]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/mtd/nand/nandsim.c
23b53fc405f58f8047b1c7414d1205004f7f3e64
[linux-2.6-omap-h63xx.git] / drivers / mtd / nand / nandsim.c
1 /*
2  * NAND flash simulator.
3  *
4  * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
5  *
6  * Copyright (C) 2004 Nokia Corporation
7  *
8  * Note: NS means "NAND Simulator".
9  * Note: Input means input TO flash chip, output means output FROM chip.
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License as published by the
13  * Free Software Foundation; either version 2, or (at your option) any later
14  * version.
15  *
16  * This program is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
19  * Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
24  */
25
26 #include <linux/init.h>
27 #include <linux/types.h>
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/vmalloc.h>
31 #include <asm/div64.h>
32 #include <linux/slab.h>
33 #include <linux/errno.h>
34 #include <linux/string.h>
35 #include <linux/mtd/mtd.h>
36 #include <linux/mtd/nand.h>
37 #include <linux/mtd/partitions.h>
38 #include <linux/delay.h>
39 #include <linux/list.h>
40 #include <linux/random.h>
41 #include <linux/fs.h>
42 #include <linux/pagemap.h>
43
44 /* Default simulator parameters values */
45 #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE)  || \
46     !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
47     !defined(CONFIG_NANDSIM_THIRD_ID_BYTE)  || \
48     !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
49 #define CONFIG_NANDSIM_FIRST_ID_BYTE  0x98
50 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
51 #define CONFIG_NANDSIM_THIRD_ID_BYTE  0xFF /* No byte */
52 #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
53 #endif
54
55 #ifndef CONFIG_NANDSIM_ACCESS_DELAY
56 #define CONFIG_NANDSIM_ACCESS_DELAY 25
57 #endif
58 #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
59 #define CONFIG_NANDSIM_PROGRAMM_DELAY 200
60 #endif
61 #ifndef CONFIG_NANDSIM_ERASE_DELAY
62 #define CONFIG_NANDSIM_ERASE_DELAY 2
63 #endif
64 #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
65 #define CONFIG_NANDSIM_OUTPUT_CYCLE 40
66 #endif
67 #ifndef CONFIG_NANDSIM_INPUT_CYCLE
68 #define CONFIG_NANDSIM_INPUT_CYCLE  50
69 #endif
70 #ifndef CONFIG_NANDSIM_BUS_WIDTH
71 #define CONFIG_NANDSIM_BUS_WIDTH  8
72 #endif
73 #ifndef CONFIG_NANDSIM_DO_DELAYS
74 #define CONFIG_NANDSIM_DO_DELAYS  0
75 #endif
76 #ifndef CONFIG_NANDSIM_LOG
77 #define CONFIG_NANDSIM_LOG        0
78 #endif
79 #ifndef CONFIG_NANDSIM_DBG
80 #define CONFIG_NANDSIM_DBG        0
81 #endif
82
83 static uint first_id_byte  = CONFIG_NANDSIM_FIRST_ID_BYTE;
84 static uint second_id_byte = CONFIG_NANDSIM_SECOND_ID_BYTE;
85 static uint third_id_byte  = CONFIG_NANDSIM_THIRD_ID_BYTE;
86 static uint fourth_id_byte = CONFIG_NANDSIM_FOURTH_ID_BYTE;
87 static uint access_delay   = CONFIG_NANDSIM_ACCESS_DELAY;
88 static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
89 static uint erase_delay    = CONFIG_NANDSIM_ERASE_DELAY;
90 static uint output_cycle   = CONFIG_NANDSIM_OUTPUT_CYCLE;
91 static uint input_cycle    = CONFIG_NANDSIM_INPUT_CYCLE;
92 static uint bus_width      = CONFIG_NANDSIM_BUS_WIDTH;
93 static uint do_delays      = CONFIG_NANDSIM_DO_DELAYS;
94 static uint log            = CONFIG_NANDSIM_LOG;
95 static uint dbg            = CONFIG_NANDSIM_DBG;
96 static unsigned long parts[MAX_MTD_DEVICES];
97 static unsigned int parts_num;
98 static char *badblocks = NULL;
99 static char *weakblocks = NULL;
100 static char *weakpages = NULL;
101 static unsigned int bitflips = 0;
102 static char *gravepages = NULL;
103 static unsigned int rptwear = 0;
104 static unsigned int overridesize = 0;
105 static char *cache_file = NULL;
106
107 module_param(first_id_byte,  uint, 0400);
108 module_param(second_id_byte, uint, 0400);
109 module_param(third_id_byte,  uint, 0400);
110 module_param(fourth_id_byte, uint, 0400);
111 module_param(access_delay,   uint, 0400);
112 module_param(programm_delay, uint, 0400);
113 module_param(erase_delay,    uint, 0400);
114 module_param(output_cycle,   uint, 0400);
115 module_param(input_cycle,    uint, 0400);
116 module_param(bus_width,      uint, 0400);
117 module_param(do_delays,      uint, 0400);
118 module_param(log,            uint, 0400);
119 module_param(dbg,            uint, 0400);
120 module_param_array(parts, ulong, &parts_num, 0400);
121 module_param(badblocks,      charp, 0400);
122 module_param(weakblocks,     charp, 0400);
123 module_param(weakpages,      charp, 0400);
124 module_param(bitflips,       uint, 0400);
125 module_param(gravepages,     charp, 0400);
126 module_param(rptwear,        uint, 0400);
127 module_param(overridesize,   uint, 0400);
128 module_param(cache_file,     charp, 0400);
129
130 MODULE_PARM_DESC(first_id_byte,  "The first byte returned by NAND Flash 'read ID' command (manufacturer ID)");
131 MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID)");
132 MODULE_PARM_DESC(third_id_byte,  "The third byte returned by NAND Flash 'read ID' command");
133 MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command");
134 MODULE_PARM_DESC(access_delay,   "Initial page access delay (microseconds)");
135 MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
136 MODULE_PARM_DESC(erase_delay,    "Sector erase delay (milliseconds)");
137 MODULE_PARM_DESC(output_cycle,   "Word output (from flash) time (nanodeconds)");
138 MODULE_PARM_DESC(input_cycle,    "Word input (to flash) time (nanodeconds)");
139 MODULE_PARM_DESC(bus_width,      "Chip's bus width (8- or 16-bit)");
140 MODULE_PARM_DESC(do_delays,      "Simulate NAND delays using busy-waits if not zero");
141 MODULE_PARM_DESC(log,            "Perform logging if not zero");
142 MODULE_PARM_DESC(dbg,            "Output debug information if not zero");
143 MODULE_PARM_DESC(parts,          "Partition sizes (in erase blocks) separated by commas");
144 /* Page and erase block positions for the following parameters are independent of any partitions */
145 MODULE_PARM_DESC(badblocks,      "Erase blocks that are initially marked bad, separated by commas");
146 MODULE_PARM_DESC(weakblocks,     "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
147                                  " separated by commas e.g. 113:2 means eb 113"
148                                  " can be erased only twice before failing");
149 MODULE_PARM_DESC(weakpages,      "Weak pages [: maximum writes (defaults to 3)]"
150                                  " separated by commas e.g. 1401:2 means page 1401"
151                                  " can be written only twice before failing");
152 MODULE_PARM_DESC(bitflips,       "Maximum number of random bit flips per page (zero by default)");
153 MODULE_PARM_DESC(gravepages,     "Pages that lose data [: maximum reads (defaults to 3)]"
154                                  " separated by commas e.g. 1401:2 means page 1401"
155                                  " can be read only twice before failing");
156 MODULE_PARM_DESC(rptwear,        "Number of erases inbetween reporting wear, if not zero");
157 MODULE_PARM_DESC(overridesize,   "Specifies the NAND Flash size overriding the ID bytes. "
158                                  "The size is specified in erase blocks and as the exponent of a power of two"
159                                  " e.g. 5 means a size of 32 erase blocks");
160 MODULE_PARM_DESC(cache_file,     "File to use to cache nand pages instead of memory");
161
162 /* The largest possible page size */
163 #define NS_LARGEST_PAGE_SIZE    2048
164
165 /* The prefix for simulator output */
166 #define NS_OUTPUT_PREFIX "[nandsim]"
167
168 /* Simulator's output macros (logging, debugging, warning, error) */
169 #define NS_LOG(args...) \
170         do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
171 #define NS_DBG(args...) \
172         do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
173 #define NS_WARN(args...) \
174         do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0)
175 #define NS_ERR(args...) \
176         do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0)
177 #define NS_INFO(args...) \
178         do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0)
179
180 /* Busy-wait delay macros (microseconds, milliseconds) */
181 #define NS_UDELAY(us) \
182         do { if (do_delays) udelay(us); } while(0)
183 #define NS_MDELAY(us) \
184         do { if (do_delays) mdelay(us); } while(0)
185
186 /* Is the nandsim structure initialized ? */
187 #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
188
189 /* Good operation completion status */
190 #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
191
192 /* Operation failed completion status */
193 #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
194
195 /* Calculate the page offset in flash RAM image by (row, column) address */
196 #define NS_RAW_OFFSET(ns) \
197         (((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column)
198
199 /* Calculate the OOB offset in flash RAM image by (row, column) address */
200 #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
201
202 /* After a command is input, the simulator goes to one of the following states */
203 #define STATE_CMD_READ0        0x00000001 /* read data from the beginning of page */
204 #define STATE_CMD_READ1        0x00000002 /* read data from the second half of page */
205 #define STATE_CMD_READSTART    0x00000003 /* read data second command (large page devices) */
206 #define STATE_CMD_PAGEPROG     0x00000004 /* start page programm */
207 #define STATE_CMD_READOOB      0x00000005 /* read OOB area */
208 #define STATE_CMD_ERASE1       0x00000006 /* sector erase first command */
209 #define STATE_CMD_STATUS       0x00000007 /* read status */
210 #define STATE_CMD_STATUS_M     0x00000008 /* read multi-plane status (isn't implemented) */
211 #define STATE_CMD_SEQIN        0x00000009 /* sequential data imput */
212 #define STATE_CMD_READID       0x0000000A /* read ID */
213 #define STATE_CMD_ERASE2       0x0000000B /* sector erase second command */
214 #define STATE_CMD_RESET        0x0000000C /* reset */
215 #define STATE_CMD_RNDOUT       0x0000000D /* random output command */
216 #define STATE_CMD_RNDOUTSTART  0x0000000E /* random output start command */
217 #define STATE_CMD_MASK         0x0000000F /* command states mask */
218
219 /* After an address is input, the simulator goes to one of these states */
220 #define STATE_ADDR_PAGE        0x00000010 /* full (row, column) address is accepted */
221 #define STATE_ADDR_SEC         0x00000020 /* sector address was accepted */
222 #define STATE_ADDR_COLUMN      0x00000030 /* column address was accepted */
223 #define STATE_ADDR_ZERO        0x00000040 /* one byte zero address was accepted */
224 #define STATE_ADDR_MASK        0x00000070 /* address states mask */
225
226 /* Durind data input/output the simulator is in these states */
227 #define STATE_DATAIN           0x00000100 /* waiting for data input */
228 #define STATE_DATAIN_MASK      0x00000100 /* data input states mask */
229
230 #define STATE_DATAOUT          0x00001000 /* waiting for page data output */
231 #define STATE_DATAOUT_ID       0x00002000 /* waiting for ID bytes output */
232 #define STATE_DATAOUT_STATUS   0x00003000 /* waiting for status output */
233 #define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */
234 #define STATE_DATAOUT_MASK     0x00007000 /* data output states mask */
235
236 /* Previous operation is done, ready to accept new requests */
237 #define STATE_READY            0x00000000
238
239 /* This state is used to mark that the next state isn't known yet */
240 #define STATE_UNKNOWN          0x10000000
241
242 /* Simulator's actions bit masks */
243 #define ACTION_CPY       0x00100000 /* copy page/OOB to the internal buffer */
244 #define ACTION_PRGPAGE   0x00200000 /* programm the internal buffer to flash */
245 #define ACTION_SECERASE  0x00300000 /* erase sector */
246 #define ACTION_ZEROOFF   0x00400000 /* don't add any offset to address */
247 #define ACTION_HALFOFF   0x00500000 /* add to address half of page */
248 #define ACTION_OOBOFF    0x00600000 /* add to address OOB offset */
249 #define ACTION_MASK      0x00700000 /* action mask */
250
251 #define NS_OPER_NUM      13 /* Number of operations supported by the simulator */
252 #define NS_OPER_STATES   6  /* Maximum number of states in operation */
253
254 #define OPT_ANY          0xFFFFFFFF /* any chip supports this operation */
255 #define OPT_PAGE256      0x00000001 /* 256-byte  page chips */
256 #define OPT_PAGE512      0x00000002 /* 512-byte  page chips */
257 #define OPT_PAGE2048     0x00000008 /* 2048-byte page chips */
258 #define OPT_SMARTMEDIA   0x00000010 /* SmartMedia technology chips */
259 #define OPT_AUTOINCR     0x00000020 /* page number auto inctimentation is possible */
260 #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
261 #define OPT_LARGEPAGE    (OPT_PAGE2048) /* 2048-byte page chips */
262 #define OPT_SMALLPAGE    (OPT_PAGE256  | OPT_PAGE512)  /* 256 and 512-byte page chips */
263
264 /* Remove action bits ftom state */
265 #define NS_STATE(x) ((x) & ~ACTION_MASK)
266
267 /*
268  * Maximum previous states which need to be saved. Currently saving is
269  * only needed for page programm operation with preceeded read command
270  * (which is only valid for 512-byte pages).
