]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/e1000/e1000_ethtool.c
70238e089f165f5c0eccc999a2c90ff9e9896578
[linux-2.6-omap-h63xx.git] / drivers / net / e1000 / e1000_ethtool.c
1 /*******************************************************************************
2
3   
4   Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
5   
6   This program is free software; you can redistribute it and/or modify it 
7   under the terms of the GNU General Public License as published by the Free 
8   Software Foundation; either version 2 of the License, or (at your option) 
9   any later version.
10   
11   This program is distributed in the hope that it will be useful, but WITHOUT 
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
14   more details.
15   
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc., 59 
18   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
19   
20   The full GNU General Public License is included in this distribution in the
21   file called LICENSE.
22   
23   Contact Information:
24   Linux NICS <linux.nics@intel.com>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include "e1000.h"
32
33 #include <asm/uaccess.h>
34
35 extern char e1000_driver_name[];
36 extern char e1000_driver_version[];
37
38 extern int e1000_up(struct e1000_adapter *adapter);
39 extern void e1000_down(struct e1000_adapter *adapter);
40 extern void e1000_reset(struct e1000_adapter *adapter);
41 extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
42 extern int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
43 extern int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
44 extern void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
45 extern void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
46 extern void e1000_update_stats(struct e1000_adapter *adapter);
47
48 struct e1000_stats {
49         char stat_string[ETH_GSTRING_LEN];
50         int sizeof_stat;
51         int stat_offset;
52 };
53
54 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
55                       offsetof(struct e1000_adapter, m)
56 static const struct e1000_stats e1000_gstrings_stats[] = {
57         { "rx_packets", E1000_STAT(net_stats.rx_packets) },
58         { "tx_packets", E1000_STAT(net_stats.tx_packets) },
59         { "rx_bytes", E1000_STAT(net_stats.rx_bytes) },
60         { "tx_bytes", E1000_STAT(net_stats.tx_bytes) },
61         { "rx_errors", E1000_STAT(net_stats.rx_errors) },
62         { "tx_errors", E1000_STAT(net_stats.tx_errors) },
63         { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
64         { "multicast", E1000_STAT(net_stats.multicast) },
65         { "collisions", E1000_STAT(net_stats.collisions) },
66         { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
67         { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
68         { "rx_crc_errors", E1000_STAT(net_stats.rx_crc_errors) },
69         { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
70         { "rx_fifo_errors", E1000_STAT(net_stats.rx_fifo_errors) },
71         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
72         { "rx_missed_errors", E1000_STAT(net_stats.rx_missed_errors) },
73         { "tx_aborted_errors", E1000_STAT(net_stats.tx_aborted_errors) },
74         { "tx_carrier_errors", E1000_STAT(net_stats.tx_carrier_errors) },
75         { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
76         { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
77         { "tx_window_errors", E1000_STAT(net_stats.tx_window_errors) },
78         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
79         { "tx_deferred_ok", E1000_STAT(stats.dc) },
80         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
81         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
82         { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
83         { "rx_long_length_errors", E1000_STAT(stats.roc) },
84         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
85         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
86         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
87         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
88         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
89         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
90         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
91         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
92         { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
93         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
94         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
95         { "rx_header_split", E1000_STAT(rx_hdr_split) },
96         { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
97 };
98
99 #define E1000_QUEUE_STATS_LEN 0
100 #define E1000_GLOBAL_STATS_LEN  \
101         sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
102 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
103 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
104         "Register test  (offline)", "Eeprom test    (offline)",
105         "Interrupt test (offline)", "Loopback test  (offline)",
106         "Link test   (on/offline)"
107 };
108 #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
109
110 static int
111 e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
112 {
113         struct e1000_adapter *adapter = netdev_priv(netdev);
114         struct e1000_hw *hw = &adapter->hw;
115
116         if (hw->media_type == e1000_media_type_copper) {
117
118                 ecmd->supported = (SUPPORTED_10baseT_Half |
119                                    SUPPORTED_10baseT_Full |
120                                    SUPPORTED_100baseT_Half |
121                                    SUPPORTED_100baseT_Full |
122                                    SUPPORTED_1000baseT_Full|
123                                    SUPPORTED_Autoneg |
124                                    SUPPORTED_TP);
125
126                 ecmd->advertising = ADVERTISED_TP;
127
128                 if (hw->autoneg == 1) {
129                         ecmd->advertising |= ADVERTISED_Autoneg;
130
131                         /* the e1000 autoneg seems to match ethtool nicely */
132
133                         ecmd->advertising |= hw->autoneg_advertised;
134                 }
135
136                 ecmd->port = PORT_TP;
137                 ecmd->phy_address = hw->phy_addr;
138
139                 if (hw->mac_type == e1000_82543)
140                         ecmd->transceiver = XCVR_EXTERNAL;
141                 else
142                         ecmd->transceiver = XCVR_INTERNAL;
143
144         } else {
145                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
146                                      SUPPORTED_FIBRE |
147                                      SUPPORTED_Autoneg);
148
149                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
150                                      ADVERTISED_FIBRE |
151                                      ADVERTISED_Autoneg);
152
153                 ecmd->port = PORT_FIBRE;
154
155                 if (hw->mac_type >= e1000_82545)
156                         ecmd->transceiver = XCVR_INTERNAL;
157                 else
158                         ecmd->transceiver = XCVR_EXTERNAL;
159         }
160
161         if (netif_carrier_ok(adapter->netdev)) {
162
163                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
164                                                    &adapter->link_duplex);
165                 ecmd->speed = adapter->link_speed;
166
167                 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
168                  *          and HALF_DUPLEX != DUPLEX_HALF */
169
170                 if (adapter->link_duplex == FULL_DUPLEX)
171                         ecmd->duplex = DUPLEX_FULL;
172                 else
173                         ecmd->duplex = DUPLEX_HALF;
174         } else {
175                 ecmd->speed = -1;
176                 ecmd->duplex = -1;
177         }
178
179         ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
180                          hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
181         return 0;
182 }
183
184 static int
185 e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
186 {
187         struct e1000_adapter *adapter = netdev_priv(netdev);
188         struct e1000_hw *hw = &adapter->hw;
189
190         /* When SoL/IDER sessions are active, autoneg/speed/duplex
191          * cannot be changed */
192         if (e1000_check_phy_reset_block(hw)) {
193                 DPRINTK(DRV, ERR, "Cannot change link characteristics "
194                         "when SoL/IDER is active.\n");
195                 return -EINVAL;
196         }
197
198         if (ecmd->autoneg == AUTONEG_ENABLE) {
199                 hw->autoneg = 1;
200                 if (hw->media_type == e1000_media_type_fiber)
201                         hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
202                                      ADVERTISED_FIBRE |
203                                      ADVERTISED_Autoneg;
204                 else
205                         hw->autoneg_advertised = ADVERTISED_10baseT_Half |
206                                                   ADVERTISED_10baseT_Full |
207                                                   ADVERTISED_100baseT_Half |
208                                                   ADVERTISED_100baseT_Full |
209                                                   ADVERTISED_1000baseT_Full|
210                                                   ADVERTISED_Autoneg |
211                                                   ADVERTISED_TP;
212                 ecmd->advertising = hw->autoneg_advertised;
213         } else
214                 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex))
215                         return -EINVAL;
216
217         /* reset the link */
218
219         if (netif_running(adapter->netdev)) {
220                 e1000_down(adapter);
221                 e1000_reset(adapter);
222                 e1000_up(adapter);
223         } else
224                 e1000_reset(adapter);
225
226         return 0;
227 }
228
229 static void
230 e1000_get_pauseparam(struct net_device *netdev,
231                      struct ethtool_pauseparam *pause)
232 {
233         struct e1000_adapter *adapter = netdev_priv(netdev);
234         struct e1000_hw *hw = &adapter->hw;
235
236         pause->autoneg =
237                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
238
239         if (hw->fc == e1000_fc_rx_pause)
240                 pause->rx_pause = 1;
241         else if (hw->fc == e1000_fc_tx_pause)
242                 pause->tx_pause = 1;
243         else if (hw->fc == e1000_fc_full) {
244                 pause->rx_pause = 1;
245                 pause->tx_pause = 1;
246         }
247 }
248
249 static int
250 e1000_set_pauseparam(struct net_device *netdev,
251                      struct ethtool_pauseparam *pause)
252 {
253         struct e1000_adapter *adapter = netdev_priv(netdev);
254         struct e1000_hw *hw = &adapter->hw;
255
256         adapter->fc_autoneg = pause->autoneg;
257
258         if (pause->rx_pause && pause->tx_pause)
259                 hw->fc = e1000_fc_full;
260         else if (pause->rx_pause && !pause->tx_pause)
261                 hw->fc = e1000_fc_rx_pause;
262         else if (!pause->rx_pause && pause->tx_pause)
263                 hw->fc = e1000_fc_tx_pause;
264         else if (!pause->rx_pause && !pause->tx_pause)
265                 hw->fc = e1000_fc_none;
266
267         hw->original_fc = hw->fc;
268
269         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
270                 if (netif_running(adapter->netdev)) {
271                         e1000_down(adapter);
272                         e1000_up(adapter);
273                 } else
274                         e1000_reset(adapter);
275         } else
276                 return ((hw->media_type == e1000_media_type_fiber) ?
