]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/e1000/e1000_ethtool.c
[PATCH] e1000: Fix mulitple queues
[linux-2.6-omap-h63xx.git] / drivers / net / e1000 / e1000_ethtool.c
1 /*******************************************************************************
2
3   
4   Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
5   
6   This program is free software; you can redistribute it and/or modify it 
7   under the terms of the GNU General Public License as published by the Free 
8   Software Foundation; either version 2 of the License, or (at your option) 
9   any later version.
10   
11   This program is distributed in the hope that it will be useful, but WITHOUT 
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
14   more details.
15   
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc., 59 
18   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
19   
20   The full GNU General Public License is included in this distribution in the
21   file called LICENSE.
22   
23   Contact Information:
24   Linux NICS <linux.nics@intel.com>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include "e1000.h"
32
33 #include <asm/uaccess.h>
34
35 extern char e1000_driver_name[];
36 extern char e1000_driver_version[];
37
38 extern int e1000_up(struct e1000_adapter *adapter);
39 extern void e1000_down(struct e1000_adapter *adapter);
40 extern void e1000_reset(struct e1000_adapter *adapter);
41 extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
42 extern int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
43 extern int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
44 extern void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
45 extern void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
46 extern void e1000_update_stats(struct e1000_adapter *adapter);
47
48 struct e1000_stats {
49         char stat_string[ETH_GSTRING_LEN];
50         int sizeof_stat;
51         int stat_offset;
52 };
53
54 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
55                       offsetof(struct e1000_adapter, m)
56 static const struct e1000_stats e1000_gstrings_stats[] = {
57         { "rx_packets", E1000_STAT(net_stats.rx_packets) },
58         { "tx_packets", E1000_STAT(net_stats.tx_packets) },
59         { "rx_bytes", E1000_STAT(net_stats.rx_bytes) },
60         { "tx_bytes", E1000_STAT(net_stats.tx_bytes) },
61         { "rx_errors", E1000_STAT(net_stats.rx_errors) },
62         { "tx_errors", E1000_STAT(net_stats.tx_errors) },
63         { "rx_dropped", E1000_STAT(net_stats.rx_dropped) },
64         { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
65         { "multicast", E1000_STAT(net_stats.multicast) },
66         { "collisions", E1000_STAT(net_stats.collisions) },
67         { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
68         { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
69         { "rx_crc_errors", E1000_STAT(net_stats.rx_crc_errors) },
70         { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
71         { "rx_fifo_errors", E1000_STAT(net_stats.rx_fifo_errors) },
72         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
73         { "rx_missed_errors", E1000_STAT(net_stats.rx_missed_errors) },
74         { "tx_aborted_errors", E1000_STAT(net_stats.tx_aborted_errors) },
75         { "tx_carrier_errors", E1000_STAT(net_stats.tx_carrier_errors) },
76         { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
77         { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
78         { "tx_window_errors", E1000_STAT(net_stats.tx_window_errors) },
79         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
80         { "tx_deferred_ok", E1000_STAT(stats.dc) },
81         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
82         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
83         { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
84         { "rx_long_length_errors", E1000_STAT(stats.roc) },
85         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
86         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
87         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
88         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
89         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
90         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
91         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
92         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
93         { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
94         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
95         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
96         { "rx_header_split", E1000_STAT(rx_hdr_split) },
97         { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
98 };
99
100 #ifdef CONFIG_E1000_MQ
101 #define E1000_QUEUE_STATS_LEN \
102         (((struct e1000_adapter *)netdev->priv)->num_tx_queues + \
103          ((struct e1000_adapter *)netdev->priv)->num_rx_queues) \
104         * (sizeof(struct e1000_queue_stats) / sizeof(uint64_t))
105 #else
106 #define E1000_QUEUE_STATS_LEN 0
107 #endif
108 #define E1000_GLOBAL_STATS_LEN  \
109         sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
110 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
111 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
112         "Register test  (offline)", "Eeprom test    (offline)",
113         "Interrupt test (offline)", "Loopback test  (offline)",
114         "Link test   (on/offline)"
115 };
116 #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
117
118 static int
119 e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
120 {
121         struct e1000_adapter *adapter = netdev_priv(netdev);
122         struct e1000_hw *hw = &adapter->hw;
123
124         if(hw->media_type == e1000_media_type_copper) {
125
126                 ecmd->supported = (SUPPORTED_10baseT_Half |
127                                    SUPPORTED_10baseT_Full |
128                                    SUPPORTED_100baseT_Half |
129                                    SUPPORTED_100baseT_Full |
130                                    SUPPORTED_1000baseT_Full|
131                                    SUPPORTED_Autoneg |
132                                    SUPPORTED_TP);
133
134                 ecmd->advertising = ADVERTISED_TP;
135
136                 if(hw->autoneg == 1) {
137                         ecmd->advertising |= ADVERTISED_Autoneg;
138
139                         /* the e1000 autoneg seems to match ethtool nicely */
140
141                         ecmd->advertising |= hw->autoneg_advertised;
142                 }
143
144                 ecmd->port = PORT_TP;
145                 ecmd->phy_address = hw->phy_addr;
146
147                 if(hw->mac_type == e1000_82543)
148                         ecmd->transceiver = XCVR_EXTERNAL;
149                 else
150                         ecmd->transceiver = XCVR_INTERNAL;
151
152         } else {
153                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
154                                      SUPPORTED_FIBRE |
155                                      SUPPORTED_Autoneg);
156
157                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
158                                      ADVERTISED_FIBRE |
159                                      ADVERTISED_Autoneg);
160
161                 ecmd->port = PORT_FIBRE;
162
163                 if(hw->mac_type >= e1000_82545)
164                         ecmd->transceiver = XCVR_INTERNAL;
165                 else
166                         ecmd->transceiver = XCVR_EXTERNAL;
167         }
168
169         if(netif_carrier_ok(adapter->netdev)) {
170
171                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
172                                                    &adapter->link_duplex);
173                 ecmd->speed = adapter->link_speed;
174
175                 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
176                  *          and HALF_DUPLEX != DUPLEX_HALF */
177
178                 if(adapter->link_duplex == FULL_DUPLEX)
179                         ecmd->duplex = DUPLEX_FULL;
180                 else
181                         ecmd->duplex = DUPLEX_HALF;
182         } else {
183                 ecmd->speed = -1;
184                 ecmd->duplex = -1;
185         }
186
187         ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
188                          hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
189         return 0;
190 }
191
192 static int
193 e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
194 {
195         struct e1000_adapter *adapter = netdev_priv(netdev);
196         struct e1000_hw *hw = &adapter->hw;
197
198         /* When SoL/IDER sessions are active, autoneg/speed/duplex
199          * cannot be changed */
200         if (e1000_check_phy_reset_block(hw)) {
201                 DPRINTK(DRV, ERR, "Cannot change link characteristics "
202                         "when SoL/IDER is active.\n");
203                 return -EINVAL;
204         }
205
206         if (ecmd->autoneg == AUTONEG_ENABLE) {
207                 hw->autoneg = 1;
208                 if(hw->media_type == e1000_media_type_fiber)
209                         hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
210                                      ADVERTISED_FIBRE |
211                                      ADVERTISED_Autoneg;
212                 else 
213                         hw->autoneg_advertised = ADVERTISED_10baseT_Half |
214                                                   ADVERTISED_10baseT_Full |
215                                                   ADVERTISED_100baseT_Half |
216                                                   ADVERTISED_100baseT_Full |
217                                                   ADVERTISED_1000baseT_Full|
218                                                   ADVERTISED_Autoneg |
219                                                   ADVERTISED_TP;
220                 ecmd->advertising = hw->autoneg_advertised;
221         } else
222                 if(e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex))
223                         return -EINVAL;
224
225         /* reset the link */
226
227         if(netif_running(adapter->netdev)) {
228                 e1000_down(adapter);
229                 e1000_reset(adapter);
230                 e1000_up(adapter);
231         } else
232                 e1000_reset(adapter);
233
234         return 0;
235 }
236
237 static void
238 e1000_get_pauseparam(struct net_device *netdev,
239                      struct ethtool_pauseparam *pause)
240 {
241         struct e1000_adapter *adapter = netdev_priv(netdev);
242         struct e1000_hw *hw = &adapter->hw;
243
244         pause->autoneg = 
245                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
246         
247         if(hw->fc == e1000_fc_rx_pause)
248                 pause->rx_pause = 1;
249         else if(hw->fc == e1000_fc_tx_pause)
250                 pause->tx_pause = 1;
251         else if(hw->fc == e1000_fc_full) {
252                 pause->rx_pause = 1;
253                 pause->tx_pause = 1;
254         }
255 }
256
257 static int
258 e1000_set_pauseparam(struct net_device *netdev,
259                      struct ethtool_pauseparam *pause)
260 {
261         struct e1000_adapter *adapter = netdev_priv(netdev);
262         struct e1000_hw *hw = &adapter->hw;
263         
264         adapter->fc_autoneg = pause->autoneg;
265
266         if(pause->rx_pause && pause->tx_pause)
267                 hw->fc = e1000_fc_full;
268         else if(pause->rx_pause && !pause->tx_pause)
269                 hw->fc = e1000_fc_rx_pause;
270         else if(!pause->rx_pause && pause->tx_pause)
271                 hw->fc = e1000_fc_tx_pause;
272         else if(!pause->rx_pause && !pause->tx_pause)
273                 hw->fc = e1000_fc_none;
274
275         hw->original_fc = hw->fc;
276
277         if(adapter->fc_autoneg == AUTONEG_ENABLE) {
278                 if(netif_running(adapter->netdev)) {
279                         e1000_down(adapter);
280                         e1000_up(adapter);
281                 } else
282                         e1000_reset(adapter);
283         }
284         else
285                 return ((hw->media_type == e1000_media_type_fiber) ?
