]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/chelsio/sge.c
Merge branch 'pxa-fixes'
[linux-2.6-omap-h63xx.git] / drivers / net / chelsio / sge.c
1 /*****************************************************************************
2  *                                                                           *
3  * File: sge.c                                                               *
4  * $Revision: 1.26 $                                                         *
5  * $Date: 2005/06/21 18:29:48 $                                              *
6  * Description:                                                              *
7  *  DMA engine.                                                              *
8  *  part of the Chelsio 10Gb Ethernet Driver.                                *
9  *                                                                           *
10  * This program is free software; you can redistribute it and/or modify      *
11  * it under the terms of the GNU General Public License, version 2, as       *
12  * published by the Free Software Foundation.                                *
13  *                                                                           *
14  * You should have received a copy of the GNU General Public License along   *
15  * with this program; if not, write to the Free Software Foundation, Inc.,   *
16  * 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.                 *
17  *                                                                           *
18  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED    *
19  * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF      *
20  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.                     *
21  *                                                                           *
22  * http://www.chelsio.com                                                    *
23  *                                                                           *
24  * Copyright (c) 2003 - 2005 Chelsio Communications, Inc.                    *
25  * All rights reserved.                                                      *
26  *                                                                           *
27  * Maintainers: maintainers@chelsio.com                                      *
28  *                                                                           *
29  * Authors: Dimitrios Michailidis   <dm@chelsio.com>                         *
30  *          Tina Yang               <tainay@chelsio.com>                     *
31  *          Felix Marti             <felix@chelsio.com>                      *
32  *          Scott Bardone           <sbardone@chelsio.com>                   *
33  *          Kurt Ottaway            <kottaway@chelsio.com>                   *
34  *          Frank DiMambro          <frank@chelsio.com>                      *
35  *                                                                           *
36  * History:                                                                  *
37  *                                                                           *
38  ****************************************************************************/
39
40 #include "common.h"
41
42 #include <linux/types.h>
43 #include <linux/errno.h>
44 #include <linux/pci.h>
45 #include <linux/ktime.h>
46 #include <linux/netdevice.h>
47 #include <linux/etherdevice.h>
48 #include <linux/if_vlan.h>
49 #include <linux/skbuff.h>
50 #include <linux/init.h>
51 #include <linux/mm.h>
52 #include <linux/tcp.h>
53 #include <linux/ip.h>
54 #include <linux/in.h>
55 #include <linux/if_arp.h>
56
57 #include "cpl5_cmd.h"
58 #include "sge.h"
59 #include "regs.h"
60 #include "espi.h"
61
62 /* This belongs in if_ether.h */
63 #define ETH_P_CPL5 0xf
64
65 #define SGE_CMDQ_N              2
66 #define SGE_FREELQ_N            2
67 #define SGE_CMDQ0_E_N           1024
68 #define SGE_CMDQ1_E_N           128
69 #define SGE_FREEL_SIZE          4096
70 #define SGE_JUMBO_FREEL_SIZE    512
71 #define SGE_FREEL_REFILL_THRESH 16
72 #define SGE_RESPQ_E_N           1024
73 #define SGE_INTRTIMER_NRES      1000
74 #define SGE_RX_SM_BUF_SIZE      1536
75 #define SGE_TX_DESC_MAX_PLEN    16384
76
77 #define SGE_RESPQ_REPLENISH_THRES (SGE_RESPQ_E_N / 4)
78
79 /*
80  * Period of the TX buffer reclaim timer.  This timer does not need to run
81  * frequently as TX buffers are usually reclaimed by new TX packets.
82  */
83 #define TX_RECLAIM_PERIOD (HZ / 4)
84
85 #define M_CMD_LEN       0x7fffffff
86 #define V_CMD_LEN(v)    (v)
87 #define G_CMD_LEN(v)    ((v) & M_CMD_LEN)
88 #define V_CMD_GEN1(v)   ((v) << 31)
89 #define V_CMD_GEN2(v)   (v)
90 #define F_CMD_DATAVALID (1 << 1)
91 #define F_CMD_SOP       (1 << 2)
92 #define V_CMD_EOP(v)    ((v) << 3)
93
94 /*
95  * Command queue, receive buffer list, and response queue descriptors.
96  */
97 #if defined(__BIG_ENDIAN_BITFIELD)
98 struct cmdQ_e {
99         u32 addr_lo;
100         u32 len_gen;
101         u32 flags;
102         u32 addr_hi;
103 };
104
105 struct freelQ_e {
106         u32 addr_lo;
107         u32 len_gen;
108         u32 gen2;
109         u32 addr_hi;
110 };
111
112 struct respQ_e {
113         u32 Qsleeping           : 4;
114         u32 Cmdq1CreditReturn   : 5;
115         u32 Cmdq1DmaComplete    : 5;
116         u32 Cmdq0CreditReturn   : 5;
117         u32 Cmdq0DmaComplete    : 5;
118         u32 FreelistQid         : 2;
119         u32 CreditValid         : 1;
120         u32 DataValid           : 1;
121         u32 Offload             : 1;
122         u32 Eop                 : 1;
123         u32 Sop                 : 1;
124         u32 GenerationBit       : 1;
125         u32 BufferLength;
126 };
127 #elif defined(__LITTLE_ENDIAN_BITFIELD)
128 struct cmdQ_e {
129         u32 len_gen;
130         u32 addr_lo;
131         u32 addr_hi;
132         u32 flags;
133 };
134
135 struct freelQ_e {
136         u32 len_gen;
137         u32 addr_lo;
138         u32 addr_hi;
139         u32 gen2;
140 };
141
142 struct respQ_e {
143         u32 BufferLength;
144         u32 GenerationBit       : 1;
145         u32 Sop                 : 1;
146         u32 Eop                 : 1;
147         u32 Offload             : 1;
148         u32 DataValid           : 1;
149         u32 CreditValid         : 1;
150         u32 FreelistQid         : 2;
151         u32 Cmdq0DmaComplete    : 5;
152         u32 Cmdq0CreditReturn   : 5;
153         u32 Cmdq1DmaComplete    : 5;
154         u32 Cmdq1CreditReturn   : 5;
155         u32 Qsleeping           : 4;
156 } ;
157 #endif
158
159 /*
160  * SW Context Command and Freelist Queue Descriptors
161  */
162 struct cmdQ_ce {
163         struct sk_buff *skb;
164         DECLARE_PCI_UNMAP_ADDR(dma_addr);
165         DECLARE_PCI_UNMAP_LEN(dma_len);
166 };
167
168 struct freelQ_ce {
169         struct sk_buff *skb;
170         DECLARE_PCI_UNMAP_ADDR(dma_addr);
171         DECLARE_PCI_UNMAP_LEN(dma_len);
172 };
173
174 /*
175  * SW command, freelist and response rings
176  */
177 struct cmdQ {
178         unsigned long   status;         /* HW DMA fetch status */
179         unsigned int    in_use;         /* # of in-use command descriptors */
180         unsigned int    size;           /* # of descriptors */
181         unsigned int    processed;      /* total # of descs HW has processed */
182         unsigned int    cleaned;        /* total # of descs SW has reclaimed */
183         unsigned int    stop_thres;     /* SW TX queue suspend threshold */
184         u16             pidx;           /* producer index (SW) */
185         u16             cidx;           /* consumer index (HW) */
186         u8              genbit;         /* current generation (=valid) bit */
187         u8              sop;            /* is next entry start of packet? */
188         struct cmdQ_e  *entries;        /* HW command descriptor Q */
189         struct cmdQ_ce *centries;       /* SW command context descriptor Q */
190         dma_addr_t      dma_addr;       /* DMA addr HW command descriptor Q */
191         spinlock_t      lock;           /* Lock to protect cmdQ enqueuing */
192 };
193
194 struct freelQ {
195         unsigned int    credits;        /* # of available RX buffers */
196         unsigned int    size;           /* free list capacity */
197         u16             pidx;           /* producer index (SW) */
198         u16             cidx;           /* consumer index (HW) */
199         u16             rx_buffer_size; /* Buffer size on this free list */
200         u16             dma_offset;     /* DMA offset to align IP headers */
201         u16             recycleq_idx;   /* skb recycle q to use */
202         u8              genbit;         /* current generation (=valid) bit */
203         struct freelQ_e *entries;       /* HW freelist descriptor Q */
204         struct freelQ_ce *centries;     /* SW freelist context descriptor Q */
205         dma_addr_t      dma_addr;       /* DMA addr HW freelist descriptor Q */
206 };
207
208 struct respQ {
209         unsigned int    credits;        /* credits to be returned to SGE */
210         unsigned int    size;           /* # of response Q descriptors */
211         u16             cidx;           /* consumer index (SW) */
212         u8              genbit;         /* current generation(=valid) bit */
213         struct respQ_e *entries;        /* HW response descriptor Q */
214         dma_addr_t      dma_addr;       /* DMA addr HW response descriptor Q */
215 };
216
217 /* Bit flags for cmdQ.status */
218 enum {
219         CMDQ_STAT_RUNNING = 1,          /* fetch engine is running */
220         CMDQ_STAT_LAST_PKT_DB = 2       /* last packet rung the doorbell */
221 };
222
223 /* T204 TX SW scheduler */
224
225 /* Per T204 TX port */
226 struct sched_port {
227         unsigned int    avail;          /* available bits - quota */
228         unsigned int    drain_bits_per_1024ns; /* drain rate */
229         unsigned int    speed;          /* drain rate, mbps */
230         unsigned int    mtu;            /* mtu size */
231         struct sk_buff_head skbq;       /* pending skbs */
232 };
233
234 /* Per T204 device */
235 struct sched {
236         ktime_t         last_updated;   /* last time quotas were computed */
237         unsigned int    max_avail;      /* max bits to be sent to any port */
238         unsigned int    port;           /* port index (round robin ports) */
239         unsigned int    num;            /* num skbs in per port queues */
240         struct sched_port p[MAX_NPORTS];
241         struct tasklet_struct sched_tsk;/* tasklet used to run scheduler */
242 };
243 static void restart_sched(unsigned long);
244
245
246 /*
247  * Main SGE data structure
248  *
249  * Interrupts are handled by a single CPU and it is likely that on a MP system
250  * the application is migrated to another CPU. In that scenario, we try to
251  * seperate the RX(in irq context) and TX state in order to decrease memory
252  * contention.
