enable early receives on 82573, only takes effect if using > 2048
2147          * byte total frame size.  for example only for jumbo frames */
2148 #define E1000_ERT_2048 0x100
2149         if (hw->mac_type == e1000_82573)
2150                 E1000_WRITE_REG(hw, ERT, E1000_ERT_2048);
2151
2152         /* Enable Receives */
2153         E1000_WRITE_REG(hw, RCTL, rctl);
2154 }
2155
2156 /**
2157  * e1000_free_tx_resources - Free Tx Resources per Queue
2158  * @adapter: board private structure
2159  * @tx_ring: Tx descriptor ring for a specific queue
2160  *
2161  * Free all transmit software resources
2162  **/
2163
2164 static void
2165 e1000_free_tx_resources(struct e1000_adapter *adapter,
2166                         struct e1000_tx_ring *tx_ring)
2167 {
2168         struct pci_dev *pdev = adapter->pdev;
2169
2170         e1000_clean_tx_ring(adapter, tx_ring);
2171
2172         vfree(tx_ring->buffer_info);
2173         tx_ring->buffer_info = NULL;
2174
2175         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2176
2177         tx_ring->desc = NULL;
2178 }
2179
2180 /**
2181  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
2182  * @adapter: board private structure
2183  *
2184  * Free all transmit software resources
2185  **/
2186
2187 void
2188 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
2189 {
2190         int i;
2191
2192         for (i = 0; i < adapter->num_tx_queues; i++)
2193                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
2194 }
2195
2196 static void
2197 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
2198                         struct e1000_buffer *buffer_info)
2199 {
2200         if (buffer_info->dma) {
2201                 pci_unmap_page(adapter->pdev,
2202                                 buffer_info->dma,
2203                                 buffer_info->length,
2204                                 PCI_DMA_TODEVICE);
2205                 buffer_info->dma = 0;
2206         }
2207         if (buffer_info->skb) {
2208                 dev_kfree_skb_any(buffer_info->skb);
2209                 buffer_info->skb = NULL;
2210         }
2211         /* buffer_info must be completely set up in the transmit path */
2212 }
2213
2214 /**
2215  * e1000_clean_tx_ring - Free Tx Buffers
2216  * @adapter: board private structure
2217  * @tx_ring: ring to be cleaned
2218  **/
2219
2220 static void
2221 e1000_clean_tx_ring(struct e1000_adapter *adapter,
2222                     struct e1000_tx_ring *tx_ring)
2223 {
2224         struct e1000_buffer *buffer_info;
2225         unsigned long size;
2226         unsigned int i;
2227
2228         /* Free all the Tx ring sk_buffs */
2229
2230         for (i = 0; i < tx_ring->count; i++) {
2231                 buffer_info = &tx_ring->buffer_info[i];
2232                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2233         }
2234
2235         size = sizeof(struct e1000_buffer) * tx_ring->count;
2236         memset(tx_ring->buffer_info, 0, size);
2237
2238         /* Zero out the descriptor ring */
2239
2240         memset(tx_ring->desc, 0, tx_ring->size);
2241
2242         tx_ring->next_to_use = 0;
2243         tx_ring->next_to_clean = 0;
2244         tx_ring->last_tx_tso = 0;
2245
2246         writel(0, adapter->hw.hw_addr + tx_ring->tdh);
2247         writel(0, adapter->hw.hw_addr + tx_ring->tdt);
2248 }
2249
2250 /**
2251  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2252  * @adapter: board private structure
2253  **/
2254
2255 static void
2256 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2257 {
2258         int i;
2259
2260         for (i = 0; i < adapter->num_tx_queues; i++)
2261                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2262 }
2263
2264 /**
2265  * e1000_free_rx_resources - Free Rx Resources
2266  * @adapter: board private structure
2267  * @rx_ring: ring to clean the resources from
2268  *
2269  * Free all receive software resources
2270  **/
2271
2272 static void
2273 e1000_free_rx_resources(struct e1000_adapter *adapter,
2274                         struct e1000_rx_ring *rx_ring)
2275 {
2276         struct pci_dev *pdev = adapter->pdev;
2277
2278         e1000_clean_rx_ring(adapter, rx_ring);
2279
2280         vfree(rx_ring->buffer_info);
2281         rx_ring->buffer_info = NULL;
2282         kfree(rx_ring->ps_page);
2283         rx_ring->ps_page = NULL;
2284         kfree(rx_ring->ps_page_dma);
2285         rx_ring->ps_page_dma = NULL;
2286
2287         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2288
2289         rx_ring->desc = NULL;
2290 }
2291
2292 /**
2293  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2294  * @adapter: board private structure
2295  *
2296  * Free all receive software resources
2297  **/
2298
2299 void
2300 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2301 {
2302         int i;
2303
2304         for (i = 0; i < adapter->num_rx_queues; i++)
2305                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2306 }
2307
2308 /**
2309  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2310  * @adapter: board private structure
2311  * @rx_ring: ring to free buffers from
2312  **/
2313
2314 static void
2315 e1000_clean_rx_ring(struct e1000_adapter *adapter,
2316                     struct e1000_rx_ring *rx_ring)
2317 {
2318         struct e1000_buffer *buffer_info;
2319         struct e1000_ps_page *ps_page;
2320         struct e1000_ps_page_dma *ps_page_dma;
2321         struct pci_dev *pdev = adapter->pdev;
2322         unsigned long size;
2323         unsigned int i, j;
2324
2325         /* Free all the Rx ring sk_buffs */
2326         for (i = 0; i < rx_ring->count; i++) {
2327                 buffer_info = &rx_ring->buffer_info[i];
2328                 if (buffer_info->skb) {
2329                         pci_unmap_single(pdev,
2330                                          buffer_info->dma,
2331                                          buffer_info->length,
2332                                          PCI_DMA_FROMDEVICE);
2333
2334                         dev_kfree_skb(buffer_info->skb);
2335                         buffer_info->skb = NULL;
2336                 }
2337                 ps_page = &rx_ring->ps_page[i];
2338                 ps_page_dma = &rx_ring->ps_page_dma[i];
2339                 for (j = 0; j < adapter->rx_ps_pages; j++) {
2340                         if (!ps_page->ps_page[j]) break;
2341                         pci_unmap_page(pdev,
2342                                        ps_page_dma->ps_page_dma[j],
2343                                        PAGE_SIZE, PCI_DMA_FROMDEVICE);
2344                         ps_page_dma->ps_page_dma[j] = 0;
2345                         put_page(ps_page->ps_page[j]);
2346                         ps_page->ps_page[j] = NULL;
2347                 }
2348         }
2349
2350         size = sizeof(struct e1000_buffer) * rx_ring->count;
2351         memset(rx_ring->buffer_info, 0, size);
2352         size = sizeof(struct e1000_ps_page) * rx_ring->count;
2353         memset(rx_ring->ps_page, 0, size);
2354         size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
2355         memset(rx_ring->ps_page_dma, 0, size);
2356
2357         /* Zero out the descriptor ring */
2358
2359         memset(rx_ring->desc, 0, rx_ring->size);
2360
2361         rx_ring->next_to_clean = 0;
2362         rx_ring->next_to_use = 0;
2363
2364         writel(0, adapter->hw.hw_addr + rx_ring->rdh);
2365         writel(0, adapter->hw.hw_addr + rx_ring->rdt);
2366 }
2367
2368 /**
2369  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2370  * @adapter: board private structure
2371  **/
2372
2373 static void
2374 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2375 {
2376         int i;
2377
2378         for (i = 0; i < adapter->num_rx_queues; i++)
2379                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2380 }
2381
2382 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2383  * and memory write and invalidate disabled for certain operations
2384  */
2385 static void
2386 e1000_enter_82542_rst(struct e1000_adapter *adapter)
2387 {
2388         struct net_device *netdev = adapter->netdev;
2389         uint32_t rctl;
2390
2391         e1000_pci_clear_mwi(&adapter->hw);
2392
2393         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2394         rctl |= E1000_RCTL_RST;
2395         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2396         E1000_WRITE_FLUSH(&adapter->hw);
2397         mdelay(5);
2398
2399         if (netif_running(netdev))
2400                 e1000_clean_all_rx_rings(adapter);
2401 }
2402
2403 static void
2404 e1000_leave_82542_rst(struct e1000_adapter *adapter)
2405 {
2406         struct net_device *netdev = adapter->netdev;
2407         uint32_t rctl;
2408
2409         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2410         rctl &= ~E1000_RCTL_RST;
2411         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2412         E1000_WRITE_FLUSH(&adapter->hw);
2413         mdelay(5);
2414
2415         if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2416                 e1000_pci_set_mwi(&adapter->hw);
2417
2418         if (netif_running(netdev)) {
2419                 /* No need to loop, because 82542 supports only 1 queue */
2420                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2421                 e1000_configure_rx(adapter);
2422                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2423         }
2424 }
2425
2426 /**
2427  * e1000_set_mac - Change the Ethernet Address of the NIC
2428  * @netdev: network interface device structure
2429  * @p: pointer to an address structure
2430  *
2431  * Returns 0 on success, negative on failure
2432  **/
2433
2434 static int
2435 e1000_set_mac(struct net_device *netdev, void *p)
2436 {
2437         struct e1000_adapter *adapter = netdev_priv(netdev);
2438         struct sockaddr *addr = p;
2439
2440         if (!is_valid_ether_addr(addr->sa_data))
2441                 return -EADDRNOTAVAIL;
2442
2443         /* 82542 2.0 needs to be in reset to write receive address registers */
2444
2445         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2446                 e1000_enter_82542_rst(adapter);
2447
2448         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2449         memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2450
2451         e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2452
2453         /* With 82571 controllers, LAA may be overwritten (with the default)
2454          * due to controller reset from the other port. */
2455         if (adapter->hw.mac_type == e1000_82571) {
2456                 /* activate the work around */
2457                 adapter->hw.laa_is_present = 1;
2458
2459                 /* Hold a copy of the LAA in RAR[14] This is done so that
2460                  * between the time RAR[0] gets clobbered  and the time it
2461                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2462                  * of the RARs and no incoming packets directed to this port
2463                  * are dropped. Eventaully the LAA will be in RAR[0] and
2464                  * RAR[14] */
2465                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2466                                         E1000_RAR_ENTRIES - 1);
2467         }
2468
2469         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2470                 e1000_leave_82542_rst(adapter);
2471
2472         return 0;
2473 }
2474
2475 /**
2476  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2477  * @netdev: network interface device structure
2478  *
2479  * The set_rx_mode entry point is called whenever the unicast or multicast
2480  * address lists or the network interface flags are updated. This routine is
2481  * responsible for configuring the hardware for proper unicast, multicast,
2482  * promiscuous mode, and all-multi behavior.
2483  **/
2484
2485 static void
2486 e1000_set_rx_mode(struct net_device *netdev)
2487 {
2488         struct e1000_adapter *adapter = netdev_priv(netdev);
2489         struct e1000_hw *hw = &adapter->hw;
2490         struct dev_addr_list *uc_ptr;
2491         struct dev_addr_list *mc_ptr;
2492         uint32_t rctl;
2493         uint32_t hash_value;
2494         int i, rar_entries = E1000_RAR_ENTRIES;
2495         int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2496                                 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2497                                 E1000_NUM_MTA_REGISTERS;
2498
2499         if (adapter->hw.mac_type == e1000_ich8lan)
2500                 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2501
2502         /* reserve RAR[14] for LAA over-write work-around */
2503         if (adapter->hw.mac_type == e1000_82571)
2504                 rar_entries--;
2505
2506         /* Check for Promiscuous and All Multicast modes */
2507
2508         rctl = E1000_READ_REG(hw, RCTL);
2509
2510         if (netdev->flags & IFF_PROMISC) {
2511                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2512         } else if (netdev->flags & IFF_ALLMULTI) {
2513                 rctl |= E1000_RCTL_MPE;
2514         } else {
2515                 rctl &= ~E1000_RCTL_MPE;
2516         }
2517
2518         uc_ptr = NULL;
2519         if (netdev->uc_count > rar_entries - 1) {
2520                 rctl |= E1000_RCTL_UPE;
2521         } else if (!(netdev->flags & IFF_PROMISC)) {
2522                 rctl &= ~E1000_RCTL_UPE;
2523                 uc_ptr = netdev->uc_list;
2524         }
2525
2526         E1000_WRITE_REG(hw, RCTL, rctl);
2527
2528         /* 82542 2.0 needs to be in reset to write receive address registers */
2529
2530         if (hw->mac_type == e1000_82542_rev2_0)
2531                 e1000_enter_82542_rst(adapter);
2532
2533         /* load the first 14 addresses into the exact filters 1-14. Unicast
2534          * addresses take precedence to avoid disabling unicast filtering
2535          * when possible.