286                         e1000_setup_link(hw) : e1000_force_mac_fc(hw));
287         
288         return 0;
289 }
290
291 static uint32_t
292 e1000_get_rx_csum(struct net_device *netdev)
293 {
294         struct e1000_adapter *adapter = netdev_priv(netdev);
295         return adapter->rx_csum;
296 }
297
298 static int
299 e1000_set_rx_csum(struct net_device *netdev, uint32_t data)
300 {
301         struct e1000_adapter *adapter = netdev_priv(netdev);
302         adapter->rx_csum = data;
303
304         if(netif_running(netdev)) {
305                 e1000_down(adapter);
306                 e1000_up(adapter);
307         } else
308                 e1000_reset(adapter);
309         return 0;
310 }
311         
312 static uint32_t
313 e1000_get_tx_csum(struct net_device *netdev)
314 {
315         return (netdev->features & NETIF_F_HW_CSUM) != 0;
316 }
317
318 static int
319 e1000_set_tx_csum(struct net_device *netdev, uint32_t data)
320 {
321         struct e1000_adapter *adapter = netdev_priv(netdev);
322
323         if(adapter->hw.mac_type < e1000_82543) {
324                 if (!data)
325                         return -EINVAL;
326                 return 0;
327         }
328
329         if (data)
330                 netdev->features |= NETIF_F_HW_CSUM;
331         else
332                 netdev->features &= ~NETIF_F_HW_CSUM;
333
334         return 0;
335 }
336
337 #ifdef NETIF_F_TSO
338 static int
339 e1000_set_tso(struct net_device *netdev, uint32_t data)
340 {
341         struct e1000_adapter *adapter = netdev_priv(netdev);
342         if((adapter->hw.mac_type < e1000_82544) ||
343             (adapter->hw.mac_type == e1000_82547)) 
344                 return data ? -EINVAL : 0;
345
346         if (data)
347                 netdev->features |= NETIF_F_TSO;
348         else
349                 netdev->features &= ~NETIF_F_TSO;
350         return 0;
351
352 #endif /* NETIF_F_TSO */
353
354 static uint32_t
355 e1000_get_msglevel(struct net_device *netdev)
356 {
357         struct e1000_adapter *adapter = netdev_priv(netdev);
358         return adapter->msg_enable;
359 }
360
361 static void
362 e1000_set_msglevel(struct net_device *netdev, uint32_t data)
363 {
364         struct e1000_adapter *adapter = netdev_priv(netdev);
365         adapter->msg_enable = data;
366 }
367
368 static int 
369 e1000_get_regs_len(struct net_device *netdev)
370 {
371 #define E1000_REGS_LEN 32
372         return E1000_REGS_LEN * sizeof(uint32_t);
373 }
374
375 static void
376 e1000_get_regs(struct net_device *netdev,
377                struct ethtool_regs *regs, void *p)
378 {
379         struct e1000_adapter *adapter = netdev_priv(netdev);
380         struct e1000_hw *hw = &adapter->hw;
381         uint32_t *regs_buff = p;
382         uint16_t phy_data;
383
384         memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t));
385
386         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
387
388         regs_buff[0]  = E1000_READ_REG(hw, CTRL);
389         regs_buff[1]  = E1000_READ_REG(hw, STATUS);
390
391         regs_buff[2]  = E1000_READ_REG(hw, RCTL);
392         regs_buff[3]  = E1000_READ_REG(hw, RDLEN);
393         regs_buff[4]  = E1000_READ_REG(hw, RDH);
394         regs_buff[5]  = E1000_READ_REG(hw, RDT);
395         regs_buff[6]  = E1000_READ_REG(hw, RDTR);
396
397         regs_buff[7]  = E1000_READ_REG(hw, TCTL);
398         regs_buff[8]  = E1000_READ_REG(hw, TDLEN);
399         regs_buff[9]  = E1000_READ_REG(hw, TDH);
400         regs_buff[10] = E1000_READ_REG(hw, TDT);
401         regs_buff[11] = E1000_READ_REG(hw, TIDV);
402
403         regs_buff[12] = adapter->hw.phy_type;  /* PHY type (IGP=1, M88=0) */
404         if(hw->phy_type == e1000_phy_igp) {
405                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
406                                     IGP01E1000_PHY_AGC_A);
407                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
408                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
409                 regs_buff[13] = (uint32_t)phy_data; /* cable length */
410                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
411                                     IGP01E1000_PHY_AGC_B);
412                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
413                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
414                 regs_buff[14] = (uint32_t)phy_data; /* cable length */
415                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
416                                     IGP01E1000_PHY_AGC_C);
417                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
418                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
419                 regs_buff[15] = (uint32_t)phy_data; /* cable length */
420                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
421                                     IGP01E1000_PHY_AGC_D);
422                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
423                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
424                 regs_buff[16] = (uint32_t)phy_data; /* cable length */
425                 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
426                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
427                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
428                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
429                 regs_buff[18] = (uint32_t)phy_data; /* cable polarity */
430                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
431                                     IGP01E1000_PHY_PCS_INIT_REG);
432                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
433                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
434                 regs_buff[19] = (uint32_t)phy_data; /* cable polarity */
435                 regs_buff[20] = 0; /* polarity correction enabled (always) */
436                 regs_buff[22] = 0; /* phy receive errors (unavailable) */
437                 regs_buff[23] = regs_buff[18]; /* mdix mode */
438                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
439         } else {
440                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
441                 regs_buff[13] = (uint32_t)phy_data; /* cable length */
442                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
443                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
444                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
445                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
446                 regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */
447                 regs_buff[18] = regs_buff[13]; /* cable polarity */
448                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
449                 regs_buff[20] = regs_buff[17]; /* polarity correction */
450                 /* phy receive errors */
451                 regs_buff[22] = adapter->phy_stats.receive_errors;
452                 regs_buff[23] = regs_buff[13]; /* mdix mode */
453         }
454         regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
455         e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
456         regs_buff[24] = (uint32_t)phy_data;  /* phy local receiver status */
457         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
458         if(hw->mac_type >= e1000_82540 &&
459            hw->media_type == e1000_media_type_copper) {
460                 regs_buff[26] = E1000_READ_REG(hw, MANC);
461         }
462 }
463
464 static int
465 e1000_get_eeprom_len(struct net_device *netdev)
466 {
467         struct e1000_adapter *adapter = netdev_priv(netdev);
468         return adapter->hw.eeprom.word_size * 2;
469 }
470
471 static int