271  */
272 #define NS_MAX_PREVSTATES 1
273
274 /* Maximum page cache pages needed to read or write a NAND page to the cache_file */
275 #define NS_MAX_HELD_PAGES 16
276
277 /*
278  * A union to represent flash memory contents and flash buffer.
279  */
280 union ns_mem {
281         u_char *byte;    /* for byte access */
282         uint16_t *word;  /* for 16-bit word access */
283 };
284
285 /*
286  * The structure which describes all the internal simulator data.
287  */
288 struct nandsim {
289         struct mtd_partition partitions[MAX_MTD_DEVICES];
290         unsigned int nbparts;
291
292         uint busw;              /* flash chip bus width (8 or 16) */
293         u_char ids[4];          /* chip's ID bytes */
294         uint32_t options;       /* chip's characteristic bits */
295         uint32_t state;         /* current chip state */
296         uint32_t nxstate;       /* next expected state */
297
298         uint32_t *op;           /* current operation, NULL operations isn't known yet  */
299         uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
300         uint16_t npstates;      /* number of previous states saved */
301         uint16_t stateidx;      /* current state index */
302
303         /* The simulated NAND flash pages array */
304         union ns_mem *pages;
305
306         /* Slab allocator for nand pages */
307         struct kmem_cache *nand_pages_slab;
308
309         /* Internal buffer of page + OOB size bytes */
310         union ns_mem buf;
311
312         /* NAND flash "geometry" */
313         struct nandsin_geometry {
314                 uint64_t totsz;     /* total flash size, bytes */
315                 uint32_t secsz;     /* flash sector (erase block) size, bytes */
316                 uint pgsz;          /* NAND flash page size, bytes */
317                 uint oobsz;         /* page OOB area size, bytes */
318                 uint64_t totszoob;  /* total flash size including OOB, bytes */
319                 uint pgszoob;       /* page size including OOB , bytes*/
320                 uint secszoob;      /* sector size including OOB, bytes */
321                 uint pgnum;         /* total number of pages */
322                 uint pgsec;         /* number of pages per sector */
323                 uint secshift;      /* bits number in sector size */
324                 uint pgshift;       /* bits number in page size */
325                 uint oobshift;      /* bits number in OOB size */
326                 uint pgaddrbytes;   /* bytes per page address */
327                 uint secaddrbytes;  /* bytes per sector address */
328                 uint idbytes;       /* the number ID bytes that this chip outputs */
329         } geom;
330
331         /* NAND flash internal registers */
332         struct nandsim_regs {
333                 unsigned command; /* the command register */
334                 u_char   status;  /* the status register */
335                 uint     row;     /* the page number */
336                 uint     column;  /* the offset within page */
337                 uint     count;   /* internal counter */
338                 uint     num;     /* number of bytes which must be processed */
339                 uint     off;     /* fixed page offset */
340         } regs;
341
342         /* NAND flash lines state */
343         struct ns_lines_status {
344                 int ce;  /* chip Enable */
345                 int cle; /* command Latch Enable */
346                 int ale; /* address Latch Enable */
347                 int wp;  /* write Protect */
348         } lines;
349
350         /* Fields needed when using a cache file */
351         struct file *cfile; /* Open file */
352         unsigned char *pages_written; /* Which pages have been written */
353         void *file_buf;
354         struct page *held_pages[NS_MAX_HELD_PAGES];
355         int held_cnt;
356 };
357
358 /*
359  * Operations array. To perform any operation the simulator must pass
360  * through the correspondent states chain.
361  */
362 static struct nandsim_operations {
363         uint32_t reqopts;  /* options which are required to perform the operation */
364         uint32_t states[NS_OPER_STATES]; /* operation's states */
365 } ops[NS_OPER_NUM] = {
366         /* Read page + OOB from the beginning */
367         {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
368                         STATE_DATAOUT, STATE_READY}},
369         /* Read page + OOB from the second half */
370         {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
371                         STATE_DATAOUT, STATE_READY}},
372         /* Read OOB */
373         {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
374                         STATE_DATAOUT, STATE_READY}},
375         /* Programm page starting from the beginning */
376         {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
377                         STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
378         /* Programm page starting from the beginning */
379         {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
380                               STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
381         /* Programm page starting from the second half */
382         {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
383                               STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
384         /* Programm OOB */
385         {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
386                               STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
387         /* Erase sector */
388         {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
389         /* Read status */
390         {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
391         /* Read multi-plane status */
392         {OPT_SMARTMEDIA, {STATE_CMD_STATUS_M, STATE_DATAOUT_STATUS_M, STATE_READY}},
393         /* Read ID */
394         {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
395         /* Large page devices read page */
396         {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
397                                STATE_DATAOUT, STATE_READY}},
398         /* Large page devices random page read */
399         {OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY,
400                                STATE_DATAOUT, STATE_READY}},
401 };
402
403 struct weak_block {
404         struct list_head list;
405         unsigned int erase_block_no;
406         unsigned int max_erases;
407         unsigned int erases_done;
408 };
409
410 static LIST_HEAD(weak_blocks);
411
412 struct weak_page {
413         struct list_head list;
414         unsigned int page_no;
415         unsigned int max_writes;
416         unsigned int writes_done;
417 };
418
419 static LIST_HEAD(weak_pages);
420
421 struct grave_page {
422         struct list_head list;
423         unsigned int page_no;
424         unsigned int max_reads;
425         unsigned int reads_done;
426 };
427
428 static LIST_HEAD(grave_pages);
429
430 static unsigned long *erase_block_wear = NULL;
431 static unsigned int wear_eb_count = 0;
432 static unsigned long total_wear = 0;
433 static unsigned int rptwear_cnt = 0;
434
435 /* MTD structure for NAND controller */
436 static struct mtd_info *nsmtd;
437
438 static u_char ns_verify_buf[NS_LARGEST_PAGE_SIZE];
439
440 /*
441  * Allocate array of page pointers, create slab allocation for an array
442  * and initialize the array by NULL pointers.
443  *
444  * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
445  */
446 static int alloc_device(struct nandsim *ns)
447 {
448         struct file *cfile;
449         int i, err;
450
451         if (cache_file) {
452                 cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600);
453                 if (IS_ERR(cfile))
454                         return PTR_ERR(cfile);
455                 if (!cfile->f_op || (!cfile->f_op->read && !cfile->f_op->aio_read)) {
456                         NS_ERR("alloc_device: cache file not readable\n");
457                         err = -EINVAL;
458                         goto err_close;
459                 }
460                 if (!cfile->f_op->write && !cfile->f_op->aio_write) {
461                         NS_ERR("alloc_device: cache file not writeable\n");
462                         err = -EINVAL;
463                         goto err_close;
464                 }
465                 ns->pages_written = vmalloc(ns->geom.pgnum);
466                 if (!ns->pages_written) {
467                         NS_ERR("alloc_device: unable to allocate pages written array\n");
468                         err = -ENOMEM;
469                         goto err_close;
470                 }
471                 ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
472                 if (!ns->file_buf) {
473                         NS_ERR("alloc_device: unable to allocate file buf\n");
474                         err = -ENOMEM;
475                         goto err_free;
476                 }
477                 ns->cfile = cfile;
478                 memset(ns->pages_written, 0, ns->geom.pgnum);
479                 return 0;
480         }
481
482         ns->pages = vmalloc(ns->geom.pgnum * sizeof(union ns_mem));
483         if (!ns->pages) {
484                 NS_ERR("alloc_device: unable to allocate page array\n");
485                 return -ENOMEM;
486         }
487         for (i = 0; i < ns->geom.pgnum; i++) {
488                 ns->pages[i].byte = NULL;
489         }
490         ns->nand_pages_slab = kmem_cache_create("nandsim",
491                                                 ns->geom.pgszoob, 0, 0, NULL);
492         if (!ns->nand_pages_slab) {
493                 NS_ERR("cache_create: unable to create kmem_cache\n");
494                 return -ENOMEM;
495         }
496
497         return 0;
498
499 err_free:
500         vfree(ns->pages_written);
501 err_close:
502         filp_close(cfile, NULL);
503         return err;
504 }
505
506 /*
507  * Free any allocated pages, and free the array of page pointers.