253  */
254 struct sge {
255         struct adapter *adapter;        /* adapter backpointer */
256         struct net_device *netdev;      /* netdevice backpointer */
257         struct freelQ   freelQ[SGE_FREELQ_N]; /* buffer free lists */
258         struct respQ    respQ;          /* response Q */
259         unsigned long   stopped_tx_queues; /* bitmap of suspended Tx queues */
260         unsigned int    rx_pkt_pad;     /* RX padding for L2 packets */
261         unsigned int    jumbo_fl;       /* jumbo freelist Q index */
262         unsigned int    intrtimer_nres; /* no-resource interrupt timer */
263         unsigned int    fixed_intrtimer;/* non-adaptive interrupt timer */
264         struct timer_list tx_reclaim_timer; /* reclaims TX buffers */
265         struct timer_list espibug_timer;
266         unsigned long   espibug_timeout;
267         struct sk_buff  *espibug_skb[MAX_NPORTS];
268         u32             sge_control;    /* shadow value of sge control reg */
269         struct sge_intr_counts stats;
270         struct sge_port_stats *port_stats[MAX_NPORTS];
271         struct sched    *tx_sched;
272         struct cmdQ cmdQ[SGE_CMDQ_N] ____cacheline_aligned_in_smp;
273 };
274
275 /*
276  * stop tasklet and free all pending skb's
277  */
278 static void tx_sched_stop(struct sge *sge)
279 {
280         struct sched *s = sge->tx_sched;
281         int i;
282
283         tasklet_kill(&s->sched_tsk);
284
285         for (i = 0; i < MAX_NPORTS; i++)
286                 __skb_queue_purge(&s->p[s->port].skbq);
287 }
288
289 /*
290  * t1_sched_update_parms() is called when the MTU or link speed changes. It
291  * re-computes scheduler parameters to scope with the change.
292  */
293 unsigned int t1_sched_update_parms(struct sge *sge, unsigned int port,
294                                    unsigned int mtu, unsigned int speed)
295 {
296         struct sched *s = sge->tx_sched;
297         struct sched_port *p = &s->p[port];
298         unsigned int max_avail_segs;
299
300         pr_debug("t1_sched_update_params mtu=%d speed=%d\n", mtu, speed);
301         if (speed)
302                 p->speed = speed;
303         if (mtu)
304                 p->mtu = mtu;
305
306         if (speed || mtu) {
307                 unsigned long long drain = 1024ULL * p->speed * (p->mtu - 40);
308                 do_div(drain, (p->mtu + 50) * 1000);
309                 p->drain_bits_per_1024ns = (unsigned int) drain;
310
311                 if (p->speed < 1000)
312                         p->drain_bits_per_1024ns =
313                                 90 * p->drain_bits_per_1024ns / 100;
314         }
315
316         if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204) {
317                 p->drain_bits_per_1024ns -= 16;
318                 s->max_avail = max(4096U, p->mtu + 16 + 14 + 4);
319                 max_avail_segs = max(1U, 4096 / (p->mtu - 40));
320         } else {
321                 s->max_avail = 16384;
322                 max_avail_segs = max(1U, 9000 / (p->mtu - 40));
323         }
324
325         pr_debug("t1_sched_update_parms: mtu %u speed %u max_avail %u "
326                  "max_avail_segs %u drain_bits_per_1024ns %u\n", p->mtu,
327                  p->speed, s->max_avail, max_avail_segs,
328                  p->drain_bits_per_1024ns);
329
330         return max_avail_segs * (p->mtu - 40);
331 }
332
333 /*
334  * t1_sched_max_avail_bytes() tells the scheduler the maximum amount of
335  * data that can be pushed per port.
336  */
337 void t1_sched_set_max_avail_bytes(struct sge *sge, unsigned int val)
338 {
339         struct sched *s = sge->tx_sched;
340         unsigned int i;
341
342         s->max_avail = val;
343         for (i = 0; i < MAX_NPORTS; i++)
344                 t1_sched_update_parms(sge, i, 0, 0);
345 }
346
347 /*
348  * t1_sched_set_drain_bits_per_us() tells the scheduler at which rate a port
349  * is draining.
350  */
351 void t1_sched_set_drain_bits_per_us(struct sge *sge, unsigned int port,
352                                          unsigned int val)
353 {
354         struct sched *s = sge->tx_sched;
355         struct sched_port *p = &s->p[port];
356         p->drain_bits_per_1024ns = val * 1024 / 1000;
357         t1_sched_update_parms(sge, port, 0, 0);
358 }
359
360
361 /*
362  * get_clock() implements a ns clock (see ktime_get)
363  */
364 static inline ktime_t get_clock(void)
365 {
366         struct timespec ts;
367
368         ktime_get_ts(&ts);
369         return timespec_to_ktime(ts);
370 }
371
372 /*
373  * tx_sched_init() allocates resources and does basic initialization.
374  */
375 static int tx_sched_init(struct sge *sge)
376 {
377         struct sched *s;
378         int i;
379
380         s = kzalloc(sizeof (struct sched), GFP_KERNEL);
381         if (!s)
382                 return -ENOMEM;
383
384         pr_debug("tx_sched_init\n");
385         tasklet_init(&s->sched_tsk, restart_sched, (unsigned long) sge);
386         sge->tx_sched = s;
387
388         for (i = 0; i < MAX_NPORTS; i++) {
389                 skb_queue_head_init(&s->p[i].skbq);
390                 t1_sched_update_parms(sge, i, 1500, 1000);
391         }
392
393         return 0;
394 }
395
396 /*
397  * sched_update_avail() computes the delta since the last time it was called
398  * and updates the per port quota (number of bits that can be sent to the any
399  * port).
400  */
401 static inline int sched_update_avail(struct sge *sge)
402 {
403         struct sched *s = sge->tx_sched;
404         ktime_t now = get_clock();
405         unsigned int i;
406         long long delta_time_ns;
407
408         delta_time_ns = ktime_to_ns(ktime_sub(now, s->last_updated));
409
410         pr_debug("sched_update_avail delta=%lld\n", delta_time_ns);
411         if (delta_time_ns < 15000)
412                 return 0;
413
414         for (i = 0; i < MAX_NPORTS; i++) {
415                 struct sched_port *p = &s->p[i];
416                 unsigned int delta_avail;
417
418                 delta_avail = (p->drain_bits_per_1024ns * delta_time_ns) >> 13;
419                 p->avail = min(p->avail + delta_avail, s->max_avail);
420         }
421
422         s->last_updated = now;
423
424         return 1;
425 }
426
427 /*
428  * sched_skb() is called from two different places. In the tx path, any
429  * packet generating load on an output port will call sched_skb()
430  * (skb != NULL). In addition, sched_skb() is called from the irq/soft irq
431  * context (skb == NULL).
432  * The scheduler only returns a skb (which will then be sent) if the
433  * length of the skb is <= the current quota of the output port.
434  */
435 static struct sk_buff *sched_skb(struct sge *sge, struct sk_buff *skb,
436                                 unsigned int credits)
437 {
438         struct sched *s = sge->tx_sched;
439         struct sk_buff_head *skbq;
440         unsigned int i, len, update = 1;
441
442         pr_debug("sched_skb %p\n", skb);
443         if (!skb) {
444                 if (!s->num)
445                         return NULL;
446         } else {
447                 skbq = &s->p[skb->dev->if_port].skbq;
448                 __skb_queue_tail(skbq, skb);
449                 s->num++;
450                 skb = NULL;
451         }
452
453         if (credits < MAX_SKB_FRAGS + 1)
454                 goto out;
455
456 again:
457         for (i = 0; i < MAX_NPORTS; i++) {
458                 s->port = ++s->port & (MAX_NPORTS - 1);
459                 skbq = &s->p[s->port].skbq;
460
461                 skb = skb_peek(skbq);
462
463                 if (!skb)
464                         continue;
465
466                 len = skb->len;
467                 if (len <= s->p[s->port].avail) {
468                         s->p[s->port].avail -= len;
469                         s->num--;
470                         __skb_unlink(skb, skbq);
471                         goto out;
472                 }
473                 skb = NULL;
474         }
475
476         if (update-- && sched_update_avail(sge))
477                 goto again;
478
479 out:
480         /* If there are more pending skbs, we use the hardware to schedule us
481          * again.
482          */
483         if (s->num && !skb) {
484                 struct cmdQ *q = &sge->cmdQ[0];
485                 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
486                 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
487                         set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
488                         writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
489                 }
490         }
491         pr_debug("sched_skb ret %p\n", skb);
492
493         return skb;
494 }
495
496 /*
497  * PIO to indicate that memory mapped Q contains valid descriptor(s).
498  */
499 static inline void doorbell_pio(struct adapter *adapter, u32 val)
500 {
501         wmb();
502         writel(val, adapter->regs + A_SG_DOORBELL);
503 }
504
505 /*
506  * Frees all RX buffers on the freelist Q. The caller must make sure that
507  * the SGE is turned off before calling this function.
508  */
509 static void free_freelQ_buffers(struct pci_dev *pdev, struct freelQ *q)
510 {
511         unsigned int cidx = q->cidx;
512
513         while (q->credits--) {
514                 struct freelQ_ce *ce = &q->centries[cidx];
515
516                 pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr),
517                                  pci_unmap_len(ce, dma_len),
518                                  PCI_DMA_FROMDEVICE);
519                 dev_kfree_skb(ce->skb);
520                 ce->skb = NULL;
521                 if (++cidx == q->size)
522                         cidx = 0;
523         }
524 }
525
526 /*
527  * Free RX free list and response queue resources.
528  */
529 static void free_rx_resources(struct sge *sge)
530 {
531         struct pci_dev *pdev = sge->adapter->pdev;
532         unsigned int size, i;
533
534         if (sge->respQ.entries) {
535                 size = sizeof(struct respQ_e) * sge->respQ.size;
536                 pci_free_consistent(pdev, size, sge->respQ.entries,
537                                     sge->respQ.dma_addr);
538         }
539
540         for (i = 0; i < SGE_FREELQ_N; i++) {
541                 struct freelQ *q = &sge->freelQ[i];
542
543                 if (q->centries) {
544                         free_freelQ_buffers(pdev, q);
545                         kfree(q->centries);
546                 }
547                 if (q->entries) {
548                         size = sizeof(struct freelQ_e) * q->size;
549                         pci_free_consistent(pdev, size, q->entries,
550                                             q->dma_addr);
551                 }
552         }
553 }
554
555 /*
556  * Allocates basic RX resources, consisting of memory mapped freelist Qs and a
557  * response queue.
558  */
559 static int alloc_rx_resources(struct sge *sge, struct sge_params *p)
560 {
561         struct pci_dev *pdev = sge->adapter->pdev;
562         unsigned int size, i;
563
564         for (i = 0; i < SGE_FREELQ_N; i++) {
565                 struct freelQ *q = &sge->freelQ[i];
566
567                 q->genbit = 1;
568                 q->size = p->freelQ_size[i];
569                 q->dma_offset = sge->rx_pkt_pad ? 0 : NET_IP_ALIGN;
570                 size = sizeof(struct freelQ_e) * q->size;
571                 q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
572                 if (!q->entries)
573                         goto err_no_mem;
574
575                 size = sizeof(struct freelQ_ce) * q->size;
576                 q->centries = kzalloc(size, GFP_KERNEL);
577                 if (!q->centries)
578                         goto err_no_mem;
579         }
580
581         /*
582          * Calculate the buffer sizes for the two free lists.  FL0 accommodates
583          * regular sized Ethernet frames, FL1 is sized not to exceed 16K,
584          * including all the sk_buff overhead.
