]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/net/atlx/atl1.c
atl1: use netdev_alloc_skb
[linux-2.6-omap-h63xx.git] / drivers / net / atlx / atl1.c
1 /*
2  * Copyright(c) 2005 - 2006 Attansic Corporation. All rights reserved.
3  * Copyright(c) 2006 - 2007 Chris Snook <csnook@redhat.com>
4  * Copyright(c) 2006 - 2008 Jay Cliburn <jcliburn@gmail.com>
5  *
6  * Derived from Intel e1000 driver
7  * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the Free
11  * Software Foundation; either version 2 of the License, or (at your option)
12  * any later version.
13  *
14  * This program is distributed in the hope that it will be useful, but WITHOUT
15  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
17  * more details.
18  *
19  * You should have received a copy of the GNU General Public License along with
20  * this program; if not, write to the Free Software Foundation, Inc., 59
21  * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
22  *
23  * The full GNU General Public License is included in this distribution in the
24  * file called COPYING.
25  *
26  * Contact Information:
27  * Xiong Huang <xiong_huang@attansic.com>
28  * Attansic Technology Corp. 3F 147, Xianzheng 9th Road, Zhubei,
29  * Xinzhu  302, TAIWAN, REPUBLIC OF CHINA
30  *
31  * Chris Snook <csnook@redhat.com>
32  * Jay Cliburn <jcliburn@gmail.com>
33  *
34  * This version is adapted from the Attansic reference driver for
35  * inclusion in the Linux kernel.  It is currently under heavy development.
36  * A very incomplete list of things that need to be dealt with:
37  *
38  * TODO:
39  * Add more ethtool functions.
40  * Fix abstruse irq enable/disable condition described here:
41  *      http://marc.theaimsgroup.com/?l=linux-netdev&m=116398508500553&w=2
42  *
43  * NEEDS TESTING:
44  * VLAN
45  * multicast
46  * promiscuous mode
47  * interrupt coalescing
48  * SMP torture testing
49  */
50
51 #include <asm/atomic.h>
52 #include <asm/byteorder.h>
53
54 #include <linux/compiler.h>
55 #include <linux/crc32.h>
56 #include <linux/delay.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/etherdevice.h>
59 #include <linux/hardirq.h>
60 #include <linux/if_ether.h>
61 #include <linux/if_vlan.h>
62 #include <linux/in.h>
63 #include <linux/interrupt.h>
64 #include <linux/ip.h>
65 #include <linux/irqflags.h>
66 #include <linux/irqreturn.h>
67 #include <linux/jiffies.h>
68 #include <linux/mii.h>
69 #include <linux/module.h>
70 #include <linux/moduleparam.h>
71 #include <linux/net.h>
72 #include <linux/netdevice.h>
73 #include <linux/pci.h>
74 #include <linux/pci_ids.h>
75 #include <linux/pm.h>
76 #include <linux/skbuff.h>
77 #include <linux/slab.h>
78 #include <linux/spinlock.h>
79 #include <linux/string.h>
80 #include <linux/tcp.h>
81 #include <linux/timer.h>
82 #include <linux/types.h>
83 #include <linux/workqueue.h>
84
85 #include <net/checksum.h>
86
87 #include "atl1.h"
88
89 /* Temporary hack for merging atl1 and atl2 */
90 #include "atlx.c"
91
92 /*
93  * This is the only thing that needs to be changed to adjust the
94  * maximum number of ports that the driver can manage.
95  */
96 #define ATL1_MAX_NIC 4
97
98 #define OPTION_UNSET    -1
99 #define OPTION_DISABLED 0
100 #define OPTION_ENABLED  1
101
102 #define ATL1_PARAM_INIT { [0 ... ATL1_MAX_NIC] = OPTION_UNSET }
103
104 /*
105  * Interrupt Moderate Timer in units of 2 us
106  *
107  * Valid Range: 10-65535
108  *
109  * Default Value: 100 (200us)
110  */
111 static int __devinitdata int_mod_timer[ATL1_MAX_NIC+1] = ATL1_PARAM_INIT;
112 static int num_int_mod_timer;
113 module_param_array_named(int_mod_timer, int_mod_timer, int,
114         &num_int_mod_timer, 0);
115 MODULE_PARM_DESC(int_mod_timer, "Interrupt moderator timer");
116
117 #define DEFAULT_INT_MOD_CNT     100     /* 200us */
118 #define MAX_INT_MOD_CNT         65000
119 #define MIN_INT_MOD_CNT         50
120
121 struct atl1_option {
122         enum { enable_option, range_option, list_option } type;
123         char *name;
124         char *err;
125         int def;
126         union {
127                 struct {        /* range_option info */
128                         int min;
129                         int max;
130                 } r;
131                 struct {        /* list_option info */
132                         int nr;
133                         struct atl1_opt_list {
134                                 int i;
135                                 char *str;
136                         } *p;
137                 } l;
138         } arg;
139 };
140
141 static int __devinit atl1_validate_option(int *value, struct atl1_option *opt,
142         struct pci_dev *pdev)
143 {
144         if (*value == OPTION_UNSET) {
145                 *value = opt->def;
146                 return 0;
147         }
148
149         switch (opt->type) {
150         case enable_option:
151                 switch (*value) {
152                 case OPTION_ENABLED:
153                         dev_info(&pdev->dev, "%s enabled\n", opt->name);
154                         return 0;
155                 case OPTION_DISABLED:
156                         dev_info(&pdev->dev, "%s disabled\n", opt->name);
157                         return 0;
158                 }
159                 break;
160         case range_option:
161                 if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
162                         dev_info(&pdev->dev, "%s set to %i\n", opt->name,
163                                 *value);
164                         return 0;
165                 }
166                 break;
167         case list_option:{
168                         int i;
169                         struct atl1_opt_list *ent;
170
171                         for (i = 0; i < opt->arg.l.nr; i++) {
172                                 ent = &opt->arg.l.p[i];
173                                 if (*value == ent->i) {
174                                         if (ent->str[0] != '\0')
175                                                 dev_info(&pdev->dev, "%s\n",
176                                                         ent->str);
177                                         return 0;
178                                 }
179                         }
180                 }
181                 break;
182
183         default:
184                 break;
185         }
186
187         dev_info(&pdev->dev, "invalid %s specified (%i) %s\n",
188                 opt->name, *value, opt->err);
189         *value = opt->def;
190         return -1;
191 }
192
193 /*
194  * atl1_check_options - Range Checking for Command Line Parameters
195  * @adapter: board private structure
196  *
197  * This routine checks all command line parameters for valid user
198  * input.  If an invalid value is given, or if no user specified
199  * value exists, a default value is used.  The final value is stored
200  * in a variable in the adapter structure.
201  */
202 void __devinit atl1_check_options(struct atl1_adapter *adapter)
203 {
204         struct pci_dev *pdev = adapter->pdev;
205         int bd = adapter->bd_number;
206         if (bd >= ATL1_MAX_NIC) {
207                 dev_notice(&pdev->dev, "no configuration for board#%i\n", bd);
208                 dev_notice(&pdev->dev, "using defaults for all values\n");
209         }
210         {                       /* Interrupt Moderate Timer */
211                 struct atl1_option opt = {
212                         .type = range_option,
213                         .name = "Interrupt Moderator Timer",
214                         .err = "using default of "
215                                 __MODULE_STRING(DEFAULT_INT_MOD_CNT),
216                         .def = DEFAULT_INT_MOD_CNT,
217                         .arg = {.r = {.min = MIN_INT_MOD_CNT,
218                                         .max = MAX_INT_MOD_CNT} }
219                 };
220                 int val;
221                 if (num_int_mod_timer > bd) {
222                         val = int_mod_timer[bd];
223                         atl1_validate_option(&val, &opt, pdev);
224                         adapter->imt = (u16) val;
225                 } else
226                         adapter->imt = (u16) (opt.def);
227         }
228 }
229
230 /*
231  * atl1_pci_tbl - PCI Device ID Table
232  */
233 static const struct pci_device_id atl1_pci_tbl[] = {
234         {PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L1)},
235         /* required last entry */
236         {0,}
237 };
238 MODULE_DEVICE_TABLE(pci, atl1_pci_tbl);
239
240 static const u32 atl1_default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
241         NETIF_MSG_LINK | NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP;
242
243 static int debug = -1;
244 module_param(debug, int, 0);
245 MODULE_PARM_DESC(debug, "Message level (0=none,...,16=all)");
246
247 /*
248  * Reset the transmit and receive units; mask and clear all interrupts.
249  * hw - Struct containing variables accessed by shared code
250  * return : 0  or  idle status (if error)
251  */
252 static s32 atl1_reset_hw(struct atl1_hw *hw)
253 {
254         struct pci_dev *pdev = hw->back->pdev;
255         struct atl1_adapter *adapter = hw->back;
256         u32 icr;
257         int i;
258
259         /*
260          * Clear Interrupt mask to stop board from generating
261          * interrupts & Clear any pending interrupt events
262          */
263         /*
264          * iowrite32(0, hw->hw_addr + REG_IMR);
265          * iowrite32(0xffffffff, hw->hw_addr + REG_ISR);
266          */
267
268         /*
269          * Issue Soft Reset to the MAC.  This will reset the chip's
270          * transmit, receive, DMA.  It will not effect
271          * the current PCI configuration.  The global reset bit is self-
272          * clearing, and should clear within a microsecond.
273          */
274         iowrite32(MASTER_CTRL_SOFT_RST, hw->hw_addr + REG_MASTER_CTRL);
275         ioread32(hw->hw_addr + REG_MASTER_CTRL);
276
277         iowrite16(1, hw->hw_addr + REG_PHY_ENABLE);
278         ioread16(hw->hw_addr + REG_PHY_ENABLE);
279
280         /* delay about 1ms */
281         msleep(1);
282
283         /* Wait at least 10ms for All module to be Idle */
284         for (i = 0; i < 10; i++) {
285                 icr = ioread32(hw->hw_addr + REG_IDLE_STATUS);
286                 if (!icr)
287                         break;
288                 /* delay 1 ms */
289                 msleep(1);
290                 /* FIXME: still the right way to do this? */
291                 cpu_relax();
292         }
293
294         if (icr) {
295                 if (netif_msg_hw(adapter))
296                         dev_dbg(&pdev->dev, "ICR = 0x%x\n", icr);
297                 return icr;
298         }
299
300         return 0;
301 }
302
303 /* function about EEPROM
304  *
305  * check_eeprom_exist
306  * return 0 if eeprom exist
307  */
308 static int atl1_check_eeprom_exist(struct atl1_hw *hw)
309 {
310         u32 value;
311         value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
312         if (value & SPI_FLASH_CTRL_EN_VPD) {
313                 value &= ~SPI_FLASH_CTRL_EN_VPD;
314                 iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
315         }
316
317         value = ioread16(hw->hw_addr + REG_PCIE_CAP_LIST);
318         return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
319 }
320
321 static bool atl1_read_eeprom(struct atl1_hw *hw, u32 offset, u32 *p_value)
322 {
323         int i;
324         u32 control;
325
326         if (offset & 3)
327                 /* address do not align */
328                 return false;
329
330         iowrite32(0, hw->hw_addr + REG_VPD_DATA);
331         control = (offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
332         iowrite32(control, hw->hw_addr + REG_VPD_CAP);
333         ioread32(hw->hw_addr + REG_VPD_CAP);
334
335         for (i = 0; i < 10; i++) {
336                 msleep(2);
337                 control = ioread32(hw->hw_addr + REG_VPD_CAP);
338                 if (control & VPD_CAP_VPD_FLAG)
339                         break;
340         }
341         if (control & VPD_CAP_VPD_FLAG) {
342                 *p_value = ioread32(hw->hw_addr + REG_VPD_DATA);
343                 return true;
344         }
345         /* timeout */
346         return false;
347 }
348
349 /*
350  * Reads the value from a PHY register
351  * hw - Struct containing variables accessed by shared code
352  * reg_addr - address of the PHY register to read
353  */
354 s32 atl1_read_phy_reg(struct atl1_hw *hw, u16 reg_addr, u16 *phy_data)
355 {
356         u32 val;
357         int i;
358
359         val = ((u32) (reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
360                 MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW | MDIO_CLK_25_4 <<
361                 MDIO_CLK_SEL_SHIFT;
362         iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
363         ioread32(hw->hw_addr + REG_MDIO_CTRL);
364
365         for (i = 0; i < MDIO_WAIT_TIMES; i++) {
366                 udelay(2);
367                 val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
368                 if (!(val & (MDIO_START | MDIO_BUSY)))
369                         break;
370         }
371         if (!(val & (MDIO_START | MDIO_BUSY))) {
372                 *phy_data = (u16) val;
373                 return 0;
374         }
375         return ATLX_ERR_PHY;
376 }
377
378 #define CUSTOM_SPI_CS_SETUP     2
379 #define CUSTOM_SPI_CLK_HI       2
380 #define CUSTOM_SPI_CLK_LO       2
381 #define CUSTOM_SPI_CS_HOLD      2
382 #define CUSTOM_SPI_CS_HI        3
383
384 static bool atl1_spi_read(struct atl1_hw *hw, u32 addr, u32 *buf)
385 {
386         int i;
387         u32 value;
388
389         iowrite32(0, hw->hw_addr + REG_SPI_DATA);
390         iowrite32(addr, hw->hw_addr + REG_SPI_ADDR);
391
392         value = SPI_FLASH_CTRL_WAIT_READY |
393             (CUSTOM_SPI_CS_SETUP & SPI_FLASH_CTRL_CS_SETUP_MASK) <<
394             SPI_FLASH_CTRL_CS_SETUP_SHIFT | (CUSTOM_SPI_CLK_HI &
395                                              SPI_FLASH_CTRL_CLK_HI_MASK) <<
396             SPI_FLASH_CTRL_CLK_HI_SHIFT | (CUSTOM_SPI_CLK_LO &
397                                            SPI_FLASH_CTRL_CLK_LO_MASK) <<
398             SPI_FLASH_CTRL_CLK_LO_SHIFT | (CUSTOM_SPI_CS_HOLD &
399                                            SPI_FLASH_CTRL_CS_HOLD_MASK) <<
400             SPI_FLASH_CTRL_CS_HOLD_SHIFT | (CUSTOM_SPI_CS_HI &
401                                             SPI_FLASH_CTRL_CS_HI_MASK) <<
402             SPI_FLASH_CTRL_CS_HI_SHIFT | (1 & SPI_FLASH_CTRL_INS_MASK) <<
403             SPI_FLASH_CTRL_INS_SHIFT;
404
405         iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
406
407         value |= SPI_FLASH_CTRL_START;
408         iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
409         ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
410
411         for (i = 0; i < 10; i++) {
412                 msleep(1);
413                 value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
414                 if (!(value & SPI_FLASH_CTRL_START))
415                         break;
416         }
417
418         if (value & SPI_FLASH_CTRL_START)
419                 return false;
420
421         *buf = ioread32(hw->hw_addr + REG_SPI_DATA);
422
423         return true;
424 }
425
426 /*
427  * get_permanent_address
428  * return 0 if get valid mac address,
429  */
430 static int atl1_get_permanent_address(struct atl1_hw *hw)
431 {
432         u32 addr[2];
433         u32 i, control;
434         u16 reg;
435         u8 eth_addr[ETH_ALEN];
436         bool key_valid;
437
438         if (is_valid_ether_addr(hw->perm_mac_addr))
439                 return 0;
440
441         /* init */
442         addr[0] = addr[1] = 0;
443
444         if (!atl1_check_eeprom_exist(hw)) {
445                 reg = 0;
446                 key_valid = false;
447                 /* Read out all EEPROM content */
448                 i = 0;
449                 while (1) {
450                         if (atl1_read_eeprom(hw, i + 0x100, &control)) {
451                                 if (key_valid) {
452                                         if (reg == REG_MAC_STA_ADDR)
453                                                 addr[0] = control;
454                                         else if (reg == (REG_MAC_STA_ADDR + 4))
455                                                 addr[1] = control;
456                                         key_valid = false;
457                                 } else if ((control & 0xff) == 0x5A) {
458                                         key_valid = true;
459                                         reg = (u16) (control >> 16);
460                                 } else
461                                         break;
462                         } else
463                                 /* read error */
464                                 break;
465                         i += 4;
466                 }
467
468                 *(u32 *) &eth_addr[2] = swab32(addr[0]);
469                 *(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
470                 if (is_valid_ether_addr(eth_addr)) {
471                         memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
472                         return 0;
473                 }
474                 return 1;
475         }
476
477         /* see if SPI FLAGS exist ? */
478         addr[0] = addr[1] = 0;
479         reg = 0;
480         key_valid = false;
481         i = 0;
482         while (1) {
483                 if (atl1_spi_read(hw, i + 0x1f000, &control)) {
484                         if (key_valid) {
485                                 if (reg == REG_MAC_STA_ADDR)
486                                         addr[0] = control;
487                                 else if (reg == (REG_MAC_STA_ADDR + 4))
488                                         addr[1] = control;
489                                 key_valid = false;
490                         } else if ((control & 0xff) == 0x5A) {
491                                 key_valid = true;
492                                 reg = (u16) (control >> 16);
493                         } else
494                                 /* data end */
495                                 break;
496                 } else
497                         /* read error */
498                         break;
499                 i += 4;
500         }
501
502         *(u32 *) &eth_addr[2] = swab32(addr[0]);
503         *(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
504         if (is_valid_ether_addr(eth_addr)) {
505                 memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
506                 return 0;
507         }
508
509         /*
510          * On some motherboards, the MAC address is written by the
511          * BIOS directly to the MAC register during POST, and is
512          * not stored in eeprom.  If all else thus far has failed
513          * to fetch the permanent MAC address, try reading it directly.
514          */
515         addr[0] = ioread32(hw->hw_addr + REG_MAC_STA_ADDR);
516         addr[1] = ioread16(hw->hw_addr + (REG_MAC_STA_ADDR + 4));
517         *(u32 *) &eth_addr[2] = swab32(addr[0]);
518         *(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
519         if (is_valid_ether_addr(eth_addr)) {
520                 memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
521                 return 0;
522         }
523
524         return 1;
525 }
526
527 /*
528  * Reads the adapter's MAC address from the EEPROM
529  * hw - Struct containing variables accessed by shared code
530  */
531 s32 atl1_read_mac_addr(struct atl1_hw *hw)
532 {
533         u16 i;
534
535         if (atl1_get_permanent_address(hw))
536                 random_ether_addr(hw->perm_mac_addr);
537
538         for (i = 0; i < ETH_ALEN; i++)
539                 hw->mac_addr[i] = hw->perm_mac_addr[i];
540         return 0;
541 }
542
543 /*
544  * Hashes an address to determine its location in the multicast table
545  * hw - Struct containing variables accessed by shared code
546  * mc_addr - the multicast address to hash
547  *
548  * atl1_hash_mc_addr
549  *  purpose
550  *      set hash value for a multicast address
551  *      hash calcu processing :
552  *          1. calcu 32bit CRC for multicast address
553  *          2. reverse crc with MSB to LSB
554  */
555 u32 atl1_hash_mc_addr(struct atl1_hw *hw, u8 *mc_addr)
556 {
557         u32 crc32, value = 0;
558         int i;
559
560         crc32 = ether_crc_le(6, mc_addr);
561         for (i = 0; i < 32; i++)
562                 value |= (((crc32 >> i) & 1) << (31 - i));
563
564         return value;
565 }
566
567 /*
568  * Sets the bit in the multicast table corresponding to the hash value.