508  */
509 static void free_device(struct nandsim *ns)
510 {
511         int i;
512
513         if (ns->cfile) {
514                 kfree(ns->file_buf);
515                 vfree(ns->pages_written);
516                 filp_close(ns->cfile, NULL);
517                 return;
518         }
519
520         if (ns->pages) {
521                 for (i = 0; i < ns->geom.pgnum; i++) {
522                         if (ns->pages[i].byte)
523                                 kmem_cache_free(ns->nand_pages_slab,
524                                                 ns->pages[i].byte);
525                 }
526                 kmem_cache_destroy(ns->nand_pages_slab);
527                 vfree(ns->pages);
528         }
529 }
530
531 static char *get_partition_name(int i)
532 {
533         char buf[64];
534         sprintf(buf, "NAND simulator partition %d", i);
535         return kstrdup(buf, GFP_KERNEL);
536 }
537
538 static uint64_t divide(uint64_t n, uint32_t d)
539 {
540         do_div(n, d);
541         return n;
542 }
543
544 /*
545  * Initialize the nandsim structure.
546  *
547  * RETURNS: 0 if success, -ERRNO if failure.
548  */
549 static int init_nandsim(struct mtd_info *mtd)
550 {
551         struct nand_chip *chip = (struct nand_chip *)mtd->priv;
552         struct nandsim   *ns   = (struct nandsim *)(chip->priv);
553         int i, ret = 0;
554         uint64_t remains;
555         uint64_t next_offset;
556
557         if (NS_IS_INITIALIZED(ns)) {
558                 NS_ERR("init_nandsim: nandsim is already initialized\n");
559                 return -EIO;
560         }
561
562         /* Force mtd to not do delays */
563         chip->chip_delay = 0;
564
565         /* Initialize the NAND flash parameters */
566         ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
567         ns->geom.totsz    = mtd->size;
568         ns->geom.pgsz     = mtd->writesize;
569         ns->geom.oobsz    = mtd->oobsize;
570         ns->geom.secsz    = mtd->erasesize;
571         ns->geom.pgszoob  = ns->geom.pgsz + ns->geom.oobsz;
572         ns->geom.pgnum    = divide(ns->geom.totsz, ns->geom.pgsz);
573         ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz;
574         ns->geom.secshift = ffs(ns->geom.secsz) - 1;
575         ns->geom.pgshift  = chip->page_shift;
576         ns->geom.oobshift = ffs(ns->geom.oobsz) - 1;
577         ns->geom.pgsec    = ns->geom.secsz / ns->geom.pgsz;
578         ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
579         ns->options = 0;
580
581         if (ns->geom.pgsz == 256) {
582                 ns->options |= OPT_PAGE256;
583         }
584         else if (ns->geom.pgsz == 512) {
585                 ns->options |= (OPT_PAGE512 | OPT_AUTOINCR);
586                 if (ns->busw == 8)
587                         ns->options |= OPT_PAGE512_8BIT;
588         } else if (ns->geom.pgsz == 2048) {
589                 ns->options |= OPT_PAGE2048;
590         } else {
591                 NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
592                 return -EIO;
593         }
594
595         if (ns->options & OPT_SMALLPAGE) {
596                 if (ns->geom.totsz <= (32 << 20)) {
597                         ns->geom.pgaddrbytes  = 3;
598                         ns->geom.secaddrbytes = 2;
599                 } else {
600                         ns->geom.pgaddrbytes  = 4;
601                         ns->geom.secaddrbytes = 3;
602                 }
603         } else {
604                 if (ns->geom.totsz <= (128 << 20)) {
605                         ns->geom.pgaddrbytes  = 4;
606                         ns->geom.secaddrbytes = 2;
607                 } else {
608                         ns->geom.pgaddrbytes  = 5;
609                         ns->geom.secaddrbytes = 3;
610                 }
611         }
612
613         /* Fill the partition_info structure */
614         if (parts_num > ARRAY_SIZE(ns->partitions)) {
615                 NS_ERR("too many partitions.\n");
616                 ret = -EINVAL;
617                 goto error;
618         }
619         remains = ns->geom.totsz;
620         next_offset = 0;
621         for (i = 0; i < parts_num; ++i) {
622                 uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz;
623
624                 if (!part_sz || part_sz > remains) {
625                         NS_ERR("bad partition size.\n");
626                         ret = -EINVAL;
627                         goto error;
628                 }
629                 ns->partitions[i].name   = get_partition_name(i);
630                 ns->partitions[i].offset = next_offset;
631                 ns->partitions[i].size   = part_sz;
632                 next_offset += ns->partitions[i].size;
633                 remains -= ns->partitions[i].size;
634         }
635         ns->nbparts = parts_num;
636         if (remains) {
637                 if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) {
638                         NS_ERR("too many partitions.\n");
639                         ret = -EINVAL;
640                         goto error;
641                 }
642                 ns->partitions[i].name   = get_partition_name(i);
643                 ns->partitions[i].offset = next_offset;
644                 ns->partitions[i].size   = remains;
645                 ns->nbparts += 1;
646         }
647
648         /* Detect how many ID bytes the NAND chip outputs */
649         for (i = 0; nand_flash_ids[i].name != NULL; i++) {
650                 if (second_id_byte != nand_flash_ids[i].id)
651                         continue;
652                 if (!(nand_flash_ids[i].options & NAND_NO_AUTOINCR))
653                         ns->options |= OPT_AUTOINCR;
654         }
655
656         if (ns->busw == 16)
657                 NS_WARN("16-bit flashes support wasn't tested\n");
658
659         printk("flash size: %llu MiB\n",
660                         (unsigned long long)ns->geom.totsz >> 20);
661         printk("page size: %u bytes\n",         ns->geom.pgsz);
662         printk("OOB area size: %u bytes\n",     ns->geom.oobsz);
663         printk("sector size: %u KiB\n",         ns->geom.secsz >> 10);
664         printk("pages number: %u\n",            ns->geom.pgnum);
665         printk("pages per sector: %u\n",        ns->geom.pgsec);
666         printk("bus width: %u\n",               ns->busw);
667         printk("bits in sector size: %u\n",     ns->geom.secshift);
668         printk("bits in page size: %u\n",       ns->geom.pgshift);
669         printk("bits in OOB size: %u\n",        ns->geom.oobshift);
670         printk("flash size with OOB: %llu KiB\n",
671                         (unsigned long long)ns->geom.totszoob >> 10);
672         printk("page address bytes: %u\n",      ns->geom.pgaddrbytes);
673         printk("sector address bytes: %u\n",    ns->geom.secaddrbytes);
674         printk("options: %#x\n",                ns->options);
675
676         if ((ret = alloc_device(ns)) != 0)
677                 goto error;
678
679         /* Allocate / initialize the internal buffer */
680         ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
681         if (!ns->buf.byte) {
682                 NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
683                         ns->geom.pgszoob);
684                 ret = -ENOMEM;
685                 goto error;
686         }
687         memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
688
689         return 0;
690
691 error:
692         free_device(ns);
693
694         return ret;
695 }
696
697 /*
698  * Free the nandsim structure.