585          *
586          * Note: For T2 FL0 and FL1 are reversed.
587          */
588         sge->freelQ[!sge->jumbo_fl].rx_buffer_size = SGE_RX_SM_BUF_SIZE +
589                 sizeof(struct cpl_rx_data) +
590                 sge->freelQ[!sge->jumbo_fl].dma_offset;
591
592                 size = (16 * 1024) -
593                     SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
594
595         sge->freelQ[sge->jumbo_fl].rx_buffer_size = size;
596
597         /*
598          * Setup which skb recycle Q should be used when recycling buffers from
599          * each free list.
600          */
601         sge->freelQ[!sge->jumbo_fl].recycleq_idx = 0;
602         sge->freelQ[sge->jumbo_fl].recycleq_idx = 1;
603
604         sge->respQ.genbit = 1;
605         sge->respQ.size = SGE_RESPQ_E_N;
606         sge->respQ.credits = 0;
607         size = sizeof(struct respQ_e) * sge->respQ.size;
608         sge->respQ.entries =
609                 pci_alloc_consistent(pdev, size, &sge->respQ.dma_addr);
610         if (!sge->respQ.entries)
611                 goto err_no_mem;
612         return 0;
613
614 err_no_mem:
615         free_rx_resources(sge);
616         return -ENOMEM;
617 }
618
619 /*
620  * Reclaims n TX descriptors and frees the buffers associated with them.
621  */
622 static void free_cmdQ_buffers(struct sge *sge, struct cmdQ *q, unsigned int n)
623 {
624         struct cmdQ_ce *ce;
625         struct pci_dev *pdev = sge->adapter->pdev;
626         unsigned int cidx = q->cidx;
627
628         q->in_use -= n;
629         ce = &q->centries[cidx];
630         while (n--) {
631                 if (likely(pci_unmap_len(ce, dma_len))) {
632                         pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr),
633                                          pci_unmap_len(ce, dma_len),
634                                          PCI_DMA_TODEVICE);
635                         if (q->sop)
636                                 q->sop = 0;
637                 }
638                 if (ce->skb) {
639                         dev_kfree_skb_any(ce->skb);
640                         q->sop = 1;
641                 }
642                 ce++;
643                 if (++cidx == q->size) {
644                         cidx = 0;
645                         ce = q->centries;
646                 }
647         }
648         q->cidx = cidx;
649 }
650
651 /*
652  * Free TX resources.
653  *
654  * Assumes that SGE is stopped and all interrupts are disabled.
655  */
656 static void free_tx_resources(struct sge *sge)
657 {
658         struct pci_dev *pdev = sge->adapter->pdev;
659         unsigned int size, i;
660
661         for (i = 0; i < SGE_CMDQ_N; i++) {
662                 struct cmdQ *q = &sge->cmdQ[i];
663
664                 if (q->centries) {
665                         if (q->in_use)
666                                 free_cmdQ_buffers(sge, q, q->in_use);
667                         kfree(q->centries);
668                 }
669                 if (q->entries) {
670                         size = sizeof(struct cmdQ_e) * q->size;
671                         pci_free_consistent(pdev, size, q->entries,
672                                             q->dma_addr);
673                 }
674         }
675 }
676
677 /*
678  * Allocates basic TX resources, consisting of memory mapped command Qs.
679  */
680 static int alloc_tx_resources(struct sge *sge, struct sge_params *p)
681 {
682         struct pci_dev *pdev = sge->adapter->pdev;
683         unsigned int size, i;
684
685         for (i = 0; i < SGE_CMDQ_N; i++) {
686                 struct cmdQ *q = &sge->cmdQ[i];
687
688                 q->genbit = 1;
689                 q->sop = 1;
690                 q->size = p->cmdQ_size[i];
691                 q->in_use = 0;
692                 q->status = 0;
693                 q->processed = q->cleaned = 0;
694                 q->stop_thres = 0;
695                 spin_lock_init(&q->lock);
696                 size = sizeof(struct cmdQ_e) * q->size;
697                 q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
698                 if (!q->entries)
699                         goto err_no_mem;
700
701                 size = sizeof(struct cmdQ_ce) * q->size;
702                 q->centries = kzalloc(size, GFP_KERNEL);
703                 if (!q->centries)
704                         goto err_no_mem;
705         }
706
707         /*
708          * CommandQ 0 handles Ethernet and TOE packets, while queue 1 is TOE
709          * only.  For queue 0 set the stop threshold so we can handle one more
710          * packet from each port, plus reserve an additional 24 entries for
711          * Ethernet packets only.  Queue 1 never suspends nor do we reserve
712          * space for Ethernet packets.
713          */
714         sge->cmdQ[0].stop_thres = sge->adapter->params.nports *
715                 (MAX_SKB_FRAGS + 1);
716         return 0;
717
718 err_no_mem:
719         free_tx_resources(sge);
720         return -ENOMEM;
721 }
722
723 static inline void setup_ring_params(struct adapter *adapter, u64 addr,
724                                      u32 size, int base_reg_lo,
725                                      int base_reg_hi, int size_reg)
726 {
727         writel((u32)addr, adapter->regs + base_reg_lo);
728         writel(addr >> 32, adapter->regs + base_reg_hi);
729         writel(size, adapter->regs + size_reg);
730 }
731
732 /*
733  * Enable/disable VLAN acceleration.
734  */
735 void t1_set_vlan_accel(struct adapter *adapter, int on_off)
736 {
737         struct sge *sge = adapter->sge;
738
739         sge->sge_control &= ~F_VLAN_XTRACT;
740         if (on_off)
741                 sge->sge_control |= F_VLAN_XTRACT;
742         if (adapter->open_device_map) {
743                 writel(sge->sge_control, adapter->regs + A_SG_CONTROL);
744                 readl(adapter->regs + A_SG_CONTROL);   /* flush */
745         }
746 }
747
748 /*
749  * Programs the various SGE registers. However, the engine is not yet enabled,
750  * but sge->sge_control is setup and ready to go.
751  */
752 static void configure_sge(struct sge *sge, struct sge_params *p)
753 {
754         struct adapter *ap = sge->adapter;
755
756         writel(0, ap->regs + A_SG_CONTROL);
757         setup_ring_params(ap, sge->cmdQ[0].dma_addr, sge->cmdQ[0].size,
758                           A_SG_CMD0BASELWR, A_SG_CMD0BASEUPR, A_SG_CMD0SIZE);
759         setup_ring_params(ap, sge->cmdQ[1].dma_addr, sge->cmdQ[1].size,
760                           A_SG_CMD1BASELWR, A_SG_CMD1BASEUPR, A_SG_CMD1SIZE);
761         setup_ring_params(ap, sge->freelQ[0].dma_addr,
762                           sge->freelQ[0].size, A_SG_FL0BASELWR,
763                           A_SG_FL0BASEUPR, A_SG_FL0SIZE);
764         setup_ring_params(ap, sge->freelQ[1].dma_addr,
765                           sge->freelQ[1].size, A_SG_FL1BASELWR,
766                           A_SG_FL1BASEUPR, A_SG_FL1SIZE);
767
768         /* The threshold comparison uses <. */
769         writel(SGE_RX_SM_BUF_SIZE + 1, ap->regs + A_SG_FLTHRESHOLD);
770
771         setup_ring_params(ap, sge->respQ.dma_addr, sge->respQ.size,
772                           A_SG_RSPBASELWR, A_SG_RSPBASEUPR, A_SG_RSPSIZE);
773         writel((u32)sge->respQ.size - 1, ap->regs + A_SG_RSPQUEUECREDIT);
774
775         sge->sge_control = F_CMDQ0_ENABLE | F_CMDQ1_ENABLE | F_FL0_ENABLE |
776                 F_FL1_ENABLE | F_CPL_ENABLE | F_RESPONSE_QUEUE_ENABLE |
777                 V_CMDQ_PRIORITY(2) | F_DISABLE_CMDQ1_GTS | F_ISCSI_COALESCE |
778                 V_RX_PKT_OFFSET(sge->rx_pkt_pad);
779
780 #if defined(__BIG_ENDIAN_BITFIELD)
781         sge->sge_control |= F_ENABLE_BIG_ENDIAN;
782 #endif
783
784         /* Initialize no-resource timer */
785         sge->intrtimer_nres = SGE_INTRTIMER_NRES * core_ticks_per_usec(ap);
786
787         t1_sge_set_coalesce_params(sge, p);
788 }
789
790 /*
791  * Return the payload capacity of the jumbo free-list buffers.
792  */
793 static inline unsigned int jumbo_payload_capacity(const struct sge *sge)
794 {
795         return sge->freelQ[sge->jumbo_fl].rx_buffer_size -
796                 sge->freelQ[sge->jumbo_fl].dma_offset -
797                 sizeof(struct cpl_rx_data);
798 }
799
800 /*
801  * Frees all SGE related resources and the sge structure itself
802  */
803 void t1_sge_destroy(struct sge *sge)
804 {
805         int i;
806
807         for_each_port(sge->adapter, i)
808                 free_percpu(sge->port_stats[i]);
809
810         kfree(sge->tx_sched);
811         free_tx_resources(sge);
812         free_rx_resources(sge);
813         kfree(sge);
814 }
815
816 /*
817  * Allocates new RX buffers on the freelist Q (and tracks them on the freelist
818  * context Q) until the Q is full or alloc_skb fails.
819  *
820  * It is possible that the generation bits already match, indicating that the
821  * buffer is already valid and nothing needs to be done. This happens when we
822  * copied a received buffer into a new sk_buff during the interrupt processing.
823  *
824  * If the SGE doesn't automatically align packets properly (!sge->rx_pkt_pad),
825  * we specify a RX_OFFSET in order to make sure that the IP header is 4B
826  * aligned.