472 e1000_get_eeprom(struct net_device *netdev,
473                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
474 {
475         struct e1000_adapter *adapter = netdev_priv(netdev);
476         struct e1000_hw *hw = &adapter->hw;
477         uint16_t *eeprom_buff;
478         int first_word, last_word;
479         int ret_val = 0;
480         uint16_t i;
481
482         if(eeprom->len == 0)
483                 return -EINVAL;
484
485         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
486
487         first_word = eeprom->offset >> 1;
488         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
489
490         eeprom_buff = kmalloc(sizeof(uint16_t) *
491                         (last_word - first_word + 1), GFP_KERNEL);
492         if(!eeprom_buff)
493                 return -ENOMEM;
494
495         if(hw->eeprom.type == e1000_eeprom_spi)
496                 ret_val = e1000_read_eeprom(hw, first_word,
497                                             last_word - first_word + 1,
498                                             eeprom_buff);
499         else {
500                 for (i = 0; i < last_word - first_word + 1; i++)
501                         if((ret_val = e1000_read_eeprom(hw, first_word + i, 1,
502                                                         &eeprom_buff[i])))
503                                 break;
504         }
505
506         /* Device's eeprom is always little-endian, word addressable */
507         for (i = 0; i < last_word - first_word + 1; i++)
508                 le16_to_cpus(&eeprom_buff[i]);
509
510         memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1),
511                         eeprom->len);
512         kfree(eeprom_buff);
513
514         return ret_val;
515 }
516
517 static int
518 e1000_set_eeprom(struct net_device *netdev,
519                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
520 {
521         struct e1000_adapter *adapter = netdev_priv(netdev);
522         struct e1000_hw *hw = &adapter->hw;
523         uint16_t *eeprom_buff;
524         void *ptr;
525         int max_len, first_word, last_word, ret_val = 0;
526         uint16_t i;
527
528         if(eeprom->len == 0)
529                 return -EOPNOTSUPP;
530
531         if(eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
532                 return -EFAULT;
533
534         max_len = hw->eeprom.word_size * 2;
535
536         first_word = eeprom->offset >> 1;
537         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
538         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
539         if(!eeprom_buff)
540                 return -ENOMEM;
541
542         ptr = (void *)eeprom_buff;
543
544         if(eeprom->offset & 1) {
545                 /* need read/modify/write of first changed EEPROM word */
546                 /* only the second byte of the word is being modified */
547                 ret_val = e1000_read_eeprom(hw, first_word, 1,
548                                             &eeprom_buff[0]);
549                 ptr++;
550         }
551         if(((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
552                 /* need read/modify/write of last changed EEPROM word */
553                 /* only the first byte of the word is being modified */
554                 ret_val = e1000_read_eeprom(hw, last_word, 1,
555                                   &eeprom_buff[last_word - first_word]);
556         }
557
558         /* Device's eeprom is always little-endian, word addressable */
559         for (i = 0; i < last_word - first_word + 1; i++)
560                 le16_to_cpus(&eeprom_buff[i]);
561
562         memcpy(ptr, bytes, eeprom->len);
563
564         for (i = 0; i < last_word - first_word + 1; i++)
565                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
566
567         ret_val = e1000_write_eeprom(hw, first_word,
568                                      last_word - first_word + 1, eeprom_buff);
569
570         /* Update the checksum over the first part of the EEPROM if needed 
571          * and flush shadow RAM for 82573 conrollers */
572         if((ret_val == 0) && ((first_word <= EEPROM_CHECKSUM_REG) || 
573                                 (hw->mac_type == e1000_82573)))
574                 e1000_update_eeprom_checksum(hw);
575
576         kfree(eeprom_buff);
577         return ret_val;
578 }
579
580 static void
581 e1000_get_drvinfo(struct net_device *netdev,
582                        struct ethtool_drvinfo *drvinfo)
583 {
584         struct e1000_adapter *adapter = netdev_priv(netdev);
585
586         strncpy(drvinfo->driver,  e1000_driver_name, 32);
587         strncpy(drvinfo->version, e1000_driver_version, 32);
588         strncpy(drvinfo->fw_version, "N/A", 32);
589         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
590         drvinfo->n_stats = E1000_STATS_LEN;
591         drvinfo->testinfo_len = E1000_TEST_LEN;
592         drvinfo->regdump_len = e1000_get_regs_len(netdev);
593         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
594 }
595
596 static void
597 e1000_get_ringparam(struct net_device *netdev,
598                     struct ethtool_ringparam *ring)
599 {
600         struct e1000_adapter *adapter = netdev_priv(netdev);
601         e1000_mac_type mac_type = adapter->hw.mac_type;
602         struct e1000_tx_ring *txdr = adapter->tx_ring;
603         struct e1000_rx_ring *rxdr = adapter->rx_ring;
604
605         ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
606                 E1000_MAX_82544_RXD;
607         ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
608                 E1000_MAX_82544_TXD;
609         ring->rx_mini_max_pending = 0;
610         ring->rx_jumbo_max_pending = 0;
611         ring->rx_pending = rxdr->count;
612         ring->tx_pending = txdr->count;
613         ring->rx_mini_pending = 0;
614         ring->rx_jumbo_pending = 0;
615 }
616
617 static int 
618 e1000_set_ringparam(struct net_device *netdev,
619                     struct ethtool_ringparam *ring)
620 {
621         struct e1000_adapter *adapter = netdev_priv(netdev);
622         e1000_mac_type mac_type = adapter->hw.mac_type;
623         struct e1000_tx_ring *txdr, *tx_old, *tx_new;
624         struct e1000_rx_ring *rxdr, *rx_old, *rx_new;
625         int i, err, tx_ring_size, rx_ring_size;
626
627         tx_ring_size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
628         rx_ring_size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
629
630         if (netif_running(adapter->netdev))
631                 e1000_down(adapter);
632
633         tx_old = adapter->tx_ring;
634         rx_old = adapter->rx_ring;
635
636         adapter->tx_ring = kmalloc(tx_ring_size, GFP_KERNEL);
637         if (!adapter->tx_ring) {
638                 err = -ENOMEM;
639                 goto err_setup_rx;
640         }
641         memset(adapter->tx_ring, 0, tx_ring_size);
642
643         adapter->rx_ring = kmalloc(rx_ring_size, GFP_KERNEL);
644         if (!adapter->rx_ring) {
645                 kfree(adapter->tx_ring);
646                 err = -ENOMEM;
647                 goto err_setup_rx;
648         }
649         memset(adapter->rx_ring, 0, rx_ring_size);
650
651         txdr = adapter->tx_ring;
652         rxdr = adapter->rx_ring;
653
654         if((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
655                 return -EINVAL;
656
657         rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD);
658         rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ?
659                 E1000_MAX_RXD : E1000_MAX_82544_RXD));
660         E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE); 
661
662         txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD);
663         txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ?