277                         e1000_setup_link(hw) : e1000_force_mac_fc(hw));
278
279         return 0;
280 }
281
282 static uint32_t
283 e1000_get_rx_csum(struct net_device *netdev)
284 {
285         struct e1000_adapter *adapter = netdev_priv(netdev);
286         return adapter->rx_csum;
287 }
288
289 static int
290 e1000_set_rx_csum(struct net_device *netdev, uint32_t data)
291 {
292         struct e1000_adapter *adapter = netdev_priv(netdev);
293         adapter->rx_csum = data;
294
295         if (netif_running(netdev)) {
296                 e1000_down(adapter);
297                 e1000_up(adapter);
298         } else
299                 e1000_reset(adapter);
300         return 0;
301 }
302
303 static uint32_t
304 e1000_get_tx_csum(struct net_device *netdev)
305 {
306         return (netdev->features & NETIF_F_HW_CSUM) != 0;
307 }
308
309 static int
310 e1000_set_tx_csum(struct net_device *netdev, uint32_t data)
311 {
312         struct e1000_adapter *adapter = netdev_priv(netdev);
313
314         if (adapter->hw.mac_type < e1000_82543) {
315                 if (!data)
316                         return -EINVAL;
317                 return 0;
318         }
319
320         if (data)
321                 netdev->features |= NETIF_F_HW_CSUM;
322         else
323                 netdev->features &= ~NETIF_F_HW_CSUM;
324
325         return 0;
326 }
327
328 #ifdef NETIF_F_TSO
329 static int
330 e1000_set_tso(struct net_device *netdev, uint32_t data)
331 {
332         struct e1000_adapter *adapter = netdev_priv(netdev);
333         if ((adapter->hw.mac_type < e1000_82544) ||
334             (adapter->hw.mac_type == e1000_82547))
335                 return data ? -EINVAL : 0;
336
337         if (data)
338                 netdev->features |= NETIF_F_TSO;
339         else
340                 netdev->features &= ~NETIF_F_TSO;
341
342         DPRINTK(PROBE, INFO, "TSO is %s\n", data ? "Enabled" : "Disabled");
343         adapter->tso_force = TRUE;
344         return 0;
345 }
346 #endif /* NETIF_F_TSO */
347
348 static uint32_t
349 e1000_get_msglevel(struct net_device *netdev)
350 {
351         struct e1000_adapter *adapter = netdev_priv(netdev);
352         return adapter->msg_enable;
353 }
354
355 static void
356 e1000_set_msglevel(struct net_device *netdev, uint32_t data)
357 {
358         struct e1000_adapter *adapter = netdev_priv(netdev);
359         adapter->msg_enable = data;
360 }
361
362 static int
363 e1000_get_regs_len(struct net_device *netdev)
364 {
365 #define E1000_REGS_LEN 32
366         return E1000_REGS_LEN * sizeof(uint32_t);
367 }
368
369 static void
370 e1000_get_regs(struct net_device *netdev,
371                struct ethtool_regs *regs, void *p)
372 {
373         struct e1000_adapter *adapter = netdev_priv(netdev);
374         struct e1000_hw *hw = &adapter->hw;
375         uint32_t *regs_buff = p;
376         uint16_t phy_data;
377
378         memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t));
379
380         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
381
382         regs_buff[0]  = E1000_READ_REG(hw, CTRL);
383         regs_buff[1]  = E1000_READ_REG(hw, STATUS);
384
385         regs_buff[2]  = E1000_READ_REG(hw, RCTL);
386         regs_buff[3]  = E1000_READ_REG(hw, RDLEN);
387         regs_buff[4]  = E1000_READ_REG(hw, RDH);
388         regs_buff[5]  = E1000_READ_REG(hw, RDT);
389         regs_buff[6]  = E1000_READ_REG(hw, RDTR);
390
391         regs_buff[7]  = E1000_READ_REG(hw, TCTL);
392         regs_buff[8]  = E1000_READ_REG(hw, TDLEN);
393         regs_buff[9]  = E1000_READ_REG(hw, TDH);
394         regs_buff[10] = E1000_READ_REG(hw, TDT);
395         regs_buff[11] = E1000_READ_REG(hw, TIDV);
396
397         regs_buff[12] = adapter->hw.phy_type;  /* PHY type (IGP=1, M88=0) */
398         if (hw->phy_type == e1000_phy_igp) {
399                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
400                                     IGP01E1000_PHY_AGC_A);
401                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
402                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
403                 regs_buff[13] = (uint32_t)phy_data; /* cable length */
404                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
405                                     IGP01E1000_PHY_AGC_B);
406                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
407                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
408                 regs_buff[14] = (uint32_t)phy_data; /* cable length */
409                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
410                                     IGP01E1000_PHY_AGC_C);
411                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
412                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
413                 regs_buff[15] = (uint32_t)phy_data; /* cable length */
414                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
415                                     IGP01E1000_PHY_AGC_D);
416                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
417                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
418                 regs_buff[16] = (uint32_t)phy_data; /* cable length */
419                 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
420                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
421                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
422                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
423                 regs_buff[18] = (uint32_t)phy_data; /* cable polarity */
424                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
425                                     IGP01E1000_PHY_PCS_INIT_REG);
426                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
427                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
428                 regs_buff[19] = (uint32_t)phy_data; /* cable polarity */
429                 regs_buff[20] = 0; /* polarity correction enabled (always) */
430                 regs_buff[22] = 0; /* phy receive errors (unavailable) */
431                 regs_buff[23] = regs_buff[18]; /* mdix mode */
432                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
433         } else {
434                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
435                 regs_buff[13] = (uint32_t)phy_data; /* cable length */
436                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
437                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
438                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
439                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
440                 regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */
441                 regs_buff[18] = regs_buff[13]; /* cable polarity */
442                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
443                 regs_buff[20] = regs_buff[17]; /* polarity correction */
444                 /* phy receive errors */
445                 regs_buff[22] = adapter->phy_stats.receive_errors;
446                 regs_buff[23] = regs_buff[13]; /* mdix mode */
447         }
448         regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
449         e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
450         regs_buff[24] = (uint32_t)phy_data;  /* phy local receiver status */
451         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
452         if (hw->mac_type >= e1000_82540 &&
453            hw->media_type == e1000_media_type_copper) {
454                 regs_buff[26] = E1000_READ_REG(hw, MANC);
455         }
456 }
457
458 static int
459 e1000_get_eeprom_len(struct net_device *netdev)
460 {
461         struct e1000_adapter *adapter = netdev_priv(netdev);
462         return adapter->hw.eeprom.word_size * 2;
463 }
464
465 static int
466 e1000_get_eeprom(struct net_device *netdev,
467                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
468 {
469         struct e1000_adapter *adapter = netdev_priv(netdev);
470         struct e1000_hw *hw = &adapter->hw;
471         uint16_t *eeprom_buff;
472         int first_word, last_word;
