]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/md/raid5.c
edbc80c4d34650cbe13ae403a00f7274ef664676
[linux-2.6-omap-h63xx.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->bm_write is the number of the last batch successfully written.
31  * conf->bm_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is bm_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/async_tx.h>
49 #include <linux/seq_file.h>
50 #include "md.h"
51 #include "raid5.h"
52 #include "raid6.h"
53 #include "bitmap.h"
54
55 /*
56  * Stripe cache
57  */
58
59 #define NR_STRIPES              256
60 #define STRIPE_SIZE             PAGE_SIZE
61 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
62 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
63 #define IO_THRESHOLD            1
64 #define BYPASS_THRESHOLD        1
65 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
66 #define HASH_MASK               (NR_HASH - 1)
67
68 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
69
70 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
71  * order without overlap.  There may be several bio's per stripe+device, and
72  * a bio could span several devices.
73  * When walking this list for a particular stripe+device, we must never proceed
74  * beyond a bio that extends past this device, as the next bio might no longer
75  * be valid.
76  * This macro is used to determine the 'next' bio in the list, given the sector
77  * of the current stripe+device
78  */
79 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
80 /*
81  * The following can be used to debug the driver
82  */
83 #define RAID5_PARANOIA  1
84 #if RAID5_PARANOIA && defined(CONFIG_SMP)
85 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
86 #else
87 # define CHECK_DEVLOCK()
88 #endif
89
90 #ifdef DEBUG
91 #define inline
92 #define __inline__
93 #endif
94
95 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
96
97 #if !RAID6_USE_EMPTY_ZERO_PAGE
98 /* In .bss so it's zeroed */
99 const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
100 #endif
101
102 /*
103  * We maintain a biased count of active stripes in the bottom 16 bits of
104  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
105  */
106 static inline int raid5_bi_phys_segments(struct bio *bio)
107 {
108         return bio->bi_phys_segments & 0xffff;
109 }
110
111 static inline int raid5_bi_hw_segments(struct bio *bio)
112 {
113         return (bio->bi_phys_segments >> 16) & 0xffff;
114 }
115
116 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
117 {
118         --bio->bi_phys_segments;
119         return raid5_bi_phys_segments(bio);
120 }
121
122 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
123 {
124         unsigned short val = raid5_bi_hw_segments(bio);
125
126         --val;
127         bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
128         return val;
129 }
130
131 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
132 {
133         bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
134 }
135
136 /* Find first data disk in a raid6 stripe */
137 static inline int raid6_d0(struct stripe_head *sh)
138 {
139         if (sh->ddf_layout)
140                 /* ddf always start from first device */
141                 return 0;
142         /* md starts just after Q block */
143         if (sh->qd_idx == sh->disks - 1)
144                 return 0;
145         else
146                 return sh->qd_idx + 1;
147 }
148 static inline int raid6_next_disk(int disk, int raid_disks)
149 {
150         disk++;
151         return (disk < raid_disks) ? disk : 0;
152 }
153
154 /* When walking through the disks in a raid5, starting at raid6_d0,
155  * We need to map each disk to a 'slot', where the data disks are slot
156  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
157  * is raid_disks-1.  This help does that mapping.
158  */
159 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
160                              int *count, int syndrome_disks)
161 {
162         int slot;
163
164         if (idx == sh->pd_idx)
165                 return syndrome_disks;
166         if (idx == sh->qd_idx)
167                 return syndrome_disks + 1;
168         slot = (*count)++;
169         return slot;
170 }
171
172 static void return_io(struct bio *return_bi)
173 {
174         struct bio *bi = return_bi;
175         while (bi) {
176
177                 return_bi = bi->bi_next;
178                 bi->bi_next = NULL;
179                 bi->bi_size = 0;
180                 bio_endio(bi, 0);
181                 bi = return_bi;
182         }
183 }
184
185 static void print_raid5_conf (raid5_conf_t *conf);
186
187 static int stripe_operations_active(struct stripe_head *sh)
188 {
189         return sh->check_state || sh->reconstruct_state ||
190                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
191                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
192 }
193
194 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
195 {
196         if (atomic_dec_and_test(&sh->count)) {
197                 BUG_ON(!list_empty(&sh->lru));
198                 BUG_ON(atomic_read(&conf->active_stripes)==0);
199                 if (test_bit(STRIPE_HANDLE, &sh->state)) {
200                         if (test_bit(STRIPE_DELAYED, &sh->state)) {
201                                 list_add_tail(&sh->lru, &conf->delayed_list);
202                                 blk_plug_device(conf->mddev->queue);
203                         } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
204                                    sh->bm_seq - conf->seq_write > 0) {
205                                 list_add_tail(&sh->lru, &conf->bitmap_list);
206                                 blk_plug_device(conf->mddev->queue);
207                         } else {
208                                 clear_bit(STRIPE_BIT_DELAY, &sh->state);
209                                 list_add_tail(&sh->lru, &conf->handle_list);
210                         }
211                         md_wakeup_thread(conf->mddev->thread);
212                 } else {
213                         BUG_ON(stripe_operations_active(sh));
214                         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
215                                 atomic_dec(&conf->preread_active_stripes);
216                                 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
217                                         md_wakeup_thread(conf->mddev->thread);
218                         }
219                         atomic_dec(&conf->active_stripes);
220                         if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
221                                 list_add_tail(&sh->lru, &conf->inactive_list);
222                                 wake_up(&conf->wait_for_stripe);
223                                 if (conf->retry_read_aligned)
224                                         md_wakeup_thread(conf->mddev->thread);
225                         }
226                 }
227         }
228 }
229
230 static void release_stripe(struct stripe_head *sh)
231 {
232         raid5_conf_t *conf = sh->raid_conf;
233         unsigned long flags;
234
235         spin_lock_irqsave(&conf->device_lock, flags);
236         __release_stripe(conf, sh);
237         spin_unlock_irqrestore(&conf->device_lock, flags);
238 }
239
240 static inline void remove_hash(struct stripe_head *sh)
241 {
242         pr_debug("remove_hash(), stripe %llu\n",
243                 (unsigned long long)sh->sector);
244
245         hlist_del_init(&sh->hash);
246 }
247
248 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
249 {
250         struct hlist_head *hp = stripe_hash(conf, sh->sector);
251
252         pr_debug("insert_hash(), stripe %llu\n",
253                 (unsigned long long)sh->sector);
254
255         CHECK_DEVLOCK();
256         hlist_add_head(&sh->hash, hp);
257 }
258
259
260 /* find an idle stripe, make sure it is unhashed, and return it. */
261 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
262 {
263         struct stripe_head *sh = NULL;
264         struct list_head *first;
265
266         CHECK_DEVLOCK();
267         if (list_empty(&conf->inactive_list))
268                 goto out;
269         first = conf->inactive_list.next;
270         sh = list_entry(first, struct stripe_head, lru);
271         list_del_init(first);
272         remove_hash(sh);
273         atomic_inc(&conf->active_stripes);
274 out:
275         return sh;
276 }
277
278 static void shrink_buffers(struct stripe_head *sh, int num)
279 {
280         struct page *p;
281         int i;
282
283         for (i=0; i<num ; i++) {
284                 p = sh->dev[i].page;
285                 if (!p)
286                         continue;
287                 sh->dev[i].page = NULL;
288                 put_page(p);
289         }
290 }
291
292 static int grow_buffers(struct stripe_head *sh, int num)
293 {
294         int i;
295
296         for (i=0; i<num; i++) {
297                 struct page *page;
298
299                 if (!(page = alloc_page(GFP_KERNEL))) {
300                         return 1;
301                 }
302                 sh->dev[i].page = page;
303         }
304         return 0;
305 }
306
307 static void raid5_build_block(struct stripe_head *sh, int i);
308 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
309                             struct stripe_head *sh);
310
311 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
312 {
313         raid5_conf_t *conf = sh->raid_conf;
314         int i;
315
316         BUG_ON(atomic_read(&sh->count) != 0);
317         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
318         BUG_ON(stripe_operations_active(sh));
319
320         CHECK_DEVLOCK();
321         pr_debug("init_stripe called, stripe %llu\n",
322                 (unsigned long long)sh->sector);
323
324         remove_hash(sh);
325
326         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
327         sh->sector = sector;
328         stripe_set_idx(sector, conf, previous, sh);
329         sh->state = 0;
330
331
332         for (i = sh->disks; i--; ) {
333                 struct r5dev *dev = &sh->dev[i];
334
335                 if (dev->toread || dev->read || dev->towrite || dev->written ||
336                     test_bit(R5_LOCKED, &dev->flags)) {
337                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
338                                (unsigned long long)sh->sector, i, dev->toread,
339                                dev->read, dev->towrite, dev->written,
340                                test_bit(R5_LOCKED, &dev->flags));
341                         BUG();
342                 }
343                 dev->flags = 0;
344                 raid5_build_block(sh, i);
345         }
346         insert_hash(conf, sh);
347 }
348
349 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
350 {
351         struct stripe_head *sh;
352         struct hlist_node *hn;
353
354         CHECK_DEVLOCK();
355         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
356         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
357                 if (sh->sector == sector && sh->disks == disks)
358                         return sh;
359         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
360         return NULL;
361 }
362
363 static void unplug_slaves(mddev_t *mddev);
364 static void raid5_unplug_device(struct request_queue *q);
365
366 static struct stripe_head *
367 get_active_stripe(raid5_conf_t *conf, sector_t sector,
368                   int previous, int noblock)
369 {
370         struct stripe_head *sh;
371         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
372
373         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
374
375         spin_lock_irq(&conf->device_lock);
376
377         do {
378                 wait_event_lock_irq(conf->wait_for_stripe,
379                                     conf->quiesce == 0,
380                                     conf->device_lock, /* nothing */);
381                 sh = __find_stripe(conf, sector, disks);
382                 if (!sh) {
383                         if (!conf->inactive_blocked)
384                                 sh = get_free_stripe(conf);