569  * hw - Struct containing variables accessed by shared code
570  * hash_value - Multicast address hash value
571  */
572 void atl1_hash_set(struct atl1_hw *hw, u32 hash_value)
573 {
574         u32 hash_bit, hash_reg;
575         u32 mta;
576
577         /*
578          * The HASH Table  is a register array of 2 32-bit registers.
579          * It is treated like an array of 64 bits.  We want to set
580          * bit BitArray[hash_value]. So we figure out what register
581          * the bit is in, read it, OR in the new bit, then write
582          * back the new value.  The register is determined by the
583          * upper 7 bits of the hash value and the bit within that
584          * register are determined by the lower 5 bits of the value.
585          */
586         hash_reg = (hash_value >> 31) & 0x1;
587         hash_bit = (hash_value >> 26) & 0x1F;
588         mta = ioread32((hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
589         mta |= (1 << hash_bit);
590         iowrite32(mta, (hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
591 }
592
593 /*
594  * Writes a value to a PHY register
595  * hw - Struct containing variables accessed by shared code
596  * reg_addr - address of the PHY register to write
597  * data - data to write to the PHY
598  */
599 static s32 atl1_write_phy_reg(struct atl1_hw *hw, u32 reg_addr, u16 phy_data)
600 {
601         int i;
602         u32 val;
603
604         val = ((u32) (phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
605             (reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
606             MDIO_SUP_PREAMBLE |
607             MDIO_START | MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
608         iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
609         ioread32(hw->hw_addr + REG_MDIO_CTRL);
610
611         for (i = 0; i < MDIO_WAIT_TIMES; i++) {
612                 udelay(2);
613                 val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
614                 if (!(val & (MDIO_START | MDIO_BUSY)))
615                         break;
616         }
617
618         if (!(val & (MDIO_START | MDIO_BUSY)))
619                 return 0;
620
621         return ATLX_ERR_PHY;
622 }
623
624 /*
625  * Make L001's PHY out of Power Saving State (bug)
626  * hw - Struct containing variables accessed by shared code
627  * when power on, L001's PHY always on Power saving State
628  * (Gigabit Link forbidden)
629  */
630 static s32 atl1_phy_leave_power_saving(struct atl1_hw *hw)
631 {
632         s32 ret;
633         ret = atl1_write_phy_reg(hw, 29, 0x0029);
634         if (ret)
635                 return ret;
636         return atl1_write_phy_reg(hw, 30, 0);
637 }
638
639 /*
640  * Force the PHY into power saving mode using vendor magic.
641  */
642 #ifdef CONFIG_PM
643 static void atl1_phy_enter_power_saving(struct atl1_hw *hw)
644 {
645         atl1_write_phy_reg(hw, MII_DBG_ADDR, 0);
646         atl1_write_phy_reg(hw, MII_DBG_DATA, 0x124E);
647         atl1_write_phy_reg(hw, MII_DBG_ADDR, 2);
648         atl1_write_phy_reg(hw, MII_DBG_DATA, 0x3000);
649         atl1_write_phy_reg(hw, MII_DBG_ADDR, 3);
650         atl1_write_phy_reg(hw, MII_DBG_DATA, 0);
651
652 }
653 #endif
654
655 /*
656  * Resets the PHY and make all config validate
657  * hw - Struct containing variables accessed by shared code
658  *
659  * Sets bit 15 and 12 of the MII Control regiser (for F001 bug)
660  */
661 static s32 atl1_phy_reset(struct atl1_hw *hw)
662 {
663         struct pci_dev *pdev = hw->back->pdev;
664         struct atl1_adapter *adapter = hw->back;
665         s32 ret_val;
666         u16 phy_data;
667
668         if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
669             hw->media_type == MEDIA_TYPE_1000M_FULL)
670                 phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
671         else {
672                 switch (hw->media_type) {
673                 case MEDIA_TYPE_100M_FULL:
674                         phy_data =
675                             MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
676                             MII_CR_RESET;
677                         break;
678                 case MEDIA_TYPE_100M_HALF:
679                         phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
680                         break;
681                 case MEDIA_TYPE_10M_FULL:
682                         phy_data =
683                             MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
684                         break;
685                 default:
686                         /* MEDIA_TYPE_10M_HALF: */
687                         phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
688                         break;
689                 }
690         }
691
692         ret_val = atl1_write_phy_reg(hw, MII_BMCR, phy_data);
693         if (ret_val) {
694                 u32 val;
695                 int i;
696                 /* pcie serdes link may be down! */
697                 if (netif_msg_hw(adapter))
698                         dev_dbg(&pdev->dev, "pcie phy link down\n");
699
700                 for (i = 0; i < 25; i++) {
701                         msleep(1);
702                         val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
703                         if (!(val & (MDIO_START | MDIO_BUSY)))
704                                 break;
705                 }
706
707                 if ((val & (MDIO_START | MDIO_BUSY)) != 0) {
708                         if (netif_msg_hw(adapter))
709                                 dev_warn(&pdev->dev,
710                                         "pcie link down at least 25ms\n");
711                         return ret_val;
712                 }
713         }
714         return 0;
715 }
716
717 /*
718  * Configures PHY autoneg and flow control advertisement settings
719  * hw - Struct containing variables accessed by shared code
720  */
721 static s32 atl1_phy_setup_autoneg_adv(struct atl1_hw *hw)
722 {
723         s32 ret_val;
724         s16 mii_autoneg_adv_reg;
725         s16 mii_1000t_ctrl_reg;
726
727         /* Read the MII Auto-Neg Advertisement Register (Address 4). */
728         mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
729
730         /* Read the MII 1000Base-T Control Register (Address 9). */
731         mii_1000t_ctrl_reg = MII_ATLX_CR_1000T_DEFAULT_CAP_MASK;
732
733         /*
734          * First we clear all the 10/100 mb speed bits in the Auto-Neg
735          * Advertisement Register (Address 4) and the 1000 mb speed bits in
736          * the  1000Base-T Control Register (Address 9).
737          */
738         mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK;
739         mii_1000t_ctrl_reg &= ~MII_ATLX_CR_1000T_SPEED_MASK;
740
741         /*
742          * Need to parse media_type  and set up
743          * the appropriate PHY registers.
744          */
745         switch (hw->media_type) {
746         case MEDIA_TYPE_AUTO_SENSOR:
747                 mii_autoneg_adv_reg |= (MII_AR_10T_HD_CAPS |
748                                         MII_AR_10T_FD_CAPS |
749                                         MII_AR_100TX_HD_CAPS |
750                                         MII_AR_100TX_FD_CAPS);
751                 mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
752                 break;
753
754         case MEDIA_TYPE_1000M_FULL:
755                 mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
756                 break;
757
758         case MEDIA_TYPE_100M_FULL:
759                 mii_autoneg_adv_reg |= MII_AR_100TX_FD_CAPS;
760                 break;
761
762         case MEDIA_TYPE_100M_HALF:
763                 mii_autoneg_adv_reg |= MII_AR_100TX_HD_CAPS;
764                 break;
765
766         case MEDIA_TYPE_10M_FULL:
767                 mii_autoneg_adv_reg |= MII_AR_10T_FD_CAPS;
768                 break;
769
770         default:
771                 mii_autoneg_adv_reg |= MII_AR_10T_HD_CAPS;
772                 break;
773         }
774
775         /* flow control fixed to enable all */
776         mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE);
777
778         hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
779         hw->mii_1000t_ctrl_reg = mii_1000t_ctrl_reg;
780
781         ret_val = atl1_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
782         if (ret_val)
783                 return ret_val;
784
785         ret_val = atl1_write_phy_reg(hw, MII_ATLX_CR, mii_1000t_ctrl_reg);
786         if (ret_val)
787                 return ret_val;
788
789         return 0;
790 }
791
792 /*
793  * Configures link settings.
794  * hw - Struct containing variables accessed by shared code
795  * Assumes the hardware has previously been reset and the
796  * transmitter and receiver are not enabled.
797  */
798 static s32 atl1_setup_link(struct atl1_hw *hw)
799 {
800         struct pci_dev *pdev = hw->back->pdev;
801         struct atl1_adapter *adapter = hw->back;
802         s32 ret_val;
803
804         /*
805          * Options:
806          *  PHY will advertise value(s) parsed from
807          *  autoneg_advertised and fc
808          *  no matter what autoneg is , We will not wait link result.
809          */
810         ret_val = atl1_phy_setup_autoneg_adv(hw);
811         if (ret_val) {
812                 if (netif_msg_link(adapter))
813                         dev_dbg(&pdev->dev,
814                                 "error setting up autonegotiation\n");
815                 return ret_val;
816         }
817         /* SW.Reset , En-Auto-Neg if needed */
818         ret_val = atl1_phy_reset(hw);
819         if (ret_val) {
820                 if (netif_msg_link(adapter))
821                         dev_dbg(&pdev->dev, "error resetting phy\n");
822                 return ret_val;
823         }
824         hw->phy_configured = true;
825         return ret_val;
826 }
827
828 static void atl1_init_flash_opcode(struct atl1_hw *hw)
829 {
830         if (hw->flash_vendor >= ARRAY_SIZE(flash_table))
831                 /* Atmel */
832                 hw->flash_vendor = 0;
833
834         /* Init OP table */
835         iowrite8(flash_table[hw->flash_vendor].cmd_program,
836                 hw->hw_addr + REG_SPI_FLASH_OP_PROGRAM);
837         iowrite8(flash_table[hw->flash_vendor].cmd_sector_erase,
838                 hw->hw_addr + REG_SPI_FLASH_OP_SC_ERASE);
839         iowrite8(flash_table[hw->flash_vendor].cmd_chip_erase,
840                 hw->hw_addr + REG_SPI_FLASH_OP_CHIP_ERASE);
841         iowrite8(flash_table[hw->flash_vendor].cmd_rdid,
842                 hw->hw_addr + REG_SPI_FLASH_OP_RDID);
843         iowrite8(flash_table[hw->flash_vendor].cmd_wren,
844                 hw->hw_addr + REG_SPI_FLASH_OP_WREN);
845         iowrite8(flash_table[hw->flash_vendor].cmd_rdsr,
846                 hw->hw_addr + REG_SPI_FLASH_OP_RDSR);
847         iowrite8(flash_table[hw->flash_vendor].cmd_wrsr,
848                 hw->hw_addr + REG_SPI_FLASH_OP_WRSR);
849         iowrite8(flash_table[hw->flash_vendor].cmd_read,
850                 hw->hw_addr + REG_SPI_FLASH_OP_READ);
851 }
852
853 /*
854  * Performs basic configuration of the adapter.
855  * hw - Struct containing variables accessed by shared code
856  * Assumes that the controller has previously been reset and is in a
857  * post-reset uninitialized state. Initializes multicast table,
858  * and  Calls routines to setup link
859  * Leaves the transmit and receive units disabled and uninitialized.
860  */
861 static s32 atl1_init_hw(struct atl1_hw *hw)
862 {
863         u32 ret_val = 0;
864
865         /* Zero out the Multicast HASH table */
866         iowrite32(0, hw->hw_addr + REG_RX_HASH_TABLE);
867         /* clear the old settings from the multicast hash table */
868         iowrite32(0, (hw->hw_addr + REG_RX_HASH_TABLE) + (1 << 2));
869
870         atl1_init_flash_opcode(hw);
871
872         if (!hw->phy_configured) {
873                 /* enable GPHY LinkChange Interrrupt */
874                 ret_val = atl1_write_phy_reg(hw, 18, 0xC00);
875                 if (ret_val)
876                         return ret_val;
877                 /* make PHY out of power-saving state */
878                 ret_val = atl1_phy_leave_power_saving(hw);
879                 if (ret_val)
880                         return ret_val;
881                 /* Call a subroutine to configure the link */
882                 ret_val = atl1_setup_link(hw);
883         }
884         return ret_val;
885 }
886
887 /*
888  * Detects the current speed and duplex settings of the hardware.
889  * hw - Struct containing variables accessed by shared code
890  * speed - Speed of the connection
891  * duplex - Duplex setting of the connection
892  */
893 static s32 atl1_get_speed_and_duplex(struct atl1_hw *hw, u16 *speed, u16 *duplex)
894 {
895         struct pci_dev *pdev = hw->back->pdev;
896         struct atl1_adapter *adapter = hw->back;
897         s32 ret_val;
898         u16 phy_data;
899
900         /* ; --- Read   PHY Specific Status Register (17) */
901         ret_val = atl1_read_phy_reg(hw, MII_ATLX_PSSR, &phy_data);
902         if (ret_val)
903                 return ret_val;
904
905         if (!(phy_data & MII_ATLX_PSSR_SPD_DPLX_RESOLVED))
906                 return ATLX_ERR_PHY_RES;
907
908         switch (phy_data & MII_ATLX_PSSR_SPEED) {
909         case MII_ATLX_PSSR_1000MBS:
910                 *speed = SPEED_1000;
911                 break;
912         case MII_ATLX_PSSR_100MBS:
913                 *speed = SPEED_100;
914                 break;
915         case MII_ATLX_PSSR_10MBS:
916                 *speed = SPEED_10;
917                 break;
918         default:
919                 if (netif_msg_hw(adapter))
920                         dev_dbg(&pdev->dev, "error getting speed\n");
921                 return ATLX_ERR_PHY_SPEED;
922                 break;
923         }
924         if (phy_data & MII_ATLX_PSSR_DPLX)
925                 *duplex = FULL_DUPLEX;
926         else
927                 *duplex = HALF_DUPLEX;
928
929         return 0;
930 }
931
932 void atl1_set_mac_addr(struct atl1_hw *hw)
933 {
934         u32 value;
935         /*
936          * 00-0B-6A-F6-00-DC
937          * 0:  6AF600DC   1: 000B
938          * low dword
939          */
940         value = (((u32) hw->mac_addr[2]) << 24) |
941             (((u32) hw->mac_addr[3]) << 16) |
942             (((u32) hw->mac_addr[4]) << 8) | (((u32) hw->mac_addr[5]));
943         iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
944         /* high dword */
945         value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
946         iowrite32(value, (hw->hw_addr + REG_MAC_STA_ADDR) + (1 << 2));
947 }
948
949 /*
950  * atl1_sw_init - Initialize general software structures (struct atl1_adapter)
951  * @adapter: board private structure to initialize
952  *
953  * atl1_sw_init initializes the Adapter private data structure.
954  * Fields are initialized based on PCI device information and
955  * OS network device settings (MTU size).
956  */
957 static int __devinit atl1_sw_init(struct atl1_adapter *adapter)
958 {
959         struct atl1_hw *hw = &adapter->hw;
960         struct net_device *netdev = adapter->netdev;
961
962         hw->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
963         hw->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
964
965         adapter->wol = 0;
966         adapter->rx_buffer_len = (hw->max_frame_size + 7) & ~7;
967         adapter->ict = 50000;           /* 100ms */
968         adapter->link_speed = SPEED_0;  /* hardware init */
969         adapter->link_duplex = FULL_DUPLEX;
970
971         hw->phy_configured = false;
972         hw->preamble_len = 7;
973         hw->ipgt = 0x60;
974         hw->min_ifg = 0x50;
975         hw->ipgr1 = 0x40;
976         hw->ipgr2 = 0x60;
977         hw->max_retry = 0xf;
978         hw->lcol = 0x37;
979         hw->jam_ipg = 7;
980         hw->rfd_burst = 8;
981         hw->rrd_burst = 8;
982         hw->rfd_fetch_gap = 1;
983         hw->rx_jumbo_th = adapter->rx_buffer_len / 8;
984         hw->rx_jumbo_lkah = 1;
985         hw->rrd_ret_timer = 16;
986         hw->tpd_burst = 4;
987         hw->tpd_fetch_th = 16;
988         hw->txf_burst = 0x100;
989         hw->tx_jumbo_task_th = (hw->max_frame_size + 7) >> 3;
990         hw->tpd_fetch_gap = 1;
991         hw->rcb_value = atl1_rcb_64;
992         hw->dma_ord = atl1_dma_ord_enh;
993         hw->dmar_block = atl1_dma_req_256;
994         hw->dmaw_block = atl1_dma_req_256;
995         hw->cmb_rrd = 4;
996         hw->cmb_tpd = 4;
997         hw->cmb_rx_timer = 1;   /* about 2us */
998         hw->cmb_tx_timer = 1;   /* about 2us */
999         hw->smb_timer = 100000; /* about 200ms */
1000
1001         spin_lock_init(&adapter->lock);
1002         spin_lock_init(&adapter->mb_lock);
1003
1004         return 0;
1005 }
1006
1007 static int mdio_read(struct net_device *netdev, int phy_id, int reg_num)
1008 {
1009         struct atl1_adapter *adapter = netdev_priv(netdev);
1010         u16 result;
1011
1012         atl1_read_phy_reg(&adapter->hw, reg_num & 0x1f, &result);
1013
1014         return result;
1015 }
1016
1017 static void mdio_write(struct net_device *netdev, int phy_id, int reg_num,
1018         int val)
1019 {
1020         struct atl1_adapter *adapter = netdev_priv(netdev);
1021
1022         atl1_write_phy_reg(&adapter->hw, reg_num, val);
1023 }
1024
1025 /*
1026  * atl1_mii_ioctl -
1027  * @netdev:
1028  * @ifreq:
1029  * @cmd:
1030  */
1031 static int atl1_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1032 {
1033         struct atl1_adapter *adapter = netdev_priv(netdev);
1034         unsigned long flags;
1035         int retval;
1036
1037         if (!netif_running(netdev))
1038                 return -EINVAL;
1039
1040         spin_lock_irqsave(&adapter->lock, flags);
1041         retval = generic_mii_ioctl(&adapter->mii, if_mii(ifr), cmd, NULL);
1042         spin_unlock_irqrestore(&adapter->lock, flags);
1043
1044         return retval;
1045 }
1046
1047 /*
1048  * atl1_setup_mem_resources - allocate Tx / RX descriptor resources
1049  * @adapter: board private structure
1050  *
1051  * Return 0 on success, negative on failure
1052  */
1053 static s32 atl1_setup_ring_resources(struct atl1_adapter *adapter)
1054 {
1055         struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1056         struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1057         struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1058         struct atl1_ring_header *ring_header = &adapter->ring_header;
1059         struct pci_dev *pdev = adapter->pdev;
1060         int size;
1061         u8 offset = 0;
1062
1063         size = sizeof(struct atl1_buffer) * (tpd_ring->count + rfd_ring->count);
1064         tpd_ring->buffer_info = kzalloc(size, GFP_KERNEL);
1065         if (unlikely(!tpd_ring->buffer_info)) {
1066                 if (netif_msg_drv(adapter))
1067                         dev_err(&pdev->dev, "kzalloc failed , size = D%d\n",
1068                                 size);
1069                 goto err_nomem;
1070         }
1071         rfd_ring->buffer_info =
1072                 (struct atl1_buffer *)(tpd_ring->buffer_info + tpd_ring->count);
1073
1074         /*
1075          * real ring DMA buffer
1076          * each ring/block may need up to 8 bytes for alignment, hence the
1077          * additional 40 bytes tacked onto the end.
