]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/mtd/nand/nandsim.c
7428a6c1135e2d556a96b9ade9c651b047e3db0e
[linux-2.6-omap-h63xx.git] / drivers / mtd / nand / nandsim.c
1 /*
2  * NAND flash simulator.
3  *
4  * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
5  *
6  * Copyright (C) 2004 Nokia Corporation
7  *
8  * Note: NS means "NAND Simulator".
9  * Note: Input means input TO flash chip, output means output FROM chip.
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License as published by the
13  * Free Software Foundation; either version 2, or (at your option) any later
14  * version.
15  *
16  * This program is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
19  * Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
24  */
25
26 #include <linux/init.h>
27 #include <linux/types.h>
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/vmalloc.h>
31 #include <linux/slab.h>
32 #include <linux/errno.h>
33 #include <linux/string.h>
34 #include <linux/mtd/mtd.h>
35 #include <linux/mtd/nand.h>
36 #include <linux/mtd/partitions.h>
37 #include <linux/delay.h>
38 #include <linux/list.h>
39 #include <linux/random.h>
40 #include <asm/div64.h>
41
42 /* Default simulator parameters values */
43 #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE)  || \
44     !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
45     !defined(CONFIG_NANDSIM_THIRD_ID_BYTE)  || \
46     !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
47 #define CONFIG_NANDSIM_FIRST_ID_BYTE  0x98
48 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
49 #define CONFIG_NANDSIM_THIRD_ID_BYTE  0xFF /* No byte */
50 #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
51 #endif
52
53 #ifndef CONFIG_NANDSIM_ACCESS_DELAY
54 #define CONFIG_NANDSIM_ACCESS_DELAY 25
55 #endif
56 #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
57 #define CONFIG_NANDSIM_PROGRAMM_DELAY 200
58 #endif
59 #ifndef CONFIG_NANDSIM_ERASE_DELAY
60 #define CONFIG_NANDSIM_ERASE_DELAY 2
61 #endif
62 #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
63 #define CONFIG_NANDSIM_OUTPUT_CYCLE 40
64 #endif
65 #ifndef CONFIG_NANDSIM_INPUT_CYCLE
66 #define CONFIG_NANDSIM_INPUT_CYCLE  50
67 #endif
68 #ifndef CONFIG_NANDSIM_BUS_WIDTH
69 #define CONFIG_NANDSIM_BUS_WIDTH  8
70 #endif
71 #ifndef CONFIG_NANDSIM_DO_DELAYS
72 #define CONFIG_NANDSIM_DO_DELAYS  0
73 #endif
74 #ifndef CONFIG_NANDSIM_LOG
75 #define CONFIG_NANDSIM_LOG        0
76 #endif
77 #ifndef CONFIG_NANDSIM_DBG
78 #define CONFIG_NANDSIM_DBG        0
79 #endif
80
81 static uint first_id_byte  = CONFIG_NANDSIM_FIRST_ID_BYTE;
82 static uint second_id_byte = CONFIG_NANDSIM_SECOND_ID_BYTE;
83 static uint third_id_byte  = CONFIG_NANDSIM_THIRD_ID_BYTE;
84 static uint fourth_id_byte = CONFIG_NANDSIM_FOURTH_ID_BYTE;
85 static uint access_delay   = CONFIG_NANDSIM_ACCESS_DELAY;
86 static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
87 static uint erase_delay    = CONFIG_NANDSIM_ERASE_DELAY;
88 static uint output_cycle   = CONFIG_NANDSIM_OUTPUT_CYCLE;
89 static uint input_cycle    = CONFIG_NANDSIM_INPUT_CYCLE;
90 static uint bus_width      = CONFIG_NANDSIM_BUS_WIDTH;
91 static uint do_delays      = CONFIG_NANDSIM_DO_DELAYS;
92 static uint log            = CONFIG_NANDSIM_LOG;
93 static uint dbg            = CONFIG_NANDSIM_DBG;
94 static unsigned long parts[MAX_MTD_DEVICES];
95 static unsigned int parts_num;
96 static char *badblocks = NULL;
97 static char *weakblocks = NULL;
98 static char *weakpages = NULL;
99 static unsigned int bitflips = 0;
100 static char *gravepages = NULL;
101 static unsigned int rptwear = 0;
102 static unsigned int overridesize = 0;
103
104 module_param(first_id_byte,  uint, 0400);
105 module_param(second_id_byte, uint, 0400);
106 module_param(third_id_byte,  uint, 0400);
107 module_param(fourth_id_byte, uint, 0400);
108 module_param(access_delay,   uint, 0400);
109 module_param(programm_delay, uint, 0400);
110 module_param(erase_delay,    uint, 0400);
111 module_param(output_cycle,   uint, 0400);
112 module_param(input_cycle,    uint, 0400);
113 module_param(bus_width,      uint, 0400);
114 module_param(do_delays,      uint, 0400);
115 module_param(log,            uint, 0400);
116 module_param(dbg,            uint, 0400);
117 module_param_array(parts, ulong, &parts_num, 0400);
118 module_param(badblocks,      charp, 0400);
119 module_param(weakblocks,     charp, 0400);
120 module_param(weakpages,      charp, 0400);
121 module_param(bitflips,       uint, 0400);
122 module_param(gravepages,     charp, 0400);
123 module_param(rptwear,        uint, 0400);
124 module_param(overridesize,   uint, 0400);
125
126 MODULE_PARM_DESC(first_id_byte,  "The first byte returned by NAND Flash 'read ID' command (manufacturer ID)");
127 MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID)");
128 MODULE_PARM_DESC(third_id_byte,  "The third byte returned by NAND Flash 'read ID' command");
129 MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command");
130 MODULE_PARM_DESC(access_delay,   "Initial page access delay (microiseconds)");
131 MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
132 MODULE_PARM_DESC(erase_delay,    "Sector erase delay (milliseconds)");
133 MODULE_PARM_DESC(output_cycle,   "Word output (from flash) time (nanodeconds)");
134 MODULE_PARM_DESC(input_cycle,    "Word input (to flash) time (nanodeconds)");
135 MODULE_PARM_DESC(bus_width,      "Chip's bus width (8- or 16-bit)");
136 MODULE_PARM_DESC(do_delays,      "Simulate NAND delays using busy-waits if not zero");
137 MODULE_PARM_DESC(log,            "Perform logging if not zero");
138 MODULE_PARM_DESC(dbg,            "Output debug information if not zero");
139 MODULE_PARM_DESC(parts,          "Partition sizes (in erase blocks) separated by commas");
140 /* Page and erase block positions for the following parameters are independent of any partitions */
141 MODULE_PARM_DESC(badblocks,      "Erase blocks that are initially marked bad, separated by commas");
142 MODULE_PARM_DESC(weakblocks,     "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
143                                  " separated by commas e.g. 113:2 means eb 113"
144                                  " can be erased only twice before failing");
145 MODULE_PARM_DESC(weakpages,      "Weak pages [: maximum writes (defaults to 3)]"
146                                  " separated by commas e.g. 1401:2 means page 1401"
147                                  " can be written only twice before failing");
148 MODULE_PARM_DESC(bitflips,       "Maximum number of random bit flips per page (zero by default)");
149 MODULE_PARM_DESC(gravepages,     "Pages that lose data [: maximum reads (defaults to 3)]"
150                                  " separated by commas e.g. 1401:2 means page 1401"
151                                  " can be read only twice before failing");
152 MODULE_PARM_DESC(rptwear,        "Number of erases inbetween reporting wear, if not zero");
153 MODULE_PARM_DESC(overridesize,   "Specifies the NAND Flash size overriding the ID bytes. "
154                                  "The size is specified in erase blocks and as the exponent of a power of two"
155                                  " e.g. 5 means a size of 32 erase blocks");
156
157 /* The largest possible page size */
158 #define NS_LARGEST_PAGE_SIZE    2048
159
160 /* The prefix for simulator output */
161 #define NS_OUTPUT_PREFIX "[nandsim]"
162
163 /* Simulator's output macros (logging, debugging, warning, error) */
164 #define NS_LOG(args...) \
165         do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
166 #define NS_DBG(args...) \
167         do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
168 #define NS_WARN(args...) \
169         do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0)
170 #define NS_ERR(args...) \
171         do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0)
172 #define NS_INFO(args...) \
173         do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0)
174
175 /* Busy-wait delay macros (microseconds, milliseconds) */
176 #define NS_UDELAY(us) \
177         do { if (do_delays) udelay(us); } while(0)
178 #define NS_MDELAY(us) \
179         do { if (do_delays) mdelay(us); } while(0)
180
181 /* Is the nandsim structure initialized ? */
182 #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
183
184 /* Good operation completion status */
185 #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
186
187 /* Operation failed completion status */
188 #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
189
190 /* Calculate the page offset in flash RAM image by (row, column) address */
191 #define NS_RAW_OFFSET(ns) \
192         (((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column)
193
194 /* Calculate the OOB offset in flash RAM image by (row, column) address */
195 #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
196
197 /* After a command is input, the simulator goes to one of the following states */
198 #define STATE_CMD_READ0        0x00000001 /* read data from the beginning of page */
199 #define STATE_CMD_READ1        0x00000002 /* read data from the second half of page */
200 #define STATE_CMD_READSTART    0x00000003 /* read data second command (large page devices) */
201 #define STATE_CMD_PAGEPROG     0x00000004 /* start page programm */
202 #define STATE_CMD_READOOB      0x00000005 /* read OOB area */
203 #define STATE_CMD_ERASE1       0x00000006 /* sector erase first command */
204 #define STATE_CMD_STATUS       0x00000007 /* read status */
205 #define STATE_CMD_STATUS_M     0x00000008 /* read multi-plane status (isn't implemented) */
206 #define STATE_CMD_SEQIN        0x00000009 /* sequential data imput */
207 #define STATE_CMD_READID       0x0000000A /* read ID */
208 #define STATE_CMD_ERASE2       0x0000000B /* sector erase second command */
209 #define STATE_CMD_RESET        0x0000000C /* reset */
210 #define STATE_CMD_RNDOUT       0x0000000D /* random output command */
211 #define STATE_CMD_RNDOUTSTART  0x0000000E /* random output start command */
