]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/e1000/e1000_ethtool.c
c88f1a3c1b1db7d58a87a779d6517480e514d31c
[linux-2.6-omap-h63xx.git] / drivers / net / e1000 / e1000_ethtool.c
1 /*******************************************************************************
2
3   
4   Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
5   
6   This program is free software; you can redistribute it and/or modify it 
7   under the terms of the GNU General Public License as published by the Free 
8   Software Foundation; either version 2 of the License, or (at your option) 
9   any later version.
10   
11   This program is distributed in the hope that it will be useful, but WITHOUT 
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
14   more details.
15   
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc., 59 
18   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
19   
20   The full GNU General Public License is included in this distribution in the
21   file called LICENSE.
22   
23   Contact Information:
24   Linux NICS <linux.nics@intel.com>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include "e1000.h"
32
33 #include <asm/uaccess.h>
34
35 extern char e1000_driver_name[];
36 extern char e1000_driver_version[];
37
38 extern int e1000_up(struct e1000_adapter *adapter);
39 extern void e1000_down(struct e1000_adapter *adapter);
40 extern void e1000_reset(struct e1000_adapter *adapter);
41 extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
42 extern int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
43 extern int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
44 extern void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
45 extern void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
46 extern void e1000_update_stats(struct e1000_adapter *adapter);
47
48 struct e1000_stats {
49         char stat_string[ETH_GSTRING_LEN];
50         int sizeof_stat;
51         int stat_offset;
52 };
53
54 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
55                       offsetof(struct e1000_adapter, m)
56 static const struct e1000_stats e1000_gstrings_stats[] = {
57         { "rx_packets", E1000_STAT(net_stats.rx_packets) },
58         { "tx_packets", E1000_STAT(net_stats.tx_packets) },
59         { "rx_bytes", E1000_STAT(net_stats.rx_bytes) },
60         { "tx_bytes", E1000_STAT(net_stats.tx_bytes) },
61         { "rx_errors", E1000_STAT(net_stats.rx_errors) },
62         { "tx_errors", E1000_STAT(net_stats.tx_errors) },
63         { "rx_dropped", E1000_STAT(net_stats.rx_dropped) },
64         { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
65         { "multicast", E1000_STAT(net_stats.multicast) },
66         { "collisions", E1000_STAT(net_stats.collisions) },
67         { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
68         { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
69         { "rx_crc_errors", E1000_STAT(net_stats.rx_crc_errors) },
70         { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
71         { "rx_fifo_errors", E1000_STAT(net_stats.rx_fifo_errors) },
72         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
73         { "rx_missed_errors", E1000_STAT(net_stats.rx_missed_errors) },
74         { "tx_aborted_errors", E1000_STAT(net_stats.tx_aborted_errors) },
75         { "tx_carrier_errors", E1000_STAT(net_stats.tx_carrier_errors) },
76         { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
77         { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
78         { "tx_window_errors", E1000_STAT(net_stats.tx_window_errors) },
79         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
80         { "tx_deferred_ok", E1000_STAT(stats.dc) },
81         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
82         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
83         { "rx_long_length_errors", E1000_STAT(stats.roc) },
84         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
85         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
86         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
87         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
88         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
89         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
90         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
91         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
92         { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
93         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
94         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
95         { "rx_header_split", E1000_STAT(rx_hdr_split) },
96 };
97 #define E1000_STATS_LEN \
98         sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
99 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
100         "Register test  (offline)", "Eeprom test    (offline)",
101         "Interrupt test (offline)", "Loopback test  (offline)",
102         "Link test   (on/offline)"
103 };
104 #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
105
106 static int
107 e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
108 {
109         struct e1000_adapter *adapter = netdev_priv(netdev);
110         struct e1000_hw *hw = &adapter->hw;
111
112         if(hw->media_type == e1000_media_type_copper) {
113
114                 ecmd->supported = (SUPPORTED_10baseT_Half |
115                                    SUPPORTED_10baseT_Full |
116                                    SUPPORTED_100baseT_Half |
117                                    SUPPORTED_100baseT_Full |
118                                    SUPPORTED_1000baseT_Full|
119                                    SUPPORTED_Autoneg |
120                                    SUPPORTED_TP);
121
122                 ecmd->advertising = ADVERTISED_TP;
123
124                 if(hw->autoneg == 1) {
125                         ecmd->advertising |= ADVERTISED_Autoneg;
126
127                         /* the e1000 autoneg seems to match ethtool nicely */
128
129                         ecmd->advertising |= hw->autoneg_advertised;
130                 }
131
132                 ecmd->port = PORT_TP;
133                 ecmd->phy_address = hw->phy_addr;
134
135                 if(hw->mac_type == e1000_82543)
136                         ecmd->transceiver = XCVR_EXTERNAL;
137                 else
138                         ecmd->transceiver = XCVR_INTERNAL;
139
140         } else {
141                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
142                                      SUPPORTED_FIBRE |
143                                      SUPPORTED_Autoneg);
144
145                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
146                                      ADVERTISED_FIBRE |
147                                      ADVERTISED_Autoneg);
148
149                 ecmd->port = PORT_FIBRE;
150
151                 if(hw->mac_type >= e1000_82545)
152                         ecmd->transceiver = XCVR_INTERNAL;
153                 else
154                         ecmd->transceiver = XCVR_EXTERNAL;
155         }
156
157         if(netif_carrier_ok(adapter->netdev)) {
158
159                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
160                                                    &adapter->link_duplex);
161                 ecmd->speed = adapter->link_speed;
162
163                 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
164                  *          and HALF_DUPLEX != DUPLEX_HALF */
165
166                 if(adapter->link_duplex == FULL_DUPLEX)
167                         ecmd->duplex = DUPLEX_FULL;
168                 else
169                         ecmd->duplex = DUPLEX_HALF;
170         } else {
171                 ecmd->speed = -1;
172                 ecmd->duplex = -1;
173         }
174
175         ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
176                          hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
177         return 0;
178 }
179
180 static int
181 e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
182 {
183         struct e1000_adapter *adapter = netdev_priv(netdev);
184         struct e1000_hw *hw = &adapter->hw;
185
186         if(ecmd->autoneg == AUTONEG_ENABLE) {
187                 hw->autoneg = 1;
188                 if(hw->media_type == e1000_media_type_fiber)
189                         hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
190                                      ADVERTISED_FIBRE |
191                                      ADVERTISED_Autoneg;
192                 else 
193                         hw->autoneg_advertised = ADVERTISED_10baseT_Half |
194                                                   ADVERTISED_10baseT_Full |
195                                                   ADVERTISED_100baseT_Half |
196                                                   ADVERTISED_100baseT_Full |
197                                                   ADVERTISED_1000baseT_Full|
198                                                   ADVERTISED_Autoneg |
199                                                   ADVERTISED_TP;
200                 ecmd->advertising = hw->autoneg_advertised;
201         } else
202                 if(e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex))
203                         return -EINVAL;
204
205         /* reset the link */
206
207         if(netif_running(adapter->netdev)) {
208                 e1000_down(adapter);
209                 e1000_reset(adapter);
210                 e1000_up(adapter);
211         } else
212                 e1000_reset(adapter);
213
214         return 0;
215 }
216
217 static void
218 e1000_get_pauseparam(struct net_device *netdev,
219                      struct ethtool_pauseparam *pause)
220 {
221         struct e1000_adapter *adapter = netdev_priv(netdev);
222         struct e1000_hw *hw = &adapter->hw;
223
224         pause->autoneg = 
225                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
226         
227         if(hw->fc == e1000_fc_rx_pause)
228                 pause->rx_pause = 1;
229         else if(hw->fc == e1000_fc_tx_pause)
230                 pause->tx_pause = 1;
231         else if(hw->fc == e1000_fc_full) {
232                 pause->rx_pause = 1;
233                 pause->tx_pause = 1;
234         }
235 }
236
237 static int
238 e1000_set_pauseparam(struct net_device *netdev,
239                      struct ethtool_pauseparam *pause)
240 {
241         struct e1000_adapter *adapter = netdev_priv(netdev);
242         struct e1000_hw *hw = &adapter->hw;
243         
244         adapter->fc_autoneg = pause->autoneg;
245
246         if(pause->rx_pause && pause->tx_pause)
247                 hw->fc = e1000_fc_full;
248         else if(pause->rx_pause && !pause->tx_pause)
249                 hw->fc = e1000_fc_rx_pause;
250         else if(!pause->rx_pause && pause->tx_pause)
251                 hw->fc = e1000_fc_tx_pause;
252         else if(!pause->rx_pause && !pause->tx_pause)
253                 hw->fc = e1000_fc_none;
254
255         hw->original_fc = hw->fc;
256
257         if(adapter->fc_autoneg == AUTONEG_ENABLE) {
258                 if(netif_running(adapter->netdev)) {
259                         e1000_down(adapter);
260                         e1000_up(adapter);
261                 } else
262                         e1000_reset(adapter);
263         }
264         else
265                 return ((hw->media_type == e1000_media_type_fiber) ?