1078          */
1079         ring_header->size = size =
1080                 sizeof(struct tx_packet_desc) * tpd_ring->count
1081                 + sizeof(struct rx_free_desc) * rfd_ring->count
1082                 + sizeof(struct rx_return_desc) * rrd_ring->count
1083                 + sizeof(struct coals_msg_block)
1084                 + sizeof(struct stats_msg_block)
1085                 + 40;
1086
1087         ring_header->desc = pci_alloc_consistent(pdev, ring_header->size,
1088                 &ring_header->dma);
1089         if (unlikely(!ring_header->desc)) {
1090                 if (netif_msg_drv(adapter))
1091                         dev_err(&pdev->dev, "pci_alloc_consistent failed\n");
1092                 goto err_nomem;
1093         }
1094
1095         memset(ring_header->desc, 0, ring_header->size);
1096
1097         /* init TPD ring */
1098         tpd_ring->dma = ring_header->dma;
1099         offset = (tpd_ring->dma & 0x7) ? (8 - (ring_header->dma & 0x7)) : 0;
1100         tpd_ring->dma += offset;
1101         tpd_ring->desc = (u8 *) ring_header->desc + offset;
1102         tpd_ring->size = sizeof(struct tx_packet_desc) * tpd_ring->count;
1103
1104         /* init RFD ring */
1105         rfd_ring->dma = tpd_ring->dma + tpd_ring->size;
1106         offset = (rfd_ring->dma & 0x7) ? (8 - (rfd_ring->dma & 0x7)) : 0;
1107         rfd_ring->dma += offset;
1108         rfd_ring->desc = (u8 *) tpd_ring->desc + (tpd_ring->size + offset);
1109         rfd_ring->size = sizeof(struct rx_free_desc) * rfd_ring->count;
1110
1111
1112         /* init RRD ring */
1113         rrd_ring->dma = rfd_ring->dma + rfd_ring->size;
1114         offset = (rrd_ring->dma & 0x7) ? (8 - (rrd_ring->dma & 0x7)) : 0;
1115         rrd_ring->dma += offset;
1116         rrd_ring->desc = (u8 *) rfd_ring->desc + (rfd_ring->size + offset);
1117         rrd_ring->size = sizeof(struct rx_return_desc) * rrd_ring->count;
1118
1119
1120         /* init CMB */
1121         adapter->cmb.dma = rrd_ring->dma + rrd_ring->size;
1122         offset = (adapter->cmb.dma & 0x7) ? (8 - (adapter->cmb.dma & 0x7)) : 0;
1123         adapter->cmb.dma += offset;
1124         adapter->cmb.cmb = (struct coals_msg_block *)
1125                 ((u8 *) rrd_ring->desc + (rrd_ring->size + offset));
1126
1127         /* init SMB */
1128         adapter->smb.dma = adapter->cmb.dma + sizeof(struct coals_msg_block);
1129         offset = (adapter->smb.dma & 0x7) ? (8 - (adapter->smb.dma & 0x7)) : 0;
1130         adapter->smb.dma += offset;
1131         adapter->smb.smb = (struct stats_msg_block *)
1132                 ((u8 *) adapter->cmb.cmb +
1133                 (sizeof(struct coals_msg_block) + offset));
1134
1135         return 0;
1136
1137 err_nomem:
1138         kfree(tpd_ring->buffer_info);
1139         return -ENOMEM;
1140 }
1141
1142 static void atl1_init_ring_ptrs(struct atl1_adapter *adapter)
1143 {
1144         struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1145         struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1146         struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1147
1148         atomic_set(&tpd_ring->next_to_use, 0);
1149         atomic_set(&tpd_ring->next_to_clean, 0);
1150
1151         rfd_ring->next_to_clean = 0;
1152         atomic_set(&rfd_ring->next_to_use, 0);
1153
1154         rrd_ring->next_to_use = 0;
1155         atomic_set(&rrd_ring->next_to_clean, 0);
1156 }
1157
1158 /*
1159  * atl1_clean_rx_ring - Free RFD Buffers
1160  * @adapter: board private structure
1161  */
1162 static void atl1_clean_rx_ring(struct atl1_adapter *adapter)
1163 {
1164         struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1165         struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1166         struct atl1_buffer *buffer_info;
1167         struct pci_dev *pdev = adapter->pdev;
1168         unsigned long size;
1169         unsigned int i;
1170
1171         /* Free all the Rx ring sk_buffs */
1172         for (i = 0; i < rfd_ring->count; i++) {
1173                 buffer_info = &rfd_ring->buffer_info[i];
1174                 if (buffer_info->dma) {
1175                         pci_unmap_page(pdev, buffer_info->dma,
1176                                 buffer_info->length, PCI_DMA_FROMDEVICE);
1177                         buffer_info->dma = 0;
1178                 }
1179                 if (buffer_info->skb) {
1180                         dev_kfree_skb(buffer_info->skb);
1181                         buffer_info->skb = NULL;
1182                 }
1183         }
1184
1185         size = sizeof(struct atl1_buffer) * rfd_ring->count;
1186         memset(rfd_ring->buffer_info, 0, size);
1187
1188         /* Zero out the descriptor ring */
1189         memset(rfd_ring->desc, 0, rfd_ring->size);
1190
1191         rfd_ring->next_to_clean = 0;
1192         atomic_set(&rfd_ring->next_to_use, 0);
1193
1194         rrd_ring->next_to_use = 0;
1195         atomic_set(&rrd_ring->next_to_clean, 0);
1196 }
1197
1198 /*
1199  * atl1_clean_tx_ring - Free Tx Buffers
1200  * @adapter: board private structure
1201  */
1202 static void atl1_clean_tx_ring(struct atl1_adapter *adapter)
1203 {
1204         struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1205         struct atl1_buffer *buffer_info;
1206         struct pci_dev *pdev = adapter->pdev;
1207         unsigned long size;
1208         unsigned int i;
1209
1210         /* Free all the Tx ring sk_buffs */
1211         for (i = 0; i < tpd_ring->count; i++) {
1212                 buffer_info = &tpd_ring->buffer_info[i];
1213                 if (buffer_info->dma) {
1214                         pci_unmap_page(pdev, buffer_info->dma,
1215                                 buffer_info->length, PCI_DMA_TODEVICE);
1216                         buffer_info->dma = 0;
1217                 }
1218         }
1219
1220         for (i = 0; i < tpd_ring->count; i++) {
1221                 buffer_info = &tpd_ring->buffer_info[i];
1222                 if (buffer_info->skb) {
1223                         dev_kfree_skb_any(buffer_info->skb);
1224                         buffer_info->skb = NULL;
1225                 }
1226         }
1227
1228         size = sizeof(struct atl1_buffer) * tpd_ring->count;
1229         memset(tpd_ring->buffer_info, 0, size);
1230
1231         /* Zero out the descriptor ring */
1232         memset(tpd_ring->desc, 0, tpd_ring->size);
1233
1234         atomic_set(&tpd_ring->next_to_use, 0);
1235         atomic_set(&tpd_ring->next_to_clean, 0);
1236 }
1237
1238 /*
1239  * atl1_free_ring_resources - Free Tx / RX descriptor Resources
1240  * @adapter: board private structure
1241  *
1242  * Free all transmit software resources
1243  */
1244 static void atl1_free_ring_resources(struct atl1_adapter *adapter)
1245 {
1246         struct pci_dev *pdev = adapter->pdev;
1247         struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1248         struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1249         struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1250         struct atl1_ring_header *ring_header = &adapter->ring_header;
1251
1252         atl1_clean_tx_ring(adapter);
1253         atl1_clean_rx_ring(adapter);
1254
1255         kfree(tpd_ring->buffer_info);
1256         pci_free_consistent(pdev, ring_header->size, ring_header->desc,
1257                 ring_header->dma);
1258
1259         tpd_ring->buffer_info = NULL;
1260         tpd_ring->desc = NULL;
1261         tpd_ring->dma = 0;
1262
1263         rfd_ring->buffer_info = NULL;
1264         rfd_ring->desc = NULL;
1265         rfd_ring->dma = 0;
1266
1267         rrd_ring->desc = NULL;
1268         rrd_ring->dma = 0;
1269 }
1270
1271 static void atl1_setup_mac_ctrl(struct atl1_adapter *adapter)
1272 {
1273         u32 value;
1274         struct atl1_hw *hw = &adapter->hw;
1275         struct net_device *netdev = adapter->netdev;
1276         /* Config MAC CTRL Register */
1277         value = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN;
1278         /* duplex */
1279         if (FULL_DUPLEX == adapter->link_duplex)
1280                 value |= MAC_CTRL_DUPLX;
1281         /* speed */
1282         value |= ((u32) ((SPEED_1000 == adapter->link_speed) ?
1283                          MAC_CTRL_SPEED_1000 : MAC_CTRL_SPEED_10_100) <<
1284                   MAC_CTRL_SPEED_SHIFT);
1285         /* flow control */
1286         value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW);
1287         /* PAD & CRC */
1288         value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
1289         /* preamble length */
1290         value |= (((u32) adapter->hw.preamble_len
1291                    & MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
1292         /* vlan */
1293         if (adapter->vlgrp)
1294                 value |= MAC_CTRL_RMV_VLAN;
1295         /* rx checksum
1296            if (adapter->rx_csum)
1297            value |= MAC_CTRL_RX_CHKSUM_EN;
1298          */
1299         /* filter mode */
1300         value |= MAC_CTRL_BC_EN;
1301         if (netdev->flags & IFF_PROMISC)
1302                 value |= MAC_CTRL_PROMIS_EN;
1303         else if (netdev->flags & IFF_ALLMULTI)
1304                 value |= MAC_CTRL_MC_ALL_EN;
1305         /* value |= MAC_CTRL_LOOPBACK; */
1306         iowrite32(value, hw->hw_addr + REG_MAC_CTRL);
1307 }
1308
1309 static u32 atl1_check_link(struct atl1_adapter *adapter)
1310 {
1311         struct atl1_hw *hw = &adapter->hw;
1312         struct net_device *netdev = adapter->netdev;
1313         u32 ret_val;
1314         u16 speed, duplex, phy_data;
1315         int reconfig = 0;
1316
1317         /* MII_BMSR must read twice */
1318         atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
1319         atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
1320         if (!(phy_data & BMSR_LSTATUS)) {
1321                 /* link down */
1322                 if (netif_carrier_ok(netdev)) {
1323                         /* old link state: Up */
1324                         if (netif_msg_link(adapter))
1325                                 dev_info(&adapter->pdev->dev, "link is down\n");
1326                         adapter->link_speed = SPEED_0;
1327                         netif_carrier_off(netdev);
1328                         netif_stop_queue(netdev);
1329                 }
1330                 return 0;
1331         }
1332
1333         /* Link Up */
1334         ret_val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
1335         if (ret_val)
1336                 return ret_val;
1337
1338         switch (hw->media_type) {
1339         case MEDIA_TYPE_1000M_FULL:
1340                 if (speed != SPEED_1000 || duplex != FULL_DUPLEX)
1341                         reconfig = 1;
1342                 break;
1343         case MEDIA_TYPE_100M_FULL:
1344                 if (speed != SPEED_100 || duplex != FULL_DUPLEX)
1345                         reconfig = 1;
1346                 break;
1347         case MEDIA_TYPE_100M_HALF:
1348                 if (speed != SPEED_100 || duplex != HALF_DUPLEX)
1349                         reconfig = 1;
1350                 break;
1351         case MEDIA_TYPE_10M_FULL:
1352                 if (speed != SPEED_10 || duplex != FULL_DUPLEX)
1353                         reconfig = 1;
1354                 break;
1355         case MEDIA_TYPE_10M_HALF:
1356                 if (speed != SPEED_10 || duplex != HALF_DUPLEX)
1357                         reconfig = 1;
1358                 break;
1359         }
1360
1361         /* link result is our setting */
1362         if (!reconfig) {
1363                 if (adapter->link_speed != speed
1364                     || adapter->link_duplex != duplex) {
1365                         adapter->link_speed = speed;
1366                         adapter->link_duplex = duplex;
1367                         atl1_setup_mac_ctrl(adapter);
1368                         if (netif_msg_link(adapter))
1369                                 dev_info(&adapter->pdev->dev,
1370                                         "%s link is up %d Mbps %s\n",
1371                                         netdev->name, adapter->link_speed,
1372                                         adapter->link_duplex == FULL_DUPLEX ?
1373                                         "full duplex" : "half duplex");
1374                 }
1375                 if (!netif_carrier_ok(netdev)) {
1376                         /* Link down -> Up */
1377                         netif_carrier_on(netdev);
1378                         netif_wake_queue(netdev);
1379                 }
1380                 return 0;
1381         }
1382
1383         /* change original link status */
1384         if (netif_carrier_ok(netdev)) {
1385                 adapter->link_speed = SPEED_0;
1386                 netif_carrier_off(netdev);
1387                 netif_stop_queue(netdev);
1388         }
1389
1390         if (hw->media_type != MEDIA_TYPE_AUTO_SENSOR &&
1391             hw->media_type != MEDIA_TYPE_1000M_FULL) {
1392                 switch (hw->media_type) {
1393                 case MEDIA_TYPE_100M_FULL:
1394                         phy_data = MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
1395                                    MII_CR_RESET;
1396                         break;
1397                 case MEDIA_TYPE_100M_HALF:
1398                         phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
1399                         break;
1400                 case MEDIA_TYPE_10M_FULL:
1401                         phy_data =
1402                             MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
1403                         break;
1404                 default:
1405                         /* MEDIA_TYPE_10M_HALF: */
1406                         phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
1407                         break;
1408                 }
1409                 atl1_write_phy_reg(hw, MII_BMCR, phy_data);
1410                 return 0;
1411         }
1412
1413         /* auto-neg, insert timer to re-config phy */
1414         if (!adapter->phy_timer_pending) {
1415                 adapter->phy_timer_pending = true;
1416                 mod_timer(&adapter->phy_config_timer, jiffies + 3 * HZ);
1417         }
1418
1419         return 0;
1420 }
1421
1422 static void set_flow_ctrl_old(struct atl1_adapter *adapter)
1423 {
1424         u32 hi, lo, value;
1425
1426         /* RFD Flow Control */
1427         value = adapter->rfd_ring.count;
1428         hi = value / 16;
1429         if (hi < 2)
1430                 hi = 2;
1431         lo = value * 7 / 8;
1432
1433         value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
1434                 ((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
1435         iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
1436
1437         /* RRD Flow Control */
1438         value = adapter->rrd_ring.count;
1439         lo = value / 16;
1440         hi = value * 7 / 8;
1441         if (lo < 2)
1442                 lo = 2;
1443         value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
1444                 ((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
1445         iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
1446 }
1447
1448 static void set_flow_ctrl_new(struct atl1_hw *hw)
1449 {
1450         u32 hi, lo, value;
1451
1452         /* RXF Flow Control */
1453         value = ioread32(hw->hw_addr + REG_SRAM_RXF_LEN);
1454         lo = value / 16;
1455         if (lo < 192)
1456                 lo = 192;
1457         hi = value * 7 / 8;
1458         if (hi < lo)
1459                 hi = lo + 16;
1460         value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
1461                 ((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
1462         iowrite32(value, hw->hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
1463
1464         /* RRD Flow Control */
1465         value = ioread32(hw->hw_addr + REG_SRAM_RRD_LEN);
1466         lo = value / 8;
1467         hi = value * 7 / 8;
1468         if (lo < 2)
1469                 lo = 2;
1470         if (hi < lo)
1471                 hi = lo + 3;
1472         value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
1473                 ((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
1474         iowrite32(value, hw->hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
1475 }
1476
1477 /*
1478  * atl1_configure - Configure Transmit&Receive Unit after Reset
1479  * @adapter: board private structure
1480  *
1481  * Configure the Tx /Rx unit of the MAC after a reset.