664                 E1000_MAX_TXD : E1000_MAX_82544_TXD));
665         E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE); 
666
667         for (i = 0; i < adapter->num_tx_queues; i++)
668                 txdr[i].count = txdr->count;
669         for (i = 0; i < adapter->num_rx_queues; i++)
670                 rxdr[i].count = rxdr->count;
671
672         if(netif_running(adapter->netdev)) {
673                 /* Try to get new resources before deleting old */
674                 if ((err = e1000_setup_all_rx_resources(adapter)))
675                         goto err_setup_rx;
676                 if ((err = e1000_setup_all_tx_resources(adapter)))
677                         goto err_setup_tx;
678
679                 /* save the new, restore the old in order to free it,
680                  * then restore the new back again */
681
682                 rx_new = adapter->rx_ring;
683                 tx_new = adapter->tx_ring;
684                 adapter->rx_ring = rx_old;
685                 adapter->tx_ring = tx_old;
686                 e1000_free_all_rx_resources(adapter);
687                 e1000_free_all_tx_resources(adapter);
688                 kfree(tx_old);
689                 kfree(rx_old);
690                 adapter->rx_ring = rx_new;
691                 adapter->tx_ring = tx_new;
692                 if((err = e1000_up(adapter)))
693                         return err;
694         }
695
696         return 0;
697 err_setup_tx:
698         e1000_free_all_rx_resources(adapter);
699 err_setup_rx:
700         adapter->rx_ring = rx_old;
701         adapter->tx_ring = tx_old;
702         e1000_up(adapter);
703         return err;
704 }
705
706 #define REG_PATTERN_TEST(R, M, W)                                              \
707 {                                                                              \
708         uint32_t pat, value;                                                   \
709         uint32_t test[] =                                                      \
710                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};              \
711         for(pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) {              \
712                 E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W));             \
713                 value = E1000_READ_REG(&adapter->hw, R);                       \
714                 if(value != (test[pat] & W & M)) {                             \
715                         DPRINTK(DRV, ERR, "pattern test reg %04X failed: got " \
716                                 "0x%08X expected 0x%08X\n",                    \
717                                 E1000_##R, value, (test[pat] & W & M));        \
718                         *data = (adapter->hw.mac_type < e1000_82543) ?         \
719                                 E1000_82542_##R : E1000_##R;                   \
720                         return 1;                                              \
721                 }                                                              \
722         }                                                                      \
723 }
724
725 #define REG_SET_AND_CHECK(R, M, W)                                             \
726 {                                                                              \
727         uint32_t value;                                                        \
728         E1000_WRITE_REG(&adapter->hw, R, W & M);                               \
729         value = E1000_READ_REG(&adapter->hw, R);                               \
730         if((W & M) != (value & M)) {                                          \
731                 DPRINTK(DRV, ERR, "set/check reg %04X test failed: got 0x%08X "\
732                         "expected 0x%08X\n", E1000_##R, (value & M), (W & M)); \
733                 *data = (adapter->hw.mac_type < e1000_82543) ?                 \
734                         E1000_82542_##R : E1000_##R;                           \
735                 return 1;                                                      \
736         }                                                                      \
737 }
738
739 static int
740 e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
741 {
742         uint32_t value, before, after;
743         uint32_t i, toggle;
744
745         /* The status register is Read Only, so a write should fail.
746          * Some bits that get toggled are ignored.
747          */
748         switch (adapter->hw.mac_type) {
749         /* there are several bits on newer hardware that are r/w */
750         case e1000_82571:
751         case e1000_82572:
752                 toggle = 0x7FFFF3FF;
753                 break;
754         case e1000_82573:
755                 toggle = 0x7FFFF033;
756                 break;
757         default:
758                 toggle = 0xFFFFF833;
759                 break;
760         }
761
762         before = E1000_READ_REG(&adapter->hw, STATUS);
763         value = (E1000_READ_REG(&adapter->hw, STATUS) & toggle);
764         E1000_WRITE_REG(&adapter->hw, STATUS, toggle);
765         after = E1000_READ_REG(&adapter->hw, STATUS) & toggle;
766         if(value != after) {
767                 DPRINTK(DRV, ERR, "failed STATUS register test got: "
768                         "0x%08X expected: 0x%08X\n", after, value);
769                 *data = 1;
770                 return 1;
771         }
772         /* restore previous status */
773         E1000_WRITE_REG(&adapter->hw, STATUS, before);
774
775         REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
776         REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
777         REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
778         REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
779         REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
780         REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
781         REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
782         REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
783         REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
784         REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
785         REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
786         REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
787         REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
788         REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
789
790         REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
791         REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0x003FFFFB);
792         REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
793
794         if(adapter->hw.mac_type >= e1000_82543) {
795
796                 REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0xFFFFFFFF);
797                 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
798                 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
799                 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
800                 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
801
802                 for(i = 0; i < E1000_RAR_ENTRIES; i++) {
803                         REG_PATTERN_TEST(RA + ((i << 1) << 2), 0xFFFFFFFF,
804                                          0xFFFFFFFF);
805                         REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
806                                          0xFFFFFFFF);
807                 }
808
809         } else {
810
811                 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
812                 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
813                 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
814                 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
815
816         }
817
818         for(i = 0; i < E1000_MC_TBL_SIZE; i++)
819                 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
820
821         *data = 0;
822         return 0;
823 }
824
825 static int
826 e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data)
827 {
828         uint16_t temp;
829         uint16_t checksum = 0;
830         uint16_t i;
831
832         *data = 0;
833         /* Read and add up the contents of the EEPROM */
834         for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
835                 if((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) {
836                         *data = 1;
837                         break;
838                 }
839                 checksum += temp;
840         }
841
842         /* If Checksum is not Correct return error else test passed */
843         if((checksum != (uint16_t) EEPROM_SUM) && !(*data))
844                 *data = 2;
845
846         return *data;
847 }
848
849 static irqreturn_t
850 e1000_test_intr(int irq,
851                 void *data,
852                 struct pt_regs *regs)
853 {
854         struct net_device *netdev = (struct net_device *) data;
855         struct e1000_adapter *adapter = netdev_priv(netdev);
856
857         adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR);
858
859         return IRQ_HANDLED;
860 }
861
862 static int
863 e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
864 {
865         struct net_device *netdev = adapter->netdev;
866         uint32_t mask, i=0, shared_int = TRUE;
867         uint32_t irq = adapter->pdev->irq;
868
869         *data = 0;
870
871         /* Hook up test interrupt handler just for this test */
872         if(!request_irq(irq, &e1000_test_intr, 0, netdev->name, netdev)) {
873                 shared_int = FALSE;
874         } else if(request_irq(irq, &e1000_test_intr, SA_SHIRQ,
875                               netdev->name, netdev)){
876                 *data = 1;
877                 return -1;
878         }
879
880         /* Disable all the interrupts */
881         E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
882         msec_delay(10);
883
884         /* Test each interrupt */
885         for(; i < 10; i++) {
886
887                 /* Interrupt to test */
888                 mask = 1 << i;
889
890                 if(!shared_int) {
891                         /* Disable the interrupt to be reported in
892                          * the cause register and then force the same
893                          * interrupt and see if one gets posted.  If
894                          * an interrupt was posted to the bus, the
895                          * test failed.
896                          */
897                         adapter->test_icr = 0;
898                         E1000_WRITE_REG(&adapter->hw, IMC, mask);
899                         E1000_WRITE_REG(&adapter->hw, ICS, mask);
900                         msec_delay(10);
901  
902                         if(adapter->test_icr & mask) {
903                                 *data = 3;
904                                 break;
905                         }
906                 }
907
908                 /* Enable the interrupt to be reported in
909                  * the cause register and then force the same
910                  * interrupt and see if one gets posted.  If
911                  * an interrupt was not posted to the bus, the
912                  * test failed.
913                  */
914                 adapter->test_icr = 0;
915                 E1000_WRITE_REG(&adapter->hw, IMS, mask);
916                 E1000_WRITE_REG(&adapter->hw, ICS, mask);
917                 msec_delay(10);
918
919                 if(!(adapter->test_icr & mask)) {
920                         *data = 4;
921                         break;
922                 }
923
924                 if(!shared_int) {
925                         /* Disable the other interrupts to be reported in
926                          * the cause register and then force the other
927                          * interrupts and see if any get posted.  If
928                          * an interrupt was posted to the bus, the
929                          * test failed.