385                         if (noblock && sh == NULL)
386                                 break;
387                         if (!sh) {
388                                 conf->inactive_blocked = 1;
389                                 wait_event_lock_irq(conf->wait_for_stripe,
390                                                     !list_empty(&conf->inactive_list) &&
391                                                     (atomic_read(&conf->active_stripes)
392                                                      < (conf->max_nr_stripes *3/4)
393                                                      || !conf->inactive_blocked),
394                                                     conf->device_lock,
395                                                     raid5_unplug_device(conf->mddev->queue)
396                                         );
397                                 conf->inactive_blocked = 0;
398                         } else
399                                 init_stripe(sh, sector, previous);
400                 } else {
401                         if (atomic_read(&sh->count)) {
402                           BUG_ON(!list_empty(&sh->lru));
403                         } else {
404                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
405                                         atomic_inc(&conf->active_stripes);
406                                 if (list_empty(&sh->lru) &&
407                                     !test_bit(STRIPE_EXPANDING, &sh->state))
408                                         BUG();
409                                 list_del_init(&sh->lru);
410                         }
411                 }
412         } while (sh == NULL);
413
414         if (sh)
415                 atomic_inc(&sh->count);
416
417         spin_unlock_irq(&conf->device_lock);
418         return sh;
419 }
420
421 static void
422 raid5_end_read_request(struct bio *bi, int error);
423 static void
424 raid5_end_write_request(struct bio *bi, int error);
425
426 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
427 {
428         raid5_conf_t *conf = sh->raid_conf;
429         int i, disks = sh->disks;
430
431         might_sleep();
432
433         for (i = disks; i--; ) {
434                 int rw;
435                 struct bio *bi;
436                 mdk_rdev_t *rdev;
437                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
438                         rw = WRITE;
439                 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
440                         rw = READ;
441                 else
442                         continue;
443
444                 bi = &sh->dev[i].req;
445
446                 bi->bi_rw = rw;
447                 if (rw == WRITE)
448                         bi->bi_end_io = raid5_end_write_request;
449                 else
450                         bi->bi_end_io = raid5_end_read_request;
451
452                 rcu_read_lock();
453                 rdev = rcu_dereference(conf->disks[i].rdev);
454                 if (rdev && test_bit(Faulty, &rdev->flags))
455                         rdev = NULL;
456                 if (rdev)
457                         atomic_inc(&rdev->nr_pending);
458                 rcu_read_unlock();
459
460                 if (rdev) {
461                         if (s->syncing || s->expanding || s->expanded)
462                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
463
464                         set_bit(STRIPE_IO_STARTED, &sh->state);
465
466                         bi->bi_bdev = rdev->bdev;
467                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
468                                 __func__, (unsigned long long)sh->sector,
469                                 bi->bi_rw, i);
470                         atomic_inc(&sh->count);
471                         bi->bi_sector = sh->sector + rdev->data_offset;
472                         bi->bi_flags = 1 << BIO_UPTODATE;
473                         bi->bi_vcnt = 1;
474                         bi->bi_max_vecs = 1;
475                         bi->bi_idx = 0;
476                         bi->bi_io_vec = &sh->dev[i].vec;
477                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
478                         bi->bi_io_vec[0].bv_offset = 0;
479                         bi->bi_size = STRIPE_SIZE;
480                         bi->bi_next = NULL;
481                         if (rw == WRITE &&
482                             test_bit(R5_ReWrite, &sh->dev[i].flags))
483                                 atomic_add(STRIPE_SECTORS,
484                                         &rdev->corrected_errors);
485                         generic_make_request(bi);
486                 } else {
487                         if (rw == WRITE)
488                                 set_bit(STRIPE_DEGRADED, &sh->state);
489                         pr_debug("skip op %ld on disc %d for sector %llu\n",
490                                 bi->bi_rw, i, (unsigned long long)sh->sector);
491                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
492                         set_bit(STRIPE_HANDLE, &sh->state);
493                 }
494         }
495 }
496
497 static struct dma_async_tx_descriptor *
498 async_copy_data(int frombio, struct bio *bio, struct page *page,
499         sector_t sector, struct dma_async_tx_descriptor *tx)
500 {
501         struct bio_vec *bvl;
502         struct page *bio_page;
503         int i;
504         int page_offset;
505
506         if (bio->bi_sector >= sector)
507                 page_offset = (signed)(bio->bi_sector - sector) * 512;
508         else
509                 page_offset = (signed)(sector - bio->bi_sector) * -512;
510         bio_for_each_segment(bvl, bio, i) {
511                 int len = bio_iovec_idx(bio, i)->bv_len;
512                 int clen;
513                 int b_offset = 0;
514
515                 if (page_offset < 0) {
516                         b_offset = -page_offset;
517                         page_offset += b_offset;
518                         len -= b_offset;
519                 }
520
521                 if (len > 0 && page_offset + len > STRIPE_SIZE)
522                         clen = STRIPE_SIZE - page_offset;
523                 else
524                         clen = len;
525
526                 if (clen > 0) {
527                         b_offset += bio_iovec_idx(bio, i)->bv_offset;
528                         bio_page = bio_iovec_idx(bio, i)->bv_page;
529                         if (frombio)
530                                 tx = async_memcpy(page, bio_page, page_offset,
531                                         b_offset, clen,
532                                         ASYNC_TX_DEP_ACK,
533                                         tx, NULL, NULL);
534                         else
535                                 tx = async_memcpy(bio_page, page, b_offset,
536                                         page_offset, clen,
537                                         ASYNC_TX_DEP_ACK,
538                                         tx, NULL, NULL);
539                 }
540                 if (clen < len) /* hit end of page */
541                         break;
542                 page_offset +=  len;
543         }
544
545         return tx;
546 }
547
548 static void ops_complete_biofill(void *stripe_head_ref)
549 {
550         struct stripe_head *sh = stripe_head_ref;
551         struct bio *return_bi = NULL;
552         raid5_conf_t *conf = sh->raid_conf;
553         int i;
554
555         pr_debug("%s: stripe %llu\n", __func__,
556                 (unsigned long long)sh->sector);
557
558         /* clear completed biofills */
559         spin_lock_irq(&conf->device_lock);
560         for (i = sh->disks; i--; ) {
561                 struct r5dev *dev = &sh->dev[i];
562
563                 /* acknowledge completion of a biofill operation */
564                 /* and check if we need to reply to a read request,
565                  * new R5_Wantfill requests are held off until
566                  * !STRIPE_BIOFILL_RUN
567                  */
568                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
569                         struct bio *rbi, *rbi2;
570
571                         BUG_ON(!dev->read);
572                         rbi = dev->read;
573                         dev->read = NULL;
574                         while (rbi && rbi->bi_sector <
575                                 dev->sector + STRIPE_SECTORS) {
576                                 rbi2 = r5_next_bio(rbi, dev->sector);
577                                 if (!raid5_dec_bi_phys_segments(rbi)) {
578                                         rbi->bi_next = return_bi;
579                                         return_bi = rbi;
580                                 }
581                                 rbi = rbi2;
582                         }
583                 }
584         }
585         spin_unlock_irq(&conf->device_lock);
586         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
587
588         return_io(return_bi);
589
590         set_bit(STRIPE_HANDLE, &sh->state);
591         release_stripe(sh);
592 }
593
594 static void ops_run_biofill(struct stripe_head *sh)
595 {
596         struct dma_async_tx_descriptor *tx = NULL;
597         raid5_conf_t *conf = sh->raid_conf;
598         int i;
599
600         pr_debug("%s: stripe %llu\n", __func__,
601                 (unsigned long long)sh->sector);
602
603         for (i = sh->disks; i--; ) {
604                 struct r5dev *dev = &sh->dev[i];
605                 if (test_bit(R5_Wantfill, &dev->flags)) {
606                         struct bio *rbi;
607                         spin_lock_irq(&conf->device_lock);
608                         dev->read = rbi = dev->toread;
609                         dev->toread = NULL;
610                         spin_unlock_irq(&conf->device_lock);
611                         while (rbi && rbi->bi_sector <
612                                 dev->sector + STRIPE_SECTORS) {
613                                 tx = async_copy_data(0, rbi, dev->page,
614                                         dev->sector, tx);
615                                 rbi = r5_next_bio(rbi, dev->sector);
616                         }
617                 }
618         }
619
620         atomic_inc(&sh->count);
621         async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
622                 ops_complete_biofill, sh);
623 }
624
625 static void ops_complete_compute5(void *stripe_head_ref)
626 {
627         struct stripe_head *sh = stripe_head_ref;
628         int target = sh->ops.target;
629         struct r5dev *tgt = &sh->dev[target];
630
631         pr_debug("%s: stripe %llu\n", __func__,
632                 (unsigned long long)sh->sector);
633
634         set_bit(R5_UPTODATE, &tgt->flags);
635         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
636         clear_bit(R5_Wantcompute, &tgt->flags);
637         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
638         if (sh->check_state == check_state_compute_run)
639                 sh->check_state = check_state_compute_result;
640         set_bit(STRIPE_HANDLE, &sh->state);
641         release_stripe(sh);
642 }
643
644 static struct dma_async_tx_descriptor *ops_run_compute5(struct stripe_head *sh)
645 {
646         /* kernel stack size limits the total number of disks */
647         int disks = sh->disks;
648         struct page *xor_srcs[disks];
649         int target = sh->ops.target;
650         struct r5dev *tgt = &sh->dev[target];
651         struct page *xor_dest = tgt->page;
652         int count = 0;
653         struct dma_async_tx_descriptor *tx;
654         int i;
655
656         pr_debug("%s: stripe %llu block: %d\n",
657                 __func__, (unsigned long long)sh->sector, target);
658         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
659
660         for (i = disks; i--; )
661                 if (i != target)
662                         xor_srcs[count++] = sh->dev[i].page;
663
664         atomic_inc(&sh->count);
665
666         if (unlikely(count == 1))
667                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