1482  */
1483 static u32 atl1_configure(struct atl1_adapter *adapter)
1484 {
1485         struct atl1_hw *hw = &adapter->hw;
1486         u32 value;
1487
1488         /* clear interrupt status */
1489         iowrite32(0xffffffff, adapter->hw.hw_addr + REG_ISR);
1490
1491         /* set MAC Address */
1492         value = (((u32) hw->mac_addr[2]) << 24) |
1493                 (((u32) hw->mac_addr[3]) << 16) |
1494                 (((u32) hw->mac_addr[4]) << 8) |
1495                 (((u32) hw->mac_addr[5]));
1496         iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
1497         value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
1498         iowrite32(value, hw->hw_addr + (REG_MAC_STA_ADDR + 4));
1499
1500         /* tx / rx ring */
1501
1502         /* HI base address */
1503         iowrite32((u32) ((adapter->tpd_ring.dma & 0xffffffff00000000ULL) >> 32),
1504                 hw->hw_addr + REG_DESC_BASE_ADDR_HI);
1505         /* LO base address */
1506         iowrite32((u32) (adapter->rfd_ring.dma & 0x00000000ffffffffULL),
1507                 hw->hw_addr + REG_DESC_RFD_ADDR_LO);
1508         iowrite32((u32) (adapter->rrd_ring.dma & 0x00000000ffffffffULL),
1509                 hw->hw_addr + REG_DESC_RRD_ADDR_LO);
1510         iowrite32((u32) (adapter->tpd_ring.dma & 0x00000000ffffffffULL),
1511                 hw->hw_addr + REG_DESC_TPD_ADDR_LO);
1512         iowrite32((u32) (adapter->cmb.dma & 0x00000000ffffffffULL),
1513                 hw->hw_addr + REG_DESC_CMB_ADDR_LO);
1514         iowrite32((u32) (adapter->smb.dma & 0x00000000ffffffffULL),
1515                 hw->hw_addr + REG_DESC_SMB_ADDR_LO);
1516
1517         /* element count */
1518         value = adapter->rrd_ring.count;
1519         value <<= 16;
1520         value += adapter->rfd_ring.count;
1521         iowrite32(value, hw->hw_addr + REG_DESC_RFD_RRD_RING_SIZE);
1522         iowrite32(adapter->tpd_ring.count, hw->hw_addr +
1523                 REG_DESC_TPD_RING_SIZE);
1524
1525         /* Load Ptr */
1526         iowrite32(1, hw->hw_addr + REG_LOAD_PTR);
1527
1528         /* config Mailbox */
1529         value = ((atomic_read(&adapter->tpd_ring.next_to_use)
1530                   & MB_TPD_PROD_INDX_MASK) << MB_TPD_PROD_INDX_SHIFT) |
1531                 ((atomic_read(&adapter->rrd_ring.next_to_clean)
1532                 & MB_RRD_CONS_INDX_MASK) << MB_RRD_CONS_INDX_SHIFT) |
1533                 ((atomic_read(&adapter->rfd_ring.next_to_use)
1534                 & MB_RFD_PROD_INDX_MASK) << MB_RFD_PROD_INDX_SHIFT);
1535         iowrite32(value, hw->hw_addr + REG_MAILBOX);
1536
1537         /* config IPG/IFG */
1538         value = (((u32) hw->ipgt & MAC_IPG_IFG_IPGT_MASK)
1539                  << MAC_IPG_IFG_IPGT_SHIFT) |
1540                 (((u32) hw->min_ifg & MAC_IPG_IFG_MIFG_MASK)
1541                 << MAC_IPG_IFG_MIFG_SHIFT) |
1542                 (((u32) hw->ipgr1 & MAC_IPG_IFG_IPGR1_MASK)
1543                 << MAC_IPG_IFG_IPGR1_SHIFT) |
1544                 (((u32) hw->ipgr2 & MAC_IPG_IFG_IPGR2_MASK)
1545                 << MAC_IPG_IFG_IPGR2_SHIFT);
1546         iowrite32(value, hw->hw_addr + REG_MAC_IPG_IFG);
1547
1548         /* config  Half-Duplex Control */
1549         value = ((u32) hw->lcol & MAC_HALF_DUPLX_CTRL_LCOL_MASK) |
1550                 (((u32) hw->max_retry & MAC_HALF_DUPLX_CTRL_RETRY_MASK)
1551                 << MAC_HALF_DUPLX_CTRL_RETRY_SHIFT) |
1552                 MAC_HALF_DUPLX_CTRL_EXC_DEF_EN |
1553                 (0xa << MAC_HALF_DUPLX_CTRL_ABEBT_SHIFT) |
1554                 (((u32) hw->jam_ipg & MAC_HALF_DUPLX_CTRL_JAMIPG_MASK)
1555                 << MAC_HALF_DUPLX_CTRL_JAMIPG_SHIFT);
1556         iowrite32(value, hw->hw_addr + REG_MAC_HALF_DUPLX_CTRL);
1557
1558         /* set Interrupt Moderator Timer */
1559         iowrite16(adapter->imt, hw->hw_addr + REG_IRQ_MODU_TIMER_INIT);
1560         iowrite32(MASTER_CTRL_ITIMER_EN, hw->hw_addr + REG_MASTER_CTRL);
1561
1562         /* set Interrupt Clear Timer */
1563         iowrite16(adapter->ict, hw->hw_addr + REG_CMBDISDMA_TIMER);
1564
1565         /* set max frame size hw will accept */
1566         iowrite32(hw->max_frame_size, hw->hw_addr + REG_MTU);
1567
1568         /* jumbo size & rrd retirement timer */
1569         value = (((u32) hw->rx_jumbo_th & RXQ_JMBOSZ_TH_MASK)
1570                  << RXQ_JMBOSZ_TH_SHIFT) |
1571                 (((u32) hw->rx_jumbo_lkah & RXQ_JMBO_LKAH_MASK)
1572                 << RXQ_JMBO_LKAH_SHIFT) |
1573                 (((u32) hw->rrd_ret_timer & RXQ_RRD_TIMER_MASK)
1574                 << RXQ_RRD_TIMER_SHIFT);
1575         iowrite32(value, hw->hw_addr + REG_RXQ_JMBOSZ_RRDTIM);
1576
1577         /* Flow Control */
1578         switch (hw->dev_rev) {
1579         case 0x8001:
1580         case 0x9001:
1581         case 0x9002:
1582         case 0x9003:
1583                 set_flow_ctrl_old(adapter);
1584                 break;
1585         default:
1586                 set_flow_ctrl_new(hw);
1587                 break;
1588         }
1589
1590         /* config TXQ */
1591         value = (((u32) hw->tpd_burst & TXQ_CTRL_TPD_BURST_NUM_MASK)
1592                  << TXQ_CTRL_TPD_BURST_NUM_SHIFT) |
1593                 (((u32) hw->txf_burst & TXQ_CTRL_TXF_BURST_NUM_MASK)
1594                 << TXQ_CTRL_TXF_BURST_NUM_SHIFT) |
1595                 (((u32) hw->tpd_fetch_th & TXQ_CTRL_TPD_FETCH_TH_MASK)
1596                 << TXQ_CTRL_TPD_FETCH_TH_SHIFT) | TXQ_CTRL_ENH_MODE |
1597                 TXQ_CTRL_EN;
1598         iowrite32(value, hw->hw_addr + REG_TXQ_CTRL);
1599
1600         /* min tpd fetch gap & tx jumbo packet size threshold for taskoffload */
1601         value = (((u32) hw->tx_jumbo_task_th & TX_JUMBO_TASK_TH_MASK)
1602                 << TX_JUMBO_TASK_TH_SHIFT) |
1603                 (((u32) hw->tpd_fetch_gap & TX_TPD_MIN_IPG_MASK)
1604                 << TX_TPD_MIN_IPG_SHIFT);
1605         iowrite32(value, hw->hw_addr + REG_TX_JUMBO_TASK_TH_TPD_IPG);
1606
1607         /* config RXQ */
1608         value = (((u32) hw->rfd_burst & RXQ_CTRL_RFD_BURST_NUM_MASK)
1609                 << RXQ_CTRL_RFD_BURST_NUM_SHIFT) |
1610                 (((u32) hw->rrd_burst & RXQ_CTRL_RRD_BURST_THRESH_MASK)
1611                 << RXQ_CTRL_RRD_BURST_THRESH_SHIFT) |
1612                 (((u32) hw->rfd_fetch_gap & RXQ_CTRL_RFD_PREF_MIN_IPG_MASK)
1613                 << RXQ_CTRL_RFD_PREF_MIN_IPG_SHIFT) | RXQ_CTRL_CUT_THRU_EN |
1614                 RXQ_CTRL_EN;
1615         iowrite32(value, hw->hw_addr + REG_RXQ_CTRL);
1616
1617         /* config DMA Engine */
1618         value = ((((u32) hw->dmar_block) & DMA_CTRL_DMAR_BURST_LEN_MASK)
1619                 << DMA_CTRL_DMAR_BURST_LEN_SHIFT) |
1620                 ((((u32) hw->dmaw_block) & DMA_CTRL_DMAW_BURST_LEN_MASK)
1621                 << DMA_CTRL_DMAW_BURST_LEN_SHIFT) | DMA_CTRL_DMAR_EN |
1622                 DMA_CTRL_DMAW_EN;
1623         value |= (u32) hw->dma_ord;
1624         if (atl1_rcb_128 == hw->rcb_value)
1625                 value |= DMA_CTRL_RCB_VALUE;
1626         iowrite32(value, hw->hw_addr + REG_DMA_CTRL);
1627
1628         /* config CMB / SMB */
1629         value = (hw->cmb_tpd > adapter->tpd_ring.count) ?
1630                 hw->cmb_tpd : adapter->tpd_ring.count;
1631         value <<= 16;
1632         value |= hw->cmb_rrd;
1633         iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TH);
1634         value = hw->cmb_rx_timer | ((u32) hw->cmb_tx_timer << 16);
1635         iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TIMER);
1636         iowrite32(hw->smb_timer, hw->hw_addr + REG_SMB_TIMER);
1637
1638         /* --- enable CMB / SMB */
1639         value = CSMB_CTRL_CMB_EN | CSMB_CTRL_SMB_EN;
1640         iowrite32(value, hw->hw_addr + REG_CSMB_CTRL);
1641
1642         value = ioread32(adapter->hw.hw_addr + REG_ISR);
1643         if (unlikely((value & ISR_PHY_LINKDOWN) != 0))
1644                 value = 1;      /* config failed */
1645         else
1646                 value = 0;
1647
1648         /* clear all interrupt status */
1649         iowrite32(0x3fffffff, adapter->hw.hw_addr + REG_ISR);
1650         iowrite32(0, adapter->hw.hw_addr + REG_ISR);
1651         return value;
1652 }
1653
1654 /*
1655  * atl1_pcie_patch - Patch for PCIE module
1656  */
1657 static void atl1_pcie_patch(struct atl1_adapter *adapter)
1658 {
1659         u32 value;
1660
1661         /* much vendor magic here */
1662         value = 0x6500;
1663         iowrite32(value, adapter->hw.hw_addr + 0x12FC);
1664         /* pcie flow control mode change */
1665         value = ioread32(adapter->hw.hw_addr + 0x1008);
1666         value |= 0x8000;
1667         iowrite32(value, adapter->hw.hw_addr + 0x1008);
1668 }
1669
1670 /*
1671  * When ACPI resume on some VIA MotherBoard, the Interrupt Disable bit/0x400
1672  * on PCI Command register is disable.
1673  * The function enable this bit.
1674  * Brackett, 2006/03/15
1675  */
1676 static void atl1_via_workaround(struct atl1_adapter *adapter)
1677 {
1678         unsigned long value;
1679
1680         value = ioread16(adapter->hw.hw_addr + PCI_COMMAND);
1681         if (value & PCI_COMMAND_INTX_DISABLE)
1682                 value &= ~PCI_COMMAND_INTX_DISABLE;
1683         iowrite32(value, adapter->hw.hw_addr + PCI_COMMAND);
1684 }
1685
1686 static void atl1_inc_smb(struct atl1_adapter *adapter)
1687 {
1688         struct stats_msg_block *smb = adapter->smb.smb;
1689
1690         /* Fill out the OS statistics structure */
1691         adapter->soft_stats.rx_packets += smb->rx_ok;
1692         adapter->soft_stats.tx_packets += smb->tx_ok;
1693         adapter->soft_stats.rx_bytes += smb->rx_byte_cnt;
1694         adapter->soft_stats.tx_bytes += smb->tx_byte_cnt;
1695         adapter->soft_stats.multicast += smb->rx_mcast;
1696         adapter->soft_stats.collisions += (smb->tx_1_col + smb->tx_2_col * 2 +
1697                 smb->tx_late_col + smb->tx_abort_col * adapter->hw.max_retry);
1698
1699         /* Rx Errors */
1700         adapter->soft_stats.rx_errors += (smb->rx_frag + smb->rx_fcs_err +
1701                 smb->rx_len_err + smb->rx_sz_ov + smb->rx_rxf_ov +
1702                 smb->rx_rrd_ov + smb->rx_align_err);
1703         adapter->soft_stats.rx_fifo_errors += smb->rx_rxf_ov;
1704         adapter->soft_stats.rx_length_errors += smb->rx_len_err;
1705         adapter->soft_stats.rx_crc_errors += smb->rx_fcs_err;
1706         adapter->soft_stats.rx_frame_errors += smb->rx_align_err;
1707         adapter->soft_stats.rx_missed_errors += (smb->rx_rrd_ov +
1708                 smb->rx_rxf_ov);
1709
1710         adapter->soft_stats.rx_pause += smb->rx_pause;
1711         adapter->soft_stats.rx_rrd_ov += smb->rx_rrd_ov;
1712         adapter->soft_stats.rx_trunc += smb->rx_sz_ov;
1713
1714         /* Tx Errors */
1715         adapter->soft_stats.tx_errors += (smb->tx_late_col +
1716                 smb->tx_abort_col + smb->tx_underrun + smb->tx_trunc);
1717         adapter->soft_stats.tx_fifo_errors += smb->tx_underrun;
1718         adapter->soft_stats.tx_aborted_errors += smb->tx_abort_col;
1719         adapter->soft_stats.tx_window_errors += smb->tx_late_col;
1720
1721         adapter->soft_stats.excecol += smb->tx_abort_col;
1722         adapter->soft_stats.deffer += smb->tx_defer;
1723         adapter->soft_stats.scc += smb->tx_1_col;
1724         adapter->soft_stats.mcc += smb->tx_2_col;
1725         adapter->soft_stats.latecol += smb->tx_late_col;
1726         adapter->soft_stats.tx_underun += smb->tx_underrun;
1727         adapter->soft_stats.tx_trunc += smb->tx_trunc;
1728         adapter->soft_stats.tx_pause += smb->tx_pause;
1729
1730         adapter->net_stats.rx_packets = adapter->soft_stats.rx_packets;
1731         adapter->net_stats.tx_packets = adapter->soft_stats.tx_packets;
1732         adapter->net_stats.rx_bytes = adapter->soft_stats.rx_bytes;
1733         adapter->net_stats.tx_bytes = adapter->soft_stats.tx_bytes;
1734         adapter->net_stats.multicast = adapter->soft_stats.multicast;
1735         adapter->net_stats.collisions = adapter->soft_stats.collisions;
1736         adapter->net_stats.rx_errors = adapter->soft_stats.rx_errors;
1737         adapter->net_stats.rx_over_errors =
1738                 adapter->soft_stats.rx_missed_errors;
1739         adapter->net_stats.rx_length_errors =
1740                 adapter->soft_stats.rx_length_errors;
1741         adapter->net_stats.rx_crc_errors = adapter->soft_stats.rx_crc_errors;
1742         adapter->net_stats.rx_frame_errors =
1743                 adapter->soft_stats.rx_frame_errors;
1744         adapter->net_stats.rx_fifo_errors = adapter->soft_stats.rx_fifo_errors;
1745         adapter->net_stats.rx_missed_errors =
1746                 adapter->soft_stats.rx_missed_errors;
1747         adapter->net_stats.tx_errors = adapter->soft_stats.tx_errors;
1748         adapter->net_stats.tx_fifo_errors = adapter->soft_stats.tx_fifo_errors;
1749         adapter->net_stats.tx_aborted_errors =
1750                 adapter->soft_stats.tx_aborted_errors;
1751         adapter->net_stats.tx_window_errors =
1752                 adapter->soft_stats.tx_window_errors;
1753         adapter->net_stats.tx_carrier_errors =
1754                 adapter->soft_stats.tx_carrier_errors;
1755 }
1756
1757 static void atl1_update_mailbox(struct atl1_adapter *adapter)
1758 {
1759         unsigned long flags;
1760         u32 tpd_next_to_use;
1761         u32 rfd_next_to_use;
1762         u32 rrd_next_to_clean;
1763         u32 value;
1764
1765         spin_lock_irqsave(&adapter->mb_lock, flags);
1766
1767         tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
1768         rfd_next_to_use = atomic_read(&adapter->rfd_ring.next_to_use);
1769         rrd_next_to_clean = atomic_read(&adapter->rrd_ring.next_to_clean);
1770
1771         value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
1772                 MB_RFD_PROD_INDX_SHIFT) |
1773                 ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
1774                 MB_RRD_CONS_INDX_SHIFT) |
1775                 ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
1776                 MB_TPD_PROD_INDX_SHIFT);
1777         iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
1778
1779         spin_unlock_irqrestore(&adapter->mb_lock, flags);
1780 }
1781
1782 static void atl1_clean_alloc_flag(struct atl1_adapter *adapter,
1783         struct rx_return_desc *rrd, u16 offset)
1784 {
1785         struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1786
1787         while (rfd_ring->next_to_clean != (rrd->buf_indx + offset)) {
1788                 rfd_ring->buffer_info[rfd_ring->next_to_clean].alloced = 0;
1789                 if (++rfd_ring->next_to_clean == rfd_ring->count) {
1790                         rfd_ring->next_to_clean = 0;
1791                 }
1792         }
1793 }
1794
1795 static void atl1_update_rfd_index(struct atl1_adapter *adapter,
1796         struct rx_return_desc *rrd)
1797 {
1798         u16 num_buf;
1799
1800         num_buf = (rrd->xsz.xsum_sz.pkt_size + adapter->rx_buffer_len - 1) /
1801                 adapter->rx_buffer_len;
1802         if (rrd->num_buf == num_buf)
1803                 /* clean alloc flag for bad rrd */
1804                 atl1_clean_alloc_flag(adapter, rrd, num_buf);
1805 }
1806
1807 static void atl1_rx_checksum(struct atl1_adapter *adapter,
1808         struct rx_return_desc *rrd, struct sk_buff *skb)
1809 {
1810         struct pci_dev *pdev = adapter->pdev;
1811
1812         skb->ip_summed = CHECKSUM_NONE;
1813
1814         if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
1815                 if (rrd->err_flg & (ERR_FLAG_CRC | ERR_FLAG_TRUNC |
1816                                         ERR_FLAG_CODE | ERR_FLAG_OV)) {
1817                         adapter->hw_csum_err++;
1818                         if (netif_msg_rx_err(adapter))
1819                                 dev_printk(KERN_DEBUG, &pdev->dev,
1820                                         "rx checksum error\n");
1821                         return;
1822                 }
1823         }
1824
1825         /* not IPv4 */
1826         if (!(rrd->pkt_flg & PACKET_FLAG_IPV4))
1827                 /* checksum is invalid, but it's not an IPv4 pkt, so ok */
1828                 return;
1829
1830         /* IPv4 packet */
1831         if (likely(!(rrd->err_flg &
1832                 (ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM)))) {
1833                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1834                 adapter->hw_csum_good++;
1835                 return;
1836         }
1837
1838         /* IPv4, but hardware thinks its checksum is wrong */
1839         if (netif_msg_rx_err(adapter))
1840                 dev_printk(KERN_DEBUG, &pdev->dev,
1841                         "hw csum wrong, pkt_flag:%x, err_flag:%x\n",
1842                         rrd->pkt_flg, rrd->err_flg);
1843         skb->ip_summed = CHECKSUM_COMPLETE;
1844         skb->csum = htons(rrd->xsz.xsum_sz.rx_chksum);
1845         adapter->hw_csum_err++;
1846         return;
1847 }
1848
1849 /*
1850  * atl1_alloc_rx_buffers - Replace used receive buffers
1851  * @adapter: address of board private structure
1852  */
1853 static u16 atl1_alloc_rx_buffers(struct atl1_adapter *adapter)
1854 {
1855         struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1856         struct pci_dev *pdev = adapter->pdev;
1857         struct page *page;
1858         unsigned long offset;
1859         struct atl1_buffer *buffer_info, *next_info;
1860         struct sk_buff *skb;
1861         u16 num_alloc = 0;
1862         u16 rfd_next_to_use, next_next;
1863         struct rx_free_desc *rfd_desc;
1864
1865         next_next = rfd_next_to_use = atomic_read(&rfd_ring->next_to_use);
1866         if (++next_next == rfd_ring->count)
1867                 next_next = 0;
1868         buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
1869         next_info = &rfd_ring->buffer_info[next_next];
1870
1871         while (!buffer_info->alloced && !next_info->alloced) {
1872                 if (buffer_info->skb) {
1873                         buffer_info->alloced = 1;
1874                         goto next;
1875                 }
1876
1877                 rfd_desc = ATL1_RFD_DESC(rfd_ring, rfd_next_to_use);
1878
1879                 skb = netdev_alloc_skb(adapter->netdev,
1880                                        adapter->rx_buffer_len + NET_IP_ALIGN);
1881                 if (unlikely(!skb)) {
1882                         /* Better luck next round */
1883                         adapter->net_stats.rx_dropped++;
1884                         break;
1885                 }
1886
1887                 /*
1888                  * Make buffer alignment 2 beyond a 16 byte boundary
1889                  * this will result in a 16 byte aligned IP header after
1890                  * the 14 byte MAC header is removed
1891                  */
1892                 skb_reserve(skb, NET_IP_ALIGN);
1893
1894                 buffer_info->alloced = 1;
1895                 buffer_info->skb = skb;
1896                 buffer_info->length = (u16) adapter->rx_buffer_len;
1897                 page = virt_to_page(skb->data);
1898                 offset = (unsigned long)skb->data & ~PAGE_MASK;
1899                 buffer_info->dma = pci_map_page(pdev, page, offset,
1900                                                 adapter->rx_buffer_len,
1901                                                 PCI_DMA_FROMDEVICE);
1902                 rfd_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
1903                 rfd_desc->buf_len = cpu_to_le16(adapter->rx_buffer_len);
1904                 rfd_desc->coalese = 0;
1905
1906 next:
1907                 rfd_next_to_use = next_next;
1908                 if (unlikely(++next_next == rfd_ring->count))
1909                         next_next = 0;
1910
1911                 buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
1912                 next_info = &rfd_ring->buffer_info[next_next];
1913                 num_alloc++;
1914         }
1915
1916         if (num_alloc) {
1917                 /*
1918                  * Force memory writes to complete before letting h/w
1919                  * know there are new descriptors to fetch.  (Only
1920                  * applicable for weak-ordered memory model archs,
1921                  * such as IA-64).
