]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/misc/sgi-xp/xpc_sn2.c
63fe59a5bfac04b44a3ab33ef1f6506b9690f524
[linux-2.6-omap-h63xx.git] / drivers / misc / sgi-xp / xpc_sn2.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (c) 2008 Silicon Graphics, Inc.  All Rights Reserved.
7  */
8
9 /*
10  * Cross Partition Communication (XPC) sn2-based functions.
11  *
12  *     Architecture specific implementation of common functions.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/delay.h>
18 #include <asm/uncached.h>
19 #include <asm/sn/sn_sal.h>
20 #include "xpc.h"
21
22 /*
23  * Define the number of u64s required to represent all the C-brick nasids
24  * as a bitmap.  The cross-partition kernel modules deal only with
25  * C-brick nasids, thus the need for bitmaps which don't account for
26  * odd-numbered (non C-brick) nasids.
27  */
28 #define XPC_MAX_PHYSNODES_SN2   (MAX_NUMALINK_NODES / 2)
29 #define XP_NASID_MASK_BYTES_SN2 ((XPC_MAX_PHYSNODES_SN2 + 7) / 8)
30 #define XP_NASID_MASK_WORDS_SN2 ((XPC_MAX_PHYSNODES_SN2 + 63) / 64)
31
32 /*
33  * Memory for XPC's amo variables is allocated by the MSPEC driver. These
34  * pages are located in the lowest granule. The lowest granule uses 4k pages
35  * for cached references and an alternate TLB handler to never provide a
36  * cacheable mapping for the entire region. This will prevent speculative
37  * reading of cached copies of our lines from being issued which will cause
38  * a PI FSB Protocol error to be generated by the SHUB. For XPC, we need 64
39  * amo variables (based on XP_MAX_NPARTITIONS_SN2) to identify the senders of
40  * NOTIFY IRQs, 128 amo variables (based on XP_NASID_MASK_WORDS_SN2) to identify
41  * the senders of ACTIVATE IRQs, 1 amo variable to identify which remote
42  * partitions (i.e., XPCs) consider themselves currently engaged with the
43  * local XPC and 1 amo variable to request partition deactivation.
44  */
45 #define XPC_NOTIFY_IRQ_AMOS_SN2         0
46 #define XPC_ACTIVATE_IRQ_AMOS_SN2       (XPC_NOTIFY_IRQ_AMOS_SN2 + \
47                                          XP_MAX_NPARTITIONS_SN2)
48 #define XPC_ENGAGED_PARTITIONS_AMO_SN2  (XPC_ACTIVATE_IRQ_AMOS_SN2 + \
49                                          XP_NASID_MASK_WORDS_SN2)
50 #define XPC_DEACTIVATE_REQUEST_AMO_SN2  (XPC_ENGAGED_PARTITIONS_AMO_SN2 + 1)
51
52 /*
53  * Buffer used to store a local copy of portions of a remote partition's
54  * reserved page (either its header and part_nasids mask, or its vars).
55  */
56 static char *xpc_remote_copy_buffer_sn2;
57 static void *xpc_remote_copy_buffer_base_sn2;
58
59 static struct xpc_vars_sn2 *xpc_vars_sn2;
60 static struct xpc_vars_part_sn2 *xpc_vars_part_sn2;
61
62 /* SH_IPI_ACCESS shub register value on startup */
63 static u64 xpc_sh1_IPI_access_sn2;
64 static u64 xpc_sh2_IPI_access0_sn2;
65 static u64 xpc_sh2_IPI_access1_sn2;
66 static u64 xpc_sh2_IPI_access2_sn2;
67 static u64 xpc_sh2_IPI_access3_sn2;
68
69 /*
70  * Change protections to allow IPI operations.
71  */
72 static void
73 xpc_allow_IPI_ops_sn2(void)
74 {
75         int node;
76         int nasid;
77
78         /* >>> The following should get moved into SAL. */
79         if (is_shub2()) {
80                 xpc_sh2_IPI_access0_sn2 =
81                     (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS0));
82                 xpc_sh2_IPI_access1_sn2 =
83                     (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS1));
84                 xpc_sh2_IPI_access2_sn2 =
85                     (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS2));
86                 xpc_sh2_IPI_access3_sn2 =
87                     (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS3));
88
89                 for_each_online_node(node) {
90                         nasid = cnodeid_to_nasid(node);
91                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS0),
92                               -1UL);
93                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS1),
94                               -1UL);
95                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS2),
96                               -1UL);
97                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS3),
98                               -1UL);
99                 }
100         } else {
101                 xpc_sh1_IPI_access_sn2 =
102                     (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH1_IPI_ACCESS));
103
104                 for_each_online_node(node) {
105                         nasid = cnodeid_to_nasid(node);
106                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH1_IPI_ACCESS),
107                               -1UL);
108                 }
109         }
110 }
111
112 /*
113  * Restrict protections to disallow IPI operations.
114  */
115 static void
116 xpc_disallow_IPI_ops_sn2(void)
117 {
118         int node;
119         int nasid;
120
121         /* >>> The following should get moved into SAL. */
122         if (is_shub2()) {
123                 for_each_online_node(node) {
124                         nasid = cnodeid_to_nasid(node);
125                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS0),
126                               xpc_sh2_IPI_access0_sn2);
127                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS1),
128                               xpc_sh2_IPI_access1_sn2);
129                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS2),
130                               xpc_sh2_IPI_access2_sn2);
131                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS3),
132                               xpc_sh2_IPI_access3_sn2);
133                 }
134         } else {
135                 for_each_online_node(node) {
136                         nasid = cnodeid_to_nasid(node);
137                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH1_IPI_ACCESS),
138                               xpc_sh1_IPI_access_sn2);
139                 }
140         }
141 }
142
143 /*
144  * The following set of functions are used for the sending and receiving of
145  * IRQs (also known as IPIs). There are two flavors of IRQs, one that is
146  * associated with partition activity (SGI_XPC_ACTIVATE) and the other that
147  * is associated with channel activity (SGI_XPC_NOTIFY).
148  */
149
150 static u64
151 xpc_receive_IRQ_amo_sn2(struct amo *amo)
152 {
153         return FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_CLEAR);
154 }
155
156 static enum xp_retval
157 xpc_send_IRQ_sn2(struct amo *amo, u64 flag, int nasid, int phys_cpuid,
158                  int vector)
159 {
160         int ret = 0;
161         unsigned long irq_flags;
162
163         local_irq_save(irq_flags);
164
165         FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR, flag);
166         sn_send_IPI_phys(nasid, phys_cpuid, vector, 0);
167
168         /*
169          * We must always use the nofault function regardless of whether we
170          * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
171          * didn't, we'd never know that the other partition is down and would
172          * keep sending IRQs and amos to it until the heartbeat times out.
173          */
174         ret = xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->variable),
175                                                      xp_nofault_PIOR_target));
176
177         local_irq_restore(irq_flags);
178
179         return ((ret == 0) ? xpSuccess : xpPioReadError);
180 }
181
182 static struct amo *
183 xpc_init_IRQ_amo_sn2(int index)
184 {
185         struct amo *amo = xpc_vars_sn2->amos_page + index;
186
187         (void)xpc_receive_IRQ_amo_sn2(amo);     /* clear amo variable */
188         return amo;
189 }
190
191 /*
192  * Functions associated with SGI_XPC_ACTIVATE IRQ.
193  */
194
195 /*
196  * Notify the heartbeat check thread that an activate IRQ has been received.
197  */
198 static irqreturn_t
199 xpc_handle_activate_IRQ_sn2(int irq, void *dev_id)
200 {
201         atomic_inc(&xpc_activate_IRQ_rcvd);
202         wake_up_interruptible(&xpc_activate_IRQ_wq);
203         return IRQ_HANDLED;
204 }
205
206 /*
207  * Flag the appropriate amo variable and send an IRQ to the specified node.
208  */
209 static void
210 xpc_send_activate_IRQ_sn2(u64 amos_page_pa, int from_nasid, int to_nasid,
211                           int to_phys_cpuid)
212 {
213         int w_index = XPC_NASID_W_INDEX(from_nasid);
214         int b_index = XPC_NASID_B_INDEX(from_nasid);
215         struct amo *amos = (struct amo *)__va(amos_page_pa +
216                                               (XPC_ACTIVATE_IRQ_AMOS_SN2 *
217                                               sizeof(struct amo)));
218
219         (void)xpc_send_IRQ_sn2(&amos[w_index], (1UL << b_index), to_nasid,
220                                to_phys_cpuid, SGI_XPC_ACTIVATE);
221 }
222
223 static void
224 xpc_send_local_activate_IRQ_sn2(int from_nasid)
225 {
226         int w_index = XPC_NASID_W_INDEX(from_nasid);
227         int b_index = XPC_NASID_B_INDEX(from_nasid);
228         struct amo *amos = (struct amo *)__va(xpc_vars_sn2->amos_page_pa +
229                                               (XPC_ACTIVATE_IRQ_AMOS_SN2 *
230                                               sizeof(struct amo)));
231
232         /* fake the sending and receipt of an activate IRQ from remote nasid */
233         FETCHOP_STORE_OP(TO_AMO((u64)&amos[w_index].variable), FETCHOP_OR,
234                          (1UL << b_index));
235         atomic_inc(&xpc_activate_IRQ_rcvd);
236         wake_up_interruptible(&xpc_activate_IRQ_wq);
237 }
238
239 /*
240  * Functions associated with SGI_XPC_NOTIFY IRQ.
241  */
242
243 /*
244  * Check to see if any chctl flags were sent from the specified partition.
245  */
246 static void
247 xpc_check_for_sent_chctl_flags_sn2(struct xpc_partition *part)
248 {
249         union xpc_channel_ctl_flags chctl;
250         unsigned long irq_flags;
251
252         chctl.all_flags = xpc_receive_IRQ_amo_sn2(part->sn.sn2.
253                                                   local_chctl_amo_va);
254         if (chctl.all_flags == 0)
255                 return;
256
257         spin_lock_irqsave(&part->chctl_lock, irq_flags);
258         part->chctl.all_flags |= chctl.all_flags;
259         spin_unlock_irqrestore(&part->chctl_lock, irq_flags);
260
261         dev_dbg(xpc_chan, "received notify IRQ from partid=%d, chctl.all_flags="
262                 "0x%lx\n", XPC_PARTID(part), chctl.all_flags);
263
264         xpc_wakeup_channel_mgr(part);
265 }
266
267 /*
268  * Handle the receipt of a SGI_XPC_NOTIFY IRQ by seeing whether the specified
269  * partition actually sent it. Since SGI_XPC_NOTIFY IRQs may be shared by more
270  * than one partition, we use an amo structure per partition to indicate
271  * whether a partition has sent an IRQ or not.  If it has, then wake up the
272  * associated kthread to handle it.
273  *
274  * All SGI_XPC_NOTIFY IRQs received by XPC are the result of IRQs sent by XPC
275  * running on other partitions.
276  *
277  * Noteworthy Arguments:
278  *
279  *      irq - Interrupt ReQuest number. NOT USED.
280  *
281  *      dev_id - partid of IRQ's potential sender.
282  */
283 static irqreturn_t
284 xpc_handle_notify_IRQ_sn2(int irq, void *dev_id)
285 {
286         short partid = (short)(u64)dev_id;
287         struct xpc_partition *part = &xpc_partitions[partid];
288
289         DBUG_ON(partid < 0 || partid >= xp_max_npartitions);
290
291         if (xpc_part_ref(part)) {
292                 xpc_check_for_sent_chctl_flags_sn2(part);
293
294                 xpc_part_deref(part);
295         }
296         return IRQ_HANDLED;
297 }
298
299 /*
300  * Check to see if xpc_handle_notify_IRQ_sn2() dropped any IRQs on the floor
301  * because the write to their associated amo variable completed after the IRQ
302  * was received.
303  */
304 static void
305 xpc_check_for_dropped_notify_IRQ_sn2(struct xpc_partition *part)
306 {
307         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
308
309         if (xpc_part_ref(part)) {
310                 xpc_check_for_sent_chctl_flags_sn2(part);
311
312                 part_sn2->dropped_notify_IRQ_timer.expires = jiffies +
313                     XPC_DROPPED_NOTIFY_IRQ_WAIT_INTERVAL;
314                 add_timer(&part_sn2->dropped_notify_IRQ_timer);
315                 xpc_part_deref(part);
316         }
317 }
318
319 /*
320  * Send a notify IRQ to the remote partition that is associated with the
321  * specified channel.