930                          */
931                         adapter->test_icr = 0;
932                         E1000_WRITE_REG(&adapter->hw, IMC, ~mask & 0x00007FFF);
933                         E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF);
934                         msec_delay(10);
935
936                         if(adapter->test_icr) {
937                                 *data = 5;
938                                 break;
939                         }
940                 }
941         }
942
943         /* Disable all the interrupts */
944         E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
945         msec_delay(10);
946
947         /* Unhook test interrupt handler */
948         free_irq(irq, netdev);
949
950         return *data;
951 }
952
953 static void
954 e1000_free_desc_rings(struct e1000_adapter *adapter)
955 {
956         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
957         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
958         struct pci_dev *pdev = adapter->pdev;
959         int i;
960
961         if(txdr->desc && txdr->buffer_info) {
962                 for(i = 0; i < txdr->count; i++) {
963                         if(txdr->buffer_info[i].dma)
964                                 pci_unmap_single(pdev, txdr->buffer_info[i].dma,
965                                                  txdr->buffer_info[i].length,
966                                                  PCI_DMA_TODEVICE);
967                         if(txdr->buffer_info[i].skb)
968                                 dev_kfree_skb(txdr->buffer_info[i].skb);
969                 }
970         }
971
972         if(rxdr->desc && rxdr->buffer_info) {
973                 for(i = 0; i < rxdr->count; i++) {
974                         if(rxdr->buffer_info[i].dma)
975                                 pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
976                                                  rxdr->buffer_info[i].length,
977                                                  PCI_DMA_FROMDEVICE);
978                         if(rxdr->buffer_info[i].skb)
979                                 dev_kfree_skb(rxdr->buffer_info[i].skb);
980                 }
981         }
982
983         if(txdr->desc) {
984                 pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
985                 txdr->desc = NULL;
986         }
987         if(rxdr->desc) {
988                 pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
989                 rxdr->desc = NULL;
990         }
991
992         kfree(txdr->buffer_info);
993         txdr->buffer_info = NULL;
994         kfree(rxdr->buffer_info);
995         rxdr->buffer_info = NULL;
996         return;
997 }
998
999 static int
1000 e1000_setup_desc_rings(struct e1000_adapter *adapter)
1001 {
1002         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1003         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1004         struct pci_dev *pdev = adapter->pdev;
1005         uint32_t rctl;
1006         int size, i, ret_val;
1007
1008         /* Setup Tx descriptor ring and Tx buffers */
1009
1010         if(!txdr->count)
1011                 txdr->count = E1000_DEFAULT_TXD;   
1012
1013         size = txdr->count * sizeof(struct e1000_buffer);
1014         if(!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
1015                 ret_val = 1;
1016                 goto err_nomem;
1017         }
1018         memset(txdr->buffer_info, 0, size);
1019
1020         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1021         E1000_ROUNDUP(txdr->size, 4096);
1022         if(!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) {
1023                 ret_val = 2;
1024                 goto err_nomem;
1025         }
1026         memset(txdr->desc, 0, txdr->size);
1027         txdr->next_to_use = txdr->next_to_clean = 0;
1028
1029         E1000_WRITE_REG(&adapter->hw, TDBAL,
1030                         ((uint64_t) txdr->dma & 0x00000000FFFFFFFF));
1031         E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32));
1032         E1000_WRITE_REG(&adapter->hw, TDLEN,
1033                         txdr->count * sizeof(struct e1000_tx_desc));
1034         E1000_WRITE_REG(&adapter->hw, TDH, 0);
1035         E1000_WRITE_REG(&adapter->hw, TDT, 0);
1036         E1000_WRITE_REG(&adapter->hw, TCTL,
1037                         E1000_TCTL_PSP | E1000_TCTL_EN |
1038                         E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1039                         E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1040
1041         for(i = 0; i < txdr->count; i++) {
1042                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1043                 struct sk_buff *skb;
1044                 unsigned int size = 1024;
1045
1046                 if(!(skb = alloc_skb(size, GFP_KERNEL))) {
1047                         ret_val = 3;
1048                         goto err_nomem;
1049                 }
1050                 skb_put(skb, size);
1051                 txdr->buffer_info[i].skb = skb;
1052                 txdr->buffer_info[i].length = skb->len;
1053                 txdr->buffer_info[i].dma =
1054                         pci_map_single(pdev, skb->data, skb->len,
1055                                        PCI_DMA_TODEVICE);
1056                 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1057                 tx_desc->lower.data = cpu_to_le32(skb->len);
1058                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1059                                                    E1000_TXD_CMD_IFCS |
1060                                                    E1000_TXD_CMD_RPS);
1061                 tx_desc->upper.data = 0;
1062         }
1063
1064         /* Setup Rx descriptor ring and Rx buffers */
1065
1066         if(!rxdr->count)
1067                 rxdr->count = E1000_DEFAULT_RXD;   
1068
1069         size = rxdr->count * sizeof(struct e1000_buffer);
1070         if(!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
1071                 ret_val = 4;
1072                 goto err_nomem;
1073         }
1074         memset(rxdr->buffer_info, 0, size);
1075
1076         rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1077         if(!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) {
1078                 ret_val = 5;
1079                 goto err_nomem;
1080         }
1081         memset(rxdr->desc, 0, rxdr->size);
1082         rxdr->next_to_use = rxdr->next_to_clean = 0;
1083
1084         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1085         E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
1086         E1000_WRITE_REG(&adapter->hw, RDBAL,
1087                         ((uint64_t) rxdr->dma & 0xFFFFFFFF));
1088         E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32));
1089         E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size);
1090         E1000_WRITE_REG(&adapter->hw, RDH, 0);
1091         E1000_WRITE_REG(&adapter->hw, RDT, 0);
1092         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1093                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1094                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1095         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1096
1097         for(i = 0; i < rxdr->count; i++) {
1098                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1099                 struct sk_buff *skb;
1100
1101                 if(!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN,
1102                                 GFP_KERNEL))) {
1103                         ret_val = 6;
1104                         goto err_nomem;
1105                 }
1106                 skb_reserve(skb, NET_IP_ALIGN);
1107                 rxdr->buffer_info[i].skb = skb;
1108                 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1109                 rxdr->buffer_info[i].dma =
1110                         pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
1111                                        PCI_DMA_FROMDEVICE);
1112                 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1113                 memset(skb->data, 0x00, skb->len);
1114         }
1115
1116         return 0;
1117
1118 err_nomem:
1119         e1000_free_desc_rings(adapter);
1120         return ret_val;
1121 }
1122
1123 static void
1124 e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1125 {
1126         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1127         e1000_write_phy_reg(&adapter->hw, 29, 0x001F);
1128         e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC);
1129         e1000_write_phy_reg(&adapter->hw, 29, 0x001A);
1130         e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0);
1131 }
1132
1133 static void
1134 e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1135 {
1136         uint16_t phy_reg;
1137
1138         /* Because we reset the PHY above, we need to re-force TX_CLK in the
1139          * Extended PHY Specific Control Register to 25MHz clock.  This
1140          * value defaults back to a 2.5MHz clock when the PHY is reset.
1141          */
1142         e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1143         phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1144         e1000_write_phy_reg(&adapter->hw,
1145                 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1146
1147         /* In addition, because of the s/w reset above, we need to enable
1148          * CRS on TX.  This must be set for both full and half duplex
1149          * operation.
1150          */
1151         e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1152         phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1153         e1000_write_phy_reg(&adapter->hw,
1154                 M88E1000_PHY_SPEC_CTRL, phy_reg);
1155 }
1156
1157 static int
1158 e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1159 {
1160         uint32_t ctrl_reg;
1161         uint16_t phy_reg;
1162
1163         /* Setup the Device Control Register for PHY loopback test. */
1164
1165         ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1166         ctrl_reg |= (E1000_CTRL_ILOS |          /* Invert Loss-Of-Signal */
1167                      E1000_CTRL_FRCSPD |        /* Set the Force Speed Bit */
1168                      E1000_CTRL_FRCDPX |        /* Set the Force Duplex Bit */
1169                      E1000_CTRL_SPD_1000 |      /* Force Speed to 1000 */
1170                      E1000_CTRL_FD);            /* Force Duplex to FULL */
1171
1172         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1173
1174         /* Read the PHY Specific Control Register (0x10) */
1175         e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1176
1177         /* Clear Auto-Crossover bits in PHY Specific Control Register
1178          * (bits 6:5).