473         int ret_val = 0;
474         uint16_t i;
475
476         if (eeprom->len == 0)
477                 return -EINVAL;
478
479         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
480
481         first_word = eeprom->offset >> 1;
482         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
483
484         eeprom_buff = kmalloc(sizeof(uint16_t) *
485                         (last_word - first_word + 1), GFP_KERNEL);
486         if (!eeprom_buff)
487                 return -ENOMEM;
488
489         if (hw->eeprom.type == e1000_eeprom_spi)
490                 ret_val = e1000_read_eeprom(hw, first_word,
491                                             last_word - first_word + 1,
492                                             eeprom_buff);
493         else {
494                 for (i = 0; i < last_word - first_word + 1; i++)
495                         if ((ret_val = e1000_read_eeprom(hw, first_word + i, 1,
496                                                         &eeprom_buff[i])))
497                                 break;
498         }
499
500         /* Device's eeprom is always little-endian, word addressable */
501         for (i = 0; i < last_word - first_word + 1; i++)
502                 le16_to_cpus(&eeprom_buff[i]);
503
504         memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1),
505                         eeprom->len);
506         kfree(eeprom_buff);
507
508         return ret_val;
509 }
510
511 static int
512 e1000_set_eeprom(struct net_device *netdev,
513                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
514 {
515         struct e1000_adapter *adapter = netdev_priv(netdev);
516         struct e1000_hw *hw = &adapter->hw;
517         uint16_t *eeprom_buff;
518         void *ptr;
519         int max_len, first_word, last_word, ret_val = 0;
520         uint16_t i;
521
522         if (eeprom->len == 0)
523                 return -EOPNOTSUPP;
524
525         if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
526                 return -EFAULT;
527
528         max_len = hw->eeprom.word_size * 2;
529
530         first_word = eeprom->offset >> 1;
531         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
532         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
533         if (!eeprom_buff)
534                 return -ENOMEM;
535
536         ptr = (void *)eeprom_buff;
537
538         if (eeprom->offset & 1) {
539                 /* need read/modify/write of first changed EEPROM word */
540                 /* only the second byte of the word is being modified */
541                 ret_val = e1000_read_eeprom(hw, first_word, 1,
542                                             &eeprom_buff[0]);
543                 ptr++;
544         }
545         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
546                 /* need read/modify/write of last changed EEPROM word */
547                 /* only the first byte of the word is being modified */
548                 ret_val = e1000_read_eeprom(hw, last_word, 1,
549                                   &eeprom_buff[last_word - first_word]);
550         }
551
552         /* Device's eeprom is always little-endian, word addressable */
553         for (i = 0; i < last_word - first_word + 1; i++)
554                 le16_to_cpus(&eeprom_buff[i]);
555
556         memcpy(ptr, bytes, eeprom->len);
557
558         for (i = 0; i < last_word - first_word + 1; i++)
559                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
560
561         ret_val = e1000_write_eeprom(hw, first_word,
562                                      last_word - first_word + 1, eeprom_buff);
563
564         /* Update the checksum over the first part of the EEPROM if needed
565          * and flush shadow RAM for 82573 conrollers */
566         if ((ret_val == 0) && ((first_word <= EEPROM_CHECKSUM_REG) ||
567                                 (hw->mac_type == e1000_82573)))
568                 e1000_update_eeprom_checksum(hw);
569
570         kfree(eeprom_buff);
571         return ret_val;
572 }
573
574 static void
575 e1000_get_drvinfo(struct net_device *netdev,
576                        struct ethtool_drvinfo *drvinfo)
577 {
578         struct e1000_adapter *adapter = netdev_priv(netdev);
579         char firmware_version[32];
580         uint16_t eeprom_data;
581
582         strncpy(drvinfo->driver,  e1000_driver_name, 32);
583         strncpy(drvinfo->version, e1000_driver_version, 32);
584
585         /* EEPROM image version # is reported as firmware version # for
586          * 8257{1|2|3} controllers */
587         e1000_read_eeprom(&adapter->hw, 5, 1, &eeprom_data);
588         switch (adapter->hw.mac_type) {
589         case e1000_82571:
590         case e1000_82572:
591         case e1000_82573:
592                 sprintf(firmware_version, "%d.%d-%d",
593                         (eeprom_data & 0xF000) >> 12,
594                         (eeprom_data & 0x0FF0) >> 4,
595                         eeprom_data & 0x000F);
596                 break;
597         default:
598                 sprintf(firmware_version, "N/A");
599         }
600
601         strncpy(drvinfo->fw_version, firmware_version, 32);
602         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
603         drvinfo->n_stats = E1000_STATS_LEN;
604         drvinfo->testinfo_len = E1000_TEST_LEN;
605         drvinfo->regdump_len = e1000_get_regs_len(netdev);
606         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
607 }
608
609 static void
610 e1000_get_ringparam(struct net_device *netdev,
611                     struct ethtool_ringparam *ring)
612 {
613         struct e1000_adapter *adapter = netdev_priv(netdev);
614         e1000_mac_type mac_type = adapter->hw.mac_type;
615         struct e1000_tx_ring *txdr = adapter->tx_ring;
616         struct e1000_rx_ring *rxdr = adapter->rx_ring;
617
618         ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
619                 E1000_MAX_82544_RXD;
620         ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
621                 E1000_MAX_82544_TXD;
622         ring->rx_mini_max_pending = 0;
623         ring->rx_jumbo_max_pending = 0;
624         ring->rx_pending = rxdr->count;
625         ring->tx_pending = txdr->count;
626         ring->rx_mini_pending = 0;
627         ring->rx_jumbo_pending = 0;
628 }
629
630 static int
631 e1000_set_ringparam(struct net_device *netdev,
632                     struct ethtool_ringparam *ring)
633 {
634         struct e1000_adapter *adapter = netdev_priv(netdev);
635         e1000_mac_type mac_type = adapter->hw.mac_type;
636         struct e1000_tx_ring *txdr, *tx_old, *tx_new;
637         struct e1000_rx_ring *rxdr, *rx_old, *rx_new;
638         int i, err, tx_ring_size, rx_ring_size;
639
640         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
641                 return -EINVAL;
642
643         tx_ring_size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
644         rx_ring_size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
645
646         if (netif_running(adapter->netdev))
647                 e1000_down(adapter);
648
649         tx_old = adapter->tx_ring;
650         rx_old = adapter->rx_ring;
651
652         adapter->tx_ring = kmalloc(tx_ring_size, GFP_KERNEL);
653         if (!adapter->tx_ring) {
654                 err = -ENOMEM;
655                 goto err_setup_rx;
656         }
657         memset(adapter->tx_ring, 0, tx_ring_size);
658
659         adapter->rx_ring = kmalloc(rx_ring_size, GFP_KERNEL);
660         if (!adapter->rx_ring) {
661                 kfree(adapter->tx_ring);
662                 err = -ENOMEM;
663                 goto err_setup_rx;
664         }
665         memset(adapter->rx_ring, 0, rx_ring_size);
666
667         txdr = adapter->tx_ring;
668         rxdr = adapter->rx_ring;
669
670         rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD);
671         rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ?
672                 E1000_MAX_RXD : E1000_MAX_82544_RXD));
673         E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
674
675         txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD);
676         txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ?