266                         e1000_setup_link(hw) : e1000_force_mac_fc(hw));
267         
268         return 0;
269 }
270
271 static uint32_t
272 e1000_get_rx_csum(struct net_device *netdev)
273 {
274         struct e1000_adapter *adapter = netdev_priv(netdev);
275         return adapter->rx_csum;
276 }
277
278 static int
279 e1000_set_rx_csum(struct net_device *netdev, uint32_t data)
280 {
281         struct e1000_adapter *adapter = netdev_priv(netdev);
282         adapter->rx_csum = data;
283
284         if(netif_running(netdev)) {
285                 e1000_down(adapter);
286                 e1000_up(adapter);
287         } else
288                 e1000_reset(adapter);
289         return 0;
290 }
291         
292 static uint32_t
293 e1000_get_tx_csum(struct net_device *netdev)
294 {
295         return (netdev->features & NETIF_F_HW_CSUM) != 0;
296 }
297
298 static int
299 e1000_set_tx_csum(struct net_device *netdev, uint32_t data)
300 {
301         struct e1000_adapter *adapter = netdev_priv(netdev);
302
303         if(adapter->hw.mac_type < e1000_82543) {
304                 if (!data)
305                         return -EINVAL;
306                 return 0;
307         }
308
309         if (data)
310                 netdev->features |= NETIF_F_HW_CSUM;
311         else
312                 netdev->features &= ~NETIF_F_HW_CSUM;
313
314         return 0;
315 }
316
317 #ifdef NETIF_F_TSO
318 static int
319 e1000_set_tso(struct net_device *netdev, uint32_t data)
320 {
321         struct e1000_adapter *adapter = netdev_priv(netdev);
322         if((adapter->hw.mac_type < e1000_82544) ||
323             (adapter->hw.mac_type == e1000_82547)) 
324                 return data ? -EINVAL : 0;
325
326         if (data)
327                 netdev->features |= NETIF_F_TSO;
328         else
329                 netdev->features &= ~NETIF_F_TSO;
330         return 0;
331
332 #endif /* NETIF_F_TSO */
333
334 static uint32_t
335 e1000_get_msglevel(struct net_device *netdev)
336 {
337         struct e1000_adapter *adapter = netdev_priv(netdev);
338         return adapter->msg_enable;
339 }
340
341 static void
342 e1000_set_msglevel(struct net_device *netdev, uint32_t data)
343 {
344         struct e1000_adapter *adapter = netdev_priv(netdev);
345         adapter->msg_enable = data;
346 }
347
348 static int 
349 e1000_get_regs_len(struct net_device *netdev)
350 {
351 #define E1000_REGS_LEN 32
352         return E1000_REGS_LEN * sizeof(uint32_t);
353 }
354
355 static void
356 e1000_get_regs(struct net_device *netdev,
357                struct ethtool_regs *regs, void *p)
358 {
359         struct e1000_adapter *adapter = netdev_priv(netdev);
360         struct e1000_hw *hw = &adapter->hw;
361         uint32_t *regs_buff = p;
362         uint16_t phy_data;
363
364         memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t));
365
366         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
367
368         regs_buff[0]  = E1000_READ_REG(hw, CTRL);
369         regs_buff[1]  = E1000_READ_REG(hw, STATUS);
370
371         regs_buff[2]  = E1000_READ_REG(hw, RCTL);
372         regs_buff[3]  = E1000_READ_REG(hw, RDLEN);
373         regs_buff[4]  = E1000_READ_REG(hw, RDH);
374         regs_buff[5]  = E1000_READ_REG(hw, RDT);
375         regs_buff[6]  = E1000_READ_REG(hw, RDTR);
376
377         regs_buff[7]  = E1000_READ_REG(hw, TCTL);
378         regs_buff[8]  = E1000_READ_REG(hw, TDLEN);
379         regs_buff[9]  = E1000_READ_REG(hw, TDH);
380         regs_buff[10] = E1000_READ_REG(hw, TDT);
381         regs_buff[11] = E1000_READ_REG(hw, TIDV);
382
383         regs_buff[12] = adapter->hw.phy_type;  /* PHY type (IGP=1, M88=0) */
384         if(hw->phy_type == e1000_phy_igp) {
385                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
386                                     IGP01E1000_PHY_AGC_A);
387                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
388                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
389                 regs_buff[13] = (uint32_t)phy_data; /* cable length */
390                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
391                                     IGP01E1000_PHY_AGC_B);
392                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
393                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
394                 regs_buff[14] = (uint32_t)phy_data; /* cable length */
395                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
396                                     IGP01E1000_PHY_AGC_C);
397                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
398                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
399                 regs_buff[15] = (uint32_t)phy_data; /* cable length */
400                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
401                                     IGP01E1000_PHY_AGC_D);
402                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
403                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
404                 regs_buff[16] = (uint32_t)phy_data; /* cable length */
405                 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
406                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
407                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
408                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
409                 regs_buff[18] = (uint32_t)phy_data; /* cable polarity */
410                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
411                                     IGP01E1000_PHY_PCS_INIT_REG);
412                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
413                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
414                 regs_buff[19] = (uint32_t)phy_data; /* cable polarity */
415                 regs_buff[20] = 0; /* polarity correction enabled (always) */
416                 regs_buff[22] = 0; /* phy receive errors (unavailable) */
417                 regs_buff[23] = regs_buff[18]; /* mdix mode */
418                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
419         } else {
420                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
421                 regs_buff[13] = (uint32_t)phy_data; /* cable length */
422                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
423                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
424                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
425                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
426                 regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */
427                 regs_buff[18] = regs_buff[13]; /* cable polarity */
428                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
429                 regs_buff[20] = regs_buff[17]; /* polarity correction */
430                 /* phy receive errors */
431                 regs_buff[22] = adapter->phy_stats.receive_errors;
432                 regs_buff[23] = regs_buff[13]; /* mdix mode */
433         }
434         regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
435         e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
436         regs_buff[24] = (uint32_t)phy_data;  /* phy local receiver status */
437         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
438         if(hw->mac_type >= e1000_82540 &&
439            hw->media_type == e1000_media_type_copper) {
440                 regs_buff[26] = E1000_READ_REG(hw, MANC);
441         }
442 }
443
444 static int
445 e1000_get_eeprom_len(struct net_device *netdev)
446 {
447         struct e1000_adapter *adapter = netdev_priv(netdev);
448         return adapter->hw.eeprom.word_size * 2;
449 }
450
451 static int
452 e1000_get_eeprom(struct net_device *netdev,
453                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
454 {
455         struct e1000_adapter *adapter = netdev_priv(netdev);
456         struct e1000_hw *hw = &adapter->hw;
457         uint16_t *eeprom_buff;
458         int first_word, last_word;
459         int ret_val = 0;
460         uint16_t i;
461