1179          */
1180         phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1181         e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1182
1183         /* Perform software reset on the PHY */
1184         e1000_phy_reset(&adapter->hw);
1185
1186         /* Have to setup TX_CLK and TX_CRS after software reset */
1187         e1000_phy_reset_clk_and_crs(adapter);
1188
1189         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100);
1190
1191         /* Wait for reset to complete. */
1192         udelay(500);
1193
1194         /* Have to setup TX_CLK and TX_CRS after software reset */
1195         e1000_phy_reset_clk_and_crs(adapter);
1196
1197         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1198         e1000_phy_disable_receiver(adapter);
1199
1200         /* Set the loopback bit in the PHY control register. */
1201         e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1202         phy_reg |= MII_CR_LOOPBACK;
1203         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1204
1205         /* Setup TX_CLK and TX_CRS one more time. */
1206         e1000_phy_reset_clk_and_crs(adapter);
1207
1208         /* Check Phy Configuration */
1209         e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1210         if(phy_reg != 0x4100)
1211                  return 9;
1212
1213         e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1214         if(phy_reg != 0x0070)
1215                 return 10;
1216
1217         e1000_read_phy_reg(&adapter->hw, 29, &phy_reg);
1218         if(phy_reg != 0x001A)
1219                 return 11;
1220
1221         return 0;
1222 }
1223
1224 static int
1225 e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1226 {
1227         uint32_t ctrl_reg = 0;
1228         uint32_t stat_reg = 0;
1229
1230         adapter->hw.autoneg = FALSE;
1231
1232         if(adapter->hw.phy_type == e1000_phy_m88) {
1233                 /* Auto-MDI/MDIX Off */
1234                 e1000_write_phy_reg(&adapter->hw,
1235                                     M88E1000_PHY_SPEC_CTRL, 0x0808);
1236                 /* reset to update Auto-MDI/MDIX */
1237                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140);
1238                 /* autoneg off */
1239                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140);
1240         }
1241         /* force 1000, set loopback */
1242         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
1243
1244         /* Now set up the MAC to the same speed/duplex as the PHY. */
1245         ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1246         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1247         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1248                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1249                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1250                      E1000_CTRL_FD);     /* Force Duplex to FULL */
1251
1252         if(adapter->hw.media_type == e1000_media_type_copper &&
1253            adapter->hw.phy_type == e1000_phy_m88) {
1254                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1255         } else {
1256                 /* Set the ILOS bit on the fiber Nic is half
1257                  * duplex link is detected. */
1258                 stat_reg = E1000_READ_REG(&adapter->hw, STATUS);
1259                 if((stat_reg & E1000_STATUS_FD) == 0)
1260                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1261         }
1262
1263         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1264
1265         /* Disable the receiver on the PHY so when a cable is plugged in, the
1266          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1267          */
1268         if(adapter->hw.phy_type == e1000_phy_m88)
1269                 e1000_phy_disable_receiver(adapter);
1270
1271         udelay(500);
1272
1273         return 0;
1274 }
1275
1276 static int
1277 e1000_set_phy_loopback(struct e1000_adapter *adapter)
1278 {
1279         uint16_t phy_reg = 0;
1280         uint16_t count = 0;
1281
1282         switch (adapter->hw.mac_type) {
1283         case e1000_82543:
1284                 if(adapter->hw.media_type == e1000_media_type_copper) {
1285                         /* Attempt to setup Loopback mode on Non-integrated PHY.
1286                          * Some PHY registers get corrupted at random, so
1287                          * attempt this 10 times.
1288                          */
1289                         while(e1000_nonintegrated_phy_loopback(adapter) &&
1290                               count++ < 10);
1291                         if(count < 11)
1292                                 return 0;
1293                 }
1294                 break;
1295
1296         case e1000_82544:
1297         case e1000_82540:
1298         case e1000_82545:
1299         case e1000_82545_rev_3:
1300         case e1000_82546:
1301         case e1000_82546_rev_3:
1302         case e1000_82541:
1303         case e1000_82541_rev_2:
1304         case e1000_82547:
1305         case e1000_82547_rev_2:
1306         case e1000_82571:
1307         case e1000_82572:
1308         case e1000_82573:
1309                 return e1000_integrated_phy_loopback(adapter);
1310                 break;
1311
1312         default:
1313                 /* Default PHY loopback work is to read the MII
1314                  * control register and assert bit 14 (loopback mode).
1315                  */
1316                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1317                 phy_reg |= MII_CR_LOOPBACK;
1318                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1319                 return 0;
1320                 break;
1321         }
1322
1323         return 8;
1324 }
1325
1326 static int
1327 e1000_setup_loopback_test(struct e1000_adapter *adapter)
1328 {
1329         uint32_t rctl;
1330
1331         if(adapter->hw.media_type == e1000_media_type_fiber ||
1332            adapter->hw.media_type == e1000_media_type_internal_serdes) {
1333                 if(adapter->hw.mac_type == e1000_82545 ||
1334                    adapter->hw.mac_type == e1000_82546 ||
1335                    adapter->hw.mac_type == e1000_82545_rev_3 ||
1336                    adapter->hw.mac_type == e1000_82546_rev_3)
1337                         return e1000_set_phy_loopback(adapter);
1338                 else {
1339                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1340                         rctl |= E1000_RCTL_LBM_TCVR;
1341                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1342                         return 0;
1343                 }
1344         } else if(adapter->hw.media_type == e1000_media_type_copper)
1345                 return e1000_set_phy_loopback(adapter);
1346
1347         return 7;
1348 }
1349
1350 static void
1351 e1000_loopback_cleanup(struct e1000_adapter *adapter)
1352 {
1353         uint32_t rctl;
1354         uint16_t phy_reg;
1355
1356         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1357         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1358         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1359
1360         if(adapter->hw.media_type == e1000_media_type_copper ||
1361            ((adapter->hw.media_type == e1000_media_type_fiber ||
1362              adapter->hw.media_type == e1000_media_type_internal_serdes) &&
1363             (adapter->hw.mac_type == e1000_82545 ||
1364              adapter->hw.mac_type == e1000_82546 ||
1365              adapter->hw.mac_type == e1000_82545_rev_3 ||
1366              adapter->hw.mac_type == e1000_82546_rev_3))) {
1367                 adapter->hw.autoneg = TRUE;
1368                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1369                 if(phy_reg & MII_CR_LOOPBACK) {
1370                         phy_reg &= ~MII_CR_LOOPBACK;
1371                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1372                         e1000_phy_reset(&adapter->hw);
1373                 }
1374         }
1375 }
1376
1377 static void
1378 e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1379 {
1380         memset(skb->data, 0xFF, frame_size);
1381         frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size;
1382         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1383         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1384         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1385 }
1386
1387 static int
1388 e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1389 {
1390         frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size;
1391         if(*(skb->data + 3) == 0xFF) {
1392                 if((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1393                    (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1394                         return 0;
1395                 }
1396         }
1397         return 13;
1398 }
1399
1400 static int
1401 e1000_run_loopback_test(struct e1000_adapter *adapter)
1402 {
1403         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1404         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1405         struct pci_dev *pdev = adapter->pdev;
1406         int i, j, k, l, lc, good_cnt, ret_val=0;
1407         unsigned long time;
1408
1409         E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1);
1410
1411         /* Calculate the loop count based on the largest descriptor ring 
1412          * The idea is to wrap the largest ring a number of times using 64
1413          * send/receive pairs during each loop
1414          */
1415
1416         if(rxdr->count <= txdr->count)