668                         0, NULL, ops_complete_compute5, sh);
669         else
670                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
671                         ASYNC_TX_XOR_ZERO_DST, NULL,
672                         ops_complete_compute5, sh);
673
674         return tx;
675 }
676
677 static void ops_complete_prexor(void *stripe_head_ref)
678 {
679         struct stripe_head *sh = stripe_head_ref;
680
681         pr_debug("%s: stripe %llu\n", __func__,
682                 (unsigned long long)sh->sector);
683 }
684
685 static struct dma_async_tx_descriptor *
686 ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
687 {
688         /* kernel stack size limits the total number of disks */
689         int disks = sh->disks;
690         struct page *xor_srcs[disks];
691         int count = 0, pd_idx = sh->pd_idx, i;
692
693         /* existing parity data subtracted */
694         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
695
696         pr_debug("%s: stripe %llu\n", __func__,
697                 (unsigned long long)sh->sector);
698
699         for (i = disks; i--; ) {
700                 struct r5dev *dev = &sh->dev[i];
701                 /* Only process blocks that are known to be uptodate */
702                 if (test_bit(R5_Wantdrain, &dev->flags))
703                         xor_srcs[count++] = dev->page;
704         }
705
706         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
707                 ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
708                 ops_complete_prexor, sh);
709
710         return tx;
711 }
712
713 static struct dma_async_tx_descriptor *
714 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
715 {
716         int disks = sh->disks;
717         int i;
718
719         pr_debug("%s: stripe %llu\n", __func__,
720                 (unsigned long long)sh->sector);
721
722         for (i = disks; i--; ) {
723                 struct r5dev *dev = &sh->dev[i];
724                 struct bio *chosen;
725
726                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
727                         struct bio *wbi;
728
729                         spin_lock(&sh->lock);
730                         chosen = dev->towrite;
731                         dev->towrite = NULL;
732                         BUG_ON(dev->written);
733                         wbi = dev->written = chosen;
734                         spin_unlock(&sh->lock);
735
736                         while (wbi && wbi->bi_sector <
737                                 dev->sector + STRIPE_SECTORS) {
738                                 tx = async_copy_data(1, wbi, dev->page,
739                                         dev->sector, tx);
740                                 wbi = r5_next_bio(wbi, dev->sector);
741                         }
742                 }
743         }
744
745         return tx;
746 }
747
748 static void ops_complete_postxor(void *stripe_head_ref)
749 {
750         struct stripe_head *sh = stripe_head_ref;
751         int disks = sh->disks, i, pd_idx = sh->pd_idx;
752
753         pr_debug("%s: stripe %llu\n", __func__,
754                 (unsigned long long)sh->sector);
755
756         for (i = disks; i--; ) {
757                 struct r5dev *dev = &sh->dev[i];
758                 if (dev->written || i == pd_idx)
759                         set_bit(R5_UPTODATE, &dev->flags);
760         }
761
762         if (sh->reconstruct_state == reconstruct_state_drain_run)
763                 sh->reconstruct_state = reconstruct_state_drain_result;
764         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
765                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
766         else {
767                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
768                 sh->reconstruct_state = reconstruct_state_result;
769         }
770
771         set_bit(STRIPE_HANDLE, &sh->state);
772         release_stripe(sh);
773 }
774
775 static void
776 ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
777 {
778         /* kernel stack size limits the total number of disks */
779         int disks = sh->disks;
780         struct page *xor_srcs[disks];
781
782         int count = 0, pd_idx = sh->pd_idx, i;
783         struct page *xor_dest;
784         int prexor = 0;
785         unsigned long flags;
786
787         pr_debug("%s: stripe %llu\n", __func__,
788                 (unsigned long long)sh->sector);
789
790         /* check if prexor is active which means only process blocks
791          * that are part of a read-modify-write (written)
792          */
793         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
794                 prexor = 1;
795                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
796                 for (i = disks; i--; ) {
797                         struct r5dev *dev = &sh->dev[i];
798                         if (dev->written)
799                                 xor_srcs[count++] = dev->page;
800                 }
801         } else {
802                 xor_dest = sh->dev[pd_idx].page;
803                 for (i = disks; i--; ) {
804                         struct r5dev *dev = &sh->dev[i];
805                         if (i != pd_idx)
806                                 xor_srcs[count++] = dev->page;
807                 }
808         }
809
810         /* 1/ if we prexor'd then the dest is reused as a source
811          * 2/ if we did not prexor then we are redoing the parity
812          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
813          * for the synchronous xor case
814          */
815         flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
816                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
817
818         atomic_inc(&sh->count);
819
820         if (unlikely(count == 1)) {
821                 flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
822                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
823                         flags, tx, ops_complete_postxor, sh);
824         } else
825                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
826                         flags, tx, ops_complete_postxor, sh);
827 }
828
829 static void ops_complete_check(void *stripe_head_ref)
830 {
831         struct stripe_head *sh = stripe_head_ref;
832
833         pr_debug("%s: stripe %llu\n", __func__,
834                 (unsigned long long)sh->sector);
835
836         sh->check_state = check_state_check_result;
837         set_bit(STRIPE_HANDLE, &sh->state);
838         release_stripe(sh);
839 }
840
841 static void ops_run_check(struct stripe_head *sh)
842 {
843         /* kernel stack size limits the total number of disks */
844         int disks = sh->disks;
845         struct page *xor_srcs[disks];
846         struct dma_async_tx_descriptor *tx;
847
848         int count = 0, pd_idx = sh->pd_idx, i;
849         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
850
851         pr_debug("%s: stripe %llu\n", __func__,
852                 (unsigned long long)sh->sector);
853
854         for (i = disks; i--; ) {
855                 struct r5dev *dev = &sh->dev[i];
856                 if (i != pd_idx)
857                         xor_srcs[count++] = dev->page;
858         }
859
860         tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
861                 &sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
862
863         atomic_inc(&sh->count);
864         tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
865                 ops_complete_check, sh);
866 }
867
868 static void raid5_run_ops(struct stripe_head *sh, unsigned long ops_request)
869 {
870         int overlap_clear = 0, i, disks = sh->disks;
871         struct dma_async_tx_descriptor *tx = NULL;
872
873         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
874                 ops_run_biofill(sh);
875                 overlap_clear++;
876         }
877
878         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
879                 tx = ops_run_compute5(sh);
880                 /* terminate the chain if postxor is not set to be run */
881                 if (tx && !test_bit(STRIPE_OP_POSTXOR, &ops_request))
882                         async_tx_ack(tx);
883         }
884
885         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
886                 tx = ops_run_prexor(sh, tx);
887
888         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
889                 tx = ops_run_biodrain(sh, tx);
890                 overlap_clear++;
891         }
892
893         if (test_bit(STRIPE_OP_POSTXOR, &ops_request))
894                 ops_run_postxor(sh, tx);
895
896         if (test_bit(STRIPE_OP_CHECK, &ops_request))
897                 ops_run_check(sh);
898
899         if (overlap_clear)
900                 for (i = disks; i--; ) {
901                         struct r5dev *dev = &sh->dev[i];
902                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
903                                 wake_up(&sh->raid_conf->wait_for_overlap);
904                 }
905 }
906
907 static int grow_one_stripe(raid5_conf_t *conf)
908 {
909         struct stripe_head *sh;
910         sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
911         if (!sh)
912                 return 0;
913         memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
914         sh->raid_conf = conf;
915         spin_lock_init(&sh->lock);
916
917         if (grow_buffers(sh, conf->raid_disks)) {
918                 shrink_buffers(sh, conf->raid_disks);
919                 kmem_cache_free(conf->slab_cache, sh);
920                 return 0;
921         }
922         sh->disks = conf->raid_disks;
923         /* we just created an active stripe so... */
924         atomic_set(&sh->count, 1);
925         atomic_inc(&conf->active_stripes);
926         INIT_LIST_HEAD(&sh->lru);
927         release_stripe(sh);
928         return 1;
929 }
930
931 static int grow_stripes(raid5_conf_t *conf, int num)
932 {
933         struct kmem_cache *sc;
934         int devs = conf->raid_disks;
935
936         sprintf(conf->cache_name[0], "raid5-%s", mdname(conf->mddev));
937         sprintf(conf->cache_name[1], "raid5-%s-alt", mdname(conf->mddev));
938         conf->active_name = 0;
939         sc = kmem_cache_create(conf->cache_name[conf->active_name],
940                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
941                                0, 0, NULL);
942         if (!sc)
943                 return 1;
944         conf->slab_cache = sc;
945         conf->pool_size = devs;
946         while (num--)
947                 if (!grow_one_stripe(conf))
948                         return 1;
949         return 0;
950 }
951
952 #ifdef CONFIG_MD_RAID5_RESHAPE
953 static int resize_stripes(raid5_conf_t *conf, int newsize)
954 {
955         /* Make all the stripes able to hold 'newsize' devices.
956          * New slots in each stripe get 'page' set to a new page.
957          *
958          * This happens in stages:
959          * 1/ create a new kmem_cache and allocate the required number of
960          *    stripe_heads.
961          * 2/ gather all the old stripe_heads and tranfer the pages across
962          *    to the new stripe_heads.  This will have the side effect of
963          *    freezing the array as once all stripe_heads have been collected,
964          *    no IO will be possible.  Old stripe heads are freed once their
965          *    pages have been transferred over, and the old kmem_cache is
966          *    freed when all stripes are done.
967          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
968          *    we simple return a failre status - no need to clean anything up.
969          * 4/ allocate new pages for the new slots in the new stripe_heads.
970          *    If this fails, we don't bother trying the shrink the
971          *    stripe_heads down again, we just leave them as they are.
972          *    As each stripe_head is processed the new one is released into
973          *    active service.
974          *
975          * Once step2 is started, we cannot afford to wait for a write,
976          * so we use GFP_NOIO allocations.