699  */
700 static void free_nandsim(struct nandsim *ns)
701 {
702         kfree(ns->buf.byte);
703         free_device(ns);
704
705         return;
706 }
707
708 static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd)
709 {
710         char *w;
711         int zero_ok;
712         unsigned int erase_block_no;
713         loff_t offset;
714
715         if (!badblocks)
716                 return 0;
717         w = badblocks;
718         do {
719                 zero_ok = (*w == '0' ? 1 : 0);
720                 erase_block_no = simple_strtoul(w, &w, 0);
721                 if (!zero_ok && !erase_block_no) {
722                         NS_ERR("invalid badblocks.\n");
723                         return -EINVAL;
724                 }
725                 offset = erase_block_no * ns->geom.secsz;
726                 if (mtd->block_markbad(mtd, offset)) {
727                         NS_ERR("invalid badblocks.\n");
728                         return -EINVAL;
729                 }
730                 if (*w == ',')
731                         w += 1;
732         } while (*w);
733         return 0;
734 }
735
736 static int parse_weakblocks(void)
737 {
738         char *w;
739         int zero_ok;
740         unsigned int erase_block_no;
741         unsigned int max_erases;
742         struct weak_block *wb;
743
744         if (!weakblocks)
745                 return 0;
746         w = weakblocks;
747         do {
748                 zero_ok = (*w == '0' ? 1 : 0);
749                 erase_block_no = simple_strtoul(w, &w, 0);
750                 if (!zero_ok && !erase_block_no) {
751                         NS_ERR("invalid weakblocks.\n");
752                         return -EINVAL;
753                 }
754                 max_erases = 3;
755                 if (*w == ':') {
756                         w += 1;
757                         max_erases = simple_strtoul(w, &w, 0);
758                 }
759                 if (*w == ',')
760                         w += 1;
761                 wb = kzalloc(sizeof(*wb), GFP_KERNEL);
762                 if (!wb) {
763                         NS_ERR("unable to allocate memory.\n");
764                         return -ENOMEM;
765                 }
766                 wb->erase_block_no = erase_block_no;
767                 wb->max_erases = max_erases;
768                 list_add(&wb->list, &weak_blocks);
769         } while (*w);
770         return 0;
771 }
772
773 static int erase_error(unsigned int erase_block_no)
774 {
775         struct weak_block *wb;
776
777         list_for_each_entry(wb, &weak_blocks, list)
778                 if (wb->erase_block_no == erase_block_no) {
779                         if (wb->erases_done >= wb->max_erases)
780                                 return 1;
781                         wb->erases_done += 1;
782                         return 0;
783                 }
784         return 0;
785 }
786
787 static int parse_weakpages(void)
788 {
789         char *w;
790         int zero_ok;
791         unsigned int page_no;
792         unsigned int max_writes;
793         struct weak_page *wp;
794
795         if (!weakpages)
796                 return 0;
797         w = weakpages;
798         do {
799                 zero_ok = (*w == '0' ? 1 : 0);
800                 page_no = simple_strtoul(w, &w, 0);
801                 if (!zero_ok && !page_no) {
802                         NS_ERR("invalid weakpagess.\n");
803                         return -EINVAL;
804                 }
805                 max_writes = 3;
806                 if (*w == ':') {
807                         w += 1;
808                         max_writes = simple_strtoul(w, &w, 0);
809                 }
810                 if (*w == ',')
811                         w += 1;
812                 wp = kzalloc(sizeof(*wp), GFP_KERNEL);
813                 if (!wp) {
814                         NS_ERR("unable to allocate memory.\n");
815                         return -ENOMEM;
816                 }
817                 wp->page_no = page_no;
818                 wp->max_writes = max_writes;
819                 list_add(&wp->list, &weak_pages);
820         } while (*w);
821         return 0;
822 }
823
824 static int write_error(unsigned int page_no)
825 {
826         struct weak_page *wp;
827
828         list_for_each_entry(wp, &weak_pages, list)
829                 if (wp->page_no == page_no) {
830                         if (wp->writes_done >= wp->max_writes)
831                                 return 1;
832                         wp->writes_done += 1;
833                         return 0;
834                 }
835         return 0;
836 }
837
838 static int parse_gravepages(void)
839 {
840         char *g;
841         int zero_ok;
842         unsigned int page_no;
843         unsigned int max_reads;
844         struct grave_page *gp;
845
846         if (!gravepages)
847                 return 0;
848         g = gravepages;
849         do {
850                 zero_ok = (*g == '0' ? 1 : 0);
851                 page_no = simple_strtoul(g, &g, 0);
852                 if (!zero_ok && !page_no) {
853                         NS_ERR("invalid gravepagess.\n");
854                         return -EINVAL;
855                 }
856                 max_reads = 3;
857                 if (*g == ':') {
858                         g += 1;
859                         max_reads = simple_strtoul(g, &g, 0);
860                 }
861                 if (*g == ',')
862                         g += 1;
863                 gp = kzalloc(sizeof(*gp), GFP_KERNEL);
864                 if (!gp) {
865                         NS_ERR("unable to allocate memory.\n");
866                         return -ENOMEM;
867                 }
868                 gp->page_no = page_no;
869                 gp->max_reads = max_reads;
870                 list_add(&gp->list, &grave_pages);
871         } while (*g);
872         return 0;
873 }
874
875 static int read_error(unsigned int page_no)
876 {
877         struct grave_page *gp;
878
879         list_for_each_entry(gp, &grave_pages, list)
880                 if (gp->page_no == page_no) {
881                         if (gp->reads_done >= gp->max_reads)
882                                 return 1;
883                         gp->reads_done += 1;
884                         return 0;
885                 }
886         return 0;
887 }
888
889 static void free_lists(void)
890 {
891         struct list_head *pos, *n;
892         list_for_each_safe(pos, n, &weak_blocks) {
893                 list_del(pos);
894                 kfree(list_entry(pos, struct weak_block, list));
895         }
896         list_for_each_safe(pos, n, &weak_pages) {
897                 list_del(pos);
898                 kfree(list_entry(pos, struct weak_page, list));
899         }
900         list_for_each_safe(pos, n, &grave_pages) {
901                 list_del(pos);
902                 kfree(list_entry(pos, struct grave_page, list));
903         }
904         kfree(erase_block_wear);
905 }
906
907 static int setup_wear_reporting(struct mtd_info *mtd)
908 {
909         size_t mem;
910
911         if (!rptwear)
912                 return 0;
913         wear_eb_count = divide(mtd->size, mtd->erasesize);
914         mem = wear_eb_count * sizeof(unsigned long);
915         if (mem / sizeof(unsigned long) != wear_eb_count) {
916                 NS_ERR("Too many erase blocks for wear reporting\n");
917                 return -ENOMEM;
918         }
919         erase_block_wear = kzalloc(mem, GFP_KERNEL);
920         if (!erase_block_wear) {
921                 NS_ERR("Too many erase blocks for wear reporting\n");
922                 return -ENOMEM;
923         }
924         return 0;
925 }
926
927 static void update_wear(unsigned int erase_block_no)
928 {
929         unsigned long wmin = -1, wmax = 0, avg;
930         unsigned long deciles[10], decile_max[10], tot = 0;
931         unsigned int i;
932
933         if (!erase_block_wear)
934                 return;
935         total_wear += 1;
936         if (total_wear == 0)
937                 NS_ERR("Erase counter total overflow\n");
938         erase_block_wear[erase_block_no] += 1;
939         if (erase_block_wear[erase_block_no] == 0)
940                 NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no);
941         rptwear_cnt += 1;
942         if (rptwear_cnt < rptwear)
943                 return;
944         rptwear_cnt = 0;
945         /* Calc wear stats */
946         for (i = 0; i < wear_eb_count; ++i) {
947                 unsigned long wear = erase_block_wear[i];
948                 if (wear < wmin)
949                         wmin = wear;
950                 if (wear > wmax)
951                         wmax = wear;
952                 tot += wear;
953         }
954         for (i = 0; i < 9; ++i) {
955                 deciles[i] = 0;
956                 decile_max[i] = (wmax * (i + 1) + 5) / 10;
957         }
958         deciles[9] = 0;
959         decile_max[9] = wmax;
960         for (i = 0; i < wear_eb_count; ++i) {
961                 int d;
962                 unsigned long wear = erase_block_wear[i];
963                 for (d = 0; d < 10; ++d)
964                         if (wear <= decile_max[d]) {
965                                 deciles[d] += 1;
966                                 break;
967                         }
968         }
969         avg = tot / wear_eb_count;
970         /* Output wear report */
971         NS_INFO("*** Wear Report ***\n");
972         NS_INFO("Total numbers of erases:  %lu\n", tot);
973         NS_INFO("Number of erase blocks:   %u\n", wear_eb_count);
974         NS_INFO("Average number of erases: %lu\n", avg);
975         NS_INFO("Maximum number of erases: %lu\n", wmax);
976         NS_INFO("Minimum number of erases: %lu\n", wmin);
977         for (i = 0; i < 10; ++i) {
978                 unsigned long from = (i ? decile_max[i - 1] + 1 : 0);
979                 if (from > decile_max[i])
980                         continue;
981                 NS_INFO("Number of ebs with erase counts from %lu to %lu : %lu\n",
982                         from,
983                         decile_max[i],
984                         deciles[i]);
985         }
986         NS_INFO("*** End of Wear Report ***\n");
987 }
988
989 /*
990  * Returns the string representation of 'state' state.
991  */
992 static char *get_state_name(uint32_t state)
993 {
994         switch (NS_STATE(state)) {
995                 case STATE_CMD_READ0:
996                         return "STATE_CMD_READ0";
997                 case STATE_CMD_READ1:
998                         return "STATE_CMD_READ1";
999                 case STATE_CMD_PAGEPROG:
1000                         return "STATE_CMD_PAGEPROG";
1001                 case STATE_CMD_READOOB:
1002                         return "STATE_CMD_READOOB";
1003                 case STATE_CMD_READSTART:
1004                         return "STATE_CMD_READSTART";
1005                 case STATE_CMD_ERASE1:
1006                         return "STATE_CMD_ERASE1";
1007                 case STATE_CMD_STATUS:
1008                         return "STATE_CMD_STATUS";
1009                 case STATE_CMD_STATUS_M:
1010                         return "STATE_CMD_STATUS_M";
1011                 case STATE_CMD_SEQIN:
1012                         return "STATE_CMD_SEQIN";
1013                 case STATE_CMD_READID:
1014                         return "STATE_CMD_READID";
1015                 case STATE_CMD_ERASE2:
1016                         return "STATE_CMD_ERASE2";
1017                 case STATE_CMD_RESET:
1018                         return "STATE_CMD_RESET";
1019                 case STATE_CMD_RNDOUT:
1020                         return "STATE_CMD_RNDOUT";
1021                 case STATE_CMD_RNDOUTSTART:
1022                         return "STATE_CMD_RNDOUTSTART";
1023                 case STATE_ADDR_PAGE:
1024                         return "STATE_ADDR_PAGE";
1025                 case STATE_ADDR_SEC:
1026                         return "STATE_ADDR_SEC";
1027                 case STATE_ADDR_ZERO:
1028                         return "STATE_ADDR_ZERO";
1029                 case STATE_ADDR_COLUMN:
1030                         return "STATE_ADDR_COLUMN";
1031                 case STATE_DATAIN:
1032                         return "STATE_DATAIN";
1033                 case STATE_DATAOUT:
1034                         return "STATE_DATAOUT";
1035                 case STATE_DATAOUT_ID:
1036                         return "STATE_DATAOUT_ID";
1037                 case STATE_DATAOUT_STATUS:
1038                         return "STATE_DATAOUT_STATUS";
1039                 case STATE_DATAOUT_STATUS_M:
1040                         return "STATE_DATAOUT_STATUS_M";
1041                 case STATE_READY:
1042                         return "STATE_READY";
1043                 case STATE_UNKNOWN:
1044                         return "STATE_UNKNOWN";
1045         }
1046
1047         NS_ERR("get_state_name: unknown state, BUG\n");
1048         return NULL;
1049 }
1050
1051 /*
1052  * Check if command is valid.
1053  *
1054  * RETURNS: 1 if wrong command, 0 if right.
1055  */
1056 static int check_command(int cmd)
1057 {
1058         switch (cmd) {
1059
1060         case NAND_CMD_READ0:
1061         case NAND_CMD_READ1:
1062         case NAND_CMD_READSTART:
1063         case NAND_CMD_PAGEPROG:
1064         case NAND_CMD_READOOB:
1065         case NAND_CMD_ERASE1:
1066         case NAND_CMD_STATUS:
1067         case NAND_CMD_SEQIN:
1068         case NAND_CMD_READID:
1069         case NAND_CMD_ERASE2:
1070         case NAND_CMD_RESET:
1071         case NAND_CMD_RNDOUT:
1072         case NAND_CMD_RNDOUTSTART:
1073                 return 0;
1074
1075         case NAND_CMD_STATUS_MULTI:
1076         default:
1077                 return 1;
1078         }
1079 }
1080
1081 /*
1082  * Returns state after command is accepted by command number.