1417                 lc = ((txdr->count / 64) * 2) + 1;
1418         else
1419                 lc = ((rxdr->count / 64) * 2) + 1;
1420
1421         k = l = 0;
1422         for(j = 0; j <= lc; j++) { /* loop count loop */
1423                 for(i = 0; i < 64; i++) { /* send the packets */
1424                         e1000_create_lbtest_frame(txdr->buffer_info[i].skb, 
1425                                         1024);
1426                         pci_dma_sync_single_for_device(pdev, 
1427                                         txdr->buffer_info[k].dma,
1428                                         txdr->buffer_info[k].length,
1429                                         PCI_DMA_TODEVICE);
1430                         if(unlikely(++k == txdr->count)) k = 0;
1431                 }
1432                 E1000_WRITE_REG(&adapter->hw, TDT, k);
1433                 msec_delay(200);
1434                 time = jiffies; /* set the start time for the receive */
1435                 good_cnt = 0;
1436                 do { /* receive the sent packets */
1437                         pci_dma_sync_single_for_cpu(pdev, 
1438                                         rxdr->buffer_info[l].dma,
1439                                         rxdr->buffer_info[l].length,
1440                                         PCI_DMA_FROMDEVICE);
1441         
1442                         ret_val = e1000_check_lbtest_frame(
1443                                         rxdr->buffer_info[l].skb,
1444                                         1024);
1445                         if(!ret_val)
1446                                 good_cnt++;
1447                         if(unlikely(++l == rxdr->count)) l = 0;
1448                         /* time + 20 msecs (200 msecs on 2.4) is more than 
1449                          * enough time to complete the receives, if it's 
1450                          * exceeded, break and error off
1451                          */
1452                 } while (good_cnt < 64 && jiffies < (time + 20));
1453                 if(good_cnt != 64) {
1454                         ret_val = 13; /* ret_val is the same as mis-compare */
1455                         break; 
1456                 }
1457                 if(jiffies >= (time + 2)) {
1458                         ret_val = 14; /* error code for time out error */
1459                         break;
1460                 }
1461         } /* end loop count loop */
1462         return ret_val;
1463 }
1464
1465 static int
1466 e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data)
1467 {
1468         /* PHY loopback cannot be performed if SoL/IDER
1469          * sessions are active */
1470         if (e1000_check_phy_reset_block(&adapter->hw)) {
1471                 DPRINTK(DRV, ERR, "Cannot do PHY loopback test "
1472                         "when SoL/IDER is active.\n");
1473                 *data = 0;
1474                 goto out;
1475         }
1476
1477         if ((*data = e1000_setup_desc_rings(adapter)))
1478                 goto out;
1479         if ((*data = e1000_setup_loopback_test(adapter)))
1480                 goto err_loopback;
1481         *data = e1000_run_loopback_test(adapter);
1482         e1000_loopback_cleanup(adapter);
1483
1484 err_loopback:
1485         e1000_free_desc_rings(adapter);
1486 out:
1487         return *data;
1488 }
1489
1490 static int
1491 e1000_link_test(struct e1000_adapter *adapter, uint64_t *data)
1492 {
1493         *data = 0;
1494         if (adapter->hw.media_type == e1000_media_type_internal_serdes) {
1495                 int i = 0;
1496                 adapter->hw.serdes_link_down = TRUE;
1497
1498                 /* On some blade server designs, link establishment
1499                  * could take as long as 2-3 minutes */
1500                 do {
1501                         e1000_check_for_link(&adapter->hw);
1502                         if (adapter->hw.serdes_link_down == FALSE)
1503                                 return *data;
1504                         msec_delay(20);
1505                 } while (i++ < 3750);
1506
1507                 *data = 1;
1508         } else {
1509                 e1000_check_for_link(&adapter->hw);
1510                 if(adapter->hw.autoneg)  /* if auto_neg is set wait for it */
1511                         msec_delay(4000);
1512
1513                 if(!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
1514                         *data = 1;
1515                 }
1516         }
1517         return *data;
1518 }
1519
1520 static int 
1521 e1000_diag_test_count(struct net_device *netdev)
1522 {
1523         return E1000_TEST_LEN;
1524 }
1525
1526 static void
1527 e1000_diag_test(struct net_device *netdev,
1528                    struct ethtool_test *eth_test, uint64_t *data)
1529 {
1530         struct e1000_adapter *adapter = netdev_priv(netdev);
1531         boolean_t if_running = netif_running(netdev);
1532
1533         if(eth_test->flags == ETH_TEST_FL_OFFLINE) {
1534                 /* Offline tests */
1535
1536                 /* save speed, duplex, autoneg settings */
1537                 uint16_t autoneg_advertised = adapter->hw.autoneg_advertised;
1538                 uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex;
1539                 uint8_t autoneg = adapter->hw.autoneg;
1540
1541                 /* Link test performed before hardware reset so autoneg doesn't
1542                  * interfere with test result */
1543                 if(e1000_link_test(adapter, &data[4]))
1544                         eth_test->flags |= ETH_TEST_FL_FAILED;
1545
1546                 if(if_running)
1547                         e1000_down(adapter);
1548                 else
1549                         e1000_reset(adapter);
1550
1551                 if(e1000_reg_test(adapter, &data[0]))
1552                         eth_test->flags |= ETH_TEST_FL_FAILED;
1553
1554                 e1000_reset(adapter);
1555                 if(e1000_eeprom_test(adapter, &data[1]))
1556                         eth_test->flags |= ETH_TEST_FL_FAILED;
1557
1558                 e1000_reset(adapter);
1559                 if(e1000_intr_test(adapter, &data[2]))
1560                         eth_test->flags |= ETH_TEST_FL_FAILED;
1561
1562                 e1000_reset(adapter);
1563                 if(e1000_loopback_test(adapter, &data[3]))
1564                         eth_test->flags |= ETH_TEST_FL_FAILED;
1565
1566                 /* restore speed, duplex, autoneg settings */
1567                 adapter->hw.autoneg_advertised = autoneg_advertised;
1568                 adapter->hw.forced_speed_duplex = forced_speed_duplex;
1569                 adapter->hw.autoneg = autoneg;
1570
1571                 e1000_reset(adapter);
1572                 if(if_running)
1573                         e1000_up(adapter);
1574         } else {
1575                 /* Online tests */
1576                 if(e1000_link_test(adapter, &data[4]))
1577                         eth_test->flags |= ETH_TEST_FL_FAILED;
1578
1579                 /* Offline tests aren't run; pass by default */
1580                 data[0] = 0;
1581                 data[1] = 0;
1582                 data[2] = 0;
1583                 data[3] = 0;
1584         }
1585         msleep_interruptible(4 * 1000);
1586 }
1587
1588 static void
1589 e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1590 {
1591         struct e1000_adapter *adapter = netdev_priv(netdev);
1592         struct e1000_hw *hw = &adapter->hw;
1593
1594         switch(adapter->hw.device_id) {
1595         case E1000_DEV_ID_82542:
1596         case E1000_DEV_ID_82543GC_FIBER:
1597         case E1000_DEV_ID_82543GC_COPPER:
1598         case E1000_DEV_ID_82544EI_FIBER:
1599         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1600         case E1000_DEV_ID_82545EM_FIBER:
1601         case E1000_DEV_ID_82545EM_COPPER:
1602                 wol->supported = 0;
1603                 wol->wolopts   = 0;
1604                 return;
1605
1606         case E1000_DEV_ID_82546EB_FIBER:
1607         case E1000_DEV_ID_82546GB_FIBER:
1608                 /* Wake events only supported on port A for dual fiber */
1609                 if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) {
1610                         wol->supported = 0;
1611                         wol->wolopts   = 0;
1612                         return;
1613                 }
1614                 /* Fall Through */
1615
1616         default:
1617                 wol->supported = WAKE_UCAST | WAKE_MCAST |
1618                                  WAKE_BCAST | WAKE_MAGIC;
1619
1620                 wol->wolopts = 0;
1621                 if(adapter->wol & E1000_WUFC_EX)
1622                         wol->wolopts |= WAKE_UCAST;
1623                 if(adapter->wol & E1000_WUFC_MC)
1624                         wol->wolopts |= WAKE_MCAST;
1625                 if(adapter->wol & E1000_WUFC_BC)
1626                         wol->wolopts |= WAKE_BCAST;
1627                 if(adapter->wol & E1000_WUFC_MAG)
1628                         wol->wolopts |= WAKE_MAGIC;
1629                 return;
1630         }
1631 }
1632
1633 static int
1634 e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1635 {
1636         struct e1000_adapter *adapter = netdev_priv(netdev);
1637         struct e1000_hw *hw = &adapter->hw;
1638
1639         switch(adapter->hw.device_id) {
1640         case E1000_DEV_ID_82542:
1641         case E1000_DEV_ID_82543GC_FIBER:
1642         case E1000_DEV_ID_82543GC_COPPER:
1643         case E1000_DEV_ID_82544EI_FIBER:
1644         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1645         case E1000_DEV_ID_82545EM_FIBER:
1646         case E1000_DEV_ID_82545EM_COPPER:
1647                 return wol->wolopts ? -EOPNOTSUPP : 0;
1648
1649         case E1000_DEV_ID_82546EB_FIBER:
1650         case E1000_DEV_ID_82546GB_FIBER:
1651                 /* Wake events only supported on port A for dual fiber */
1652                 if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1653                         return wol->wolopts ? -EOPNOTSUPP : 0;
1654                 /* Fall Through */
1655
1656         default:
1657                 if(wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1658                         return -EOPNOTSUPP;
1659
1660                 adapter->wol = 0;
1661
1662                 if(wol->wolopts & WAKE_UCAST)
1663                         adapter->wol |= E1000_WUFC_EX;
1664                 if(wol->wolopts & WAKE_MCAST)
1665                         adapter->wol |= E1000_WUFC_MC;
1666                 if(wol->wolopts & WAKE_BCAST)
1667                         adapter->wol |= E1000_WUFC_BC;
1668                 if(wol->wolopts & WAKE_MAGIC)
1669                         adapter->wol |= E1000_WUFC_MAG;
1670         }
1671
1672         return 0;
1673 }
1674
1675 /* toggle LED 4 times per second = 2 "blinks" per second */
1676 #define E1000_ID_INTERVAL       (HZ/4)
1677
1678 /* bit defines for adapter->led_status */
1679 #define E1000_LED_ON            0
1680
1681 static void
1682 e1000_led_blink_callback(unsigned long data)
1683 {
1684         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1685
1686         if(test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1687                 e1000_led_off(&adapter->hw);
1688         else
1689                 e1000_led_on(&adapter->hw);
1690
1691         mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1692 }
1693
1694 static int
1695 e1000_phys_id(struct net_device *netdev, uint32_t data)
1696 {
1697         struct e1000_adapter *adapter = netdev_priv(netdev);
1698
1699         if(!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ))
1700                 data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ);
1701
1702         if(adapter->hw.mac_type < e1000_82571) {
1703                 if(!adapter->blink_timer.function) {
1704                         init_timer(&adapter->blink_timer);
1705                         adapter->blink_timer.function = e1000_led_blink_callback;
1706                         adapter->blink_timer.data = (unsigned long) adapter;
1707                 }
1708                 e1000_setup_led(&adapter->hw);
1709                 mod_timer(&adapter->blink_timer, jiffies);
1710                 msleep_interruptible(data * 1000);
1711                 del_timer_sync(&adapter->blink_timer);
1712         } else if (adapter->hw.mac_type < e1000_82573) {
1713                 E1000_WRITE_REG(&adapter->hw, LEDCTL,
1714                         (E1000_LEDCTL_LED2_BLINK_RATE |
1715                          E1000_LEDCTL_LED0_BLINK | E1000_LEDCTL_LED2_BLINK |
1716                          (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) |
1717                          (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED0_MODE_SHIFT) |
1718                          (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED1_MODE_SHIFT)));
1719                 msleep_interruptible(data * 1000);
1720         } else {
1721                 E1000_WRITE_REG(&adapter->hw, LEDCTL,
1722                         (E1000_LEDCTL_LED2_BLINK_RATE |
1723                          E1000_LEDCTL_LED1_BLINK | E1000_LEDCTL_LED2_BLINK |
1724                          (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) |
1725                          (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED1_MODE_SHIFT) |
1726                          (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED0_MODE_SHIFT)));
1727                 msleep_interruptible(data * 1000);
1728         }
1729
1730         e1000_led_off(&adapter->hw);
1731         clear_bit(E1000_LED_ON, &adapter->led_status);
1732         e1000_cleanup_led(&adapter->hw);
1733
1734         return 0;
1735 }
1736
1737 static int
1738 e1000_nway_reset(struct net_device *netdev)
1739 {
1740         struct e1000_adapter *adapter = netdev_priv(netdev);
1741         if(netif_running(netdev)) {
1742                 e1000_down(adapter);
1743                 e1000_up(adapter);
1744         }
1745         return 0;
1746 }
1747
1748 static int 
1749 e1000_get_stats_count(struct net_device *netdev)
1750 {
1751         return E1000_STATS_LEN;
1752 }
1753
1754 static void 
1755 e1000_get_ethtool_stats(struct net_device *netdev, 
1756                 struct ethtool_stats *stats, uint64_t *data)
1757 {
1758         struct e1000_adapter *adapter = netdev_priv(netdev);
1759 #ifdef CONFIG_E1000_MQ
1760         uint64_t *queue_stat;
1761         int stat_count = sizeof(struct e1000_queue_stats) / sizeof(uint64_t);
1762         int j, k;
1763 #endif
1764         int i;
1765
1766         e1000_update_stats(adapter);
1767         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1768                 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
1769                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1770                         sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
1771         }
1772 #ifdef CONFIG_E1000_MQ
1773         for (j = 0; j < adapter->num_tx_queues; j++) {
1774                 queue_stat = (uint64_t *)&adapter->tx_ring[j].tx_stats;
1775                 for (k = 0; k < stat_count; k++)
1776                         data[i + k] = queue_stat[k];
1777                 i += k;
1778         }
1779         for (j = 0; j < adapter->num_rx_queues; j++) {
1780                 queue_stat = (uint64_t *)&adapter->rx_ring[j].rx_stats;
1781                 for (k = 0; k < stat_count; k++)
1782                         data[i + k] = queue_stat[k];
1783                 i += k;
1784         }
1785 #endif
1786 /*      BUG_ON(i != E1000_STATS_LEN); */
1787 }
1788
1789 static void 
1790 e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
1791 {
1792 #ifdef CONFIG_E1000_MQ
1793         struct e1000_adapter *adapter = netdev_priv(netdev);
1794 #endif
1795         uint8_t *p = data;
1796         int i;
1797
1798         switch(stringset) {
1799         case ETH_SS_TEST:
1800                 memcpy(data, *e1000_gstrings_test, 
1801                         E1000_TEST_LEN*ETH_GSTRING_LEN);
1802                 break;
1803         case ETH_SS_STATS:
1804                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1805                         memcpy(p, e1000_gstrings_stats[i].stat_string,
1806                                ETH_GSTRING_LEN);
1807                         p += ETH_GSTRING_LEN;
1808                 }
1809 #ifdef CONFIG_E1000_MQ
1810                 for (i = 0; i < adapter->num_tx_queues; i++) {
1811                         sprintf(p, "tx_queue_%u_packets", i);
1812                         p += ETH_GSTRING_LEN;
1813                         sprintf(p, "tx_queue_%u_bytes", i);
1814                         p += ETH_GSTRING_LEN;
1815                 }
1816                 for (i = 0; i < adapter->num_rx_queues; i++) {
1817                         sprintf(p, "rx_queue_%u_packets", i);
1818                         p += ETH_GSTRING_LEN;
1819                         sprintf(p, "rx_queue_%u_bytes", i);
1820                         p += ETH_GSTRING_LEN;
1821                 }
1822 #endif
1823 /*              BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1824                 break;
1825         }
1826 }
1827
1828 static struct ethtool_ops e1000_ethtool_ops = {
1829         .get_settings           = e1000_get_settings,
1830         .set_settings           = e1000_set_settings,
1831         .get_drvinfo            = e1000_get_drvinfo,
1832         .get_regs_len           = e1000_get_regs_len,
1833         .get_regs               = e1000_get_regs,
1834         .get_wol                = e1000_get_wol,
1835         .set_wol                = e1000_set_wol,
1836         .get_msglevel           = e1000_get_msglevel,
1837         .set_msglevel           = e1000_set_msglevel,
1838         .nway_reset             = e1000_nway_reset,
1839         .get_link               = ethtool_op_get_link,
1840         .get_eeprom_len         = e1000_get_eeprom_len,
1841         .get_eeprom             = e1000_get_eeprom,
1842         .set_eeprom             = e1000_set_eeprom,
1843         .get_ringparam          = e1000_get_ringparam,
1844         .set_ringparam          = e1000_set_ringparam,
1845         .get_pauseparam         = e1000_get_pauseparam,
1846         .set_pauseparam         = e1000_set_pauseparam,
1847         .get_rx_csum            = e1000_get_rx_csum,
1848         .set_rx_csum            = e1000_set_rx_csum,
1849         .get_tx_csum            = e1000_get_tx_csum,
1850         .set_tx_csum            = e1000_set_tx_csum,
1851         .get_sg                 = ethtool_op_get_sg,
1852         .set_sg                 = ethtool_op_set_sg,
1853 #ifdef NETIF_F_TSO
1854         .get_tso                = ethtool_op_get_tso,
1855         .set_tso                = e1000_set_tso,
1856 #endif
1857         .self_test_count        = e1000_diag_test_count,
1858         .self_test              = e1000_diag_test,
1859         .get_strings            = e1000_get_strings,
1860         .phys_id                = e1000_phys_id,
1861         .get_stats_count        = e1000_get_stats_count,
1862         .get_ethtool_stats      = e1000_get_ethtool_stats,
1863         .get_perm_addr          = ethtool_op_get_perm_addr,
1864 };
1865
1866 void e1000_set_ethtool_ops(struct net_device *netdev)
1867 {
1868         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1869 }