1922                  */
1923                 wmb();
1924                 atomic_set(&rfd_ring->next_to_use, (int)rfd_next_to_use);
1925         }
1926         return num_alloc;
1927 }
1928
1929 static void atl1_intr_rx(struct atl1_adapter *adapter)
1930 {
1931         int i, count;
1932         u16 length;
1933         u16 rrd_next_to_clean;
1934         u32 value;
1935         struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1936         struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1937         struct atl1_buffer *buffer_info;
1938         struct rx_return_desc *rrd;
1939         struct sk_buff *skb;
1940
1941         count = 0;
1942
1943         rrd_next_to_clean = atomic_read(&rrd_ring->next_to_clean);
1944
1945         while (1) {
1946                 rrd = ATL1_RRD_DESC(rrd_ring, rrd_next_to_clean);
1947                 i = 1;
1948                 if (likely(rrd->xsz.valid)) {   /* packet valid */
1949 chk_rrd:
1950                         /* check rrd status */
1951                         if (likely(rrd->num_buf == 1))
1952                                 goto rrd_ok;
1953                         else if (netif_msg_rx_err(adapter)) {
1954                                 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1955                                         "unexpected RRD buffer count\n");
1956                                 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1957                                         "rx_buf_len = %d\n",
1958                                         adapter->rx_buffer_len);
1959                                 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1960                                         "RRD num_buf = %d\n",
1961                                         rrd->num_buf);
1962                                 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1963                                         "RRD pkt_len = %d\n",
1964                                         rrd->xsz.xsum_sz.pkt_size);
1965                                 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1966                                         "RRD pkt_flg = 0x%08X\n",
1967                                         rrd->pkt_flg);
1968                                 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1969                                         "RRD err_flg = 0x%08X\n",
1970                                         rrd->err_flg);
1971                                 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1972                                         "RRD vlan_tag = 0x%08X\n",
1973                                         rrd->vlan_tag);
1974                         }
1975
1976                         /* rrd seems to be bad */
1977                         if (unlikely(i-- > 0)) {
1978                                 /* rrd may not be DMAed completely */
1979                                 udelay(1);
1980                                 goto chk_rrd;
1981                         }
1982                         /* bad rrd */
1983                         if (netif_msg_rx_err(adapter))
1984                                 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1985                                         "bad RRD\n");
1986                         /* see if update RFD index */
1987                         if (rrd->num_buf > 1)
1988                                 atl1_update_rfd_index(adapter, rrd);
1989
1990                         /* update rrd */
1991                         rrd->xsz.valid = 0;
1992                         if (++rrd_next_to_clean == rrd_ring->count)
1993                                 rrd_next_to_clean = 0;
1994                         count++;
1995                         continue;
1996                 } else {        /* current rrd still not be updated */
1997
1998                         break;
1999                 }
2000 rrd_ok:
2001                 /* clean alloc flag for bad rrd */
2002                 atl1_clean_alloc_flag(adapter, rrd, 0);
2003
2004                 buffer_info = &rfd_ring->buffer_info[rrd->buf_indx];
2005                 if (++rfd_ring->next_to_clean == rfd_ring->count)
2006                         rfd_ring->next_to_clean = 0;
2007
2008                 /* update rrd next to clean */
2009                 if (++rrd_next_to_clean == rrd_ring->count)
2010                         rrd_next_to_clean = 0;
2011                 count++;
2012
2013                 if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
2014                         if (!(rrd->err_flg &
2015                                 (ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM
2016                                 | ERR_FLAG_LEN))) {
2017                                 /* packet error, don't need upstream */
2018                                 buffer_info->alloced = 0;
2019                                 rrd->xsz.valid = 0;
2020                                 continue;
2021                         }
2022                 }
2023
2024                 /* Good Receive */
2025                 pci_unmap_page(adapter->pdev, buffer_info->dma,
2026                                buffer_info->length, PCI_DMA_FROMDEVICE);
2027                 skb = buffer_info->skb;
2028                 length = le16_to_cpu(rrd->xsz.xsum_sz.pkt_size);
2029
2030                 skb_put(skb, length - ETH_FCS_LEN);
2031
2032                 /* Receive Checksum Offload */
2033                 atl1_rx_checksum(adapter, rrd, skb);
2034                 skb->protocol = eth_type_trans(skb, adapter->netdev);
2035
2036                 if (adapter->vlgrp && (rrd->pkt_flg & PACKET_FLAG_VLAN_INS)) {
2037                         u16 vlan_tag = (rrd->vlan_tag >> 4) |
2038                                         ((rrd->vlan_tag & 7) << 13) |
2039                                         ((rrd->vlan_tag & 8) << 9);
2040                         vlan_hwaccel_rx(skb, adapter->vlgrp, vlan_tag);
2041                 } else
2042                         netif_rx(skb);
2043
2044                 /* let protocol layer free skb */
2045                 buffer_info->skb = NULL;
2046                 buffer_info->alloced = 0;
2047                 rrd->xsz.valid = 0;
2048
2049                 adapter->netdev->last_rx = jiffies;
2050         }
2051
2052         atomic_set(&rrd_ring->next_to_clean, rrd_next_to_clean);
2053
2054         atl1_alloc_rx_buffers(adapter);
2055
2056         /* update mailbox ? */
2057         if (count) {
2058                 u32 tpd_next_to_use;
2059                 u32 rfd_next_to_use;
2060
2061                 spin_lock(&adapter->mb_lock);
2062
2063                 tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
2064                 rfd_next_to_use =
2065                     atomic_read(&adapter->rfd_ring.next_to_use);
2066                 rrd_next_to_clean =
2067                     atomic_read(&adapter->rrd_ring.next_to_clean);
2068                 value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
2069                         MB_RFD_PROD_INDX_SHIFT) |
2070                         ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
2071                         MB_RRD_CONS_INDX_SHIFT) |
2072                         ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
2073                         MB_TPD_PROD_INDX_SHIFT);
2074                 iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
2075                 spin_unlock(&adapter->mb_lock);
2076         }
2077 }
2078
2079 static void atl1_intr_tx(struct atl1_adapter *adapter)
2080 {
2081         struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2082         struct atl1_buffer *buffer_info;
2083         u16 sw_tpd_next_to_clean;
2084         u16 cmb_tpd_next_to_clean;
2085
2086         sw_tpd_next_to_clean = atomic_read(&tpd_ring->next_to_clean);
2087         cmb_tpd_next_to_clean = le16_to_cpu(adapter->cmb.cmb->tpd_cons_idx);
2088
2089         while (cmb_tpd_next_to_clean != sw_tpd_next_to_clean) {
2090                 struct tx_packet_desc *tpd;
2091
2092                 tpd = ATL1_TPD_DESC(tpd_ring, sw_tpd_next_to_clean);
2093                 buffer_info = &tpd_ring->buffer_info[sw_tpd_next_to_clean];
2094                 if (buffer_info->dma) {
2095                         pci_unmap_page(adapter->pdev, buffer_info->dma,
2096                                        buffer_info->length, PCI_DMA_TODEVICE);
2097                         buffer_info->dma = 0;
2098                 }
2099
2100                 if (buffer_info->skb) {
2101                         dev_kfree_skb_irq(buffer_info->skb);
2102                         buffer_info->skb = NULL;
2103                 }
2104
2105                 if (++sw_tpd_next_to_clean == tpd_ring->count)
2106                         sw_tpd_next_to_clean = 0;
2107         }
2108         atomic_set(&tpd_ring->next_to_clean, sw_tpd_next_to_clean);
2109
2110         if (netif_queue_stopped(adapter->netdev)
2111             && netif_carrier_ok(adapter->netdev))
2112                 netif_wake_queue(adapter->netdev);
2113 }
2114
2115 static u16 atl1_tpd_avail(struct atl1_tpd_ring *tpd_ring)
2116 {
2117         u16 next_to_clean = atomic_read(&tpd_ring->next_to_clean);
2118         u16 next_to_use = atomic_read(&tpd_ring->next_to_use);
2119         return ((next_to_clean > next_to_use) ?
2120                 next_to_clean - next_to_use - 1 :
2121                 tpd_ring->count + next_to_clean - next_to_use - 1);
2122 }
2123
2124 static int atl1_tso(struct atl1_adapter *adapter, struct sk_buff *skb,
2125         struct tx_packet_desc *ptpd)
2126 {
2127         /* spinlock held */
2128         u8 hdr_len, ip_off;
2129         u32 real_len;
2130         int err;
2131
2132         if (skb_shinfo(skb)->gso_size) {
2133                 if (skb_header_cloned(skb)) {
2134                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2135                         if (unlikely(err))
2136                                 return -1;
2137                 }
2138
2139                 if (skb->protocol == htons(ETH_P_IP)) {
2140                         struct iphdr *iph = ip_hdr(skb);
2141
2142                         real_len = (((unsigned char *)iph - skb->data) +
2143                                 ntohs(iph->tot_len));
2144                         if (real_len < skb->len)
2145                                 pskb_trim(skb, real_len);
2146                         hdr_len = (skb_transport_offset(skb) + tcp_hdrlen(skb));
2147                         if (skb->len == hdr_len) {
2148                                 iph->check = 0;
2149                                 tcp_hdr(skb)->check =
2150                                         ~csum_tcpudp_magic(iph->saddr,
2151                                         iph->daddr, tcp_hdrlen(skb),
2152                                         IPPROTO_TCP, 0);
2153                                 ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
2154                                         TPD_IPHL_SHIFT;
2155                                 ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
2156                                         TPD_TCPHDRLEN_MASK) <<
2157                                         TPD_TCPHDRLEN_SHIFT;
2158                                 ptpd->word3 |= 1 << TPD_IP_CSUM_SHIFT;
2159                                 ptpd->word3 |= 1 << TPD_TCP_CSUM_SHIFT;
2160                                 return 1;
2161                         }
2162
2163                         iph->check = 0;
2164                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2165                                         iph->daddr, 0, IPPROTO_TCP, 0);
2166                         ip_off = (unsigned char *)iph -
2167                                 (unsigned char *) skb_network_header(skb);
2168                         if (ip_off == 8) /* 802.3-SNAP frame */
2169                                 ptpd->word3 |= 1 << TPD_ETHTYPE_SHIFT;
2170                         else if (ip_off != 0)
2171                                 return -2;
2172
2173                         ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
2174                                 TPD_IPHL_SHIFT;
2175                         ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
2176                                 TPD_TCPHDRLEN_MASK) << TPD_TCPHDRLEN_SHIFT;
2177                         ptpd->word3 |= (skb_shinfo(skb)->gso_size &
2178                                 TPD_MSS_MASK) << TPD_MSS_SHIFT;
2179                         ptpd->word3 |= 1 << TPD_SEGMENT_EN_SHIFT;
2180                         return 3;
2181                 }
2182         }
2183         return false;
2184 }
2185
2186 static int atl1_tx_csum(struct atl1_adapter *adapter, struct sk_buff *skb,
2187         struct tx_packet_desc *ptpd)
2188 {
2189         u8 css, cso;
2190
2191         if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2192                 css = (u8) (skb->csum_start - skb_headroom(skb));
2193                 cso = css + (u8) skb->csum_offset;
2194                 if (unlikely(css & 0x1)) {
2195                         /* L1 hardware requires an even number here */
2196                         if (netif_msg_tx_err(adapter))
2197                                 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2198                                         "payload offset not an even number\n");
2199                         return -1;
2200                 }
2201                 ptpd->word3 |= (css & TPD_PLOADOFFSET_MASK) <<
2202                         TPD_PLOADOFFSET_SHIFT;
2203                 ptpd->word3 |= (cso & TPD_CCSUMOFFSET_MASK) <<
2204                         TPD_CCSUMOFFSET_SHIFT;
2205                 ptpd->word3 |= 1 << TPD_CUST_CSUM_EN_SHIFT;
2206                 return true;
2207         }
2208         return 0;
2209 }
2210
2211 static void atl1_tx_map(struct atl1_adapter *adapter, struct sk_buff *skb,
2212         struct tx_packet_desc *ptpd)
2213 {
2214         /* spinlock held */
2215         struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2216         struct atl1_buffer *buffer_info;
2217         u16 buf_len = skb->len;
2218         struct page *page;
2219         unsigned long offset;
2220         unsigned int nr_frags;
2221         unsigned int f;
2222         int retval;
2223         u16 next_to_use;
2224         u16 data_len;
2225         u8 hdr_len;
2226
2227         buf_len -= skb->data_len;
2228         nr_frags = skb_shinfo(skb)->nr_frags;
2229         next_to_use = atomic_read(&tpd_ring->next_to_use);
2230         buffer_info = &tpd_ring->buffer_info[next_to_use];
2231         if (unlikely(buffer_info->skb))
2232                 BUG();
2233         /* put skb in last TPD */
2234         buffer_info->skb = NULL;
2235
2236         retval = (ptpd->word3 >> TPD_SEGMENT_EN_SHIFT) & TPD_SEGMENT_EN_MASK;
2237         if (retval) {
2238                 /* TSO */
2239                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2240                 buffer_info->length = hdr_len;
2241                 page = virt_to_page(skb->data);
2242                 offset = (unsigned long)skb->data & ~PAGE_MASK;
2243                 buffer_info->dma = pci_map_page(adapter->pdev, page,
2244                                                 offset, hdr_len,
2245                                                 PCI_DMA_TODEVICE);
2246
2247                 if (++next_to_use == tpd_ring->count)
2248                         next_to_use = 0;
2249
2250                 if (buf_len > hdr_len) {
2251                         int i, nseg;
2252
2253                         data_len = buf_len - hdr_len;
2254                         nseg = (data_len + ATL1_MAX_TX_BUF_LEN - 1) /
2255                                 ATL1_MAX_TX_BUF_LEN;
2256                         for (i = 0; i < nseg; i++) {
2257                                 buffer_info =
2258                                     &tpd_ring->buffer_info[next_to_use];
2259                                 buffer_info->skb = NULL;
2260                                 buffer_info->length =
2261                                     (ATL1_MAX_TX_BUF_LEN >=
2262                                      data_len) ? ATL1_MAX_TX_BUF_LEN : data_len;
2263                                 data_len -= buffer_info->length;
2264                                 page = virt_to_page(skb->data +
2265                                         (hdr_len + i * ATL1_MAX_TX_BUF_LEN));
2266                                 offset = (unsigned long)(skb->data +
2267                                         (hdr_len + i * ATL1_MAX_TX_BUF_LEN)) &
2268                                         ~PAGE_MASK;
2269                                 buffer_info->dma = pci_map_page(adapter->pdev,
2270                                         page, offset, buffer_info->length,
2271                                         PCI_DMA_TODEVICE);
2272                                 if (++next_to_use == tpd_ring->count)
2273                                         next_to_use = 0;
2274                         }
2275                 }
2276         } else {
2277                 /* not TSO */
2278                 buffer_info->length = buf_len;
2279                 page = virt_to_page(skb->data);
2280                 offset = (unsigned long)skb->data & ~PAGE_MASK;
2281                 buffer_info->dma = pci_map_page(adapter->pdev, page,
2282                         offset, buf_len, PCI_DMA_TODEVICE);
2283                 if (++next_to_use == tpd_ring->count)
2284                         next_to_use = 0;
2285         }
2286
2287         for (f = 0; f < nr_frags; f++) {
2288                 struct skb_frag_struct *frag;
2289                 u16 i, nseg;
2290
2291                 frag = &skb_shinfo(skb)->frags[f];
2292                 buf_len = frag->size;
2293
2294                 nseg = (buf_len + ATL1_MAX_TX_BUF_LEN - 1) /
2295                         ATL1_MAX_TX_BUF_LEN;
2296                 for (i = 0; i < nseg; i++) {
2297                         buffer_info = &tpd_ring->buffer_info[next_to_use];
2298                         if (unlikely(buffer_info->skb))
2299                                 BUG();
2300                         buffer_info->skb = NULL;
2301                         buffer_info->length = (buf_len > ATL1_MAX_TX_BUF_LEN) ?