212 #define STATE_CMD_MASK         0x0000000F /* command states mask */
213
214 /* After an address is input, the simulator goes to one of these states */
215 #define STATE_ADDR_PAGE        0x00000010 /* full (row, column) address is accepted */
216 #define STATE_ADDR_SEC         0x00000020 /* sector address was accepted */
217 #define STATE_ADDR_COLUMN      0x00000030 /* column address was accepted */
218 #define STATE_ADDR_ZERO        0x00000040 /* one byte zero address was accepted */
219 #define STATE_ADDR_MASK        0x00000070 /* address states mask */
220
221 /* Durind data input/output the simulator is in these states */
222 #define STATE_DATAIN           0x00000100 /* waiting for data input */
223 #define STATE_DATAIN_MASK      0x00000100 /* data input states mask */
224
225 #define STATE_DATAOUT          0x00001000 /* waiting for page data output */
226 #define STATE_DATAOUT_ID       0x00002000 /* waiting for ID bytes output */
227 #define STATE_DATAOUT_STATUS   0x00003000 /* waiting for status output */
228 #define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */
229 #define STATE_DATAOUT_MASK     0x00007000 /* data output states mask */
230
231 /* Previous operation is done, ready to accept new requests */
232 #define STATE_READY            0x00000000
233
234 /* This state is used to mark that the next state isn't known yet */
235 #define STATE_UNKNOWN          0x10000000
236
237 /* Simulator's actions bit masks */
238 #define ACTION_CPY       0x00100000 /* copy page/OOB to the internal buffer */
239 #define ACTION_PRGPAGE   0x00200000 /* programm the internal buffer to flash */
240 #define ACTION_SECERASE  0x00300000 /* erase sector */
241 #define ACTION_ZEROOFF   0x00400000 /* don't add any offset to address */
242 #define ACTION_HALFOFF   0x00500000 /* add to address half of page */
243 #define ACTION_OOBOFF    0x00600000 /* add to address OOB offset */
244 #define ACTION_MASK      0x00700000 /* action mask */
245
246 #define NS_OPER_NUM      13 /* Number of operations supported by the simulator */
247 #define NS_OPER_STATES   6  /* Maximum number of states in operation */
248
249 #define OPT_ANY          0xFFFFFFFF /* any chip supports this operation */
250 #define OPT_PAGE256      0x00000001 /* 256-byte  page chips */
251 #define OPT_PAGE512      0x00000002 /* 512-byte  page chips */
252 #define OPT_PAGE2048     0x00000008 /* 2048-byte page chips */
253 #define OPT_SMARTMEDIA   0x00000010 /* SmartMedia technology chips */
254 #define OPT_AUTOINCR     0x00000020 /* page number auto inctimentation is possible */
255 #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
256 #define OPT_LARGEPAGE    (OPT_PAGE2048) /* 2048-byte page chips */
257 #define OPT_SMALLPAGE    (OPT_PAGE256  | OPT_PAGE512)  /* 256 and 512-byte page chips */
258
259 /* Remove action bits ftom state */
260 #define NS_STATE(x) ((x) & ~ACTION_MASK)
261
262 /*
263  * Maximum previous states which need to be saved. Currently saving is
264  * only needed for page programm operation with preceeded read command
265  * (which is only valid for 512-byte pages).
266  */
267 #define NS_MAX_PREVSTATES 1
268
269 /*
270  * A union to represent flash memory contents and flash buffer.
271  */
272 union ns_mem {
273         u_char *byte;    /* for byte access */
274         uint16_t *word;  /* for 16-bit word access */
275 };
276
277 /*
278  * The structure which describes all the internal simulator data.
279  */
280 struct nandsim {
281         struct mtd_partition partitions[MAX_MTD_DEVICES];
282         unsigned int nbparts;
283
284         uint busw;              /* flash chip bus width (8 or 16) */
285         u_char ids[4];          /* chip's ID bytes */
286         uint32_t options;       /* chip's characteristic bits */
287         uint32_t state;         /* current chip state */
288         uint32_t nxstate;       /* next expected state */
289
290         uint32_t *op;           /* current operation, NULL operations isn't known yet  */
291         uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
292         uint16_t npstates;      /* number of previous states saved */
293         uint16_t stateidx;      /* current state index */
294
295         /* The simulated NAND flash pages array */
296         union ns_mem *pages;
297
298         /* Internal buffer of page + OOB size bytes */
299         union ns_mem buf;
300
301         /* NAND flash "geometry" */
302         struct nandsin_geometry {
303                 uint64_t totsz;     /* total flash size, bytes */
304                 uint32_t secsz;     /* flash sector (erase block) size, bytes */
305                 uint pgsz;          /* NAND flash page size, bytes */
306                 uint oobsz;         /* page OOB area size, bytes */
307                 uint64_t totszoob;  /* total flash size including OOB, bytes */
308                 uint pgszoob;       /* page size including OOB , bytes*/
309                 uint secszoob;      /* sector size including OOB, bytes */
310                 uint pgnum;         /* total number of pages */
311                 uint pgsec;         /* number of pages per sector */
312                 uint secshift;      /* bits number in sector size */
313                 uint pgshift;       /* bits number in page size */
314                 uint oobshift;      /* bits number in OOB size */
315                 uint pgaddrbytes;   /* bytes per page address */
316                 uint secaddrbytes;  /* bytes per sector address */
317                 uint idbytes;       /* the number ID bytes that this chip outputs */
318         } geom;
319
320         /* NAND flash internal registers */
321         struct nandsim_regs {
322                 unsigned command; /* the command register */
323                 u_char   status;  /* the status register */
324                 uint     row;     /* the page number */
325                 uint     column;  /* the offset within page */
326                 uint     count;   /* internal counter */
327                 uint     num;     /* number of bytes which must be processed */
328                 uint     off;     /* fixed page offset */
329         } regs;
330
331         /* NAND flash lines state */
332         struct ns_lines_status {
333                 int ce;  /* chip Enable */
334                 int cle; /* command Latch Enable */
335                 int ale; /* address Latch Enable */
336                 int wp;  /* write Protect */
337         } lines;
338 };
339
340 /*
341  * Operations array. To perform any operation the simulator must pass
342  * through the correspondent states chain.
343  */
344 static struct nandsim_operations {
345         uint32_t reqopts;  /* options which are required to perform the operation */
346         uint32_t states[NS_OPER_STATES]; /* operation's states */
347 } ops[NS_OPER_NUM] = {
348         /* Read page + OOB from the beginning */
349         {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
350                         STATE_DATAOUT, STATE_READY}},
351         /* Read page + OOB from the second half */
352         {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
353                         STATE_DATAOUT, STATE_READY}},
354         /* Read OOB */
355         {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
356                         STATE_DATAOUT, STATE_READY}},
357         /* Programm page starting from the beginning */
358         {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
359                         STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
360         /* Programm page starting from the beginning */
361         {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
362                               STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
363         /* Programm page starting from the second half */
364         {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
365                               STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
366         /* Programm OOB */
367         {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
368                               STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
369         /* Erase sector */
370         {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
371         /* Read status */
372         {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
373         /* Read multi-plane status */
374         {OPT_SMARTMEDIA, {STATE_CMD_STATUS_M, STATE_DATAOUT_STATUS_M, STATE_READY}},
375         /* Read ID */
376         {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
377         /* Large page devices read page */
378         {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
379                                STATE_DATAOUT, STATE_READY}},
380         /* Large page devices random page read */
381         {OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY,
382                                STATE_DATAOUT, STATE_READY}},
383 };
384
385 struct weak_block {
386         struct list_head list;
387         unsigned int erase_block_no;
388         unsigned int max_erases;
389         unsigned int erases_done;
390 };
391
392 static LIST_HEAD(weak_blocks);
393
394 struct weak_page {
395         struct list_head list;
396         unsigned int page_no;
397         unsigned int max_writes;
398         unsigned int writes_done;
399 };
400
401 static LIST_HEAD(weak_pages);
402
403 struct grave_page {
404         struct list_head list;
405         unsigned int page_no;
406         unsigned int max_reads;
407         unsigned int reads_done;
408 };
409
410 static LIST_HEAD(grave_pages);
411
412 static unsigned long *erase_block_wear = NULL;
413 static unsigned int wear_eb_count = 0;
414 static unsigned long total_wear = 0;
415 static unsigned int rptwear_cnt = 0;
416
417 /* MTD structure for NAND controller */
418 static struct mtd_info *nsmtd;
419
420 static u_char ns_verify_buf[NS_LARGEST_PAGE_SIZE];
421
422 /*
423  * Allocate array of page pointers and initialize the array to NULL
424  * pointers.