827  */
828 static void refill_free_list(struct sge *sge, struct freelQ *q)
829 {
830         struct pci_dev *pdev = sge->adapter->pdev;
831         struct freelQ_ce *ce = &q->centries[q->pidx];
832         struct freelQ_e *e = &q->entries[q->pidx];
833         unsigned int dma_len = q->rx_buffer_size - q->dma_offset;
834
835         while (q->credits < q->size) {
836                 struct sk_buff *skb;
837                 dma_addr_t mapping;
838
839                 skb = alloc_skb(q->rx_buffer_size, GFP_ATOMIC);
840                 if (!skb)
841                         break;
842
843                 skb_reserve(skb, q->dma_offset);
844                 mapping = pci_map_single(pdev, skb->data, dma_len,
845                                          PCI_DMA_FROMDEVICE);
846                 skb_reserve(skb, sge->rx_pkt_pad);
847
848                 ce->skb = skb;
849                 pci_unmap_addr_set(ce, dma_addr, mapping);
850                 pci_unmap_len_set(ce, dma_len, dma_len);
851                 e->addr_lo = (u32)mapping;
852                 e->addr_hi = (u64)mapping >> 32;
853                 e->len_gen = V_CMD_LEN(dma_len) | V_CMD_GEN1(q->genbit);
854                 wmb();
855                 e->gen2 = V_CMD_GEN2(q->genbit);
856
857                 e++;
858                 ce++;
859                 if (++q->pidx == q->size) {
860                         q->pidx = 0;
861                         q->genbit ^= 1;
862                         ce = q->centries;
863                         e = q->entries;
864                 }
865                 q->credits++;
866         }
867 }
868
869 /*
870  * Calls refill_free_list for both free lists. If we cannot fill at least 1/4
871  * of both rings, we go into 'few interrupt mode' in order to give the system
872  * time to free up resources.
873  */
874 static void freelQs_empty(struct sge *sge)
875 {
876         struct adapter *adapter = sge->adapter;
877         u32 irq_reg = readl(adapter->regs + A_SG_INT_ENABLE);
878         u32 irqholdoff_reg;
879
880         refill_free_list(sge, &sge->freelQ[0]);
881         refill_free_list(sge, &sge->freelQ[1]);
882
883         if (sge->freelQ[0].credits > (sge->freelQ[0].size >> 2) &&
884             sge->freelQ[1].credits > (sge->freelQ[1].size >> 2)) {
885                 irq_reg |= F_FL_EXHAUSTED;
886                 irqholdoff_reg = sge->fixed_intrtimer;
887         } else {
888                 /* Clear the F_FL_EXHAUSTED interrupts for now */
889                 irq_reg &= ~F_FL_EXHAUSTED;
890                 irqholdoff_reg = sge->intrtimer_nres;
891         }
892         writel(irqholdoff_reg, adapter->regs + A_SG_INTRTIMER);
893         writel(irq_reg, adapter->regs + A_SG_INT_ENABLE);
894
895         /* We reenable the Qs to force a freelist GTS interrupt later */
896         doorbell_pio(adapter, F_FL0_ENABLE | F_FL1_ENABLE);
897 }
898
899 #define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA)
900 #define SGE_INT_FATAL (F_RESPQ_OVERFLOW | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
901 #define SGE_INT_ENABLE (F_RESPQ_EXHAUSTED | F_RESPQ_OVERFLOW | \
902                         F_FL_EXHAUSTED | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
903
904 /*
905  * Disable SGE Interrupts
906  */
907 void t1_sge_intr_disable(struct sge *sge)
908 {
909         u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
910
911         writel(val & ~SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
912         writel(0, sge->adapter->regs + A_SG_INT_ENABLE);
913 }
914
915 /*
916  * Enable SGE interrupts.
917  */
918 void t1_sge_intr_enable(struct sge *sge)
919 {
920         u32 en = SGE_INT_ENABLE;
921         u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
922
923         if (sge->adapter->flags & TSO_CAPABLE)
924                 en &= ~F_PACKET_TOO_BIG;
925         writel(en, sge->adapter->regs + A_SG_INT_ENABLE);
926         writel(val | SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
927 }
928
929 /*
930  * Clear SGE interrupts.
931  */
932 void t1_sge_intr_clear(struct sge *sge)
933 {
934         writel(SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_CAUSE);
935         writel(0xffffffff, sge->adapter->regs + A_SG_INT_CAUSE);
936 }
937
938 /*
939  * SGE 'Error' interrupt handler
940  */
941 int t1_sge_intr_error_handler(struct sge *sge)
942 {
943         struct adapter *adapter = sge->adapter;
944         u32 cause = readl(adapter->regs + A_SG_INT_CAUSE);
945
946         if (adapter->flags & TSO_CAPABLE)
947                 cause &= ~F_PACKET_TOO_BIG;
948         if (cause & F_RESPQ_EXHAUSTED)
949                 sge->stats.respQ_empty++;
950         if (cause & F_RESPQ_OVERFLOW) {
951                 sge->stats.respQ_overflow++;
952                 CH_ALERT("%s: SGE response queue overflow\n",
953                          adapter->name);
954         }
955         if (cause & F_FL_EXHAUSTED) {
956                 sge->stats.freelistQ_empty++;
957                 freelQs_empty(sge);
958         }
959         if (cause & F_PACKET_TOO_BIG) {
960                 sge->stats.pkt_too_big++;
961                 CH_ALERT("%s: SGE max packet size exceeded\n",
962                          adapter->name);
963         }
964         if (cause & F_PACKET_MISMATCH) {
965                 sge->stats.pkt_mismatch++;
966                 CH_ALERT("%s: SGE packet mismatch\n", adapter->name);
967         }
968         if (cause & SGE_INT_FATAL)
969                 t1_fatal_err(adapter);
970
971         writel(cause, adapter->regs + A_SG_INT_CAUSE);
972         return 0;
973 }
974
975 const struct sge_intr_counts *t1_sge_get_intr_counts(const struct sge *sge)
976 {
977         return &sge->stats;
978 }
979
980 void t1_sge_get_port_stats(const struct sge *sge, int port,
981                            struct sge_port_stats *ss)
982 {
983         int cpu;
984
985         memset(ss, 0, sizeof(*ss));
986         for_each_possible_cpu(cpu) {
987                 struct sge_port_stats *st = per_cpu_ptr(sge->port_stats[port], cpu);
988
989                 ss->rx_cso_good += st->rx_cso_good;
990                 ss->tx_cso += st->tx_cso;
991                 ss->tx_tso += st->tx_tso;
992                 ss->tx_need_hdrroom += st->tx_need_hdrroom;
993                 ss->vlan_xtract += st->vlan_xtract;
994                 ss->vlan_insert += st->vlan_insert;
995         }
996 }
997
998 /**
999  *      recycle_fl_buf - recycle a free list buffer
1000  *      @fl: the free list
1001  *      @idx: index of buffer to recycle
1002  *
1003  *      Recycles the specified buffer on the given free list by adding it at
1004  *      the next available slot on the list.
1005  */
1006 static void recycle_fl_buf(struct freelQ *fl, int idx)
1007 {
1008         struct freelQ_e *from = &fl->entries[idx];
1009         struct freelQ_e *to = &fl->entries[fl->pidx];
1010
1011         fl->centries[fl->pidx] = fl->centries[idx];
1012         to->addr_lo = from->addr_lo;
1013         to->addr_hi = from->addr_hi;
1014         to->len_gen = G_CMD_LEN(from->len_gen) | V_CMD_GEN1(fl->genbit);
1015         wmb();
1016         to->gen2 = V_CMD_GEN2(fl->genbit);
1017         fl->credits++;
1018
1019         if (++fl->pidx == fl->size) {
1020                 fl->pidx = 0;
1021                 fl->genbit ^= 1;
1022         }
1023 }
1024
1025 static int copybreak __read_mostly = 256;
1026 module_param(copybreak, int, 0);
1027 MODULE_PARM_DESC(copybreak, "Receive copy threshold");
1028
1029 /**
1030  *      get_packet - return the next ingress packet buffer
1031  *      @pdev: the PCI device that received the packet
1032  *      @fl: the SGE free list holding the packet
1033  *      @len: the actual packet length, excluding any SGE padding
1034  *      @dma_pad: padding at beginning of buffer left by SGE DMA
1035  *      @skb_pad: padding to be used if the packet is copied
1036  *      @copy_thres: length threshold under which a packet should be copied
1037  *      @drop_thres: # of remaining buffers before we start dropping packets
1038  *
1039  *      Get the next packet from a free list and complete setup of the
1040  *      sk_buff.  If the packet is small we make a copy and recycle the
1041  *      original buffer, otherwise we use the original buffer itself.  If a
1042  *      positive drop threshold is supplied packets are dropped and their
1043  *      buffers recycled if (a) the number of remaining buffers is under the
1044  *      threshold and the packet is too big to copy, or (b) the packet should
1045  *      be copied but there is no memory for the copy.
1046  */
1047 static inline struct sk_buff *get_packet(struct pci_dev *pdev,
1048                                          struct freelQ *fl, unsigned int len)
1049 {
1050         struct sk_buff *skb;
1051         const struct freelQ_ce *ce = &fl->centries[fl->cidx];
1052
1053         if (len < copybreak) {
1054                 skb = alloc_skb(len + 2, GFP_ATOMIC);
1055                 if (!skb)
1056                         goto use_orig_buf;
1057
1058                 skb_reserve(skb, 2);    /* align IP header */
1059                 skb_put(skb, len);
1060                 pci_dma_sync_single_for_cpu(pdev,
1061                                             pci_unmap_addr(ce, dma_addr),
1062                                             pci_unmap_len(ce, dma_len),
1063                                             PCI_DMA_FROMDEVICE);
1064                 skb_copy_from_linear_data(ce->skb, skb->data, len);
1065                 pci_dma_sync_single_for_device(pdev,
1066                                                pci_unmap_addr(ce, dma_addr),
1067                                                pci_unmap_len(ce, dma_len),
1068                                                PCI_DMA_FROMDEVICE);
1069                 recycle_fl_buf(fl, fl->cidx);
1070                 return skb;
1071         }
1072
1073 use_orig_buf:
1074         if (fl->credits < 2) {
1075                 recycle_fl_buf(fl, fl->cidx);
1076                 return NULL;
1077         }
1078
1079         pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr),
1080                          pci_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
1081         skb = ce->skb;
1082         prefetch(skb->data);
1083
1084         skb_put(skb, len);
1085         return skb;
1086 }
1087
1088 /**
1089  *      unexpected_offload - handle an unexpected offload packet
1090  *      @adapter: the adapter
1091  *      @fl: the free list that received the packet
1092  *
1093  *      Called when we receive an unexpected offload packet (e.g., the TOE
1094  *      function is disabled or the card is a NIC).  Prints a message and
1095  *      recycles the buffer.
1096  */
1097 static void unexpected_offload(struct adapter *adapter, struct freelQ *fl)
1098 {
1099         struct freelQ_ce *ce = &fl->centries[fl->cidx];
1100         struct sk_buff *skb = ce->skb;
1101
1102         pci_dma_sync_single_for_cpu(adapter->pdev, pci_unmap_addr(ce, dma_addr),
1103                             pci_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
1104         CH_ERR("%s: unexpected offload packet, cmd %u\n",
1105                adapter->name, *skb->data);
1106         recycle_fl_buf(fl, fl->cidx);
1107 }
1108
1109 /*
1110  * T1/T2 SGE limits the maximum DMA size per TX descriptor to
1111  * SGE_TX_DESC_MAX_PLEN (16KB). If the PAGE_SIZE is larger than 16KB, the
1112  * stack might send more than SGE_TX_DESC_MAX_PLEN in a contiguous manner.