2536          *
2537          * RAR 0 is used for the station MAC adddress
2538          * if there are not 14 addresses, go ahead and clear the filters
2539          * -- with 82571 controllers only 0-13 entries are filled here
2540          */
2541         mc_ptr = netdev->mc_list;
2542
2543         for (i = 1; i < rar_entries; i++) {
2544                 if (uc_ptr) {
2545                         e1000_rar_set(hw, uc_ptr->da_addr, i);
2546                         uc_ptr = uc_ptr->next;
2547                 } else if (mc_ptr) {
2548                         e1000_rar_set(hw, mc_ptr->da_addr, i);
2549                         mc_ptr = mc_ptr->next;
2550                 } else {
2551                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2552                         E1000_WRITE_FLUSH(hw);
2553                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2554                         E1000_WRITE_FLUSH(hw);
2555                 }
2556         }
2557         WARN_ON(uc_ptr != NULL);
2558
2559         /* clear the old settings from the multicast hash table */
2560
2561         for (i = 0; i < mta_reg_count; i++) {
2562                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2563                 E1000_WRITE_FLUSH(hw);
2564         }
2565
2566         /* load any remaining addresses into the hash table */
2567
2568         for (; mc_ptr; mc_ptr = mc_ptr->next) {
2569                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->da_addr);
2570                 e1000_mta_set(hw, hash_value);
2571         }
2572
2573         if (hw->mac_type == e1000_82542_rev2_0)
2574                 e1000_leave_82542_rst(adapter);
2575 }
2576
2577 /* Need to wait a few seconds after link up to get diagnostic information from
2578  * the phy */
2579
2580 static void
2581 e1000_update_phy_info(unsigned long data)
2582 {
2583         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2584         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2585 }
2586
2587 /**
2588  * e1000_82547_tx_fifo_stall - Timer Call-back
2589  * @data: pointer to adapter cast into an unsigned long
2590  **/
2591
2592 static void
2593 e1000_82547_tx_fifo_stall(unsigned long data)
2594 {
2595         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2596         struct net_device *netdev = adapter->netdev;
2597         uint32_t tctl;
2598
2599         if (atomic_read(&adapter->tx_fifo_stall)) {
2600                 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2601                     E1000_READ_REG(&adapter->hw, TDH)) &&
2602                    (E1000_READ_REG(&adapter->hw, TDFT) ==
2603                     E1000_READ_REG(&adapter->hw, TDFH)) &&
2604                    (E1000_READ_REG(&adapter->hw, TDFTS) ==
2605                     E1000_READ_REG(&adapter->hw, TDFHS))) {
2606                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2607                         E1000_WRITE_REG(&adapter->hw, TCTL,
2608                                         tctl & ~E1000_TCTL_EN);
2609                         E1000_WRITE_REG(&adapter->hw, TDFT,
2610                                         adapter->tx_head_addr);
2611                         E1000_WRITE_REG(&adapter->hw, TDFH,
2612                                         adapter->tx_head_addr);
2613                         E1000_WRITE_REG(&adapter->hw, TDFTS,
2614                                         adapter->tx_head_addr);
2615                         E1000_WRITE_REG(&adapter->hw, TDFHS,
2616                                         adapter->tx_head_addr);
2617                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2618                         E1000_WRITE_FLUSH(&adapter->hw);
2619
2620                         adapter->tx_fifo_head = 0;
2621                         atomic_set(&adapter->tx_fifo_stall, 0);
2622                         netif_wake_queue(netdev);
2623                 } else {
2624                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2625                 }
2626         }
2627 }
2628
2629 /**
2630  * e1000_watchdog - Timer Call-back
2631  * @data: pointer to adapter cast into an unsigned long
2632  **/
2633 static void
2634 e1000_watchdog(unsigned long data)
2635 {
2636         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2637         struct net_device *netdev = adapter->netdev;
2638         struct e1000_tx_ring *txdr = adapter->tx_ring;
2639         uint32_t link, tctl;
2640         int32_t ret_val;
2641
2642         ret_val = e1000_check_for_link(&adapter->hw);
2643         if ((ret_val == E1000_ERR_PHY) &&
2644             (adapter->hw.phy_type == e1000_phy_igp_3) &&
2645             (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2646                 /* See e1000_kumeran_lock_loss_workaround() */
2647                 DPRINTK(LINK, INFO,
2648                         "Gigabit has been disabled, downgrading speed\n");
2649         }
2650
2651         if (adapter->hw.mac_type == e1000_82573) {
2652                 e1000_enable_tx_pkt_filtering(&adapter->hw);
2653                 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2654                         e1000_update_mng_vlan(adapter);
2655         }
2656
2657         if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2658            !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2659                 link = !adapter->hw.serdes_link_down;
2660         else
2661                 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2662
2663         if (link) {
2664                 if (!netif_carrier_ok(netdev)) {
2665                         uint32_t ctrl;
2666                         boolean_t txb2b = 1;
2667                         e1000_get_speed_and_duplex(&adapter->hw,
2668                                                    &adapter->link_speed,
2669                                                    &adapter->link_duplex);
2670
2671                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
2672                         DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s, "
2673                                 "Flow Control: %s\n",
2674                                 adapter->link_speed,
2675                                 adapter->link_duplex == FULL_DUPLEX ?
2676                                 "Full Duplex" : "Half Duplex",
2677                                 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2678                                 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2679                                 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2680                                 E1000_CTRL_TFCE) ? "TX" : "None" )));
2681
2682                         /* tweak tx_queue_len according to speed/duplex
2683                          * and adjust the timeout factor */
2684                         netdev->tx_queue_len = adapter->tx_queue_len;
2685                         adapter->tx_timeout_factor = 1;
2686                         switch (adapter->link_speed) {
2687                         case SPEED_10:
2688                                 txb2b = 0;
2689                                 netdev->tx_queue_len = 10;
2690                                 adapter->tx_timeout_factor = 8;
2691                                 break;
2692                         case SPEED_100:
2693                                 txb2b = 0;
2694                                 netdev->tx_queue_len = 100;
2695                                 /* maybe add some timeout factor ? */
2696                                 break;
2697                         }
2698
2699                         if ((adapter->hw.mac_type == e1000_82571 ||
2700                              adapter->hw.mac_type == e1000_82572) &&
2701                             txb2b == 0) {
2702                                 uint32_t tarc0;
2703                                 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
2704                                 tarc0 &= ~(1 << 21);
2705                                 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
2706                         }
2707
2708                         /* disable TSO for pcie and 10/100 speeds, to avoid
2709                          * some hardware issues */
2710                         if (!adapter->tso_force &&
2711                             adapter->hw.bus_type == e1000_bus_type_pci_express){
2712                                 switch (adapter->link_speed) {
2713                                 case SPEED_10:
2714                                 case SPEED_100:
2715                                         DPRINTK(PROBE,INFO,
2716                                         "10/100 speed: disabling TSO\n");
2717                                         netdev->features &= ~NETIF_F_TSO;
2718                                         netdev->features &= ~NETIF_F_TSO6;
2719                                         break;
2720                                 case SPEED_1000:
2721                                         netdev->features |= NETIF_F_TSO;
2722                                         netdev->features |= NETIF_F_TSO6;
2723                                         break;
2724                                 default:
2725                                         /* oops */
2726                                         break;
2727                                 }
2728                         }
2729
2730                         /* enable transmits in the hardware, need to do this
2731                          * after setting TARC0 */
2732                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2733                         tctl |= E1000_TCTL_EN;
2734                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2735
2736                         netif_carrier_on(netdev);
2737                         netif_wake_queue(netdev);
2738                         mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2739                         adapter->smartspeed = 0;
2740                 } else {
2741                         /* make sure the receive unit is started */
2742                         if (adapter->hw.rx_needs_kicking) {
2743                                 struct e1000_hw *hw = &adapter->hw;
2744                                 uint32_t rctl = E1000_READ_REG(hw, RCTL);
2745                                 E1000_WRITE_REG(hw, RCTL, rctl | E1000_RCTL_EN);
2746                         }
2747                 }
2748         } else {
2749                 if (netif_carrier_ok(netdev)) {
2750                         adapter->link_speed = 0;
2751                         adapter->link_duplex = 0;
2752                         DPRINTK(LINK, INFO, "NIC Link is Down\n");
2753                         netif_carrier_off(netdev);
2754                         netif_stop_queue(netdev);
2755                         mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2756
2757                         /* 80003ES2LAN workaround--
2758                          * For packet buffer work-around on link down event;
2759                          * disable receives in the ISR and
2760                          * reset device here in the watchdog
2761                          */
2762                         if (adapter->hw.mac_type == e1000_80003es2lan)
2763                                 /* reset device */
2764                                 schedule_work(&adapter->reset_task);
2765                 }
2766
2767                 e1000_smartspeed(adapter);
2768         }
2769
2770         e1000_update_stats(adapter);
2771
2772         adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2773         adapter->tpt_old = adapter->stats.tpt;
2774         adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2775         adapter->colc_old = adapter->stats.colc;
2776
2777         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2778         adapter->gorcl_old = adapter->stats.gorcl;
2779         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2780         adapter->gotcl_old = adapter->stats.gotcl;
2781
2782         e1000_update_adaptive(&adapter->hw);
2783
2784         if (!netif_carrier_ok(netdev)) {
2785                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2786                         /* We've lost link, so the controller stops DMA,
2787                          * but we've got queued Tx work that's never going
2788                          * to get done, so reset controller to flush Tx.
2789                          * (Do the reset outside of interrupt context). */
2790                         adapter->tx_timeout_count++;
2791                         schedule_work(&adapter->reset_task);
2792                 }
2793         }
2794
2795         /* Cause software interrupt to ensure rx ring is cleaned */
2796         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2797
2798         /* Force detection of hung controller every watchdog period */
2799         adapter->detect_tx_hung = TRUE;
2800
2801         /* With 82571 controllers, LAA may be overwritten due to controller
2802          * reset from the other port. Set the appropriate LAA in RAR[0] */
2803         if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2804                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2805
2806         /* Reset the timer */
2807         mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 2 * HZ));
2808 }
2809
2810 enum latency_range {
2811         lowest_latency = 0,
2812         low_latency = 1,
2813         bulk_latency = 2,
2814         latency_invalid = 255
2815 };
2816
2817 /**
2818  * e1000_update_itr - update the dynamic ITR value based on statistics
2819  *      Stores a new ITR value based on packets and byte
2820  *      counts during the last interrupt.  The advantage of per interrupt
2821  *      computation is faster updates and more accurate ITR for the current
2822  *      traffic pattern.  Constants in this function were computed
2823  *      based on theoretical maximum wire speed and thresholds were set based
2824  *      on testing data as well as attempting to minimize response time
2825  *      while increasing bulk throughput.
2826  *      this functionality is controlled by the InterruptThrottleRate module
2827  *      parameter (see e1000_param.c)
2828  * @adapter: pointer to adapter
2829  * @itr_setting: current adapter->itr
2830  * @packets: the number of packets during this measurement interval
2831  * @bytes: the number of bytes during this measurement interval
2832  **/
2833 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2834                                    uint16_t itr_setting,
2835                                    int packets,
2836                                    int bytes)
2837 {
2838         unsigned int retval = itr_setting;
2839         struct e1000_hw *hw = &adapter->hw;
2840
2841         if (unlikely(hw->mac_type < e1000_82540))
2842                 goto update_itr_done;
2843
2844         if (packets == 0)
2845                 goto update_itr_done;
2846
2847         switch (itr_setting) {
2848         case lowest_latency:
2849                 /* jumbo frames get bulk treatment*/
2850                 if (bytes/packets > 8000)
2851                         retval = bulk_latency;
2852                 else if ((packets < 5) && (bytes > 512))
2853                         retval = low_latency;
2854                 break;
2855         case low_latency:  /* 50 usec aka 20000 ints/s */
2856                 if (bytes > 10000) {
2857                         /* jumbo frames need bulk latency setting */
2858                         if (bytes/packets > 8000)
2859                                 retval = bulk_latency;
2860                         else if ((packets < 10) || ((bytes/packets) > 1200))
2861                                 retval = bulk_latency;
2862                         else if ((packets > 35))
2863                                 retval = lowest_latency;
2864                 } else if (bytes/packets > 2000)
2865                         retval = bulk_latency;
2866                 else if (packets <= 2 && bytes < 512)
2867                         retval = lowest_latency;
2868                 break;
2869         case bulk_latency: /* 250 usec aka 4000 ints/s */
2870                 if (bytes > 25000) {
2871                         if (packets > 35)
2872                                 retval = low_latency;
2873                 } else if (bytes < 6000) {
2874                         retval = low_latency;
2875                 }
2876                 break;
2877         }
2878
2879 update_itr_done:
2880         return retval;
2881 }
2882
2883 static void e1000_set_itr(struct e1000_adapter *adapter)
2884 {
2885         struct e1000_hw *hw = &adapter->hw;
2886         uint16_t current_itr;
2887         uint32_t new_itr = adapter->itr;
2888
2889         if (unlikely(hw->mac_type < e1000_82540))
2890                 return;
2891
2892         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2893         if (unlikely(adapter->link_speed != SPEED_1000)) {
2894                 current_itr = 0;
2895                 new_itr = 4000;
2896                 goto set_itr_now;
2897         }
2898
2899         adapter->tx_itr = e1000_update_itr(adapter,
2900                                     adapter->tx_itr,
2901                                     adapter->total_tx_packets,
2902                                     adapter->total_tx_bytes);
2903         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2904         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2905                 adapter->tx_itr = low_latency;
2906
2907         adapter->rx_itr = e1000_update_itr(adapter,
2908                                     adapter->rx_itr,
2909                                     adapter->total_rx_packets,
2910                                     adapter->total_rx_bytes);
2911         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2912         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2913                 adapter->rx_itr = low_latency;
2914
2915         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2916
2917         switch (current_itr) {
2918         /* counts and packets in update_itr are dependent on these numbers */
2919         case lowest_latency:
2920                 new_itr = 70000;
2921                 break;
2922         case low_latency:
2923                 new_itr = 20000; /* aka hwitr = ~200 */
2924                 break;
2925         case bulk_latency:
2926                 new_itr = 4000;
2927                 break;
2928         default:
2929                 break;
2930         }
2931
2932 set_itr_now:
2933         if (new_itr != adapter->itr) {
2934                 /* this attempts to bias the interrupt rate towards Bulk
2935                  * by adding intermediate steps when interrupt rate is
2936                  * increasing */
2937                 new_itr = new_itr > adapter->itr ?