462         if(eeprom->len == 0)
463                 return -EINVAL;
464
465         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
466
467         first_word = eeprom->offset >> 1;
468         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
469
470         eeprom_buff = kmalloc(sizeof(uint16_t) *
471                         (last_word - first_word + 1), GFP_KERNEL);
472         if(!eeprom_buff)
473                 return -ENOMEM;
474
475         if(hw->eeprom.type == e1000_eeprom_spi)
476                 ret_val = e1000_read_eeprom(hw, first_word,
477                                             last_word - first_word + 1,
478                                             eeprom_buff);
479         else {
480                 for (i = 0; i < last_word - first_word + 1; i++)
481                         if((ret_val = e1000_read_eeprom(hw, first_word + i, 1,
482                                                         &eeprom_buff[i])))
483                                 break;
484         }
485
486         /* Device's eeprom is always little-endian, word addressable */
487         for (i = 0; i < last_word - first_word + 1; i++)
488                 le16_to_cpus(&eeprom_buff[i]);
489
490         memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1),
491                         eeprom->len);
492         kfree(eeprom_buff);
493
494         return ret_val;
495 }
496
497 static int
498 e1000_set_eeprom(struct net_device *netdev,
499                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
500 {
501         struct e1000_adapter *adapter = netdev_priv(netdev);
502         struct e1000_hw *hw = &adapter->hw;
503         uint16_t *eeprom_buff;
504         void *ptr;
505         int max_len, first_word, last_word, ret_val = 0;
506         uint16_t i;
507
508         if(eeprom->len == 0)
509                 return -EOPNOTSUPP;
510
511         if(eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
512                 return -EFAULT;
513
514         max_len = hw->eeprom.word_size * 2;
515
516         first_word = eeprom->offset >> 1;
517         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
518         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
519         if(!eeprom_buff)
520                 return -ENOMEM;
521
522         ptr = (void *)eeprom_buff;
523
524         if(eeprom->offset & 1) {
525                 /* need read/modify/write of first changed EEPROM word */
526                 /* only the second byte of the word is being modified */
527                 ret_val = e1000_read_eeprom(hw, first_word, 1,
528                                             &eeprom_buff[0]);
529                 ptr++;
530         }
531         if(((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
532                 /* need read/modify/write of last changed EEPROM word */
533                 /* only the first byte of the word is being modified */
534                 ret_val = e1000_read_eeprom(hw, last_word, 1,
535                                   &eeprom_buff[last_word - first_word]);
536         }
537
538         /* Device's eeprom is always little-endian, word addressable */
539         for (i = 0; i < last_word - first_word + 1; i++)
540                 le16_to_cpus(&eeprom_buff[i]);
541
542         memcpy(ptr, bytes, eeprom->len);
543
544         for (i = 0; i < last_word - first_word + 1; i++)
545                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
546
547         ret_val = e1000_write_eeprom(hw, first_word,
548                                      last_word - first_word + 1, eeprom_buff);
549
550         /* Update the checksum over the first part of the EEPROM if needed 
551          * and flush shadow RAM for 82573 conrollers */
552         if((ret_val == 0) && ((first_word <= EEPROM_CHECKSUM_REG) || 
553                                 (hw->mac_type == e1000_82573)))
554                 e1000_update_eeprom_checksum(hw);
555
556         kfree(eeprom_buff);
557         return ret_val;
558 }
559
560 static void
561 e1000_get_drvinfo(struct net_device *netdev,
562                        struct ethtool_drvinfo *drvinfo)
563 {
564         struct e1000_adapter *adapter = netdev_priv(netdev);
565         char firmware_version[32];
566         uint16_t eeprom_data;
567
568         strncpy(drvinfo->driver,  e1000_driver_name, 32);
569         strncpy(drvinfo->version, e1000_driver_version, 32);
570         
571         /* EEPROM image version # is reported as firware version # for
572          * 8257{1|2|3} controllers */
573         e1000_read_eeprom(&adapter->hw, 5, 1, &eeprom_data);
574         switch (adapter->hw.mac_type) {
575         case e1000_82571:
576         case e1000_82572:
577         case e1000_82573:
578                 sprintf(firmware_version, "%d.%d-%d", 
579                         (eeprom_data & 0xF000) >> 12,
580                         (eeprom_data & 0x0FF0) >> 4,
581                         eeprom_data & 0x000F);
582                 break;
583         default:
584                 sprintf(firmware_version, "n/a");
585         }
586
587         strncpy(drvinfo->fw_version, firmware_version, 32);
588         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
589         drvinfo->n_stats = E1000_STATS_LEN;
590         drvinfo->testinfo_len = E1000_TEST_LEN;
591         drvinfo->regdump_len = e1000_get_regs_len(netdev);
592         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
593 }
594
595 static void
596 e1000_get_ringparam(struct net_device *netdev,
597                     struct ethtool_ringparam *ring)
598 {
599         struct e1000_adapter *adapter = netdev_priv(netdev);
600         e1000_mac_type mac_type = adapter->hw.mac_type;
601         struct e1000_tx_ring *txdr = adapter->tx_ring;
602         struct e1000_rx_ring *rxdr = adapter->rx_ring;
603
604         ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
605                 E1000_MAX_82544_RXD;
606         ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
607                 E1000_MAX_82544_TXD;
608         ring->rx_mini_max_pending = 0;
609         ring->rx_jumbo_max_pending = 0;
610         ring->rx_pending = rxdr->count;
611         ring->tx_pending = txdr->count;
612         ring->rx_mini_pending = 0;
613         ring->rx_jumbo_pending = 0;
614 }
615
616 static int 
617 e1000_set_ringparam(struct net_device *netdev,
618                     struct ethtool_ringparam *ring)
619 {
620         struct e1000_adapter *adapter = netdev_priv(netdev);
621         e1000_mac_type mac_type = adapter->hw.mac_type;
622         struct e1000_tx_ring *txdr, *tx_old, *tx_new;
623         struct e1000_rx_ring *rxdr, *rx_old, *rx_new;
624         int i, err, tx_ring_size, rx_ring_size;
625
626         tx_ring_size = sizeof(struct e1000_tx_ring) * adapter->num_queues;
627         rx_ring_size = sizeof(struct e1000_rx_ring) * adapter->num_queues;
628
629         if (netif_running(adapter->netdev))
630                 e1000_down(adapter);
631
632         tx_old = adapter->tx_ring;
633         rx_old = adapter->rx_ring;
634
635         adapter->tx_ring = kmalloc(tx_ring_size, GFP_KERNEL);
636         if (!adapter->tx_ring) {
637                 err = -ENOMEM;
638                 goto err_setup_rx;
639         }
640         memset(adapter->tx_ring, 0, tx_ring_size);
641
642         adapter->rx_ring = kmalloc(rx_ring_size, GFP_KERNEL);
643         if (!adapter->rx_ring) {
644                 kfree(adapter->tx_ring);
645                 err = -ENOMEM;
646                 goto err_setup_rx;
647         }
648         memset(adapter->rx_ring, 0, rx_ring_size);
649
650         txdr = adapter->tx_ring;
651         rxdr = adapter->rx_ring;
652
653         if((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
654                 return -EINVAL;
655
656         rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD);
657         rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ?
658                 E1000_MAX_RXD : E1000_MAX_82544_RXD));
659         E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE); 
660
661         txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD);
662         txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ?