425  *
426  * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
427  */
428 static int alloc_device(struct nandsim *ns)
429 {
430         int i;
431
432         ns->pages = vmalloc(ns->geom.pgnum * sizeof(union ns_mem));
433         if (!ns->pages) {
434                 NS_ERR("alloc_map: unable to allocate page array\n");
435                 return -ENOMEM;
436         }
437         for (i = 0; i < ns->geom.pgnum; i++) {
438                 ns->pages[i].byte = NULL;
439         }
440
441         return 0;
442 }
443
444 /*
445  * Free any allocated pages, and free the array of page pointers.
446  */
447 static void free_device(struct nandsim *ns)
448 {
449         int i;
450
451         if (ns->pages) {
452                 for (i = 0; i < ns->geom.pgnum; i++) {
453                         if (ns->pages[i].byte)
454                                 kfree(ns->pages[i].byte);
455                 }
456                 vfree(ns->pages);
457         }
458 }
459
460 static char *get_partition_name(int i)
461 {
462         char buf[64];
463         sprintf(buf, "NAND simulator partition %d", i);
464         return kstrdup(buf, GFP_KERNEL);
465 }
466
467 static u_int64_t divide(u_int64_t n, u_int32_t d)
468 {
469         do_div(n, d);
470         return n;
471 }
472
473 /*
474  * Initialize the nandsim structure.
475  *
476  * RETURNS: 0 if success, -ERRNO if failure.
477  */
478 static int init_nandsim(struct mtd_info *mtd)
479 {
480         struct nand_chip *chip = (struct nand_chip *)mtd->priv;
481         struct nandsim   *ns   = (struct nandsim *)(chip->priv);
482         int i, ret = 0;
483         u_int64_t remains;
484         u_int64_t next_offset;
485
486         if (NS_IS_INITIALIZED(ns)) {
487                 NS_ERR("init_nandsim: nandsim is already initialized\n");
488                 return -EIO;
489         }
490
491         /* Force mtd to not do delays */
492         chip->chip_delay = 0;
493
494         /* Initialize the NAND flash parameters */
495         ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
496         ns->geom.totsz    = mtd->size;
497         ns->geom.pgsz     = mtd->writesize;
498         ns->geom.oobsz    = mtd->oobsize;
499         ns->geom.secsz    = mtd->erasesize;
500         ns->geom.pgszoob  = ns->geom.pgsz + ns->geom.oobsz;
501         ns->geom.pgnum    = divide(ns->geom.totsz, ns->geom.pgsz);
502         ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz;
503         ns->geom.secshift = ffs(ns->geom.secsz) - 1;
504         ns->geom.pgshift  = chip->page_shift;
505         ns->geom.oobshift = ffs(ns->geom.oobsz) - 1;
506         ns->geom.pgsec    = ns->geom.secsz / ns->geom.pgsz;
507         ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
508         ns->options = 0;
509
510         if (ns->geom.pgsz == 256) {
511                 ns->options |= OPT_PAGE256;
512         }
513         else if (ns->geom.pgsz == 512) {
514                 ns->options |= (OPT_PAGE512 | OPT_AUTOINCR);
515                 if (ns->busw == 8)
516                         ns->options |= OPT_PAGE512_8BIT;
517         } else if (ns->geom.pgsz == 2048) {
518                 ns->options |= OPT_PAGE2048;
519         } else {
520                 NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
521                 return -EIO;
522         }
523
524         if (ns->options & OPT_SMALLPAGE) {
525                 if (ns->geom.totsz <= (32 << 20)) {
526                         ns->geom.pgaddrbytes  = 3;
527                         ns->geom.secaddrbytes = 2;
528                 } else {
529                         ns->geom.pgaddrbytes  = 4;
530                         ns->geom.secaddrbytes = 3;
531                 }
532         } else {
533                 if (ns->geom.totsz <= (128 << 20)) {
534                         ns->geom.pgaddrbytes  = 4;
535                         ns->geom.secaddrbytes = 2;
536                 } else {
537                         ns->geom.pgaddrbytes  = 5;
538                         ns->geom.secaddrbytes = 3;
539                 }
540         }
541
542         /* Fill the partition_info structure */
543         if (parts_num > ARRAY_SIZE(ns->partitions)) {
544                 NS_ERR("too many partitions.\n");
545                 ret = -EINVAL;
546                 goto error;
547         }
548         remains = ns->geom.totsz;
549         next_offset = 0;
550         for (i = 0; i < parts_num; ++i) {
551                 u_int64_t part_sz = (u_int64_t)parts[i] * ns->geom.secsz;
552
553                 if (!part_sz || part_sz > remains) {
554                         NS_ERR("bad partition size.\n");
555                         ret = -EINVAL;
556                         goto error;
557                 }
558                 ns->partitions[i].name   = get_partition_name(i);
559                 ns->partitions[i].offset = next_offset;
560                 ns->partitions[i].size   = part_sz;
561                 next_offset += ns->partitions[i].size;
562                 remains -= ns->partitions[i].size;
563         }
564         ns->nbparts = parts_num;
565         if (remains) {
566                 if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) {
567                         NS_ERR("too many partitions.\n");
568                         ret = -EINVAL;
569                         goto error;
570                 }
571                 ns->partitions[i].name   = get_partition_name(i);
572                 ns->partitions[i].offset = next_offset;
573                 ns->partitions[i].size   = remains;
574                 ns->nbparts += 1;
575         }
576
577         /* Detect how many ID bytes the NAND chip outputs */
578         for (i = 0; nand_flash_ids[i].name != NULL; i++) {
579                 if (second_id_byte != nand_flash_ids[i].id)
580                         continue;
581                 if (!(nand_flash_ids[i].options & NAND_NO_AUTOINCR))
582                         ns->options |= OPT_AUTOINCR;
583         }
584
585         if (ns->busw == 16)
586                 NS_WARN("16-bit flashes support wasn't tested\n");
587
588         printk("flash size: %llu MiB\n",        ns->geom.totsz >> 20);
589         printk("page size: %u bytes\n",         ns->geom.pgsz);
590         printk("OOB area size: %u bytes\n",     ns->geom.oobsz);
591         printk("sector size: %u KiB\n",         ns->geom.secsz >> 10);
592         printk("pages number: %u\n",            ns->geom.pgnum);
593         printk("pages per sector: %u\n",        ns->geom.pgsec);
594         printk("bus width: %u\n",               ns->busw);
595         printk("bits in sector size: %u\n",     ns->geom.secshift);
596         printk("bits in page size: %u\n",       ns->geom.pgshift);
597         printk("bits in OOB size: %u\n",        ns->geom.oobshift);
598         printk("flash size with OOB: %llu KiB\n", ns->geom.totszoob >> 10);
599         printk("page address bytes: %u\n",      ns->geom.pgaddrbytes);
600         printk("sector address bytes: %u\n",    ns->geom.secaddrbytes);
601         printk("options: %#x\n",                ns->options);
602
603         if ((ret = alloc_device(ns)) != 0)
604                 goto error;
605
606         /* Allocate / initialize the internal buffer */
607         ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
608         if (!ns->buf.byte) {
609                 NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
610                         ns->geom.pgszoob);
611                 ret = -ENOMEM;
612                 goto error;
613         }
614         memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
615
616         return 0;
617
618 error:
619         free_device(ns);
620
621         return ret;
622 }
623
624 /*
625  * Free the nandsim structure.