2938                              min(adapter->itr + (new_itr >> 2), new_itr) :
2939                              new_itr;
2940                 adapter->itr = new_itr;
2941                 E1000_WRITE_REG(hw, ITR, 1000000000 / (new_itr * 256));
2942         }
2943
2944         return;
2945 }
2946
2947 #define E1000_TX_FLAGS_CSUM             0x00000001
2948 #define E1000_TX_FLAGS_VLAN             0x00000002
2949 #define E1000_TX_FLAGS_TSO              0x00000004
2950 #define E1000_TX_FLAGS_IPV4             0x00000008
2951 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2952 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2953
2954 static int
2955 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2956           struct sk_buff *skb)
2957 {
2958         struct e1000_context_desc *context_desc;
2959         struct e1000_buffer *buffer_info;
2960         unsigned int i;
2961         uint32_t cmd_length = 0;
2962         uint16_t ipcse = 0, tucse, mss;
2963         uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2964         int err;
2965
2966         if (skb_is_gso(skb)) {
2967                 if (skb_header_cloned(skb)) {
2968                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2969                         if (err)
2970                                 return err;
2971                 }
2972
2973                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2974                 mss = skb_shinfo(skb)->gso_size;
2975                 if (skb->protocol == htons(ETH_P_IP)) {
2976                         struct iphdr *iph = ip_hdr(skb);
2977                         iph->tot_len = 0;
2978                         iph->check = 0;
2979                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2980                                                                  iph->daddr, 0,
2981                                                                  IPPROTO_TCP,
2982                                                                  0);
2983                         cmd_length = E1000_TXD_CMD_IP;
2984                         ipcse = skb_transport_offset(skb) - 1;
2985                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2986                         ipv6_hdr(skb)->payload_len = 0;
2987                         tcp_hdr(skb)->check =
2988                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2989                                                  &ipv6_hdr(skb)->daddr,
2990                                                  0, IPPROTO_TCP, 0);
2991                         ipcse = 0;
2992                 }
2993                 ipcss = skb_network_offset(skb);
2994                 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2995                 tucss = skb_transport_offset(skb);
2996                 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2997                 tucse = 0;
2998
2999                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
3000                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
3001
3002                 i = tx_ring->next_to_use;
3003                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3004                 buffer_info = &tx_ring->buffer_info[i];
3005
3006                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
3007                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
3008                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
3009                 context_desc->upper_setup.tcp_fields.tucss = tucss;
3010                 context_desc->upper_setup.tcp_fields.tucso = tucso;
3011                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
3012                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
3013                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
3014                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
3015
3016                 buffer_info->time_stamp = jiffies;
3017                 buffer_info->next_to_watch = i;
3018
3019                 if (++i == tx_ring->count) i = 0;
3020                 tx_ring->next_to_use = i;
3021
3022                 return TRUE;
3023         }
3024         return FALSE;
3025 }
3026
3027 static boolean_t
3028 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
3029               struct sk_buff *skb)
3030 {
3031         struct e1000_context_desc *context_desc;
3032         struct e1000_buffer *buffer_info;
3033         unsigned int i;
3034         uint8_t css;
3035
3036         if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
3037                 css = skb_transport_offset(skb);
3038
3039                 i = tx_ring->next_to_use;
3040                 buffer_info = &tx_ring->buffer_info[i];
3041                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3042
3043                 context_desc->lower_setup.ip_config = 0;
3044                 context_desc->upper_setup.tcp_fields.tucss = css;
3045                 context_desc->upper_setup.tcp_fields.tucso =
3046                         css + skb->csum_offset;
3047                 context_desc->upper_setup.tcp_fields.tucse = 0;
3048                 context_desc->tcp_seg_setup.data = 0;
3049                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
3050
3051                 buffer_info->time_stamp = jiffies;
3052                 buffer_info->next_to_watch = i;
3053
3054                 if (unlikely(++i == tx_ring->count)) i = 0;
3055                 tx_ring->next_to_use = i;
3056
3057                 return TRUE;
3058         }
3059
3060         return FALSE;
3061 }
3062
3063 #define E1000_MAX_TXD_PWR       12
3064 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
3065
3066 static int
3067 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
3068              struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
3069              unsigned int nr_frags, unsigned int mss)
3070 {
3071         struct e1000_buffer *buffer_info;
3072         unsigned int len = skb->len;
3073         unsigned int offset = 0, size, count = 0, i;
3074         unsigned int f;
3075         len -= skb->data_len;
3076
3077         i = tx_ring->next_to_use;
3078
3079         while (len) {
3080                 buffer_info = &tx_ring->buffer_info[i];
3081                 size = min(len, max_per_txd);
3082                 /* Workaround for Controller erratum --
3083                  * descriptor for non-tso packet in a linear SKB that follows a
3084                  * tso gets written back prematurely before the data is fully
3085                  * DMA'd to the controller */
3086                 if (!skb->data_len && tx_ring->last_tx_tso &&
3087                     !skb_is_gso(skb)) {
3088                         tx_ring->last_tx_tso = 0;
3089                         size -= 4;
3090                 }
3091
3092                 /* Workaround for premature desc write-backs
3093                  * in TSO mode.  Append 4-byte sentinel desc */
3094                 if (unlikely(mss && !nr_frags && size == len && size > 8))
3095                         size -= 4;
3096                 /* work-around for errata 10 and it applies
3097                  * to all controllers in PCI-X mode
3098                  * The fix is to make sure that the first descriptor of a
3099                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
3100                  */
3101                 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
3102                                 (size > 2015) && count == 0))
3103                         size = 2015;
3104
3105                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
3106                  * terminating buffers within evenly-aligned dwords. */
3107                 if (unlikely(adapter->pcix_82544 &&
3108                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
3109                    size > 4))
3110                         size -= 4;
3111
3112                 buffer_info->length = size;
3113                 buffer_info->dma =
3114                         pci_map_single(adapter->pdev,
3115                                 skb->data + offset,
3116                                 size,
3117                                 PCI_DMA_TODEVICE);
3118                 buffer_info->time_stamp = jiffies;
3119                 buffer_info->next_to_watch = i;
3120
3121                 len -= size;
3122                 offset += size;
3123                 count++;
3124                 if (unlikely(++i == tx_ring->count)) i = 0;
3125         }
3126
3127         for (f = 0; f < nr_frags; f++) {
3128                 struct skb_frag_struct *frag;
3129
3130                 frag = &skb_shinfo(skb)->frags[f];
3131                 len = frag->size;
3132                 offset = frag->page_offset;
3133
3134                 while (len) {
3135                         buffer_info = &tx_ring->buffer_info[i];
3136                         size = min(len, max_per_txd);
3137                         /* Workaround for premature desc write-backs
3138                          * in TSO mode.  Append 4-byte sentinel desc */
3139                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
3140                                 size -= 4;
3141                         /* Workaround for potential 82544 hang in PCI-X.
3142                          * Avoid terminating buffers within evenly-aligned
3143                          * dwords. */
3144                         if (unlikely(adapter->pcix_82544 &&
3145                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
3146                            size > 4))
3147                                 size -= 4;
3148
3149                         buffer_info->length = size;
3150                         buffer_info->dma =
3151                                 pci_map_page(adapter->pdev,
3152                                         frag->page,
3153                                         offset,
3154                                         size,
3155                                         PCI_DMA_TODEVICE);
3156                         buffer_info->time_stamp = jiffies;
3157                         buffer_info->next_to_watch = i;
3158
3159                         len -= size;
3160                         offset += size;
3161                         count++;
3162                         if (unlikely(++i == tx_ring->count)) i = 0;
3163                 }
3164         }
3165
3166         i = (i == 0) ? tx_ring->count - 1 : i - 1;
3167         tx_ring->buffer_info[i].skb = skb;
3168         tx_ring->buffer_info[first].next_to_watch = i;
3169
3170         return count;
3171 }
3172
3173 static void
3174 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
3175                int tx_flags, int count)
3176 {
3177         struct e1000_tx_desc *tx_desc = NULL;
3178         struct e1000_buffer *buffer_info;
3179         uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3180         unsigned int i;
3181
3182         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
3183                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3184                              E1000_TXD_CMD_TSE;
3185                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3186
3187                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3188                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3189         }
3190
3191         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3192                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3193                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3194         }
3195
3196         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3197                 txd_lower |= E1000_TXD_CMD_VLE;
3198                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3199         }
3200
3201         i = tx_ring->next_to_use;
3202
3203         while (count--) {
3204                 buffer_info = &tx_ring->buffer_info[i];
3205                 tx_desc = E1000_TX_DESC(*tx_ring, i);
3206                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3207                 tx_desc->lower.data =
3208                         cpu_to_le32(txd_lower | buffer_info->length);
3209                 tx_desc->upper.data = cpu_to_le32(txd_upper);
3210                 if (unlikely(++i == tx_ring->count)) i = 0;
3211         }
3212
3213         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3214
3215         /* Force memory writes to complete before letting h/w
3216          * know there are new descriptors to fetch.  (Only
3217          * applicable for weak-ordered memory model archs,
3218          * such as IA-64). */
3219         wmb();
3220
3221         tx_ring->next_to_use = i;
3222         writel(i, adapter->hw.hw_addr + tx_ring->tdt);
3223         /* we need this if more than one processor can write to our tail
3224          * at a time, it syncronizes IO on IA64/Altix systems */
3225         mmiowb();
3226 }
3227
3228 /**
3229  * 82547 workaround to avoid controller hang in half-duplex environment.
3230  * The workaround is to avoid queuing a large packet that would span
3231  * the internal Tx FIFO ring boundary by notifying the stack to resend
3232  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3233  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3234  * to the beginning of the Tx FIFO.
3235  **/
3236
3237 #define E1000_FIFO_HDR                  0x10
3238 #define E1000_82547_PAD_LEN             0x3E0
3239
3240 static int
3241 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
3242 {
3243         uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3244         uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
3245
3246         skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3247
3248         if (adapter->link_duplex != HALF_DUPLEX)
3249                 goto no_fifo_stall_required;
3250
3251         if (atomic_read(&adapter->tx_fifo_stall))
3252                 return 1;
3253
3254         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3255                 atomic_set(&adapter->tx_fifo_stall, 1);
3256                 return 1;
3257         }
3258
3259 no_fifo_stall_required:
3260         adapter->tx_fifo_head += skb_fifo_len;
3261         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3262                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3263         return 0;
3264 }
3265
3266 #define MINIMUM_DHCP_PACKET_SIZE 282
3267 static int
3268 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
3269 {
3270         struct e1000_hw *hw =  &adapter->hw;
3271         uint16_t length, offset;
3272         if (vlan_tx_tag_present(skb)) {
3273                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
3274                         ( adapter->hw.mng_cookie.status &
3275                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
3276                         return 0;
3277         }
3278         if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
3279                 struct ethhdr *eth = (struct ethhdr *) skb->data;
3280                 if ((htons(ETH_P_IP) == eth->h_proto)) {
3281                         const struct iphdr *ip =
3282                                 (struct iphdr *)((uint8_t *)skb->data+14);
3283                         if (IPPROTO_UDP == ip->protocol) {
3284                                 struct udphdr *udp =
3285                                         (struct udphdr *)((uint8_t *)ip +
3286                                                 (ip->ihl << 2));
3287                                 if (ntohs(udp->dest) == 67) {
3288                                         offset = (uint8_t *)udp + 8 - skb->data;
3289                                         length = skb->len - offset;
3290
3291                                         return e1000_mng_write_dhcp_info(hw,
3292                                                         (uint8_t *)udp + 8,
3293                                                         length);
3294                                 }
3295                         }
3296                 }
3297         }
3298         return 0;
3299 }
3300
3301 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3302 {
3303         struct e1000_adapter *adapter = netdev_priv(netdev);
3304         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3305
3306         netif_stop_queue(netdev);
3307         /* Herbert's original patch had:
3308          *  smp_mb__after_netif_stop_queue();
3309          * but since that doesn't exist yet, just open code it. */
3310         smp_mb();
3311
3312         /* We need to check again in a case another CPU has just
3313          * made room available. */
3314         if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3315                 return -EBUSY;
3316
3317         /* A reprieve! */
3318         netif_start_queue(netdev);
3319         ++adapter->restart_queue;
3320         return 0;
3321 }
3322
3323 static int e1000_maybe_stop_tx(struct net_device *netdev,
3324                                struct e1000_tx_ring *tx_ring, int size)
3325 {
3326         if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3327                 return 0;
3328         return __e1000_maybe_stop_tx(netdev, size);
3329 }
3330
3331 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3332 static int
3333 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3334 {
3335         struct e1000_adapter *adapter = netdev_priv(netdev);
3336         struct e1000_tx_ring *tx_ring;
3337         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3338         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3339         unsigned int tx_flags = 0;
3340         unsigned int len = skb->len - skb->data_len;
3341         unsigned long flags;
3342         unsigned int nr_frags;
3343         unsigned int mss;
3344         int count = 0;
3345         int tso;
3346         unsigned int f;
3347
3348         /* This goes back to the question of how to logically map a tx queue
3349          * to a flow.  Right now, performance is impacted slightly negatively
3350          * if using multiple tx queues.  If the stack breaks away from a
3351          * single qdisc implementation, we can look at this again. */
3352         tx_ring = adapter->tx_ring;
3353
3354         if (unlikely(skb->len <= 0)) {
3355                 dev_kfree_skb_any(skb);
3356                 return NETDEV_TX_OK;
3357         }
3358
3359         /* 82571 and newer doesn't need the workaround that limited descriptor
3360          * length to 4kB */
3361         if (adapter->hw.mac_type >= e1000_82571)
3362                 max_per_txd = 8192;
3363
3364         mss = skb_shinfo(skb)->gso_size;
3365         /* The controller does a simple calculation to
3366          * make sure there is enough room in the FIFO before
3367          * initiating the DMA for each buffer.  The calc is:
3368          * 4 = ceil(buffer len/mss).  To make sure we don't
3369          * overrun the FIFO, adjust the max buffer len if mss
3370          * drops. */
3371         if (mss) {
3372                 uint8_t hdr_len;
3373                 max_per_txd = min(mss << 2, max_per_txd);
3374                 max_txd_pwr = fls(max_per_txd) - 1;
3375
3376                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3377                 * points to just header, pull a few bytes of payload from
3378                 * frags into skb->data */
3379                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3380                 if (skb->data_len && hdr_len == len) {
3381                         switch (adapter->hw.mac_type) {
3382                                 unsigned int pull_size;
3383                         case e1000_82544:
3384                                 /* Make sure we have room to chop off 4 bytes,
3385                                  * and that the end alignment will work out to
3386                                  * this hardware's requirements
3387                                  * NOTE: this is a TSO only workaround
3388                                  * if end byte alignment not correct move us
3389                                  * into the next dword */
3390                                 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
3391                                         break;
3392                                 /* fall through */
3393                         case e1000_82571:
3394                         case e1000_82572:
3395                         case e1000_82573:
3396                         case e1000_ich8lan:
3397                                 pull_size = min((unsigned int)4, skb->data_len);
3398                                 if (!__pskb_pull_tail(skb, pull_size)) {
3399                                         DPRINTK(DRV, ERR,
3400                                                 "__pskb_pull_tail failed.\n");
3401                                         dev_kfree_skb_any(skb);
3402                                         return NETDEV_TX_OK;
3403                                 }
3404                                 len = skb->len - skb->data_len;
3405                                 break;
3406                         default:
3407                                 /* do nothing */
3408                                 break;
3409                         }
3410                 }
3411         }
3412
3413         /* reserve a descriptor for the offload context */
3414         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3415                 count++;
3416         count++;
3417
3418         /* Controller Erratum workaround */
3419         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3420                 count++;
3421
3422         count += TXD_USE_COUNT(len, max_txd_pwr);
3423
3424         if (adapter->pcix_82544)
3425                 count++;
3426
3427         /* work-around for errata 10 and it applies to all controllers
3428          * in PCI-X mode, so add one more descriptor to the count
3429          */
3430         if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
3431                         (len > 2015)))
3432                 count++;
3433
3434         nr_frags = skb_shinfo(skb)->nr_frags;
3435         for (f = 0; f < nr_frags; f++)
3436                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3437                                        max_txd_pwr);
3438         if (adapter->pcix_82544)
3439                 count += nr_frags;
3440
3441
3442         if (adapter->hw.tx_pkt_filtering &&
3443             (adapter->hw.mac_type == e1000_82573))
3444                 e1000_transfer_dhcp_info(adapter, skb);
3445
3446         if (!spin_trylock_irqsave(&tx_ring->tx_lock, flags))
3447                 /* Collision - tell upper layer to requeue */
3448                 return NETDEV_TX_LOCKED;
3449
3450         /* need: count + 2 desc gap to keep tail from touching
3451          * head, otherwise try next time */
3452         if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) {
3453                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3454                 return NETDEV_TX_BUSY;
3455         }
3456
3457         if (unlikely(adapter->hw.mac_type == e1000_82547)) {
3458                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3459                         netif_stop_queue(netdev);
3460                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
3461                         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3462                         return NETDEV_TX_BUSY;
3463                 }
3464         }
3465
3466         if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3467                 tx_flags |= E1000_TX_FLAGS_VLAN;
3468                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3469         }
3470
3471         first = tx_ring->next_to_use;
3472
3473         tso = e1000_tso(adapter, tx_ring, skb);
3474         if (tso < 0) {
3475                 dev_kfree_skb_any(skb);
3476                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3477                 return NETDEV_TX_OK;
3478         }
3479
3480         if (likely(tso)) {
3481                 tx_ring->last_tx_tso = 1;
3482                 tx_flags |= E1000_TX_FLAGS_TSO;
3483         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3484                 tx_flags |= E1000_TX_FLAGS_CSUM;
3485
3486         /* Old method was to assume IPv4 packet by default if TSO was enabled.