1113  * Note that the *_large_page_tx_descs stuff will be optimized out when
1114  * PAGE_SIZE <= SGE_TX_DESC_MAX_PLEN.
1115  *
1116  * compute_large_page_descs() computes how many additional descriptors are
1117  * required to break down the stack's request.
1118  */
1119 static inline unsigned int compute_large_page_tx_descs(struct sk_buff *skb)
1120 {
1121         unsigned int count = 0;
1122
1123         if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
1124                 unsigned int nfrags = skb_shinfo(skb)->nr_frags;
1125                 unsigned int i, len = skb->len - skb->data_len;
1126                 while (len > SGE_TX_DESC_MAX_PLEN) {
1127                         count++;
1128                         len -= SGE_TX_DESC_MAX_PLEN;
1129                 }
1130                 for (i = 0; nfrags--; i++) {
1131                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1132                         len = frag->size;
1133                         while (len > SGE_TX_DESC_MAX_PLEN) {
1134                                 count++;
1135                                 len -= SGE_TX_DESC_MAX_PLEN;
1136                         }
1137                 }
1138         }
1139         return count;
1140 }
1141
1142 /*
1143  * Write a cmdQ entry.
1144  *
1145  * Since this function writes the 'flags' field, it must not be used to
1146  * write the first cmdQ entry.
1147  */
1148 static inline void write_tx_desc(struct cmdQ_e *e, dma_addr_t mapping,
1149                                  unsigned int len, unsigned int gen,
1150                                  unsigned int eop)
1151 {
1152         if (unlikely(len > SGE_TX_DESC_MAX_PLEN))
1153                 BUG();
1154         e->addr_lo = (u32)mapping;
1155         e->addr_hi = (u64)mapping >> 32;
1156         e->len_gen = V_CMD_LEN(len) | V_CMD_GEN1(gen);
1157         e->flags = F_CMD_DATAVALID | V_CMD_EOP(eop) | V_CMD_GEN2(gen);
1158 }
1159
1160 /*
1161  * See comment for previous function.
1162  *
1163  * write_tx_descs_large_page() writes additional SGE tx descriptors if
1164  * *desc_len exceeds HW's capability.
1165  */
1166 static inline unsigned int write_large_page_tx_descs(unsigned int pidx,
1167                                                      struct cmdQ_e **e,
1168                                                      struct cmdQ_ce **ce,
1169                                                      unsigned int *gen,
1170                                                      dma_addr_t *desc_mapping,
1171                                                      unsigned int *desc_len,
1172                                                      unsigned int nfrags,
1173                                                      struct cmdQ *q)
1174 {
1175         if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
1176                 struct cmdQ_e *e1 = *e;
1177                 struct cmdQ_ce *ce1 = *ce;
1178
1179                 while (*desc_len > SGE_TX_DESC_MAX_PLEN) {
1180                         *desc_len -= SGE_TX_DESC_MAX_PLEN;
1181                         write_tx_desc(e1, *desc_mapping, SGE_TX_DESC_MAX_PLEN,
1182                                       *gen, nfrags == 0 && *desc_len == 0);
1183                         ce1->skb = NULL;
1184                         pci_unmap_len_set(ce1, dma_len, 0);
1185                         *desc_mapping += SGE_TX_DESC_MAX_PLEN;
1186                         if (*desc_len) {
1187                                 ce1++;
1188                                 e1++;
1189                                 if (++pidx == q->size) {
1190                                         pidx = 0;
1191                                         *gen ^= 1;
1192                                         ce1 = q->centries;
1193                                         e1 = q->entries;
1194                                 }
1195                         }
1196                 }
1197                 *e = e1;
1198                 *ce = ce1;
1199         }
1200         return pidx;
1201 }
1202
1203 /*
1204  * Write the command descriptors to transmit the given skb starting at
1205  * descriptor pidx with the given generation.
1206  */
1207 static inline void write_tx_descs(struct adapter *adapter, struct sk_buff *skb,
1208                                   unsigned int pidx, unsigned int gen,
1209                                   struct cmdQ *q)
1210 {
1211         dma_addr_t mapping, desc_mapping;
1212         struct cmdQ_e *e, *e1;
1213         struct cmdQ_ce *ce;
1214         unsigned int i, flags, first_desc_len, desc_len,
1215             nfrags = skb_shinfo(skb)->nr_frags;
1216
1217         e = e1 = &q->entries[pidx];
1218         ce = &q->centries[pidx];
1219
1220         mapping = pci_map_single(adapter->pdev, skb->data,
1221                                 skb->len - skb->data_len, PCI_DMA_TODEVICE);
1222
1223         desc_mapping = mapping;
1224         desc_len = skb->len - skb->data_len;
1225
1226         flags = F_CMD_DATAVALID | F_CMD_SOP |
1227             V_CMD_EOP(nfrags == 0 && desc_len <= SGE_TX_DESC_MAX_PLEN) |
1228             V_CMD_GEN2(gen);
1229         first_desc_len = (desc_len <= SGE_TX_DESC_MAX_PLEN) ?
1230             desc_len : SGE_TX_DESC_MAX_PLEN;
1231         e->addr_lo = (u32)desc_mapping;
1232         e->addr_hi = (u64)desc_mapping >> 32;
1233         e->len_gen = V_CMD_LEN(first_desc_len) | V_CMD_GEN1(gen);
1234         ce->skb = NULL;
1235         pci_unmap_len_set(ce, dma_len, 0);
1236
1237         if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN &&
1238             desc_len > SGE_TX_DESC_MAX_PLEN) {
1239                 desc_mapping += first_desc_len;
1240                 desc_len -= first_desc_len;
1241                 e1++;
1242                 ce++;
1243                 if (++pidx == q->size) {
1244                         pidx = 0;
1245                         gen ^= 1;
1246                         e1 = q->entries;
1247                         ce = q->centries;
1248                 }
1249                 pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1250                                                  &desc_mapping, &desc_len,
1251                                                  nfrags, q);
1252
1253                 if (likely(desc_len))
1254                         write_tx_desc(e1, desc_mapping, desc_len, gen,
1255                                       nfrags == 0);
1256         }
1257
1258         ce->skb = NULL;
1259         pci_unmap_addr_set(ce, dma_addr, mapping);
1260         pci_unmap_len_set(ce, dma_len, skb->len - skb->data_len);
1261
1262         for (i = 0; nfrags--; i++) {
1263                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1264                 e1++;
1265                 ce++;
1266                 if (++pidx == q->size) {
1267                         pidx = 0;
1268                         gen ^= 1;
1269                         e1 = q->entries;
1270                         ce = q->centries;
1271                 }
1272
1273                 mapping = pci_map_page(adapter->pdev, frag->page,
1274                                        frag->page_offset, frag->size,
1275                                        PCI_DMA_TODEVICE);
1276                 desc_mapping = mapping;
1277                 desc_len = frag->size;
1278
1279                 pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1280                                                  &desc_mapping, &desc_len,
1281                                                  nfrags, q);
1282                 if (likely(desc_len))
1283                         write_tx_desc(e1, desc_mapping, desc_len, gen,
1284                                       nfrags == 0);
1285                 ce->skb = NULL;
1286                 pci_unmap_addr_set(ce, dma_addr, mapping);
1287                 pci_unmap_len_set(ce, dma_len, frag->size);
1288         }
1289         ce->skb = skb;
1290         wmb();
1291         e->flags = flags;
1292 }
1293
1294 /*
1295  * Clean up completed Tx buffers.
1296  */
1297 static inline void reclaim_completed_tx(struct sge *sge, struct cmdQ *q)
1298 {
1299         unsigned int reclaim = q->processed - q->cleaned;
1300
1301         if (reclaim) {
1302                 pr_debug("reclaim_completed_tx processed:%d cleaned:%d\n",
1303                          q->processed, q->cleaned);
1304                 free_cmdQ_buffers(sge, q, reclaim);
1305                 q->cleaned += reclaim;
1306         }
1307 }
1308
1309 /*
1310  * Called from tasklet. Checks the scheduler for any
1311  * pending skbs that can be sent.
1312  */
1313 static void restart_sched(unsigned long arg)
1314 {
1315         struct sge *sge = (struct sge *) arg;
1316         struct adapter *adapter = sge->adapter;
1317         struct cmdQ *q = &sge->cmdQ[0];
1318         struct sk_buff *skb;
1319         unsigned int credits, queued_skb = 0;
1320
1321         spin_lock(&q->lock);
1322         reclaim_completed_tx(sge, q);
1323
1324         credits = q->size - q->in_use;
1325         pr_debug("restart_sched credits=%d\n", credits);
1326         while ((skb = sched_skb(sge, NULL, credits)) != NULL) {
1327                 unsigned int genbit, pidx, count;
1328                 count = 1 + skb_shinfo(skb)->nr_frags;
1329                 count += compute_large_page_tx_descs(skb);
1330                 q->in_use += count;
1331                 genbit = q->genbit;
1332                 pidx = q->pidx;
1333                 q->pidx += count;
1334                 if (q->pidx >= q->size) {
1335                         q->pidx -= q->size;
1336                         q->genbit ^= 1;
1337                 }
1338                 write_tx_descs(adapter, skb, pidx, genbit, q);
1339                 credits = q->size - q->in_use;
1340                 queued_skb = 1;
1341         }
1342
1343         if (queued_skb) {
1344                 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1345                 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1346                         set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1347                         writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1348                 }
1349         }
1350         spin_unlock(&q->lock);
1351 }
1352
1353 /**
1354  *      sge_rx - process an ingress ethernet packet
1355  *      @sge: the sge structure
1356  *      @fl: the free list that contains the packet buffer
1357  *      @len: the packet length
1358  *
1359  *      Process an ingress ethernet pakcet and deliver it to the stack.