663                 E1000_MAX_TXD : E1000_MAX_82544_TXD));
664         E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE); 
665
666         for (i = 0; i < adapter->num_queues; i++) {
667                 txdr[i].count = txdr->count;
668                 rxdr[i].count = rxdr->count;
669         }
670
671         if(netif_running(adapter->netdev)) {
672                 /* Try to get new resources before deleting old */
673                 if ((err = e1000_setup_all_rx_resources(adapter)))
674                         goto err_setup_rx;
675                 if ((err = e1000_setup_all_tx_resources(adapter)))
676                         goto err_setup_tx;
677
678                 /* save the new, restore the old in order to free it,
679                  * then restore the new back again */
680
681                 rx_new = adapter->rx_ring;
682                 tx_new = adapter->tx_ring;
683                 adapter->rx_ring = rx_old;
684                 adapter->tx_ring = tx_old;
685                 e1000_free_all_rx_resources(adapter);
686                 e1000_free_all_tx_resources(adapter);
687                 kfree(tx_old);
688                 kfree(rx_old);
689                 adapter->rx_ring = rx_new;
690                 adapter->tx_ring = tx_new;
691                 if((err = e1000_up(adapter)))
692                         return err;
693         }
694
695         return 0;
696 err_setup_tx:
697         e1000_free_all_rx_resources(adapter);
698 err_setup_rx:
699         adapter->rx_ring = rx_old;
700         adapter->tx_ring = tx_old;
701         e1000_up(adapter);
702         return err;
703 }
704
705 #define REG_PATTERN_TEST(R, M, W)                                              \
706 {                                                                              \
707         uint32_t pat, value;                                                   \
708         uint32_t test[] =                                                      \
709                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};              \
710         for(pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) {              \
711                 E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W));             \
712                 value = E1000_READ_REG(&adapter->hw, R);                       \
713                 if(value != (test[pat] & W & M)) {                             \
714                         DPRINTK(DRV, ERR, "pattern test reg %04X failed: got " \
715                                 "0x%08X expected 0x%08X\n",                    \
716                                 E1000_##R, value, (test[pat] & W & M));        \
717                         *data = (adapter->hw.mac_type < e1000_82543) ?         \
718                                 E1000_82542_##R : E1000_##R;                   \
719                         return 1;                                              \
720                 }                                                              \
721         }                                                                      \
722 }
723
724 #define REG_SET_AND_CHECK(R, M, W)                                             \
725 {                                                                              \
726         uint32_t value;                                                        \
727         E1000_WRITE_REG(&adapter->hw, R, W & M);                               \
728         value = E1000_READ_REG(&adapter->hw, R);                               \
729         if((W & M) != (value & M)) {                                          \
730                 DPRINTK(DRV, ERR, "set/check reg %04X test failed: got 0x%08X "\
731                         "expected 0x%08X\n", E1000_##R, (value & M), (W & M)); \
732                 *data = (adapter->hw.mac_type < e1000_82543) ?                 \
733                         E1000_82542_##R : E1000_##R;                           \
734                 return 1;                                                      \
735         }                                                                      \
736 }
737
738 static int
739 e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
740 {
741         uint32_t value, before, after;
742         uint32_t i, toggle;
743
744         /* The status register is Read Only, so a write should fail.
745          * Some bits that get toggled are ignored.
746          */
747         switch (adapter->hw.mac_type) {
748         /* there are several bits on newer hardware that are r/w */
749         case e1000_82571:
750         case e1000_82572:
751                 toggle = 0x7FFFF3FF;
752                 break;
753         case e1000_82573:
754                 toggle = 0x7FFFF033;
755                 break;
756         default:
757                 toggle = 0xFFFFF833;
758                 break;
759         }
760
761         before = E1000_READ_REG(&adapter->hw, STATUS);
762         value = (E1000_READ_REG(&adapter->hw, STATUS) & toggle);
763         E1000_WRITE_REG(&adapter->hw, STATUS, toggle);
764         after = E1000_READ_REG(&adapter->hw, STATUS) & toggle;
765         if(value != after) {
766                 DPRINTK(DRV, ERR, "failed STATUS register test got: "
767                         "0x%08X expected: 0x%08X\n", after, value);
768                 *data = 1;
769                 return 1;
770         }
771         /* restore previous status */
772         E1000_WRITE_REG(&adapter->hw, STATUS, before);
773
774         REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
775         REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
776         REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
777         REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
778         REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
779         REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
780         REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
781         REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
782         REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
783         REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
784         REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
785         REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
786         REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
787         REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
788
789         REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
790         REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0x003FFFFB);
791         REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
792
793         if(adapter->hw.mac_type >= e1000_82543) {
794
795                 REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0xFFFFFFFF);
796                 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
797                 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
798                 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
799                 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
800
801                 for(i = 0; i < E1000_RAR_ENTRIES; i++) {
802                         REG_PATTERN_TEST(RA + ((i << 1) << 2), 0xFFFFFFFF,
803                                          0xFFFFFFFF);
804                         REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
805                                          0xFFFFFFFF);
806                 }
807
808         } else {
809
810                 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
811                 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
812                 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
813                 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
814
815         }
816
817         for(i = 0; i < E1000_MC_TBL_SIZE; i++)
818                 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
819
820         *data = 0;
821         return 0;
822 }
823
824 static int
825 e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data)
826 {
827         uint16_t temp;
828         uint16_t checksum = 0;
829         uint16_t i;
830
831         *data = 0;
832         /* Read and add up the contents of the EEPROM */
833         for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
834                 if((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) {
835                         *data = 1;
836                         break;
837                 }
838                 checksum += temp;
839         }
840
841         /* If Checksum is not Correct return error else test passed */
842         if((checksum != (uint16_t) EEPROM_SUM) && !(*data))
843                 *data = 2;
844
845         return *data;
846 }
847
848 static irqreturn_t
849 e1000_test_intr(int irq,
850                 void *data,
851                 struct pt_regs *regs)
852 {
853         struct net_device *netdev = (struct net_device *) data;
854         struct e1000_adapter *adapter = netdev_priv(netdev);
855
856         adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR);
857
858         return IRQ_HANDLED;
859 }
860
861 static int
862 e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
863 {
864         struct net_device *netdev = adapter->netdev;
865         uint32_t mask, i=0, shared_int = TRUE;
866         uint32_t irq = adapter->pdev->irq;
867
868         *data = 0;
869
870         /* Hook up test interrupt handler just for this test */
871         if(!request_irq(irq, &e1000_test_intr, 0, netdev->name, netdev)) {
872                 shared_int = FALSE;
873         } else if(request_irq(irq, &e1000_test_intr, SA_SHIRQ,
874                               netdev->name, netdev)){
875                 *data = 1;
876                 return -1;
877         }
878
879         /* Disable all the interrupts */
880         E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
881         msec_delay(10);
882
883         /* Test each interrupt */
884         for(; i < 10; i++) {
885
886                 /* Interrupt to test */
887                 mask = 1 << i;
888
889                 if(!shared_int) {
890                         /* Disable the interrupt to be reported in
891                          * the cause register and then force the same
892                          * interrupt and see if one gets posted.  If
893                          * an interrupt was posted to the bus, the
894                          * test failed.
895                          */
896                         adapter->test_icr = 0;
897                         E1000_WRITE_REG(&adapter->hw, IMC, mask);
898                         E1000_WRITE_REG(&adapter->hw, ICS, mask);
899                         msec_delay(10);
900  
901                         if(adapter->test_icr & mask) {
902                                 *data = 3;
903                                 break;
904                         }
905                 }
906
907                 /* Enable the interrupt to be reported in
908                  * the cause register and then force the same
909                  * interrupt and see if one gets posted.  If
910                  * an interrupt was not posted to the bus, the
911                  * test failed.
912                  */
913                 adapter->test_icr = 0;
914                 E1000_WRITE_REG(&adapter->hw, IMS, mask);
915                 E1000_WRITE_REG(&adapter->hw, ICS, mask);
916                 msec_delay(10);
917
918                 if(!(adapter->test_icr & mask)) {
919                         *data = 4;
920                         break;
921                 }
922
923                 if(!shared_int) {
924                         /* Disable the other interrupts to be reported in
925                          * the cause register and then force the other
926                          * interrupts and see if any get posted.  If
927                          * an interrupt was posted to the bus, the
928                          * test failed.