3487          * 82571 hardware supports TSO capabilities for IPv6 as well...
3488          * no longer assume, we must. */
3489         if (likely(skb->protocol == htons(ETH_P_IP)))
3490                 tx_flags |= E1000_TX_FLAGS_IPV4;
3491
3492         e1000_tx_queue(adapter, tx_ring, tx_flags,
3493                        e1000_tx_map(adapter, tx_ring, skb, first,
3494                                     max_per_txd, nr_frags, mss));
3495
3496         netdev->trans_start = jiffies;
3497
3498         /* Make sure there is space in the ring for the next send. */
3499         e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3500
3501         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3502         return NETDEV_TX_OK;
3503 }
3504
3505 /**
3506  * e1000_tx_timeout - Respond to a Tx Hang
3507  * @netdev: network interface device structure
3508  **/
3509
3510 static void
3511 e1000_tx_timeout(struct net_device *netdev)
3512 {
3513         struct e1000_adapter *adapter = netdev_priv(netdev);
3514
3515         /* Do the reset outside of interrupt context */
3516         adapter->tx_timeout_count++;
3517         schedule_work(&adapter->reset_task);
3518 }
3519
3520 static void
3521 e1000_reset_task(struct work_struct *work)
3522 {
3523         struct e1000_adapter *adapter =
3524                 container_of(work, struct e1000_adapter, reset_task);
3525
3526         e1000_reinit_locked(adapter);
3527 }
3528
3529 /**
3530  * e1000_get_stats - Get System Network Statistics
3531  * @netdev: network interface device structure
3532  *
3533  * Returns the address of the device statistics structure.
3534  * The statistics are actually updated from the timer callback.
3535  **/
3536
3537 static struct net_device_stats *
3538 e1000_get_stats(struct net_device *netdev)
3539 {
3540         struct e1000_adapter *adapter = netdev_priv(netdev);
3541
3542         /* only return the current stats */
3543         return &adapter->net_stats;
3544 }
3545
3546 /**
3547  * e1000_change_mtu - Change the Maximum Transfer Unit
3548  * @netdev: network interface device structure
3549  * @new_mtu: new value for maximum frame size
3550  *
3551  * Returns 0 on success, negative on failure
3552  **/
3553
3554 static int
3555 e1000_change_mtu(struct net_device *netdev, int new_mtu)
3556 {
3557         struct e1000_adapter *adapter = netdev_priv(netdev);
3558         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3559         uint16_t eeprom_data = 0;
3560
3561         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3562             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3563                 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3564                 return -EINVAL;
3565         }
3566
3567         /* Adapter-specific max frame size limits. */
3568         switch (adapter->hw.mac_type) {
3569         case e1000_undefined ... e1000_82542_rev2_1:
3570         case e1000_ich8lan:
3571                 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3572                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3573                         return -EINVAL;
3574                 }
3575                 break;
3576         case e1000_82573:
3577                 /* Jumbo Frames not supported if:
3578                  * - this is not an 82573L device
3579                  * - ASPM is enabled in any way (0x1A bits 3:2) */
3580                 e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
3581                                   &eeprom_data);
3582                 if ((adapter->hw.device_id != E1000_DEV_ID_82573L) ||
3583                     (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3584                         if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3585                                 DPRINTK(PROBE, ERR,
3586                                         "Jumbo Frames not supported.\n");
3587                                 return -EINVAL;
3588                         }
3589                         break;
3590                 }
3591                 /* ERT will be enabled later to enable wire speed receives */
3592
3593                 /* fall through to get support */
3594         case e1000_82571:
3595         case e1000_82572:
3596         case e1000_80003es2lan:
3597 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3598                 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3599                         DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3600                         return -EINVAL;
3601                 }
3602                 break;
3603         default:
3604                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3605                 break;
3606         }
3607
3608         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3609          * means we reserve 2 more, this pushes us to allocate from the next
3610          * larger slab size
3611          * i.e. RXBUFFER_2048 --> size-4096 slab */
3612
3613         if (max_frame <= E1000_RXBUFFER_256)
3614                 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3615         else if (max_frame <= E1000_RXBUFFER_512)
3616                 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3617         else if (max_frame <= E1000_RXBUFFER_1024)
3618                 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3619         else if (max_frame <= E1000_RXBUFFER_2048)
3620                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3621         else if (max_frame <= E1000_RXBUFFER_4096)
3622                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3623         else if (max_frame <= E1000_RXBUFFER_8192)
3624                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3625         else if (max_frame <= E1000_RXBUFFER_16384)
3626                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3627
3628         /* adjust allocation if LPE protects us, and we aren't using SBP */
3629         if (!adapter->hw.tbi_compatibility_on &&
3630             ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3631              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3632                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3633
3634         netdev->mtu = new_mtu;
3635         adapter->hw.max_frame_size = max_frame;
3636
3637         if (netif_running(netdev))
3638                 e1000_reinit_locked(adapter);
3639
3640         return 0;
3641 }
3642
3643 /**
3644  * e1000_update_stats - Update the board statistics counters
3645  * @adapter: board private structure
3646  **/
3647
3648 void
3649 e1000_update_stats(struct e1000_adapter *adapter)
3650 {
3651         struct e1000_hw *hw = &adapter->hw;
3652         struct pci_dev *pdev = adapter->pdev;
3653         unsigned long flags;
3654         uint16_t phy_tmp;
3655
3656 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3657
3658         /*
3659          * Prevent stats update while adapter is being reset, or if the pci
3660          * connection is down.
3661          */
3662         if (adapter->link_speed == 0)
3663                 return;
3664         if (pci_channel_offline(pdev))
3665                 return;
3666
3667         spin_lock_irqsave(&adapter->stats_lock, flags);
3668
3669         /* these counters are modified from e1000_tbi_adjust_stats,
3670          * called from the interrupt context, so they must only
3671          * be written while holding adapter->stats_lock
3672          */
3673
3674         adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3675         adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3676         adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3677         adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3678         adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3679         adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3680         adapter->stats.roc += E1000_READ_REG(hw, ROC);
3681
3682         if (adapter->hw.mac_type != e1000_ich8lan) {
3683                 adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3684                 adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3685                 adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3686                 adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3687                 adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3688                 adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3689         }
3690
3691         adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3692         adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3693         adapter->stats.scc += E1000_READ_REG(hw, SCC);
3694         adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3695         adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3696         adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3697         adapter->stats.dc += E1000_READ_REG(hw, DC);
3698         adapter->stats.sec += E1000_READ_REG(hw, SEC);
3699         adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3700         adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3701         adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3702         adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3703         adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3704         adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3705         adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3706         adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3707         adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3708         adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3709         adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3710         adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3711         adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3712         adapter->stats.torl += E1000_READ_REG(hw, TORL);
3713         adapter->stats.torh += E1000_READ_REG(hw, TORH);
3714         adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3715         adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3716         adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3717
3718         if (adapter->hw.mac_type != e1000_ich8lan) {
3719                 adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3720                 adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3721                 adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3722                 adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3723                 adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3724                 adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3725         }
3726
3727         adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3728         adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3729
3730         /* used for adaptive IFS */
3731
3732         hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3733         adapter->stats.tpt += hw->tx_packet_delta;
3734         hw->collision_delta = E1000_READ_REG(hw, COLC);
3735         adapter->stats.colc += hw->collision_delta;
3736
3737         if (hw->mac_type >= e1000_82543) {
3738                 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3739                 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3740                 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3741                 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3742                 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3743                 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3744         }
3745         if (hw->mac_type > e1000_82547_rev_2) {
3746                 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3747                 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3748
3749                 if (adapter->hw.mac_type != e1000_ich8lan) {
3750                         adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3751                         adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3752                         adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3753                         adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3754                         adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3755                         adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3756                         adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3757                 }
3758         }
3759
3760         /* Fill out the OS statistics structure */
3761         adapter->net_stats.multicast = adapter->stats.mprc;
3762         adapter->net_stats.collisions = adapter->stats.colc;
3763
3764         /* Rx Errors */
3765
3766         /* RLEC on some newer hardware can be incorrect so build
3767         * our own version based on RUC and ROC */
3768         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3769                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3770                 adapter->stats.ruc + adapter->stats.roc +
3771                 adapter->stats.cexterr;
3772         adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3773         adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3774         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3775         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3776         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3777
3778         /* Tx Errors */
3779         adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3780         adapter->net_stats.tx_errors = adapter->stats.txerrc;
3781         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3782         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3783         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3784         if (adapter->hw.bad_tx_carr_stats_fd &&
3785             adapter->link_duplex == FULL_DUPLEX) {
3786                 adapter->net_stats.tx_carrier_errors = 0;
3787                 adapter->stats.tncrs = 0;
3788         }
3789
3790         /* Tx Dropped needs to be maintained elsewhere */
3791
3792         /* Phy Stats */
3793         if (hw->media_type == e1000_media_type_copper) {
3794                 if ((adapter->link_speed == SPEED_1000) &&
3795                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3796                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3797                         adapter->phy_stats.idle_errors += phy_tmp;
3798                 }
3799
3800                 if ((hw->mac_type <= e1000_82546) &&
3801                    (hw->phy_type == e1000_phy_m88) &&
3802                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3803                         adapter->phy_stats.receive_errors += phy_tmp;
3804         }
3805
3806         /* Management Stats */
3807         if (adapter->hw.has_smbus) {
3808                 adapter->stats.mgptc += E1000_READ_REG(hw, MGTPTC);
3809                 adapter->stats.mgprc += E1000_READ_REG(hw, MGTPRC);
3810                 adapter->stats.mgpdc += E1000_READ_REG(hw, MGTPDC);
3811         }
3812
3813         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3814 }
3815
3816 /**
3817  * e1000_intr_msi - Interrupt Handler
3818  * @irq: interrupt number
3819  * @data: pointer to a network interface device structure
3820  **/
3821
3822 static irqreturn_t
3823 e1000_intr_msi(int irq, void *data)
3824 {
3825         struct net_device *netdev = data;
3826         struct e1000_adapter *adapter = netdev_priv(netdev);
3827         struct e1000_hw *hw = &adapter->hw;
3828 #ifndef CONFIG_E1000_NAPI
3829         int i;
3830 #endif
3831         uint32_t icr = E1000_READ_REG(hw, ICR);
3832
3833 #ifdef CONFIG_E1000_NAPI