2302                                 ATL1_MAX_TX_BUF_LEN : buf_len;
2303                         buf_len -= buffer_info->length;
2304                         buffer_info->dma = pci_map_page(adapter->pdev,
2305                                 frag->page,
2306                                 frag->page_offset + (i * ATL1_MAX_TX_BUF_LEN),
2307                                 buffer_info->length, PCI_DMA_TODEVICE);
2308
2309                         if (++next_to_use == tpd_ring->count)
2310                                 next_to_use = 0;
2311                 }
2312         }
2313
2314         /* last tpd's buffer-info */
2315         buffer_info->skb = skb;
2316 }
2317
2318 static void atl1_tx_queue(struct atl1_adapter *adapter, u16 count,
2319        struct tx_packet_desc *ptpd)
2320 {
2321         /* spinlock held */
2322         struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2323         struct atl1_buffer *buffer_info;
2324         struct tx_packet_desc *tpd;
2325         u16 j;
2326         u32 val;
2327         u16 next_to_use = (u16) atomic_read(&tpd_ring->next_to_use);
2328
2329         for (j = 0; j < count; j++) {
2330                 buffer_info = &tpd_ring->buffer_info[next_to_use];
2331                 tpd = ATL1_TPD_DESC(&adapter->tpd_ring, next_to_use);
2332                 if (tpd != ptpd)
2333                         memcpy(tpd, ptpd, sizeof(struct tx_packet_desc));
2334                 tpd->buffer_addr = cpu_to_le64(buffer_info->dma);
2335                 tpd->word2 = (cpu_to_le16(buffer_info->length) &
2336                         TPD_BUFLEN_MASK) << TPD_BUFLEN_SHIFT;
2337
2338                 /*
2339                  * if this is the first packet in a TSO chain, set
2340                  * TPD_HDRFLAG, otherwise, clear it.
2341                  */
2342                 val = (tpd->word3 >> TPD_SEGMENT_EN_SHIFT) &
2343                         TPD_SEGMENT_EN_MASK;
2344                 if (val) {
2345                         if (!j)
2346                                 tpd->word3 |= 1 << TPD_HDRFLAG_SHIFT;
2347                         else
2348                                 tpd->word3 &= ~(1 << TPD_HDRFLAG_SHIFT);
2349                 }
2350
2351                 if (j == (count - 1))
2352                         tpd->word3 |= 1 << TPD_EOP_SHIFT;
2353
2354                 if (++next_to_use == tpd_ring->count)
2355                         next_to_use = 0;
2356         }
2357         /*
2358          * Force memory writes to complete before letting h/w
2359          * know there are new descriptors to fetch.  (Only
2360          * applicable for weak-ordered memory model archs,
2361          * such as IA-64).
2362          */
2363         wmb();
2364
2365         atomic_set(&tpd_ring->next_to_use, next_to_use);
2366 }
2367
2368 static int atl1_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2369 {
2370         struct atl1_adapter *adapter = netdev_priv(netdev);
2371         struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2372         int len = skb->len;
2373         int tso;
2374         int count = 1;
2375         int ret_val;
2376         struct tx_packet_desc *ptpd;
2377         u16 frag_size;
2378         u16 vlan_tag;
2379         unsigned long flags;
2380         unsigned int nr_frags = 0;
2381         unsigned int mss = 0;
2382         unsigned int f;
2383         unsigned int proto_hdr_len;
2384
2385         len -= skb->data_len;
2386
2387         if (unlikely(skb->len <= 0)) {
2388                 dev_kfree_skb_any(skb);
2389                 return NETDEV_TX_OK;
2390         }
2391
2392         nr_frags = skb_shinfo(skb)->nr_frags;
2393         for (f = 0; f < nr_frags; f++) {
2394                 frag_size = skb_shinfo(skb)->frags[f].size;
2395                 if (frag_size)
2396                         count += (frag_size + ATL1_MAX_TX_BUF_LEN - 1) /
2397                                 ATL1_MAX_TX_BUF_LEN;
2398         }
2399
2400         mss = skb_shinfo(skb)->gso_size;
2401         if (mss) {
2402                 if (skb->protocol == ntohs(ETH_P_IP)) {
2403                         proto_hdr_len = (skb_transport_offset(skb) +
2404                                          tcp_hdrlen(skb));
2405                         if (unlikely(proto_hdr_len > len)) {
2406                                 dev_kfree_skb_any(skb);
2407                                 return NETDEV_TX_OK;
2408                         }
2409                         /* need additional TPD ? */
2410                         if (proto_hdr_len != len)
2411                                 count += (len - proto_hdr_len +
2412                                         ATL1_MAX_TX_BUF_LEN - 1) /
2413                                         ATL1_MAX_TX_BUF_LEN;
2414                 }
2415         }
2416
2417         if (!spin_trylock_irqsave(&adapter->lock, flags)) {
2418                 /* Can't get lock - tell upper layer to requeue */
2419                 if (netif_msg_tx_queued(adapter))
2420                         dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2421                                 "tx locked\n");
2422                 return NETDEV_TX_LOCKED;
2423         }
2424
2425         if (atl1_tpd_avail(&adapter->tpd_ring) < count) {
2426                 /* not enough descriptors */
2427                 netif_stop_queue(netdev);
2428                 spin_unlock_irqrestore(&adapter->lock, flags);
2429                 if (netif_msg_tx_queued(adapter))
2430                         dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2431                                 "tx busy\n");
2432                 return NETDEV_TX_BUSY;
2433         }
2434
2435         ptpd = ATL1_TPD_DESC(tpd_ring,
2436                 (u16) atomic_read(&tpd_ring->next_to_use));
2437         memset(ptpd, 0, sizeof(struct tx_packet_desc));
2438
2439         if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2440                 vlan_tag = vlan_tx_tag_get(skb);
2441                 vlan_tag = (vlan_tag << 4) | (vlan_tag >> 13) |
2442                         ((vlan_tag >> 9) & 0x8);
2443                 ptpd->word3 |= 1 << TPD_INS_VL_TAG_SHIFT;
2444                 ptpd->word3 |= (vlan_tag & TPD_VL_TAGGED_MASK) <<
2445                         TPD_VL_TAGGED_SHIFT;
2446         }
2447
2448         tso = atl1_tso(adapter, skb, ptpd);
2449         if (tso < 0) {
2450                 spin_unlock_irqrestore(&adapter->lock, flags);
2451                 dev_kfree_skb_any(skb);
2452                 return NETDEV_TX_OK;
2453         }
2454
2455         if (!tso) {
2456                 ret_val = atl1_tx_csum(adapter, skb, ptpd);
2457                 if (ret_val < 0) {
2458                         spin_unlock_irqrestore(&adapter->lock, flags);
2459                         dev_kfree_skb_any(skb);
2460                         return NETDEV_TX_OK;
2461                 }
2462         }
2463
2464         atl1_tx_map(adapter, skb, ptpd);
2465         atl1_tx_queue(adapter, count, ptpd);
2466         atl1_update_mailbox(adapter);
2467         spin_unlock_irqrestore(&adapter->lock, flags);
2468         netdev->trans_start = jiffies;
2469         return NETDEV_TX_OK;
2470 }
2471
2472 /*
2473  * atl1_intr - Interrupt Handler
2474  * @irq: interrupt number
2475  * @data: pointer to a network interface device structure
2476  * @pt_regs: CPU registers structure
2477  */
2478 static irqreturn_t atl1_intr(int irq, void *data)
2479 {
2480         struct atl1_adapter *adapter = netdev_priv(data);
2481         u32 status;
2482         int max_ints = 10;
2483
2484         status = adapter->cmb.cmb->int_stats;
2485         if (!status)
2486                 return IRQ_NONE;
2487
2488         do {
2489                 /* clear CMB interrupt status at once */
2490                 adapter->cmb.cmb->int_stats = 0;
2491
2492                 if (status & ISR_GPHY)  /* clear phy status */
2493                         atlx_clear_phy_int(adapter);
2494
2495                 /* clear ISR status, and Enable CMB DMA/Disable Interrupt */
2496                 iowrite32(status | ISR_DIS_INT, adapter->hw.hw_addr + REG_ISR);
2497
2498                 /* check if SMB intr */
2499                 if (status & ISR_SMB)
2500                         atl1_inc_smb(adapter);
2501
2502                 /* check if PCIE PHY Link down */
2503                 if (status & ISR_PHY_LINKDOWN) {
2504                         if (netif_msg_intr(adapter))
2505                                 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2506                                         "pcie phy link down %x\n", status);
2507                         if (netif_running(adapter->netdev)) {   /* reset MAC */
2508                                 iowrite32(0, adapter->hw.hw_addr + REG_IMR);
2509                                 schedule_work(&adapter->pcie_dma_to_rst_task);
2510                                 return IRQ_HANDLED;
2511                         }
2512                 }
2513
2514                 /* check if DMA read/write error ? */
2515                 if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) {
2516                         if (netif_msg_intr(adapter))
2517                                 dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2518                                         "pcie DMA r/w error (status = 0x%x)\n",
2519                                         status);
2520                         iowrite32(0, adapter->hw.hw_addr + REG_IMR);
2521                         schedule_work(&adapter->pcie_dma_to_rst_task);
2522                         return IRQ_HANDLED;
2523                 }
2524
2525                 /* link event */
2526                 if (status & ISR_GPHY) {
2527                         adapter->soft_stats.tx_carrier_errors++;
2528                         atl1_check_for_link(adapter);
2529                 }
2530
2531                 /* transmit event */
2532                 if (status & ISR_CMB_TX)
2533                         atl1_intr_tx(adapter);
2534
2535                 /* rx exception */
2536                 if (unlikely(status & (ISR_RXF_OV | ISR_RFD_UNRUN |
2537                         ISR_RRD_OV | ISR_HOST_RFD_UNRUN |
2538                         ISR_HOST_RRD_OV | ISR_CMB_RX))) {
2539                         if (status & (ISR_RXF_OV | ISR_RFD_UNRUN |
2540                                 ISR_RRD_OV | ISR_HOST_RFD_UNRUN |
2541                                 ISR_HOST_RRD_OV))
2542                                 if (netif_msg_intr(adapter))
2543                                         dev_printk(KERN_DEBUG,
2544                                                 &adapter->pdev->dev,
2545                                                 "rx exception, ISR = 0x%x\n",
2546                                                 status);
2547                         atl1_intr_rx(adapter);
2548                 }
2549
2550                 if (--max_ints < 0)
2551                         break;
2552
2553         } while ((status = adapter->cmb.cmb->int_stats));
2554
2555         /* re-enable Interrupt */
2556         iowrite32(ISR_DIS_SMB | ISR_DIS_DMA, adapter->hw.hw_addr + REG_ISR);
2557         return IRQ_HANDLED;
2558 }
2559
2560 /*
2561  * atl1_watchdog - Timer Call-back
2562  * @data: pointer to netdev cast into an unsigned long
2563  */
2564 static void atl1_watchdog(unsigned long data)
2565 {
2566         struct atl1_adapter *adapter = (struct atl1_adapter *)data;
2567
2568         /* Reset the timer */
2569         mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2570 }
2571
2572 /*
2573  * atl1_phy_config - Timer Call-back
2574  * @data: pointer to netdev cast into an unsigned long
2575  */
2576 static void atl1_phy_config(unsigned long data)
2577 {
2578         struct atl1_adapter *adapter = (struct atl1_adapter *)data;
2579         struct atl1_hw *hw = &adapter->hw;
2580         unsigned long flags;
2581
2582         spin_lock_irqsave(&adapter->lock, flags);
2583         adapter->phy_timer_pending = false;
2584         atl1_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
2585         atl1_write_phy_reg(hw, MII_ATLX_CR, hw->mii_1000t_ctrl_reg);
2586         atl1_write_phy_reg(hw, MII_BMCR, MII_CR_RESET | MII_CR_AUTO_NEG_EN);
2587         spin_unlock_irqrestore(&adapter->lock, flags);
2588 }
2589
2590 /*
2591  * Orphaned vendor comment left intact here:
2592  * <vendor comment>
2593  * If TPD Buffer size equal to 0, PCIE DMAR_TO_INT
2594  * will assert. We do soft reset <0x1400=1> according
2595  * with the SPEC. BUT, it seemes that PCIE or DMA
2596  * state-machine will not be reset. DMAR_TO_INT will
2597  * assert again and again.
2598  * </vendor comment>
2599  */
2600
2601 static int atl1_reset(struct atl1_adapter *adapter)
2602 {
2603         int ret;
2604         ret = atl1_reset_hw(&adapter->hw);
2605         if (ret)
2606                 return ret;
2607         return atl1_init_hw(&adapter->hw);
2608 }
2609
2610 static s32 atl1_up(struct atl1_adapter *adapter)
2611 {
2612         struct net_device *netdev = adapter->netdev;
2613         int err;
2614         int irq_flags = IRQF_SAMPLE_RANDOM;
2615
2616         /* hardware has been reset, we need to reload some things */
2617         atlx_set_multi(netdev);
2618         atl1_init_ring_ptrs(adapter);
2619         atlx_restore_vlan(adapter);
2620         err = atl1_alloc_rx_buffers(adapter);
2621         if (unlikely(!err))
2622                 /* no RX BUFFER allocated */
2623                 return -ENOMEM;
2624
2625         if (unlikely(atl1_configure(adapter))) {
2626                 err = -EIO;
2627                 goto err_up;
2628         }
2629
2630         err = pci_enable_msi(adapter->pdev);
2631         if (err) {
2632                 if (netif_msg_ifup(adapter))
2633                         dev_info(&adapter->pdev->dev,
2634                                 "Unable to enable MSI: %d\n", err);
2635                 irq_flags |= IRQF_SHARED;
2636         }
2637
2638         err = request_irq(adapter->pdev->irq, &atl1_intr, irq_flags,
2639                         netdev->name, netdev);
2640         if (unlikely(err))
2641                 goto err_up;
2642
2643         mod_timer(&adapter->watchdog_timer, jiffies);
2644         atlx_irq_enable(adapter);
2645         atl1_check_link(adapter);
2646         return 0;
2647
2648 err_up:
2649         pci_disable_msi(adapter->pdev);
2650         /* free rx_buffers */
2651         atl1_clean_rx_ring(adapter);
2652         return err;
2653 }
2654
2655 static void atl1_down(struct atl1_adapter *adapter)
2656 {
2657         struct net_device *netdev = adapter->netdev;
2658
2659         del_timer_sync(&adapter->watchdog_timer);
2660         del_timer_sync(&adapter->phy_config_timer);
2661         adapter->phy_timer_pending = false;
2662
2663         atlx_irq_disable(adapter);
2664         free_irq(adapter->pdev->irq, netdev);
2665         pci_disable_msi(adapter->pdev);
2666         atl1_reset_hw(&adapter->hw);
2667         adapter->cmb.cmb->int_stats = 0;
2668
2669         adapter->link_speed = SPEED_0;
2670         adapter->link_duplex = -1;
2671         netif_carrier_off(netdev);
2672         netif_stop_queue(netdev);
2673
2674         atl1_clean_tx_ring(adapter);
2675         atl1_clean_rx_ring(adapter);
2676 }
2677
2678 static void atl1_tx_timeout_task(struct work_struct *work)
2679 {
2680         struct atl1_adapter *adapter =
2681                 container_of(work, struct atl1_adapter, tx_timeout_task);
2682         struct net_device *netdev = adapter->netdev;
2683
2684         netif_device_detach(netdev);
2685         atl1_down(adapter);
2686         atl1_up(adapter);
2687         netif_device_attach(netdev);
2688 }
2689
2690 /*
2691  * atl1_change_mtu - Change the Maximum Transfer Unit
2692  * @netdev: network interface device structure
2693  * @new_mtu: new value for maximum frame size
2694  *
2695  * Returns 0 on success, negative on failure
2696  */
2697 static int atl1_change_mtu(struct net_device *netdev, int new_mtu)
2698 {
2699         struct atl1_adapter *adapter = netdev_priv(netdev);
2700         int old_mtu = netdev->mtu;
2701         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
2702
2703         if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
2704             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2705                 if (netif_msg_link(adapter))
2706                         dev_warn(&adapter->pdev->dev, "invalid MTU setting\n");
2707                 return -EINVAL;
2708         }
2709
2710         adapter->hw.max_frame_size = max_frame;
2711         adapter->hw.tx_jumbo_task_th = (max_frame + 7) >> 3;
2712         adapter->rx_buffer_len = (max_frame + 7) & ~7;
2713         adapter->hw.rx_jumbo_th = adapter->rx_buffer_len / 8;
2714
2715         netdev->mtu = new_mtu;
2716         if ((old_mtu != new_mtu) && netif_running(netdev)) {
2717                 atl1_down(adapter);
2718                 atl1_up(adapter);
2719         }
2720
2721         return 0;
2722 }
2723
2724 /*
2725  * atl1_open - Called when a network interface is made active
2726  * @netdev: network interface device structure
2727  *
2728  * Returns 0 on success, negative value on failure
2729  *
2730  * The open entry point is called when a network interface is made
2731  * active by the system (IFF_UP).  At this point all resources needed
2732  * for transmit and receive operations are allocated, the interrupt
2733  * handler is registered with the OS, the watchdog timer is started,
2734  * and the stack is notified that the interface is ready.
2735  */
2736 static int atl1_open(struct net_device *netdev)
2737 {
2738         struct atl1_adapter *adapter = netdev_priv(netdev);
2739         int err;
2740
2741         /* allocate transmit descriptors */
2742         err = atl1_setup_ring_resources(adapter);
2743         if (err)
2744                 return err;
2745
2746         err = atl1_up(adapter);
2747         if (err)
2748                 goto err_up;
2749
2750         return 0;
2751
2752 err_up:
2753         atl1_reset(adapter);
2754         return err;
2755 }
2756
2757 /*
2758  * atl1_close - Disables a network interface
2759  * @netdev: network interface device structure
2760  *
2761  * Returns 0, this is not allowed to fail
2762  *
2763  * The close entry point is called when an interface is de-activated
2764  * by the OS.  The hardware is still under the drivers control, but
2765  * needs to be disabled.  A global MAC reset is issued to stop the
2766  * hardware, and all transmit and receive resources are freed.