322  */
323 static void
324 xpc_send_notify_IRQ_sn2(struct xpc_channel *ch, u8 chctl_flag,
325                         char *chctl_flag_string, unsigned long *irq_flags)
326 {
327         struct xpc_partition *part = &xpc_partitions[ch->partid];
328         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
329         union xpc_channel_ctl_flags chctl = { 0 };
330         enum xp_retval ret;
331
332         if (likely(part->act_state != XPC_P_DEACTIVATING)) {
333                 chctl.flags[ch->number] = chctl_flag;
334                 ret = xpc_send_IRQ_sn2(part_sn2->remote_chctl_amo_va,
335                                        chctl.all_flags,
336                                        part_sn2->notify_IRQ_nasid,
337                                        part_sn2->notify_IRQ_phys_cpuid,
338                                        SGI_XPC_NOTIFY);
339                 dev_dbg(xpc_chan, "%s sent to partid=%d, channel=%d, ret=%d\n",
340                         chctl_flag_string, ch->partid, ch->number, ret);
341                 if (unlikely(ret != xpSuccess)) {
342                         if (irq_flags != NULL)
343                                 spin_unlock_irqrestore(&ch->lock, *irq_flags);
344                         XPC_DEACTIVATE_PARTITION(part, ret);
345                         if (irq_flags != NULL)
346                                 spin_lock_irqsave(&ch->lock, *irq_flags);
347                 }
348         }
349 }
350
351 #define XPC_SEND_NOTIFY_IRQ_SN2(_ch, _ipi_f, _irq_f) \
352                 xpc_send_notify_IRQ_sn2(_ch, _ipi_f, #_ipi_f, _irq_f)
353
354 /*
355  * Make it look like the remote partition, which is associated with the
356  * specified channel, sent us a notify IRQ. This faked IRQ will be handled
357  * by xpc_check_for_dropped_notify_IRQ_sn2().
358  */
359 static void
360 xpc_send_local_notify_IRQ_sn2(struct xpc_channel *ch, u8 chctl_flag,
361                               char *chctl_flag_string)
362 {
363         struct xpc_partition *part = &xpc_partitions[ch->partid];
364         union xpc_channel_ctl_flags chctl = { 0 };
365
366         chctl.flags[ch->number] = chctl_flag;
367         FETCHOP_STORE_OP(TO_AMO((u64)&part->sn.sn2.local_chctl_amo_va->
368                                 variable), FETCHOP_OR, chctl.all_flags);
369         dev_dbg(xpc_chan, "%s sent local from partid=%d, channel=%d\n",
370                 chctl_flag_string, ch->partid, ch->number);
371 }
372
373 #define XPC_SEND_LOCAL_NOTIFY_IRQ_SN2(_ch, _ipi_f) \
374                 xpc_send_local_notify_IRQ_sn2(_ch, _ipi_f, #_ipi_f)
375
376 static void
377 xpc_send_chctl_closerequest_sn2(struct xpc_channel *ch,
378                                 unsigned long *irq_flags)
379 {
380         struct xpc_openclose_args *args = ch->local_openclose_args;
381
382         args->reason = ch->reason;
383         XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_CLOSEREQUEST, irq_flags);
384 }
385
386 static void
387 xpc_send_chctl_closereply_sn2(struct xpc_channel *ch, unsigned long *irq_flags)
388 {
389         XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_CLOSEREPLY, irq_flags);
390 }
391
392 static void
393 xpc_send_chctl_openrequest_sn2(struct xpc_channel *ch, unsigned long *irq_flags)
394 {
395         struct xpc_openclose_args *args = ch->local_openclose_args;
396
397         args->msg_size = ch->msg_size;
398         args->local_nentries = ch->local_nentries;
399         XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_OPENREQUEST, irq_flags);
400 }
401
402 static void
403 xpc_send_chctl_openreply_sn2(struct xpc_channel *ch, unsigned long *irq_flags)
404 {
405         struct xpc_openclose_args *args = ch->local_openclose_args;
406
407         args->remote_nentries = ch->remote_nentries;
408         args->local_nentries = ch->local_nentries;
409         args->local_msgqueue_pa = __pa(ch->local_msgqueue);
410         XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_OPENREPLY, irq_flags);
411 }
412
413 static void
414 xpc_send_chctl_msgrequest_sn2(struct xpc_channel *ch)
415 {
416         XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_MSGREQUEST, NULL);
417 }
418
419 static void
420 xpc_send_chctl_local_msgrequest_sn2(struct xpc_channel *ch)
421 {
422         XPC_SEND_LOCAL_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_MSGREQUEST);
423 }
424
425 /*
426  * This next set of functions are used to keep track of when a partition is
427  * potentially engaged in accessing memory belonging to another partition.
428  */
429
430 static void
431 xpc_indicate_partition_engaged_sn2(struct xpc_partition *part)
432 {
433         unsigned long irq_flags;
434         struct amo *amo = (struct amo *)__va(part->sn.sn2.remote_amos_page_pa +
435                                              (XPC_ENGAGED_PARTITIONS_AMO_SN2 *
436                                              sizeof(struct amo)));
437
438         local_irq_save(irq_flags);
439
440         /* set bit corresponding to our partid in remote partition's amo */
441         FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR,
442                          (1UL << sn_partition_id));
443         /*
444          * We must always use the nofault function regardless of whether we
445          * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
446          * didn't, we'd never know that the other partition is down and would
447          * keep sending IRQs and amos to it until the heartbeat times out.
448          */
449         (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
450                                                                variable),
451                                                      xp_nofault_PIOR_target));
452
453         local_irq_restore(irq_flags);
454 }
455
456 static void
457 xpc_indicate_partition_disengaged_sn2(struct xpc_partition *part)
458 {
459         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
460         unsigned long irq_flags;
461         struct amo *amo = (struct amo *)__va(part_sn2->remote_amos_page_pa +
462                                              (XPC_ENGAGED_PARTITIONS_AMO_SN2 *
463                                              sizeof(struct amo)));
464
465         local_irq_save(irq_flags);
466
467         /* clear bit corresponding to our partid in remote partition's amo */
468         FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND,
469                          ~(1UL << sn_partition_id));
470         /*
471          * We must always use the nofault function regardless of whether we
472          * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
473          * didn't, we'd never know that the other partition is down and would
474          * keep sending IRQs and amos to it until the heartbeat times out.
475          */
476         (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
477                                                                variable),
478                                                      xp_nofault_PIOR_target));
479
480         local_irq_restore(irq_flags);
481
482         /*
483          * Send activate IRQ to get other side to see that we've cleared our
484          * bit in their engaged partitions amo.
485          */
486         xpc_send_activate_IRQ_sn2(part_sn2->remote_amos_page_pa,
487                                   cnodeid_to_nasid(0),
488                                   part_sn2->activate_IRQ_nasid,
489                                   part_sn2->activate_IRQ_phys_cpuid);
490 }
491
492 static int
493 xpc_partition_engaged_sn2(short partid)
494 {
495         struct amo *amo = xpc_vars_sn2->amos_page +
496                           XPC_ENGAGED_PARTITIONS_AMO_SN2;
497
498         /* our partition's amo variable ANDed with partid mask */
499         return (FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) &
500                 (1UL << partid)) != 0;
501 }
502
503 static int
504 xpc_any_partition_engaged_sn2(void)
505 {
506         struct amo *amo = xpc_vars_sn2->amos_page +
507                           XPC_ENGAGED_PARTITIONS_AMO_SN2;
508
509         /* our partition's amo variable */
510         return FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) != 0;
511 }
512
513 static void
514 xpc_assume_partition_disengaged_sn2(short partid)
515 {
516         struct amo *amo = xpc_vars_sn2->amos_page +
517                           XPC_ENGAGED_PARTITIONS_AMO_SN2;
518
519         /* clear bit(s) based on partid mask in our partition's amo */
520         FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND,
521                          ~(1UL << partid));
522 }
523
524 /* original protection values for each node */
525 static u64 xpc_prot_vec_sn2[MAX_NUMNODES];
526
527 /*
528  * Change protections to allow amo operations on non-Shub 1.1 systems.
529  */
530 static enum xp_retval
531 xpc_allow_amo_ops_sn2(struct amo *amos_page)
532 {
533         u64 nasid_array = 0;
534         int ret;
535
536         /*
537          * On SHUB 1.1, we cannot call sn_change_memprotect() since the BIST
538          * collides with memory operations. On those systems we call
539          * xpc_allow_amo_ops_shub_wars_1_1_sn2() instead.
540          */
541         if (!enable_shub_wars_1_1()) {
542                 ret = sn_change_memprotect(ia64_tpa((u64)amos_page), PAGE_SIZE,
543                                            SN_MEMPROT_ACCESS_CLASS_1,
544                                            &nasid_array);
545                 if (ret != 0)
546                         return xpSalError;
547         }
548         return xpSuccess;
549 }
550
551 /*
552  * Change protections to allow amo operations on Shub 1.1 systems.
553  */
554 static void
555 xpc_allow_amo_ops_shub_wars_1_1_sn2(void)
556 {
557         int node;
558         int nasid;
559
560         if (!enable_shub_wars_1_1())
561                 return;
562
563         for_each_online_node(node) {
564                 nasid = cnodeid_to_nasid(node);
565                 /* save current protection values */
566                 xpc_prot_vec_sn2[node] =
567                     (u64)HUB_L((u64 *)GLOBAL_MMR_ADDR(nasid,
568                                                   SH1_MD_DQLP_MMR_DIR_PRIVEC0));
569                 /* open up everything */
570                 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid,
571                                              SH1_MD_DQLP_MMR_DIR_PRIVEC0),
572                       -1UL);
573                 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid,
574                                              SH1_MD_DQRP_MMR_DIR_PRIVEC0),
575                       -1UL);
576         }
577 }
578
579 static enum xp_retval
580 xpc_rsvd_page_init_sn2(struct xpc_rsvd_page *rp)
581 {
582         struct amo *amos_page;
583         int i;
584         int ret;
585
586         xpc_vars_sn2 = XPC_RP_VARS(rp);
587
588         rp->sn.vars_pa = __pa(xpc_vars_sn2);
589
590         /* vars_part array follows immediately after vars */
591         xpc_vars_part_sn2 = (struct xpc_vars_part_sn2 *)((u8 *)XPC_RP_VARS(rp) +
592                                                          XPC_RP_VARS_SIZE);
593
594         /*
595          * Before clearing xpc_vars_sn2, see if a page of amos had been
596          * previously allocated. If not we'll need to allocate one and set
597          * permissions so that cross-partition amos are allowed.
598          *
599          * The allocated amo page needs MCA reporting to remain disabled after
600          * XPC has unloaded.  To make this work, we keep a copy of the pointer
601          * to this page (i.e., amos_page) in the struct xpc_vars_sn2 structure,
602          * which is pointed to by the reserved page, and re-use that saved copy
603          * on subsequent loads of XPC. This amo page is never freed, and its
604          * memory protections are never restricted.
605          */
606         amos_page = xpc_vars_sn2->amos_page;
607         if (amos_page == NULL) {
608                 amos_page = (struct amo *)TO_AMO(uncached_alloc_page(0, 1));
609                 if (amos_page == NULL) {
610                         dev_err(xpc_part, "can't allocate page of amos\n");
611                         return xpNoMemory;
612                 }
613
614                 /*
615                  * Open up amo-R/W to cpu.  This is done on Shub 1.1 systems
616                  * when xpc_allow_amo_ops_shub_wars_1_1_sn2() is called.