1360  */
1361 static void sge_rx(struct sge *sge, struct freelQ *fl, unsigned int len)
1362 {
1363         struct sk_buff *skb;
1364         const struct cpl_rx_pkt *p;
1365         struct adapter *adapter = sge->adapter;
1366         struct sge_port_stats *st;
1367
1368         skb = get_packet(adapter->pdev, fl, len - sge->rx_pkt_pad);
1369         if (unlikely(!skb)) {
1370                 sge->stats.rx_drops++;
1371                 return;
1372         }
1373
1374         p = (const struct cpl_rx_pkt *) skb->data;
1375         if (p->iff >= adapter->params.nports) {
1376                 kfree_skb(skb);
1377                 return;
1378         }
1379         __skb_pull(skb, sizeof(*p));
1380
1381         st = per_cpu_ptr(sge->port_stats[p->iff], smp_processor_id());
1382
1383         skb->protocol = eth_type_trans(skb, adapter->port[p->iff].dev);
1384         skb->dev->last_rx = jiffies;
1385         if ((adapter->flags & RX_CSUM_ENABLED) && p->csum == 0xffff &&
1386             skb->protocol == htons(ETH_P_IP) &&
1387             (skb->data[9] == IPPROTO_TCP || skb->data[9] == IPPROTO_UDP)) {
1388                 ++st->rx_cso_good;
1389                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1390         } else
1391                 skb->ip_summed = CHECKSUM_NONE;
1392
1393         if (unlikely(adapter->vlan_grp && p->vlan_valid)) {
1394                 st->vlan_xtract++;
1395 #ifdef CONFIG_CHELSIO_T1_NAPI
1396                         vlan_hwaccel_receive_skb(skb, adapter->vlan_grp,
1397                                                  ntohs(p->vlan));
1398 #else
1399                         vlan_hwaccel_rx(skb, adapter->vlan_grp,
1400                                         ntohs(p->vlan));
1401 #endif
1402         } else {
1403 #ifdef CONFIG_CHELSIO_T1_NAPI
1404                 netif_receive_skb(skb);
1405 #else
1406                 netif_rx(skb);
1407 #endif
1408         }
1409 }
1410
1411 /*
1412  * Returns true if a command queue has enough available descriptors that
1413  * we can resume Tx operation after temporarily disabling its packet queue.
1414  */
1415 static inline int enough_free_Tx_descs(const struct cmdQ *q)
1416 {
1417         unsigned int r = q->processed - q->cleaned;
1418
1419         return q->in_use - r < (q->size >> 1);
1420 }
1421
1422 /*
1423  * Called when sufficient space has become available in the SGE command queues
1424  * after the Tx packet schedulers have been suspended to restart the Tx path.
1425  */
1426 static void restart_tx_queues(struct sge *sge)
1427 {
1428         struct adapter *adap = sge->adapter;
1429         int i;
1430
1431         if (!enough_free_Tx_descs(&sge->cmdQ[0]))
1432                 return;
1433
1434         for_each_port(adap, i) {
1435                 struct net_device *nd = adap->port[i].dev;
1436
1437                 if (test_and_clear_bit(nd->if_port, &sge->stopped_tx_queues) &&
1438                     netif_running(nd)) {
1439                         sge->stats.cmdQ_restarted[2]++;
1440                         netif_wake_queue(nd);
1441                 }
1442         }
1443 }
1444
1445 /*
1446  * update_tx_info is called from the interrupt handler/NAPI to return cmdQ0
1447  * information.
1448  */
1449 static unsigned int update_tx_info(struct adapter *adapter,
1450                                           unsigned int flags,
1451                                           unsigned int pr0)
1452 {
1453         struct sge *sge = adapter->sge;
1454         struct cmdQ *cmdq = &sge->cmdQ[0];
1455
1456         cmdq->processed += pr0;
1457         if (flags & (F_FL0_ENABLE | F_FL1_ENABLE)) {
1458                 freelQs_empty(sge);
1459                 flags &= ~(F_FL0_ENABLE | F_FL1_ENABLE);
1460         }
1461         if (flags & F_CMDQ0_ENABLE) {
1462                 clear_bit(CMDQ_STAT_RUNNING, &cmdq->status);
1463
1464                 if (cmdq->cleaned + cmdq->in_use != cmdq->processed &&
1465                     !test_and_set_bit(CMDQ_STAT_LAST_PKT_DB, &cmdq->status)) {
1466                         set_bit(CMDQ_STAT_RUNNING, &cmdq->status);
1467                         writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1468                 }
1469                 if (sge->tx_sched)
1470                         tasklet_hi_schedule(&sge->tx_sched->sched_tsk);
1471
1472                 flags &= ~F_CMDQ0_ENABLE;
1473         }
1474
1475         if (unlikely(sge->stopped_tx_queues != 0))
1476                 restart_tx_queues(sge);
1477
1478         return flags;
1479 }
1480
1481 /*
1482  * Process SGE responses, up to the supplied budget.  Returns the number of
1483  * responses processed.  A negative budget is effectively unlimited.
1484  */
1485 static int process_responses(struct adapter *adapter, int budget)
1486 {
1487         struct sge *sge = adapter->sge;
1488         struct respQ *q = &sge->respQ;
1489         struct respQ_e *e = &q->entries[q->cidx];
1490         int done = 0;
1491         unsigned int flags = 0;
1492         unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
1493
1494         while (done < budget && e->GenerationBit == q->genbit) {
1495                 flags |= e->Qsleeping;
1496
1497                 cmdq_processed[0] += e->Cmdq0CreditReturn;
1498                 cmdq_processed[1] += e->Cmdq1CreditReturn;
1499
1500                 /* We batch updates to the TX side to avoid cacheline
1501                  * ping-pong of TX state information on MP where the sender
1502                  * might run on a different CPU than this function...
1503                  */
1504                 if (unlikely((flags & F_CMDQ0_ENABLE) || cmdq_processed[0] > 64)) {
1505                         flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1506                         cmdq_processed[0] = 0;
1507                 }
1508
1509                 if (unlikely(cmdq_processed[1] > 16)) {
1510                         sge->cmdQ[1].processed += cmdq_processed[1];
1511                         cmdq_processed[1] = 0;
1512                 }
1513
1514                 if (likely(e->DataValid)) {
1515                         struct freelQ *fl = &sge->freelQ[e->FreelistQid];
1516
1517                         BUG_ON(!e->Sop || !e->Eop);
1518                         if (unlikely(e->Offload))
1519                                 unexpected_offload(adapter, fl);
1520                         else
1521                                 sge_rx(sge, fl, e->BufferLength);
1522
1523                         ++done;
1524
1525                         /*
1526                          * Note: this depends on each packet consuming a
1527                          * single free-list buffer; cf. the BUG above.
1528                          */
1529                         if (++fl->cidx == fl->size)
1530                                 fl->cidx = 0;
1531                         prefetch(fl->centries[fl->cidx].skb);
1532
1533                         if (unlikely(--fl->credits <
1534                                      fl->size - SGE_FREEL_REFILL_THRESH))
1535                                 refill_free_list(sge, fl);
1536                 } else
1537                         sge->stats.pure_rsps++;
1538
1539                 e++;
1540                 if (unlikely(++q->cidx == q->size)) {
1541                         q->cidx = 0;
1542                         q->genbit ^= 1;
1543                         e = q->entries;
1544                 }
1545                 prefetch(e);
1546
1547                 if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1548                         writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1549                         q->credits = 0;
1550                 }
1551         }
1552
1553         flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1554         sge->cmdQ[1].processed += cmdq_processed[1];
1555
1556         return done;
1557 }
1558
1559 static inline int responses_pending(const struct adapter *adapter)
1560 {
1561         const struct respQ *Q = &adapter->sge->respQ;
1562         const struct respQ_e *e = &Q->entries[Q->cidx];
1563
1564         return (e->GenerationBit == Q->genbit);
1565 }
1566
1567 #ifdef CONFIG_CHELSIO_T1_NAPI
1568 /*
1569  * A simpler version of process_responses() that handles only pure (i.e.,
1570  * non data-carrying) responses.  Such respones are too light-weight to justify
1571  * calling a softirq when using NAPI, so we handle them specially in hard
1572  * interrupt context.  The function is called with a pointer to a response,
1573  * which the caller must ensure is a valid pure response.  Returns 1 if it
1574  * encounters a valid data-carrying response, 0 otherwise.
1575  */
1576 static int process_pure_responses(struct adapter *adapter)
1577 {
1578         struct sge *sge = adapter->sge;
1579         struct respQ *q = &sge->respQ;
1580         struct respQ_e *e = &q->entries[q->cidx];
1581         const struct freelQ *fl = &sge->freelQ[e->FreelistQid];
1582         unsigned int flags = 0;
1583         unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
1584
1585         prefetch(fl->centries[fl->cidx].skb);
1586         if (e->DataValid)
1587                 return 1;
1588
1589         do {
1590                 flags |= e->Qsleeping;
1591
1592                 cmdq_processed[0] += e->Cmdq0CreditReturn;
1593                 cmdq_processed[1] += e->Cmdq1CreditReturn;
1594
1595                 e++;
1596                 if (unlikely(++q->cidx == q->size)) {
1597                         q->cidx = 0;
1598                         q->genbit ^= 1;
1599                         e = q->entries;
1600                 }
1601                 prefetch(e);
1602
1603                 if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1604                         writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1605                         q->credits = 0;
1606                 }
1607                 sge->stats.pure_rsps++;
1608         } while (e->GenerationBit == q->genbit && !e->DataValid);
1609
1610         flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1611         sge->cmdQ[1].processed += cmdq_processed[1];
1612
1613         return e->GenerationBit == q->genbit;
1614 }
1615
1616 /*
1617  * Handler for new data events when using NAPI.  This does not need any locking
1618  * or protection from interrupts as data interrupts are off at this point and
1619  * other adapter interrupts do not interfere.
1620  */
1621 int t1_poll(struct napi_struct *napi, int budget)
1622 {
1623         struct adapter *adapter = container_of(napi, struct adapter, napi);
1624         struct net_device *dev = adapter->port[0].dev;
1625         int work_done = process_responses(adapter, budget);
1626
1627         if (likely(work_done < budget)) {
1628                 netif_rx_complete(dev, napi);
1629                 writel(adapter->sge->respQ.cidx,
1630                        adapter->regs + A_SG_SLEEPING);
1631         }
1632         return work_done;
1633 }
1634
1635 /*
1636  * NAPI version of the main interrupt handler.
1637  */
1638 irqreturn_t t1_interrupt(int irq, void *data)
1639 {
1640         struct adapter *adapter = data;
1641         struct sge *sge = adapter->sge;
1642         int handled;
1643
1644         if (likely(responses_pending(adapter))) {
1645                 struct net_device *dev = sge->netdev;
1646
1647                 writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE);
1648
1649                 if (napi_schedule_prep(&adapter->napi)) {
1650                         if (process_pure_responses(adapter))
1651                                 __netif_rx_schedule(dev, &adapter->napi);
1652                         else {
1653                                 /* no data, no NAPI needed */
1654                                 writel(sge->respQ.cidx, adapter->regs + A_SG_SLEEPING);
1655                                 napi_enable(&adapter->napi);    /* undo schedule_prep */
1656                         }
1657                 }
1658                 return IRQ_HANDLED;
1659         }
1660
1661         spin_lock(&adapter->async_lock);
1662         handled = t1_slow_intr_handler(adapter);
1663         spin_unlock(&adapter->async_lock);
1664
1665         if (!handled)
1666                 sge->stats.unhandled_irqs++;
1667
1668         return IRQ_RETVAL(handled != 0);
1669 }
1670
1671 #else
1672 /*
1673  * Main interrupt handler, optimized assuming that we took a 'DATA'
1674  * interrupt.