3834         /* read ICR disables interrupts using IAM, so keep up with our
3835          * enable/disable accounting */
3836         atomic_inc(&adapter->irq_sem);
3837 #endif
3838         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3839                 hw->get_link_status = 1;
3840                 /* 80003ES2LAN workaround-- For packet buffer work-around on
3841                  * link down event; disable receives here in the ISR and reset
3842                  * adapter in watchdog */
3843                 if (netif_carrier_ok(netdev) &&
3844                     (adapter->hw.mac_type == e1000_80003es2lan)) {
3845                         /* disable receives */
3846                         uint32_t rctl = E1000_READ_REG(hw, RCTL);
3847                         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3848                 }
3849                 /* guard against interrupt when we're going down */
3850                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3851                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3852         }
3853
3854 #ifdef CONFIG_E1000_NAPI
3855         if (likely(netif_rx_schedule_prep(netdev, &adapter->napi))) {
3856                 adapter->total_tx_bytes = 0;
3857                 adapter->total_tx_packets = 0;
3858                 adapter->total_rx_bytes = 0;
3859                 adapter->total_rx_packets = 0;
3860                 __netif_rx_schedule(netdev, &adapter->napi);
3861         } else
3862                 e1000_irq_enable(adapter);
3863 #else
3864         adapter->total_tx_bytes = 0;
3865         adapter->total_rx_bytes = 0;
3866         adapter->total_tx_packets = 0;
3867         adapter->total_rx_packets = 0;
3868
3869         for (i = 0; i < E1000_MAX_INTR; i++)
3870                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3871                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3872                         break;
3873
3874         if (likely(adapter->itr_setting & 3))
3875                 e1000_set_itr(adapter);
3876 #endif
3877
3878         return IRQ_HANDLED;
3879 }
3880
3881 /**
3882  * e1000_intr - Interrupt Handler
3883  * @irq: interrupt number
3884  * @data: pointer to a network interface device structure
3885  **/
3886
3887 static irqreturn_t
3888 e1000_intr(int irq, void *data)
3889 {
3890         struct net_device *netdev = data;
3891         struct e1000_adapter *adapter = netdev_priv(netdev);
3892         struct e1000_hw *hw = &adapter->hw;
3893         uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
3894 #ifndef CONFIG_E1000_NAPI
3895         int i;
3896 #endif
3897         if (unlikely(!icr))
3898                 return IRQ_NONE;  /* Not our interrupt */
3899
3900 #ifdef CONFIG_E1000_NAPI
3901         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3902          * not set, then the adapter didn't send an interrupt */
3903         if (unlikely(hw->mac_type >= e1000_82571 &&
3904                      !(icr & E1000_ICR_INT_ASSERTED)))
3905                 return IRQ_NONE;
3906
3907         /* Interrupt Auto-Mask...upon reading ICR,
3908          * interrupts are masked.  No need for the
3909          * IMC write, but it does mean we should
3910          * account for it ASAP. */
3911         if (likely(hw->mac_type >= e1000_82571))
3912                 atomic_inc(&adapter->irq_sem);
3913 #endif
3914
3915         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3916                 hw->get_link_status = 1;
3917                 /* 80003ES2LAN workaround--
3918                  * For packet buffer work-around on link down event;
3919                  * disable receives here in the ISR and
3920                  * reset adapter in watchdog
3921                  */
3922                 if (netif_carrier_ok(netdev) &&
3923                     (adapter->hw.mac_type == e1000_80003es2lan)) {
3924                         /* disable receives */
3925                         rctl = E1000_READ_REG(hw, RCTL);
3926                         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3927                 }
3928                 /* guard against interrupt when we're going down */
3929                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3930                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3931         }
3932
3933 #ifdef CONFIG_E1000_NAPI
3934         if (unlikely(hw->mac_type < e1000_82571)) {
3935                 /* disable interrupts, without the synchronize_irq bit */
3936                 atomic_inc(&adapter->irq_sem);
3937                 E1000_WRITE_REG(hw, IMC, ~0);
3938                 E1000_WRITE_FLUSH(hw);
3939         }
3940         if (likely(netif_rx_schedule_prep(netdev, &adapter->napi))) {
3941                 adapter->total_tx_bytes = 0;
3942                 adapter->total_tx_packets = 0;
3943                 adapter->total_rx_bytes = 0;
3944                 adapter->total_rx_packets = 0;
3945                 __netif_rx_schedule(netdev, &adapter->napi);
3946         } else
3947                 /* this really should not happen! if it does it is basically a
3948                  * bug, but not a hard error, so enable ints and continue */
3949                 e1000_irq_enable(adapter);
3950 #else
3951         /* Writing IMC and IMS is needed for 82547.
3952          * Due to Hub Link bus being occupied, an interrupt
3953          * de-assertion message is not able to be sent.
3954          * When an interrupt assertion message is generated later,
3955          * two messages are re-ordered and sent out.
3956          * That causes APIC to think 82547 is in de-assertion
3957          * state, while 82547 is in assertion state, resulting
3958          * in dead lock. Writing IMC forces 82547 into
3959          * de-assertion state.
3960          */
3961         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
3962                 atomic_inc(&adapter->irq_sem);
3963                 E1000_WRITE_REG(hw, IMC, ~0);
3964         }
3965
3966         adapter->total_tx_bytes = 0;
3967         adapter->total_rx_bytes = 0;
3968         adapter->total_tx_packets = 0;
3969         adapter->total_rx_packets = 0;
3970
3971         for (i = 0; i < E1000_MAX_INTR; i++)
3972                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3973                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3974                         break;
3975
3976         if (likely(adapter->itr_setting & 3))
3977                 e1000_set_itr(adapter);
3978
3979         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3980                 e1000_irq_enable(adapter);
3981
3982 #endif
3983         return IRQ_HANDLED;
3984 }
3985
3986 #ifdef CONFIG_E1000_NAPI
3987 /**
3988  * e1000_clean - NAPI Rx polling callback
3989  * @adapter: board private structure
3990  **/
3991
3992 static int
3993 e1000_clean(struct napi_struct *napi, int budget)
3994 {
3995         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3996         struct net_device *poll_dev = adapter->netdev;
3997         int tx_cleaned = 0, work_done = 0;
3998
3999         /* Must NOT use netdev_priv macro here. */
4000         adapter = poll_dev->priv;
4001
4002         /* e1000_clean is called per-cpu.  This lock protects
4003          * tx_ring[0] from being cleaned by multiple cpus
4004          * simultaneously.  A failure obtaining the lock means
4005          * tx_ring[0] is currently being cleaned anyway. */
4006         if (spin_trylock(&adapter->tx_queue_lock)) {
4007                 tx_cleaned = e1000_clean_tx_irq(adapter,
4008                                                 &adapter->tx_ring[0]);
4009                 spin_unlock(&adapter->tx_queue_lock);
4010         }
4011
4012         adapter->clean_rx(adapter, &adapter->rx_ring[0],
4013                           &work_done, budget);
4014
4015         if (tx_cleaned)
4016                 work_done = budget;
4017
4018         /* If budget not fully consumed, exit the polling mode */
4019         if (work_done < budget) {
4020                 if (likely(adapter->itr_setting & 3))
4021                         e1000_set_itr(adapter);
4022                 netif_rx_complete(poll_dev, napi);
4023                 e1000_irq_enable(adapter);
4024         }
4025
4026         return work_done;
4027 }
4028
4029 #endif
4030 /**
4031  * e1000_clean_tx_irq - Reclaim resources after transmit completes
4032  * @adapter: board private structure
4033  **/
4034
4035 static boolean_t
4036 e1000_clean_tx_irq(struct e1000_adapter *adapter,
4037                    struct e1000_tx_ring *tx_ring)
4038 {
4039         struct net_device *netdev = adapter->netdev;
4040         struct e1000_tx_desc *tx_desc, *eop_desc;
4041         struct e1000_buffer *buffer_info;
4042         unsigned int i, eop;
4043 #ifdef CONFIG_E1000_NAPI
4044         unsigned int count = 0;
4045 #endif
4046         boolean_t cleaned = FALSE;
4047         unsigned int total_tx_bytes=0, total_tx_packets=0;
4048
4049         i = tx_ring->next_to_clean;
4050         eop = tx_ring->buffer_info[i].next_to_watch;
4051         eop_desc = E1000_TX_DESC(*tx_ring, eop);
4052
4053         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
4054                 for (cleaned = FALSE; !cleaned; ) {
4055                         tx_desc = E1000_TX_DESC(*tx_ring, i);
4056                         buffer_info = &tx_ring->buffer_info[i];
4057                         cleaned = (i == eop);
4058
4059                         if (cleaned) {
4060                                 struct sk_buff *skb = buffer_info->skb;
4061                                 unsigned int segs, bytecount;
4062                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
4063                                 /* multiply data chunks by size of headers */
4064                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
4065                                             skb->len;
4066                                 total_tx_packets += segs;
4067                                 total_tx_bytes += bytecount;
4068                         }
4069                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
4070                         tx_desc->upper.data = 0;
4071
4072                         if (unlikely(++i == tx_ring->count)) i = 0;
4073                 }
4074
4075                 eop = tx_ring->buffer_info[i].next_to_watch;
4076                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
4077 #ifdef CONFIG_E1000_NAPI
4078 #define E1000_TX_WEIGHT 64
4079                 /* weight of a sort for tx, to avoid endless transmit cleanup */
4080                 if (count++ == E1000_TX_WEIGHT) break;
4081 #endif
4082         }
4083
4084         tx_ring->next_to_clean = i;
4085
4086 #define TX_WAKE_THRESHOLD 32
4087         if (unlikely(cleaned && netif_carrier_ok(netdev) &&
4088                      E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
4089                 /* Make sure that anybody stopping the queue after this
4090                  * sees the new next_to_clean.
4091                  */
4092                 smp_mb();
4093                 if (netif_queue_stopped(netdev)) {
4094                         netif_wake_queue(netdev);
4095                         ++adapter->restart_queue;
4096                 }
4097         }
4098
4099         if (adapter->detect_tx_hung) {
4100                 /* Detect a transmit hang in hardware, this serializes the
4101                  * check with the clearing of time_stamp and movement of i */
4102                 adapter->detect_tx_hung = FALSE;
4103                 if (tx_ring->buffer_info[eop].dma &&
4104                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
4105                                (adapter->tx_timeout_factor * HZ))
4106                     && !(E1000_READ_REG(&adapter->hw, STATUS) &
4107                          E1000_STATUS_TXOFF)) {
4108
4109                         /* detected Tx unit hang */
4110                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
4111                                         "  Tx Queue             <%lu>\n"
4112                                         "  TDH                  <%x>\n"
4113                                         "  TDT                  <%x>\n"
4114                                         "  next_to_use          <%x>\n"
4115                                         "  next_to_clean        <%x>\n"
4116                                         "buffer_info[next_to_clean]\n"
4117                                         "  time_stamp           <%lx>\n"
4118                                         "  next_to_watch        <%x>\n"
4119                                         "  jiffies              <%lx>\n"
4120                                         "  next_to_watch.status <%x>\n",
4121                                 (unsigned long)((tx_ring - adapter->tx_ring) /
4122                                         sizeof(struct e1000_tx_ring)),
4123                                 readl(adapter->hw.hw_addr + tx_ring->tdh),
4124                                 readl(adapter->hw.hw_addr + tx_ring->tdt),
4125                                 tx_ring->next_to_use,
4126                                 tx_ring->next_to_clean,
4127                                 tx_ring->buffer_info[eop].time_stamp,
4128                                 eop,
4129                                 jiffies,
4130                                 eop_desc->upper.fields.status);
4131                         netif_stop_queue(netdev);
4132                 }
4133         }
4134         adapter->total_tx_bytes += total_tx_bytes;
4135         adapter->total_tx_packets += total_tx_packets;
4136         adapter->net_stats.tx_bytes += total_tx_bytes;
4137         adapter->net_stats.tx_packets += total_tx_packets;
4138         return cleaned;
4139 }
4140
4141 /**
4142  * e1000_rx_checksum - Receive Checksum Offload for 82543
4143  * @adapter:     board private structure
4144  * @status_err:  receive descriptor status and error fields
4145  * @csum:        receive descriptor csum field
4146  * @sk_buff:     socket buffer with received data
4147  **/
4148
4149 static void
4150 e1000_rx_checksum(struct e1000_adapter *adapter,
4151                   uint32_t status_err, uint32_t csum,
4152                   struct sk_buff *skb)
4153 {
4154         uint16_t status = (uint16_t)status_err;
4155         uint8_t errors = (uint8_t)(status_err >> 24);
4156         skb->ip_summed = CHECKSUM_NONE;
4157
4158         /* 82543 or newer only */
4159         if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
4160         /* Ignore Checksum bit is set */
4161         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
4162         /* TCP/UDP checksum error bit is set */
4163         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
4164                 /* let the stack verify checksum errors */
4165                 adapter->hw_csum_err++;
4166                 return;
4167         }
4168         /* TCP/UDP Checksum has not been calculated */
4169         if (adapter->hw.mac_type <= e1000_82547_rev_2) {
4170                 if (!(status & E1000_RXD_STAT_TCPCS))
4171                         return;
4172         } else {
4173                 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
4174                         return;
4175         }
4176         /* It must be a TCP or UDP packet with a valid checksum */
4177         if (likely(status & E1000_RXD_STAT_TCPCS)) {
4178                 /* TCP checksum is good */
4179                 skb->ip_summed = CHECKSUM_UNNECESSARY;
4180         } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
4181                 /* IP fragment with UDP payload */
4182                 /* Hardware complements the payload checksum, so we undo it
4183                  * and then put the value in host order for further stack use.