929                          */
930                         adapter->test_icr = 0;
931                         E1000_WRITE_REG(&adapter->hw, IMC, ~mask & 0x00007FFF);
932                         E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF);
933                         msec_delay(10);
934
935                         if(adapter->test_icr) {
936                                 *data = 5;
937                                 break;
938                         }
939                 }
940         }
941
942         /* Disable all the interrupts */
943         E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
944         msec_delay(10);
945
946         /* Unhook test interrupt handler */
947         free_irq(irq, netdev);
948
949         return *data;
950 }
951
952 static void
953 e1000_free_desc_rings(struct e1000_adapter *adapter)
954 {
955         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
956         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
957         struct pci_dev *pdev = adapter->pdev;
958         int i;
959
960         if(txdr->desc && txdr->buffer_info) {
961                 for(i = 0; i < txdr->count; i++) {
962                         if(txdr->buffer_info[i].dma)
963                                 pci_unmap_single(pdev, txdr->buffer_info[i].dma,
964                                                  txdr->buffer_info[i].length,
965                                                  PCI_DMA_TODEVICE);
966                         if(txdr->buffer_info[i].skb)
967                                 dev_kfree_skb(txdr->buffer_info[i].skb);
968                 }
969         }
970
971         if(rxdr->desc && rxdr->buffer_info) {
972                 for(i = 0; i < rxdr->count; i++) {
973                         if(rxdr->buffer_info[i].dma)
974                                 pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
975                                                  rxdr->buffer_info[i].length,
976                                                  PCI_DMA_FROMDEVICE);
977                         if(rxdr->buffer_info[i].skb)
978                                 dev_kfree_skb(rxdr->buffer_info[i].skb);
979                 }
980         }
981
982         if(txdr->desc) {
983                 pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
984                 txdr->desc = NULL;
985         }
986         if(rxdr->desc) {
987                 pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
988                 rxdr->desc = NULL;
989         }
990
991         kfree(txdr->buffer_info);
992         txdr->buffer_info = NULL;
993
994         kfree(rxdr->buffer_info);
995         rxdr->buffer_info = NULL;
996
997         return;
998 }
999
1000 static int
1001 e1000_setup_desc_rings(struct e1000_adapter *adapter)
1002 {
1003         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1004         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1005         struct pci_dev *pdev = adapter->pdev;
1006         uint32_t rctl;
1007         int size, i, ret_val;
1008
1009         /* Setup Tx descriptor ring and Tx buffers */
1010
1011         if(!txdr->count)
1012                 txdr->count = E1000_DEFAULT_TXD;   
1013
1014         size = txdr->count * sizeof(struct e1000_buffer);
1015         if(!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
1016                 ret_val = 1;
1017                 goto err_nomem;
1018         }
1019         memset(txdr->buffer_info, 0, size);
1020
1021         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1022         E1000_ROUNDUP(txdr->size, 4096);
1023         if(!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) {
1024                 ret_val = 2;
1025                 goto err_nomem;
1026         }
1027         memset(txdr->desc, 0, txdr->size);
1028         txdr->next_to_use = txdr->next_to_clean = 0;
1029
1030         E1000_WRITE_REG(&adapter->hw, TDBAL,
1031                         ((uint64_t) txdr->dma & 0x00000000FFFFFFFF));
1032         E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32));
1033         E1000_WRITE_REG(&adapter->hw, TDLEN,
1034                         txdr->count * sizeof(struct e1000_tx_desc));
1035         E1000_WRITE_REG(&adapter->hw, TDH, 0);
1036         E1000_WRITE_REG(&adapter->hw, TDT, 0);
1037         E1000_WRITE_REG(&adapter->hw, TCTL,
1038                         E1000_TCTL_PSP | E1000_TCTL_EN |
1039                         E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1040                         E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1041
1042         for(i = 0; i < txdr->count; i++) {
1043                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1044                 struct sk_buff *skb;
1045                 unsigned int size = 1024;
1046
1047                 if(!(skb = alloc_skb(size, GFP_KERNEL))) {
1048                         ret_val = 3;
1049                         goto err_nomem;
1050                 }
1051                 skb_put(skb, size);
1052                 txdr->buffer_info[i].skb = skb;
1053                 txdr->buffer_info[i].length = skb->len;
1054                 txdr->buffer_info[i].dma =
1055                         pci_map_single(pdev, skb->data, skb->len,
1056                                        PCI_DMA_TODEVICE);
1057                 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1058                 tx_desc->lower.data = cpu_to_le32(skb->len);
1059                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1060                                                    E1000_TXD_CMD_IFCS |
1061                                                    E1000_TXD_CMD_RPS);
1062                 tx_desc->upper.data = 0;
1063         }
1064
1065         /* Setup Rx descriptor ring and Rx buffers */
1066
1067         if(!rxdr->count)
1068                 rxdr->count = E1000_DEFAULT_RXD;   
1069
1070         size = rxdr->count * sizeof(struct e1000_buffer);
1071         if(!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
1072                 ret_val = 4;
1073                 goto err_nomem;
1074         }
1075         memset(rxdr->buffer_info, 0, size);
1076
1077         rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1078         if(!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) {
1079                 ret_val = 5;
1080                 goto err_nomem;
1081         }
1082         memset(rxdr->desc, 0, rxdr->size);
1083         rxdr->next_to_use = rxdr->next_to_clean = 0;
1084
1085         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1086         E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
1087         E1000_WRITE_REG(&adapter->hw, RDBAL,
1088                         ((uint64_t) rxdr->dma & 0xFFFFFFFF));
1089         E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32));
1090         E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size);
1091         E1000_WRITE_REG(&adapter->hw, RDH, 0);
1092         E1000_WRITE_REG(&adapter->hw, RDT, 0);
1093         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1094                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1095                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1096         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1097
1098         for(i = 0; i < rxdr->count; i++) {
1099                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1100                 struct sk_buff *skb;
1101
1102                 if(!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN,
1103                                 GFP_KERNEL))) {
1104                         ret_val = 6;
1105                         goto err_nomem;
1106                 }
1107                 skb_reserve(skb, NET_IP_ALIGN);
1108                 rxdr->buffer_info[i].skb = skb;
1109                 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1110                 rxdr->buffer_info[i].dma =
1111                         pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
1112                                        PCI_DMA_FROMDEVICE);
1113                 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1114                 memset(skb->data, 0x00, skb->len);
1115         }
1116
1117         return 0;
1118
1119 err_nomem:
1120         e1000_free_desc_rings(adapter);
1121         return ret_val;
1122 }
1123
1124 static void
1125 e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1126 {
1127         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1128         e1000_write_phy_reg(&adapter->hw, 29, 0x001F);
1129         e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC);
1130         e1000_write_phy_reg(&adapter->hw, 29, 0x001A);
1131         e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0);
1132 }
1133
1134 static void
1135 e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1136 {
1137         uint16_t phy_reg;
1138
1139         /* Because we reset the PHY above, we need to re-force TX_CLK in the
1140          * Extended PHY Specific Control Register to 25MHz clock.  This
1141          * value defaults back to a 2.5MHz clock when the PHY is reset.
1142          */
1143         e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1144         phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1145         e1000_write_phy_reg(&adapter->hw,
1146                 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1147
1148         /* In addition, because of the s/w reset above, we need to enable
1149          * CRS on TX.  This must be set for both full and half duplex
1150          * operation.
1151          */
1152         e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1153         phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1154         e1000_write_phy_reg(&adapter->hw,
1155                 M88E1000_PHY_SPEC_CTRL, phy_reg);
1156 }
1157
1158 static int
1159 e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1160 {
1161         uint32_t ctrl_reg;
1162         uint16_t phy_reg;
1163
1164         /* Setup the Device Control Register for PHY loopback test. */
1165
1166         ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1167         ctrl_reg |= (E1000_CTRL_ILOS |          /* Invert Loss-Of-Signal */
1168                      E1000_CTRL_FRCSPD |        /* Set the Force Speed Bit */
1169                      E1000_CTRL_FRCDPX |        /* Set the Force Duplex Bit */
1170                      E1000_CTRL_SPD_1000 |      /* Force Speed to 1000 */
1171                      E1000_CTRL_FD);            /* Force Duplex to FULL */
1172
1173         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1174
1175         /* Read the PHY Specific Control Register (0x10) */
1176         e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1177
1178         /* Clear Auto-Crossover bits in PHY Specific Control Register
1179          * (bits 6:5).