1675  *
1676  * 1. Clear the interrupt
1677  * 2. Loop while we find valid descriptors and process them; accumulate
1678  *      information that can be processed after the loop
1679  * 3. Tell the SGE at which index we stopped processing descriptors
1680  * 4. Bookkeeping; free TX buffers, ring doorbell if there are any
1681  *      outstanding TX buffers waiting, replenish RX buffers, potentially
1682  *      reenable upper layers if they were turned off due to lack of TX
1683  *      resources which are available again.
1684  * 5. If we took an interrupt, but no valid respQ descriptors was found we
1685  *      let the slow_intr_handler run and do error handling.
1686  */
1687 irqreturn_t t1_interrupt(int irq, void *cookie)
1688 {
1689         int work_done;
1690         struct adapter *adapter = cookie;
1691         struct respQ *Q = &adapter->sge->respQ;
1692
1693         spin_lock(&adapter->async_lock);
1694
1695         writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE);
1696
1697         if (likely(responses_pending(adapter)))
1698                 work_done = process_responses(adapter, -1);
1699         else
1700                 work_done = t1_slow_intr_handler(adapter);
1701
1702         /*
1703          * The unconditional clearing of the PL_CAUSE above may have raced
1704          * with DMA completion and the corresponding generation of a response
1705          * to cause us to miss the resulting data interrupt.  The next write
1706          * is also unconditional to recover the missed interrupt and render
1707          * this race harmless.
1708          */
1709         writel(Q->cidx, adapter->regs + A_SG_SLEEPING);
1710
1711         if (!work_done)
1712                 adapter->sge->stats.unhandled_irqs++;
1713         spin_unlock(&adapter->async_lock);
1714         return IRQ_RETVAL(work_done != 0);
1715 }
1716 #endif
1717
1718 /*
1719  * Enqueues the sk_buff onto the cmdQ[qid] and has hardware fetch it.
1720  *
1721  * The code figures out how many entries the sk_buff will require in the
1722  * cmdQ and updates the cmdQ data structure with the state once the enqueue
1723  * has complete. Then, it doesn't access the global structure anymore, but
1724  * uses the corresponding fields on the stack. In conjuction with a spinlock
1725  * around that code, we can make the function reentrant without holding the
1726  * lock when we actually enqueue (which might be expensive, especially on
1727  * architectures with IO MMUs).
1728  *
1729  * This runs with softirqs disabled.
1730  */
1731 static int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter,
1732                      unsigned int qid, struct net_device *dev)
1733 {
1734         struct sge *sge = adapter->sge;
1735         struct cmdQ *q = &sge->cmdQ[qid];
1736         unsigned int credits, pidx, genbit, count, use_sched_skb = 0;
1737
1738         if (!spin_trylock(&q->lock))
1739                 return NETDEV_TX_LOCKED;
1740
1741         reclaim_completed_tx(sge, q);
1742
1743         pidx = q->pidx;
1744         credits = q->size - q->in_use;
1745         count = 1 + skb_shinfo(skb)->nr_frags;
1746         count += compute_large_page_tx_descs(skb);
1747
1748         /* Ethernet packet */
1749         if (unlikely(credits < count)) {
1750                 if (!netif_queue_stopped(dev)) {
1751                         netif_stop_queue(dev);
1752                         set_bit(dev->if_port, &sge->stopped_tx_queues);
1753                         sge->stats.cmdQ_full[2]++;
1754                         CH_ERR("%s: Tx ring full while queue awake!\n",
1755                                adapter->name);
1756                 }
1757                 spin_unlock(&q->lock);
1758                 return NETDEV_TX_BUSY;
1759         }
1760
1761         if (unlikely(credits - count < q->stop_thres)) {
1762                 netif_stop_queue(dev);
1763                 set_bit(dev->if_port, &sge->stopped_tx_queues);
1764                 sge->stats.cmdQ_full[2]++;
1765         }
1766
1767         /* T204 cmdQ0 skbs that are destined for a certain port have to go
1768          * through the scheduler.
1769          */
1770         if (sge->tx_sched && !qid && skb->dev) {
1771 use_sched:
1772                 use_sched_skb = 1;
1773                 /* Note that the scheduler might return a different skb than
1774                  * the one passed in.
1775                  */
1776                 skb = sched_skb(sge, skb, credits);
1777                 if (!skb) {
1778                         spin_unlock(&q->lock);
1779                         return NETDEV_TX_OK;
1780                 }
1781                 pidx = q->pidx;
1782                 count = 1 + skb_shinfo(skb)->nr_frags;
1783                 count += compute_large_page_tx_descs(skb);
1784         }
1785
1786         q->in_use += count;
1787         genbit = q->genbit;
1788         pidx = q->pidx;
1789         q->pidx += count;
1790         if (q->pidx >= q->size) {
1791                 q->pidx -= q->size;
1792                 q->genbit ^= 1;
1793         }
1794         spin_unlock(&q->lock);
1795
1796         write_tx_descs(adapter, skb, pidx, genbit, q);
1797
1798         /*
1799          * We always ring the doorbell for cmdQ1.  For cmdQ0, we only ring
1800          * the doorbell if the Q is asleep. There is a natural race, where
1801          * the hardware is going to sleep just after we checked, however,
1802          * then the interrupt handler will detect the outstanding TX packet
1803          * and ring the doorbell for us.
1804          */
1805         if (qid)
1806                 doorbell_pio(adapter, F_CMDQ1_ENABLE);
1807         else {
1808                 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1809                 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1810                         set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1811                         writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1812                 }
1813         }
1814
1815         if (use_sched_skb) {
1816                 if (spin_trylock(&q->lock)) {
1817                         credits = q->size - q->in_use;
1818                         skb = NULL;
1819                         goto use_sched;
1820                 }
1821         }
1822         return NETDEV_TX_OK;
1823 }
1824
1825 #define MK_ETH_TYPE_MSS(type, mss) (((mss) & 0x3FFF) | ((type) << 14))
1826
1827 /*
1828  *      eth_hdr_len - return the length of an Ethernet header
1829  *      @data: pointer to the start of the Ethernet header
1830  *
1831  *      Returns the length of an Ethernet header, including optional VLAN tag.
1832  */
1833 static inline int eth_hdr_len(const void *data)
1834 {
1835         const struct ethhdr *e = data;
1836
1837         return e->h_proto == htons(ETH_P_8021Q) ? VLAN_ETH_HLEN : ETH_HLEN;
1838 }
1839
1840 /*
1841  * Adds the CPL header to the sk_buff and passes it to t1_sge_tx.
1842  */
1843 int t1_start_xmit(struct sk_buff *skb, struct net_device *dev)
1844 {
1845         struct adapter *adapter = dev->priv;
1846         struct sge *sge = adapter->sge;
1847         struct sge_port_stats *st = per_cpu_ptr(sge->port_stats[dev->if_port],
1848                                                 smp_processor_id());
1849         struct cpl_tx_pkt *cpl;
1850         struct sk_buff *orig_skb = skb;
1851         int ret;
1852
1853         if (skb->protocol == htons(ETH_P_CPL5))
1854                 goto send;
1855
1856         /*
1857          * We are using a non-standard hard_header_len.
1858          * Allocate more header room in the rare cases it is not big enough.
1859          */
1860         if (unlikely(skb_headroom(skb) < dev->hard_header_len - ETH_HLEN)) {
1861                 skb = skb_realloc_headroom(skb, sizeof(struct cpl_tx_pkt_lso));
1862                 ++st->tx_need_hdrroom;
1863                 dev_kfree_skb_any(orig_skb);
1864                 if (!skb)
1865                         return NETDEV_TX_OK;
1866         }
1867
1868         if (skb_shinfo(skb)->gso_size) {
1869                 int eth_type;
1870                 struct cpl_tx_pkt_lso *hdr;
1871
1872                 ++st->tx_tso;
1873
1874                 eth_type = skb_network_offset(skb) == ETH_HLEN ?
1875                         CPL_ETH_II : CPL_ETH_II_VLAN;
1876
1877                 hdr = (struct cpl_tx_pkt_lso *)skb_push(skb, sizeof(*hdr));
1878                 hdr->opcode = CPL_TX_PKT_LSO;
1879                 hdr->ip_csum_dis = hdr->l4_csum_dis = 0;
1880                 hdr->ip_hdr_words = ip_hdr(skb)->ihl;
1881                 hdr->tcp_hdr_words = tcp_hdr(skb)->doff;
1882                 hdr->eth_type_mss = htons(MK_ETH_TYPE_MSS(eth_type,
1883                                                           skb_shinfo(skb)->gso_size));
1884                 hdr->len = htonl(skb->len - sizeof(*hdr));
1885                 cpl = (struct cpl_tx_pkt *)hdr;
1886         } else {
1887                 /*
1888                  * Packets shorter than ETH_HLEN can break the MAC, drop them
1889                  * early.  Also, we may get oversized packets because some
1890                  * parts of the kernel don't handle our unusual hard_header_len
1891                  * right, drop those too.
1892                  */
1893                 if (unlikely(skb->len < ETH_HLEN ||
1894                              skb->len > dev->mtu + eth_hdr_len(skb->data))) {
1895                         pr_debug("%s: packet size %d hdr %d mtu%d\n", dev->name,
1896                                  skb->len, eth_hdr_len(skb->data), dev->mtu);
1897                         dev_kfree_skb_any(skb);
1898                         return NETDEV_TX_OK;
1899                 }
1900
1901                 if (!(adapter->flags & UDP_CSUM_CAPABLE) &&
1902                     skb->ip_summed == CHECKSUM_PARTIAL &&
1903                     ip_hdr(skb)->protocol == IPPROTO_UDP) {
1904                         if (unlikely(skb_checksum_help(skb))) {
1905                                 pr_debug("%s: unable to do udp checksum\n", dev->name);
1906                                 dev_kfree_skb_any(skb);
1907                                 return NETDEV_TX_OK;
1908                         }
1909                 }
1910
1911                 /* Hmmm, assuming to catch the gratious arp... and we'll use
1912                  * it to flush out stuck espi packets...
1913                  */
1914                 if ((unlikely(!adapter->sge->espibug_skb[dev->if_port]))) {
1915                         if (skb->protocol == htons(ETH_P_ARP) &&
1916                             arp_hdr(skb)->ar_op == htons(ARPOP_REQUEST)) {
1917                                 adapter->sge->espibug_skb[dev->if_port] = skb;
1918                                 /* We want to re-use this skb later. We
1919                                  * simply bump the reference count and it
1920                                  * will not be freed...