1083  */
1084 static uint32_t get_state_by_command(unsigned command)
1085 {
1086         switch (command) {
1087                 case NAND_CMD_READ0:
1088                         return STATE_CMD_READ0;
1089                 case NAND_CMD_READ1:
1090                         return STATE_CMD_READ1;
1091                 case NAND_CMD_PAGEPROG:
1092                         return STATE_CMD_PAGEPROG;
1093                 case NAND_CMD_READSTART:
1094                         return STATE_CMD_READSTART;
1095                 case NAND_CMD_READOOB:
1096                         return STATE_CMD_READOOB;
1097                 case NAND_CMD_ERASE1:
1098                         return STATE_CMD_ERASE1;
1099                 case NAND_CMD_STATUS:
1100                         return STATE_CMD_STATUS;
1101                 case NAND_CMD_STATUS_MULTI:
1102                         return STATE_CMD_STATUS_M;
1103                 case NAND_CMD_SEQIN:
1104                         return STATE_CMD_SEQIN;
1105                 case NAND_CMD_READID:
1106                         return STATE_CMD_READID;
1107                 case NAND_CMD_ERASE2:
1108                         return STATE_CMD_ERASE2;
1109                 case NAND_CMD_RESET:
1110                         return STATE_CMD_RESET;
1111                 case NAND_CMD_RNDOUT:
1112                         return STATE_CMD_RNDOUT;
1113                 case NAND_CMD_RNDOUTSTART:
1114                         return STATE_CMD_RNDOUTSTART;
1115         }
1116
1117         NS_ERR("get_state_by_command: unknown command, BUG\n");
1118         return 0;
1119 }
1120
1121 /*
1122  * Move an address byte to the correspondent internal register.
1123  */
1124 static inline void accept_addr_byte(struct nandsim *ns, u_char bt)
1125 {
1126         uint byte = (uint)bt;
1127
1128         if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
1129                 ns->regs.column |= (byte << 8 * ns->regs.count);
1130         else {
1131                 ns->regs.row |= (byte << 8 * (ns->regs.count -
1132                                                 ns->geom.pgaddrbytes +
1133                                                 ns->geom.secaddrbytes));
1134         }
1135
1136         return;
1137 }
1138
1139 /*
1140  * Switch to STATE_READY state.
1141  */
1142 static inline void switch_to_ready_state(struct nandsim *ns, u_char status)
1143 {
1144         NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
1145
1146         ns->state       = STATE_READY;
1147         ns->nxstate     = STATE_UNKNOWN;
1148         ns->op          = NULL;
1149         ns->npstates    = 0;
1150         ns->stateidx    = 0;
1151         ns->regs.num    = 0;
1152         ns->regs.count  = 0;
1153         ns->regs.off    = 0;
1154         ns->regs.row    = 0;
1155         ns->regs.column = 0;
1156         ns->regs.status = status;
1157 }
1158
1159 /*
1160  * If the operation isn't known yet, try to find it in the global array
1161  * of supported operations.
1162  *
1163  * Operation can be unknown because of the following.
1164  *   1. New command was accepted and this is the firs call to find the
1165  *      correspondent states chain. In this case ns->npstates = 0;
1166  *   2. There is several operations which begin with the same command(s)
1167  *      (for example program from the second half and read from the
1168  *      second half operations both begin with the READ1 command). In this
1169  *      case the ns->pstates[] array contains previous states.
1170  *
1171  * Thus, the function tries to find operation containing the following
1172  * states (if the 'flag' parameter is 0):
1173  *    ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
1174  *
1175  * If (one and only one) matching operation is found, it is accepted (
1176  * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
1177  * zeroed).
1178  *
1179  * If there are several maches, the current state is pushed to the
1180  * ns->pstates.
1181  *
1182  * The operation can be unknown only while commands are input to the chip.
1183  * As soon as address command is accepted, the operation must be known.
1184  * In such situation the function is called with 'flag' != 0, and the
1185  * operation is searched using the following pattern:
1186  *     ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
1187  *
1188  * It is supposed that this pattern must either match one operation on
1189  * none. There can't be ambiguity in that case.
1190  *
1191  * If no matches found, the functions does the following:
1192  *   1. if there are saved states present, try to ignore them and search
1193  *      again only using the last command. If nothing was found, switch
1194  *      to the STATE_READY state.
1195  *   2. if there are no saved states, switch to the STATE_READY state.
1196  *
1197  * RETURNS: -2 - no matched operations found.
1198  *          -1 - several matches.
1199  *           0 - operation is found.
1200  */
1201 static int find_operation(struct nandsim *ns, uint32_t flag)
1202 {
1203         int opsfound = 0;
1204         int i, j, idx = 0;
1205
1206         for (i = 0; i < NS_OPER_NUM; i++) {
1207
1208                 int found = 1;
1209
1210                 if (!(ns->options & ops[i].reqopts))
1211                         /* Ignore operations we can't perform */
1212                         continue;
1213
1214                 if (flag) {
1215                         if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
1216                                 continue;
1217                 } else {
1218                         if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
1219                                 continue;
1220                 }
1221
1222                 for (j = 0; j < ns->npstates; j++)
1223                         if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
1224                                 && (ns->options & ops[idx].reqopts)) {
1225                                 found = 0;
1226                                 break;
1227                         }
1228
1229                 if (found) {
1230                         idx = i;
1231                         opsfound += 1;
1232                 }
1233         }
1234
1235         if (opsfound == 1) {
1236                 /* Exact match */
1237                 ns->op = &ops[idx].states[0];
1238                 if (flag) {
1239                         /*
1240                          * In this case the find_operation function was
1241                          * called when address has just began input. But it isn't
1242                          * yet fully input and the current state must
1243                          * not be one of STATE_ADDR_*, but the STATE_ADDR_*
1244                          * state must be the next state (ns->nxstate).
1245                          */
1246                         ns->stateidx = ns->npstates - 1;
1247                 } else {
1248                         ns->stateidx = ns->npstates;
1249                 }
1250                 ns->npstates = 0;
1251                 ns->state = ns->op[ns->stateidx];
1252                 ns->nxstate = ns->op[ns->stateidx + 1];
1253                 NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
1254                                 idx, get_state_name(ns->state), get_state_name(ns->nxstate));
1255                 return 0;
1256         }
1257
1258         if (opsfound == 0) {
1259                 /* Nothing was found. Try to ignore previous commands (if any) and search again */
1260                 if (ns->npstates != 0) {
1261                         NS_DBG("find_operation: no operation found, try again with state %s\n",
1262                                         get_state_name(ns->state));
1263                         ns->npstates = 0;
1264                         return find_operation(ns, 0);
1265
1266                 }
1267                 NS_DBG("find_operation: no operations found\n");
1268                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1269                 return -2;
1270         }
1271
1272         if (flag) {
1273                 /* This shouldn't happen */
1274                 NS_DBG("find_operation: BUG, operation must be known if address is input\n");
1275                 return -2;
1276         }
1277
1278         NS_DBG("find_operation: there is still ambiguity\n");
1279
1280         ns->pstates[ns->npstates++] = ns->state;
1281
1282         return -1;
1283 }
1284
1285 static void put_pages(struct nandsim *ns)
1286 {
1287         int i;
1288
1289         for (i = 0; i < ns->held_cnt; i++)
1290                 page_cache_release(ns->held_pages[i]);
1291 }
1292
1293 /* Get page cache pages in advance to provide NOFS memory allocation */
1294 static int get_pages(struct nandsim *ns, struct file *file, size_t count, loff_t pos)
1295 {
1296         pgoff_t index, start_index, end_index;
1297         struct page *page;
1298         struct address_space *mapping = file->f_mapping;
1299
1300         start_index = pos >> PAGE_CACHE_SHIFT;
1301         end_index = (pos + count - 1) >> PAGE_CACHE_SHIFT;
1302         if (end_index - start_index + 1 > NS_MAX_HELD_PAGES)
1303                 return -EINVAL;
1304         ns->held_cnt = 0;
1305         for (index = start_index; index <= end_index; index++) {
1306                 page = find_get_page(mapping, index);
1307                 if (page == NULL) {
1308                         page = find_or_create_page(mapping, index, GFP_NOFS);
1309                         if (page == NULL) {
1310                                 write_inode_now(mapping->host, 1);
1311                                 page = find_or_create_page(mapping, index, GFP_NOFS);
1312                         }
1313                         if (page == NULL) {
1314                                 put_pages(ns);
1315                                 return -ENOMEM;
1316                         }
1317                         unlock_page(page);
1318                 }
1319                 ns->held_pages[ns->held_cnt++] = page;
1320         }
1321         return 0;
1322 }
1323
1324 static int set_memalloc(void)
1325 {
1326         if (current->flags & PF_MEMALLOC)
1327                 return 0;
1328         current->flags |= PF_MEMALLOC;
1329         return 1;
1330 }
1331
1332 static void clear_memalloc(int memalloc)
1333 {
1334         if (memalloc)
1335                 current->flags &= ~PF_MEMALLOC;
1336 }
1337
1338 static ssize_t read_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t *pos)
1339 {
1340         mm_segment_t old_fs;
1341         ssize_t tx;
1342         int err, memalloc;
1343
1344         err = get_pages(ns, file, count, *pos);
1345         if (err)
1346                 return err;
1347         old_fs = get_fs();
1348         set_fs(get_ds());
1349         memalloc = set_memalloc();
1350         tx = vfs_read(file, (char __user *)buf, count, pos);
1351         clear_memalloc(memalloc);
1352         set_fs(old_fs);
1353         put_pages(ns);
1354         return tx;
1355 }
1356
1357 static ssize_t write_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t *pos)
1358 {
1359         mm_segment_t old_fs;
1360         ssize_t tx;
1361         int err, memalloc;
1362
1363         err = get_pages(ns, file, count, *pos);
1364         if (err)
1365                 return err;
1366         old_fs = get_fs();
1367         set_fs(get_ds());
1368         memalloc = set_memalloc();
1369         tx = vfs_write(file, (char __user *)buf, count, pos);
1370         clear_memalloc(memalloc);
1371         set_fs(old_fs);
1372         put_pages(ns);
1373         return tx;
1374 }
1375
1376 /*
1377  * Returns a pointer to the current page.
1378  */
1379 static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns)
1380 {
1381         return &(ns->pages[ns->regs.row]);
1382 }
1383
1384 /*
1385  * Retuns a pointer to the current byte, within the current page.