677                 E1000_MAX_TXD : E1000_MAX_82544_TXD));
678         E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
679
680         for (i = 0; i < adapter->num_tx_queues; i++)
681                 txdr[i].count = txdr->count;
682         for (i = 0; i < adapter->num_rx_queues; i++)
683                 rxdr[i].count = rxdr->count;
684
685         if (netif_running(adapter->netdev)) {
686                 /* Try to get new resources before deleting old */
687                 if ((err = e1000_setup_all_rx_resources(adapter)))
688                         goto err_setup_rx;
689                 if ((err = e1000_setup_all_tx_resources(adapter)))
690                         goto err_setup_tx;
691
692                 /* save the new, restore the old in order to free it,
693                  * then restore the new back again */
694
695                 rx_new = adapter->rx_ring;
696                 tx_new = adapter->tx_ring;
697                 adapter->rx_ring = rx_old;
698                 adapter->tx_ring = tx_old;
699                 e1000_free_all_rx_resources(adapter);
700                 e1000_free_all_tx_resources(adapter);
701                 kfree(tx_old);
702                 kfree(rx_old);
703                 adapter->rx_ring = rx_new;
704                 adapter->tx_ring = tx_new;
705                 if ((err = e1000_up(adapter)))
706                         return err;
707         }
708
709         return 0;
710 err_setup_tx:
711         e1000_free_all_rx_resources(adapter);
712 err_setup_rx:
713         adapter->rx_ring = rx_old;
714         adapter->tx_ring = tx_old;
715         e1000_up(adapter);
716         return err;
717 }
718
719 #define REG_PATTERN_TEST(R, M, W)                                              \
720 {                                                                              \
721         uint32_t pat, value;                                                   \
722         uint32_t test[] =                                                      \
723                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};              \
724         for (pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) {              \
725                 E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W));             \
726                 value = E1000_READ_REG(&adapter->hw, R);                       \
727                 if (value != (test[pat] & W & M)) {                             \
728                         DPRINTK(DRV, ERR, "pattern test reg %04X failed: got " \
729                                 "0x%08X expected 0x%08X\n",                    \
730                                 E1000_##R, value, (test[pat] & W & M));        \
731                         *data = (adapter->hw.mac_type < e1000_82543) ?         \
732                                 E1000_82542_##R : E1000_##R;                   \
733                         return 1;                                              \
734                 }                                                              \
735         }                                                                      \
736 }
737
738 #define REG_SET_AND_CHECK(R, M, W)                                             \
739 {                                                                              \
740         uint32_t value;                                                        \
741         E1000_WRITE_REG(&adapter->hw, R, W & M);                               \
742         value = E1000_READ_REG(&adapter->hw, R);                               \
743         if ((W & M) != (value & M)) {                                          \
744                 DPRINTK(DRV, ERR, "set/check reg %04X test failed: got 0x%08X "\
745                         "expected 0x%08X\n", E1000_##R, (value & M), (W & M)); \
746                 *data = (adapter->hw.mac_type < e1000_82543) ?                 \
747                         E1000_82542_##R : E1000_##R;                           \
748                 return 1;                                                      \
749         }                                                                      \
750 }
751
752 static int
753 e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
754 {
755         uint32_t value, before, after;
756         uint32_t i, toggle;
757
758         /* The status register is Read Only, so a write should fail.
759          * Some bits that get toggled are ignored.
760          */
761         switch (adapter->hw.mac_type) {
762         /* there are several bits on newer hardware that are r/w */
763         case e1000_82571:
764         case e1000_82572:
765                 toggle = 0x7FFFF3FF;
766                 break;
767         case e1000_82573:
768                 toggle = 0x7FFFF033;
769                 break;
770         default:
771                 toggle = 0xFFFFF833;
772                 break;
773         }
774
775         before = E1000_READ_REG(&adapter->hw, STATUS);
776         value = (E1000_READ_REG(&adapter->hw, STATUS) & toggle);
777         E1000_WRITE_REG(&adapter->hw, STATUS, toggle);
778         after = E1000_READ_REG(&adapter->hw, STATUS) & toggle;
779         if (value != after) {
780                 DPRINTK(DRV, ERR, "failed STATUS register test got: "
781                         "0x%08X expected: 0x%08X\n", after, value);
782                 *data = 1;
783                 return 1;
784         }
785         /* restore previous status */
786         E1000_WRITE_REG(&adapter->hw, STATUS, before);
787
788         REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
789         REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
790         REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
791         REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
792         REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
793         REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
794         REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
795         REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
796         REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
797         REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
798         REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
799         REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
800         REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
801         REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
802
803         REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
804         REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0x003FFFFB);
805         REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
806
807         if (adapter->hw.mac_type >= e1000_82543) {
808
809                 REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0xFFFFFFFF);
810                 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
811                 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
812                 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
813                 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
814
815                 for (i = 0; i < E1000_RAR_ENTRIES; i++) {
816                         REG_PATTERN_TEST(RA + ((i << 1) << 2), 0xFFFFFFFF,
817                                          0xFFFFFFFF);
818                         REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
819                                          0xFFFFFFFF);
820                 }
821
822         } else {
823
824                 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
825                 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
826                 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
827                 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
828
829         }
830
831         for (i = 0; i < E1000_MC_TBL_SIZE; i++)
832                 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
833
834         *data = 0;
835         return 0;
836 }
837
838 static int
839 e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data)
840 {
841         uint16_t temp;
842         uint16_t checksum = 0;
843         uint16_t i;
844
845         *data = 0;
846         /* Read and add up the contents of the EEPROM */
847         for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
848                 if ((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) {
849                         *data = 1;
850                         break;
851                 }
852                 checksum += temp;
853         }
854
855         /* If Checksum is not Correct return error else test passed */
856         if ((checksum != (uint16_t) EEPROM_SUM) && !(*data))
857                 *data = 2;
858
859         return *data;
860 }
861
862 static irqreturn_t
863 e1000_test_intr(int irq,
864                 void *data,
865                 struct pt_regs *regs)
866 {
867         struct net_device *netdev = (struct net_device *) data;
868         struct e1000_adapter *adapter = netdev_priv(netdev);
869
870         adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR);
871
872         return IRQ_HANDLED;
873 }
874
875 static int
876 e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
877 {
878         struct net_device *netdev = adapter->netdev;
879         uint32_t mask, i=0, shared_int = TRUE;
880         uint32_t irq = adapter->pdev->irq;
881
882         *data = 0;
883
884         /* Hook up test interrupt handler just for this test */
885         if (!request_irq(irq, &e1000_test_intr, 0, netdev->name, netdev)) {
886                 shared_int = FALSE;
887         } else if (request_irq(irq, &e1000_test_intr, SA_SHIRQ,
888                               netdev->name, netdev)){
889                 *data = 1;
890                 return -1;
891         }
892
893         /* Disable all the interrupts */
894         E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
895         msec_delay(10);
896
897         /* Test each interrupt */
898         for (; i < 10; i++) {
899
900                 /* Interrupt to test */
901                 mask = 1 << i;
902
903                 if (!shared_int) {
904                         /* Disable the interrupt to be reported in
905                          * the cause register and then force the same
906                          * interrupt and see if one gets posted.  If
907                          * an interrupt was posted to the bus, the
908                          * test failed.
909                          */
910                         adapter->test_icr = 0;
911                         E1000_WRITE_REG(&adapter->hw, IMC, mask);
912                         E1000_WRITE_REG(&adapter->hw, ICS, mask);
913                         msec_delay(10);
914
915                         if (adapter->test_icr & mask) {
916                                 *data = 3;
917                                 break;
918                         }
919                 }
920
921                 /* Enable the interrupt to be reported in
922                  * the cause register and then force the same
923                  * interrupt and see if one gets posted.  If
924                  * an interrupt was not posted to the bus, the
925                  * test failed.
926                  */
927                 adapter->test_icr = 0;
928                 E1000_WRITE_REG(&adapter->hw, IMS, mask);
929                 E1000_WRITE_REG(&adapter->hw, ICS, mask);
930                 msec_delay(10);
931
932                 if (!(adapter->test_icr & mask)) {
933                         *data = 4;
934                         break;
935                 }
936
937                 if (!shared_int) {
938                         /* Disable the other interrupts to be reported in
939                          * the cause register and then force the other
940                          * interrupts and see if any get posted.  If
941                          * an interrupt was posted to the bus, the
942                          * test failed.