977          */
978         struct stripe_head *osh, *nsh;
979         LIST_HEAD(newstripes);
980         struct disk_info *ndisks;
981         int err;
982         struct kmem_cache *sc;
983         int i;
984
985         if (newsize <= conf->pool_size)
986                 return 0; /* never bother to shrink */
987
988         err = md_allow_write(conf->mddev);
989         if (err)
990                 return err;
991
992         /* Step 1 */
993         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
994                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
995                                0, 0, NULL);
996         if (!sc)
997                 return -ENOMEM;
998
999         for (i = conf->max_nr_stripes; i; i--) {
1000                 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1001                 if (!nsh)
1002                         break;
1003
1004                 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1005
1006                 nsh->raid_conf = conf;
1007                 spin_lock_init(&nsh->lock);
1008
1009                 list_add(&nsh->lru, &newstripes);
1010         }
1011         if (i) {
1012                 /* didn't get enough, give up */
1013                 while (!list_empty(&newstripes)) {
1014                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1015                         list_del(&nsh->lru);
1016                         kmem_cache_free(sc, nsh);
1017                 }
1018                 kmem_cache_destroy(sc);
1019                 return -ENOMEM;
1020         }
1021         /* Step 2 - Must use GFP_NOIO now.
1022          * OK, we have enough stripes, start collecting inactive
1023          * stripes and copying them over
1024          */
1025         list_for_each_entry(nsh, &newstripes, lru) {
1026                 spin_lock_irq(&conf->device_lock);
1027                 wait_event_lock_irq(conf->wait_for_stripe,
1028                                     !list_empty(&conf->inactive_list),
1029                                     conf->device_lock,
1030                                     unplug_slaves(conf->mddev)
1031                         );
1032                 osh = get_free_stripe(conf);
1033                 spin_unlock_irq(&conf->device_lock);
1034                 atomic_set(&nsh->count, 1);
1035                 for(i=0; i<conf->pool_size; i++)
1036                         nsh->dev[i].page = osh->dev[i].page;
1037                 for( ; i<newsize; i++)
1038                         nsh->dev[i].page = NULL;
1039                 kmem_cache_free(conf->slab_cache, osh);
1040         }
1041         kmem_cache_destroy(conf->slab_cache);
1042
1043         /* Step 3.
1044          * At this point, we are holding all the stripes so the array
1045          * is completely stalled, so now is a good time to resize
1046          * conf->disks.
1047          */
1048         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1049         if (ndisks) {
1050                 for (i=0; i<conf->raid_disks; i++)
1051                         ndisks[i] = conf->disks[i];
1052                 kfree(conf->disks);
1053                 conf->disks = ndisks;
1054         } else
1055                 err = -ENOMEM;
1056
1057         /* Step 4, return new stripes to service */
1058         while(!list_empty(&newstripes)) {
1059                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1060                 list_del_init(&nsh->lru);
1061                 for (i=conf->raid_disks; i < newsize; i++)
1062                         if (nsh->dev[i].page == NULL) {
1063                                 struct page *p = alloc_page(GFP_NOIO);
1064                                 nsh->dev[i].page = p;
1065                                 if (!p)
1066                                         err = -ENOMEM;
1067                         }
1068                 release_stripe(nsh);
1069         }
1070         /* critical section pass, GFP_NOIO no longer needed */
1071
1072         conf->slab_cache = sc;
1073         conf->active_name = 1-conf->active_name;
1074         conf->pool_size = newsize;
1075         return err;
1076 }
1077 #endif
1078
1079 static int drop_one_stripe(raid5_conf_t *conf)
1080 {
1081         struct stripe_head *sh;
1082
1083         spin_lock_irq(&conf->device_lock);
1084         sh = get_free_stripe(conf);
1085         spin_unlock_irq(&conf->device_lock);
1086         if (!sh)
1087                 return 0;
1088         BUG_ON(atomic_read(&sh->count));
1089         shrink_buffers(sh, conf->pool_size);
1090         kmem_cache_free(conf->slab_cache, sh);
1091         atomic_dec(&conf->active_stripes);
1092         return 1;
1093 }
1094
1095 static void shrink_stripes(raid5_conf_t *conf)
1096 {
1097         while (drop_one_stripe(conf))
1098                 ;
1099
1100         if (conf->slab_cache)
1101                 kmem_cache_destroy(conf->slab_cache);
1102         conf->slab_cache = NULL;
1103 }
1104
1105 static void raid5_end_read_request(struct bio * bi, int error)
1106 {
1107         struct stripe_head *sh = bi->bi_private;
1108         raid5_conf_t *conf = sh->raid_conf;
1109         int disks = sh->disks, i;
1110         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1111         char b[BDEVNAME_SIZE];
1112         mdk_rdev_t *rdev;
1113
1114
1115         for (i=0 ; i<disks; i++)
1116                 if (bi == &sh->dev[i].req)
1117                         break;
1118
1119         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1120                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1121                 uptodate);
1122         if (i == disks) {
1123                 BUG();
1124                 return;
1125         }
1126
1127         if (uptodate) {
1128                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1129                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1130                         rdev = conf->disks[i].rdev;
1131                         printk_rl(KERN_INFO "raid5:%s: read error corrected"
1132                                   " (%lu sectors at %llu on %s)\n",
1133                                   mdname(conf->mddev), STRIPE_SECTORS,
1134                                   (unsigned long long)(sh->sector
1135                                                        + rdev->data_offset),
1136                                   bdevname(rdev->bdev, b));
1137                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1138                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1139                 }
1140                 if (atomic_read(&conf->disks[i].rdev->read_errors))
1141                         atomic_set(&conf->disks[i].rdev->read_errors, 0);
1142         } else {
1143                 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1144                 int retry = 0;
1145                 rdev = conf->disks[i].rdev;
1146
1147                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1148                 atomic_inc(&rdev->read_errors);
1149                 if (conf->mddev->degraded)
1150                         printk_rl(KERN_WARNING
1151                                   "raid5:%s: read error not correctable "
1152                                   "(sector %llu on %s).\n",
1153                                   mdname(conf->mddev),
1154                                   (unsigned long long)(sh->sector
1155                                                        + rdev->data_offset),
1156                                   bdn);
1157                 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1158                         /* Oh, no!!! */
1159                         printk_rl(KERN_WARNING
1160                                   "raid5:%s: read error NOT corrected!! "
1161                                   "(sector %llu on %s).\n",
1162                                   mdname(conf->mddev),
1163                                   (unsigned long long)(sh->sector
1164                                                        + rdev->data_offset),
1165                                   bdn);
1166                 else if (atomic_read(&rdev->read_errors)
1167                          > conf->max_nr_stripes)
1168                         printk(KERN_WARNING
1169                                "raid5:%s: Too many read errors, failing device %s.\n",
1170                                mdname(conf->mddev), bdn);
1171                 else
1172                         retry = 1;
1173                 if (retry)
1174                         set_bit(R5_ReadError, &sh->dev[i].flags);
1175                 else {
1176                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1177                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1178                         md_error(conf->mddev, rdev);
1179                 }
1180         }
1181         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1182         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1183         set_bit(STRIPE_HANDLE, &sh->state);
1184         release_stripe(sh);
1185 }
1186
1187 static void raid5_end_write_request(struct bio *bi, int error)
1188 {
1189         struct stripe_head *sh = bi->bi_private;
1190         raid5_conf_t *conf = sh->raid_conf;
1191         int disks = sh->disks, i;
1192         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1193
1194         for (i=0 ; i<disks; i++)
1195                 if (bi == &sh->dev[i].req)
1196                         break;
1197
1198         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1199                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1200                 uptodate);
1201         if (i == disks) {
1202                 BUG();
1203                 return;
1204         }
1205
1206         if (!uptodate)
1207                 md_error(conf->mddev, conf->disks[i].rdev);
1208
1209         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1210         
1211         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1212         set_bit(STRIPE_HANDLE, &sh->state);
1213         release_stripe(sh);
1214 }
1215
1216
1217 static sector_t compute_blocknr(struct stripe_head *sh, int i);
1218         
1219 static void raid5_build_block(struct stripe_head *sh, int i)
1220 {
1221         struct r5dev *dev = &sh->dev[i];
1222
1223         bio_init(&dev->req);
1224         dev->req.bi_io_vec = &dev->vec;
1225         dev->req.bi_vcnt++;
1226         dev->req.bi_max_vecs++;
1227         dev->vec.bv_page = dev->page;
1228         dev->vec.bv_len = STRIPE_SIZE;
1229         dev->vec.bv_offset = 0;
1230
1231         dev->req.bi_sector = sh->sector;
1232         dev->req.bi_private = sh;
1233
1234         dev->flags = 0;
1235         dev->sector = compute_blocknr(sh, i);
1236 }
1237
1238 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1239 {
1240         char b[BDEVNAME_SIZE];
1241         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1242         pr_debug("raid5: error called\n");
1243
1244         if (!test_bit(Faulty, &rdev->flags)) {
1245                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1246                 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1247                         unsigned long flags;
1248                         spin_lock_irqsave(&conf->device_lock, flags);
1249                         mddev->degraded++;
1250                         spin_unlock_irqrestore(&conf->device_lock, flags);
1251                         /*
1252                          * if recovery was running, make sure it aborts.
1253                          */
1254                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1255                 }
1256                 set_bit(Faulty, &rdev->flags);
1257                 printk(KERN_ALERT
1258                        "raid5: Disk failure on %s, disabling device.\n"
1259                        "raid5: Operation continuing on %d devices.\n",
1260                        bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1261         }
1262 }
1263
1264 /*
1265  * Input: a 'big' sector number,
1266  * Output: index of the data and parity disk, and the sector # in them.