626  */
627 static void free_nandsim(struct nandsim *ns)
628 {
629         kfree(ns->buf.byte);
630         free_device(ns);
631
632         return;
633 }
634
635 static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd)
636 {
637         char *w;
638         int zero_ok;
639         unsigned int erase_block_no;
640         loff_t offset;
641
642         if (!badblocks)
643                 return 0;
644         w = badblocks;
645         do {
646                 zero_ok = (*w == '0' ? 1 : 0);
647                 erase_block_no = simple_strtoul(w, &w, 0);
648                 if (!zero_ok && !erase_block_no) {
649                         NS_ERR("invalid badblocks.\n");
650                         return -EINVAL;
651                 }
652                 offset = erase_block_no * ns->geom.secsz;
653                 if (mtd->block_markbad(mtd, offset)) {
654                         NS_ERR("invalid badblocks.\n");
655                         return -EINVAL;
656                 }
657                 if (*w == ',')
658                         w += 1;
659         } while (*w);
660         return 0;
661 }
662
663 static int parse_weakblocks(void)
664 {
665         char *w;
666         int zero_ok;
667         unsigned int erase_block_no;
668         unsigned int max_erases;
669         struct weak_block *wb;
670
671         if (!weakblocks)
672                 return 0;
673         w = weakblocks;
674         do {
675                 zero_ok = (*w == '0' ? 1 : 0);
676                 erase_block_no = simple_strtoul(w, &w, 0);
677                 if (!zero_ok && !erase_block_no) {
678                         NS_ERR("invalid weakblocks.\n");
679                         return -EINVAL;
680                 }
681                 max_erases = 3;
682                 if (*w == ':') {
683                         w += 1;
684                         max_erases = simple_strtoul(w, &w, 0);
685                 }
686                 if (*w == ',')
687                         w += 1;
688                 wb = kzalloc(sizeof(*wb), GFP_KERNEL);
689                 if (!wb) {
690                         NS_ERR("unable to allocate memory.\n");
691                         return -ENOMEM;
692                 }
693                 wb->erase_block_no = erase_block_no;
694                 wb->max_erases = max_erases;
695                 list_add(&wb->list, &weak_blocks);
696         } while (*w);
697         return 0;
698 }
699
700 static int erase_error(unsigned int erase_block_no)
701 {
702         struct weak_block *wb;
703
704         list_for_each_entry(wb, &weak_blocks, list)
705                 if (wb->erase_block_no == erase_block_no) {
706                         if (wb->erases_done >= wb->max_erases)
707                                 return 1;
708                         wb->erases_done += 1;
709                         return 0;
710                 }
711         return 0;
712 }
713
714 static int parse_weakpages(void)
715 {
716         char *w;
717         int zero_ok;
718         unsigned int page_no;
719         unsigned int max_writes;
720         struct weak_page *wp;
721
722         if (!weakpages)
723                 return 0;
724         w = weakpages;
725         do {
726                 zero_ok = (*w == '0' ? 1 : 0);
727                 page_no = simple_strtoul(w, &w, 0);
728                 if (!zero_ok && !page_no) {
729                         NS_ERR("invalid weakpagess.\n");
730                         return -EINVAL;
731                 }
732                 max_writes = 3;
733                 if (*w == ':') {
734                         w += 1;
735                         max_writes = simple_strtoul(w, &w, 0);
736                 }
737                 if (*w == ',')
738                         w += 1;
739                 wp = kzalloc(sizeof(*wp), GFP_KERNEL);
740                 if (!wp) {
741                         NS_ERR("unable to allocate memory.\n");
742                         return -ENOMEM;
743                 }
744                 wp->page_no = page_no;
745                 wp->max_writes = max_writes;
746                 list_add(&wp->list, &weak_pages);
747         } while (*w);
748         return 0;
749 }
750
751 static int write_error(unsigned int page_no)
752 {
753         struct weak_page *wp;
754
755         list_for_each_entry(wp, &weak_pages, list)
756                 if (wp->page_no == page_no) {
757                         if (wp->writes_done >= wp->max_writes)
758                                 return 1;
759                         wp->writes_done += 1;
760                         return 0;
761                 }
762         return 0;
763 }
764
765 static int parse_gravepages(void)
766 {
767         char *g;
768         int zero_ok;
769         unsigned int page_no;
770         unsigned int max_reads;
771         struct grave_page *gp;
772
773         if (!gravepages)
774                 return 0;
775         g = gravepages;
776         do {
777                 zero_ok = (*g == '0' ? 1 : 0);
778                 page_no = simple_strtoul(g, &g, 0);
779                 if (!zero_ok && !page_no) {
780                         NS_ERR("invalid gravepagess.\n");
781                         return -EINVAL;
782                 }
783                 max_reads = 3;
784                 if (*g == ':') {
785                         g += 1;
786                         max_reads = simple_strtoul(g, &g, 0);
787                 }
788                 if (*g == ',')
789                         g += 1;
790                 gp = kzalloc(sizeof(*gp), GFP_KERNEL);
791                 if (!gp) {
792                         NS_ERR("unable to allocate memory.\n");
793                         return -ENOMEM;
794                 }
795                 gp->page_no = page_no;
796                 gp->max_reads = max_reads;
797                 list_add(&gp->list, &grave_pages);
798         } while (*g);
799         return 0;
800 }
801
802 static int read_error(unsigned int page_no)
803 {
804         struct grave_page *gp;
805
806         list_for_each_entry(gp, &grave_pages, list)
807                 if (gp->page_no == page_no) {
808                         if (gp->reads_done >= gp->max_reads)
809                                 return 1;
810                         gp->reads_done += 1;
811                         return 0;
812                 }
813         return 0;
814 }
815
816 static void free_lists(void)
817 {
818         struct list_head *pos, *n;
819         list_for_each_safe(pos, n, &weak_blocks) {
820                 list_del(pos);
821                 kfree(list_entry(pos, struct weak_block, list));
822         }
823         list_for_each_safe(pos, n, &weak_pages) {
824                 list_del(pos);
825                 kfree(list_entry(pos, struct weak_page, list));
826         }
827         list_for_each_safe(pos, n, &grave_pages) {
828                 list_del(pos);
829                 kfree(list_entry(pos, struct grave_page, list));
830         }
831         kfree(erase_block_wear);
832 }
833
834 static int setup_wear_reporting(struct mtd_info *mtd)
835 {
836         size_t mem;
837
838         if (!rptwear)
839                 return 0;
840         wear_eb_count = divide(mtd->size, mtd->erasesize);
841         mem = wear_eb_count * sizeof(unsigned long);
842         if (mem / sizeof(unsigned long) != wear_eb_count) {
843                 NS_ERR("Too many erase blocks for wear reporting\n");
844                 return -ENOMEM;
845         }
846         erase_block_wear = kzalloc(mem, GFP_KERNEL);
847         if (!erase_block_wear) {
848                 NS_ERR("Too many erase blocks for wear reporting\n");
849                 return -ENOMEM;
850         }
851         return 0;
852 }
853
854 static void update_wear(unsigned int erase_block_no)
855 {
856         unsigned long wmin = -1, wmax = 0, avg;
857         unsigned long deciles[10], decile_max[10], tot = 0;
858         unsigned int i;
859
860         if (!erase_block_wear)
861                 return;
862         total_wear += 1;
863         if (total_wear == 0)
864                 NS_ERR("Erase counter total overflow\n");
865         erase_block_wear[erase_block_no] += 1;
866         if (erase_block_wear[erase_block_no] == 0)
867                 NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no);
868         rptwear_cnt += 1;
869         if (rptwear_cnt < rptwear)
870                 return;
871         rptwear_cnt = 0;
872         /* Calc wear stats */
873         for (i = 0; i < wear_eb_count; ++i) {
874                 unsigned long wear = erase_block_wear[i];
875                 if (wear < wmin)
876                         wmin = wear;
877                 if (wear > wmax)
878                         wmax = wear;
879                 tot += wear;
880         }
881         for (i = 0; i < 9; ++i) {
882                 deciles[i] = 0;
883                 decile_max[i] = (wmax * (i + 1) + 5) / 10;
884         }
885         deciles[9] = 0;
886         decile_max[9] = wmax;
887         for (i = 0; i < wear_eb_count; ++i) {
888                 int d;
889                 unsigned long wear = erase_block_wear[i];
890                 for (d = 0; d < 10; ++d)
891                         if (wear <= decile_max[d]) {
892                                 deciles[d] += 1;
893                                 break;
894                         }
895         }
896         avg = tot / wear_eb_count;
897         /* Output wear report */
898         NS_INFO("*** Wear Report ***\n");
899         NS_INFO("Total numbers of erases:  %lu\n", tot);
900         NS_INFO("Number of erase blocks:   %u\n", wear_eb_count);
901         NS_INFO("Average number of erases: %lu\n", avg);
902         NS_INFO("Maximum number of erases: %lu\n", wmax);
903         NS_INFO("Minimum number of erases: %lu\n", wmin);
904         for (i = 0; i < 10; ++i) {
905                 unsigned long from = (i ? decile_max[i - 1] + 1 : 0);
906                 if (from > decile_max[i])
907                         continue;
908                 NS_INFO("Number of ebs with erase counts from %lu to %lu : %lu\n",
909                         from,
910                         decile_max[i],
911                         deciles[i]);
912         }
913         NS_INFO("*** End of Wear Report ***\n");
914 }
915
916 /*
917  * Returns the string representation of 'state' state.
918  */
919 static char *get_state_name(uint32_t state)
920 {
921         switch (NS_STATE(state)) {
922                 case STATE_CMD_READ0:
923                         return "STATE_CMD_READ0";
924                 case STATE_CMD_READ1:
925                         return "STATE_CMD_READ1";
926                 case STATE_CMD_PAGEPROG:
927                         return "STATE_CMD_PAGEPROG";
928                 case STATE_CMD_READOOB:
929                         return "STATE_CMD_READOOB";
930                 case STATE_CMD_READSTART:
931                         return "STATE_CMD_READSTART";
932                 case STATE_CMD_ERASE1:
933                         return "STATE_CMD_ERASE1";
934                 case STATE_CMD_STATUS:
935                         return "STATE_CMD_STATUS";
936                 case STATE_CMD_STATUS_M:
937                         return "STATE_CMD_STATUS_M";
938                 case STATE_CMD_SEQIN:
939                         return "STATE_CMD_SEQIN";
940                 case STATE_CMD_READID:
941                         return "STATE_CMD_READID";
942                 case STATE_CMD_ERASE2:
943                         return "STATE_CMD_ERASE2";
944                 case STATE_CMD_RESET:
945                         return "STATE_CMD_RESET";
946                 case STATE_CMD_RNDOUT:
947                         return "STATE_CMD_RNDOUT";
948                 case STATE_CMD_RNDOUTSTART:
949                         return "STATE_CMD_RNDOUTSTART";
950                 case STATE_ADDR_PAGE:
951                         return "STATE_ADDR_PAGE";
952                 case STATE_ADDR_SEC:
953                         return "STATE_ADDR_SEC";
954                 case STATE_ADDR_ZERO:
955                         return "STATE_ADDR_ZERO";
956                 case STATE_ADDR_COLUMN:
957                         return "STATE_ADDR_COLUMN";
958                 case STATE_DATAIN:
959                         return "STATE_DATAIN";
960                 case STATE_DATAOUT:
961                         return "STATE_DATAOUT";
962                 case STATE_DATAOUT_ID:
963                         return "STATE_DATAOUT_ID";
964                 case STATE_DATAOUT_STATUS:
965                         return "STATE_DATAOUT_STATUS";
966                 case STATE_DATAOUT_STATUS_M:
967                         return "STATE_DATAOUT_STATUS_M";
968                 case STATE_READY:
969                         return "STATE_READY";
970                 case STATE_UNKNOWN:
971                         return "STATE_UNKNOWN";
972         }
973
974         NS_ERR("get_state_name: unknown state, BUG\n");
975         return NULL;
976 }
977
978 /*
979  * Check if command is valid.