1386  */
1387 static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns)
1388 {
1389         return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off;
1390 }
1391
1392 int do_read_error(struct nandsim *ns, int num)
1393 {
1394         unsigned int page_no = ns->regs.row;
1395
1396         if (read_error(page_no)) {
1397                 int i;
1398                 memset(ns->buf.byte, 0xFF, num);
1399                 for (i = 0; i < num; ++i)
1400                         ns->buf.byte[i] = random32();
1401                 NS_WARN("simulating read error in page %u\n", page_no);
1402                 return 1;
1403         }
1404         return 0;
1405 }
1406
1407 void do_bit_flips(struct nandsim *ns, int num)
1408 {
1409         if (bitflips && random32() < (1 << 22)) {
1410                 int flips = 1;
1411                 if (bitflips > 1)
1412                         flips = (random32() % (int) bitflips) + 1;
1413                 while (flips--) {
1414                         int pos = random32() % (num * 8);
1415                         ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
1416                         NS_WARN("read_page: flipping bit %d in page %d "
1417                                 "reading from %d ecc: corrected=%u failed=%u\n",
1418                                 pos, ns->regs.row, ns->regs.column + ns->regs.off,
1419                                 nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed);
1420                 }
1421         }
1422 }
1423
1424 /*
1425  * Fill the NAND buffer with data read from the specified page.
1426  */
1427 static void read_page(struct nandsim *ns, int num)
1428 {
1429         union ns_mem *mypage;
1430
1431         if (ns->cfile) {
1432                 if (!ns->pages_written[ns->regs.row]) {
1433                         NS_DBG("read_page: page %d not written\n", ns->regs.row);
1434                         memset(ns->buf.byte, 0xFF, num);
1435                 } else {
1436                         loff_t pos;
1437                         ssize_t tx;
1438
1439                         NS_DBG("read_page: page %d written, reading from %d\n",
1440                                 ns->regs.row, ns->regs.column + ns->regs.off);
1441                         if (do_read_error(ns, num))
1442                                 return;
1443                         pos = (loff_t)ns->regs.row * ns->geom.pgszoob + ns->regs.column + ns->regs.off;
1444                         tx = read_file(ns, ns->cfile, ns->buf.byte, num, &pos);
1445                         if (tx != num) {
1446                                 NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1447                                 return;
1448                         }
1449                         do_bit_flips(ns, num);
1450                 }
1451                 return;
1452         }
1453
1454         mypage = NS_GET_PAGE(ns);
1455         if (mypage->byte == NULL) {
1456                 NS_DBG("read_page: page %d not allocated\n", ns->regs.row);
1457                 memset(ns->buf.byte, 0xFF, num);
1458         } else {
1459                 NS_DBG("read_page: page %d allocated, reading from %d\n",
1460                         ns->regs.row, ns->regs.column + ns->regs.off);
1461                 if (do_read_error(ns, num))
1462                         return;
1463                 memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num);
1464                 do_bit_flips(ns, num);
1465         }
1466 }
1467
1468 /*
1469  * Erase all pages in the specified sector.
1470  */
1471 static void erase_sector(struct nandsim *ns)
1472 {
1473         union ns_mem *mypage;
1474         int i;
1475
1476         if (ns->cfile) {
1477                 for (i = 0; i < ns->geom.pgsec; i++)
1478                         if (ns->pages_written[ns->regs.row + i]) {
1479                                 NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i);
1480                                 ns->pages_written[ns->regs.row + i] = 0;
1481                         }
1482                 return;
1483         }
1484
1485         mypage = NS_GET_PAGE(ns);
1486         for (i = 0; i < ns->geom.pgsec; i++) {
1487                 if (mypage->byte != NULL) {
1488                         NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i);
1489                         kmem_cache_free(ns->nand_pages_slab, mypage->byte);
1490                         mypage->byte = NULL;
1491                 }
1492                 mypage++;
1493         }
1494 }
1495
1496 /*
1497  * Program the specified page with the contents from the NAND buffer.
1498  */
1499 static int prog_page(struct nandsim *ns, int num)
1500 {
1501         int i;
1502         union ns_mem *mypage;
1503         u_char *pg_off;
1504
1505         if (ns->cfile) {
1506                 loff_t off, pos;
1507                 ssize_t tx;
1508                 int all;
1509
1510                 NS_DBG("prog_page: writing page %d\n", ns->regs.row);
1511                 pg_off = ns->file_buf + ns->regs.column + ns->regs.off;
1512                 off = (loff_t)ns->regs.row * ns->geom.pgszoob + ns->regs.column + ns->regs.off;
1513                 if (!ns->pages_written[ns->regs.row]) {
1514                         all = 1;
1515                         memset(ns->file_buf, 0xff, ns->geom.pgszoob);
1516                 } else {
1517                         all = 0;
1518                         pos = off;
1519                         tx = read_file(ns, ns->cfile, pg_off, num, &pos);
1520                         if (tx != num) {
1521                                 NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1522                                 return -1;
1523                         }
1524                 }
1525                 for (i = 0; i < num; i++)
1526                         pg_off[i] &= ns->buf.byte[i];
1527                 if (all) {
1528                         pos = (loff_t)ns->regs.row * ns->geom.pgszoob;
1529                         tx = write_file(ns, ns->cfile, ns->file_buf, ns->geom.pgszoob, &pos);
1530                         if (tx != ns->geom.pgszoob) {
1531                                 NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1532                                 return -1;
1533                         }
1534                         ns->pages_written[ns->regs.row] = 1;
1535                 } else {
1536                         pos = off;
1537                         tx = write_file(ns, ns->cfile, pg_off, num, &pos);
1538                         if (tx != num) {
1539                                 NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1540                                 return -1;
1541                         }
1542                 }
1543                 return 0;
1544         }
1545
1546         mypage = NS_GET_PAGE(ns);
1547         if (mypage->byte == NULL) {
1548                 NS_DBG("prog_page: allocating page %d\n", ns->regs.row);
1549                 /*
1550                  * We allocate memory with GFP_NOFS because a flash FS may
1551                  * utilize this. If it is holding an FS lock, then gets here,
1552                  * then kernel memory alloc runs writeback which goes to the FS
1553                  * again and deadlocks. This was seen in practice.
1554                  */
1555                 mypage->byte = kmem_cache_alloc(ns->nand_pages_slab, GFP_NOFS);
1556                 if (mypage->byte == NULL) {
1557                         NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row);
1558                         return -1;
1559                 }
1560                 memset(mypage->byte, 0xFF, ns->geom.pgszoob);
1561         }
1562
1563         pg_off = NS_PAGE_BYTE_OFF(ns);
1564         for (i = 0; i < num; i++)
1565                 pg_off[i] &= ns->buf.byte[i];
1566
1567         return 0;
1568 }
1569
1570 /*
1571  * If state has any action bit, perform this action.
1572  *
1573  * RETURNS: 0 if success, -1 if error.
1574  */
1575 static int do_state_action(struct nandsim *ns, uint32_t action)
1576 {
1577         int num;
1578         int busdiv = ns->busw == 8 ? 1 : 2;
1579         unsigned int erase_block_no, page_no;
1580
1581         action &= ACTION_MASK;
1582
1583         /* Check that page address input is correct */
1584         if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
1585                 NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
1586                 return -1;
1587         }
1588
1589         switch (action) {
1590
1591         case ACTION_CPY:
1592                 /*
1593                  * Copy page data to the internal buffer.
1594                  */
1595
1596                 /* Column shouldn't be very large */
1597                 if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
1598                         NS_ERR("do_state_action: column number is too large\n");
1599                         break;
1600                 }
1601                 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1602                 read_page(ns, num);
1603
1604                 NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
1605                         num, NS_RAW_OFFSET(ns) + ns->regs.off);
1606
1607                 if (ns->regs.off == 0)
1608                         NS_LOG("read page %d\n", ns->regs.row);
1609                 else if (ns->regs.off < ns->geom.pgsz)
1610                         NS_LOG("read page %d (second half)\n", ns->regs.row);
1611                 else
1612                         NS_LOG("read OOB of page %d\n", ns->regs.row);
1613
1614                 NS_UDELAY(access_delay);
1615                 NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
1616
1617                 break;
1618
1619         case ACTION_SECERASE:
1620                 /*
1621                  * Erase sector.
1622                  */
1623
1624                 if (ns->lines.wp) {
1625                         NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
1626                         return -1;
1627                 }
1628
1629                 if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
1630                         || (ns->regs.row & ~(ns->geom.secsz - 1))) {
1631                         NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
1632                         return -1;
1633                 }
1634
1635                 ns->regs.row = (ns->regs.row <<
1636                                 8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
1637                 ns->regs.column = 0;
1638
1639                 erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift);
1640
1641                 NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
1642                                 ns->regs.row, NS_RAW_OFFSET(ns));
1643                 NS_LOG("erase sector %u\n", erase_block_no);
1644
1645                 erase_sector(ns);
1646
1647                 NS_MDELAY(erase_delay);
1648
1649                 if (erase_block_wear)
1650                         update_wear(erase_block_no);
1651
1652                 if (erase_error(erase_block_no)) {
1653                         NS_WARN("simulating erase failure in erase block %u\n", erase_block_no);
1654                         return -1;
1655                 }
1656
1657                 break;
1658
1659         case ACTION_PRGPAGE:
1660                 /*
1661                  * Programm page - move internal buffer data to the page.
1662                  */
1663
1664                 if (ns->lines.wp) {
1665                         NS_WARN("do_state_action: device is write-protected, programm\n");
1666                         return -1;
1667                 }
1668
1669                 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1670                 if (num != ns->regs.count) {
1671                         NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
1672                                         ns->regs.count, num);
1673                         return -1;
1674                 }
1675
1676                 if (prog_page(ns, num) == -1)
1677                         return -1;
1678
1679                 page_no = ns->regs.row;
1680
1681                 NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
1682                         num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
1683                 NS_LOG("programm page %d\n", ns->regs.row);
1684
1685                 NS_UDELAY(programm_delay);
1686                 NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
1687
1688                 if (write_error(page_no)) {
1689                         NS_WARN("simulating write failure in page %u\n", page_no);
1690                         return -1;
1691                 }
1692
1693                 break;
1694
1695         case ACTION_ZEROOFF:
1696                 NS_DBG("do_state_action: set internal offset to 0\n");
1697                 ns->regs.off = 0;
1698                 break;
1699
1700         case ACTION_HALFOFF:
1701                 if (!(ns->options & OPT_PAGE512_8BIT)) {
1702                         NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
1703                                 "byte page size 8x chips\n");
1704                         return -1;
1705                 }
1706                 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
1707                 ns->regs.off = ns->geom.pgsz/2;
1708                 break;
1709
1710         case ACTION_OOBOFF:
1711                 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
1712                 ns->regs.off = ns->geom.pgsz;
1713                 break;
1714
1715         default:
1716                 NS_DBG("do_state_action: BUG! unknown action\n");
1717         }
1718
1719         return 0;
1720 }
1721
1722 /*
1723  * Switch simulator's state.