1267  */
1268 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1269                                      int previous, int *dd_idx,
1270                                      struct stripe_head *sh)
1271 {
1272         long stripe;
1273         unsigned long chunk_number;
1274         unsigned int chunk_offset;
1275         int pd_idx, qd_idx;
1276         int ddf_layout = 0;
1277         sector_t new_sector;
1278         int sectors_per_chunk = conf->chunk_size >> 9;
1279         int raid_disks = previous ? conf->previous_raid_disks
1280                                   : conf->raid_disks;
1281         int data_disks = raid_disks - conf->max_degraded;
1282
1283         /* First compute the information on this sector */
1284
1285         /*
1286          * Compute the chunk number and the sector offset inside the chunk
1287          */
1288         chunk_offset = sector_div(r_sector, sectors_per_chunk);
1289         chunk_number = r_sector;
1290         BUG_ON(r_sector != chunk_number);
1291
1292         /*
1293          * Compute the stripe number
1294          */
1295         stripe = chunk_number / data_disks;
1296
1297         /*
1298          * Compute the data disk and parity disk indexes inside the stripe
1299          */
1300         *dd_idx = chunk_number % data_disks;
1301
1302         /*
1303          * Select the parity disk based on the user selected algorithm.
1304          */
1305         pd_idx = qd_idx = ~0;
1306         switch(conf->level) {
1307         case 4:
1308                 pd_idx = data_disks;
1309                 break;
1310         case 5:
1311                 switch (conf->algorithm) {
1312                 case ALGORITHM_LEFT_ASYMMETRIC:
1313                         pd_idx = data_disks - stripe % raid_disks;
1314                         if (*dd_idx >= pd_idx)
1315                                 (*dd_idx)++;
1316                         break;
1317                 case ALGORITHM_RIGHT_ASYMMETRIC:
1318                         pd_idx = stripe % raid_disks;
1319                         if (*dd_idx >= pd_idx)
1320                                 (*dd_idx)++;
1321                         break;
1322                 case ALGORITHM_LEFT_SYMMETRIC:
1323                         pd_idx = data_disks - stripe % raid_disks;
1324                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1325                         break;
1326                 case ALGORITHM_RIGHT_SYMMETRIC:
1327                         pd_idx = stripe % raid_disks;
1328                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1329                         break;
1330                 case ALGORITHM_PARITY_0:
1331                         pd_idx = 0;
1332                         (*dd_idx)++;
1333                         break;
1334                 case ALGORITHM_PARITY_N:
1335                         pd_idx = data_disks;
1336                         break;
1337                 default:
1338                         printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1339                                 conf->algorithm);
1340                         BUG();
1341                 }
1342                 break;
1343         case 6:
1344
1345                 switch (conf->algorithm) {
1346                 case ALGORITHM_LEFT_ASYMMETRIC:
1347                         pd_idx = raid_disks - 1 - (stripe % raid_disks);
1348                         qd_idx = pd_idx + 1;
1349                         if (pd_idx == raid_disks-1) {
1350                                 (*dd_idx)++;    /* Q D D D P */
1351                                 qd_idx = 0;
1352                         } else if (*dd_idx >= pd_idx)
1353                                 (*dd_idx) += 2; /* D D P Q D */
1354                         break;
1355                 case ALGORITHM_RIGHT_ASYMMETRIC:
1356                         pd_idx = stripe % raid_disks;
1357                         qd_idx = pd_idx + 1;
1358                         if (pd_idx == raid_disks-1) {
1359                                 (*dd_idx)++;    /* Q D D D P */
1360                                 qd_idx = 0;
1361                         } else if (*dd_idx >= pd_idx)
1362                                 (*dd_idx) += 2; /* D D P Q D */
1363                         break;
1364                 case ALGORITHM_LEFT_SYMMETRIC:
1365                         pd_idx = raid_disks - 1 - (stripe % raid_disks);
1366                         qd_idx = (pd_idx + 1) % raid_disks;
1367                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1368                         break;
1369                 case ALGORITHM_RIGHT_SYMMETRIC:
1370                         pd_idx = stripe % raid_disks;
1371                         qd_idx = (pd_idx + 1) % raid_disks;
1372                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1373                         break;
1374
1375                 case ALGORITHM_PARITY_0:
1376                         pd_idx = 0;
1377                         qd_idx = 1;
1378                         (*dd_idx) += 2;
1379                         break;
1380                 case ALGORITHM_PARITY_N:
1381                         pd_idx = data_disks;
1382                         qd_idx = data_disks + 1;
1383                         break;
1384
1385                 case ALGORITHM_ROTATING_ZERO_RESTART:
1386                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
1387                          * of blocks for computing Q is different.
1388                          */
1389                         pd_idx = stripe % raid_disks;
1390                         qd_idx = pd_idx + 1;
1391                         if (pd_idx == raid_disks-1) {
1392                                 (*dd_idx)++;    /* Q D D D P */
1393                                 qd_idx = 0;
1394                         } else if (*dd_idx >= pd_idx)
1395                                 (*dd_idx) += 2; /* D D P Q D */
1396                         ddf_layout = 1;
1397                         break;
1398
1399                 case ALGORITHM_ROTATING_N_RESTART:
1400                         /* Same a left_asymmetric, by first stripe is
1401                          * D D D P Q  rather than
1402                          * Q D D D P
1403                          */
1404                         pd_idx = raid_disks - 1 - ((stripe + 1) % raid_disks);
1405                         qd_idx = pd_idx + 1;
1406                         if (pd_idx == raid_disks-1) {
1407                                 (*dd_idx)++;    /* Q D D D P */
1408                                 qd_idx = 0;
1409                         } else if (*dd_idx >= pd_idx)
1410                                 (*dd_idx) += 2; /* D D P Q D */
1411                         ddf_layout = 1;
1412                         break;
1413
1414                 case ALGORITHM_ROTATING_N_CONTINUE:
1415                         /* Same as left_symmetric but Q is before P */
1416                         pd_idx = raid_disks - 1 - (stripe % raid_disks);
1417                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1418                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1419                         ddf_layout = 1;
1420                         break;
1421
1422                 case ALGORITHM_LEFT_ASYMMETRIC_6:
1423                         /* RAID5 left_asymmetric, with Q on last device */
1424                         pd_idx = data_disks - stripe % (raid_disks-1);
1425                         if (*dd_idx >= pd_idx)
1426                                 (*dd_idx)++;
1427                         qd_idx = raid_disks - 1;
1428                         break;
1429
1430                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1431                         pd_idx = stripe % (raid_disks-1);
1432                         if (*dd_idx >= pd_idx)
1433                                 (*dd_idx)++;
1434                         qd_idx = raid_disks - 1;
1435                         break;
1436
1437                 case ALGORITHM_LEFT_SYMMETRIC_6:
1438                         pd_idx = data_disks - stripe % (raid_disks-1);
1439                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1440                         qd_idx = raid_disks - 1;
1441                         break;
1442
1443                 case ALGORITHM_RIGHT_SYMMETRIC_6:
1444                         pd_idx = stripe % (raid_disks-1);
1445                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1446                         qd_idx = raid_disks - 1;
1447                         break;
1448
1449                 case ALGORITHM_PARITY_0_6:
1450                         pd_idx = 0;
1451                         (*dd_idx)++;
1452                         qd_idx = raid_disks - 1;
1453                         break;
1454
1455
1456                 default:
1457                         printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1458                                conf->algorithm);
1459                         BUG();
1460                 }
1461                 break;
1462         }
1463
1464         if (sh) {
1465                 sh->pd_idx = pd_idx;
1466                 sh->qd_idx = qd_idx;
1467                 sh->ddf_layout = ddf_layout;
1468         }
1469         /*
1470          * Finally, compute the new sector number
1471          */
1472         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1473         return new_sector;
1474 }
1475
1476
1477 static sector_t compute_blocknr(struct stripe_head *sh, int i)
1478 {
1479         raid5_conf_t *conf = sh->raid_conf;
1480         int raid_disks = sh->disks;
1481         int data_disks = raid_disks - conf->max_degraded;
1482         sector_t new_sector = sh->sector, check;
1483         int sectors_per_chunk = conf->chunk_size >> 9;
1484         sector_t stripe;
1485         int chunk_offset;
1486         int chunk_number, dummy1, dd_idx = i;
1487         sector_t r_sector;
1488         struct stripe_head sh2;
1489
1490
1491         chunk_offset = sector_div(new_sector, sectors_per_chunk);
1492         stripe = new_sector;
1493         BUG_ON(new_sector != stripe);
1494
1495         if (i == sh->pd_idx)
1496                 return 0;
1497         switch(conf->level) {
1498         case 4: break;
1499         case 5:
1500                 switch (conf->algorithm) {
1501                 case ALGORITHM_LEFT_ASYMMETRIC:
1502                 case ALGORITHM_RIGHT_ASYMMETRIC:
1503                         if (i > sh->pd_idx)
1504                                 i--;
1505                         break;
1506                 case ALGORITHM_LEFT_SYMMETRIC:
1507                 case ALGORITHM_RIGHT_SYMMETRIC:
1508                         if (i < sh->pd_idx)
1509                                 i += raid_disks;
1510                         i -= (sh->pd_idx + 1);
1511                         break;
1512                 case ALGORITHM_PARITY_0:
1513                         i -= 1;
1514                         break;
1515                 case ALGORITHM_PARITY_N:
1516                         break;
1517                 default:
1518                         printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1519                                conf->algorithm);
1520                         BUG();
1521                 }
1522                 break;
1523         case 6:
1524                 if (i == sh->qd_idx)
1525                         return 0; /* It is the Q disk */
1526                 switch (conf->algorithm) {
1527                 case ALGORITHM_LEFT_ASYMMETRIC:
1528                 case ALGORITHM_RIGHT_ASYMMETRIC:
1529                 case ALGORITHM_ROTATING_ZERO_RESTART:
1530                 case ALGORITHM_ROTATING_N_RESTART:
1531                         if (sh->pd_idx == raid_disks-1)
1532                                 i--;    /* Q D D D P */
1533                         else if (i > sh->pd_idx)
1534                                 i -= 2; /* D D P Q D */
1535                         break;
1536                 case ALGORITHM_LEFT_SYMMETRIC:
1537                 case ALGORITHM_RIGHT_SYMMETRIC:
1538                         if (sh->pd_idx == raid_disks-1)
1539                                 i--; /* Q D D D P */
1540                         else {
1541                                 /* D D P Q D */
1542                                 if (i < sh->pd_idx)
1543                                         i += raid_disks;
1544                                 i -= (sh->pd_idx + 2);
1545                         }
1546                         break;
1547                 case ALGORITHM_PARITY_0:
1548                         i -= 2;
1549                         break;
1550                 case ALGORITHM_PARITY_N:
1551                         break;
1552                 case ALGORITHM_ROTATING_N_CONTINUE:
1553                         if (sh->pd_idx == 0)
1554                                 i--;    /* P D D D Q */
1555                         else if (i > sh->pd_idx)
1556                                 i -= 2; /* D D Q P D */
1557                         break;
1558                 case ALGORITHM_LEFT_ASYMMETRIC_6:
1559                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1560                         if (i > sh->pd_idx)
1561                                 i--;
1562                         break;
1563                 case ALGORITHM_LEFT_SYMMETRIC_6:
1564                 case ALGORITHM_RIGHT_SYMMETRIC_6:
1565                         if (i < sh->pd_idx)
1566                                 i += data_disks + 1;
1567                         i -= (sh->pd_idx + 1);
1568                         break;
1569                 case ALGORITHM_PARITY_0_6:
1570                         i -= 1;
1571                         break;
1572                 default:
1573                         printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1574                                conf->algorithm);
1575                         BUG();
1576                 }
1577                 break;
1578         }
1579
1580         chunk_number = stripe * data_disks + i;
1581         r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1582
1583         check = raid5_compute_sector(conf, r_sector,
1584                                      (raid_disks != conf->raid_disks),
1585                                      &dummy1, &sh2);
1586         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
1587                 || sh2.qd_idx != sh->qd_idx) {
1588                 printk(KERN_ERR "compute_blocknr: map not correct\n");
1589                 return 0;
1590         }
1591         return r_sector;
1592 }
1593
1594
1595
1596 /*
1597  * Copy data between a page in the stripe cache, and one or more bion
1598  * The page could align with the middle of the bio, or there could be
1599  * several bion, each with several bio_vecs, which cover part of the page
1600  * Multiple bion are linked together on bi_next.  There may be extras
1601  * at the end of this list.  We ignore them.