1921                                  */
1922                                 skb = skb_get(skb);
1923                         }
1924                 }
1925
1926                 cpl = (struct cpl_tx_pkt *)__skb_push(skb, sizeof(*cpl));
1927                 cpl->opcode = CPL_TX_PKT;
1928                 cpl->ip_csum_dis = 1;    /* SW calculates IP csum */
1929                 cpl->l4_csum_dis = skb->ip_summed == CHECKSUM_PARTIAL ? 0 : 1;
1930                 /* the length field isn't used so don't bother setting it */
1931
1932                 st->tx_cso += (skb->ip_summed == CHECKSUM_PARTIAL);
1933         }
1934         cpl->iff = dev->if_port;
1935
1936 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1937         if (adapter->vlan_grp && vlan_tx_tag_present(skb)) {
1938                 cpl->vlan_valid = 1;
1939                 cpl->vlan = htons(vlan_tx_tag_get(skb));
1940                 st->vlan_insert++;
1941         } else
1942 #endif
1943                 cpl->vlan_valid = 0;
1944
1945 send:
1946         dev->trans_start = jiffies;
1947         ret = t1_sge_tx(skb, adapter, 0, dev);
1948
1949         /* If transmit busy, and we reallocated skb's due to headroom limit,
1950          * then silently discard to avoid leak.
1951          */
1952         if (unlikely(ret != NETDEV_TX_OK && skb != orig_skb)) {
1953                 dev_kfree_skb_any(skb);
1954                 ret = NETDEV_TX_OK;
1955         }
1956         return ret;
1957 }
1958
1959 /*
1960  * Callback for the Tx buffer reclaim timer.  Runs with softirqs disabled.
1961  */
1962 static void sge_tx_reclaim_cb(unsigned long data)
1963 {
1964         int i;
1965         struct sge *sge = (struct sge *)data;
1966
1967         for (i = 0; i < SGE_CMDQ_N; ++i) {
1968                 struct cmdQ *q = &sge->cmdQ[i];
1969
1970                 if (!spin_trylock(&q->lock))
1971                         continue;
1972
1973                 reclaim_completed_tx(sge, q);
1974                 if (i == 0 && q->in_use) {    /* flush pending credits */
1975                         writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
1976                 }
1977                 spin_unlock(&q->lock);
1978         }
1979         mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
1980 }
1981
1982 /*
1983  * Propagate changes of the SGE coalescing parameters to the HW.
1984  */
1985 int t1_sge_set_coalesce_params(struct sge *sge, struct sge_params *p)
1986 {
1987         sge->fixed_intrtimer = p->rx_coalesce_usecs *
1988                 core_ticks_per_usec(sge->adapter);
1989         writel(sge->fixed_intrtimer, sge->adapter->regs + A_SG_INTRTIMER);
1990         return 0;
1991 }
1992
1993 /*
1994  * Allocates both RX and TX resources and configures the SGE. However,
1995  * the hardware is not enabled yet.
1996  */
1997 int t1_sge_configure(struct sge *sge, struct sge_params *p)
1998 {
1999         if (alloc_rx_resources(sge, p))
2000                 return -ENOMEM;
2001         if (alloc_tx_resources(sge, p)) {
2002                 free_rx_resources(sge);
2003                 return -ENOMEM;
2004         }
2005         configure_sge(sge, p);
2006
2007         /*
2008          * Now that we have sized the free lists calculate the payload
2009          * capacity of the large buffers.  Other parts of the driver use
2010          * this to set the max offload coalescing size so that RX packets
2011          * do not overflow our large buffers.
2012          */
2013         p->large_buf_capacity = jumbo_payload_capacity(sge);
2014         return 0;
2015 }
2016
2017 /*
2018  * Disables the DMA engine.
2019  */
2020 void t1_sge_stop(struct sge *sge)
2021 {
2022         int i;
2023         writel(0, sge->adapter->regs + A_SG_CONTROL);
2024         readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
2025
2026         if (is_T2(sge->adapter))
2027                 del_timer_sync(&sge->espibug_timer);
2028
2029         del_timer_sync(&sge->tx_reclaim_timer);
2030         if (sge->tx_sched)
2031                 tx_sched_stop(sge);
2032
2033         for (i = 0; i < MAX_NPORTS; i++)
2034                 if (sge->espibug_skb[i])
2035                         kfree_skb(sge->espibug_skb[i]);
2036 }
2037
2038 /*
2039  * Enables the DMA engine.
2040  */
2041 void t1_sge_start(struct sge *sge)
2042 {
2043         refill_free_list(sge, &sge->freelQ[0]);
2044         refill_free_list(sge, &sge->freelQ[1]);
2045
2046         writel(sge->sge_control, sge->adapter->regs + A_SG_CONTROL);
2047         doorbell_pio(sge->adapter, F_FL0_ENABLE | F_FL1_ENABLE);
2048         readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
2049
2050         mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
2051
2052         if (is_T2(sge->adapter))
2053                 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2054 }
2055
2056 /*
2057  * Callback for the T2 ESPI 'stuck packet feature' workaorund
2058  */
2059 static void espibug_workaround_t204(unsigned long data)
2060 {
2061         struct adapter *adapter = (struct adapter *)data;
2062         struct sge *sge = adapter->sge;
2063         unsigned int nports = adapter->params.nports;
2064         u32 seop[MAX_NPORTS];
2065
2066         if (adapter->open_device_map & PORT_MASK) {
2067                 int i;
2068
2069                 if (t1_espi_get_mon_t204(adapter, &(seop[0]), 0) < 0)
2070                         return;
2071
2072                 for (i = 0; i < nports; i++) {
2073                         struct sk_buff *skb = sge->espibug_skb[i];
2074
2075                         if (!netif_running(adapter->port[i].dev) ||
2076                             netif_queue_stopped(adapter->port[i].dev) ||
2077                             !seop[i] || ((seop[i] & 0xfff) != 0) || !skb)
2078                                 continue;
2079
2080                         if (!skb->cb[0]) {
2081                                 u8 ch_mac_addr[ETH_ALEN] = {
2082                                         0x0, 0x7, 0x43, 0x0, 0x0, 0x0
2083                                 };
2084
2085                                 skb_copy_to_linear_data_offset(skb,
2086                                                     sizeof(struct cpl_tx_pkt),
2087                                                                ch_mac_addr,
2088                                                                ETH_ALEN);
2089                                 skb_copy_to_linear_data_offset(skb,
2090                                                                skb->len - 10,
2091                                                                ch_mac_addr,
2092                                                                ETH_ALEN);
2093                                 skb->cb[0] = 0xff;
2094                         }
2095
2096                         /* bump the reference count to avoid freeing of
2097                          * the skb once the DMA has completed.
2098                          */
2099                         skb = skb_get(skb);
2100                         t1_sge_tx(skb, adapter, 0, adapter->port[i].dev);
2101                 }
2102         }
2103         mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2104 }
2105
2106 static void espibug_workaround(unsigned long data)
2107 {
2108         struct adapter *adapter = (struct adapter *)data;
2109         struct sge *sge = adapter->sge;
2110
2111         if (netif_running(adapter->port[0].dev)) {
2112                 struct sk_buff *skb = sge->espibug_skb[0];
2113                 u32 seop = t1_espi_get_mon(adapter, 0x930, 0);
2114
2115                 if ((seop & 0xfff0fff) == 0xfff && skb) {
2116                         if (!skb->cb[0]) {
2117                                 u8 ch_mac_addr[ETH_ALEN] =
2118                                     {0x0, 0x7, 0x43, 0x0, 0x0, 0x0};
2119                                 skb_copy_to_linear_data_offset(skb,
2120                                                      sizeof(struct cpl_tx_pkt),
2121                                                                ch_mac_addr,
2122                                                                ETH_ALEN);
2123                                 skb_copy_to_linear_data_offset(skb,
2124                                                                skb->len - 10,
2125                                                                ch_mac_addr,
2126                                                                ETH_ALEN);
2127                                 skb->cb[0] = 0xff;
2128                         }
2129
2130                         /* bump the reference count to avoid freeing of the
2131                          * skb once the DMA has completed.
2132                          */
2133                         skb = skb_get(skb);
2134                         t1_sge_tx(skb, adapter, 0, adapter->port[0].dev);
2135                 }
2136         }
2137         mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2138 }
2139
2140 /*
2141  * Creates a t1_sge structure and returns suggested resource parameters.
2142  */
2143 struct sge * __devinit t1_sge_create(struct adapter *adapter,
2144                                      struct sge_params *p)
2145 {
2146         struct sge *sge = kzalloc(sizeof(*sge), GFP_KERNEL);
2147         int i;
2148
2149         if (!sge)
2150                 return NULL;
2151
2152         sge->adapter = adapter;
2153         sge->netdev = adapter->port[0].dev;
2154         sge->rx_pkt_pad = t1_is_T1B(adapter) ? 0 : 2;
2155         sge->jumbo_fl = t1_is_T1B(adapter) ? 1 : 0;
2156
2157         for_each_port(adapter, i) {
2158                 sge->port_stats[i] = alloc_percpu(struct sge_port_stats);
2159                 if (!sge->port_stats[i])
2160                         goto nomem_port;
2161         }
2162
2163         init_timer(&sge->tx_reclaim_timer);
2164         sge->tx_reclaim_timer.data = (unsigned long)sge;
2165         sge->tx_reclaim_timer.function = sge_tx_reclaim_cb;
2166
2167         if (is_T2(sge->adapter)) {
2168                 init_timer(&sge->espibug_timer);
2169
2170                 if (adapter->params.nports > 1) {
2171                         tx_sched_init(sge);
2172                         sge->espibug_timer.function = espibug_workaround_t204;
2173                 } else
2174                         sge->espibug_timer.function = espibug_workaround;
2175                 sge->espibug_timer.data = (unsigned long)sge->adapter;
2176
2177                 sge->espibug_timeout = 1;
2178                 /* for T204, every 10ms */
2179                 if (adapter->params.nports > 1)
2180                         sge->espibug_timeout = HZ/100;
2181         }
2182
2183
2184         p->cmdQ_size[0] = SGE_CMDQ0_E_N;
2185         p->cmdQ_size[1] = SGE_CMDQ1_E_N;
2186         p->freelQ_size[!sge->jumbo_fl] = SGE_FREEL_SIZE;
2187         p->freelQ_size[sge->jumbo_fl] = SGE_JUMBO_FREEL_SIZE;
2188         if (sge->tx_sched) {
2189                 if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204)
2190                         p->rx_coalesce_usecs = 15;
2191                 else
2192                         p->rx_coalesce_usecs = 50;
2193         } else
2194                 p->rx_coalesce_usecs = 50;
2195
2196         p->coalesce_enable = 0;
2197         p->sample_interval_usecs = 0;
2198
2199         return sge;
2200 nomem_port:
2201         while (i >= 0) {
2202                 free_percpu(sge->port_stats[i]);
2203                 --i;
2204         }
2205         kfree(sge);
2206         return NULL;
2207
2208 }