617                  */
618                 ret = xpc_allow_amo_ops_sn2(amos_page);
619                 if (ret != xpSuccess) {
620                         dev_err(xpc_part, "can't allow amo operations\n");
621                         uncached_free_page(__IA64_UNCACHED_OFFSET |
622                                            TO_PHYS((u64)amos_page), 1);
623                         return ret;
624                 }
625         }
626
627         /* clear xpc_vars_sn2 */
628         memset(xpc_vars_sn2, 0, sizeof(struct xpc_vars_sn2));
629
630         xpc_vars_sn2->version = XPC_V_VERSION;
631         xpc_vars_sn2->activate_IRQ_nasid = cpuid_to_nasid(0);
632         xpc_vars_sn2->activate_IRQ_phys_cpuid = cpu_physical_id(0);
633         xpc_vars_sn2->vars_part_pa = __pa(xpc_vars_part_sn2);
634         xpc_vars_sn2->amos_page_pa = ia64_tpa((u64)amos_page);
635         xpc_vars_sn2->amos_page = amos_page;    /* save for next load of XPC */
636
637         /* clear xpc_vars_part_sn2 */
638         memset((u64 *)xpc_vars_part_sn2, 0, sizeof(struct xpc_vars_part_sn2) *
639                xp_max_npartitions);
640
641         /* initialize the activate IRQ related amo variables */
642         for (i = 0; i < xpc_nasid_mask_words; i++)
643                 (void)xpc_init_IRQ_amo_sn2(XPC_ACTIVATE_IRQ_AMOS_SN2 + i);
644
645         /* initialize the engaged remote partitions related amo variables */
646         (void)xpc_init_IRQ_amo_sn2(XPC_ENGAGED_PARTITIONS_AMO_SN2);
647         (void)xpc_init_IRQ_amo_sn2(XPC_DEACTIVATE_REQUEST_AMO_SN2);
648
649         return xpSuccess;
650 }
651
652 static void
653 xpc_increment_heartbeat_sn2(void)
654 {
655         xpc_vars_sn2->heartbeat++;
656 }
657
658 static void
659 xpc_offline_heartbeat_sn2(void)
660 {
661         xpc_increment_heartbeat_sn2();
662         xpc_vars_sn2->heartbeat_offline = 1;
663 }
664
665 static void
666 xpc_online_heartbeat_sn2(void)
667 {
668         xpc_increment_heartbeat_sn2();
669         xpc_vars_sn2->heartbeat_offline = 0;
670 }
671
672 static void
673 xpc_heartbeat_init_sn2(void)
674 {
675         DBUG_ON(xpc_vars_sn2 == NULL);
676
677         bitmap_zero(xpc_vars_sn2->heartbeating_to_mask, XP_MAX_NPARTITIONS_SN2);
678         xpc_heartbeating_to_mask = &xpc_vars_sn2->heartbeating_to_mask[0];
679         xpc_online_heartbeat_sn2();
680 }
681
682 static void
683 xpc_heartbeat_exit_sn2(void)
684 {
685         xpc_offline_heartbeat_sn2();
686 }
687
688 /*
689  * At periodic intervals, scan through all active partitions and ensure
690  * their heartbeat is still active.  If not, the partition is deactivated.
691  */
692 static void
693 xpc_check_remote_hb_sn2(void)
694 {
695         struct xpc_vars_sn2 *remote_vars;
696         struct xpc_partition *part;
697         short partid;
698         enum xp_retval ret;
699
700         remote_vars = (struct xpc_vars_sn2 *)xpc_remote_copy_buffer_sn2;
701
702         for (partid = 0; partid < xp_max_npartitions; partid++) {
703
704                 if (xpc_exiting)
705                         break;
706
707                 if (partid == sn_partition_id)
708                         continue;
709
710                 part = &xpc_partitions[partid];
711
712                 if (part->act_state == XPC_P_INACTIVE ||
713                     part->act_state == XPC_P_DEACTIVATING) {
714                         continue;
715                 }
716
717                 /* pull the remote_hb cache line */
718                 ret = xp_remote_memcpy(remote_vars,
719                                        (void *)part->sn.sn2.remote_vars_pa,
720                                        XPC_RP_VARS_SIZE);
721                 if (ret != xpSuccess) {
722                         XPC_DEACTIVATE_PARTITION(part, ret);
723                         continue;
724                 }
725
726                 dev_dbg(xpc_part, "partid = %d, heartbeat = %ld, last_heartbeat"
727                         " = %ld, heartbeat_offline = %ld, HB_mask[0] = 0x%lx\n",
728                         partid, remote_vars->heartbeat, part->last_heartbeat,
729                         remote_vars->heartbeat_offline,
730                         remote_vars->heartbeating_to_mask[0]);
731
732                 if (((remote_vars->heartbeat == part->last_heartbeat) &&
733                      (remote_vars->heartbeat_offline == 0)) ||
734                     !xpc_hb_allowed(sn_partition_id,
735                                     &remote_vars->heartbeating_to_mask)) {
736
737                         XPC_DEACTIVATE_PARTITION(part, xpNoHeartbeat);
738                         continue;
739                 }
740
741                 part->last_heartbeat = remote_vars->heartbeat;
742         }
743 }
744
745 /*
746  * Get a copy of the remote partition's XPC variables from the reserved page.
747  *
748  * remote_vars points to a buffer that is cacheline aligned for BTE copies and
749  * assumed to be of size XPC_RP_VARS_SIZE.
750  */
751 static enum xp_retval
752 xpc_get_remote_vars_sn2(u64 remote_vars_pa, struct xpc_vars_sn2 *remote_vars)
753 {
754         enum xp_retval ret;
755
756         if (remote_vars_pa == 0)
757                 return xpVarsNotSet;
758
759         /* pull over the cross partition variables */
760         ret = xp_remote_memcpy(remote_vars, (void *)remote_vars_pa,
761                                XPC_RP_VARS_SIZE);
762         if (ret != xpSuccess)
763                 return ret;
764
765         if (XPC_VERSION_MAJOR(remote_vars->version) !=
766             XPC_VERSION_MAJOR(XPC_V_VERSION)) {
767                 return xpBadVersion;
768         }
769
770         return xpSuccess;
771 }
772
773 static void
774 xpc_request_partition_activation_sn2(struct xpc_rsvd_page *remote_rp,
775                                      u64 remote_rp_pa, int nasid)
776 {
777         xpc_send_local_activate_IRQ_sn2(nasid);
778 }
779
780 static void
781 xpc_request_partition_reactivation_sn2(struct xpc_partition *part)
782 {
783         xpc_send_local_activate_IRQ_sn2(part->sn.sn2.activate_IRQ_nasid);
784 }
785
786 static void
787 xpc_request_partition_deactivation_sn2(struct xpc_partition *part)
788 {
789         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
790         unsigned long irq_flags;
791         struct amo *amo = (struct amo *)__va(part_sn2->remote_amos_page_pa +
792                                              (XPC_DEACTIVATE_REQUEST_AMO_SN2 *
793                                              sizeof(struct amo)));
794
795         local_irq_save(irq_flags);
796
797         /* set bit corresponding to our partid in remote partition's amo */
798         FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR,
799                          (1UL << sn_partition_id));
800         /*
801          * We must always use the nofault function regardless of whether we
802          * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
803          * didn't, we'd never know that the other partition is down and would
804          * keep sending IRQs and amos to it until the heartbeat times out.
805          */
806         (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
807                                                                variable),
808                                                      xp_nofault_PIOR_target));
809
810         local_irq_restore(irq_flags);
811
812         /*
813          * Send activate IRQ to get other side to see that we've set our
814          * bit in their deactivate request amo.
815          */
816         xpc_send_activate_IRQ_sn2(part_sn2->remote_amos_page_pa,
817                                   cnodeid_to_nasid(0),
818                                   part_sn2->activate_IRQ_nasid,
819                                   part_sn2->activate_IRQ_phys_cpuid);
820 }
821
822 static void
823 xpc_cancel_partition_deactivation_request_sn2(struct xpc_partition *part)
824 {
825         unsigned long irq_flags;
826         struct amo *amo = (struct amo *)__va(part->sn.sn2.remote_amos_page_pa +
827                                              (XPC_DEACTIVATE_REQUEST_AMO_SN2 *
828                                              sizeof(struct amo)));
829
830         local_irq_save(irq_flags);
831
832         /* clear bit corresponding to our partid in remote partition's amo */
833         FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND,
834                          ~(1UL << sn_partition_id));
835         /*
836          * We must always use the nofault function regardless of whether we
837          * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
838          * didn't, we'd never know that the other partition is down and would
839          * keep sending IRQs and amos to it until the heartbeat times out.
840          */
841         (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
842                                                                variable),
843                                                      xp_nofault_PIOR_target));
844
845         local_irq_restore(irq_flags);
846 }
847
848 static int
849 xpc_partition_deactivation_requested_sn2(short partid)
850 {
851         struct amo *amo = xpc_vars_sn2->amos_page +
852                           XPC_DEACTIVATE_REQUEST_AMO_SN2;
853
854         /* our partition's amo variable ANDed with partid mask */
855         return (FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) &
856                 (1UL << partid)) != 0;
857 }
858
859 /*
860  * Update the remote partition's info.
861  */
862 static void
863 xpc_update_partition_info_sn2(struct xpc_partition *part, u8 remote_rp_version,
864                               unsigned long *remote_rp_stamp, u64 remote_rp_pa,
865                               u64 remote_vars_pa,
866                               struct xpc_vars_sn2 *remote_vars)
867 {
868         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
869
870         part->remote_rp_version = remote_rp_version;
871         dev_dbg(xpc_part, "  remote_rp_version = 0x%016x\n",
872                 part->remote_rp_version);
873
874         part->remote_rp_stamp = *remote_rp_stamp;
875         dev_dbg(xpc_part, "  remote_rp_stamp = 0x%016lx\n",
876                 part->remote_rp_stamp);
877
878         part->remote_rp_pa = remote_rp_pa;
879         dev_dbg(xpc_part, "  remote_rp_pa = 0x%016lx\n", part->remote_rp_pa);
880
881         part_sn2->remote_vars_pa = remote_vars_pa;
882         dev_dbg(xpc_part, "  remote_vars_pa = 0x%016lx\n",
883                 part_sn2->remote_vars_pa);
884
885         part->last_heartbeat = remote_vars->heartbeat;
886         dev_dbg(xpc_part, "  last_heartbeat = 0x%016lx\n",
887                 part->last_heartbeat);
888
889         part_sn2->remote_vars_part_pa = remote_vars->vars_part_pa;
890         dev_dbg(xpc_part, "  remote_vars_part_pa = 0x%016lx\n",
891                 part_sn2->remote_vars_part_pa);
892
893         part_sn2->activate_IRQ_nasid = remote_vars->activate_IRQ_nasid;
894         dev_dbg(xpc_part, "  activate_IRQ_nasid = 0x%x\n",
895                 part_sn2->activate_IRQ_nasid);
896
897         part_sn2->activate_IRQ_phys_cpuid =
898             remote_vars->activate_IRQ_phys_cpuid;
899         dev_dbg(xpc_part, "  activate_IRQ_phys_cpuid = 0x%x\n",
900                 part_sn2->activate_IRQ_phys_cpuid);
901
902         part_sn2->remote_amos_page_pa = remote_vars->amos_page_pa;
903         dev_dbg(xpc_part, "  remote_amos_page_pa = 0x%lx\n",
904                 part_sn2->remote_amos_page_pa);
905
906         part_sn2->remote_vars_version = remote_vars->version;
907         dev_dbg(xpc_part, "  remote_vars_version = 0x%x\n",
908                 part_sn2->remote_vars_version);
909 }
910
911 /*
912  * Prior code has determined the nasid which generated a activate IRQ.
913  * Inspect that nasid to determine if its partition needs to be activated
914  * or deactivated.
915  *
916  * A partition is considered "awaiting activation" if our partition
917  * flags indicate it is not active and it has a heartbeat.  A
918  * partition is considered "awaiting deactivation" if our partition
919  * flags indicate it is active but it has no heartbeat or it is not
920  * sending its heartbeat to us.
921  *
922  * To determine the heartbeat, the remote nasid must have a properly
923  * initialized reserved page.