1180          */
1181         phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1182         e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1183
1184         /* Perform software reset on the PHY */
1185         e1000_phy_reset(&adapter->hw);
1186
1187         /* Have to setup TX_CLK and TX_CRS after software reset */
1188         e1000_phy_reset_clk_and_crs(adapter);
1189
1190         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100);
1191
1192         /* Wait for reset to complete. */
1193         udelay(500);
1194
1195         /* Have to setup TX_CLK and TX_CRS after software reset */
1196         e1000_phy_reset_clk_and_crs(adapter);
1197
1198         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1199         e1000_phy_disable_receiver(adapter);
1200
1201         /* Set the loopback bit in the PHY control register. */
1202         e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1203         phy_reg |= MII_CR_LOOPBACK;
1204         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1205
1206         /* Setup TX_CLK and TX_CRS one more time. */
1207         e1000_phy_reset_clk_and_crs(adapter);
1208
1209         /* Check Phy Configuration */
1210         e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1211         if(phy_reg != 0x4100)
1212                  return 9;
1213
1214         e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1215         if(phy_reg != 0x0070)
1216                 return 10;
1217
1218         e1000_read_phy_reg(&adapter->hw, 29, &phy_reg);
1219         if(phy_reg != 0x001A)
1220                 return 11;
1221
1222         return 0;
1223 }
1224
1225 static int
1226 e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1227 {
1228         uint32_t ctrl_reg = 0;
1229         uint32_t stat_reg = 0;
1230
1231         adapter->hw.autoneg = FALSE;
1232
1233         if(adapter->hw.phy_type == e1000_phy_m88) {
1234                 /* Auto-MDI/MDIX Off */
1235                 e1000_write_phy_reg(&adapter->hw,
1236                                     M88E1000_PHY_SPEC_CTRL, 0x0808);
1237                 /* reset to update Auto-MDI/MDIX */
1238                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140);
1239                 /* autoneg off */
1240                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140);
1241         }
1242         /* force 1000, set loopback */
1243         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
1244
1245         /* Now set up the MAC to the same speed/duplex as the PHY. */
1246         ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1247         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1248         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1249                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1250                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1251                      E1000_CTRL_FD);     /* Force Duplex to FULL */
1252
1253         if(adapter->hw.media_type == e1000_media_type_copper &&
1254            adapter->hw.phy_type == e1000_phy_m88) {
1255                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1256         } else {
1257                 /* Set the ILOS bit on the fiber Nic is half
1258                  * duplex link is detected. */
1259                 stat_reg = E1000_READ_REG(&adapter->hw, STATUS);
1260                 if((stat_reg & E1000_STATUS_FD) == 0)
1261                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1262         }
1263
1264         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1265
1266         /* Disable the receiver on the PHY so when a cable is plugged in, the
1267          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1268          */
1269         if(adapter->hw.phy_type == e1000_phy_m88)
1270                 e1000_phy_disable_receiver(adapter);
1271
1272         udelay(500);
1273
1274         return 0;
1275 }
1276
1277 static int
1278 e1000_set_phy_loopback(struct e1000_adapter *adapter)
1279 {
1280         uint16_t phy_reg = 0;
1281         uint16_t count = 0;
1282
1283         switch (adapter->hw.mac_type) {
1284         case e1000_82543:
1285                 if(adapter->hw.media_type == e1000_media_type_copper) {
1286                         /* Attempt to setup Loopback mode on Non-integrated PHY.
1287                          * Some PHY registers get corrupted at random, so
1288                          * attempt this 10 times.
1289                          */
1290                         while(e1000_nonintegrated_phy_loopback(adapter) &&
1291                               count++ < 10);
1292                         if(count < 11)
1293                                 return 0;
1294                 }
1295                 break;
1296
1297         case e1000_82544:
1298         case e1000_82540:
1299         case e1000_82545:
1300         case e1000_82545_rev_3:
1301         case e1000_82546:
1302         case e1000_82546_rev_3:
1303         case e1000_82541:
1304         case e1000_82541_rev_2:
1305         case e1000_82547:
1306         case e1000_82547_rev_2:
1307         case e1000_82571:
1308         case e1000_82572:
1309         case e1000_82573:
1310                 return e1000_integrated_phy_loopback(adapter);
1311                 break;
1312
1313         default:
1314                 /* Default PHY loopback work is to read the MII
1315                  * control register and assert bit 14 (loopback mode).
1316                  */
1317                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1318                 phy_reg |= MII_CR_LOOPBACK;
1319                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1320                 return 0;
1321                 break;
1322         }
1323
1324         return 8;
1325 }
1326
1327 static int
1328 e1000_setup_loopback_test(struct e1000_adapter *adapter)
1329 {
1330         uint32_t rctl;
1331         struct e1000_hw *hw = &adapter->hw;
1332
1333         if (hw->media_type == e1000_media_type_fiber ||
1334            hw->media_type == e1000_media_type_internal_serdes) {
1335                 switch (hw->mac_type) {
1336                 case e1000_82545:
1337                 case e1000_82546:
1338                 case e1000_82545_rev_3:
1339                 case e1000_82546_rev_3:
1340                         return e1000_set_phy_loopback(adapter);
1341                         break;
1342                 case e1000_82571:
1343                 case e1000_82572:
1344 #define E1000_SERDES_LB_ON 0x410
1345                         e1000_set_phy_loopback(adapter);
1346                         E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_ON);
1347                         msec_delay(10);
1348                         return 0;
1349                         break;
1350                 default:
1351                         rctl = E1000_READ_REG(hw, RCTL);
1352                         rctl |= E1000_RCTL_LBM_TCVR;
1353                         E1000_WRITE_REG(hw, RCTL, rctl);
1354                         return 0;
1355                 }
1356         } else if (hw->media_type == e1000_media_type_copper)
1357                 return e1000_set_phy_loopback(adapter);
1358
1359         return 7;
1360 }
1361
1362 static void
1363 e1000_loopback_cleanup(struct e1000_adapter *adapter)
1364 {
1365         uint32_t rctl;
1366         uint16_t phy_reg;
1367         struct e1000_hw *hw = &adapter->hw;
1368
1369         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1370         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1371         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1372
1373         switch (hw->mac_type) {
1374         case e1000_82571:
1375         case e1000_82572:
1376                 if (hw->media_type == e1000_media_type_fiber ||
1377                    hw->media_type == e1000_media_type_internal_serdes){
1378 #define E1000_SERDES_LB_OFF 0x400
1379                         E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_OFF);
1380                         msec_delay(10);
1381                         break;
1382                 }
1383                 /* fall thru for Cu adapters */
1384         case e1000_82545:
1385         case e1000_82546:
1386         case e1000_82545_rev_3:
1387         case e1000_82546_rev_3:
1388         default:
1389                 hw->autoneg = TRUE;
1390                 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1391                 if (phy_reg & MII_CR_LOOPBACK) {
1392                         phy_reg &= ~MII_CR_LOOPBACK;
1393                         e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1394                         e1000_phy_reset(hw);
1395                 }
1396                 break;
1397         }
1398 }
1399
1400 static void
1401 e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1402 {
1403         memset(skb->data, 0xFF, frame_size);
1404         frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size;
1405         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1406         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1407         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1408 }
1409
1410 static int