943                          */
944                         adapter->test_icr = 0;
945                         E1000_WRITE_REG(&adapter->hw, IMC, ~mask & 0x00007FFF);
946                         E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF);
947                         msec_delay(10);
948
949                         if (adapter->test_icr) {
950                                 *data = 5;
951                                 break;
952                         }
953                 }
954         }
955
956         /* Disable all the interrupts */
957         E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
958         msec_delay(10);
959
960         /* Unhook test interrupt handler */
961         free_irq(irq, netdev);
962
963         return *data;
964 }
965
966 static void
967 e1000_free_desc_rings(struct e1000_adapter *adapter)
968 {
969         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
970         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
971         struct pci_dev *pdev = adapter->pdev;
972         int i;
973
974         if (txdr->desc && txdr->buffer_info) {
975                 for (i = 0; i < txdr->count; i++) {
976                         if (txdr->buffer_info[i].dma)
977                                 pci_unmap_single(pdev, txdr->buffer_info[i].dma,
978                                                  txdr->buffer_info[i].length,
979                                                  PCI_DMA_TODEVICE);
980                         if (txdr->buffer_info[i].skb)
981                                 dev_kfree_skb(txdr->buffer_info[i].skb);
982                 }
983         }
984
985         if (rxdr->desc && rxdr->buffer_info) {
986                 for (i = 0; i < rxdr->count; i++) {
987                         if (rxdr->buffer_info[i].dma)
988                                 pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
989                                                  rxdr->buffer_info[i].length,
990                                                  PCI_DMA_FROMDEVICE);
991                         if (rxdr->buffer_info[i].skb)
992                                 dev_kfree_skb(rxdr->buffer_info[i].skb);
993                 }
994         }
995
996         if (txdr->desc) {
997                 pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
998                 txdr->desc = NULL;
999         }
1000         if (rxdr->desc) {
1001                 pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
1002                 rxdr->desc = NULL;
1003         }
1004
1005         kfree(txdr->buffer_info);
1006         txdr->buffer_info = NULL;
1007         kfree(rxdr->buffer_info);
1008         rxdr->buffer_info = NULL;
1009
1010         return;
1011 }
1012
1013 static int
1014 e1000_setup_desc_rings(struct e1000_adapter *adapter)
1015 {
1016         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1017         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1018         struct pci_dev *pdev = adapter->pdev;
1019         uint32_t rctl;
1020         int size, i, ret_val;
1021
1022         /* Setup Tx descriptor ring and Tx buffers */
1023
1024         if (!txdr->count)
1025                 txdr->count = E1000_DEFAULT_TXD;
1026
1027         size = txdr->count * sizeof(struct e1000_buffer);
1028         if (!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
1029                 ret_val = 1;
1030                 goto err_nomem;
1031         }
1032         memset(txdr->buffer_info, 0, size);
1033
1034         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1035         E1000_ROUNDUP(txdr->size, 4096);
1036         if (!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) {
1037                 ret_val = 2;
1038                 goto err_nomem;
1039         }
1040         memset(txdr->desc, 0, txdr->size);
1041         txdr->next_to_use = txdr->next_to_clean = 0;
1042
1043         E1000_WRITE_REG(&adapter->hw, TDBAL,
1044                         ((uint64_t) txdr->dma & 0x00000000FFFFFFFF));
1045         E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32));
1046         E1000_WRITE_REG(&adapter->hw, TDLEN,
1047                         txdr->count * sizeof(struct e1000_tx_desc));
1048         E1000_WRITE_REG(&adapter->hw, TDH, 0);
1049         E1000_WRITE_REG(&adapter->hw, TDT, 0);
1050         E1000_WRITE_REG(&adapter->hw, TCTL,
1051                         E1000_TCTL_PSP | E1000_TCTL_EN |
1052                         E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1053                         E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1054
1055         for (i = 0; i < txdr->count; i++) {
1056                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1057                 struct sk_buff *skb;
1058                 unsigned int size = 1024;
1059
1060                 if (!(skb = alloc_skb(size, GFP_KERNEL))) {
1061                         ret_val = 3;
1062                         goto err_nomem;
1063                 }
1064                 skb_put(skb, size);
1065                 txdr->buffer_info[i].skb = skb;
1066                 txdr->buffer_info[i].length = skb->len;
1067                 txdr->buffer_info[i].dma =
1068                         pci_map_single(pdev, skb->data, skb->len,
1069                                        PCI_DMA_TODEVICE);
1070                 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1071                 tx_desc->lower.data = cpu_to_le32(skb->len);
1072                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1073                                                    E1000_TXD_CMD_IFCS |
1074                                                    E1000_TXD_CMD_RPS);
1075                 tx_desc->upper.data = 0;
1076         }
1077
1078         /* Setup Rx descriptor ring and Rx buffers */
1079
1080         if (!rxdr->count)
1081                 rxdr->count = E1000_DEFAULT_RXD;
1082
1083         size = rxdr->count * sizeof(struct e1000_buffer);
1084         if (!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
1085                 ret_val = 4;
1086                 goto err_nomem;
1087         }
1088         memset(rxdr->buffer_info, 0, size);
1089
1090         rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1091         if (!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) {
1092                 ret_val = 5;
1093                 goto err_nomem;
1094         }
1095         memset(rxdr->desc, 0, rxdr->size);
1096         rxdr->next_to_use = rxdr->next_to_clean = 0;
1097
1098         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1099         E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
1100         E1000_WRITE_REG(&adapter->hw, RDBAL,
1101                         ((uint64_t) rxdr->dma & 0xFFFFFFFF));
1102         E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32));
1103         E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size);
1104         E1000_WRITE_REG(&adapter->hw, RDH, 0);
1105         E1000_WRITE_REG(&adapter->hw, RDT, 0);
1106         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1107                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1108                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1109         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1110
1111         for (i = 0; i < rxdr->count; i++) {
1112                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1113                 struct sk_buff *skb;
1114
1115                 if (!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN,
1116                                 GFP_KERNEL))) {
1117                         ret_val = 6;
1118                         goto err_nomem;
1119                 }
1120                 skb_reserve(skb, NET_IP_ALIGN);
1121                 rxdr->buffer_info[i].skb = skb;
1122                 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1123                 rxdr->buffer_info[i].dma =
1124                         pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
1125                                        PCI_DMA_FROMDEVICE);
1126                 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1127                 memset(skb->data, 0x00, skb->len);
1128         }
1129
1130         return 0;
1131
1132 err_nomem:
1133         e1000_free_desc_rings(adapter);
1134         return ret_val;
1135 }
1136
1137 static void
1138 e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1139 {
1140         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1141         e1000_write_phy_reg(&adapter->hw, 29, 0x001F);
1142         e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC);
1143         e1000_write_phy_reg(&adapter->hw, 29, 0x001A);
1144         e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0);
1145 }
1146
1147 static void
1148 e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1149 {
1150         uint16_t phy_reg;
1151
1152         /* Because we reset the PHY above, we need to re-force TX_CLK in the
1153          * Extended PHY Specific Control Register to 25MHz clock.  This
1154          * value defaults back to a 2.5MHz clock when the PHY is reset.
1155          */
1156         e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1157         phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1158         e1000_write_phy_reg(&adapter->hw,
1159                 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1160
1161         /* In addition, because of the s/w reset above, we need to enable
1162          * CRS on TX.  This must be set for both full and half duplex
1163          * operation.
1164          */
1165         e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1166         phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1167         e1000_write_phy_reg(&adapter->hw,
1168                 M88E1000_PHY_SPEC_CTRL, phy_reg);
1169 }
1170
1171 static int
1172 e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1173 {
1174         uint32_t ctrl_reg;
1175         uint16_t phy_reg;
1176
1177         /* Setup the Device Control Register for PHY loopback test. */
1178
1179         ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1180         ctrl_reg |= (E1000_CTRL_ILOS |          /* Invert Loss-Of-Signal */
1181                      E1000_CTRL_FRCSPD |        /* Set the Force Speed Bit */
1182                      E1000_CTRL_FRCDPX |        /* Set the Force Duplex Bit */
1183                      E1000_CTRL_SPD_1000 |      /* Force Speed to 1000 */
1184                      E1000_CTRL_FD);            /* Force Duplex to FULL */
1185
1186         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1187
1188         /* Read the PHY Specific Control Register (0x10) */
1189         e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1190
1191         /* Clear Auto-Crossover bits in PHY Specific Control Register
1192          * (bits 6:5).