924  */
925 static void
926 xpc_identify_activate_IRQ_req_sn2(int nasid)
927 {
928         struct xpc_rsvd_page *remote_rp;
929         struct xpc_vars_sn2 *remote_vars;
930         u64 remote_rp_pa;
931         u64 remote_vars_pa;
932         int remote_rp_version;
933         int reactivate = 0;
934         unsigned long remote_rp_stamp = 0;
935         short partid;
936         struct xpc_partition *part;
937         struct xpc_partition_sn2 *part_sn2;
938         enum xp_retval ret;
939
940         /* pull over the reserved page structure */
941
942         remote_rp = (struct xpc_rsvd_page *)xpc_remote_copy_buffer_sn2;
943
944         ret = xpc_get_remote_rp(nasid, NULL, remote_rp, &remote_rp_pa);
945         if (ret != xpSuccess) {
946                 dev_warn(xpc_part, "unable to get reserved page from nasid %d, "
947                          "which sent interrupt, reason=%d\n", nasid, ret);
948                 return;
949         }
950
951         remote_vars_pa = remote_rp->sn.vars_pa;
952         remote_rp_version = remote_rp->version;
953         remote_rp_stamp = remote_rp->stamp;
954
955         partid = remote_rp->SAL_partid;
956         part = &xpc_partitions[partid];
957         part_sn2 = &part->sn.sn2;
958
959         /* pull over the cross partition variables */
960
961         remote_vars = (struct xpc_vars_sn2 *)xpc_remote_copy_buffer_sn2;
962
963         ret = xpc_get_remote_vars_sn2(remote_vars_pa, remote_vars);
964         if (ret != xpSuccess) {
965                 dev_warn(xpc_part, "unable to get XPC variables from nasid %d, "
966                          "which sent interrupt, reason=%d\n", nasid, ret);
967
968                 XPC_DEACTIVATE_PARTITION(part, ret);
969                 return;
970         }
971
972         part->activate_IRQ_rcvd++;
973
974         dev_dbg(xpc_part, "partid for nasid %d is %d; IRQs = %d; HB = "
975                 "%ld:0x%lx\n", (int)nasid, (int)partid, part->activate_IRQ_rcvd,
976                 remote_vars->heartbeat, remote_vars->heartbeating_to_mask[0]);
977
978         if (xpc_partition_disengaged(part) &&
979             part->act_state == XPC_P_INACTIVE) {
980
981                 xpc_update_partition_info_sn2(part, remote_rp_version,
982                                               &remote_rp_stamp, remote_rp_pa,
983                                               remote_vars_pa, remote_vars);
984
985                 if (xpc_partition_deactivation_requested_sn2(partid)) {
986                         /*
987                          * Other side is waiting on us to deactivate even though
988                          * we already have.
989                          */
990                         return;
991                 }
992
993                 xpc_activate_partition(part);
994                 return;
995         }
996
997         DBUG_ON(part->remote_rp_version == 0);
998         DBUG_ON(part_sn2->remote_vars_version == 0);
999
1000         if (remote_rp_stamp != part->remote_rp_stamp) {
1001
1002                 /* the other side rebooted */
1003
1004                 DBUG_ON(xpc_partition_engaged_sn2(partid));
1005                 DBUG_ON(xpc_partition_deactivation_requested_sn2(partid));
1006
1007                 xpc_update_partition_info_sn2(part, remote_rp_version,
1008                                               &remote_rp_stamp, remote_rp_pa,
1009                                               remote_vars_pa, remote_vars);
1010                 reactivate = 1;
1011         }
1012
1013         if (part->disengage_timeout > 0 && !xpc_partition_disengaged(part)) {
1014                 /* still waiting on other side to disengage from us */
1015                 return;
1016         }
1017
1018         if (reactivate)
1019                 XPC_DEACTIVATE_PARTITION(part, xpReactivating);
1020         else if (xpc_partition_deactivation_requested_sn2(partid))
1021                 XPC_DEACTIVATE_PARTITION(part, xpOtherGoingDown);
1022 }
1023
1024 /*
1025  * Loop through the activation amo variables and process any bits
1026  * which are set.  Each bit indicates a nasid sending a partition
1027  * activation or deactivation request.
1028  *
1029  * Return #of IRQs detected.
1030  */
1031 int
1032 xpc_identify_activate_IRQ_sender_sn2(void)
1033 {
1034         int word, bit;
1035         u64 nasid_mask;
1036         u64 nasid;              /* remote nasid */
1037         int n_IRQs_detected = 0;
1038         struct amo *act_amos;
1039
1040         act_amos = xpc_vars_sn2->amos_page + XPC_ACTIVATE_IRQ_AMOS_SN2;
1041
1042         /* scan through act amo variable looking for non-zero entries */
1043         for (word = 0; word < xpc_nasid_mask_words; word++) {
1044
1045                 if (xpc_exiting)
1046                         break;
1047
1048                 nasid_mask = xpc_receive_IRQ_amo_sn2(&act_amos[word]);
1049                 if (nasid_mask == 0) {
1050                         /* no IRQs from nasids in this variable */
1051                         continue;
1052                 }
1053
1054                 dev_dbg(xpc_part, "amo[%d] gave back 0x%lx\n", word,
1055                         nasid_mask);
1056
1057                 /*
1058                  * If this nasid has been added to the machine since
1059                  * our partition was reset, this will retain the
1060                  * remote nasid in our reserved pages machine mask.
1061                  * This is used in the event of module reload.
1062                  */
1063                 xpc_mach_nasids[word] |= nasid_mask;
1064
1065                 /* locate the nasid(s) which sent interrupts */
1066
1067                 for (bit = 0; bit < (8 * sizeof(u64)); bit++) {
1068                         if (nasid_mask & (1UL << bit)) {
1069                                 n_IRQs_detected++;
1070                                 nasid = XPC_NASID_FROM_W_B(word, bit);
1071                                 dev_dbg(xpc_part, "interrupt from nasid %ld\n",
1072                                         nasid);
1073                                 xpc_identify_activate_IRQ_req_sn2(nasid);
1074                         }
1075                 }
1076         }
1077         return n_IRQs_detected;
1078 }
1079
1080 static void
1081 xpc_process_activate_IRQ_rcvd_sn2(int n_IRQs_expected)
1082 {
1083         int n_IRQs_detected;
1084
1085         n_IRQs_detected = xpc_identify_activate_IRQ_sender_sn2();
1086         if (n_IRQs_detected < n_IRQs_expected) {
1087                 /* retry once to help avoid missing amo */
1088                 (void)xpc_identify_activate_IRQ_sender_sn2();
1089         }
1090 }
1091
1092 /*
1093  * Guarantee that the kzalloc'd memory is cacheline aligned.
1094  */
1095 static void *
1096 xpc_kzalloc_cacheline_aligned_sn2(size_t size, gfp_t flags, void **base)
1097 {
1098         /* see if kzalloc will give us cachline aligned memory by default */
1099         *base = kzalloc(size, flags);
1100         if (*base == NULL)
1101                 return NULL;
1102
1103         if ((u64)*base == L1_CACHE_ALIGN((u64)*base))
1104                 return *base;
1105
1106         kfree(*base);
1107
1108         /* nope, we'll have to do it ourselves */
1109         *base = kzalloc(size + L1_CACHE_BYTES, flags);
1110         if (*base == NULL)
1111                 return NULL;
1112
1113         return (void *)L1_CACHE_ALIGN((u64)*base);
1114 }
1115
1116 /*
1117  * Setup the infrastructure necessary to support XPartition Communication
1118  * between the specified remote partition and the local one.
1119  */
1120 static enum xp_retval
1121 xpc_setup_infrastructure_sn2(struct xpc_partition *part)
1122 {
1123         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1124         enum xp_retval retval;
1125         int ret;
1126         int cpuid;
1127         int ch_number;
1128         struct xpc_channel *ch;
1129         struct timer_list *timer;
1130         short partid = XPC_PARTID(part);
1131
1132         /*
1133          * Allocate all of the channel structures as a contiguous chunk of
1134          * memory.
1135          */
1136         DBUG_ON(part->channels != NULL);
1137         part->channels = kzalloc(sizeof(struct xpc_channel) * XPC_MAX_NCHANNELS,
1138                                  GFP_KERNEL);
1139         if (part->channels == NULL) {
1140                 dev_err(xpc_chan, "can't get memory for channels\n");
1141                 return xpNoMemory;
1142         }
1143
1144         /* allocate all the required GET/PUT values */
1145
1146         part_sn2->local_GPs =
1147             xpc_kzalloc_cacheline_aligned_sn2(XPC_GP_SIZE, GFP_KERNEL,
1148                                               &part_sn2->local_GPs_base);
1149         if (part_sn2->local_GPs == NULL) {
1150                 dev_err(xpc_chan, "can't get memory for local get/put "
1151                         "values\n");
1152                 retval = xpNoMemory;
1153                 goto out_1;
1154         }
1155
1156         part_sn2->remote_GPs =
1157             xpc_kzalloc_cacheline_aligned_sn2(XPC_GP_SIZE, GFP_KERNEL,
1158                                               &part_sn2->remote_GPs_base);
1159         if (part_sn2->remote_GPs == NULL) {
1160                 dev_err(xpc_chan, "can't get memory for remote get/put "
1161                         "values\n");
1162                 retval = xpNoMemory;
1163                 goto out_2;
1164         }
1165
1166         part_sn2->remote_GPs_pa = 0;
1167
1168         /* allocate all the required open and close args */
1169
1170         part->local_openclose_args =
1171             xpc_kzalloc_cacheline_aligned_sn2(XPC_OPENCLOSE_ARGS_SIZE,
1172                                               GFP_KERNEL,
1173                                               &part->local_openclose_args_base);
1174         if (part->local_openclose_args == NULL) {
1175                 dev_err(xpc_chan, "can't get memory for local connect args\n");
1176                 retval = xpNoMemory;
1177                 goto out_3;
1178         }
1179
1180         part->remote_openclose_args =
1181             xpc_kzalloc_cacheline_aligned_sn2(XPC_OPENCLOSE_ARGS_SIZE,
1182                                               GFP_KERNEL,
1183                                              &part->remote_openclose_args_base);
1184         if (part->remote_openclose_args == NULL) {
1185                 dev_err(xpc_chan, "can't get memory for remote connect args\n");
1186                 retval = xpNoMemory;
1187                 goto out_4;
1188         }
1189
1190         part_sn2->remote_openclose_args_pa = 0;
1191
1192         part_sn2->local_chctl_amo_va = xpc_init_IRQ_amo_sn2(partid);
1193         part->chctl.all_flags = 0;
1194         spin_lock_init(&part->chctl_lock);
1195
1196         part_sn2->notify_IRQ_nasid = 0;
1197         part_sn2->notify_IRQ_phys_cpuid = 0;
1198         part_sn2->remote_chctl_amo_va = NULL;
1199
1200         atomic_set(&part->channel_mgr_requests, 1);
1201         init_waitqueue_head(&part->channel_mgr_wq);
1202
1203         sprintf(part_sn2->notify_IRQ_owner, "xpc%02d", partid);
1204         ret = request_irq(SGI_XPC_NOTIFY, xpc_handle_notify_IRQ_sn2,
1205                           IRQF_SHARED, part_sn2->notify_IRQ_owner,
1206                           (void *)(u64)partid);
1207         if (ret != 0) {
1208                 dev_err(xpc_chan, "can't register NOTIFY IRQ handler, "
1209                         "errno=%d\n", -ret);
1210                 retval = xpLackOfResources;
1211                 goto out_5;
1212         }
1213
1214         /* Setup a timer to check for dropped notify IRQs */
1215         timer = &part_sn2->dropped_notify_IRQ_timer;
1216         init_timer(timer);
1217         timer->function =
1218             (void (*)(unsigned long))xpc_check_for_dropped_notify_IRQ_sn2;
1219         timer->data = (unsigned long)part;
1220         timer->expires = jiffies + XPC_DROPPED_NOTIFY_IRQ_WAIT_INTERVAL;
1221         add_timer(timer);
1222
1223         part->nchannels = XPC_MAX_NCHANNELS;
1224
1225         atomic_set(&part->nchannels_active, 0);
1226         atomic_set(&part->nchannels_engaged, 0);
1227
1228         for (ch_number = 0; ch_number < part->nchannels; ch_number++) {
1229                 ch = &part->channels[ch_number];
1230
1231                 ch->partid = partid;
1232                 ch->number = ch_number;
1233                 ch->flags = XPC_C_DISCONNECTED;
1234
1235                 ch->sn.sn2.local_GP = &part_sn2->local_GPs[ch_number];
1236                 ch->local_openclose_args =
1237                     &part->local_openclose_args[ch_number];
1238
1239                 atomic_set(&ch->kthreads_assigned, 0);
1240                 atomic_set(&ch->kthreads_idle, 0);
1241                 atomic_set(&ch->kthreads_active, 0);
1242
1243                 atomic_set(&ch->references, 0);
1244                 atomic_set(&ch->n_to_notify, 0);
1245
1246                 spin_lock_init(&ch->lock);
1247                 mutex_init(&ch->sn.sn2.msg_to_pull_mutex);
1248                 init_completion(&ch->wdisconnect_wait);
1249
1250                 atomic_set(&ch->n_on_msg_allocate_wq, 0);
1251                 init_waitqueue_head(&ch->msg_allocate_wq);
1252                 init_waitqueue_head(&ch->idle_wq);
1253         }
1254
1255         /*
1256          * With the setting of the partition setup_state to XPC_P_SETUP, we're
1257          * declaring that this partition is ready to go.