980  *
981  * RETURNS: 1 if wrong command, 0 if right.
982  */
983 static int check_command(int cmd)
984 {
985         switch (cmd) {
986
987         case NAND_CMD_READ0:
988         case NAND_CMD_READ1:
989         case NAND_CMD_READSTART:
990         case NAND_CMD_PAGEPROG:
991         case NAND_CMD_READOOB:
992         case NAND_CMD_ERASE1:
993         case NAND_CMD_STATUS:
994         case NAND_CMD_SEQIN:
995         case NAND_CMD_READID:
996         case NAND_CMD_ERASE2:
997         case NAND_CMD_RESET:
998         case NAND_CMD_RNDOUT:
999         case NAND_CMD_RNDOUTSTART:
1000                 return 0;
1001
1002         case NAND_CMD_STATUS_MULTI:
1003         default:
1004                 return 1;
1005         }
1006 }
1007
1008 /*
1009  * Returns state after command is accepted by command number.
1010  */
1011 static uint32_t get_state_by_command(unsigned command)
1012 {
1013         switch (command) {
1014                 case NAND_CMD_READ0:
1015                         return STATE_CMD_READ0;
1016                 case NAND_CMD_READ1:
1017                         return STATE_CMD_READ1;
1018                 case NAND_CMD_PAGEPROG:
1019                         return STATE_CMD_PAGEPROG;
1020                 case NAND_CMD_READSTART:
1021                         return STATE_CMD_READSTART;
1022                 case NAND_CMD_READOOB:
1023                         return STATE_CMD_READOOB;
1024                 case NAND_CMD_ERASE1:
1025                         return STATE_CMD_ERASE1;
1026                 case NAND_CMD_STATUS:
1027                         return STATE_CMD_STATUS;
1028                 case NAND_CMD_STATUS_MULTI:
1029                         return STATE_CMD_STATUS_M;
1030                 case NAND_CMD_SEQIN:
1031                         return STATE_CMD_SEQIN;
1032                 case NAND_CMD_READID:
1033                         return STATE_CMD_READID;
1034                 case NAND_CMD_ERASE2:
1035                         return STATE_CMD_ERASE2;
1036                 case NAND_CMD_RESET:
1037                         return STATE_CMD_RESET;
1038                 case NAND_CMD_RNDOUT:
1039                         return STATE_CMD_RNDOUT;
1040                 case NAND_CMD_RNDOUTSTART:
1041                         return STATE_CMD_RNDOUTSTART;
1042         }
1043
1044         NS_ERR("get_state_by_command: unknown command, BUG\n");
1045         return 0;
1046 }
1047
1048 /*
1049  * Move an address byte to the correspondent internal register.
1050  */
1051 static inline void accept_addr_byte(struct nandsim *ns, u_char bt)
1052 {
1053         uint byte = (uint)bt;
1054
1055         if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
1056                 ns->regs.column |= (byte << 8 * ns->regs.count);
1057         else {
1058                 ns->regs.row |= (byte << 8 * (ns->regs.count -
1059                                                 ns->geom.pgaddrbytes +
1060                                                 ns->geom.secaddrbytes));
1061         }
1062
1063         return;
1064 }
1065
1066 /*
1067  * Switch to STATE_READY state.
1068  */
1069 static inline void switch_to_ready_state(struct nandsim *ns, u_char status)
1070 {
1071         NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
1072
1073         ns->state       = STATE_READY;
1074         ns->nxstate     = STATE_UNKNOWN;
1075         ns->op          = NULL;
1076         ns->npstates    = 0;
1077         ns->stateidx    = 0;
1078         ns->regs.num    = 0;
1079         ns->regs.count  = 0;
1080         ns->regs.off    = 0;
1081         ns->regs.row    = 0;
1082         ns->regs.column = 0;
1083         ns->regs.status = status;
1084 }
1085
1086 /*
1087  * If the operation isn't known yet, try to find it in the global array
1088  * of supported operations.
1089  *
1090  * Operation can be unknown because of the following.
1091  *   1. New command was accepted and this is the firs call to find the
1092  *      correspondent states chain. In this case ns->npstates = 0;
1093  *   2. There is several operations which begin with the same command(s)
1094  *      (for example program from the second half and read from the
1095  *      second half operations both begin with the READ1 command). In this
1096  *      case the ns->pstates[] array contains previous states.
1097  *
1098  * Thus, the function tries to find operation containing the following
1099  * states (if the 'flag' parameter is 0):
1100  *    ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
1101  *
1102  * If (one and only one) matching operation is found, it is accepted (
1103  * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
1104  * zeroed).
1105  *
1106  * If there are several maches, the current state is pushed to the
1107  * ns->pstates.
1108  *
1109  * The operation can be unknown only while commands are input to the chip.
1110  * As soon as address command is accepted, the operation must be known.
1111  * In such situation the function is called with 'flag' != 0, and the
1112  * operation is searched using the following pattern:
1113  *     ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
1114  *
1115  * It is supposed that this pattern must either match one operation on
1116  * none. There can't be ambiguity in that case.
1117  *
1118  * If no matches found, the functions does the following:
1119  *   1. if there are saved states present, try to ignore them and search
1120  *      again only using the last command. If nothing was found, switch
1121  *      to the STATE_READY state.
1122  *   2. if there are no saved states, switch to the STATE_READY state.
1123  *
1124  * RETURNS: -2 - no matched operations found.
1125  *          -1 - several matches.
1126  *           0 - operation is found.
1127  */
1128 static int find_operation(struct nandsim *ns, uint32_t flag)
1129 {
1130         int opsfound = 0;
1131         int i, j, idx = 0;
1132
1133         for (i = 0; i < NS_OPER_NUM; i++) {
1134
1135                 int found = 1;
1136
1137                 if (!(ns->options & ops[i].reqopts))
1138                         /* Ignore operations we can't perform */
1139                         continue;
1140
1141                 if (flag) {
1142                         if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
1143                                 continue;
1144                 } else {
1145                         if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
1146                                 continue;
1147                 }
1148
1149                 for (j = 0; j < ns->npstates; j++)
1150                         if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
1151                                 && (ns->options & ops[idx].reqopts)) {
1152                                 found = 0;
1153                                 break;
1154                         }
1155
1156                 if (found) {
1157                         idx = i;
1158                         opsfound += 1;
1159                 }
1160         }
1161
1162         if (opsfound == 1) {
1163                 /* Exact match */
1164                 ns->op = &ops[idx].states[0];
1165                 if (flag) {
1166                         /*
1167                          * In this case the find_operation function was
1168                          * called when address has just began input. But it isn't
1169                          * yet fully input and the current state must
1170                          * not be one of STATE_ADDR_*, but the STATE_ADDR_*
1171                          * state must be the next state (ns->nxstate).
1172                          */
1173                         ns->stateidx = ns->npstates - 1;
1174                 } else {
1175                         ns->stateidx = ns->npstates;
1176                 }
1177                 ns->npstates = 0;
1178                 ns->state = ns->op[ns->stateidx];
1179                 ns->nxstate = ns->op[ns->stateidx + 1];
1180                 NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
1181                                 idx, get_state_name(ns->state), get_state_name(ns->nxstate));
1182                 return 0;
1183         }
1184
1185         if (opsfound == 0) {
1186                 /* Nothing was found. Try to ignore previous commands (if any) and search again */
1187                 if (ns->npstates != 0) {
1188                         NS_DBG("find_operation: no operation found, try again with state %s\n",
1189                                         get_state_name(ns->state));
1190                         ns->npstates = 0;
1191                         return find_operation(ns, 0);
1192
1193                 }
1194                 NS_DBG("find_operation: no operations found\n");
1195                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1196                 return -2;
1197         }
1198
1199         if (flag) {
1200                 /* This shouldn't happen */
1201                 NS_DBG("find_operation: BUG, operation must be known if address is input\n");
1202                 return -2;
1203         }
1204
1205         NS_DBG("find_operation: there is still ambiguity\n");
1206
1207         ns->pstates[ns->npstates++] = ns->state;
1208
1209         return -1;
1210 }
1211
1212 /*
1213  * Returns a pointer to the current page.
1214  */
1215 static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns)
1216 {
1217         return &(ns->pages[ns->regs.row]);
1218 }
1219
1220 /*
1221  * Retuns a pointer to the current byte, within the current page.
1222  */
1223 static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns)
1224 {
1225         return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off;
1226 }
1227
1228 /*
1229  * Fill the NAND buffer with data read from the specified page.