1602  */
1603 static void copy_data(int frombio, struct bio *bio,
1604                      struct page *page,
1605                      sector_t sector)
1606 {
1607         char *pa = page_address(page);
1608         struct bio_vec *bvl;
1609         int i;
1610         int page_offset;
1611
1612         if (bio->bi_sector >= sector)
1613                 page_offset = (signed)(bio->bi_sector - sector) * 512;
1614         else
1615                 page_offset = (signed)(sector - bio->bi_sector) * -512;
1616         bio_for_each_segment(bvl, bio, i) {
1617                 int len = bio_iovec_idx(bio,i)->bv_len;
1618                 int clen;
1619                 int b_offset = 0;
1620
1621                 if (page_offset < 0) {
1622                         b_offset = -page_offset;
1623                         page_offset += b_offset;
1624                         len -= b_offset;
1625                 }
1626
1627                 if (len > 0 && page_offset + len > STRIPE_SIZE)
1628                         clen = STRIPE_SIZE - page_offset;
1629                 else clen = len;
1630
1631                 if (clen > 0) {
1632                         char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1633                         if (frombio)
1634                                 memcpy(pa+page_offset, ba+b_offset, clen);
1635                         else
1636                                 memcpy(ba+b_offset, pa+page_offset, clen);
1637                         __bio_kunmap_atomic(ba, KM_USER0);
1638                 }
1639                 if (clen < len) /* hit end of page */
1640                         break;
1641                 page_offset +=  len;
1642         }
1643 }
1644
1645 #define check_xor()     do {                                              \
1646                                 if (count == MAX_XOR_BLOCKS) {            \
1647                                 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1648                                 count = 0;                                \
1649                            }                                              \
1650                         } while(0)
1651
1652 static void compute_parity6(struct stripe_head *sh, int method)
1653 {
1654         raid5_conf_t *conf = sh->raid_conf;
1655         int i, pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1656         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1657         struct bio *chosen;
1658         /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1659         void *ptrs[syndrome_disks+2];
1660
1661         pd_idx = sh->pd_idx;
1662         qd_idx = sh->qd_idx;
1663         d0_idx = raid6_d0(sh);
1664
1665         pr_debug("compute_parity, stripe %llu, method %d\n",
1666                 (unsigned long long)sh->sector, method);
1667
1668         switch(method) {
1669         case READ_MODIFY_WRITE:
1670                 BUG();          /* READ_MODIFY_WRITE N/A for RAID-6 */
1671         case RECONSTRUCT_WRITE:
1672                 for (i= disks; i-- ;)
1673                         if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1674                                 chosen = sh->dev[i].towrite;
1675                                 sh->dev[i].towrite = NULL;
1676
1677                                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1678                                         wake_up(&conf->wait_for_overlap);
1679
1680                                 BUG_ON(sh->dev[i].written);
1681                                 sh->dev[i].written = chosen;
1682                         }
1683                 break;
1684         case CHECK_PARITY:
1685                 BUG();          /* Not implemented yet */
1686         }
1687
1688         for (i = disks; i--;)
1689                 if (sh->dev[i].written) {
1690                         sector_t sector = sh->dev[i].sector;
1691                         struct bio *wbi = sh->dev[i].written;
1692                         while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1693                                 copy_data(1, wbi, sh->dev[i].page, sector);
1694                                 wbi = r5_next_bio(wbi, sector);
1695                         }
1696
1697                         set_bit(R5_LOCKED, &sh->dev[i].flags);
1698                         set_bit(R5_UPTODATE, &sh->dev[i].flags);
1699                 }
1700
1701         /* Note that unlike RAID-5, the ordering of the disks matters greatly.*/
1702
1703         for (i = 0; i < disks; i++)
1704                 ptrs[i] = (void *)raid6_empty_zero_page;
1705
1706         count = 0;
1707         i = d0_idx;
1708         do {
1709                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1710
1711                 ptrs[slot] = page_address(sh->dev[i].page);
1712                 if (slot < syndrome_disks &&
1713                     !test_bit(R5_UPTODATE, &sh->dev[i].flags)) {
1714                         printk(KERN_ERR "block %d/%d not uptodate "
1715                                "on parity calc\n", i, count);
1716                         BUG();
1717                 }
1718
1719                 i = raid6_next_disk(i, disks);
1720         } while (i != d0_idx);
1721         BUG_ON(count != syndrome_disks);
1722
1723         raid6_call.gen_syndrome(syndrome_disks+2, STRIPE_SIZE, ptrs);
1724
1725         switch(method) {
1726         case RECONSTRUCT_WRITE:
1727                 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1728                 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1729                 set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
1730                 set_bit(R5_LOCKED,   &sh->dev[qd_idx].flags);
1731                 break;
1732         case UPDATE_PARITY:
1733                 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1734                 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1735                 break;
1736         }
1737 }
1738
1739
1740 /* Compute one missing block */
1741 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1742 {
1743         int i, count, disks = sh->disks;
1744         void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1745         int qd_idx = sh->qd_idx;
1746
1747         pr_debug("compute_block_1, stripe %llu, idx %d\n",
1748                 (unsigned long long)sh->sector, dd_idx);
1749
1750         if ( dd_idx == qd_idx ) {
1751                 /* We're actually computing the Q drive */
1752                 compute_parity6(sh, UPDATE_PARITY);
1753         } else {
1754                 dest = page_address(sh->dev[dd_idx].page);
1755                 if (!nozero) memset(dest, 0, STRIPE_SIZE);
1756                 count = 0;
1757                 for (i = disks ; i--; ) {
1758                         if (i == dd_idx || i == qd_idx)
1759                                 continue;
1760                         p = page_address(sh->dev[i].page);
1761                         if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1762                                 ptr[count++] = p;
1763                         else
1764                                 printk("compute_block() %d, stripe %llu, %d"
1765                                        " not present\n", dd_idx,
1766                                        (unsigned long long)sh->sector, i);
1767
1768                         check_xor();
1769                 }
1770                 if (count)
1771                         xor_blocks(count, STRIPE_SIZE, dest, ptr);
1772                 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1773                 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1774         }
1775 }
1776
1777 /* Compute two missing blocks */
1778 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1779 {
1780         int i, count, disks = sh->disks;
1781         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1782         int d0_idx = raid6_d0(sh);
1783         int faila = -1, failb = -1;
1784         /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1785         void *ptrs[syndrome_disks+2];
1786
1787         for (i = 0; i < disks ; i++)
1788                 ptrs[i] = (void *)raid6_empty_zero_page;
1789         count = 0;
1790         i = d0_idx;
1791         do {
1792                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1793
1794                 ptrs[slot] = page_address(sh->dev[i].page);
1795
1796                 if (i == dd_idx1)
1797                         faila = slot;
1798                 if (i == dd_idx2)
1799                         failb = slot;
1800                 i = raid6_next_disk(i, disks);
1801         } while (i != d0_idx);
1802         BUG_ON(count != syndrome_disks);
1803
1804         BUG_ON(faila == failb);
1805         if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1806
1807         pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1808                  (unsigned long long)sh->sector, dd_idx1, dd_idx2,
1809                  faila, failb);
1810
1811         if (failb == syndrome_disks+1) {
1812                 /* Q disk is one of the missing disks */
1813                 if (faila == syndrome_disks) {
1814                         /* Missing P+Q, just recompute */
1815                         compute_parity6(sh, UPDATE_PARITY);
1816                         return;
1817                 } else {
1818                         /* We're missing D+Q; recompute D from P */
1819                         compute_block_1(sh, ((dd_idx1 == sh->qd_idx) ?