1258          */
1259         part->setup_state = XPC_P_SETUP;
1260
1261         /*
1262          * Setup the per partition specific variables required by the
1263          * remote partition to establish channel connections with us.
1264          *
1265          * The setting of the magic # indicates that these per partition
1266          * specific variables are ready to be used.
1267          */
1268         xpc_vars_part_sn2[partid].GPs_pa = __pa(part_sn2->local_GPs);
1269         xpc_vars_part_sn2[partid].openclose_args_pa =
1270             __pa(part->local_openclose_args);
1271         xpc_vars_part_sn2[partid].chctl_amo_pa =
1272             __pa(part_sn2->local_chctl_amo_va);
1273         cpuid = raw_smp_processor_id(); /* any CPU in this partition will do */
1274         xpc_vars_part_sn2[partid].notify_IRQ_nasid = cpuid_to_nasid(cpuid);
1275         xpc_vars_part_sn2[partid].notify_IRQ_phys_cpuid =
1276             cpu_physical_id(cpuid);
1277         xpc_vars_part_sn2[partid].nchannels = part->nchannels;
1278         xpc_vars_part_sn2[partid].magic = XPC_VP_MAGIC1;
1279
1280         return xpSuccess;
1281
1282         /* setup of infrastructure failed */
1283 out_5:
1284         kfree(part->remote_openclose_args_base);
1285         part->remote_openclose_args = NULL;
1286 out_4:
1287         kfree(part->local_openclose_args_base);
1288         part->local_openclose_args = NULL;
1289 out_3:
1290         kfree(part_sn2->remote_GPs_base);
1291         part_sn2->remote_GPs = NULL;
1292 out_2:
1293         kfree(part_sn2->local_GPs_base);
1294         part_sn2->local_GPs = NULL;
1295 out_1:
1296         kfree(part->channels);
1297         part->channels = NULL;
1298         return retval;
1299 }
1300
1301 /*
1302  * Teardown the infrastructure necessary to support XPartition Communication
1303  * between the specified remote partition and the local one.
1304  */
1305 static void
1306 xpc_teardown_infrastructure_sn2(struct xpc_partition *part)
1307 {
1308         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1309         short partid = XPC_PARTID(part);
1310
1311         /*
1312          * We start off by making this partition inaccessible to local
1313          * processes by marking it as no longer setup. Then we make it
1314          * inaccessible to remote processes by clearing the XPC per partition
1315          * specific variable's magic # (which indicates that these variables
1316          * are no longer valid) and by ignoring all XPC notify IRQs sent to
1317          * this partition.
1318          */
1319
1320         DBUG_ON(atomic_read(&part->nchannels_engaged) != 0);
1321         DBUG_ON(atomic_read(&part->nchannels_active) != 0);
1322         DBUG_ON(part->setup_state != XPC_P_SETUP);
1323         part->setup_state = XPC_P_WTEARDOWN;
1324
1325         xpc_vars_part_sn2[partid].magic = 0;
1326
1327         free_irq(SGI_XPC_NOTIFY, (void *)(u64)partid);
1328
1329         /*
1330          * Before proceeding with the teardown we have to wait until all
1331          * existing references cease.
1332          */
1333         wait_event(part->teardown_wq, (atomic_read(&part->references) == 0));
1334
1335         /* now we can begin tearing down the infrastructure */
1336
1337         part->setup_state = XPC_P_TORNDOWN;
1338
1339         /* in case we've still got outstanding timers registered... */
1340         del_timer_sync(&part_sn2->dropped_notify_IRQ_timer);
1341
1342         kfree(part->remote_openclose_args_base);
1343         part->remote_openclose_args = NULL;
1344         kfree(part->local_openclose_args_base);
1345         part->local_openclose_args = NULL;
1346         kfree(part_sn2->remote_GPs_base);
1347         part_sn2->remote_GPs = NULL;
1348         kfree(part_sn2->local_GPs_base);
1349         part_sn2->local_GPs = NULL;
1350         kfree(part->channels);
1351         part->channels = NULL;
1352         part_sn2->local_chctl_amo_va = NULL;
1353 }
1354
1355 /*
1356  * Create a wrapper that hides the underlying mechanism for pulling a cacheline
1357  * (or multiple cachelines) from a remote partition.
1358  *
1359  * src must be a cacheline aligned physical address on the remote partition.
1360  * dst must be a cacheline aligned virtual address on this partition.
1361  * cnt must be cacheline sized
1362  */
1363 /* >>> Replace this function by call to xp_remote_memcpy() or bte_copy()? */
1364 static enum xp_retval
1365 xpc_pull_remote_cachelines_sn2(struct xpc_partition *part, void *dst,
1366                                const void *src, size_t cnt)
1367 {
1368         enum xp_retval ret;
1369
1370         DBUG_ON((u64)src != L1_CACHE_ALIGN((u64)src));
1371         DBUG_ON((u64)dst != L1_CACHE_ALIGN((u64)dst));
1372         DBUG_ON(cnt != L1_CACHE_ALIGN(cnt));
1373
1374         if (part->act_state == XPC_P_DEACTIVATING)
1375                 return part->reason;
1376
1377         ret = xp_remote_memcpy(dst, src, cnt);
1378         if (ret != xpSuccess) {
1379                 dev_dbg(xpc_chan, "xp_remote_memcpy() from partition %d failed,"
1380                         " ret=%d\n", XPC_PARTID(part), ret);
1381         }
1382         return ret;
1383 }
1384
1385 /*
1386  * Pull the remote per partition specific variables from the specified
1387  * partition.
1388  */
1389 static enum xp_retval
1390 xpc_pull_remote_vars_part_sn2(struct xpc_partition *part)
1391 {
1392         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1393         u8 buffer[L1_CACHE_BYTES * 2];
1394         struct xpc_vars_part_sn2 *pulled_entry_cacheline =
1395             (struct xpc_vars_part_sn2 *)L1_CACHE_ALIGN((u64)buffer);
1396         struct xpc_vars_part_sn2 *pulled_entry;
1397         u64 remote_entry_cacheline_pa, remote_entry_pa;
1398         short partid = XPC_PARTID(part);
1399         enum xp_retval ret;
1400
1401         /* pull the cacheline that contains the variables we're interested in */
1402
1403         DBUG_ON(part_sn2->remote_vars_part_pa !=
1404                 L1_CACHE_ALIGN(part_sn2->remote_vars_part_pa));
1405         DBUG_ON(sizeof(struct xpc_vars_part_sn2) != L1_CACHE_BYTES / 2);
1406
1407         remote_entry_pa = part_sn2->remote_vars_part_pa +
1408             sn_partition_id * sizeof(struct xpc_vars_part_sn2);
1409
1410         remote_entry_cacheline_pa = (remote_entry_pa & ~(L1_CACHE_BYTES - 1));
1411
1412         pulled_entry = (struct xpc_vars_part_sn2 *)((u64)pulled_entry_cacheline
1413                                                     + (remote_entry_pa &
1414                                                     (L1_CACHE_BYTES - 1)));
1415
1416         ret = xpc_pull_remote_cachelines_sn2(part, pulled_entry_cacheline,
1417                                              (void *)remote_entry_cacheline_pa,
1418                                              L1_CACHE_BYTES);
1419         if (ret != xpSuccess) {
1420                 dev_dbg(xpc_chan, "failed to pull XPC vars_part from "
1421                         "partition %d, ret=%d\n", partid, ret);
1422                 return ret;
1423         }
1424
1425         /* see if they've been set up yet */
1426
1427         if (pulled_entry->magic != XPC_VP_MAGIC1 &&
1428             pulled_entry->magic != XPC_VP_MAGIC2) {
1429
1430                 if (pulled_entry->magic != 0) {
1431                         dev_dbg(xpc_chan, "partition %d's XPC vars_part for "
1432                                 "partition %d has bad magic value (=0x%lx)\n",
1433                                 partid, sn_partition_id, pulled_entry->magic);
1434                         return xpBadMagic;
1435                 }
1436
1437                 /* they've not been initialized yet */
1438                 return xpRetry;
1439         }
1440
1441         if (xpc_vars_part_sn2[partid].magic == XPC_VP_MAGIC1) {
1442
1443                 /* validate the variables */
1444
1445                 if (pulled_entry->GPs_pa == 0 ||
1446                     pulled_entry->openclose_args_pa == 0 ||
1447                     pulled_entry->chctl_amo_pa == 0) {
1448
1449                         dev_err(xpc_chan, "partition %d's XPC vars_part for "
1450                                 "partition %d are not valid\n", partid,
1451                                 sn_partition_id);
1452                         return xpInvalidAddress;
1453                 }
1454
1455                 /* the variables we imported look to be valid */
1456
1457                 part_sn2->remote_GPs_pa = pulled_entry->GPs_pa;
1458                 part_sn2->remote_openclose_args_pa =
1459                     pulled_entry->openclose_args_pa;
1460                 part_sn2->remote_chctl_amo_va =
1461                     (struct amo *)__va(pulled_entry->chctl_amo_pa);
1462                 part_sn2->notify_IRQ_nasid = pulled_entry->notify_IRQ_nasid;
1463                 part_sn2->notify_IRQ_phys_cpuid =
1464                     pulled_entry->notify_IRQ_phys_cpuid;
1465
1466                 if (part->nchannels > pulled_entry->nchannels)
1467                         part->nchannels = pulled_entry->nchannels;
1468
1469                 /* let the other side know that we've pulled their variables */
1470
1471                 xpc_vars_part_sn2[partid].magic = XPC_VP_MAGIC2;
1472         }
1473
1474         if (pulled_entry->magic == XPC_VP_MAGIC1)
1475                 return xpRetry;
1476
1477         return xpSuccess;
1478 }
1479
1480 /*
1481  * Establish first contact with the remote partititon. This involves pulling
1482  * the XPC per partition variables from the remote partition and waiting for
1483  * the remote partition to pull ours.
1484  */
1485 static enum xp_retval
1486 xpc_make_first_contact_sn2(struct xpc_partition *part)
1487 {
1488         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1489         enum xp_retval ret;
1490
1491         /*
1492          * Register the remote partition's amos with SAL so it can handle
1493          * and cleanup errors within that address range should the remote
1494          * partition go down. We don't unregister this range because it is
1495          * difficult to tell when outstanding writes to the remote partition
1496          * are finished and thus when it is safe to unregister. This should
1497          * not result in wasted space in the SAL xp_addr_region table because
1498          * we should get the same page for remote_amos_page_pa after module
1499          * reloads and system reboots.
1500          */
1501         if (sn_register_xp_addr_region(part_sn2->remote_amos_page_pa,
1502                                        PAGE_SIZE, 1) < 0) {
1503                 dev_warn(xpc_part, "xpc_activating(%d) failed to register "
1504                          "xp_addr region\n", XPC_PARTID(part));
1505
1506                 ret = xpPhysAddrRegFailed;
1507                 XPC_DEACTIVATE_PARTITION(part, ret);
1508                 return ret;
1509         }
1510
1511         /*
1512          * Send activate IRQ to get other side to activate if they've not
1513          * already begun to do so.
1514          */
1515         xpc_send_activate_IRQ_sn2(part_sn2->remote_amos_page_pa,
1516                                   cnodeid_to_nasid(0),
1517                                   part_sn2->activate_IRQ_nasid,
1518                                   part_sn2->activate_IRQ_phys_cpuid);
1519
1520         while ((ret = xpc_pull_remote_vars_part_sn2(part)) != xpSuccess) {
1521                 if (ret != xpRetry) {
1522                         XPC_DEACTIVATE_PARTITION(part, ret);
1523                         return ret;
1524                 }
1525
1526                 dev_dbg(xpc_part, "waiting to make first contact with "
1527                         "partition %d\n", XPC_PARTID(part));
1528
1529                 /* wait a 1/4 of a second or so */
1530                 (void)msleep_interruptible(250);
1531
1532                 if (part->act_state == XPC_P_DEACTIVATING)
1533                         return part->reason;
1534         }
1535
1536         return xpSuccess;
1537 }
1538
1539 /*
1540  * Get the chctl flags and pull the openclose args and/or remote GPs as needed.