1230  */
1231 static void read_page(struct nandsim *ns, int num)
1232 {
1233         union ns_mem *mypage;
1234
1235         mypage = NS_GET_PAGE(ns);
1236         if (mypage->byte == NULL) {
1237                 NS_DBG("read_page: page %d not allocated\n", ns->regs.row);
1238                 memset(ns->buf.byte, 0xFF, num);
1239         } else {
1240                 unsigned int page_no = ns->regs.row;
1241                 NS_DBG("read_page: page %d allocated, reading from %d\n",
1242                         ns->regs.row, ns->regs.column + ns->regs.off);
1243                 if (read_error(page_no)) {
1244                         int i;
1245                         memset(ns->buf.byte, 0xFF, num);
1246                         for (i = 0; i < num; ++i)
1247                                 ns->buf.byte[i] = random32();
1248                         NS_WARN("simulating read error in page %u\n", page_no);
1249                         return;
1250                 }
1251                 memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num);
1252                 if (bitflips && random32() < (1 << 22)) {
1253                         int flips = 1;
1254                         if (bitflips > 1)
1255                                 flips = (random32() % (int) bitflips) + 1;
1256                         while (flips--) {
1257                                 int pos = random32() % (num * 8);
1258                                 ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
1259                                 NS_WARN("read_page: flipping bit %d in page %d "
1260                                         "reading from %d ecc: corrected=%u failed=%u\n",
1261                                         pos, ns->regs.row, ns->regs.column + ns->regs.off,
1262                                         nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed);
1263                         }
1264                 }
1265         }
1266 }
1267
1268 /*
1269  * Erase all pages in the specified sector.
1270  */
1271 static void erase_sector(struct nandsim *ns)
1272 {
1273         union ns_mem *mypage;
1274         int i;
1275
1276         mypage = NS_GET_PAGE(ns);
1277         for (i = 0; i < ns->geom.pgsec; i++) {
1278                 if (mypage->byte != NULL) {
1279                         NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i);
1280                         kfree(mypage->byte);
1281                         mypage->byte = NULL;
1282                 }
1283                 mypage++;
1284         }
1285 }
1286
1287 /*
1288  * Program the specified page with the contents from the NAND buffer.
1289  */
1290 static int prog_page(struct nandsim *ns, int num)
1291 {
1292         int i;
1293         union ns_mem *mypage;
1294         u_char *pg_off;
1295
1296         mypage = NS_GET_PAGE(ns);
1297         if (mypage->byte == NULL) {
1298                 NS_DBG("prog_page: allocating page %d\n", ns->regs.row);
1299                 /*
1300                  * We allocate memory with GFP_NOFS because a flash FS may
1301                  * utilize this. If it is holding an FS lock, then gets here,
1302                  * then kmalloc runs writeback which goes to the FS again
1303                  * and deadlocks. This was seen in practice.
1304                  */
1305                 mypage->byte = kmalloc(ns->geom.pgszoob, GFP_NOFS);
1306                 if (mypage->byte == NULL) {
1307                         NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row);
1308                         return -1;
1309                 }
1310                 memset(mypage->byte, 0xFF, ns->geom.pgszoob);
1311         }
1312
1313         pg_off = NS_PAGE_BYTE_OFF(ns);
1314         for (i = 0; i < num; i++)
1315                 pg_off[i] &= ns->buf.byte[i];
1316
1317         return 0;
1318 }
1319
1320 /*
1321  * If state has any action bit, perform this action.
1322  *
1323  * RETURNS: 0 if success, -1 if error.
1324  */
1325 static int do_state_action(struct nandsim *ns, uint32_t action)
1326 {
1327         int num;
1328         int busdiv = ns->busw == 8 ? 1 : 2;
1329         unsigned int erase_block_no, page_no;
1330
1331         action &= ACTION_MASK;
1332
1333         /* Check that page address input is correct */
1334         if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
1335                 NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
1336                 return -1;
1337         }
1338
1339         switch (action) {
1340
1341         case ACTION_CPY:
1342                 /*
1343                  * Copy page data to the internal buffer.
1344                  */
1345
1346                 /* Column shouldn't be very large */
1347                 if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
1348                         NS_ERR("do_state_action: column number is too large\n");
1349                         break;
1350                 }
1351                 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1352                 read_page(ns, num);
1353
1354                 NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
1355                         num, NS_RAW_OFFSET(ns) + ns->regs.off);
1356
1357                 if (ns->regs.off == 0)
1358                         NS_LOG("read page %d\n", ns->regs.row);
1359                 else if (ns->regs.off < ns->geom.pgsz)
1360                         NS_LOG("read page %d (second half)\n", ns->regs.row);
1361                 else
1362                         NS_LOG("read OOB of page %d\n", ns->regs.row);
1363
1364                 NS_UDELAY(access_delay);
1365                 NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
1366
1367                 break;
1368
1369         case ACTION_SECERASE:
1370                 /*
1371                  * Erase sector.
1372                  */
1373
1374                 if (ns->lines.wp) {
1375                         NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
1376                         return -1;
1377                 }
1378
1379                 if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
1380                         || (ns->regs.row & ~(ns->geom.secsz - 1))) {
1381                         NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
1382                         return -1;
1383                 }
1384
1385                 ns->regs.row = (ns->regs.row <<
1386                                 8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
1387                 ns->regs.column = 0;
1388
1389                 erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift);
1390
1391                 NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
1392                                 ns->regs.row, NS_RAW_OFFSET(ns));
1393                 NS_LOG("erase sector %u\n", erase_block_no);
1394
1395                 erase_sector(ns);
1396
1397                 NS_MDELAY(erase_delay);
1398
1399                 if (erase_block_wear)
1400                         update_wear(erase_block_no);
1401
1402                 if (erase_error(erase_block_no)) {
1403                         NS_WARN("simulating erase failure in erase block %u\n", erase_block_no);
1404                         return -1;
1405                 }
1406
1407                 break;
1408
1409         case ACTION_PRGPAGE:
1410                 /*
1411                  * Programm page - move internal buffer data to the page.
1412                  */
1413
1414                 if (ns->lines.wp) {
1415                         NS_WARN("do_state_action: device is write-protected, programm\n");
1416                         return -1;
1417                 }
1418
1419                 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1420                 if (num != ns->regs.count) {
1421                         NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
1422                                         ns->regs.count, num);
1423                         return -1;
1424                 }
1425
1426                 if (prog_page(ns, num) == -1)
1427                         return -1;
1428
1429                 page_no = ns->regs.row;
1430
1431                 NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
1432                         num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
1433                 NS_LOG("programm page %d\n", ns->regs.row);
1434
1435                 NS_UDELAY(programm_delay);
1436                 NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
1437
1438                 if (write_error(page_no)) {
1439                         NS_WARN("simulating write failure in page %u\n", page_no);
1440                         return -1;
1441                 }
1442
1443                 break;
1444
1445         case ACTION_ZEROOFF:
1446                 NS_DBG("do_state_action: set internal offset to 0\n");
1447                 ns->regs.off = 0;
1448                 break;
1449
1450         case ACTION_HALFOFF:
1451                 if (!(ns->options & OPT_PAGE512_8BIT)) {
1452                         NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
1453                                 "byte page size 8x chips\n");
1454                         return -1;
1455                 }
1456                 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
1457                 ns->regs.off = ns->geom.pgsz/2;
1458                 break;
1459
1460         case ACTION_OOBOFF:
1461                 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
1462                 ns->regs.off = ns->geom.pgsz;
1463                 break;
1464
1465         default:
1466                 NS_DBG("do_state_action: BUG! unknown action\n");
1467         }
1468
1469         return 0;
1470 }
1471
1472 /*
1473  * Switch simulator's state.
1474  */
1475 static void switch_state(struct nandsim *ns)
1476 {
1477         if (ns->op) {
1478                 /*
1479                  * The current operation have already been identified.
1480                  * Just follow the states chain.
1481                  */
1482
1483                 ns->stateidx += 1;
1484                 ns->state = ns->nxstate;
1485                 ns->nxstate = ns->op[ns->stateidx + 1];
1486
1487                 NS_DBG("switch_state: operation is known, switch to the next state, "
1488                         "state: %s, nxstate: %s\n",
1489                         get_state_name(ns->state), get_state_name(ns->nxstate));
1490
1491                 /* See, whether we need to do some action */
1492                 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1493                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1494                         return;
1495                 }
1496
1497         } else {
1498                 /*
1499                  * We don't yet know which operation we perform.
1500                  * Try to identify it.
1501                  */
1502
1503                 /*
1504                  *  The only event causing the switch_state function to
1505                  *  be called with yet unknown operation is new command.