1820                                              dd_idx2 : dd_idx1),
1821                                         0);
1822                         compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1823                         return;
1824                 }
1825         }
1826
1827         /* We're missing D+P or D+D; */
1828         if (failb == syndrome_disks) {
1829                 /* We're missing D+P. */
1830                 raid6_datap_recov(syndrome_disks+2, STRIPE_SIZE, faila, ptrs);
1831         } else {
1832                 /* We're missing D+D. */
1833                 raid6_2data_recov(syndrome_disks+2, STRIPE_SIZE, faila, failb,
1834                                   ptrs);
1835         }
1836
1837         /* Both the above update both missing blocks */
1838         set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1839         set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1840 }
1841
1842 static void
1843 schedule_reconstruction5(struct stripe_head *sh, struct stripe_head_state *s,
1844                          int rcw, int expand)
1845 {
1846         int i, pd_idx = sh->pd_idx, disks = sh->disks;
1847
1848         if (rcw) {
1849                 /* if we are not expanding this is a proper write request, and
1850                  * there will be bios with new data to be drained into the
1851                  * stripe cache
1852                  */
1853                 if (!expand) {
1854                         sh->reconstruct_state = reconstruct_state_drain_run;
1855                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1856                 } else
1857                         sh->reconstruct_state = reconstruct_state_run;
1858
1859                 set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1860
1861                 for (i = disks; i--; ) {
1862                         struct r5dev *dev = &sh->dev[i];
1863
1864                         if (dev->towrite) {
1865                                 set_bit(R5_LOCKED, &dev->flags);
1866                                 set_bit(R5_Wantdrain, &dev->flags);
1867                                 if (!expand)
1868                                         clear_bit(R5_UPTODATE, &dev->flags);
1869                                 s->locked++;
1870                         }
1871                 }
1872                 if (s->locked + 1 == disks)
1873                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
1874                                 atomic_inc(&sh->raid_conf->pending_full_writes);
1875         } else {
1876                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1877                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1878
1879                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
1880                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
1881                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1882                 set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1883
1884                 for (i = disks; i--; ) {
1885                         struct r5dev *dev = &sh->dev[i];
1886                         if (i == pd_idx)
1887                                 continue;
1888
1889                         if (dev->towrite &&
1890                             (test_bit(R5_UPTODATE, &dev->flags) ||
1891                              test_bit(R5_Wantcompute, &dev->flags))) {
1892                                 set_bit(R5_Wantdrain, &dev->flags);
1893                                 set_bit(R5_LOCKED, &dev->flags);
1894                                 clear_bit(R5_UPTODATE, &dev->flags);
1895                                 s->locked++;
1896                         }
1897                 }
1898         }
1899
1900         /* keep the parity disk locked while asynchronous operations
1901          * are in flight
1902          */
1903         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1904         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1905         s->locked++;
1906
1907         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
1908                 __func__, (unsigned long long)sh->sector,
1909                 s->locked, s->ops_request);
1910 }
1911
1912 /*
1913  * Each stripe/dev can have one or more bion attached.
1914  * toread/towrite point to the first in a chain.
1915  * The bi_next chain must be in order.
1916  */
1917 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1918 {
1919         struct bio **bip;
1920         raid5_conf_t *conf = sh->raid_conf;
1921         int firstwrite=0;
1922
1923         pr_debug("adding bh b#%llu to stripe s#%llu\n",
1924                 (unsigned long long)bi->bi_sector,
1925                 (unsigned long long)sh->sector);
1926
1927
1928         spin_lock(&sh->lock);
1929         spin_lock_irq(&conf->device_lock);
1930         if (forwrite) {
1931                 bip = &sh->dev[dd_idx].towrite;
1932                 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1933                         firstwrite = 1;
1934         } else
1935                 bip = &sh->dev[dd_idx].toread;
1936         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1937                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1938                         goto overlap;
1939                 bip = & (*bip)->bi_next;
1940         }
1941         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1942                 goto overlap;
1943
1944         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1945         if (*bip)
1946                 bi->bi_next = *bip;
1947         *bip = bi;
1948         bi->bi_phys_segments++;
1949         spin_unlock_irq(&conf->device_lock);
1950         spin_unlock(&sh->lock);
1951
1952         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1953                 (unsigned long long)bi->bi_sector,
1954                 (unsigned long long)sh->sector, dd_idx);
1955
1956         if (conf->mddev->bitmap && firstwrite) {
1957                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1958                                   STRIPE_SECTORS, 0);
1959                 sh->bm_seq = conf->seq_flush+1;
1960                 set_bit(STRIPE_BIT_DELAY, &sh->state);
1961         }
1962
1963         if (forwrite) {
1964                 /* check if page is covered */
1965                 sector_t sector = sh->dev[dd_idx].sector;
1966                 for (bi=sh->dev[dd_idx].towrite;
1967                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1968                              bi && bi->bi_sector <= sector;
1969                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1970                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1971                                 sector = bi->bi_sector + (bi->bi_size>>9);
1972                 }
1973                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1974                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1975         }
1976         return 1;
1977
1978  overlap:
1979         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1980         spin_unlock_irq(&conf->device_lock);
1981         spin_unlock(&sh->lock);
1982         return 0;
1983 }
1984
1985 static void end_reshape(raid5_conf_t *conf);
1986
1987 static int page_is_zero(struct page *p)
1988 {
1989         char *a = page_address(p);
1990         return ((*(u32*)a) == 0 &&
1991                 memcmp(a, a+4, STRIPE_SIZE-4)==0);
1992 }
1993
1994 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
1995                             struct stripe_head *sh)
1996 {
1997         int sectors_per_chunk = conf->chunk_size >> 9;
1998         int dd_idx;
1999         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2000         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2001
2002         raid5_compute_sector(conf,
2003                              stripe * (disks - conf->max_degraded)
2004                              *sectors_per_chunk + chunk_offset,
2005                              previous,
2006                              &dd_idx, sh);
2007 }
2008
2009 static void
2010 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2011                                 struct stripe_head_state *s, int disks,
2012                                 struct bio **return_bi)
2013 {
2014         int i;
2015         for (i = disks; i--; ) {
2016                 struct bio *bi;
2017                 int bitmap_end = 0;
2018
2019                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2020                         mdk_rdev_t *rdev;
2021                         rcu_read_lock();
2022                         rdev = rcu_dereference(conf->disks[i].rdev);
2023                         if (rdev && test_bit(In_sync, &rdev->flags))
2024                                 /* multiple read failures in one stripe */
2025                                 md_error(conf->mddev, rdev);
2026                         rcu_read_unlock();
2027                 }
2028                 spin_lock_irq(&conf->device_lock);
2029                 /* fail all writes first */
2030                 bi = sh->dev[i].towrite;
2031                 sh->dev[i].towrite = NULL;
2032                 if (bi) {
2033                         s->to_write--;
2034                         bitmap_end = 1;
2035                 }
2036
2037                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2038                         wake_up(&conf->wait_for_overlap);
2039
2040                 while (bi && bi->bi_sector <
2041                         sh->dev[i].sector + STRIPE_SECTORS) {
2042                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2043                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2044                         if (!raid5_dec_bi_phys_segments(bi)) {
2045                                 md_write_end(conf->mddev);
2046                                 bi->bi_next = *return_bi;
2047                                 *return_bi = bi;
2048                         }
2049                         bi = nextbi;
2050                 }
2051                 /* and fail all 'written' */
2052                 bi = sh->dev[i].written;
2053                 sh->dev[i].written = NULL;
2054                 if (bi) bitmap_end = 1;
2055                 while (bi && bi->bi_sector <
2056                        sh->dev[i].sector + STRIPE_SECTORS) {
2057                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2058                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2059                         if (!raid5_dec_bi_phys_segments(bi)) {
2060                                 md_write_end(conf->mddev);
2061                                 bi->bi_next = *return_bi;
2062                                 *return_bi = bi;
2063                         }
2064                         bi = bi2;
2065                 }
2066
2067                 /* fail any reads if this device is non-operational and
2068                  * the data has not reached the cache yet.
2069                  */
2070                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2071                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2072                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2073                         bi = sh->dev[i].toread;
2074                         sh->dev[i].toread = NULL;
2075                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2076                                 wake_up(&conf->wait_for_overlap);
2077                         if (bi) s->to_read--;
2078                         while (bi && bi->bi_sector <
2079                                sh->dev[i].sector + STRIPE_SECTORS) {
2080                                 struct bio *nextbi =
2081                                         r5_next_bio(bi, sh->dev[i].sector);
2082                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2083                                 if (!raid5_dec_bi_phys_segments(bi)) {
2084                                         bi->bi_next = *return_bi;
2085                                         *return_bi = bi;
2086                                 }
2087                                 bi = nextbi;
2088                         }
2089                 }
2090                 spin_unlock_irq(&conf->device_lock);
2091                 if (bitmap_end)
2092                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2093                                         STRIPE_SECTORS, 0, 0);
2094         }
2095
2096         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2097                 if (atomic_dec_and_test(&conf->pending_full_writes))
2098                         md_wakeup_thread(conf->mddev->thread);
2099 }
2100
2101 /* fetch_block5 - checks the given member device to see if its data needs
2102  * to be read or computed to satisfy a request.