1541  */
1542 static u64
1543 xpc_get_chctl_all_flags_sn2(struct xpc_partition *part)
1544 {
1545         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1546         unsigned long irq_flags;
1547         union xpc_channel_ctl_flags chctl;
1548         enum xp_retval ret;
1549
1550         /*
1551          * See if there are any chctl flags to be handled.
1552          */
1553
1554         spin_lock_irqsave(&part->chctl_lock, irq_flags);
1555         chctl = part->chctl;
1556         if (chctl.all_flags != 0)
1557                 part->chctl.all_flags = 0;
1558
1559         spin_unlock_irqrestore(&part->chctl_lock, irq_flags);
1560
1561         if (xpc_any_openclose_chctl_flags_set(&chctl)) {
1562                 ret = xpc_pull_remote_cachelines_sn2(part, part->
1563                                                      remote_openclose_args,
1564                                                      (void *)part_sn2->
1565                                                      remote_openclose_args_pa,
1566                                                      XPC_OPENCLOSE_ARGS_SIZE);
1567                 if (ret != xpSuccess) {
1568                         XPC_DEACTIVATE_PARTITION(part, ret);
1569
1570                         dev_dbg(xpc_chan, "failed to pull openclose args from "
1571                                 "partition %d, ret=%d\n", XPC_PARTID(part),
1572                                 ret);
1573
1574                         /* don't bother processing chctl flags anymore */
1575                         chctl.all_flags = 0;
1576                 }
1577         }
1578
1579         if (xpc_any_msg_chctl_flags_set(&chctl)) {
1580                 ret = xpc_pull_remote_cachelines_sn2(part, part_sn2->remote_GPs,
1581                                                 (void *)part_sn2->remote_GPs_pa,
1582                                                      XPC_GP_SIZE);
1583                 if (ret != xpSuccess) {
1584                         XPC_DEACTIVATE_PARTITION(part, ret);
1585
1586                         dev_dbg(xpc_chan, "failed to pull GPs from partition "
1587                                 "%d, ret=%d\n", XPC_PARTID(part), ret);
1588
1589                         /* don't bother processing chctl flags anymore */
1590                         chctl.all_flags = 0;
1591                 }
1592         }
1593
1594         return chctl.all_flags;
1595 }
1596
1597 /*
1598  * Allocate the local message queue and the notify queue.
1599  */
1600 static enum xp_retval
1601 xpc_allocate_local_msgqueue_sn2(struct xpc_channel *ch)
1602 {
1603         unsigned long irq_flags;
1604         int nentries;
1605         size_t nbytes;
1606
1607         for (nentries = ch->local_nentries; nentries > 0; nentries--) {
1608
1609                 nbytes = nentries * ch->msg_size;
1610                 ch->local_msgqueue =
1611                     xpc_kzalloc_cacheline_aligned_sn2(nbytes, GFP_KERNEL,
1612                                                       &ch->local_msgqueue_base);
1613                 if (ch->local_msgqueue == NULL)
1614                         continue;
1615
1616                 nbytes = nentries * sizeof(struct xpc_notify);
1617                 ch->notify_queue = kzalloc(nbytes, GFP_KERNEL);
1618                 if (ch->notify_queue == NULL) {
1619                         kfree(ch->local_msgqueue_base);
1620                         ch->local_msgqueue = NULL;
1621                         continue;
1622                 }
1623
1624                 spin_lock_irqsave(&ch->lock, irq_flags);
1625                 if (nentries < ch->local_nentries) {
1626                         dev_dbg(xpc_chan, "nentries=%d local_nentries=%d, "
1627                                 "partid=%d, channel=%d\n", nentries,
1628                                 ch->local_nentries, ch->partid, ch->number);
1629
1630                         ch->local_nentries = nentries;
1631                 }
1632                 spin_unlock_irqrestore(&ch->lock, irq_flags);
1633                 return xpSuccess;
1634         }
1635
1636         dev_dbg(xpc_chan, "can't get memory for local message queue and notify "
1637                 "queue, partid=%d, channel=%d\n", ch->partid, ch->number);
1638         return xpNoMemory;
1639 }
1640
1641 /*
1642  * Allocate the cached remote message queue.
1643  */
1644 static enum xp_retval
1645 xpc_allocate_remote_msgqueue_sn2(struct xpc_channel *ch)
1646 {
1647         unsigned long irq_flags;
1648         int nentries;
1649         size_t nbytes;
1650
1651         DBUG_ON(ch->remote_nentries <= 0);
1652
1653         for (nentries = ch->remote_nentries; nentries > 0; nentries--) {
1654
1655                 nbytes = nentries * ch->msg_size;
1656                 ch->remote_msgqueue =
1657                     xpc_kzalloc_cacheline_aligned_sn2(nbytes, GFP_KERNEL,
1658                                                      &ch->remote_msgqueue_base);
1659                 if (ch->remote_msgqueue == NULL)
1660                         continue;
1661
1662                 spin_lock_irqsave(&ch->lock, irq_flags);
1663                 if (nentries < ch->remote_nentries) {
1664                         dev_dbg(xpc_chan, "nentries=%d remote_nentries=%d, "
1665                                 "partid=%d, channel=%d\n", nentries,
1666                                 ch->remote_nentries, ch->partid, ch->number);
1667
1668                         ch->remote_nentries = nentries;
1669                 }
1670                 spin_unlock_irqrestore(&ch->lock, irq_flags);
1671                 return xpSuccess;
1672         }
1673
1674         dev_dbg(xpc_chan, "can't get memory for cached remote message queue, "
1675                 "partid=%d, channel=%d\n", ch->partid, ch->number);
1676         return xpNoMemory;
1677 }
1678
1679 /*
1680  * Allocate message queues and other stuff associated with a channel.
1681  *
1682  * Note: Assumes all of the channel sizes are filled in.
1683  */
1684 static enum xp_retval
1685 xpc_allocate_msgqueues_sn2(struct xpc_channel *ch)
1686 {
1687         enum xp_retval ret;
1688
1689         DBUG_ON(ch->flags & XPC_C_SETUP);
1690
1691         ret = xpc_allocate_local_msgqueue_sn2(ch);
1692         if (ret == xpSuccess) {
1693
1694                 ret = xpc_allocate_remote_msgqueue_sn2(ch);
1695                 if (ret != xpSuccess) {
1696                         kfree(ch->local_msgqueue_base);
1697                         ch->local_msgqueue = NULL;
1698                         kfree(ch->notify_queue);
1699                         ch->notify_queue = NULL;
1700                 }
1701         }
1702         return ret;
1703 }
1704
1705 /*
1706  * Free up message queues and other stuff that were allocated for the specified
1707  * channel.
1708  *
1709  * Note: ch->reason and ch->reason_line are left set for debugging purposes,
1710  * they're cleared when XPC_C_DISCONNECTED is cleared.
1711  */
1712 static void
1713 xpc_free_msgqueues_sn2(struct xpc_channel *ch)
1714 {
1715         struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1716
1717         DBUG_ON(!spin_is_locked(&ch->lock));
1718         DBUG_ON(atomic_read(&ch->n_to_notify) != 0);
1719
1720         ch->remote_msgqueue_pa = 0;
1721         ch->func = NULL;
1722         ch->key = NULL;
1723         ch->msg_size = 0;
1724         ch->local_nentries = 0;
1725         ch->remote_nentries = 0;
1726         ch->kthreads_assigned_limit = 0;
1727         ch->kthreads_idle_limit = 0;
1728
1729         ch_sn2->local_GP->get = 0;
1730         ch_sn2->local_GP->put = 0;
1731         ch_sn2->remote_GP.get = 0;
1732         ch_sn2->remote_GP.put = 0;
1733         ch_sn2->w_local_GP.get = 0;
1734         ch_sn2->w_local_GP.put = 0;
1735         ch_sn2->w_remote_GP.get = 0;
1736         ch_sn2->w_remote_GP.put = 0;
1737         ch_sn2->next_msg_to_pull = 0;
1738
1739         if (ch->flags & XPC_C_SETUP) {
1740                 dev_dbg(xpc_chan, "ch->flags=0x%x, partid=%d, channel=%d\n",
1741                         ch->flags, ch->partid, ch->number);
1742
1743                 kfree(ch->local_msgqueue_base);
1744                 ch->local_msgqueue = NULL;
1745                 kfree(ch->remote_msgqueue_base);
1746                 ch->remote_msgqueue = NULL;
1747                 kfree(ch->notify_queue);
1748                 ch->notify_queue = NULL;
1749         }
1750 }
1751
1752 /*
1753  * Notify those who wanted to be notified upon delivery of their message.
1754  */
1755 static void
1756 xpc_notify_senders_sn2(struct xpc_channel *ch, enum xp_retval reason, s64 put)
1757 {
1758         struct xpc_notify *notify;
1759         u8 notify_type;
1760         s64 get = ch->sn.sn2.w_remote_GP.get - 1;
1761
1762         while (++get < put && atomic_read(&ch->n_to_notify) > 0) {
1763
1764                 notify = &ch->notify_queue[get % ch->local_nentries];
1765
1766                 /*
1767                  * See if the notify entry indicates it was associated with
1768                  * a message who's sender wants to be notified. It is possible
1769                  * that it is, but someone else is doing or has done the
1770                  * notification.
1771                  */
1772                 notify_type = notify->type;
1773                 if (notify_type == 0 ||
1774                     cmpxchg(&notify->type, notify_type, 0) != notify_type) {
1775                         continue;
1776                 }
1777
1778                 DBUG_ON(notify_type != XPC_N_CALL);
1779
1780                 atomic_dec(&ch->n_to_notify);
1781
1782                 if (notify->func != NULL) {
1783                         dev_dbg(xpc_chan, "notify->func() called, notify=0x%p, "
1784                                 "msg_number=%ld, partid=%d, channel=%d\n",
1785                                 (void *)notify, get, ch->partid, ch->number);
1786
1787                         notify->func(reason, ch->partid, ch->number,
1788                                      notify->key);
1789
1790                         dev_dbg(xpc_chan, "notify->func() returned, "
1791                                 "notify=0x%p, msg_number=%ld, partid=%d, "
1792                                 "channel=%d\n", (void *)notify, get,
1793                                 ch->partid, ch->number);
1794                 }
1795         }
1796 }
1797
1798 static void
1799 xpc_notify_senders_of_disconnect_sn2(struct xpc_channel *ch)
1800 {
1801         xpc_notify_senders_sn2(ch, ch->reason, ch->sn.sn2.w_local_GP.put);
1802 }
1803
1804 /*
1805  * Clear some of the msg flags in the local message queue.
1806  */
1807 static inline void
1808 xpc_clear_local_msgqueue_flags_sn2(struct xpc_channel *ch)
1809 {
1810         struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1811         struct xpc_msg *msg;
1812         s64 get;
1813
1814         get = ch_sn2->w_remote_GP.get;
1815         do {
1816                 msg = (struct xpc_msg *)((u64)ch->local_msgqueue +
1817                                          (get % ch->local_nentries) *
1818                                          ch->msg_size);
1819                 msg->flags = 0;
1820         } while (++get < ch_sn2->remote_GP.get);
1821 }
1822
1823 /*
1824  * Clear some of the msg flags in the remote message queue.
1825  */
1826 static inline void
1827 xpc_clear_remote_msgqueue_flags_sn2(struct xpc_channel *ch)
1828 {
1829         struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1830         struct xpc_msg *msg;
1831         s64 put;
1832
1833         put = ch_sn2->w_remote_GP.put;
1834         do {
1835                 msg = (struct xpc_msg *)((u64)ch->remote_msgqueue +
1836                                          (put % ch->remote_nentries) *
1837                                          ch->msg_size);
1838                 msg->flags = 0;
1839         } while (++put < ch_sn2->remote_GP.put);
1840 }
1841
1842 static void
1843 xpc_process_msg_chctl_flags_sn2(struct xpc_partition *part, int ch_number)
1844 {
1845         struct xpc_channel *ch = &part->channels[ch_number];
1846         struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1847         int nmsgs_sent;
1848
1849         ch_sn2->remote_GP = part->sn.sn2.remote_GPs[ch_number];
1850
1851         /* See what, if anything, has changed for each connected channel */
1852
1853         xpc_msgqueue_ref(ch);
1854
1855         if (ch_sn2->w_remote_GP.get == ch_sn2->remote_GP.get &&
1856             ch_sn2->w_remote_GP.put == ch_sn2->remote_GP.put) {
1857                 /* nothing changed since GPs were last pulled */
1858                 xpc_msgqueue_deref(ch);
1859                 return;
1860         }
1861
1862         if (!(ch->flags & XPC_C_CONNECTED)) {
1863                 xpc_msgqueue_deref(ch);
1864                 return;
1865         }
1866
1867         /*
1868          * First check to see if messages recently sent by us have been
1869          * received by the other side. (The remote GET value will have
1870          * changed since we last looked at it.)