4184                  */
4185                 __sum16 sum = (__force __sum16)htons(csum);
4186                 skb->csum = csum_unfold(~sum);
4187                 skb->ip_summed = CHECKSUM_COMPLETE;
4188         }
4189         adapter->hw_csum_good++;
4190 }
4191
4192 /**
4193  * e1000_clean_rx_irq - Send received data up the network stack; legacy
4194  * @adapter: board private structure
4195  **/
4196
4197 static boolean_t
4198 #ifdef CONFIG_E1000_NAPI
4199 e1000_clean_rx_irq(struct e1000_adapter *adapter,
4200                    struct e1000_rx_ring *rx_ring,
4201                    int *work_done, int work_to_do)
4202 #else
4203 e1000_clean_rx_irq(struct e1000_adapter *adapter,
4204                    struct e1000_rx_ring *rx_ring)
4205 #endif
4206 {
4207         struct net_device *netdev = adapter->netdev;
4208         struct pci_dev *pdev = adapter->pdev;
4209         struct e1000_rx_desc *rx_desc, *next_rxd;
4210         struct e1000_buffer *buffer_info, *next_buffer;
4211         unsigned long flags;
4212         uint32_t length;
4213         uint8_t last_byte;
4214         unsigned int i;
4215         int cleaned_count = 0;
4216         boolean_t cleaned = FALSE;
4217         unsigned int total_rx_bytes=0, total_rx_packets=0;
4218
4219         i = rx_ring->next_to_clean;
4220         rx_desc = E1000_RX_DESC(*rx_ring, i);
4221         buffer_info = &rx_ring->buffer_info[i];
4222
4223         while (rx_desc->status & E1000_RXD_STAT_DD) {
4224                 struct sk_buff *skb;
4225                 u8 status;
4226
4227 #ifdef CONFIG_E1000_NAPI
4228                 if (*work_done >= work_to_do)
4229                         break;
4230                 (*work_done)++;
4231 #endif
4232                 status = rx_desc->status;
4233                 skb = buffer_info->skb;
4234                 buffer_info->skb = NULL;
4235
4236                 prefetch(skb->data - NET_IP_ALIGN);
4237
4238                 if (++i == rx_ring->count) i = 0;
4239                 next_rxd = E1000_RX_DESC(*rx_ring, i);
4240                 prefetch(next_rxd);
4241
4242                 next_buffer = &rx_ring->buffer_info[i];
4243
4244                 cleaned = TRUE;
4245                 cleaned_count++;
4246                 pci_unmap_single(pdev,
4247                                  buffer_info->dma,
4248                                  buffer_info->length,
4249                                  PCI_DMA_FROMDEVICE);
4250
4251                 length = le16_to_cpu(rx_desc->length);
4252
4253                 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
4254                         /* All receives must fit into a single buffer */
4255                         E1000_DBG("%s: Receive packet consumed multiple"
4256                                   " buffers\n", netdev->name);
4257                         /* recycle */
4258                         buffer_info->skb = skb;
4259                         goto next_desc;
4260                 }
4261
4262                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4263                         last_byte = *(skb->data + length - 1);
4264                         if (TBI_ACCEPT(&adapter->hw, status,
4265                                       rx_desc->errors, length, last_byte)) {
4266                                 spin_lock_irqsave(&adapter->stats_lock, flags);
4267                                 e1000_tbi_adjust_stats(&adapter->hw,
4268                                                        &adapter->stats,
4269                                                        length, skb->data);
4270                                 spin_unlock_irqrestore(&adapter->stats_lock,
4271                                                        flags);
4272                                 length--;
4273                         } else {
4274                                 /* recycle */
4275                                 buffer_info->skb = skb;
4276                                 goto next_desc;
4277                         }
4278                 }
4279
4280                 /* adjust length to remove Ethernet CRC, this must be
4281                  * done after the TBI_ACCEPT workaround above */
4282                 length -= 4;
4283
4284                 /* probably a little skewed due to removing CRC */
4285                 total_rx_bytes += length;
4286                 total_rx_packets++;
4287
4288                 /* code added for copybreak, this should improve
4289                  * performance for small packets with large amounts
4290                  * of reassembly being done in the stack */
4291                 if (length < copybreak) {
4292                         struct sk_buff *new_skb =
4293                             netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
4294                         if (new_skb) {
4295                                 skb_reserve(new_skb, NET_IP_ALIGN);
4296                                 skb_copy_to_linear_data_offset(new_skb,
4297                                                                -NET_IP_ALIGN,
4298                                                                (skb->data -
4299                                                                 NET_IP_ALIGN),
4300                                                                (length +
4301                                                                 NET_IP_ALIGN));
4302                                 /* save the skb in buffer_info as good */
4303                                 buffer_info->skb = skb;
4304                                 skb = new_skb;
4305                         }
4306                         /* else just continue with the old one */
4307                 }
4308                 /* end copybreak code */
4309                 skb_put(skb, length);
4310
4311                 /* Receive Checksum Offload */
4312                 e1000_rx_checksum(adapter,
4313                                   (uint32_t)(status) |
4314                                   ((uint32_t)(rx_desc->errors) << 24),
4315                                   le16_to_cpu(rx_desc->csum), skb);
4316
4317                 skb->protocol = eth_type_trans(skb, netdev);
4318 #ifdef CONFIG_E1000_NAPI
4319                 if (unlikely(adapter->vlgrp &&
4320                             (status & E1000_RXD_STAT_VP))) {
4321                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4322                                                  le16_to_cpu(rx_desc->special) &
4323                                                  E1000_RXD_SPC_VLAN_MASK);
4324                 } else {
4325                         netif_receive_skb(skb);
4326                 }
4327 #else /* CONFIG_E1000_NAPI */
4328                 if (unlikely(adapter->vlgrp &&
4329                             (status & E1000_RXD_STAT_VP))) {
4330                         vlan_hwaccel_rx(skb, adapter->vlgrp,
4331                                         le16_to_cpu(rx_desc->special) &
4332                                         E1000_RXD_SPC_VLAN_MASK);
4333                 } else {
4334                         netif_rx(skb);
4335                 }
4336 #endif /* CONFIG_E1000_NAPI */
4337                 netdev->last_rx = jiffies;
4338
4339 next_desc:
4340                 rx_desc->status = 0;
4341
4342                 /* return some buffers to hardware, one at a time is too slow */
4343                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4344                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4345                         cleaned_count = 0;
4346                 }
4347
4348                 /* use prefetched values */
4349                 rx_desc = next_rxd;
4350                 buffer_info = next_buffer;
4351         }
4352         rx_ring->next_to_clean = i;
4353
4354         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4355         if (cleaned_count)
4356                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4357
4358         adapter->total_rx_packets += total_rx_packets;
4359         adapter->total_rx_bytes += total_rx_bytes;
4360         adapter->net_stats.rx_bytes += total_rx_bytes;
4361         adapter->net_stats.rx_packets += total_rx_packets;
4362         return cleaned;
4363 }
4364
4365 /**
4366  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
4367  * @adapter: board private structure
4368  **/
4369
4370 static boolean_t
4371 #ifdef CONFIG_E1000_NAPI
4372 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
4373                       struct e1000_rx_ring *rx_ring,
4374                       int *work_done, int work_to_do)
4375 #else
4376 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
4377                       struct e1000_rx_ring *rx_ring)
4378 #endif
4379 {
4380         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
4381         struct net_device *netdev = adapter->netdev;
4382         struct pci_dev *pdev = adapter->pdev;
4383         struct e1000_buffer *buffer_info, *next_buffer;
4384         struct e1000_ps_page *ps_page;
4385         struct e1000_ps_page_dma *ps_page_dma;
4386         struct sk_buff *skb;
4387         unsigned int i, j;
4388         uint32_t length, staterr;
4389         int cleaned_count = 0;
4390         boolean_t cleaned = FALSE;
4391         unsigned int total_rx_bytes=0, total_rx_packets=0;
4392
4393         i = rx_ring->next_to_clean;
4394         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4395         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4396         buffer_info = &rx_ring->buffer_info[i];
4397
4398         while (staterr & E1000_RXD_STAT_DD) {
4399                 ps_page = &rx_ring->ps_page[i];
4400                 ps_page_dma = &rx_ring->ps_page_dma[i];
4401 #ifdef CONFIG_E1000_NAPI
4402                 if (unlikely(*work_done >= work_to_do))
4403                         break;
4404                 (*work_done)++;
4405 #endif
4406                 skb = buffer_info->skb;
4407
4408                 /* in the packet split case this is header only */
4409                 prefetch(skb->data - NET_IP_ALIGN);
4410
4411                 if (++i == rx_ring->count) i = 0;
4412                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
4413                 prefetch(next_rxd);
4414
4415                 next_buffer = &rx_ring->buffer_info[i];
4416
4417                 cleaned = TRUE;
4418                 cleaned_count++;
4419                 pci_unmap_single(pdev, buffer_info->dma,
4420                                  buffer_info->length,
4421                                  PCI_DMA_FROMDEVICE);
4422
4423                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
4424                         E1000_DBG("%s: Packet Split buffers didn't pick up"
4425                                   " the full packet\n", netdev->name);
4426                         dev_kfree_skb_irq(skb);
4427                         goto next_desc;
4428                 }
4429
4430                 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
4431                         dev_kfree_skb_irq(skb);
4432                         goto next_desc;
4433                 }
4434
4435                 length = le16_to_cpu(rx_desc->wb.middle.length0);
4436
4437                 if (unlikely(!length)) {
4438                         E1000_DBG("%s: Last part of the packet spanning"
4439                                   " multiple descriptors\n", netdev->name);
4440                         dev_kfree_skb_irq(skb);
4441                         goto next_desc;
4442                 }
4443
4444                 /* Good Receive */
4445                 skb_put(skb, length);
4446
4447                 {
4448                 /* this looks ugly, but it seems compiler issues make it
4449                    more efficient than reusing j */
4450                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
4451
4452                 /* page alloc/put takes too long and effects small packet
4453                  * throughput, so unsplit small packets and save the alloc/put*/
4454                 if (l1 && (l1 <= copybreak) && ((length + l1) <= adapter->rx_ps_bsize0)) {
4455                         u8 *vaddr;
4456                         /* there is no documentation about how to call
4457                          * kmap_atomic, so we can't hold the mapping
4458                          * very long */
4459                         pci_dma_sync_single_for_cpu(pdev,
4460                                 ps_page_dma->ps_page_dma[0],
4461                                 PAGE_SIZE,
4462                                 PCI_DMA_FROMDEVICE);
4463                         vaddr = kmap_atomic(ps_page->ps_page[0],
4464                                             KM_SKB_DATA_SOFTIRQ);
4465                         memcpy(skb_tail_pointer(skb), vaddr, l1);
4466                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
4467                         pci_dma_sync_single_for_device(pdev,
4468                                 ps_page_dma->ps_page_dma[0],
4469                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
4470                         /* remove the CRC */
4471                         l1 -= 4;
4472                         skb_put(skb, l1);
4473                         goto copydone;
4474                 } /* if */
4475                 }
4476
4477                 for (j = 0; j < adapter->rx_ps_pages; j++) {
4478                         if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
4479                                 break;
4480                         pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
4481                                         PAGE_SIZE, PCI_DMA_FROMDEVICE);
4482                         ps_page_dma->ps_page_dma[j] = 0;
4483                         skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
4484                                            length);
4485                         ps_page->ps_page[j] = NULL;
4486                         skb->len += length;
4487                         skb->data_len += length;
4488                         skb->truesize += length;
4489                 }
4490
4491                 /* strip the ethernet crc, problem is we're using pages now so
4492                  * this whole operation can get a little cpu intensive */
4493                 pskb_trim(skb, skb->len - 4);
4494
4495 copydone:
4496                 total_rx_bytes += skb->len;
4497                 total_rx_packets++;
4498
4499                 e1000_rx_checksum(adapter, staterr,
4500                                   le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
4501                 skb->protocol = eth_type_trans(skb, netdev);
4502
4503                 if (likely(rx_desc->wb.upper.header_status &
4504                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
4505                         adapter->rx_hdr_split++;
4506 #ifdef CONFIG_E1000_NAPI
4507                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4508                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4509                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
4510                                 E1000_RXD_SPC_VLAN_MASK);
4511                 } else {
4512                         netif_receive_skb(skb);
4513                 }
4514 #else /* CONFIG_E1000_NAPI */
4515                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4516                         vlan_hwaccel_rx(skb, adapter->vlgrp,
4517                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
4518                                 E1000_RXD_SPC_VLAN_MASK);
4519                 } else {
4520                         netif_rx(skb);
4521                 }
4522 #endif /* CONFIG_E1000_NAPI */
4523                 netdev->last_rx = jiffies;
4524
4525 next_desc:
4526                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
4527                 buffer_info->skb = NULL;
4528
4529                 /* return some buffers to hardware, one at a time is too slow */
4530                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4531                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4532                         cleaned_count = 0;
4533                 }
4534
4535                 /* use prefetched values */
4536                 rx_desc = next_rxd;
4537                 buffer_info = next_buffer;
4538
4539                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4540         }
4541         rx_ring->next_to_clean = i;
4542
4543         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4544         if (cleaned_count)
4545                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4546
4547         adapter->total_rx_packets += total_rx_packets;
4548         adapter->total_rx_bytes += total_rx_bytes;
4549         adapter->net_stats.rx_bytes += total_rx_bytes;
4550         adapter->net_stats.rx_packets += total_rx_packets;
4551         return cleaned;
4552 }
4553
4554 /**
4555  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4556  * @adapter: address of board private structure
4557  **/
4558
4559 static void
4560 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4561                        struct e1000_rx_ring *rx_ring,