1724  */
1725 static void switch_state(struct nandsim *ns)
1726 {
1727         if (ns->op) {
1728                 /*
1729                  * The current operation have already been identified.
1730                  * Just follow the states chain.
1731                  */
1732
1733                 ns->stateidx += 1;
1734                 ns->state = ns->nxstate;
1735                 ns->nxstate = ns->op[ns->stateidx + 1];
1736
1737                 NS_DBG("switch_state: operation is known, switch to the next state, "
1738                         "state: %s, nxstate: %s\n",
1739                         get_state_name(ns->state), get_state_name(ns->nxstate));
1740
1741                 /* See, whether we need to do some action */
1742                 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1743                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1744                         return;
1745                 }
1746
1747         } else {
1748                 /*
1749                  * We don't yet know which operation we perform.
1750                  * Try to identify it.
1751                  */
1752
1753                 /*
1754                  *  The only event causing the switch_state function to
1755                  *  be called with yet unknown operation is new command.
1756                  */
1757                 ns->state = get_state_by_command(ns->regs.command);
1758
1759                 NS_DBG("switch_state: operation is unknown, try to find it\n");
1760
1761                 if (find_operation(ns, 0) != 0)
1762                         return;
1763
1764                 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1765                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1766                         return;
1767                 }
1768         }
1769
1770         /* For 16x devices column means the page offset in words */
1771         if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
1772                 NS_DBG("switch_state: double the column number for 16x device\n");
1773                 ns->regs.column <<= 1;
1774         }
1775
1776         if (NS_STATE(ns->nxstate) == STATE_READY) {
1777                 /*
1778                  * The current state is the last. Return to STATE_READY
1779                  */
1780
1781                 u_char status = NS_STATUS_OK(ns);
1782
1783                 /* In case of data states, see if all bytes were input/output */
1784                 if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
1785                         && ns->regs.count != ns->regs.num) {
1786                         NS_WARN("switch_state: not all bytes were processed, %d left\n",
1787                                         ns->regs.num - ns->regs.count);
1788                         status = NS_STATUS_FAILED(ns);
1789                 }
1790
1791                 NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1792
1793                 switch_to_ready_state(ns, status);
1794
1795                 return;
1796         } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
1797                 /*
1798                  * If the next state is data input/output, switch to it now
1799                  */
1800
1801                 ns->state      = ns->nxstate;
1802                 ns->nxstate    = ns->op[++ns->stateidx + 1];
1803                 ns->regs.num   = ns->regs.count = 0;
1804
1805                 NS_DBG("switch_state: the next state is data I/O, switch, "
1806                         "state: %s, nxstate: %s\n",
1807                         get_state_name(ns->state), get_state_name(ns->nxstate));
1808
1809                 /*
1810                  * Set the internal register to the count of bytes which
1811                  * are expected to be input or output
1812                  */
1813                 switch (NS_STATE(ns->state)) {
1814                         case STATE_DATAIN:
1815                         case STATE_DATAOUT:
1816                                 ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1817                                 break;
1818
1819                         case STATE_DATAOUT_ID:
1820                                 ns->regs.num = ns->geom.idbytes;
1821                                 break;
1822
1823                         case STATE_DATAOUT_STATUS:
1824                         case STATE_DATAOUT_STATUS_M:
1825                                 ns->regs.count = ns->regs.num = 0;
1826                                 break;
1827
1828                         default:
1829                                 NS_ERR("switch_state: BUG! unknown data state\n");
1830                 }
1831
1832         } else if (ns->nxstate & STATE_ADDR_MASK) {
1833                 /*
1834                  * If the next state is address input, set the internal
1835                  * register to the number of expected address bytes
1836                  */
1837
1838                 ns->regs.count = 0;
1839
1840                 switch (NS_STATE(ns->nxstate)) {
1841                         case STATE_ADDR_PAGE:
1842                                 ns->regs.num = ns->geom.pgaddrbytes;
1843
1844                                 break;
1845                         case STATE_ADDR_SEC:
1846                                 ns->regs.num = ns->geom.secaddrbytes;
1847                                 break;
1848
1849                         case STATE_ADDR_ZERO:
1850                                 ns->regs.num = 1;
1851                                 break;
1852
1853                         case STATE_ADDR_COLUMN:
1854                                 /* Column address is always 2 bytes */
1855                                 ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes;
1856                                 break;
1857
1858                         default:
1859                                 NS_ERR("switch_state: BUG! unknown address state\n");
1860                 }
1861         } else {
1862                 /*
1863                  * Just reset internal counters.
1864                  */
1865
1866                 ns->regs.num = 0;
1867                 ns->regs.count = 0;
1868         }
1869 }
1870
1871 static u_char ns_nand_read_byte(struct mtd_info *mtd)
1872 {
1873         struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1874         u_char outb = 0x00;
1875
1876         /* Sanity and correctness checks */
1877         if (!ns->lines.ce) {
1878                 NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
1879                 return outb;
1880         }
1881         if (ns->lines.ale || ns->lines.cle) {
1882                 NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
1883                 return outb;
1884         }
1885         if (!(ns->state & STATE_DATAOUT_MASK)) {
1886                 NS_WARN("read_byte: unexpected data output cycle, state is %s "
1887                         "return %#x\n", get_state_name(ns->state), (uint)outb);
1888                 return outb;
1889         }
1890
1891         /* Status register may be read as many times as it is wanted */
1892         if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
1893                 NS_DBG("read_byte: return %#x status\n", ns->regs.status);
1894                 return ns->regs.status;
1895         }
1896
1897         /* Check if there is any data in the internal buffer which may be read */
1898         if (ns->regs.count == ns->regs.num) {
1899                 NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
1900                 return outb;
1901         }
1902
1903         switch (NS_STATE(ns->state)) {
1904                 case STATE_DATAOUT:
1905                         if (ns->busw == 8) {
1906                                 outb = ns->buf.byte[ns->regs.count];
1907                                 ns->regs.count += 1;
1908                         } else {
1909                                 outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
1910                                 ns->regs.count += 2;
1911                         }
1912                         break;
1913                 case STATE_DATAOUT_ID:
1914                         NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
1915                         outb = ns->ids[ns->regs.count];
1916                         ns->regs.count += 1;
1917                         break;
1918                 default:
1919                         BUG();
1920         }
1921
1922         if (ns->regs.count == ns->regs.num) {
1923                 NS_DBG("read_byte: all bytes were read\n");
1924
1925                 /*
1926                  * The OPT_AUTOINCR allows to read next conseqitive pages without
1927                  * new read operation cycle.
1928                  */
1929                 if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
1930                         ns->regs.count = 0;
1931                         if (ns->regs.row + 1 < ns->geom.pgnum)
1932                                 ns->regs.row += 1;
1933                         NS_DBG("read_byte: switch to the next page (%#x)\n", ns->regs.row);
1934                         do_state_action(ns, ACTION_CPY);
1935                 }
1936                 else if (NS_STATE(ns->nxstate) == STATE_READY)
1937                         switch_state(ns);
1938
1939         }
1940
1941         return outb;
1942 }
1943
1944 static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
1945 {
1946         struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1947
1948         /* Sanity and correctness checks */
1949         if (!ns->lines.ce) {
1950                 NS_ERR("write_byte: chip is disabled, ignore write\n");
1951                 return;
1952         }
1953         if (ns->lines.ale && ns->lines.cle) {
1954                 NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1955                 return;
1956         }
1957
1958         if (ns->lines.cle == 1) {
1959                 /*
1960                  * The byte written is a command.
1961                  */
1962
1963                 if (byte == NAND_CMD_RESET) {
1964                         NS_LOG("reset chip\n");
1965                         switch_to_ready_state(ns, NS_STATUS_OK(ns));
1966                         return;
1967                 }
1968
1969                 /* Check that the command byte is correct */
1970                 if (check_command(byte)) {
1971                         NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
1972                         return;
1973                 }
1974
1975                 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
1976                         || NS_STATE(ns->state) == STATE_DATAOUT_STATUS_M
1977                         || NS_STATE(ns->state) == STATE_DATAOUT) {
1978                         int row = ns->regs.row;
1979
1980                         switch_state(ns);
1981                         if (byte == NAND_CMD_RNDOUT)
1982                                 ns->regs.row = row;
1983                 }
1984
1985                 /* Check if chip is expecting command */
1986                 if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
1987                         /* Do not warn if only 2 id bytes are read */
1988                         if (!(ns->regs.command == NAND_CMD_READID &&
1989                             NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) {
1990                                 /*
1991                                  * We are in situation when something else (not command)
1992                                  * was expected but command was input. In this case ignore
1993                                  * previous command(s)/state(s) and accept the last one.
1994                                  */
1995                                 NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
1996                                         "ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
1997                         }
1998                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1999                 }
2000
2001                 NS_DBG("command byte corresponding to %s state accepted\n",
2002                         get_state_name(get_state_by_command(byte)));
2003                 ns->regs.command = byte;
2004                 switch_state(ns);
2005
2006         } else if (ns->lines.ale == 1) {
2007                 /*
2008                  * The byte written is an address.
2009                  */
2010
2011                 if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
2012
2013                         NS_DBG("write_byte: operation isn't known yet, identify it\n");
2014
2015                         if (find_operation(ns, 1) < 0)
2016                                 return;
2017
2018                         if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
2019                                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2020                                 return;
2021                         }
2022
2023                         ns->regs.count = 0;
2024                         switch (NS_STATE(ns->nxstate)) {
2025                                 case STATE_ADDR_PAGE:
2026                                         ns->regs.num = ns->geom.pgaddrbytes;
2027                                         break;
2028                                 case STATE_ADDR_SEC:
2029                                         ns->regs.num = ns->geom.secaddrbytes;
2030                                         break;
2031                                 case STATE_ADDR_ZERO:
2032                                         ns->regs.num = 1;
2033                                         break;
2034                                 default:
2035                                         BUG();
2036                         }
2037                 }
2038
2039                 /* Check that chip is expecting address */
2040                 if (!(ns->nxstate & STATE_ADDR_MASK)) {
2041                         NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
2042                                 "switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
2043                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2044                         return;
2045                 }
2046
2047                 /* Check if this is expected byte */
2048                 if (ns->regs.count == ns->regs.num) {
2049                         NS_ERR("write_byte: no more address bytes expected\n");
2050                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2051                         return;
2052                 }
2053
2054                 accept_addr_byte(ns, byte);
2055
2056                 ns->regs.count += 1;
2057
2058                 NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
2059                                 (uint)byte, ns->regs.count, ns->regs.num);
2060
2061                 if (ns->regs.count == ns->regs.num) {
2062                         NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
2063                         switch_state(ns);
2064                 }
2065
2066         } else {
2067                 /*
2068                  * The byte written is an input data.