1871          */
1872
1873         if (ch_sn2->w_remote_GP.get != ch_sn2->remote_GP.get) {
1874
1875                 /*
1876                  * We need to notify any senders that want to be notified
1877                  * that their sent messages have been received by their
1878                  * intended recipients. We need to do this before updating
1879                  * w_remote_GP.get so that we don't allocate the same message
1880                  * queue entries prematurely (see xpc_allocate_msg()).
1881                  */
1882                 if (atomic_read(&ch->n_to_notify) > 0) {
1883                         /*
1884                          * Notify senders that messages sent have been
1885                          * received and delivered by the other side.
1886                          */
1887                         xpc_notify_senders_sn2(ch, xpMsgDelivered,
1888                                                ch_sn2->remote_GP.get);
1889                 }
1890
1891                 /*
1892                  * Clear msg->flags in previously sent messages, so that
1893                  * they're ready for xpc_allocate_msg().
1894                  */
1895                 xpc_clear_local_msgqueue_flags_sn2(ch);
1896
1897                 ch_sn2->w_remote_GP.get = ch_sn2->remote_GP.get;
1898
1899                 dev_dbg(xpc_chan, "w_remote_GP.get changed to %ld, partid=%d, "
1900                         "channel=%d\n", ch_sn2->w_remote_GP.get, ch->partid,
1901                         ch->number);
1902
1903                 /*
1904                  * If anyone was waiting for message queue entries to become
1905                  * available, wake them up.
1906                  */
1907                 if (atomic_read(&ch->n_on_msg_allocate_wq) > 0)
1908                         wake_up(&ch->msg_allocate_wq);
1909         }
1910
1911         /*
1912          * Now check for newly sent messages by the other side. (The remote
1913          * PUT value will have changed since we last looked at it.)
1914          */
1915
1916         if (ch_sn2->w_remote_GP.put != ch_sn2->remote_GP.put) {
1917                 /*
1918                  * Clear msg->flags in previously received messages, so that
1919                  * they're ready for xpc_get_deliverable_msg().
1920                  */
1921                 xpc_clear_remote_msgqueue_flags_sn2(ch);
1922
1923                 ch_sn2->w_remote_GP.put = ch_sn2->remote_GP.put;
1924
1925                 dev_dbg(xpc_chan, "w_remote_GP.put changed to %ld, partid=%d, "
1926                         "channel=%d\n", ch_sn2->w_remote_GP.put, ch->partid,
1927                         ch->number);
1928
1929                 nmsgs_sent = ch_sn2->w_remote_GP.put - ch_sn2->w_local_GP.get;
1930                 if (nmsgs_sent > 0) {
1931                         dev_dbg(xpc_chan, "msgs waiting to be copied and "
1932                                 "delivered=%d, partid=%d, channel=%d\n",
1933                                 nmsgs_sent, ch->partid, ch->number);
1934
1935                         if (ch->flags & XPC_C_CONNECTEDCALLOUT_MADE)
1936                                 xpc_activate_kthreads(ch, nmsgs_sent);
1937                 }
1938         }
1939
1940         xpc_msgqueue_deref(ch);
1941 }
1942
1943 static struct xpc_msg *
1944 xpc_pull_remote_msg_sn2(struct xpc_channel *ch, s64 get)
1945 {
1946         struct xpc_partition *part = &xpc_partitions[ch->partid];
1947         struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1948         struct xpc_msg *remote_msg, *msg;
1949         u32 msg_index, nmsgs;
1950         u64 msg_offset;
1951         enum xp_retval ret;
1952
1953         if (mutex_lock_interruptible(&ch_sn2->msg_to_pull_mutex) != 0) {
1954                 /* we were interrupted by a signal */
1955                 return NULL;
1956         }
1957
1958         while (get >= ch_sn2->next_msg_to_pull) {
1959
1960                 /* pull as many messages as are ready and able to be pulled */
1961
1962                 msg_index = ch_sn2->next_msg_to_pull % ch->remote_nentries;
1963
1964                 DBUG_ON(ch_sn2->next_msg_to_pull >= ch_sn2->w_remote_GP.put);
1965                 nmsgs = ch_sn2->w_remote_GP.put - ch_sn2->next_msg_to_pull;
1966                 if (msg_index + nmsgs > ch->remote_nentries) {
1967                         /* ignore the ones that wrap the msg queue for now */
1968                         nmsgs = ch->remote_nentries - msg_index;
1969                 }
1970
1971                 msg_offset = msg_index * ch->msg_size;
1972                 msg = (struct xpc_msg *)((u64)ch->remote_msgqueue + msg_offset);
1973                 remote_msg = (struct xpc_msg *)(ch->remote_msgqueue_pa +
1974                                                 msg_offset);
1975
1976                 ret = xpc_pull_remote_cachelines_sn2(part, msg, remote_msg,
1977                                                      nmsgs * ch->msg_size);
1978                 if (ret != xpSuccess) {
1979
1980                         dev_dbg(xpc_chan, "failed to pull %d msgs starting with"
1981                                 " msg %ld from partition %d, channel=%d, "
1982                                 "ret=%d\n", nmsgs, ch_sn2->next_msg_to_pull,
1983                                 ch->partid, ch->number, ret);
1984
1985                         XPC_DEACTIVATE_PARTITION(part, ret);
1986
1987                         mutex_unlock(&ch_sn2->msg_to_pull_mutex);
1988                         return NULL;
1989                 }
1990
1991                 ch_sn2->next_msg_to_pull += nmsgs;
1992         }
1993
1994         mutex_unlock(&ch_sn2->msg_to_pull_mutex);
1995
1996         /* return the message we were looking for */
1997         msg_offset = (get % ch->remote_nentries) * ch->msg_size;
1998         msg = (struct xpc_msg *)((u64)ch->remote_msgqueue + msg_offset);
1999
2000         return msg;
2001 }
2002
2003 static int
2004 xpc_n_of_deliverable_msgs_sn2(struct xpc_channel *ch)
2005 {
2006         return ch->sn.sn2.w_remote_GP.put - ch->sn.sn2.w_local_GP.get;
2007 }
2008
2009 /*
2010  * Get a message to be delivered.
2011  */
2012 static struct xpc_msg *
2013 xpc_get_deliverable_msg_sn2(struct xpc_channel *ch)
2014 {
2015         struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
2016         struct xpc_msg *msg = NULL;
2017         s64 get;
2018
2019         do {
2020                 if (ch->flags & XPC_C_DISCONNECTING)
2021                         break;
2022
2023                 get = ch_sn2->w_local_GP.get;
2024                 rmb();  /* guarantee that .get loads before .put */
2025                 if (get == ch_sn2->w_remote_GP.put)
2026                         break;
2027
2028                 /* There are messages waiting to be pulled and delivered.
2029                  * We need to try to secure one for ourselves. We'll do this
2030                  * by trying to increment w_local_GP.get and hope that no one
2031                  * else beats us to it. If they do, we'll we'll simply have
2032                  * to try again for the next one.
2033                  */
2034
2035                 if (cmpxchg(&ch_sn2->w_local_GP.get, get, get + 1) == get) {
2036                         /* we got the entry referenced by get */
2037
2038                         dev_dbg(xpc_chan, "w_local_GP.get changed to %ld, "
2039                                 "partid=%d, channel=%d\n", get + 1,
2040                                 ch->partid, ch->number);
2041
2042                         /* pull the message from the remote partition */
2043
2044                         msg = xpc_pull_remote_msg_sn2(ch, get);
2045
2046                         DBUG_ON(msg != NULL && msg->number != get);
2047                         DBUG_ON(msg != NULL && (msg->flags & XPC_M_DONE));
2048                         DBUG_ON(msg != NULL && !(msg->flags & XPC_M_READY));
2049
2050                         break;
2051                 }
2052
2053         } while (1);
2054
2055         return msg;
2056 }
2057
2058 /*
2059  * Now we actually send the messages that are ready to be sent by advancing
2060  * the local message queue's Put value and then send a chctl msgrequest to the
2061  * recipient partition.
2062  */
2063 static void
2064 xpc_send_msgs_sn2(struct xpc_channel *ch, s64 initial_put)
2065 {
2066         struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
2067         struct xpc_msg *msg;
2068         s64 put = initial_put + 1;
2069         int send_msgrequest = 0;
2070
2071         while (1) {
2072
2073                 while (1) {
2074                         if (put == ch_sn2->w_local_GP.put)
2075                                 break;
2076
2077                         msg = (struct xpc_msg *)((u64)ch->local_msgqueue +
2078                                                  (put % ch->local_nentries) *
2079                                                  ch->msg_size);
2080
2081                         if (!(msg->flags & XPC_M_READY))
2082                                 break;
2083
2084                         put++;
2085                 }
2086
2087                 if (put == initial_put) {
2088                         /* nothing's changed */
2089                         break;
2090                 }
2091
2092                 if (cmpxchg_rel(&ch_sn2->local_GP->put, initial_put, put) !=
2093                     initial_put) {
2094                         /* someone else beat us to it */
2095                         DBUG_ON(ch_sn2->local_GP->put < initial_put);
2096                         break;
2097                 }
2098
2099                 /* we just set the new value of local_GP->put */
2100
2101                 dev_dbg(xpc_chan, "local_GP->put changed to %ld, partid=%d, "
2102                         "channel=%d\n", put, ch->partid, ch->number);
2103
2104                 send_msgrequest = 1;
2105
2106                 /*
2107                  * We need to ensure that the message referenced by
2108                  * local_GP->put is not XPC_M_READY or that local_GP->put
2109                  * equals w_local_GP.put, so we'll go have a look.
2110                  */
2111                 initial_put = put;
2112         }
2113
2114         if (send_msgrequest)
2115                 xpc_send_chctl_msgrequest_sn2(ch);
2116 }
2117
2118 /*
2119  * Allocate an entry for a message from the message queue associated with the
2120  * specified channel.
2121  */
2122 static enum xp_retval
2123 xpc_allocate_msg_sn2(struct xpc_channel *ch, u32 flags,
2124                      struct xpc_msg **address_of_msg)
2125 {
2126         struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
2127         struct xpc_msg *msg;
2128         enum xp_retval ret;
2129         s64 put;
2130
2131         /*
2132          * Get the next available message entry from the local message queue.
2133          * If none are available, we'll make sure that we grab the latest
2134          * GP values.
2135          */
2136         ret = xpTimeout;
2137
2138         while (1) {
2139
2140                 put = ch_sn2->w_local_GP.put;
2141                 rmb();  /* guarantee that .put loads before .get */
2142                 if (put - ch_sn2->w_remote_GP.get < ch->local_nentries) {
2143
2144                         /* There are available message entries. We need to try
2145                          * to secure one for ourselves. We'll do this by trying
2146                          * to increment w_local_GP.put as long as someone else
2147                          * doesn't beat us to it. If they do, we'll have to
2148                          * try again.
2149                          */
2150                         if (cmpxchg(&ch_sn2->w_local_GP.put, put, put + 1) ==
2151                             put) {
2152                                 /* we got the entry referenced by put */
2153                                 break;
2154                         }
2155                         continue;       /* try again */
2156                 }
2157
2158                 /*
2159                  * There aren't any available msg entries at this time.
2160                  *
2161                  * In waiting for a message entry to become available,
2162                  * we set a timeout in case the other side is not sending
2163                  * completion interrupts. This lets us fake a notify IRQ
2164                  * that will cause the notify IRQ handler to fetch the latest
2165                  * GP values as if an interrupt was sent by the other side.