4562                        int cleaned_count)
4563 {
4564         struct net_device *netdev = adapter->netdev;
4565         struct pci_dev *pdev = adapter->pdev;
4566         struct e1000_rx_desc *rx_desc;
4567         struct e1000_buffer *buffer_info;
4568         struct sk_buff *skb;
4569         unsigned int i;
4570         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4571
4572         i = rx_ring->next_to_use;
4573         buffer_info = &rx_ring->buffer_info[i];
4574
4575         while (cleaned_count--) {
4576                 skb = buffer_info->skb;
4577                 if (skb) {
4578                         skb_trim(skb, 0);
4579                         goto map_skb;
4580                 }
4581
4582                 skb = netdev_alloc_skb(netdev, bufsz);
4583                 if (unlikely(!skb)) {
4584                         /* Better luck next round */
4585                         adapter->alloc_rx_buff_failed++;
4586                         break;
4587                 }
4588
4589                 /* Fix for errata 23, can't cross 64kB boundary */
4590                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4591                         struct sk_buff *oldskb = skb;
4592                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4593                                              "at %p\n", bufsz, skb->data);
4594                         /* Try again, without freeing the previous */
4595                         skb = netdev_alloc_skb(netdev, bufsz);
4596                         /* Failed allocation, critical failure */
4597                         if (!skb) {
4598                                 dev_kfree_skb(oldskb);
4599                                 break;
4600                         }
4601
4602                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4603                                 /* give up */
4604                                 dev_kfree_skb(skb);
4605                                 dev_kfree_skb(oldskb);
4606                                 break; /* while !buffer_info->skb */
4607                         }
4608
4609                         /* Use new allocation */
4610                         dev_kfree_skb(oldskb);
4611                 }
4612                 /* Make buffer alignment 2 beyond a 16 byte boundary
4613                  * this will result in a 16 byte aligned IP header after
4614                  * the 14 byte MAC header is removed
4615                  */
4616                 skb_reserve(skb, NET_IP_ALIGN);
4617
4618                 buffer_info->skb = skb;
4619                 buffer_info->length = adapter->rx_buffer_len;
4620 map_skb:
4621                 buffer_info->dma = pci_map_single(pdev,
4622                                                   skb->data,
4623                                                   adapter->rx_buffer_len,
4624                                                   PCI_DMA_FROMDEVICE);
4625
4626                 /* Fix for errata 23, can't cross 64kB boundary */
4627                 if (!e1000_check_64k_bound(adapter,
4628                                         (void *)(unsigned long)buffer_info->dma,
4629                                         adapter->rx_buffer_len)) {
4630                         DPRINTK(RX_ERR, ERR,
4631                                 "dma align check failed: %u bytes at %p\n",
4632                                 adapter->rx_buffer_len,
4633                                 (void *)(unsigned long)buffer_info->dma);
4634                         dev_kfree_skb(skb);
4635                         buffer_info->skb = NULL;
4636
4637                         pci_unmap_single(pdev, buffer_info->dma,
4638                                          adapter->rx_buffer_len,
4639                                          PCI_DMA_FROMDEVICE);
4640
4641                         break; /* while !buffer_info->skb */
4642                 }
4643                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4644                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4645
4646                 if (unlikely(++i == rx_ring->count))
4647                         i = 0;
4648                 buffer_info = &rx_ring->buffer_info[i];
4649         }
4650
4651         if (likely(rx_ring->next_to_use != i)) {
4652                 rx_ring->next_to_use = i;
4653                 if (unlikely(i-- == 0))
4654                         i = (rx_ring->count - 1);
4655
4656                 /* Force memory writes to complete before letting h/w
4657                  * know there are new descriptors to fetch.  (Only
4658                  * applicable for weak-ordered memory model archs,
4659                  * such as IA-64). */
4660                 wmb();
4661                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4662         }
4663 }
4664
4665 /**
4666  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
4667  * @adapter: address of board private structure
4668  **/
4669
4670 static void
4671 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
4672                           struct e1000_rx_ring *rx_ring,
4673                           int cleaned_count)
4674 {
4675         struct net_device *netdev = adapter->netdev;
4676         struct pci_dev *pdev = adapter->pdev;
4677         union e1000_rx_desc_packet_split *rx_desc;
4678         struct e1000_buffer *buffer_info;
4679         struct e1000_ps_page *ps_page;
4680         struct e1000_ps_page_dma *ps_page_dma;
4681         struct sk_buff *skb;
4682         unsigned int i, j;
4683
4684         i = rx_ring->next_to_use;
4685         buffer_info = &rx_ring->buffer_info[i];
4686         ps_page = &rx_ring->ps_page[i];
4687         ps_page_dma = &rx_ring->ps_page_dma[i];
4688
4689         while (cleaned_count--) {
4690                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4691
4692                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
4693                         if (j < adapter->rx_ps_pages) {
4694                                 if (likely(!ps_page->ps_page[j])) {
4695                                         ps_page->ps_page[j] =
4696                                                 alloc_page(GFP_ATOMIC);
4697                                         if (unlikely(!ps_page->ps_page[j])) {
4698                                                 adapter->alloc_rx_buff_failed++;
4699                                                 goto no_buffers;
4700                                         }
4701                                         ps_page_dma->ps_page_dma[j] =
4702                                                 pci_map_page(pdev,
4703                                                             ps_page->ps_page[j],
4704                                                             0, PAGE_SIZE,
4705                                                             PCI_DMA_FROMDEVICE);
4706                                 }
4707                                 /* Refresh the desc even if buffer_addrs didn't
4708                                  * change because each write-back erases
4709                                  * this info.
4710                                  */
4711                                 rx_desc->read.buffer_addr[j+1] =
4712                                      cpu_to_le64(ps_page_dma->ps_page_dma[j]);
4713                         } else
4714                                 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
4715                 }
4716
4717                 skb = netdev_alloc_skb(netdev,
4718                                        adapter->rx_ps_bsize0 + NET_IP_ALIGN);
4719
4720                 if (unlikely(!skb)) {
4721                         adapter->alloc_rx_buff_failed++;
4722                         break;
4723                 }
4724
4725                 /* Make buffer alignment 2 beyond a 16 byte boundary
4726                  * this will result in a 16 byte aligned IP header after
4727                  * the 14 byte MAC header is removed
4728                  */
4729                 skb_reserve(skb, NET_IP_ALIGN);
4730
4731                 buffer_info->skb = skb;
4732                 buffer_info->length = adapter->rx_ps_bsize0;
4733                 buffer_info->dma = pci_map_single(pdev, skb->data,
4734                                                   adapter->rx_ps_bsize0,
4735                                                   PCI_DMA_FROMDEVICE);
4736
4737                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
4738
4739                 if (unlikely(++i == rx_ring->count)) i = 0;
4740                 buffer_info = &rx_ring->buffer_info[i];
4741                 ps_page = &rx_ring->ps_page[i];
4742                 ps_page_dma = &rx_ring->ps_page_dma[i];
4743         }
4744
4745 no_buffers:
4746         if (likely(rx_ring->next_to_use != i)) {
4747                 rx_ring->next_to_use = i;
4748                 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4749
4750                 /* Force memory writes to complete before letting h/w
4751                  * know there are new descriptors to fetch.  (Only
4752                  * applicable for weak-ordered memory model archs,
4753                  * such as IA-64). */
4754                 wmb();
4755                 /* Hardware increments by 16 bytes, but packet split
4756                  * descriptors are 32 bytes...so we increment tail
4757                  * twice as much.
4758                  */
4759                 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4760         }
4761 }
4762
4763 /**
4764  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4765  * @adapter:
4766  **/
4767
4768 static void
4769 e1000_smartspeed(struct e1000_adapter *adapter)
4770 {
4771         uint16_t phy_status;
4772         uint16_t phy_ctrl;
4773
4774         if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4775            !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4776                 return;
4777
4778         if (adapter->smartspeed == 0) {
4779                 /* If Master/Slave config fault is asserted twice,
4780                  * we assume back-to-back */
4781                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4782                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4783                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4784                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4785                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4786                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4787                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4788                         e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4789                                             phy_ctrl);
4790                         adapter->smartspeed++;
4791                         if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4792                            !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4793                                                &phy_ctrl)) {
4794                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4795                                              MII_CR_RESTART_AUTO_NEG);
4796                                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4797                                                     phy_ctrl);
4798                         }
4799                 }
4800                 return;
4801         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4802                 /* If still no link, perhaps using 2/3 pair cable */
4803                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4804                 phy_ctrl |= CR_1000T_MS_ENABLE;
4805                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4806                 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4807                    !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4808                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4809                                      MII_CR_RESTART_AUTO_NEG);
4810                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4811                 }
4812         }
4813         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4814         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4815                 adapter->smartspeed = 0;
4816 }
4817
4818 /**
4819  * e1000_ioctl -
4820  * @netdev:
4821  * @ifreq:
4822  * @cmd:
4823  **/
4824
4825 static int
4826 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4827 {
4828         switch (cmd) {
4829         case SIOCGMIIPHY:
4830         case SIOCGMIIREG:
4831         case SIOCSMIIREG:
4832                 return e1000_mii_ioctl(netdev, ifr, cmd);
4833         default:
4834                 return -EOPNOTSUPP;
4835         }
4836 }
4837
4838 /**
4839  * e1000_mii_ioctl -
4840  * @netdev:
4841  * @ifreq:
4842  * @cmd:
4843  **/
4844
4845 static int
4846 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4847 {
4848         struct e1000_adapter *adapter = netdev_priv(netdev);
4849         struct mii_ioctl_data *data = if_mii(ifr);
4850         int retval;
4851         uint16_t mii_reg;
4852         uint16_t spddplx;
4853         unsigned long flags;
4854
4855         if (adapter->hw.media_type != e1000_media_type_copper)
4856                 return -EOPNOTSUPP;
4857
4858         switch (cmd) {
4859         case SIOCGMIIPHY:
4860                 data->phy_id = adapter->hw.phy_addr;
4861                 break;
4862         case SIOCGMIIREG:
4863                 if (!capable(CAP_NET_ADMIN))
4864                         return -EPERM;
4865                 spin_lock_irqsave(&adapter->stats_lock, flags);
4866                 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4867                                    &data->val_out)) {
4868                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4869                         return -EIO;
4870                 }
4871                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4872                 break;
4873         case SIOCSMIIREG:
4874                 if (!capable(CAP_NET_ADMIN))
4875                         return -EPERM;
4876                 if (data->reg_num & ~(0x1F))
4877                         return -EFAULT;
4878                 mii_reg = data->val_in;
4879                 spin_lock_irqsave(&adapter->stats_lock, flags);
4880                 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4881                                         mii_reg)) {
4882                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4883                         return -EIO;
4884                 }
4885                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4886                 if (adapter->hw.media_type == e1000_media_type_copper) {
4887                         switch (data->reg_num) {
4888                         case PHY_CTRL:
4889                                 if (mii_reg & MII_CR_POWER_DOWN)
4890                                         break;
4891                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4892                                         adapter->hw.autoneg = 1;
4893                                         adapter->hw.autoneg_advertised = 0x2F;
4894                                 } else {
4895                                         if (mii_reg & 0x40)
4896                                                 spddplx = SPEED_1000;
4897                                         else if (mii_reg & 0x2000)
4898                                                 spddplx = SPEED_100;
4899                                         else
4900                                                 spddplx = SPEED_10;
4901                                         spddplx += (mii_reg & 0x100)
4902                                                    ? DUPLEX_FULL :
4903                                                    DUPLEX_HALF;
4904                                         retval = e1000_set_spd_dplx(adapter,
4905                                                                     spddplx);
4906                                         if (retval)
4907                                                 return retval;
4908                                 }
4909                                 if (netif_running(adapter->netdev))
4910                                         e1000_reinit_locked(adapter);
4911                                 else
4912                                         e1000_reset(adapter);
4913                                 break;
4914                         case M88E1000_PHY_SPEC_CTRL:
4915                         case M88E1000_EXT_PHY_SPEC_CTRL:
4916                                 if (e1000_phy_reset(&adapter->hw))
4917                                         return -EIO;
4918                                 break;
4919                         }
4920                 } else {
4921                         switch (data->reg_num) {
4922                         case PHY_CTRL:
4923                                 if (mii_reg & MII_CR_POWER_DOWN)
4924                                         break;