1506                  */
1507                 ns->state = get_state_by_command(ns->regs.command);
1508
1509                 NS_DBG("switch_state: operation is unknown, try to find it\n");
1510
1511                 if (find_operation(ns, 0) != 0)
1512                         return;
1513
1514                 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1515                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1516                         return;
1517                 }
1518         }
1519
1520         /* For 16x devices column means the page offset in words */
1521         if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
1522                 NS_DBG("switch_state: double the column number for 16x device\n");
1523                 ns->regs.column <<= 1;
1524         }
1525
1526         if (NS_STATE(ns->nxstate) == STATE_READY) {
1527                 /*
1528                  * The current state is the last. Return to STATE_READY
1529                  */
1530
1531                 u_char status = NS_STATUS_OK(ns);
1532
1533                 /* In case of data states, see if all bytes were input/output */
1534                 if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
1535                         && ns->regs.count != ns->regs.num) {
1536                         NS_WARN("switch_state: not all bytes were processed, %d left\n",
1537                                         ns->regs.num - ns->regs.count);
1538                         status = NS_STATUS_FAILED(ns);
1539                 }
1540
1541                 NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1542
1543                 switch_to_ready_state(ns, status);
1544
1545                 return;
1546         } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
1547                 /*
1548                  * If the next state is data input/output, switch to it now
1549                  */
1550
1551                 ns->state      = ns->nxstate;
1552                 ns->nxstate    = ns->op[++ns->stateidx + 1];
1553                 ns->regs.num   = ns->regs.count = 0;
1554
1555                 NS_DBG("switch_state: the next state is data I/O, switch, "
1556                         "state: %s, nxstate: %s\n",
1557                         get_state_name(ns->state), get_state_name(ns->nxstate));
1558
1559                 /*
1560                  * Set the internal register to the count of bytes which
1561                  * are expected to be input or output
1562                  */
1563                 switch (NS_STATE(ns->state)) {
1564                         case STATE_DATAIN:
1565                         case STATE_DATAOUT:
1566                                 ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1567                                 break;
1568
1569                         case STATE_DATAOUT_ID:
1570                                 ns->regs.num = ns->geom.idbytes;
1571                                 break;
1572
1573                         case STATE_DATAOUT_STATUS:
1574                         case STATE_DATAOUT_STATUS_M:
1575                                 ns->regs.count = ns->regs.num = 0;
1576                                 break;
1577
1578                         default:
1579                                 NS_ERR("switch_state: BUG! unknown data state\n");
1580                 }
1581
1582         } else if (ns->nxstate & STATE_ADDR_MASK) {
1583                 /*
1584                  * If the next state is address input, set the internal
1585                  * register to the number of expected address bytes
1586                  */
1587
1588                 ns->regs.count = 0;
1589
1590                 switch (NS_STATE(ns->nxstate)) {
1591                         case STATE_ADDR_PAGE:
1592                                 ns->regs.num = ns->geom.pgaddrbytes;
1593
1594                                 break;
1595                         case STATE_ADDR_SEC:
1596                                 ns->regs.num = ns->geom.secaddrbytes;
1597                                 break;
1598
1599                         case STATE_ADDR_ZERO:
1600                                 ns->regs.num = 1;
1601                                 break;
1602
1603                         case STATE_ADDR_COLUMN:
1604                                 /* Column address is always 2 bytes */
1605                                 ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes;
1606                                 break;
1607
1608                         default:
1609                                 NS_ERR("switch_state: BUG! unknown address state\n");
1610                 }
1611         } else {
1612                 /*
1613                  * Just reset internal counters.
1614                  */
1615
1616                 ns->regs.num = 0;
1617                 ns->regs.count = 0;
1618         }
1619 }
1620
1621 static u_char ns_nand_read_byte(struct mtd_info *mtd)
1622 {
1623         struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1624         u_char outb = 0x00;
1625
1626         /* Sanity and correctness checks */
1627         if (!ns->lines.ce) {
1628                 NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
1629                 return outb;
1630         }
1631         if (ns->lines.ale || ns->lines.cle) {
1632                 NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
1633                 return outb;
1634         }
1635         if (!(ns->state & STATE_DATAOUT_MASK)) {
1636                 NS_WARN("read_byte: unexpected data output cycle, state is %s "
1637                         "return %#x\n", get_state_name(ns->state), (uint)outb);
1638                 return outb;
1639         }
1640
1641         /* Status register may be read as many times as it is wanted */
1642         if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
1643                 NS_DBG("read_byte: return %#x status\n", ns->regs.status);
1644                 return ns->regs.status;
1645         }
1646
1647         /* Check if there is any data in the internal buffer which may be read */
1648         if (ns->regs.count == ns->regs.num) {
1649                 NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
1650                 return outb;
1651         }
1652
1653         switch (NS_STATE(ns->state)) {
1654                 case STATE_DATAOUT:
1655                         if (ns->busw == 8) {
1656                                 outb = ns->buf.byte[ns->regs.count];
1657                                 ns->regs.count += 1;
1658                         } else {
1659                                 outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
1660                                 ns->regs.count += 2;
1661                         }
1662                         break;
1663                 case STATE_DATAOUT_ID:
1664                         NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
1665                         outb = ns->ids[ns->regs.count];
1666                         ns->regs.count += 1;
1667                         break;
1668                 default:
1669                         BUG();
1670         }
1671
1672         if (ns->regs.count == ns->regs.num) {
1673                 NS_DBG("read_byte: all bytes were read\n");
1674
1675                 /*
1676                  * The OPT_AUTOINCR allows to read next conseqitive pages without
1677                  * new read operation cycle.
1678                  */
1679                 if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
1680                         ns->regs.count = 0;
1681                         if (ns->regs.row + 1 < ns->geom.pgnum)
1682                                 ns->regs.row += 1;
1683                         NS_DBG("read_byte: switch to the next page (%#x)\n", ns->regs.row);
1684                         do_state_action(ns, ACTION_CPY);
1685                 }
1686                 else if (NS_STATE(ns->nxstate) == STATE_READY)
1687                         switch_state(ns);
1688
1689         }
1690
1691         return outb;
1692 }
1693
1694 static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
1695 {
1696         struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1697
1698         /* Sanity and correctness checks */
1699         if (!ns->lines.ce) {
1700                 NS_ERR("write_byte: chip is disabled, ignore write\n");
1701                 return;
1702         }
1703         if (ns->lines.ale && ns->lines.cle) {
1704                 NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1705                 return;
1706         }
1707
1708         if (ns->lines.cle == 1) {
1709                 /*
1710                  * The byte written is a command.
1711                  */
1712
1713                 if (byte == NAND_CMD_RESET) {
1714                         NS_LOG("reset chip\n");
1715                         switch_to_ready_state(ns, NS_STATUS_OK(ns));
1716                         return;
1717                 }
1718
1719                 /* Check that the command byte is correct */
1720                 if (check_command(byte)) {
1721                         NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
1722                         return;
1723                 }
1724
1725                 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
1726                         || NS_STATE(ns->state) == STATE_DATAOUT_STATUS_M
1727                         || NS_STATE(ns->state) == STATE_DATAOUT) {
1728                         int row = ns->regs.row;
1729
1730                         switch_state(ns);
1731                         if (byte == NAND_CMD_RNDOUT)
1732                                 ns->regs.row = row;
1733                 }
1734
1735                 /* Check if chip is expecting command */
1736                 if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
1737                         /*
1738                          * We are in situation when something else (not command)
1739                          * was expected but command was input. In this case ignore
1740                          * previous command(s)/state(s) and accept the last one.
1741                          */
1742                         NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
1743                                 "ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
1744                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1745                 }
1746
1747                 NS_DBG("command byte corresponding to %s state accepted\n",
1748                         get_state_name(get_state_by_command(byte)));
1749                 ns->regs.command = byte;
1750                 switch_state(ns);
1751
1752         } else if (ns->lines.ale == 1) {
1753                 /*
1754                  * The byte written is an address.
1755                  */
1756
1757                 if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
1758
1759                         NS_DBG("write_byte: operation isn't known yet, identify it\n");
1760
1761                         if (find_operation(ns, 1) < 0)
1762                                 return;
1763
1764                         if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1765                                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1766                                 return;
1767                         }
1768
1769                         ns->regs.count = 0;
1770                         switch (NS_STATE(ns->nxstate)) {
1771                                 case STATE_ADDR_PAGE:
1772                                         ns->regs.num = ns->geom.pgaddrbytes;
1773                                         break;
1774                                 case STATE_ADDR_SEC:
1775                                         ns->regs.num = ns->geom.secaddrbytes;
1776                                         break;
1777                                 case STATE_ADDR_ZERO:
1778                                         ns->regs.num = 1;
1779                                         break;
1780                                 default:
1781                                         BUG();
1782                         }
1783                 }
1784
1785                 /* Check that chip is expecting address */
1786                 if (!(ns->nxstate & STATE_ADDR_MASK)) {
1787                         NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
1788                                 "switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
1789                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1790                         return;
1791                 }
1792
1793                 /* Check if this is expected byte */
1794                 if (ns->regs.count == ns->regs.num) {
1795                         NS_ERR("write_byte: no more address bytes expected\n");
1796                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1797                         return;
1798                 }
1799
1800                 accept_addr_byte(ns, byte);
1801
1802                 ns->regs.count += 1;
1803
1804                 NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
1805                                 (uint)byte, ns->regs.count, ns->regs.num);
1806
1807                 if (ns->regs.count == ns->regs.num) {
1808                         NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
1809                         switch_state(ns);
1810                 }
1811
1812         } else {
1813                 /*
1814                  * The byte written is an input data.