2166                  */
2167                 if (ret == xpTimeout)
2168                         xpc_send_chctl_local_msgrequest_sn2(ch);
2169
2170                 if (flags & XPC_NOWAIT)
2171                         return xpNoWait;
2172
2173                 ret = xpc_allocate_msg_wait(ch);
2174                 if (ret != xpInterrupted && ret != xpTimeout)
2175                         return ret;
2176         }
2177
2178         /* get the message's address and initialize it */
2179         msg = (struct xpc_msg *)((u64)ch->local_msgqueue +
2180                                  (put % ch->local_nentries) * ch->msg_size);
2181
2182         DBUG_ON(msg->flags != 0);
2183         msg->number = put;
2184
2185         dev_dbg(xpc_chan, "w_local_GP.put changed to %ld; msg=0x%p, "
2186                 "msg_number=%ld, partid=%d, channel=%d\n", put + 1,
2187                 (void *)msg, msg->number, ch->partid, ch->number);
2188
2189         *address_of_msg = msg;
2190         return xpSuccess;
2191 }
2192
2193 /*
2194  * Common code that does the actual sending of the message by advancing the
2195  * local message queue's Put value and sends a chctl msgrequest to the
2196  * partition the message is being sent to.
2197  */
2198 static enum xp_retval
2199 xpc_send_msg_sn2(struct xpc_channel *ch, u32 flags, void *payload,
2200                  u16 payload_size, u8 notify_type, xpc_notify_func func,
2201                  void *key)
2202 {
2203         enum xp_retval ret = xpSuccess;
2204         struct xpc_msg *msg = msg;
2205         struct xpc_notify *notify = notify;
2206         s64 msg_number;
2207         s64 put;
2208
2209         DBUG_ON(notify_type == XPC_N_CALL && func == NULL);
2210
2211         if (XPC_MSG_SIZE(payload_size) > ch->msg_size)
2212                 return xpPayloadTooBig;
2213
2214         xpc_msgqueue_ref(ch);
2215
2216         if (ch->flags & XPC_C_DISCONNECTING) {
2217                 ret = ch->reason;
2218                 goto out_1;
2219         }
2220         if (!(ch->flags & XPC_C_CONNECTED)) {
2221                 ret = xpNotConnected;
2222                 goto out_1;
2223         }
2224
2225         ret = xpc_allocate_msg_sn2(ch, flags, &msg);
2226         if (ret != xpSuccess)
2227                 goto out_1;
2228
2229         msg_number = msg->number;
2230
2231         if (notify_type != 0) {
2232                 /*
2233                  * Tell the remote side to send an ACK interrupt when the
2234                  * message has been delivered.
2235                  */
2236                 msg->flags |= XPC_M_INTERRUPT;
2237
2238                 atomic_inc(&ch->n_to_notify);
2239
2240                 notify = &ch->notify_queue[msg_number % ch->local_nentries];
2241                 notify->func = func;
2242                 notify->key = key;
2243                 notify->type = notify_type;
2244
2245                 /* >>> is a mb() needed here? */
2246
2247                 if (ch->flags & XPC_C_DISCONNECTING) {
2248                         /*
2249                          * An error occurred between our last error check and
2250                          * this one. We will try to clear the type field from
2251                          * the notify entry. If we succeed then
2252                          * xpc_disconnect_channel() didn't already process
2253                          * the notify entry.
2254                          */
2255                         if (cmpxchg(&notify->type, notify_type, 0) ==
2256                             notify_type) {
2257                                 atomic_dec(&ch->n_to_notify);
2258                                 ret = ch->reason;
2259                         }
2260                         goto out_1;
2261                 }
2262         }
2263
2264         memcpy(&msg->payload, payload, payload_size);
2265
2266         msg->flags |= XPC_M_READY;
2267
2268         /*
2269          * The preceding store of msg->flags must occur before the following
2270          * load of local_GP->put.
2271          */
2272         mb();
2273
2274         /* see if the message is next in line to be sent, if so send it */
2275
2276         put = ch->sn.sn2.local_GP->put;
2277         if (put == msg_number)
2278                 xpc_send_msgs_sn2(ch, put);
2279
2280 out_1:
2281         xpc_msgqueue_deref(ch);
2282         return ret;
2283 }
2284
2285 /*
2286  * Now we actually acknowledge the messages that have been delivered and ack'd
2287  * by advancing the cached remote message queue's Get value and if requested
2288  * send a chctl msgrequest to the message sender's partition.
2289  */
2290 static void
2291 xpc_acknowledge_msgs_sn2(struct xpc_channel *ch, s64 initial_get, u8 msg_flags)
2292 {
2293         struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
2294         struct xpc_msg *msg;
2295         s64 get = initial_get + 1;
2296         int send_msgrequest = 0;
2297
2298         while (1) {
2299
2300                 while (1) {
2301                         if (get == ch_sn2->w_local_GP.get)
2302                                 break;
2303
2304                         msg = (struct xpc_msg *)((u64)ch->remote_msgqueue +
2305                                                  (get % ch->remote_nentries) *
2306                                                  ch->msg_size);
2307
2308                         if (!(msg->flags & XPC_M_DONE))
2309                                 break;
2310
2311                         msg_flags |= msg->flags;
2312                         get++;
2313                 }
2314
2315                 if (get == initial_get) {
2316                         /* nothing's changed */
2317                         break;
2318                 }
2319
2320                 if (cmpxchg_rel(&ch_sn2->local_GP->get, initial_get, get) !=
2321                     initial_get) {
2322                         /* someone else beat us to it */
2323                         DBUG_ON(ch_sn2->local_GP->get <= initial_get);
2324                         break;
2325                 }
2326
2327                 /* we just set the new value of local_GP->get */
2328
2329                 dev_dbg(xpc_chan, "local_GP->get changed to %ld, partid=%d, "
2330                         "channel=%d\n", get, ch->partid, ch->number);
2331
2332                 send_msgrequest = (msg_flags & XPC_M_INTERRUPT);
2333
2334                 /*
2335                  * We need to ensure that the message referenced by
2336                  * local_GP->get is not XPC_M_DONE or that local_GP->get
2337                  * equals w_local_GP.get, so we'll go have a look.
2338                  */
2339                 initial_get = get;
2340         }
2341
2342         if (send_msgrequest)
2343                 xpc_send_chctl_msgrequest_sn2(ch);
2344 }
2345
2346 static void
2347 xpc_received_msg_sn2(struct xpc_channel *ch, struct xpc_msg *msg)
2348 {
2349         s64 get;
2350         s64 msg_number = msg->number;
2351
2352         dev_dbg(xpc_chan, "msg=0x%p, msg_number=%ld, partid=%d, channel=%d\n",
2353                 (void *)msg, msg_number, ch->partid, ch->number);
2354
2355         DBUG_ON((((u64)msg - (u64)ch->remote_msgqueue) / ch->msg_size) !=
2356                 msg_number % ch->remote_nentries);
2357         DBUG_ON(msg->flags & XPC_M_DONE);
2358
2359         msg->flags |= XPC_M_DONE;
2360
2361         /*
2362          * The preceding store of msg->flags must occur before the following
2363          * load of local_GP->get.
2364          */
2365         mb();
2366
2367         /*
2368          * See if this message is next in line to be acknowledged as having
2369          * been delivered.
2370          */
2371         get = ch->sn.sn2.local_GP->get;
2372         if (get == msg_number)
2373                 xpc_acknowledge_msgs_sn2(ch, get, msg->flags);
2374 }
2375
2376 int
2377 xpc_init_sn2(void)
2378 {
2379         int ret;
2380         size_t buf_size;
2381
2382         xpc_rsvd_page_init = xpc_rsvd_page_init_sn2;
2383         xpc_increment_heartbeat = xpc_increment_heartbeat_sn2;
2384         xpc_offline_heartbeat = xpc_offline_heartbeat_sn2;
2385         xpc_online_heartbeat = xpc_online_heartbeat_sn2;
2386         xpc_heartbeat_init = xpc_heartbeat_init_sn2;
2387         xpc_heartbeat_exit = xpc_heartbeat_exit_sn2;
2388         xpc_check_remote_hb = xpc_check_remote_hb_sn2;
2389
2390         xpc_request_partition_activation = xpc_request_partition_activation_sn2;
2391         xpc_request_partition_reactivation =
2392             xpc_request_partition_reactivation_sn2;
2393         xpc_request_partition_deactivation =
2394             xpc_request_partition_deactivation_sn2;
2395         xpc_cancel_partition_deactivation_request =
2396             xpc_cancel_partition_deactivation_request_sn2;
2397
2398         xpc_process_activate_IRQ_rcvd = xpc_process_activate_IRQ_rcvd_sn2;
2399         xpc_setup_infrastructure = xpc_setup_infrastructure_sn2;
2400         xpc_teardown_infrastructure = xpc_teardown_infrastructure_sn2;
2401         xpc_make_first_contact = xpc_make_first_contact_sn2;
2402         xpc_get_chctl_all_flags = xpc_get_chctl_all_flags_sn2;
2403         xpc_allocate_msgqueues = xpc_allocate_msgqueues_sn2;
2404         xpc_free_msgqueues = xpc_free_msgqueues_sn2;
2405         xpc_notify_senders_of_disconnect = xpc_notify_senders_of_disconnect_sn2;
2406         xpc_process_msg_chctl_flags = xpc_process_msg_chctl_flags_sn2;
2407         xpc_n_of_deliverable_msgs = xpc_n_of_deliverable_msgs_sn2;
2408         xpc_get_deliverable_msg = xpc_get_deliverable_msg_sn2;
2409
2410         xpc_indicate_partition_engaged = xpc_indicate_partition_engaged_sn2;
2411         xpc_partition_engaged = xpc_partition_engaged_sn2;
2412         xpc_any_partition_engaged = xpc_any_partition_engaged_sn2;
2413         xpc_indicate_partition_disengaged =
2414             xpc_indicate_partition_disengaged_sn2;
2415         xpc_assume_partition_disengaged = xpc_assume_partition_disengaged_sn2;
2416
2417         xpc_send_chctl_closerequest = xpc_send_chctl_closerequest_sn2;
2418         xpc_send_chctl_closereply = xpc_send_chctl_closereply_sn2;
2419         xpc_send_chctl_openrequest = xpc_send_chctl_openrequest_sn2;
2420         xpc_send_chctl_openreply = xpc_send_chctl_openreply_sn2;
2421
2422         xpc_send_msg = xpc_send_msg_sn2;
2423         xpc_received_msg = xpc_received_msg_sn2;
2424
2425         buf_size = max(XPC_RP_VARS_SIZE,
2426                        XPC_RP_HEADER_SIZE + XP_NASID_MASK_BYTES_SN2);
2427         xpc_remote_copy_buffer_sn2 = xpc_kmalloc_cacheline_aligned(buf_size,
2428                                                                    GFP_KERNEL,
2429                                               &xpc_remote_copy_buffer_base_sn2);
2430         if (xpc_remote_copy_buffer_sn2 == NULL) {
2431                 dev_err(xpc_part, "can't get memory for remote copy buffer\n");
2432                 return -ENOMEM;
2433         }
2434
2435         /* open up protections for IPI and [potentially] amo operations */
2436         xpc_allow_IPI_ops_sn2();
2437         xpc_allow_amo_ops_shub_wars_1_1_sn2();
2438
2439         /*
2440          * This is safe to do before the xpc_hb_checker thread has started
2441          * because the handler releases a wait queue.  If an interrupt is
2442          * received before the thread is waiting, it will not go to sleep,
2443          * but rather immediately process the interrupt.
2444          */
2445         ret = request_irq(SGI_XPC_ACTIVATE, xpc_handle_activate_IRQ_sn2, 0,
2446                           "xpc hb", NULL);
2447         if (ret != 0) {
2448                 dev_err(xpc_part, "can't register ACTIVATE IRQ handler, "
2449                         "errno=%d\n", -ret);
2450                 xpc_disallow_IPI_ops_sn2();
2451                 kfree(xpc_remote_copy_buffer_base_sn2);
2452         }
2453         return ret;
2454 }
2455
2456 void
2457 xpc_exit_sn2(void)
2458 {
2459         free_irq(SGI_XPC_ACTIVATE, NULL);
2460         xpc_disallow_IPI_ops_sn2();
2461         kfree(xpc_remote_copy_buffer_base_sn2);
2462 }