2767  */
2768 static int atl1_close(struct net_device *netdev)
2769 {
2770         struct atl1_adapter *adapter = netdev_priv(netdev);
2771         atl1_down(adapter);
2772         atl1_free_ring_resources(adapter);
2773         return 0;
2774 }
2775
2776 #ifdef CONFIG_PM
2777 static int atl1_suspend(struct pci_dev *pdev, pm_message_t state)
2778 {
2779         struct net_device *netdev = pci_get_drvdata(pdev);
2780         struct atl1_adapter *adapter = netdev_priv(netdev);
2781         struct atl1_hw *hw = &adapter->hw;
2782         u32 ctrl = 0;
2783         u32 wufc = adapter->wol;
2784         u32 val;
2785         int retval;
2786         u16 speed;
2787         u16 duplex;
2788
2789         netif_device_detach(netdev);
2790         if (netif_running(netdev))
2791                 atl1_down(adapter);
2792
2793         retval = pci_save_state(pdev);
2794         if (retval)
2795                 return retval;
2796
2797         atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
2798         atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
2799         val = ctrl & BMSR_LSTATUS;
2800         if (val)
2801                 wufc &= ~ATLX_WUFC_LNKC;
2802
2803         if (val && wufc) {
2804                 val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
2805                 if (val) {
2806                         if (netif_msg_ifdown(adapter))
2807                                 dev_printk(KERN_DEBUG, &pdev->dev,
2808                                         "error getting speed/duplex\n");
2809                         goto disable_wol;
2810                 }
2811
2812                 ctrl = 0;
2813
2814                 /* enable magic packet WOL */
2815                 if (wufc & ATLX_WUFC_MAG)
2816                         ctrl |= (WOL_MAGIC_EN | WOL_MAGIC_PME_EN);
2817                 iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
2818                 ioread32(hw->hw_addr + REG_WOL_CTRL);
2819
2820                 /* configure the mac */
2821                 ctrl = MAC_CTRL_RX_EN;
2822                 ctrl |= ((u32)((speed == SPEED_1000) ? MAC_CTRL_SPEED_1000 :
2823                         MAC_CTRL_SPEED_10_100) << MAC_CTRL_SPEED_SHIFT);
2824                 if (duplex == FULL_DUPLEX)
2825                         ctrl |= MAC_CTRL_DUPLX;
2826                 ctrl |= (((u32)adapter->hw.preamble_len &
2827                         MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
2828                 if (adapter->vlgrp)
2829                         ctrl |= MAC_CTRL_RMV_VLAN;
2830                 if (wufc & ATLX_WUFC_MAG)
2831                         ctrl |= MAC_CTRL_BC_EN;
2832                 iowrite32(ctrl, hw->hw_addr + REG_MAC_CTRL);
2833                 ioread32(hw->hw_addr + REG_MAC_CTRL);
2834
2835                 /* poke the PHY */
2836                 ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2837                 ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
2838                 iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC);
2839                 ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2840
2841                 pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
2842                 goto exit;
2843         }
2844
2845         if (!val && wufc) {
2846                 ctrl |= (WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN);
2847                 iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
2848                 ioread32(hw->hw_addr + REG_WOL_CTRL);
2849                 iowrite32(0, hw->hw_addr + REG_MAC_CTRL);
2850                 ioread32(hw->hw_addr + REG_MAC_CTRL);
2851                 hw->phy_configured = false;
2852                 pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
2853                 goto exit;
2854         }
2855
2856 disable_wol:
2857         iowrite32(0, hw->hw_addr + REG_WOL_CTRL);
2858         ioread32(hw->hw_addr + REG_WOL_CTRL);
2859         ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2860         ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
2861         iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC);
2862         ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2863         atl1_phy_enter_power_saving(hw);
2864         hw->phy_configured = false;
2865         pci_enable_wake(pdev, pci_choose_state(pdev, state), 0);
2866 exit:
2867         if (netif_running(netdev))
2868                 pci_disable_msi(adapter->pdev);
2869         pci_disable_device(pdev);
2870         pci_set_power_state(pdev, pci_choose_state(pdev, state));
2871
2872         return 0;
2873 }
2874
2875 static int atl1_resume(struct pci_dev *pdev)
2876 {
2877         struct net_device *netdev = pci_get_drvdata(pdev);
2878         struct atl1_adapter *adapter = netdev_priv(netdev);
2879         u32 err;
2880
2881         pci_set_power_state(pdev, PCI_D0);
2882         pci_restore_state(pdev);
2883
2884         err = pci_enable_device(pdev);
2885         if (err) {
2886                 if (netif_msg_ifup(adapter))
2887                         dev_printk(KERN_DEBUG, &pdev->dev,
2888                                 "error enabling pci device\n");
2889                 return err;
2890         }
2891
2892         pci_set_master(pdev);
2893         iowrite32(0, adapter->hw.hw_addr + REG_WOL_CTRL);
2894         pci_enable_wake(pdev, PCI_D3hot, 0);
2895         pci_enable_wake(pdev, PCI_D3cold, 0);
2896
2897         atl1_reset_hw(&adapter->hw);
2898         adapter->cmb.cmb->int_stats = 0;
2899
2900         if (netif_running(netdev))
2901                 atl1_up(adapter);
2902         netif_device_attach(netdev);
2903
2904         return 0;
2905 }
2906 #else
2907 #define atl1_suspend NULL
2908 #define atl1_resume NULL
2909 #endif
2910
2911 static void atl1_shutdown(struct pci_dev *pdev)
2912 {
2913 #ifdef CONFIG_PM
2914         atl1_suspend(pdev, PMSG_SUSPEND);
2915 #endif
2916 }
2917
2918 #ifdef CONFIG_NET_POLL_CONTROLLER
2919 static void atl1_poll_controller(struct net_device *netdev)
2920 {
2921         disable_irq(netdev->irq);
2922         atl1_intr(netdev->irq, netdev);
2923         enable_irq(netdev->irq);
2924 }
2925 #endif
2926
2927 /*
2928  * atl1_probe - Device Initialization Routine
2929  * @pdev: PCI device information struct
2930  * @ent: entry in atl1_pci_tbl
2931  *
2932  * Returns 0 on success, negative on failure
2933  *
2934  * atl1_probe initializes an adapter identified by a pci_dev structure.
2935  * The OS initialization, configuring of the adapter private structure,
2936  * and a hardware reset occur.
2937  */
2938 static int __devinit atl1_probe(struct pci_dev *pdev,
2939         const struct pci_device_id *ent)
2940 {
2941         struct net_device *netdev;
2942         struct atl1_adapter *adapter;
2943         static int cards_found = 0;
2944         int err;
2945
2946         err = pci_enable_device(pdev);
2947         if (err)
2948                 return err;
2949
2950         /*
2951          * The atl1 chip can DMA to 64-bit addresses, but it uses a single
2952          * shared register for the high 32 bits, so only a single, aligned,
2953          * 4 GB physical address range can be used at a time.
2954          *
2955          * Supporting 64-bit DMA on this hardware is more trouble than it's
2956          * worth.  It is far easier to limit to 32-bit DMA than update
2957          * various kernel subsystems to support the mechanics required by a
2958          * fixed-high-32-bit system.
2959          */
2960         err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
2961         if (err) {
2962                 dev_err(&pdev->dev, "no usable DMA configuration\n");
2963                 goto err_dma;
2964         }
2965         /*
2966          * Mark all PCI regions associated with PCI device
2967          * pdev as being reserved by owner atl1_driver_name
2968          */
2969         err = pci_request_regions(pdev, ATLX_DRIVER_NAME);
2970         if (err)
2971                 goto err_request_regions;
2972
2973         /*
2974          * Enables bus-mastering on the device and calls
2975          * pcibios_set_master to do the needed arch specific settings
2976          */
2977         pci_set_master(pdev);
2978
2979         netdev = alloc_etherdev(sizeof(struct atl1_adapter));
2980         if (!netdev) {
2981                 err = -ENOMEM;
2982                 goto err_alloc_etherdev;
2983         }
2984         SET_NETDEV_DEV(netdev, &pdev->dev);
2985
2986         pci_set_drvdata(pdev, netdev);
2987         adapter = netdev_priv(netdev);
2988         adapter->netdev = netdev;
2989         adapter->pdev = pdev;
2990         adapter->hw.back = adapter;
2991         adapter->msg_enable = netif_msg_init(debug, atl1_default_msg);
2992
2993         adapter->hw.hw_addr = pci_iomap(pdev, 0, 0);
2994         if (!adapter->hw.hw_addr) {
2995                 err = -EIO;
2996                 goto err_pci_iomap;
2997         }
2998         /* get device revision number */
2999         adapter->hw.dev_rev = ioread16(adapter->hw.hw_addr +
3000                 (REG_MASTER_CTRL + 2));
3001         if (netif_msg_probe(adapter))
3002                 dev_info(&pdev->dev, "version %s\n", ATLX_DRIVER_VERSION);
3003
3004         /* set default ring resource counts */
3005         adapter->rfd_ring.count = adapter->rrd_ring.count = ATL1_DEFAULT_RFD;
3006         adapter->tpd_ring.count = ATL1_DEFAULT_TPD;
3007
3008         adapter->mii.dev = netdev;
3009         adapter->mii.mdio_read = mdio_read;
3010         adapter->mii.mdio_write = mdio_write;
3011         adapter->mii.phy_id_mask = 0x1f;
3012         adapter->mii.reg_num_mask = 0x1f;
3013
3014         netdev->open = &atl1_open;
3015         netdev->stop = &atl1_close;
3016         netdev->hard_start_xmit = &atl1_xmit_frame;
3017         netdev->get_stats = &atlx_get_stats;
3018         netdev->set_multicast_list = &atlx_set_multi;
3019         netdev->set_mac_address = &atl1_set_mac;
3020         netdev->change_mtu = &atl1_change_mtu;
3021         netdev->do_ioctl = &atlx_ioctl;
3022         netdev->tx_timeout = &atlx_tx_timeout;
3023         netdev->watchdog_timeo = 5 * HZ;
3024 #ifdef CONFIG_NET_POLL_CONTROLLER
3025         netdev->poll_controller = atl1_poll_controller;
3026 #endif
3027         netdev->vlan_rx_register = atlx_vlan_rx_register;
3028
3029         netdev->ethtool_ops = &atl1_ethtool_ops;
3030         adapter->bd_number = cards_found;
3031
3032         /* setup the private structure */
3033         err = atl1_sw_init(adapter);
3034         if (err)
3035                 goto err_common;
3036
3037         netdev->features = NETIF_F_HW_CSUM;
3038         netdev->features |= NETIF_F_SG;
3039         netdev->features |= (NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX);
3040         netdev->features |= NETIF_F_TSO;
3041         netdev->features |= NETIF_F_LLTX;
3042
3043         /*
3044          * patch for some L1 of old version,
3045          * the final version of L1 may not need these
3046          * patches
3047          */
3048         /* atl1_pcie_patch(adapter); */
3049
3050         /* really reset GPHY core */
3051         iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
3052
3053         /*
3054          * reset the controller to
3055          * put the device in a known good starting state
3056          */
3057         if (atl1_reset_hw(&adapter->hw)) {
3058                 err = -EIO;
3059                 goto err_common;
3060         }
3061
3062         /* copy the MAC address out of the EEPROM */
3063         atl1_read_mac_addr(&adapter->hw);
3064         memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
3065
3066         if (!is_valid_ether_addr(netdev->dev_addr)) {
3067                 err = -EIO;
3068                 goto err_common;
3069         }
3070
3071         atl1_check_options(adapter);
3072
3073         /* pre-init the MAC, and setup link */
3074         err = atl1_init_hw(&adapter->hw);
3075         if (err) {
3076                 err = -EIO;
3077                 goto err_common;
3078         }
3079
3080         atl1_pcie_patch(adapter);
3081         /* assume we have no link for now */
3082         netif_carrier_off(netdev);
3083         netif_stop_queue(netdev);
3084
3085         init_timer(&adapter->watchdog_timer);
3086         adapter->watchdog_timer.function = &atl1_watchdog;
3087         adapter->watchdog_timer.data = (unsigned long)adapter;
3088
3089         init_timer(&adapter->phy_config_timer);
3090         adapter->phy_config_timer.function = &atl1_phy_config;
3091         adapter->phy_config_timer.data = (unsigned long)adapter;
3092         adapter->phy_timer_pending = false;
3093
3094         INIT_WORK(&adapter->tx_timeout_task, atl1_tx_timeout_task);
3095
3096         INIT_WORK(&adapter->link_chg_task, atlx_link_chg_task);
3097
3098         INIT_WORK(&adapter->pcie_dma_to_rst_task, atl1_tx_timeout_task);
3099
3100         err = register_netdev(netdev);
3101         if (err)
3102                 goto err_common;
3103
3104         cards_found++;
3105         atl1_via_workaround(adapter);
3106         return 0;
3107
3108 err_common:
3109         pci_iounmap(pdev, adapter->hw.hw_addr);
3110 err_pci_iomap:
3111         free_netdev(netdev);
3112 err_alloc_etherdev:
3113         pci_release_regions(pdev);
3114 err_dma:
3115 err_request_regions:
3116         pci_disable_device(pdev);
3117         return err;
3118 }
3119
3120 /*
3121  * atl1_remove - Device Removal Routine
3122  * @pdev: PCI device information struct
3123  *
3124  * atl1_remove is called by the PCI subsystem to alert the driver
3125  * that it should release a PCI device.  The could be caused by a
3126  * Hot-Plug event, or because the driver is going to be removed from
3127  * memory.
3128  */
3129 static void __devexit atl1_remove(struct pci_dev *pdev)
3130 {
3131         struct net_device *netdev = pci_get_drvdata(pdev);
3132         struct atl1_adapter *adapter;
3133         /* Device not available. Return. */
3134         if (!netdev)
3135                 return;
3136
3137         adapter = netdev_priv(netdev);
3138
3139         /*
3140          * Some atl1 boards lack persistent storage for their MAC, and get it
3141          * from the BIOS during POST.  If we've been messing with the MAC
3142          * address, we need to save the permanent one.
3143          */
3144         if (memcmp(adapter->hw.mac_addr, adapter->hw.perm_mac_addr, ETH_ALEN)) {
3145                 memcpy(adapter->hw.mac_addr, adapter->hw.perm_mac_addr,
3146                         ETH_ALEN);
3147                 atl1_set_mac_addr(&adapter->hw);
3148         }
3149
3150         iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
3151         unregister_netdev(netdev);
3152         pci_iounmap(pdev, adapter->hw.hw_addr);
3153         pci_release_regions(pdev);
3154         free_netdev(netdev);
3155         pci_disable_device(pdev);
3156 }
3157
3158 static struct pci_driver atl1_driver = {
3159         .name = ATLX_DRIVER_NAME,
3160         .id_table = atl1_pci_tbl,
3161         .probe = atl1_probe,
3162         .remove = __devexit_p(atl1_remove),
3163         .suspend = atl1_suspend,
3164         .resume = atl1_resume,
3165         .shutdown = atl1_shutdown
3166 };
3167
3168 /*
3169  * atl1_exit_module - Driver Exit Cleanup Routine
3170  *
3171  * atl1_exit_module is called just before the driver is removed
3172  * from memory.
3173  */
3174 static void __exit atl1_exit_module(void)
3175 {
3176         pci_unregister_driver(&atl1_driver);
3177 }
3178
3179 /*
3180  * atl1_init_module - Driver Registration Routine
3181  *
3182  * atl1_init_module is the first routine called when the driver is
3183  * loaded. All it does is register with the PCI subsystem.