2069                  */
2070
2071                 /* Check that chip is expecting data input */
2072                 if (!(ns->state & STATE_DATAIN_MASK)) {
2073                         NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
2074                                 "switch to %s\n", (uint)byte,
2075                                 get_state_name(ns->state), get_state_name(STATE_READY));
2076                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2077                         return;
2078                 }
2079
2080                 /* Check if this is expected byte */
2081                 if (ns->regs.count == ns->regs.num) {
2082                         NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
2083                                         ns->regs.num);
2084                         return;
2085                 }
2086
2087                 if (ns->busw == 8) {
2088                         ns->buf.byte[ns->regs.count] = byte;
2089                         ns->regs.count += 1;
2090                 } else {
2091                         ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
2092                         ns->regs.count += 2;
2093                 }
2094         }
2095
2096         return;
2097 }
2098
2099 static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask)
2100 {
2101         struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2102
2103         ns->lines.cle = bitmask & NAND_CLE ? 1 : 0;
2104         ns->lines.ale = bitmask & NAND_ALE ? 1 : 0;
2105         ns->lines.ce = bitmask & NAND_NCE ? 1 : 0;
2106
2107         if (cmd != NAND_CMD_NONE)
2108                 ns_nand_write_byte(mtd, cmd);
2109 }
2110
2111 static int ns_device_ready(struct mtd_info *mtd)
2112 {
2113         NS_DBG("device_ready\n");
2114         return 1;
2115 }
2116
2117 static uint16_t ns_nand_read_word(struct mtd_info *mtd)
2118 {
2119         struct nand_chip *chip = (struct nand_chip *)mtd->priv;
2120
2121         NS_DBG("read_word\n");
2122
2123         return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
2124 }
2125
2126 static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
2127 {
2128         struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
2129
2130         /* Check that chip is expecting data input */
2131         if (!(ns->state & STATE_DATAIN_MASK)) {
2132                 NS_ERR("write_buf: data input isn't expected, state is %s, "
2133                         "switch to STATE_READY\n", get_state_name(ns->state));
2134                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2135                 return;
2136         }
2137
2138         /* Check if these are expected bytes */
2139         if (ns->regs.count + len > ns->regs.num) {
2140                 NS_ERR("write_buf: too many input bytes\n");
2141                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2142                 return;
2143         }
2144
2145         memcpy(ns->buf.byte + ns->regs.count, buf, len);
2146         ns->regs.count += len;
2147
2148         if (ns->regs.count == ns->regs.num) {
2149                 NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
2150         }
2151 }
2152
2153 static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
2154 {
2155         struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
2156
2157         /* Sanity and correctness checks */
2158         if (!ns->lines.ce) {
2159                 NS_ERR("read_buf: chip is disabled\n");
2160                 return;
2161         }
2162         if (ns->lines.ale || ns->lines.cle) {
2163                 NS_ERR("read_buf: ALE or CLE pin is high\n");
2164                 return;
2165         }
2166         if (!(ns->state & STATE_DATAOUT_MASK)) {
2167                 NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
2168                         get_state_name(ns->state));
2169                 return;
2170         }
2171
2172         if (NS_STATE(ns->state) != STATE_DATAOUT) {
2173                 int i;
2174
2175                 for (i = 0; i < len; i++)
2176                         buf[i] = ((struct nand_chip *)mtd->priv)->read_byte(mtd);
2177
2178                 return;
2179         }
2180
2181         /* Check if these are expected bytes */
2182         if (ns->regs.count + len > ns->regs.num) {
2183                 NS_ERR("read_buf: too many bytes to read\n");
2184                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2185                 return;
2186         }
2187
2188         memcpy(buf, ns->buf.byte + ns->regs.count, len);
2189         ns->regs.count += len;
2190
2191         if (ns->regs.count == ns->regs.num) {
2192                 if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
2193                         ns->regs.count = 0;
2194                         if (ns->regs.row + 1 < ns->geom.pgnum)
2195                                 ns->regs.row += 1;
2196                         NS_DBG("read_buf: switch to the next page (%#x)\n", ns->regs.row);
2197                         do_state_action(ns, ACTION_CPY);
2198                 }
2199                 else if (NS_STATE(ns->nxstate) == STATE_READY)
2200                         switch_state(ns);
2201         }
2202
2203         return;
2204 }
2205
2206 static int ns_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
2207 {
2208         ns_nand_read_buf(mtd, (u_char *)&ns_verify_buf[0], len);
2209
2210         if (!memcmp(buf, &ns_verify_buf[0], len)) {
2211                 NS_DBG("verify_buf: the buffer is OK\n");
2212                 return 0;
2213         } else {
2214                 NS_DBG("verify_buf: the buffer is wrong\n");
2215                 return -EFAULT;
2216         }
2217 }
2218
2219 /*
2220  * Module initialization function
2221  */
2222 static int __init ns_init_module(void)
2223 {
2224         struct nand_chip *chip;
2225         struct nandsim *nand;
2226         int retval = -ENOMEM, i;
2227
2228         if (bus_width != 8 && bus_width != 16) {
2229                 NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
2230                 return -EINVAL;
2231         }
2232
2233         /* Allocate and initialize mtd_info, nand_chip and nandsim structures */
2234         nsmtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip)
2235                                 + sizeof(struct nandsim), GFP_KERNEL);
2236         if (!nsmtd) {
2237                 NS_ERR("unable to allocate core structures.\n");
2238                 return -ENOMEM;
2239         }
2240         chip        = (struct nand_chip *)(nsmtd + 1);
2241         nsmtd->priv = (void *)chip;
2242         nand        = (struct nandsim *)(chip + 1);
2243         chip->priv  = (void *)nand;
2244
2245         /*
2246          * Register simulator's callbacks.
2247          */
2248         chip->cmd_ctrl   = ns_hwcontrol;
2249         chip->read_byte  = ns_nand_read_byte;
2250         chip->dev_ready  = ns_device_ready;
2251         chip->write_buf  = ns_nand_write_buf;
2252         chip->read_buf   = ns_nand_read_buf;
2253         chip->verify_buf = ns_nand_verify_buf;
2254         chip->read_word  = ns_nand_read_word;
2255         chip->ecc.mode   = NAND_ECC_SOFT;
2256         /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
2257         /* and 'badblocks' parameters to work */
2258         chip->options   |= NAND_SKIP_BBTSCAN;
2259
2260         /*
2261          * Perform minimum nandsim structure initialization to handle
2262          * the initial ID read command correctly
2263          */
2264         if (third_id_byte != 0xFF || fourth_id_byte != 0xFF)
2265                 nand->geom.idbytes = 4;
2266         else
2267                 nand->geom.idbytes = 2;
2268         nand->regs.status = NS_STATUS_OK(nand);
2269         nand->nxstate = STATE_UNKNOWN;
2270         nand->options |= OPT_PAGE256; /* temporary value */
2271         nand->ids[0] = first_id_byte;
2272         nand->ids[1] = second_id_byte;
2273         nand->ids[2] = third_id_byte;
2274         nand->ids[3] = fourth_id_byte;
2275         if (bus_width == 16) {
2276                 nand->busw = 16;
2277                 chip->options |= NAND_BUSWIDTH_16;
2278         }
2279
2280         nsmtd->owner = THIS_MODULE;
2281
2282         if ((retval = parse_weakblocks()) != 0)
2283                 goto error;
2284
2285         if ((retval = parse_weakpages()) != 0)
2286                 goto error;
2287
2288         if ((retval = parse_gravepages()) != 0)
2289                 goto error;
2290
2291         if ((retval = nand_scan(nsmtd, 1)) != 0) {
2292                 NS_ERR("can't register NAND Simulator\n");
2293                 if (retval > 0)
2294                         retval = -ENXIO;
2295                 goto error;
2296         }
2297
2298         if (overridesize) {
2299                 uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize;
2300                 if (new_size >> overridesize != nsmtd->erasesize) {
2301                         NS_ERR("overridesize is too big\n");
2302                         goto err_exit;
2303                 }
2304                 /* N.B. This relies on nand_scan not doing anything with the size before we change it */
2305                 nsmtd->size = new_size;
2306                 chip->chipsize = new_size;
2307                 chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1;
2308                 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2309         }
2310
2311         if ((retval = setup_wear_reporting(nsmtd)) != 0)
2312                 goto err_exit;
2313
2314         if ((retval = init_nandsim(nsmtd)) != 0)
2315                 goto err_exit;
2316
2317         if ((retval = parse_badblocks(nand, nsmtd)) != 0)
2318                 goto err_exit;
2319
2320         if ((retval = nand_default_bbt(nsmtd)) != 0)
2321                 goto err_exit;
2322
2323         /* Register NAND partitions */
2324         if ((retval = add_mtd_partitions(nsmtd, &nand->partitions[0], nand->nbparts)) != 0)
2325                 goto err_exit;
2326
2327         return 0;
2328
2329 err_exit:
2330         free_nandsim(nand);
2331         nand_release(nsmtd);
2332         for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i)
2333                 kfree(nand->partitions[i].name);
2334 error:
2335         kfree(nsmtd);
2336         free_lists();
2337
2338         return retval;
2339 }
2340
2341 module_init(ns_init_module);
2342
2343 /*
2344  * Module clean-up function
2345  */
2346 static void __exit ns_cleanup_module(void)
2347 {
2348         struct nandsim *ns = (struct nandsim *)(((struct nand_chip *)nsmtd->priv)->priv);
2349         int i;
2350
2351         free_nandsim(ns);    /* Free nandsim private resources */
2352         nand_release(nsmtd); /* Unregister driver */
2353         for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i)
2354                 kfree(ns->partitions[i].name);
2355         kfree(nsmtd);        /* Free other structures */
2356         free_lists();
2357 }
2358
2359 module_exit(ns_cleanup_module);
2360
2361 MODULE_LICENSE ("GPL");
2362 MODULE_AUTHOR ("Artem B. Bityuckiy");
2363 MODULE_DESCRIPTION ("The NAND flash simulator");