1411 e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1412 {
1413         frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size;
1414         if(*(skb->data + 3) == 0xFF) {
1415                 if((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1416                    (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1417                         return 0;
1418                 }
1419         }
1420         return 13;
1421 }
1422
1423 static int
1424 e1000_run_loopback_test(struct e1000_adapter *adapter)
1425 {
1426         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1427         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1428         struct pci_dev *pdev = adapter->pdev;
1429         int i, j, k, l, lc, good_cnt, ret_val=0;
1430         unsigned long time;
1431
1432         E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1);
1433
1434         /* Calculate the loop count based on the largest descriptor ring 
1435          * The idea is to wrap the largest ring a number of times using 64
1436          * send/receive pairs during each loop
1437          */
1438
1439         if(rxdr->count <= txdr->count)
1440                 lc = ((txdr->count / 64) * 2) + 1;
1441         else
1442                 lc = ((rxdr->count / 64) * 2) + 1;
1443
1444         k = l = 0;
1445         for(j = 0; j <= lc; j++) { /* loop count loop */
1446                 for(i = 0; i < 64; i++) { /* send the packets */
1447                         e1000_create_lbtest_frame(txdr->buffer_info[i].skb, 
1448                                         1024);
1449                         pci_dma_sync_single_for_device(pdev, 
1450                                         txdr->buffer_info[k].dma,
1451                                         txdr->buffer_info[k].length,
1452                                         PCI_DMA_TODEVICE);
1453                         if(unlikely(++k == txdr->count)) k = 0;
1454                 }
1455                 E1000_WRITE_REG(&adapter->hw, TDT, k);
1456                 msec_delay(200);
1457                 time = jiffies; /* set the start time for the receive */
1458                 good_cnt = 0;
1459                 do { /* receive the sent packets */
1460                         pci_dma_sync_single_for_cpu(pdev, 
1461                                         rxdr->buffer_info[l].dma,
1462                                         rxdr->buffer_info[l].length,
1463                                         PCI_DMA_FROMDEVICE);
1464         
1465                         ret_val = e1000_check_lbtest_frame(
1466                                         rxdr->buffer_info[l].skb,
1467                                         1024);
1468                         if(!ret_val)
1469                                 good_cnt++;
1470                         if(unlikely(++l == rxdr->count)) l = 0;
1471                         /* time + 20 msecs (200 msecs on 2.4) is more than 
1472                          * enough time to complete the receives, if it's 
1473                          * exceeded, break and error off
1474                          */
1475                 } while (good_cnt < 64 && jiffies < (time + 20));
1476                 if(good_cnt != 64) {
1477                         ret_val = 13; /* ret_val is the same as mis-compare */
1478                         break; 
1479                 }
1480                 if(jiffies >= (time + 2)) {
1481                         ret_val = 14; /* error code for time out error */
1482                         break;
1483                 }
1484         } /* end loop count loop */
1485         return ret_val;
1486 }
1487
1488 static int
1489 e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data)
1490 {
1491         if((*data = e1000_setup_desc_rings(adapter))) goto err_loopback;
1492         if((*data = e1000_setup_loopback_test(adapter)))
1493                 goto err_loopback_setup;
1494         *data = e1000_run_loopback_test(adapter);
1495         e1000_loopback_cleanup(adapter);
1496 err_loopback_setup:
1497         e1000_free_desc_rings(adapter);
1498 err_loopback:
1499         return *data;
1500 }
1501
1502 static int
1503 e1000_link_test(struct e1000_adapter *adapter, uint64_t *data)
1504 {
1505         *data = 0;
1506         if (adapter->hw.media_type == e1000_media_type_internal_serdes) {
1507                 int i = 0;
1508                 adapter->hw.serdes_link_down = TRUE;
1509
1510                 /* On some blade server designs, link establishment
1511                  * could take as long as 2-3 minutes */
1512                 do {
1513                         e1000_check_for_link(&adapter->hw);
1514                         if (adapter->hw.serdes_link_down == FALSE)
1515                                 return *data;
1516                         msec_delay(20);
1517                 } while (i++ < 3750);
1518
1519                 *data = 1;
1520         } else {
1521                 e1000_check_for_link(&adapter->hw);
1522                 if(adapter->hw.autoneg)  /* if auto_neg is set wait for it */
1523                         msec_delay(4000);
1524
1525                 if(!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
1526                         *data = 1;
1527                 }
1528         }
1529         return *data;
1530 }
1531
1532 static int 
1533 e1000_diag_test_count(struct net_device *netdev)
1534 {
1535         return E1000_TEST_LEN;
1536 }
1537
1538 static void
1539 e1000_diag_test(struct net_device *netdev,
1540                    struct ethtool_test *eth_test, uint64_t *data)
1541 {
1542         struct e1000_adapter *adapter = netdev_priv(netdev);
1543         boolean_t if_running = netif_running(netdev);
1544
1545         if(eth_test->flags == ETH_TEST_FL_OFFLINE) {
1546                 /* Offline tests */
1547
1548                 /* save speed, duplex, autoneg settings */
1549                 uint16_t autoneg_advertised = adapter->hw.autoneg_advertised;
1550                 uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex;
1551                 uint8_t autoneg = adapter->hw.autoneg;
1552
1553                 /* Link test performed before hardware reset so autoneg doesn't
1554                  * interfere with test result */
1555                 if(e1000_link_test(adapter, &data[4]))
1556                         eth_test->flags |= ETH_TEST_FL_FAILED;
1557
1558                 if(if_running)
1559                         e1000_down(adapter);
1560                 else
1561                         e1000_reset(adapter);
1562
1563                 if(e1000_reg_test(adapter, &data[0]))
1564                         eth_test->flags |= ETH_TEST_FL_FAILED;
1565
1566                 e1000_reset(adapter);
1567                 if(e1000_eeprom_test(adapter, &data[1]))
1568                         eth_test->flags |= ETH_TEST_FL_FAILED;
1569
1570                 e1000_reset(adapter);
1571                 if(e1000_intr_test(adapter, &data[2]))
1572                         eth_test->flags |= ETH_TEST_FL_FAILED;
1573
1574                 e1000_reset(adapter);
1575                 if(e1000_loopback_test(adapter, &data[3]))
1576                         eth_test->flags |= ETH_TEST_FL_FAILED;
1577
1578                 /* restore speed, duplex, autoneg settings */
1579                 adapter->hw.autoneg_advertised = autoneg_advertised;
1580                 adapter->hw.forced_speed_duplex = forced_speed_duplex;
1581                 adapter->hw.autoneg = autoneg;
1582
1583                 e1000_reset(adapter);
1584                 if(if_running)
1585                         e1000_up(adapter);
1586         } else {
1587                 /* Online tests */
1588                 if(e1000_link_test(adapter, &data[4]))
1589                         eth_test->flags |= ETH_TEST_FL_FAILED;
1590
1591                 /* Offline tests aren't run; pass by default */
1592                 data[0] = 0;
1593                 data[1] = 0;
1594                 data[2] = 0;
1595                 data[3] = 0;
1596         }
1597         msleep_interruptible(4 * 1000);
1598 }
1599
1600 static void
1601 e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1602 {
1603         struct e1000_adapter *adapter = netdev_priv(netdev);
1604         struct e1000_hw *hw = &adapter->hw;
1605
1606         switch(adapter->hw.device_id) {
1607         case E1000_DEV_ID_82542:
1608         case E1000_DEV_ID_82543GC_FIBER:
1609         case E1000_DEV_ID_82543GC_COPPER:
1610         case E1000_DEV_ID_82544EI_FIBER:
1611         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1612         case E1000_DEV_ID_82545EM_FIBER:
1613         case E1000_DEV_ID_82545EM_COPPER:
1614                 wol->supported = 0;
1615                 wol->wolopts   = 0;
1616                 return;
1617
1618         case E1000_DEV_ID_82546EB_FIBER:
1619         case E1000_DEV_ID_82546GB_FIBER:
1620                 /* Wake events only supported on port A for dual fiber */
1621                 if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) {
1622                         wol->supported = 0;
1623                         wol->wolopts   = 0;
1624                         return;
1625                 }