1815                  */
1816
1817                 /* Check that chip is expecting data input */
1818                 if (!(ns->state & STATE_DATAIN_MASK)) {
1819                         NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
1820                                 "switch to %s\n", (uint)byte,
1821                                 get_state_name(ns->state), get_state_name(STATE_READY));
1822                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1823                         return;
1824                 }
1825
1826                 /* Check if this is expected byte */
1827                 if (ns->regs.count == ns->regs.num) {
1828                         NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
1829                                         ns->regs.num);
1830                         return;
1831                 }
1832
1833                 if (ns->busw == 8) {
1834                         ns->buf.byte[ns->regs.count] = byte;
1835                         ns->regs.count += 1;
1836                 } else {
1837                         ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
1838                         ns->regs.count += 2;
1839                 }
1840         }
1841
1842         return;
1843 }
1844
1845 static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask)
1846 {
1847         struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1848
1849         ns->lines.cle = bitmask & NAND_CLE ? 1 : 0;
1850         ns->lines.ale = bitmask & NAND_ALE ? 1 : 0;
1851         ns->lines.ce = bitmask & NAND_NCE ? 1 : 0;
1852
1853         if (cmd != NAND_CMD_NONE)
1854                 ns_nand_write_byte(mtd, cmd);
1855 }
1856
1857 static int ns_device_ready(struct mtd_info *mtd)
1858 {
1859         NS_DBG("device_ready\n");
1860         return 1;
1861 }
1862
1863 static uint16_t ns_nand_read_word(struct mtd_info *mtd)
1864 {
1865         struct nand_chip *chip = (struct nand_chip *)mtd->priv;
1866
1867         NS_DBG("read_word\n");
1868
1869         return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
1870 }
1871
1872 static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
1873 {
1874         struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1875
1876         /* Check that chip is expecting data input */
1877         if (!(ns->state & STATE_DATAIN_MASK)) {
1878                 NS_ERR("write_buf: data input isn't expected, state is %s, "
1879                         "switch to STATE_READY\n", get_state_name(ns->state));
1880                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1881                 return;
1882         }
1883
1884         /* Check if these are expected bytes */
1885         if (ns->regs.count + len > ns->regs.num) {
1886                 NS_ERR("write_buf: too many input bytes\n");
1887                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1888                 return;
1889         }
1890
1891         memcpy(ns->buf.byte + ns->regs.count, buf, len);
1892         ns->regs.count += len;
1893
1894         if (ns->regs.count == ns->regs.num) {
1895                 NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
1896         }
1897 }
1898
1899 static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
1900 {
1901         struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1902
1903         /* Sanity and correctness checks */
1904         if (!ns->lines.ce) {
1905                 NS_ERR("read_buf: chip is disabled\n");
1906                 return;
1907         }
1908         if (ns->lines.ale || ns->lines.cle) {
1909                 NS_ERR("read_buf: ALE or CLE pin is high\n");
1910                 return;
1911         }
1912         if (!(ns->state & STATE_DATAOUT_MASK)) {
1913                 NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
1914                         get_state_name(ns->state));
1915                 return;
1916         }
1917
1918         if (NS_STATE(ns->state) != STATE_DATAOUT) {
1919                 int i;
1920
1921                 for (i = 0; i < len; i++)
1922                         buf[i] = ((struct nand_chip *)mtd->priv)->read_byte(mtd);
1923
1924                 return;
1925         }
1926
1927         /* Check if these are expected bytes */
1928         if (ns->regs.count + len > ns->regs.num) {
1929                 NS_ERR("read_buf: too many bytes to read\n");
1930                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1931                 return;
1932         }
1933
1934         memcpy(buf, ns->buf.byte + ns->regs.count, len);
1935         ns->regs.count += len;
1936
1937         if (ns->regs.count == ns->regs.num) {
1938                 if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
1939                         ns->regs.count = 0;
1940                         if (ns->regs.row + 1 < ns->geom.pgnum)
1941                                 ns->regs.row += 1;
1942                         NS_DBG("read_buf: switch to the next page (%#x)\n", ns->regs.row);
1943                         do_state_action(ns, ACTION_CPY);
1944                 }
1945                 else if (NS_STATE(ns->nxstate) == STATE_READY)
1946                         switch_state(ns);
1947         }
1948
1949         return;
1950 }
1951
1952 static int ns_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
1953 {
1954         ns_nand_read_buf(mtd, (u_char *)&ns_verify_buf[0], len);
1955
1956         if (!memcmp(buf, &ns_verify_buf[0], len)) {
1957                 NS_DBG("verify_buf: the buffer is OK\n");
1958                 return 0;
1959         } else {
1960                 NS_DBG("verify_buf: the buffer is wrong\n");
1961                 return -EFAULT;
1962         }
1963 }
1964
1965 /*
1966  * Module initialization function
1967  */
1968 static int __init ns_init_module(void)
1969 {
1970         struct nand_chip *chip;
1971         struct nandsim *nand;
1972         int retval = -ENOMEM, i;
1973
1974         if (bus_width != 8 && bus_width != 16) {
1975                 NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
1976                 return -EINVAL;
1977         }
1978
1979         /* Allocate and initialize mtd_info, nand_chip and nandsim structures */
1980         nsmtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip)
1981                                 + sizeof(struct nandsim), GFP_KERNEL);
1982         if (!nsmtd) {
1983                 NS_ERR("unable to allocate core structures.\n");
1984                 return -ENOMEM;
1985         }
1986         chip        = (struct nand_chip *)(nsmtd + 1);
1987         nsmtd->priv = (void *)chip;
1988         nand        = (struct nandsim *)(chip + 1);
1989         chip->priv  = (void *)nand;
1990
1991         /*
1992          * Register simulator's callbacks.
1993          */
1994         chip->cmd_ctrl   = ns_hwcontrol;
1995         chip->read_byte  = ns_nand_read_byte;
1996         chip->dev_ready  = ns_device_ready;
1997         chip->write_buf  = ns_nand_write_buf;
1998         chip->read_buf   = ns_nand_read_buf;
1999         chip->verify_buf = ns_nand_verify_buf;
2000         chip->read_word  = ns_nand_read_word;
2001         chip->ecc.mode   = NAND_ECC_SOFT;
2002         /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
2003         /* and 'badblocks' parameters to work */
2004         chip->options   |= NAND_SKIP_BBTSCAN;
2005
2006         /*
2007          * Perform minimum nandsim structure initialization to handle
2008          * the initial ID read command correctly
2009          */
2010         if (third_id_byte != 0xFF || fourth_id_byte != 0xFF)
2011                 nand->geom.idbytes = 4;
2012         else
2013                 nand->geom.idbytes = 2;
2014         nand->regs.status = NS_STATUS_OK(nand);
2015         nand->nxstate = STATE_UNKNOWN;
2016         nand->options |= OPT_PAGE256; /* temporary value */
2017         nand->ids[0] = first_id_byte;
2018         nand->ids[1] = second_id_byte;
2019         nand->ids[2] = third_id_byte;
2020         nand->ids[3] = fourth_id_byte;
2021         if (bus_width == 16) {
2022                 nand->busw = 16;
2023                 chip->options |= NAND_BUSWIDTH_16;
2024         }
2025
2026         nsmtd->owner = THIS_MODULE;
2027
2028         if ((retval = parse_weakblocks()) != 0)
2029                 goto error;
2030
2031         if ((retval = parse_weakpages()) != 0)
2032                 goto error;
2033
2034         if ((retval = parse_gravepages()) != 0)
2035                 goto error;
2036
2037         if ((retval = nand_scan(nsmtd, 1)) != 0) {
2038                 NS_ERR("can't register NAND Simulator\n");
2039                 if (retval > 0)
2040                         retval = -ENXIO;
2041                 goto error;
2042         }
2043
2044         if (overridesize) {
2045                 u_int64_t new_size = (u_int64_t)nsmtd->erasesize << overridesize;
2046                 if (new_size >> overridesize != nsmtd->erasesize) {
2047                         NS_ERR("overridesize is too big\n");
2048                         goto err_exit;
2049                 }
2050                 /* N.B. This relies on nand_scan not doing anything with the size before we change it */
2051                 nsmtd->size = new_size;
2052                 chip->chipsize = new_size;
2053                 chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1;
2054                 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2055         }
2056
2057         if ((retval = setup_wear_reporting(nsmtd)) != 0)
2058                 goto err_exit;
2059
2060         if ((retval = init_nandsim(nsmtd)) != 0)
2061                 goto err_exit;
2062
2063         if ((retval = parse_badblocks(nand, nsmtd)) != 0)
2064                 goto err_exit;
2065
2066         if ((retval = nand_default_bbt(nsmtd)) != 0)
2067                 goto err_exit;
2068
2069         /* Register NAND partitions */
2070         if ((retval = add_mtd_partitions(nsmtd, &nand->partitions[0], nand->nbparts)) != 0)
2071                 goto err_exit;
2072
2073         return 0;
2074
2075 err_exit:
2076         free_nandsim(nand);
2077         nand_release(nsmtd);
2078         for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i)
2079                 kfree(nand->partitions[i].name);
2080 error:
2081         kfree(nsmtd);
2082         free_lists();
2083
2084         return retval;
2085 }
2086
2087 module_init(ns_init_module);
2088
2089 /*
2090  * Module clean-up function
2091  */
2092 static void __exit ns_cleanup_module(void)
2093 {
2094         struct nandsim *ns = (struct nandsim *)(((struct nand_chip *)nsmtd->priv)->priv);
2095         int i;
2096
2097         free_nandsim(ns);    /* Free nandsim private resources */
2098         nand_release(nsmtd); /* Unregister driver */
2099         for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i)
2100                 kfree(ns->partitions[i].name);
2101         kfree(nsmtd);        /* Free other structures */
2102         free_lists();
2103 }
2104
2105 module_exit(ns_cleanup_module);
2106
2107 MODULE_LICENSE ("GPL");
2108 MODULE_AUTHOR ("Artem B. Bityuckiy");
2109 MODULE_DESCRIPTION ("The NAND flash simulator");