4925                                 if (netif_running(adapter->netdev))
4926                                         e1000_reinit_locked(adapter);
4927                                 else
4928                                         e1000_reset(adapter);
4929                                 break;
4930                         }
4931                 }
4932                 break;
4933         default:
4934                 return -EOPNOTSUPP;
4935         }
4936         return E1000_SUCCESS;
4937 }
4938
4939 void
4940 e1000_pci_set_mwi(struct e1000_hw *hw)
4941 {
4942         struct e1000_adapter *adapter = hw->back;
4943         int ret_val = pci_set_mwi(adapter->pdev);
4944
4945         if (ret_val)
4946                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4947 }
4948
4949 void
4950 e1000_pci_clear_mwi(struct e1000_hw *hw)
4951 {
4952         struct e1000_adapter *adapter = hw->back;
4953
4954         pci_clear_mwi(adapter->pdev);
4955 }
4956
4957 int
4958 e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4959 {
4960         struct e1000_adapter *adapter = hw->back;
4961         return pcix_get_mmrbc(adapter->pdev);
4962 }
4963
4964 void
4965 e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4966 {
4967         struct e1000_adapter *adapter = hw->back;
4968         pcix_set_mmrbc(adapter->pdev, mmrbc);
4969 }
4970
4971 int32_t
4972 e1000_read_pcie_cap_reg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4973 {
4974     struct e1000_adapter *adapter = hw->back;
4975     uint16_t cap_offset;
4976
4977     cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
4978     if (!cap_offset)
4979         return -E1000_ERR_CONFIG;
4980
4981     pci_read_config_word(adapter->pdev, cap_offset + reg, value);
4982
4983     return E1000_SUCCESS;
4984 }
4985
4986 void
4987 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4988 {
4989         outl(value, port);
4990 }
4991
4992 static void
4993 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4994 {
4995         struct e1000_adapter *adapter = netdev_priv(netdev);
4996         uint32_t ctrl, rctl;
4997
4998         e1000_irq_disable(adapter);
4999         adapter->vlgrp = grp;
5000
5001         if (grp) {
5002                 /* enable VLAN tag insert/strip */
5003                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
5004                 ctrl |= E1000_CTRL_VME;
5005                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
5006
5007                 if (adapter->hw.mac_type != e1000_ich8lan) {
5008                         /* enable VLAN receive filtering */
5009                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
5010                         rctl |= E1000_RCTL_VFE;
5011                         rctl &= ~E1000_RCTL_CFIEN;
5012                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
5013                         e1000_update_mng_vlan(adapter);
5014                 }
5015         } else {
5016                 /* disable VLAN tag insert/strip */
5017                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
5018                 ctrl &= ~E1000_CTRL_VME;
5019                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
5020
5021                 if (adapter->hw.mac_type != e1000_ich8lan) {
5022                         /* disable VLAN filtering */
5023                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
5024                         rctl &= ~E1000_RCTL_VFE;
5025                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
5026                         if (adapter->mng_vlan_id !=
5027                             (uint16_t)E1000_MNG_VLAN_NONE) {
5028                                 e1000_vlan_rx_kill_vid(netdev,
5029                                                        adapter->mng_vlan_id);
5030                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
5031                         }
5032                 }
5033         }
5034
5035         e1000_irq_enable(adapter);
5036 }
5037
5038 static void
5039 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
5040 {
5041         struct e1000_adapter *adapter = netdev_priv(netdev);
5042         uint32_t vfta, index;
5043
5044         if ((adapter->hw.mng_cookie.status &
5045              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
5046             (vid == adapter->mng_vlan_id))
5047                 return;
5048         /* add VID to filter table */
5049         index = (vid >> 5) & 0x7F;
5050         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
5051         vfta |= (1 << (vid & 0x1F));
5052         e1000_write_vfta(&adapter->hw, index, vfta);
5053 }
5054
5055 static void
5056 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
5057 {
5058         struct e1000_adapter *adapter = netdev_priv(netdev);
5059         uint32_t vfta, index;
5060
5061         e1000_irq_disable(adapter);
5062         vlan_group_set_device(adapter->vlgrp, vid, NULL);
5063         e1000_irq_enable(adapter);
5064
5065         if ((adapter->hw.mng_cookie.status &
5066              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
5067             (vid == adapter->mng_vlan_id)) {
5068                 /* release control to f/w */
5069                 e1000_release_hw_control(adapter);
5070                 return;
5071         }
5072
5073         /* remove VID from filter table */
5074         index = (vid >> 5) & 0x7F;
5075         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
5076         vfta &= ~(1 << (vid & 0x1F));
5077         e1000_write_vfta(&adapter->hw, index, vfta);
5078 }
5079
5080 static void
5081 e1000_restore_vlan(struct e1000_adapter *adapter)
5082 {
5083         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
5084
5085         if (adapter->vlgrp) {
5086                 uint16_t vid;
5087                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
5088                         if (!vlan_group_get_device(adapter->vlgrp, vid))
5089                                 continue;
5090                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
5091                 }
5092         }
5093 }
5094
5095 int
5096 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
5097 {
5098         adapter->hw.autoneg = 0;
5099
5100         /* Fiber NICs only allow 1000 gbps Full duplex */
5101         if ((adapter->hw.media_type == e1000_media_type_fiber) &&
5102                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
5103                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
5104                 return -EINVAL;
5105         }
5106
5107         switch (spddplx) {
5108         case SPEED_10 + DUPLEX_HALF:
5109                 adapter->hw.forced_speed_duplex = e1000_10_half;
5110                 break;
5111         case SPEED_10 + DUPLEX_FULL:
5112                 adapter->hw.forced_speed_duplex = e1000_10_full;
5113                 break;
5114         case SPEED_100 + DUPLEX_HALF:
5115                 adapter->hw.forced_speed_duplex = e1000_100_half;
5116                 break;
5117         case SPEED_100 + DUPLEX_FULL:
5118                 adapter->hw.forced_speed_duplex = e1000_100_full;
5119                 break;
5120         case SPEED_1000 + DUPLEX_FULL:
5121                 adapter->hw.autoneg = 1;
5122                 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
5123                 break;
5124         case SPEED_1000 + DUPLEX_HALF: /* not supported */
5125         default:
5126                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
5127                 return -EINVAL;
5128         }
5129         return 0;
5130 }
5131
5132 static int
5133 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5134 {
5135         struct net_device *netdev = pci_get_drvdata(pdev);
5136         struct e1000_adapter *adapter = netdev_priv(netdev);
5137         uint32_t ctrl, ctrl_ext, rctl, status;
5138         uint32_t wufc = adapter->wol;
5139 #ifdef CONFIG_PM
5140         int retval = 0;
5141 #endif
5142
5143         netif_device_detach(netdev);
5144
5145         if (netif_running(netdev)) {
5146                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5147                 e1000_down(adapter);
5148         }
5149
5150 #ifdef CONFIG_PM
5151         retval = pci_save_state(pdev);
5152         if (retval)
5153                 return retval;
5154 #endif
5155
5156         status = E1000_READ_REG(&adapter->hw, STATUS);
5157         if (status & E1000_STATUS_LU)
5158                 wufc &= ~E1000_WUFC_LNKC;
5159
5160         if (wufc) {
5161                 e1000_setup_rctl(adapter);
5162                 e1000_set_rx_mode(netdev);
5163
5164                 /* turn on all-multi mode if wake on multicast is enabled */
5165                 if (wufc & E1000_WUFC_MC) {
5166                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
5167                         rctl |= E1000_RCTL_MPE;
5168                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
5169                 }
5170
5171                 if (adapter->hw.mac_type >= e1000_82540) {
5172                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
5173                         /* advertise wake from D3Cold */
5174                         #define E1000_CTRL_ADVD3WUC 0x00100000
5175                         /* phy power management enable */
5176                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5177                         ctrl |= E1000_CTRL_ADVD3WUC |
5178                                 E1000_CTRL_EN_PHY_PWR_MGMT;
5179                         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
5180                 }
5181
5182                 if (adapter->hw.media_type == e1000_media_type_fiber ||
5183                    adapter->hw.media_type == e1000_media_type_internal_serdes) {
5184                         /* keep the laser running in D3 */
5185                         ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
5186                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5187                         E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
5188                 }
5189
5190                 /* Allow time for pending master requests to run */
5191                 e1000_disable_pciex_master(&adapter->hw);
5192
5193                 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
5194                 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
5195                 pci_enable_wake(pdev, PCI_D3hot, 1);
5196                 pci_enable_wake(pdev, PCI_D3cold, 1);
5197         } else {
5198                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
5199                 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
5200                 pci_enable_wake(pdev, PCI_D3hot, 0);
5201                 pci_enable_wake(pdev, PCI_D3cold, 0);
5202         }
5203
5204         e1000_release_manageability(adapter);
5205
5206         /* make sure adapter isn't asleep if manageability is enabled */
5207         if (adapter->en_mng_pt) {
5208                 pci_enable_wake(pdev, PCI_D3hot, 1);
5209                 pci_enable_wake(pdev, PCI_D3cold, 1);
5210         }
5211
5212         if (adapter->hw.phy_type == e1000_phy_igp_3)
5213                 e1000_phy_powerdown_workaround(&adapter->hw);
5214
5215         if (netif_running(netdev))
5216                 e1000_free_irq(adapter);
5217
5218         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
5219          * would have already happened in close and is redundant. */
5220         e1000_release_hw_control(adapter);
5221
5222         pci_disable_device(pdev);
5223
5224         pci_set_power_state(pdev, pci_choose_state(pdev, state));
5225
5226         return 0;
5227 }
5228
5229 #ifdef CONFIG_PM
5230 static int
5231 e1000_resume(struct pci_dev *pdev)
5232 {
5233         struct net_device *netdev = pci_get_drvdata(pdev);
5234         struct e1000_adapter *adapter = netdev_priv(netdev);
5235         uint32_t err;
5236
5237         pci_set_power_state(pdev, PCI_D0);
5238         pci_restore_state(pdev);
5239         if ((err = pci_enable_device(pdev))) {
5240                 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
5241                 return err;
5242         }
5243         pci_set_master(pdev);
5244
5245         pci_enable_wake(pdev, PCI_D3hot, 0);
5246         pci_enable_wake(pdev, PCI_D3cold, 0);
5247
5248         if (netif_running(netdev) && (err = e1000_request_irq(adapter)))
5249                 return err;
5250
5251         e1000_power_up_phy(adapter);
5252         e1000_reset(adapter);
5253         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
5254
5255         e1000_init_manageability(adapter);
5256
5257         if (netif_running(netdev))
5258                 e1000_up(adapter);
5259
5260         netif_device_attach(netdev);
5261
5262         /* If the controller is 82573 and f/w is AMT, do not set
5263          * DRV_LOAD until the interface is up.  For all other cases,
5264          * let the f/w know that the h/w is now under the control
5265          * of the driver. */
5266         if (adapter->hw.mac_type != e1000_82573 ||
5267             !e1000_check_mng_mode(&adapter->hw))
5268                 e1000_get_hw_control(adapter);
5269
5270         return 0;
5271 }
5272 #endif
5273
5274 static void e1000_shutdown(struct pci_dev *pdev)
5275 {
5276         e1000_suspend(pdev, PMSG_SUSPEND);
5277 }
5278
5279 #ifdef CONFIG_NET_POLL_CONTROLLER
5280 /*
5281  * Polling 'interrupt' - used by things like netconsole to send skbs
5282  * without having to re-enable interrupts. It's not called while
5283  * the interrupt routine is executing.
5284  */
5285 static void
5286 e1000_netpoll(struct net_device *netdev)
5287 {
5288         struct e1000_adapter *adapter = netdev_priv(netdev);
5289
5290         disable_irq(adapter->pdev->irq);
5291         e1000_intr(adapter->pdev->irq, netdev);
5292         e1000_clean_tx_irq(adapter, adapter->tx_ring);
5293 #ifndef CONFIG_E1000_NAPI
5294         adapter->clean_rx(adapter, adapter->rx_ring);
5295 #endif
5296         enable_irq(adapter->pdev->irq);
5297 }
5298 #endif
5299
5300 /**
5301  * e1000_io_error_detected - called when PCI error is detected
5302  * @pdev: Pointer to PCI device
5303  * @state: The current pci conneection state
5304  *
5305  * This function is called after a PCI bus error affecting
5306  * this device has been detected.
5307  */
5308 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
5309 {
5310         struct net_device *netdev = pci_get_drvdata(pdev);
5311         struct e1000_adapter *adapter = netdev->priv;
5312
5313         netif_device_detach(netdev);
5314
5315         if (netif_running(netdev))
5316                 e1000_down(adapter);
5317         pci_disable_device(pdev);
5318
5319         /* Request a slot slot reset. */
5320         return PCI_ERS_RESULT_NEED_RESET;
5321 }
5322
5323 /**
5324  * e1000_io_slot_reset - called after the pci bus has been reset.
5325  * @pdev: Pointer to PCI device
5326  *
5327  * Restart the card from scratch, as if from a cold-boot. Implementation
5328  * resembles the first-half of the e1000_resume routine.
5329  */
5330 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5331 {
5332         struct net_device *netdev = pci_get_drvdata(pdev);
5333         struct e1000_adapter *adapter = netdev->priv;
5334
5335         if (pci_enable_device(pdev)) {
5336                 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
5337                 return PCI_ERS_RESULT_DISCONNECT;
5338         }
5339         pci_set_master(pdev);
5340
5341         pci_enable_wake(pdev, PCI_D3hot, 0);
5342         pci_enable_wake(pdev, PCI_D3cold, 0);
5343
5344         e1000_reset(adapter);
5345         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
5346
5347         return PCI_ERS_RESULT_RECOVERED;
5348 }
5349
5350 /**
5351  * e1000_io_resume - called when traffic can start flowing again.
5352  * @pdev: Pointer to PCI device
5353  *
5354  * This callback is called when the error recovery driver tells us that
5355  * its OK to resume normal operation. Implementation resembles the
5356  * second-half of the e1000_resume routine.
5357  */
5358 static void e1000_io_resume(struct pci_dev *pdev)
5359 {
5360         struct net_device *netdev = pci_get_drvdata(pdev);
5361         struct e1000_adapter *adapter = netdev->priv;
5362
5363         e1000_init_manageability(adapter);
5364
5365         if (netif_running(netdev)) {
5366                 if (e1000_up(adapter)) {
5367                         printk("e1000: can't bring device back up after reset\n");
5368                         return;
5369                 }
5370         }
5371
5372         netif_device_attach(netdev);
5373
5374         /* If the controller is 82573 and f/w is AMT, do not set
5375          * DRV_LOAD until the interface is up.  For all other cases,
5376          * let the f/w know that the h/w is now under the control
5377          * of the driver. */
5378         if (adapter->hw.mac_type != e1000_82573 ||
5379             !e1000_check_mng_mode(&adapter->hw))
5380                 e1000_get_hw_control(adapter);
5381
5382 }
5383
5384 /* e1000_main.c */