3184  */
3185 static int __init atl1_init_module(void)
3186 {
3187         return pci_register_driver(&atl1_driver);
3188 }
3189
3190 module_init(atl1_init_module);
3191 module_exit(atl1_exit_module);
3192
3193 struct atl1_stats {
3194         char stat_string[ETH_GSTRING_LEN];
3195         int sizeof_stat;
3196         int stat_offset;
3197 };
3198
3199 #define ATL1_STAT(m) \
3200         sizeof(((struct atl1_adapter *)0)->m), offsetof(struct atl1_adapter, m)
3201
3202 static struct atl1_stats atl1_gstrings_stats[] = {
3203         {"rx_packets", ATL1_STAT(soft_stats.rx_packets)},
3204         {"tx_packets", ATL1_STAT(soft_stats.tx_packets)},
3205         {"rx_bytes", ATL1_STAT(soft_stats.rx_bytes)},
3206         {"tx_bytes", ATL1_STAT(soft_stats.tx_bytes)},
3207         {"rx_errors", ATL1_STAT(soft_stats.rx_errors)},
3208         {"tx_errors", ATL1_STAT(soft_stats.tx_errors)},
3209         {"rx_dropped", ATL1_STAT(net_stats.rx_dropped)},
3210         {"tx_dropped", ATL1_STAT(net_stats.tx_dropped)},
3211         {"multicast", ATL1_STAT(soft_stats.multicast)},
3212         {"collisions", ATL1_STAT(soft_stats.collisions)},
3213         {"rx_length_errors", ATL1_STAT(soft_stats.rx_length_errors)},
3214         {"rx_over_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
3215         {"rx_crc_errors", ATL1_STAT(soft_stats.rx_crc_errors)},
3216         {"rx_frame_errors", ATL1_STAT(soft_stats.rx_frame_errors)},
3217         {"rx_fifo_errors", ATL1_STAT(soft_stats.rx_fifo_errors)},
3218         {"rx_missed_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
3219         {"tx_aborted_errors", ATL1_STAT(soft_stats.tx_aborted_errors)},
3220         {"tx_carrier_errors", ATL1_STAT(soft_stats.tx_carrier_errors)},
3221         {"tx_fifo_errors", ATL1_STAT(soft_stats.tx_fifo_errors)},
3222         {"tx_window_errors", ATL1_STAT(soft_stats.tx_window_errors)},
3223         {"tx_abort_exce_coll", ATL1_STAT(soft_stats.excecol)},
3224         {"tx_abort_late_coll", ATL1_STAT(soft_stats.latecol)},
3225         {"tx_deferred_ok", ATL1_STAT(soft_stats.deffer)},
3226         {"tx_single_coll_ok", ATL1_STAT(soft_stats.scc)},
3227         {"tx_multi_coll_ok", ATL1_STAT(soft_stats.mcc)},
3228         {"tx_underun", ATL1_STAT(soft_stats.tx_underun)},
3229         {"tx_trunc", ATL1_STAT(soft_stats.tx_trunc)},
3230         {"tx_pause", ATL1_STAT(soft_stats.tx_pause)},
3231         {"rx_pause", ATL1_STAT(soft_stats.rx_pause)},
3232         {"rx_rrd_ov", ATL1_STAT(soft_stats.rx_rrd_ov)},
3233         {"rx_trunc", ATL1_STAT(soft_stats.rx_trunc)}
3234 };
3235
3236 static void atl1_get_ethtool_stats(struct net_device *netdev,
3237         struct ethtool_stats *stats, u64 *data)
3238 {
3239         struct atl1_adapter *adapter = netdev_priv(netdev);
3240         int i;
3241         char *p;
3242
3243         for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
3244                 p = (char *)adapter+atl1_gstrings_stats[i].stat_offset;
3245                 data[i] = (atl1_gstrings_stats[i].sizeof_stat ==
3246                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
3247         }
3248
3249 }
3250
3251 static int atl1_get_sset_count(struct net_device *netdev, int sset)
3252 {
3253         switch (sset) {
3254         case ETH_SS_STATS:
3255                 return ARRAY_SIZE(atl1_gstrings_stats);
3256         default:
3257                 return -EOPNOTSUPP;
3258         }
3259 }
3260
3261 static int atl1_get_settings(struct net_device *netdev,
3262         struct ethtool_cmd *ecmd)
3263 {
3264         struct atl1_adapter *adapter = netdev_priv(netdev);
3265         struct atl1_hw *hw = &adapter->hw;
3266
3267         ecmd->supported = (SUPPORTED_10baseT_Half |
3268                            SUPPORTED_10baseT_Full |
3269                            SUPPORTED_100baseT_Half |
3270                            SUPPORTED_100baseT_Full |
3271                            SUPPORTED_1000baseT_Full |
3272                            SUPPORTED_Autoneg | SUPPORTED_TP);
3273         ecmd->advertising = ADVERTISED_TP;
3274         if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3275             hw->media_type == MEDIA_TYPE_1000M_FULL) {
3276                 ecmd->advertising |= ADVERTISED_Autoneg;
3277                 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR) {
3278                         ecmd->advertising |= ADVERTISED_Autoneg;
3279                         ecmd->advertising |=
3280                             (ADVERTISED_10baseT_Half |
3281                              ADVERTISED_10baseT_Full |
3282                              ADVERTISED_100baseT_Half |
3283                              ADVERTISED_100baseT_Full |
3284                              ADVERTISED_1000baseT_Full);
3285                 } else
3286                         ecmd->advertising |= (ADVERTISED_1000baseT_Full);
3287         }
3288         ecmd->port = PORT_TP;
3289         ecmd->phy_address = 0;
3290         ecmd->transceiver = XCVR_INTERNAL;
3291
3292         if (netif_carrier_ok(adapter->netdev)) {
3293                 u16 link_speed, link_duplex;
3294                 atl1_get_speed_and_duplex(hw, &link_speed, &link_duplex);
3295                 ecmd->speed = link_speed;
3296                 if (link_duplex == FULL_DUPLEX)
3297                         ecmd->duplex = DUPLEX_FULL;
3298                 else
3299                         ecmd->duplex = DUPLEX_HALF;
3300         } else {
3301                 ecmd->speed = -1;
3302                 ecmd->duplex = -1;
3303         }
3304         if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3305             hw->media_type == MEDIA_TYPE_1000M_FULL)
3306                 ecmd->autoneg = AUTONEG_ENABLE;
3307         else
3308                 ecmd->autoneg = AUTONEG_DISABLE;
3309
3310         return 0;
3311 }
3312
3313 static int atl1_set_settings(struct net_device *netdev,
3314         struct ethtool_cmd *ecmd)
3315 {
3316         struct atl1_adapter *adapter = netdev_priv(netdev);
3317         struct atl1_hw *hw = &adapter->hw;
3318         u16 phy_data;
3319         int ret_val = 0;
3320         u16 old_media_type = hw->media_type;
3321
3322         if (netif_running(adapter->netdev)) {
3323                 if (netif_msg_link(adapter))
3324                         dev_dbg(&adapter->pdev->dev,
3325                                 "ethtool shutting down adapter\n");
3326                 atl1_down(adapter);
3327         }
3328
3329         if (ecmd->autoneg == AUTONEG_ENABLE)
3330                 hw->media_type = MEDIA_TYPE_AUTO_SENSOR;
3331         else {
3332                 if (ecmd->speed == SPEED_1000) {
3333                         if (ecmd->duplex != DUPLEX_FULL) {
3334                                 if (netif_msg_link(adapter))
3335                                         dev_warn(&adapter->pdev->dev,
3336                                                 "1000M half is invalid\n");
3337                                 ret_val = -EINVAL;
3338                                 goto exit_sset;
3339                         }
3340                         hw->media_type = MEDIA_TYPE_1000M_FULL;
3341                 } else if (ecmd->speed == SPEED_100) {
3342                         if (ecmd->duplex == DUPLEX_FULL)
3343                                 hw->media_type = MEDIA_TYPE_100M_FULL;
3344                         else
3345                                 hw->media_type = MEDIA_TYPE_100M_HALF;
3346                 } else {
3347                         if (ecmd->duplex == DUPLEX_FULL)
3348                                 hw->media_type = MEDIA_TYPE_10M_FULL;
3349                         else
3350                                 hw->media_type = MEDIA_TYPE_10M_HALF;
3351                 }
3352         }
3353         switch (hw->media_type) {
3354         case MEDIA_TYPE_AUTO_SENSOR:
3355                 ecmd->advertising =
3356                     ADVERTISED_10baseT_Half |
3357                     ADVERTISED_10baseT_Full |
3358                     ADVERTISED_100baseT_Half |
3359                     ADVERTISED_100baseT_Full |
3360                     ADVERTISED_1000baseT_Full |
3361                     ADVERTISED_Autoneg | ADVERTISED_TP;
3362                 break;
3363         case MEDIA_TYPE_1000M_FULL:
3364                 ecmd->advertising =
3365                     ADVERTISED_1000baseT_Full |
3366                     ADVERTISED_Autoneg | ADVERTISED_TP;
3367                 break;
3368         default:
3369                 ecmd->advertising = 0;
3370                 break;
3371         }
3372         if (atl1_phy_setup_autoneg_adv(hw)) {
3373                 ret_val = -EINVAL;
3374                 if (netif_msg_link(adapter))
3375                         dev_warn(&adapter->pdev->dev,
3376                                 "invalid ethtool speed/duplex setting\n");
3377                 goto exit_sset;
3378         }
3379         if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3380             hw->media_type == MEDIA_TYPE_1000M_FULL)
3381                 phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
3382         else {
3383                 switch (hw->media_type) {
3384                 case MEDIA_TYPE_100M_FULL:
3385                         phy_data =
3386                             MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
3387                             MII_CR_RESET;
3388                         break;
3389                 case MEDIA_TYPE_100M_HALF:
3390                         phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
3391                         break;
3392                 case MEDIA_TYPE_10M_FULL:
3393                         phy_data =
3394                             MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
3395                         break;
3396                 default:
3397                         /* MEDIA_TYPE_10M_HALF: */
3398                         phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
3399                         break;
3400                 }
3401         }
3402         atl1_write_phy_reg(hw, MII_BMCR, phy_data);
3403 exit_sset:
3404         if (ret_val)
3405                 hw->media_type = old_media_type;
3406
3407         if (netif_running(adapter->netdev)) {
3408                 if (netif_msg_link(adapter))
3409                         dev_dbg(&adapter->pdev->dev,
3410                                 "ethtool starting adapter\n");
3411                 atl1_up(adapter);
3412         } else if (!ret_val) {
3413                 if (netif_msg_link(adapter))
3414                         dev_dbg(&adapter->pdev->dev,
3415                                 "ethtool resetting adapter\n");
3416                 atl1_reset(adapter);
3417         }
3418         return ret_val;
3419 }
3420
3421 static void atl1_get_drvinfo(struct net_device *netdev,
3422         struct ethtool_drvinfo *drvinfo)
3423 {
3424         struct atl1_adapter *adapter = netdev_priv(netdev);
3425
3426         strncpy(drvinfo->driver, ATLX_DRIVER_NAME, sizeof(drvinfo->driver));
3427         strncpy(drvinfo->version, ATLX_DRIVER_VERSION,
3428                 sizeof(drvinfo->version));
3429         strncpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
3430         strncpy(drvinfo->bus_info, pci_name(adapter->pdev),
3431                 sizeof(drvinfo->bus_info));
3432         drvinfo->eedump_len = ATL1_EEDUMP_LEN;
3433 }
3434
3435 static void atl1_get_wol(struct net_device *netdev,
3436         struct ethtool_wolinfo *wol)
3437 {
3438         struct atl1_adapter *adapter = netdev_priv(netdev);
3439
3440         wol->supported = WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC;
3441         wol->wolopts = 0;
3442         if (adapter->wol & ATLX_WUFC_EX)
3443                 wol->wolopts |= WAKE_UCAST;
3444         if (adapter->wol & ATLX_WUFC_MC)
3445                 wol->wolopts |= WAKE_MCAST;
3446         if (adapter->wol & ATLX_WUFC_BC)
3447                 wol->wolopts |= WAKE_BCAST;
3448         if (adapter->wol & ATLX_WUFC_MAG)
3449                 wol->wolopts |= WAKE_MAGIC;
3450         return;
3451 }
3452
3453 static int atl1_set_wol(struct net_device *netdev,
3454         struct ethtool_wolinfo *wol)
3455 {
3456         struct atl1_adapter *adapter = netdev_priv(netdev);
3457
3458         if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
3459                 return -EOPNOTSUPP;
3460         adapter->wol = 0;
3461         if (wol->wolopts & WAKE_UCAST)
3462                 adapter->wol |= ATLX_WUFC_EX;
3463         if (wol->wolopts & WAKE_MCAST)
3464                 adapter->wol |= ATLX_WUFC_MC;
3465         if (wol->wolopts & WAKE_BCAST)
3466                 adapter->wol |= ATLX_WUFC_BC;
3467         if (wol->wolopts & WAKE_MAGIC)
3468                 adapter->wol |= ATLX_WUFC_MAG;
3469         return 0;
3470 }
3471
3472 static u32 atl1_get_msglevel(struct net_device *netdev)
3473 {
3474         struct atl1_adapter *adapter = netdev_priv(netdev);
3475         return adapter->msg_enable;
3476 }
3477
3478 static void atl1_set_msglevel(struct net_device *netdev, u32 value)
3479 {
3480         struct atl1_adapter *adapter = netdev_priv(netdev);
3481         adapter->msg_enable = value;
3482 }
3483
3484 static int atl1_get_regs_len(struct net_device *netdev)
3485 {
3486         return ATL1_REG_COUNT * sizeof(u32);
3487 }
3488
3489 static void atl1_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
3490         void *p)
3491 {
3492         struct atl1_adapter *adapter = netdev_priv(netdev);
3493         struct atl1_hw *hw = &adapter->hw;
3494         unsigned int i;
3495         u32 *regbuf = p;
3496
3497         for (i = 0; i < ATL1_REG_COUNT; i++) {
3498                 /*
3499                  * This switch statement avoids reserved regions
3500                  * of register space.
3501                  */
3502                 switch (i) {
3503                 case 6 ... 9:
3504                 case 14:
3505                 case 29 ... 31:
3506                 case 34 ... 63:
3507                 case 75 ... 127:
3508                 case 136 ... 1023:
3509                 case 1027 ... 1087:
3510                 case 1091 ... 1151:
3511                 case 1194 ... 1195:
3512                 case 1200 ... 1201:
3513                 case 1206 ... 1213:
3514                 case 1216 ... 1279:
3515                 case 1290 ... 1311:
3516                 case 1323 ... 1343:
3517                 case 1358 ... 1359:
3518                 case 1368 ... 1375:
3519                 case 1378 ... 1383:
3520                 case 1388 ... 1391:
3521                 case 1393 ... 1395:
3522                 case 1402 ... 1403:
3523                 case 1410 ... 1471:
3524                 case 1522 ... 1535:
3525                         /* reserved region; don't read it */
3526                         regbuf[i] = 0;
3527                         break;
3528                 default:
3529                         /* unreserved region */
3530                         regbuf[i] = ioread32(hw->hw_addr + (i * sizeof(u32)));
3531                 }
3532         }
3533 }
3534
3535 static void atl1_get_ringparam(struct net_device *netdev,
3536         struct ethtool_ringparam *ring)
3537 {
3538         struct atl1_adapter *adapter = netdev_priv(netdev);
3539         struct atl1_tpd_ring *txdr = &adapter->tpd_ring;
3540         struct atl1_rfd_ring *rxdr = &adapter->rfd_ring;
3541
3542         ring->rx_max_pending = ATL1_MAX_RFD;
3543         ring->tx_max_pending = ATL1_MAX_TPD;
3544         ring->rx_mini_max_pending = 0;
3545         ring->rx_jumbo_max_pending = 0;
3546         ring->rx_pending = rxdr->count;
3547         ring->tx_pending = txdr->count;
3548         ring->rx_mini_pending = 0;
3549         ring->rx_jumbo_pending = 0;
3550 }
3551
3552 static int atl1_set_ringparam(struct net_device *netdev,
3553         struct ethtool_ringparam *ring)
3554 {
3555         struct atl1_adapter *adapter = netdev_priv(netdev);
3556         struct atl1_tpd_ring *tpdr = &adapter->tpd_ring;
3557         struct atl1_rrd_ring *rrdr = &adapter->rrd_ring;
3558         struct atl1_rfd_ring *rfdr = &adapter->rfd_ring;
3559
3560         struct atl1_tpd_ring tpd_old, tpd_new;
3561         struct atl1_rfd_ring rfd_old, rfd_new;
3562         struct atl1_rrd_ring rrd_old, rrd_new;
3563         struct atl1_ring_header rhdr_old, rhdr_new;
3564         int err;
3565
3566         tpd_old = adapter->tpd_ring;
3567         rfd_old = adapter->rfd_ring;
3568         rrd_old = adapter->rrd_ring;
3569         rhdr_old = adapter->ring_header;
3570
3571         if (netif_running(adapter->netdev))
3572                 atl1_down(adapter);
3573
3574         rfdr->count = (u16) max(ring->rx_pending, (u32) ATL1_MIN_RFD);
3575         rfdr->count = rfdr->count > ATL1_MAX_RFD ? ATL1_MAX_RFD :
3576                         rfdr->count;
3577         rfdr->count = (rfdr->count + 3) & ~3;
3578         rrdr->count = rfdr->count;
3579
3580         tpdr->count = (u16) max(ring->tx_pending, (u32) ATL1_MIN_TPD);
3581         tpdr->count = tpdr->count > ATL1_MAX_TPD ? ATL1_MAX_TPD :
3582                         tpdr->count;
3583         tpdr->count = (tpdr->count + 3) & ~3;
3584
3585         if (netif_running(adapter->netdev)) {
3586                 /* try to get new resources before deleting old */
3587                 err = atl1_setup_ring_resources(adapter);
3588                 if (err)
3589                         goto err_setup_ring;
3590
3591                 /*
3592                  * save the new, restore the old in order to free it,
3593                  * then restore the new back again
3594                  */
3595
3596                 rfd_new = adapter->rfd_ring;
3597                 rrd_new = adapter->rrd_ring;
3598                 tpd_new = adapter->tpd_ring;
3599                 rhdr_new = adapter->ring_header;
3600                 adapter->rfd_ring = rfd_old;
3601                 adapter->rrd_ring = rrd_old;
3602                 adapter->tpd_ring = tpd_old;
3603                 adapter->ring_header = rhdr_old;
3604                 atl1_free_ring_resources(adapter);
3605                 adapter->rfd_ring = rfd_new;
3606                 adapter->rrd_ring = rrd_new;
3607                 adapter->tpd_ring = tpd_new;
3608                 adapter->ring_header = rhdr_new;
3609
3610                 err = atl1_up(adapter);
3611                 if (err)
3612                         return err;
3613         }
3614         return 0;
3615
3616 err_setup_ring:
3617         adapter->rfd_ring = rfd_old;
3618         adapter->rrd_ring = rrd_old;
3619         adapter->tpd_ring = tpd_old;
3620         adapter->ring_header = rhdr_old;
3621         atl1_up(adapter);
3622         return err;
3623 }
3624
3625 static void atl1_get_pauseparam(struct net_device *netdev,
3626         struct ethtool_pauseparam *epause)
3627 {
3628         struct atl1_adapter *adapter = netdev_priv(netdev);
3629         struct atl1_hw *hw = &adapter->hw;
3630
3631         if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3632             hw->media_type == MEDIA_TYPE_1000M_FULL) {
3633                 epause->autoneg = AUTONEG_ENABLE;
3634         } else {
3635                 epause->autoneg = AUTONEG_DISABLE;
3636         }
3637         epause->rx_pause = 1;
3638         epause->tx_pause = 1;
3639 }
3640
3641 static int atl1_set_pauseparam(struct net_device *netdev,
3642         struct ethtool_pauseparam *epause)
3643 {
3644         struct atl1_adapter *adapter = netdev_priv(netdev);
3645         struct atl1_hw *hw = &adapter->hw;
3646
3647         if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3648             hw->media_type == MEDIA_TYPE_1000M_FULL) {
3649                 epause->autoneg = AUTONEG_ENABLE;
3650         } else {
3651                 epause->autoneg = AUTONEG_DISABLE;
3652         }
3653
3654         epause->rx_pause = 1;
3655         epause->tx_pause = 1;
3656
3657         return 0;
3658 }
3659
3660 /* FIXME: is this right? -- CHS */
3661 static u32 atl1_get_rx_csum(struct net_device *netdev)
3662 {
3663         return 1;
3664 }
3665
3666 static void atl1_get_strings(struct net_device *netdev, u32 stringset,
3667         u8 *data)
3668 {
3669         u8 *p = data;
3670         int i;
3671
3672         switch (stringset) {
3673         case ETH_SS_STATS:
3674                 for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
3675                         memcpy(p, atl1_gstrings_stats[i].stat_string,
3676                                 ETH_GSTRING_LEN);
3677                         p += ETH_GSTRING_LEN;
3678                 }
3679                 break;
3680         }
3681 }
3682
3683 static int atl1_nway_reset(struct net_device *netdev)
3684 {
3685         struct atl1_adapter *adapter = netdev_priv(netdev);
3686         struct atl1_hw *hw = &adapter->hw;
3687
3688         if (netif_running(netdev)) {
3689                 u16 phy_data;
3690                 atl1_down(adapter);
3691
3692                 if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3693                         hw->media_type == MEDIA_TYPE_1000M_FULL) {
3694                         phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
3695                 } else {
3696                         switch (hw->media_type) {
3697                         case MEDIA_TYPE_100M_FULL:
3698                                 phy_data = MII_CR_FULL_DUPLEX |
3699                                         MII_CR_SPEED_100 | MII_CR_RESET;
3700                                 break;
3701                         case MEDIA_TYPE_100M_HALF:
3702                                 phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
3703                                 break;
3704                         case MEDIA_TYPE_10M_FULL:
3705                                 phy_data = MII_CR_FULL_DUPLEX |
3706                                         MII_CR_SPEED_10 | MII_CR_RESET;
3707                                 break;
3708                         default:
3709                                 /* MEDIA_TYPE_10M_HALF */
3710                                 phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
3711                         }
3712                 }
3713                 atl1_write_phy_reg(hw, MII_BMCR, phy_data);
3714                 atl1_up(adapter);
3715         }
3716         return 0;
3717 }
3718
3719 const struct ethtool_ops atl1_ethtool_ops = {
3720         .get_settings           = atl1_get_settings,
3721         .set_settings           = atl1_set_settings,
3722         .get_drvinfo            = atl1_get_drvinfo,
3723         .get_wol                = atl1_get_wol,
3724         .set_wol                = atl1_set_wol,
3725         .get_msglevel           = atl1_get_msglevel,
3726         .set_msglevel           = atl1_set_msglevel,
3727         .get_regs_len           = atl1_get_regs_len,
3728         .get_regs               = atl1_get_regs,
3729         .get_ringparam          = atl1_get_ringparam,
3730         .set_ringparam          = atl1_set_ringparam,
3731         .get_pauseparam         = atl1_get_pauseparam,
3732         .set_pauseparam         = atl1_set_pauseparam,
3733         .get_rx_csum            = atl1_get_rx_csum,
3734         .set_tx_csum            = ethtool_op_set_tx_hw_csum,
3735         .get_link               = ethtool_op_get_link,
3736         .set_sg                 = ethtool_op_set_sg,
3737         .get_strings            = atl1_get_strings,
3738         .nway_reset             = atl1_nway_reset,
3739         .get_ethtool_stats      = atl1_get_ethtool_stats,
3740         .get_sset_count         = atl1_get_sset_count,
3741         .set_tso                = ethtool_op_set_tso,
3742 };