1193          */
1194         phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1195         e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1196
1197         /* Perform software reset on the PHY */
1198         e1000_phy_reset(&adapter->hw);
1199
1200         /* Have to setup TX_CLK and TX_CRS after software reset */
1201         e1000_phy_reset_clk_and_crs(adapter);
1202
1203         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100);
1204
1205         /* Wait for reset to complete. */
1206         udelay(500);
1207
1208         /* Have to setup TX_CLK and TX_CRS after software reset */
1209         e1000_phy_reset_clk_and_crs(adapter);
1210
1211         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1212         e1000_phy_disable_receiver(adapter);
1213
1214         /* Set the loopback bit in the PHY control register. */
1215         e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1216         phy_reg |= MII_CR_LOOPBACK;
1217         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1218
1219         /* Setup TX_CLK and TX_CRS one more time. */
1220         e1000_phy_reset_clk_and_crs(adapter);
1221
1222         /* Check Phy Configuration */
1223         e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1224         if (phy_reg != 0x4100)
1225                  return 9;
1226
1227         e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1228         if (phy_reg != 0x0070)
1229                 return 10;
1230
1231         e1000_read_phy_reg(&adapter->hw, 29, &phy_reg);
1232         if (phy_reg != 0x001A)
1233                 return 11;
1234
1235         return 0;
1236 }
1237
1238 static int
1239 e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1240 {
1241         uint32_t ctrl_reg = 0;
1242         uint32_t stat_reg = 0;
1243
1244         adapter->hw.autoneg = FALSE;
1245
1246         if (adapter->hw.phy_type == e1000_phy_m88) {
1247                 /* Auto-MDI/MDIX Off */
1248                 e1000_write_phy_reg(&adapter->hw,
1249                                     M88E1000_PHY_SPEC_CTRL, 0x0808);
1250                 /* reset to update Auto-MDI/MDIX */
1251                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140);
1252                 /* autoneg off */
1253                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140);
1254         }
1255         /* force 1000, set loopback */
1256         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
1257
1258         /* Now set up the MAC to the same speed/duplex as the PHY. */
1259         ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1260         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1261         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1262                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1263                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1264                      E1000_CTRL_FD);     /* Force Duplex to FULL */
1265
1266         if (adapter->hw.media_type == e1000_media_type_copper &&
1267            adapter->hw.phy_type == e1000_phy_m88) {
1268                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1269         } else {
1270                 /* Set the ILOS bit on the fiber Nic is half
1271                  * duplex link is detected. */
1272                 stat_reg = E1000_READ_REG(&adapter->hw, STATUS);
1273                 if ((stat_reg & E1000_STATUS_FD) == 0)
1274                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1275         }
1276
1277         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1278
1279         /* Disable the receiver on the PHY so when a cable is plugged in, the
1280          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1281          */
1282         if (adapter->hw.phy_type == e1000_phy_m88)
1283                 e1000_phy_disable_receiver(adapter);
1284
1285         udelay(500);
1286
1287         return 0;
1288 }
1289
1290 static int
1291 e1000_set_phy_loopback(struct e1000_adapter *adapter)
1292 {
1293         uint16_t phy_reg = 0;
1294         uint16_t count = 0;
1295
1296         switch (adapter->hw.mac_type) {
1297         case e1000_82543:
1298                 if (adapter->hw.media_type == e1000_media_type_copper) {
1299                         /* Attempt to setup Loopback mode on Non-integrated PHY.
1300                          * Some PHY registers get corrupted at random, so
1301                          * attempt this 10 times.
1302                          */
1303                         while (e1000_nonintegrated_phy_loopback(adapter) &&
1304                               count++ < 10);
1305                         if (count < 11)
1306                                 return 0;
1307                 }
1308                 break;
1309
1310         case e1000_82544:
1311         case e1000_82540:
1312         case e1000_82545:
1313         case e1000_82545_rev_3:
1314         case e1000_82546:
1315         case e1000_82546_rev_3:
1316         case e1000_82541:
1317         case e1000_82541_rev_2:
1318         case e1000_82547:
1319         case e1000_82547_rev_2:
1320         case e1000_82571:
1321         case e1000_82572:
1322         case e1000_82573:
1323                 return e1000_integrated_phy_loopback(adapter);
1324                 break;
1325
1326         default:
1327                 /* Default PHY loopback work is to read the MII
1328                  * control register and assert bit 14 (loopback mode).
1329                  */
1330                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1331                 phy_reg |= MII_CR_LOOPBACK;
1332                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1333                 return 0;
1334                 break;
1335         }
1336
1337         return 8;
1338 }
1339
1340 static int
1341 e1000_setup_loopback_test(struct e1000_adapter *adapter)
1342 {
1343         struct e1000_hw *hw = &adapter->hw;
1344         uint32_t rctl;
1345
1346         if (hw->media_type == e1000_media_type_fiber ||
1347             hw->media_type == e1000_media_type_internal_serdes) {
1348                 switch (hw->mac_type) {
1349                 case e1000_82545:
1350                 case e1000_82546:
1351                 case e1000_82545_rev_3:
1352                 case e1000_82546_rev_3:
1353                         return e1000_set_phy_loopback(adapter);
1354                         break;
1355                 case e1000_82571:
1356                 case e1000_82572:
1357 #define E1000_SERDES_LB_ON 0x410
1358                         e1000_set_phy_loopback(adapter);
1359                         E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_ON);
1360                         msec_delay(10);
1361                         return 0;
1362                         break;
1363                 default:
1364                         rctl = E1000_READ_REG(hw, RCTL);
1365                         rctl |= E1000_RCTL_LBM_TCVR;
1366                         E1000_WRITE_REG(hw, RCTL, rctl);
1367                         return 0;
1368                 }
1369         } else if (hw->media_type == e1000_media_type_copper)
1370                 return e1000_set_phy_loopback(adapter);
1371
1372         return 7;
1373 }
1374
1375 static void
1376 e1000_loopback_cleanup(struct e1000_adapter *adapter)
1377 {
1378         struct e1000_hw *hw = &adapter->hw;
1379         uint32_t rctl;
1380         uint16_t phy_reg;
1381
1382         rctl = E1000_READ_REG(hw, RCTL);
1383         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1384         E1000_WRITE_REG(hw, RCTL, rctl);
1385
1386         switch (hw->mac_type) {
1387         case e1000_82571:
1388         case e1000_82572:
1389                 if (hw->media_type == e1000_media_type_fiber ||
1390                     hw->media_type == e1000_media_type_internal_serdes) {
1391 #define E1000_SERDES_LB_OFF 0x400
1392                         E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_OFF);
1393                         msec_delay(10);
1394                         break;
1395                 }
1396                 /* Fall Through */
1397         case e1000_82545:
1398         case e1000_82546:
1399         case e1000_82545_rev_3:
1400         case e1000_82546_rev_3:
1401         default:
1402                 hw->autoneg = TRUE;
1403                 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1404                 if (phy_reg & MII_CR_LOOPBACK) {
1405                         phy_reg &= ~MII_CR_LOOPBACK;
1406                         e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1407                         e1000_phy_reset(hw);
1408                 }
1409                 break;
1410         }
1411 }
1412
1413 static void
1414 e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1415 {
1416         memset(skb->data, 0xFF, frame_size);
1417         frame_size &= ~1;
1418         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1419         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1420         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1421 }
1422
1423 static int
1424 e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1425 {
1426         frame_size &= ~1;
1427         if (*(skb->data + 3) == 0xFF) {
1428                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1429                    (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1430                         return 0;
1431                 }
1432         }
1433         return 13;
1434 }
1435
1436 static int
1437 e1000_run_loopback_test(struct e1000_adapter *adapter)
1438 {
1439         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1440         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1441         struct pci_dev *pdev = adapter->pdev;
1442         int i, j, k, l, lc, good_cnt, ret_val=0;