1626                 /* Fall Through */
1627
1628         default:
1629                 wol->supported = WAKE_UCAST | WAKE_MCAST |
1630                                  WAKE_BCAST | WAKE_MAGIC;
1631
1632                 wol->wolopts = 0;
1633                 if(adapter->wol & E1000_WUFC_EX)
1634                         wol->wolopts |= WAKE_UCAST;
1635                 if(adapter->wol & E1000_WUFC_MC)
1636                         wol->wolopts |= WAKE_MCAST;
1637                 if(adapter->wol & E1000_WUFC_BC)
1638                         wol->wolopts |= WAKE_BCAST;
1639                 if(adapter->wol & E1000_WUFC_MAG)
1640                         wol->wolopts |= WAKE_MAGIC;
1641                 return;
1642         }
1643 }
1644
1645 static int
1646 e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1647 {
1648         struct e1000_adapter *adapter = netdev_priv(netdev);
1649         struct e1000_hw *hw = &adapter->hw;
1650
1651         switch(adapter->hw.device_id) {
1652         case E1000_DEV_ID_82542:
1653         case E1000_DEV_ID_82543GC_FIBER:
1654         case E1000_DEV_ID_82543GC_COPPER:
1655         case E1000_DEV_ID_82544EI_FIBER:
1656         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1657         case E1000_DEV_ID_82545EM_FIBER:
1658         case E1000_DEV_ID_82545EM_COPPER:
1659                 return wol->wolopts ? -EOPNOTSUPP : 0;
1660
1661         case E1000_DEV_ID_82546EB_FIBER:
1662         case E1000_DEV_ID_82546GB_FIBER:
1663                 /* Wake events only supported on port A for dual fiber */
1664                 if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1665                         return wol->wolopts ? -EOPNOTSUPP : 0;
1666                 /* Fall Through */
1667
1668         default:
1669                 if(wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1670                         return -EOPNOTSUPP;
1671
1672                 adapter->wol = 0;
1673
1674                 if(wol->wolopts & WAKE_UCAST)
1675                         adapter->wol |= E1000_WUFC_EX;
1676                 if(wol->wolopts & WAKE_MCAST)
1677                         adapter->wol |= E1000_WUFC_MC;
1678                 if(wol->wolopts & WAKE_BCAST)
1679                         adapter->wol |= E1000_WUFC_BC;
1680                 if(wol->wolopts & WAKE_MAGIC)
1681                         adapter->wol |= E1000_WUFC_MAG;
1682         }
1683
1684         return 0;
1685 }
1686
1687 /* toggle LED 4 times per second = 2 "blinks" per second */
1688 #define E1000_ID_INTERVAL       (HZ/4)
1689
1690 /* bit defines for adapter->led_status */
1691 #define E1000_LED_ON            0
1692
1693 static void
1694 e1000_led_blink_callback(unsigned long data)
1695 {
1696         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1697
1698         if(test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1699                 e1000_led_off(&adapter->hw);
1700         else
1701                 e1000_led_on(&adapter->hw);
1702
1703         mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1704 }
1705
1706 static int
1707 e1000_phys_id(struct net_device *netdev, uint32_t data)
1708 {
1709         struct e1000_adapter *adapter = netdev_priv(netdev);
1710
1711         if(!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ))
1712                 data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ);
1713
1714         if(adapter->hw.mac_type < e1000_82571) {
1715                 if(!adapter->blink_timer.function) {
1716                         init_timer(&adapter->blink_timer);
1717                         adapter->blink_timer.function = e1000_led_blink_callback;
1718                         adapter->blink_timer.data = (unsigned long) adapter;
1719                 }
1720                 e1000_setup_led(&adapter->hw);
1721                 mod_timer(&adapter->blink_timer, jiffies);
1722                 msleep_interruptible(data * 1000);
1723                 del_timer_sync(&adapter->blink_timer);
1724         }
1725         else if(adapter->hw.mac_type < e1000_82573) {
1726                 E1000_WRITE_REG(&adapter->hw, LEDCTL, (E1000_LEDCTL_LED2_BLINK_RATE |
1727                         E1000_LEDCTL_LED0_BLINK | E1000_LEDCTL_LED2_BLINK |
1728                         (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) |
1729                         (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED0_MODE_SHIFT) |
1730                         (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED1_MODE_SHIFT)));
1731                 msleep_interruptible(data * 1000);
1732         }
1733         else {
1734                 E1000_WRITE_REG(&adapter->hw, LEDCTL, (E1000_LEDCTL_LED2_BLINK_RATE |
1735                         E1000_LEDCTL_LED1_BLINK | E1000_LEDCTL_LED2_BLINK | 
1736                         (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) |
1737                         (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED1_MODE_SHIFT) |
1738                         (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED0_MODE_SHIFT)));
1739                 msleep_interruptible(data * 1000);
1740         }
1741
1742         e1000_led_off(&adapter->hw);
1743         clear_bit(E1000_LED_ON, &adapter->led_status);
1744         e1000_cleanup_led(&adapter->hw);
1745
1746         return 0;
1747 }
1748
1749 static int
1750 e1000_nway_reset(struct net_device *netdev)
1751 {
1752         struct e1000_adapter *adapter = netdev_priv(netdev);
1753         if(netif_running(netdev)) {
1754                 e1000_down(adapter);
1755                 e1000_up(adapter);
1756         }
1757         return 0;
1758 }
1759
1760 static int 
1761 e1000_get_stats_count(struct net_device *netdev)
1762 {
1763         return E1000_STATS_LEN;
1764 }
1765
1766 static void 
1767 e1000_get_ethtool_stats(struct net_device *netdev, 
1768                 struct ethtool_stats *stats, uint64_t *data)
1769 {
1770         struct e1000_adapter *adapter = netdev_priv(netdev);
1771         int i;
1772
1773         e1000_update_stats(adapter);
1774         for(i = 0; i < E1000_STATS_LEN; i++) {
1775                 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;  
1776                 data[i] = (e1000_gstrings_stats[i].sizeof_stat == 
1777                         sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
1778         }
1779 }
1780
1781 static void 
1782 e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
1783 {
1784         int i;
1785
1786         switch(stringset) {
1787         case ETH_SS_TEST:
1788                 memcpy(data, *e1000_gstrings_test, 
1789                         E1000_TEST_LEN*ETH_GSTRING_LEN);
1790                 break;
1791         case ETH_SS_STATS:
1792                 for (i=0; i < E1000_STATS_LEN; i++) {
1793                         memcpy(data + i * ETH_GSTRING_LEN, 
1794                         e1000_gstrings_stats[i].stat_string,
1795                         ETH_GSTRING_LEN);
1796                 }
1797                 break;
1798         }
1799 }
1800
1801 static struct ethtool_ops e1000_ethtool_ops = {
1802         .get_settings           = e1000_get_settings,
1803         .set_settings           = e1000_set_settings,
1804         .get_drvinfo            = e1000_get_drvinfo,
1805         .get_regs_len           = e1000_get_regs_len,
1806         .get_regs               = e1000_get_regs,
1807         .get_wol                = e1000_get_wol,
1808         .set_wol                = e1000_set_wol,
1809         .get_msglevel           = e1000_get_msglevel,
1810         .set_msglevel           = e1000_set_msglevel,
1811         .nway_reset             = e1000_nway_reset,
1812         .get_link               = ethtool_op_get_link,
1813         .get_eeprom_len         = e1000_get_eeprom_len,
1814         .get_eeprom             = e1000_get_eeprom,
1815         .set_eeprom             = e1000_set_eeprom,
1816         .get_ringparam          = e1000_get_ringparam,
1817         .set_ringparam          = e1000_set_ringparam,
1818         .get_pauseparam         = e1000_get_pauseparam,
1819         .set_pauseparam         = e1000_set_pauseparam,
1820         .get_rx_csum            = e1000_get_rx_csum,
1821         .set_rx_csum            = e1000_set_rx_csum,
1822         .get_tx_csum            = e1000_get_tx_csum,
1823         .set_tx_csum            = e1000_set_tx_csum,
1824         .get_sg                 = ethtool_op_get_sg,
1825         .set_sg                 = ethtool_op_set_sg,
1826 #ifdef NETIF_F_TSO
1827         .get_tso                = ethtool_op_get_tso,
1828         .set_tso                = e1000_set_tso,
1829 #endif
1830         .self_test_count        = e1000_diag_test_count,
1831         .self_test              = e1000_diag_test,
1832         .get_strings            = e1000_get_strings,
1833         .phys_id                = e1000_phys_id,
1834         .get_stats_count        = e1000_get_stats_count,
1835         .get_ethtool_stats      = e1000_get_ethtool_stats,
1836         .get_perm_addr          = ethtool_op_get_perm_addr,
1837 };
1838
1839 void e1000_set_ethtool_ops(struct net_device *netdev)
1840 {
1841         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1842 }