1443         unsigned long time;
1444
1445         E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1);
1446
1447         /* Calculate the loop count based on the largest descriptor ring
1448          * The idea is to wrap the largest ring a number of times using 64
1449          * send/receive pairs during each loop
1450          */
1451
1452         if (rxdr->count <= txdr->count)
1453                 lc = ((txdr->count / 64) * 2) + 1;
1454         else
1455                 lc = ((rxdr->count / 64) * 2) + 1;
1456
1457         k = l = 0;
1458         for (j = 0; j <= lc; j++) { /* loop count loop */
1459                 for (i = 0; i < 64; i++) { /* send the packets */
1460                         e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1461                                         1024);
1462                         pci_dma_sync_single_for_device(pdev,
1463                                         txdr->buffer_info[k].dma,
1464                                         txdr->buffer_info[k].length,
1465                                         PCI_DMA_TODEVICE);
1466                         if (unlikely(++k == txdr->count)) k = 0;
1467                 }
1468                 E1000_WRITE_REG(&adapter->hw, TDT, k);
1469                 msec_delay(200);
1470                 time = jiffies; /* set the start time for the receive */
1471                 good_cnt = 0;
1472                 do { /* receive the sent packets */
1473                         pci_dma_sync_single_for_cpu(pdev,
1474                                         rxdr->buffer_info[l].dma,
1475                                         rxdr->buffer_info[l].length,
1476                                         PCI_DMA_FROMDEVICE);
1477
1478                         ret_val = e1000_check_lbtest_frame(
1479                                         rxdr->buffer_info[l].skb,
1480                                         1024);
1481                         if (!ret_val)
1482                                 good_cnt++;
1483                         if (unlikely(++l == rxdr->count)) l = 0;
1484                         /* time + 20 msecs (200 msecs on 2.4) is more than
1485                          * enough time to complete the receives, if it's
1486                          * exceeded, break and error off
1487                          */
1488                 } while (good_cnt < 64 && jiffies < (time + 20));
1489                 if (good_cnt != 64) {
1490                         ret_val = 13; /* ret_val is the same as mis-compare */
1491                         break;
1492                 }
1493                 if (jiffies >= (time + 2)) {
1494                         ret_val = 14; /* error code for time out error */
1495                         break;
1496                 }
1497         } /* end loop count loop */
1498         return ret_val;
1499 }
1500
1501 static int
1502 e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data)
1503 {
1504         /* PHY loopback cannot be performed if SoL/IDER
1505          * sessions are active */
1506         if (e1000_check_phy_reset_block(&adapter->hw)) {
1507                 DPRINTK(DRV, ERR, "Cannot do PHY loopback test "
1508                         "when SoL/IDER is active.\n");
1509                 *data = 0;
1510                 goto out;
1511         }
1512
1513         if ((*data = e1000_setup_desc_rings(adapter)))
1514                 goto out;
1515         if ((*data = e1000_setup_loopback_test(adapter)))
1516                 goto err_loopback;
1517         *data = e1000_run_loopback_test(adapter);
1518         e1000_loopback_cleanup(adapter);
1519
1520 err_loopback:
1521         e1000_free_desc_rings(adapter);
1522 out:
1523         return *data;
1524 }
1525
1526 static int
1527 e1000_link_test(struct e1000_adapter *adapter, uint64_t *data)
1528 {
1529         *data = 0;
1530         if (adapter->hw.media_type == e1000_media_type_internal_serdes) {
1531                 int i = 0;
1532                 adapter->hw.serdes_link_down = TRUE;
1533
1534                 /* On some blade server designs, link establishment
1535                  * could take as long as 2-3 minutes */
1536                 do {
1537                         e1000_check_for_link(&adapter->hw);
1538                         if (adapter->hw.serdes_link_down == FALSE)
1539                                 return *data;
1540                         msec_delay(20);
1541                 } while (i++ < 3750);
1542
1543                 *data = 1;
1544         } else {
1545                 e1000_check_for_link(&adapter->hw);
1546                 if (adapter->hw.autoneg)  /* if auto_neg is set wait for it */
1547                         msec_delay(4000);
1548
1549                 if (!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
1550                         *data = 1;
1551                 }
1552         }
1553         return *data;
1554 }
1555
1556 static int
1557 e1000_diag_test_count(struct net_device *netdev)
1558 {
1559         return E1000_TEST_LEN;
1560 }
1561
1562 static void
1563 e1000_diag_test(struct net_device *netdev,
1564                    struct ethtool_test *eth_test, uint64_t *data)
1565 {
1566         struct e1000_adapter *adapter = netdev_priv(netdev);
1567         boolean_t if_running = netif_running(netdev);
1568
1569         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1570                 /* Offline tests */
1571
1572                 /* save speed, duplex, autoneg settings */
1573                 uint16_t autoneg_advertised = adapter->hw.autoneg_advertised;
1574                 uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex;
1575                 uint8_t autoneg = adapter->hw.autoneg;
1576
1577                 /* Link test performed before hardware reset so autoneg doesn't
1578                  * interfere with test result */
1579                 if (e1000_link_test(adapter, &data[4]))
1580                         eth_test->flags |= ETH_TEST_FL_FAILED;
1581
1582                 if (if_running)
1583                         e1000_down(adapter);
1584                 else
1585                         e1000_reset(adapter);
1586
1587                 if (e1000_reg_test(adapter, &data[0]))
1588                         eth_test->flags |= ETH_TEST_FL_FAILED;
1589
1590                 e1000_reset(adapter);
1591                 if (e1000_eeprom_test(adapter, &data[1]))
1592                         eth_test->flags |= ETH_TEST_FL_FAILED;
1593
1594                 e1000_reset(adapter);
1595                 if (e1000_intr_test(adapter, &data[2]))
1596                         eth_test->flags |= ETH_TEST_FL_FAILED;
1597
1598                 e1000_reset(adapter);
1599                 if (e1000_loopback_test(adapter, &data[3]))
1600                         eth_test->flags |= ETH_TEST_FL_FAILED;
1601
1602                 /* restore speed, duplex, autoneg settings */
1603                 adapter->hw.autoneg_advertised = autoneg_advertised;
1604                 adapter->hw.forced_speed_duplex = forced_speed_duplex;
1605                 adapter->hw.autoneg = autoneg;
1606
1607                 e1000_reset(adapter);
1608                 if (if_running)
1609                         e1000_up(adapter);
1610         } else {
1611                 /* Online tests */
1612                 if (e1000_link_test(adapter, &data[4]))
1613                         eth_test->flags |= ETH_TEST_FL_FAILED;
1614
1615                 /* Offline tests aren't run; pass by default */
1616                 data[0] = 0;
1617                 data[1] = 0;
1618                 data[2] = 0;
1619                 data[3] = 0;
1620         }
1621         msleep_interruptible(4 * 1000);
1622 }
1623
1624 static void
1625 e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1626 {
1627         struct e1000_adapter *adapter = netdev_priv(netdev);
1628         struct e1000_hw *hw = &adapter->hw;
1629
1630         switch (adapter->hw.device_id) {
1631         case E1000_DEV_ID_82542:
1632         case E1000_DEV_ID_82543GC_FIBER:
1633         case E1000_DEV_ID_82543GC_COPPER:
1634         case E1000_DEV_ID_82544EI_FIBER:
1635         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1636         case E1000_DEV_ID_82545EM_FIBER:
1637         case E1000_DEV_ID_82545EM_COPPER:
1638         case E1000_DEV_ID_82546GB_QUAD_COPPER:
1639                 wol->supported = 0;
1640                 wol->wolopts   = 0;
1641                 return;
1642
1643         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1644                 /* device id 10B5 port-A supports wol */
1645                 if (!adapter->ksp3_port_a) {
1646                         wol->supported = 0;
1647                         return;
1648                 }
1649                 /* KSP3 does not suppport UCAST wake-ups for any interface */
1650                 wol->supported = WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC;
1651
1652                 if (adapter->wol & E1000_WUFC_EX)
1653                         DPRINTK(DRV, ERR, "Interface does not support "
1654                         "directed (unicast) frame wake-up packets\n");
1655                 wol->wolopts = 0;
1656                 goto do_defaults;
1657
1658         case E1000_DEV_ID_82546EB_FIBER:
1659         case E1000_DEV_ID_82546GB_FIBER:
1660         case E1000_DEV_ID_82571EB_FIBER:
1661                 /* Wake events only supported on port A for dual fiber */
1662                 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) {
1663                         wol->supported = 0;
1664                         wol->wolopts   = 0;
1665                         return;
1666                 }
1667                 /* Fall Through */
1668
1669         default:
1670                 wol->supported = WAKE_UCAST | WAKE_MCAST |
1671                                  WAKE_BCAST | WAKE_MAGIC;
1672                 wol->wolopts = 0;
1673
1674 do_defaults:
1675                 if (adapter->wol & E1000_WUFC_EX)
1676                         wol->wolopts |= WAKE_UCAST;
1677                 if (adapter->wol & E1000_WUFC_MC)
1678                         wol->wolopts |= WAKE_MCAST;
1679                 if (adapter->wol & E1000_WUFC_BC)
1680                         wol->wolopts |= WAKE_BCAST;
1681                 if (adapter->wol & E1000_WUFC_MAG)
1682                         wol->wolopts |= WAKE_MAGIC;
1683                 return;
1684         }
1685 }
1686
1687 static int
1688 e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1689 {
1690         struct e1000_adapter *adapter = netdev_priv(netdev);
1691         struct e1000_hw *hw = &adapter->hw;
1692
1693         switch (adapter->hw.device_id) {
1694         case E1000_DEV_ID_82542:
1695         case E1000_DEV_ID_82543GC_FIBER:
1696         case E1000_DEV_ID_82543GC_COPPER:
1697         case E1000_DEV_ID_82544EI_FIBER:
1698         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1699         case E1000_DEV_ID_82546GB_QUAD_COPPER:
1700         case E1000_DEV_ID_82545EM_FIBER:
1701         case E1000_DEV_ID_82545EM_COPPER:
1702                 return wol->wolopts ? -EOPNOTSUPP : 0;
1703
1704         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1705                 /* device id 10B5 port-A supports wol */
1706                 if (!adapter->ksp3_port_a)
1707                         return wol->wolopts ? -EOPNOTSUPP : 0;
1708
1709                 if (wol->wolopts & WAKE_UCAST) {
1710                         DPRINTK(DRV, ERR, "Interface does not support "
1711                         "directed (unicast) frame wake-up packets\n");
1712                         return -EOPNOTSUPP;
1713                 }
1714
1715         case E1000_DEV_ID_82546EB_FIBER:
1716         case E1000_DEV_ID_82546GB_FIBER:
1717         case E1000_DEV_ID_82571EB_FIBER:
1718                 /* Wake events only supported on port A for dual fiber */
1719                 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1720                         return wol->wolopts ? -EOPNOTSUPP : 0;
1721                 /* Fall Through */
1722
1723         default:
1724                 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1725                         return -EOPNOTSUPP;
1726
1727                 adapter->wol = 0;
1728
1729                 if (wol->wolopts & WAKE_UCAST)
1730                         adapter->wol |= E1000_WUFC_EX;
1731                 if (wol->wolopts & WAKE_MCAST)
1732                         adapter->wol |= E1000_WUFC_MC;
1733                 if (wol->wolopts & WAKE_BCAST)
1734                         adapter->wol |= E1000_WUFC_BC;
1735                 if (wol->wolopts & WAKE_MAGIC)
1736                         adapter->wol |= E1000_WUFC_MAG;
1737         }
1738
1739         return 0;
1740 }
1741
1742 /* toggle LED 4 times per second = 2 "blinks" per second */
1743 #define E1000_ID_INTERVAL       (HZ/4)
1744
1745 /* bit defines for adapter->led_status */
1746 #define E1000_LED_ON            0
1747
1748 static void
1749 e1000_led_blink_callback(unsigned long data)
1750 {
1751         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1752
1753         if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1754                 e1000_led_off(&adapter->hw);
1755         else
1756                 e1000_led_on(&adapter->hw);
1757
1758         mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1759 }
1760
1761 static int
1762 e1000_phys_id(struct net_device *netdev, uint32_t data)
1763 {
1764         struct e1000_adapter *adapter = netdev_priv(netdev);
1765
1766         if (!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ))
1767                 data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ);
1768
1769         if (adapter->hw.mac_type < e1000_82571) {
1770                 if (!adapter->blink_timer.function) {
1771                         init_timer(&adapter->blink_timer);
1772                         adapter->blink_timer.function = e1000_led_blink_callback;
1773                         adapter->blink_timer.data = (unsigned long) adapter;
1774                 }
1775                 e1000_setup_led(&adapter->hw);
1776                 mod_timer(&adapter->blink_timer, jiffies);
1777                 msleep_interruptible(data * 1000);
1778                 del_timer_sync(&adapter->blink_timer);
1779         } else if (adapter->hw.mac_type < e1000_82573) {
1780                 E1000_WRITE_REG(&adapter->hw, LEDCTL,
1781                         (E1000_LEDCTL_LED2_BLINK_RATE |
1782                          E1000_LEDCTL_LED0_BLINK | E1000_LEDCTL_LED2_BLINK |
1783                          (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) |
1784                          (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED0_MODE_SHIFT) |
1785                          (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED1_MODE_SHIFT)));
1786                 msleep_interruptible(data * 1000);
1787         } else {
1788                 E1000_WRITE_REG(&adapter->hw, LEDCTL,
1789                         (E1000_LEDCTL_LED2_BLINK_RATE |
1790                          E1000_LEDCTL_LED1_BLINK | E1000_LEDCTL_LED2_BLINK |
1791                          (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) |
1792                          (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED1_MODE_SHIFT) |
1793                          (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED0_MODE_SHIFT)));
1794                 msleep_interruptible(data * 1000);
1795         }
1796
1797         e1000_led_off(&adapter->hw);
1798         clear_bit(E1000_LED_ON, &adapter->led_status);
1799         e1000_cleanup_led(&adapter->hw);
1800
1801         return 0;
1802 }
1803
1804 static int
1805 e1000_nway_reset(struct net_device *netdev)
1806 {
1807         struct e1000_adapter *adapter = netdev_priv(netdev);
1808         if (netif_running(netdev)) {
1809                 e1000_down(adapter);
1810                 e1000_up(adapter);
1811         }
1812         return 0;
1813 }
1814
1815 static int
1816 e1000_get_stats_count(struct net_device *netdev)
1817 {
1818         return E1000_STATS_LEN;
1819 }
1820
1821 static void
1822 e1000_get_ethtool_stats(struct net_device *netdev,
1823                 struct ethtool_stats *stats, uint64_t *data)
1824 {
1825         struct e1000_adapter *adapter = netdev_priv(netdev);
1826         int i;
1827
1828         e1000_update_stats(adapter);
1829         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1830                 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
1831                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1832                         sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
1833         }
1834 /*      BUG_ON(i != E1000_STATS_LEN); */
1835 }
1836
1837 static void
1838 e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
1839 {
1840         uint8_t *p = data;
1841         int i;
1842
1843         switch (stringset) {
1844         case ETH_SS_TEST:
1845                 memcpy(data, *e1000_gstrings_test,
1846                         E1000_TEST_LEN*ETH_GSTRING_LEN);
1847                 break;
1848         case ETH_SS_STATS:
1849                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1850                         memcpy(p, e1000_gstrings_stats[i].stat_string,
1851                                ETH_GSTRING_LEN);
1852                         p += ETH_GSTRING_LEN;
1853                 }
1854 /*              BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1855                 break;
1856         }
1857 }
1858
1859 static struct ethtool_ops e1000_ethtool_ops = {
1860         .get_settings           = e1000_get_settings,
1861         .set_settings           = e1000_set_settings,
1862         .get_drvinfo            = e1000_get_drvinfo,
1863         .get_regs_len           = e1000_get_regs_len,
1864         .get_regs               = e1000_get_regs,
1865         .get_wol                = e1000_get_wol,
1866         .set_wol                = e1000_set_wol,
1867         .get_msglevel           = e1000_get_msglevel,
1868         .set_msglevel           = e1000_set_msglevel,
1869         .nway_reset             = e1000_nway_reset,
1870         .get_link               = ethtool_op_get_link,
1871         .get_eeprom_len         = e1000_get_eeprom_len,
1872         .get_eeprom             = e1000_get_eeprom,
1873         .set_eeprom             = e1000_set_eeprom,
1874         .get_ringparam          = e1000_get_ringparam,
1875         .set_ringparam          = e1000_set_ringparam,
1876         .get_pauseparam         = e1000_get_pauseparam,
1877         .set_pauseparam         = e1000_set_pauseparam,
1878         .get_rx_csum            = e1000_get_rx_csum,
1879         .set_rx_csum            = e1000_set_rx_csum,
1880         .get_tx_csum            = e1000_get_tx_csum,
1881         .set_tx_csum            = e1000_set_tx_csum,
1882         .get_sg                 = ethtool_op_get_sg,
1883         .set_sg                 = ethtool_op_set_sg,
1884 #ifdef NETIF_F_TSO
1885         .get_tso                = ethtool_op_get_tso,
1886         .set_tso                = e1000_set_tso,
1887 #endif
1888         .self_test_count        = e1000_diag_test_count,
1889         .self_test              = e1000_diag_test,
1890         .get_strings            = e1000_get_strings,
1891         .phys_id                = e1000_phys_id,
1892         .get_stats_count        = e1000_get_stats_count,
1893         .get_ethtool_stats      = e1000_get_ethtool_stats,
1894         .get_perm_addr          = ethtool_op_get_perm_addr,
1895 };
1896
1897 void e1000_set_ethtool_ops(struct net_device *netdev)
1898 {
1899         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1900 }