2103  *
2104  * Returns 1 when no more member devices need to be checked, otherwise returns
2105  * 0 to tell the loop in handle_stripe_fill5 to continue
2106  */
2107 static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2108                         int disk_idx, int disks)
2109 {
2110         struct r5dev *dev = &sh->dev[disk_idx];
2111         struct r5dev *failed_dev = &sh->dev[s->failed_num];
2112
2113         /* is the data in this block needed, and can we get it? */
2114         if (!test_bit(R5_LOCKED, &dev->flags) &&
2115             !test_bit(R5_UPTODATE, &dev->flags) &&
2116             (dev->toread ||
2117              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2118              s->syncing || s->expanding ||
2119              (s->failed &&
2120               (failed_dev->toread ||
2121                (failed_dev->towrite &&
2122                 !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2123                 /* We would like to get this block, possibly by computing it,
2124                  * otherwise read it if the backing disk is insync
2125                  */
2126                 if ((s->uptodate == disks - 1) &&
2127                     (s->failed && disk_idx == s->failed_num)) {
2128                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2129                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2130                         set_bit(R5_Wantcompute, &dev->flags);
2131                         sh->ops.target = disk_idx;
2132                         s->req_compute = 1;
2133                         /* Careful: from this point on 'uptodate' is in the eye
2134                          * of raid5_run_ops which services 'compute' operations
2135                          * before writes. R5_Wantcompute flags a block that will
2136                          * be R5_UPTODATE by the time it is needed for a
2137                          * subsequent operation.
2138                          */
2139                         s->uptodate++;
2140                         return 1; /* uptodate + compute == disks */
2141                 } else if (test_bit(R5_Insync, &dev->flags)) {
2142                         set_bit(R5_LOCKED, &dev->flags);
2143                         set_bit(R5_Wantread, &dev->flags);
2144                         s->locked++;
2145                         pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2146                                 s->syncing);
2147                 }
2148         }
2149
2150         return 0;
2151 }
2152
2153 /**
2154  * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2155  */
2156 static void handle_stripe_fill5(struct stripe_head *sh,
2157                         struct stripe_head_state *s, int disks)
2158 {
2159         int i;
2160
2161         /* look for blocks to read/compute, skip this if a compute
2162          * is already in flight, or if the stripe contents are in the
2163          * midst of changing due to a write
2164          */
2165         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2166             !sh->reconstruct_state)
2167                 for (i = disks; i--; )
2168                         if (fetch_block5(sh, s, i, disks))
2169                                 break;
2170         set_bit(STRIPE_HANDLE, &sh->state);
2171 }
2172
2173 static void handle_stripe_fill6(struct stripe_head *sh,
2174                         struct stripe_head_state *s, struct r6_state *r6s,
2175                         int disks)
2176 {
2177         int i;
2178         for (i = disks; i--; ) {
2179                 struct r5dev *dev = &sh->dev[i];
2180                 if (!test_bit(R5_LOCKED, &dev->flags) &&
2181                     !test_bit(R5_UPTODATE, &dev->flags) &&
2182                     (dev->toread || (dev->towrite &&
2183                      !test_bit(R5_OVERWRITE, &dev->flags)) ||
2184                      s->syncing || s->expanding ||
2185                      (s->failed >= 1 &&
2186                       (sh->dev[r6s->failed_num[0]].toread ||
2187                        s->to_write)) ||
2188                      (s->failed >= 2 &&
2189                       (sh->dev[r6s->failed_num[1]].toread ||
2190                        s->to_write)))) {
2191                         /* we would like to get this block, possibly
2192                          * by computing it, but we might not be able to
2193                          */
2194                         if ((s->uptodate == disks - 1) &&
2195                             (s->failed && (i == r6s->failed_num[0] ||
2196                                            i == r6s->failed_num[1]))) {
2197                                 pr_debug("Computing stripe %llu block %d\n",
2198                                        (unsigned long long)sh->sector, i);
2199                                 compute_block_1(sh, i, 0);
2200                                 s->uptodate++;
2201                         } else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2202                                 /* Computing 2-failure is *very* expensive; only
2203                                  * do it if failed >= 2
2204                                  */
2205                                 int other;
2206                                 for (other = disks; other--; ) {
2207                                         if (other == i)
2208                                                 continue;
2209                                         if (!test_bit(R5_UPTODATE,
2210                                               &sh->dev[other].flags))
2211                                                 break;
2212                                 }
2213                                 BUG_ON(other < 0);
2214                                 pr_debug("Computing stripe %llu blocks %d,%d\n",
2215                                        (unsigned long long)sh->sector,
2216                                        i, other);
2217                                 compute_block_2(sh, i, other);
2218                                 s->uptodate += 2;
2219                         } else if (test_bit(R5_Insync, &dev->flags)) {
2220                                 set_bit(R5_LOCKED, &dev->flags);
2221                                 set_bit(R5_Wantread, &dev->flags);
2222                                 s->locked++;
2223                                 pr_debug("Reading block %d (sync=%d)\n",
2224                                         i, s->syncing);
2225                         }
2226                 }
2227         }
2228         set_bit(STRIPE_HANDLE, &sh->state);
2229 }
2230
2231
2232 /* handle_stripe_clean_event
2233  * any written block on an uptodate or failed drive can be returned.
2234  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2235  * never LOCKED, so we don't need to test 'failed' directly.
2236  */
2237 static void handle_stripe_clean_event(raid5_conf_t *conf,
2238         struct stripe_head *sh, int disks, struct bio **return_bi)
2239 {
2240         int i;
2241         struct r5dev *dev;
2242
2243         for (i = disks; i--; )
2244                 if (sh->dev[i].written) {
2245                         dev = &sh->dev[i];
2246                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2247                                 test_bit(R5_UPTODATE, &dev->flags)) {
2248                                 /* We can return any write requests */
2249                                 struct bio *wbi, *wbi2;
2250                                 int bitmap_end = 0;
2251                                 pr_debug("Return write for disc %d\n", i);
2252                                 spin_lock_irq(&conf->device_lock);
2253                                 wbi = dev->written;
2254                                 dev->written = NULL;
2255                                 while (wbi && wbi->bi_sector <
2256                                         dev->sector + STRIPE_SECTORS) {
2257                                         wbi2 = r5_next_bio(wbi, dev->sector);
2258                                         if (!raid5_dec_bi_phys_segments(wbi)) {
2259                                                 md_write_end(conf->mddev);
2260                                                 wbi->bi_next = *return_bi;
2261                                                 *return_bi = wbi;
2262                                         }
2263                                         wbi = wbi2;
2264                                 }
2265                                 if (dev->towrite == NULL)
2266                                         bitmap_end = 1;
2267                                 spin_unlock_irq(&conf->device_lock);
2268                                 if (bitmap_end)
2269                                         bitmap_endwrite(conf->mddev->bitmap,
2270                                                         sh->sector,
2271                                                         STRIPE_SECTORS,
2272                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2273                                                         0);
2274                         }
2275                 }
2276
2277         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2278                 if (atomic_dec_and_test(&conf->pending_full_writes))
2279                         md_wakeup_thread(conf->mddev->thread);
2280 }
2281
2282 static void handle_stripe_dirtying5(raid5_conf_t *conf,
2283                 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2284 {
2285         int rmw = 0, rcw = 0, i;
2286         for (i = disks; i--; ) {
2287                 /* would I have to read this buffer for read_modify_write */
2288                 struct r5dev *dev = &sh->dev[i];
2289                 if ((dev->towrite || i == sh->pd_idx) &&
2290                     !test_bit(R5_LOCKED, &dev->flags) &&
2291                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2292                       test_bit(R5_Wantcompute, &dev->flags))) {
2293                         if (test_bit(R5_Insync, &dev->flags))
2294                                 rmw++;
2295                         else
2296                                 rmw += 2*disks;  /* cannot read it */
2297                 }
2298                 /* Would I have to read this buffer for reconstruct_write */
2299                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2300                     !test_bit(R5_LOCKED, &dev->flags) &&
2301                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2302                     test_bit(R5_Wantcompute, &dev->flags))) {
2303                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2304                         else
2305                                 rcw += 2*disks;
2306                 }
2307         }
2308         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2309                 (unsigned long long)sh->sector, rmw, rcw);
2310         set_bit(STRIPE_HANDLE, &sh->state);
2311         if (rmw < rcw && rmw > 0)
2312                 /* prefer read-modify-write, but need to get some data */
2313                 for (i = disks; i--; ) {
2314                         struct r5dev *dev = &sh->dev[i];
2315                         if ((dev->towrite || i == sh->pd_idx) &&
2316                             !test_bit(R5_LOCKED, &dev->flags) &&
2317                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2318                             test_bit(R5_Wantcompute, &dev->flags)) &&
2319                             test_bit(R5_Insync, &dev->flags)) {
2320                                 if (
2321                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2322                                         pr_debug("Read_old block "
2323                                                 "%d for r-m-w\n", i);
2324                                         set_bit(R5_LOCKED, &dev->flags);
2325                                         set_bit(R5_Wantread, &dev->flags);
2326                                         s->locked++;
2327                                 } else {
2328                                         set_bit(STRIPE_DELAYED, &sh->state);
2329                                         set_bit(STRIPE_HANDLE, &sh->state);
2330                                 }
2331                         }
2332                 }
2333         if (rcw <= rmw && rcw > 0)
2334                 /* want reconstruct write, but need to get some data */
2335                 for (i = disks; i--; ) {
2336                         struct r5dev *dev = &sh->dev[i];
2337                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2338                             i != sh->pd_idx &&
2339                             !test_bit(R5_LOCKED, &dev->flags) &&
2340                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2341                             test_bit(R5_Wantcompute, &dev->flags)) &&
2342                             test_bit(R5_Insync, &dev->flags)) {
2343                                 if (
2344                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2345                                         pr_debug("Read_old block "
2346                                                 "%d for Reconstruct\n", i);
2347                                         set_bit(R5_LOCKED, &dev->flags);
2348                                         set_bit(R5_Wantread, &dev->flags);
2349                                         s->locked++;
2350                                 } else {
2351                                         set_bit(STRIPE_DELAYED, &sh->state);
2352                                         set_bit(STRIPE_HANDLE, &sh->state);
2353                                 }
2354                         }
2355                 }
2356         /* now if nothing is locked, and if we have enough data,
2357          * we can start a write request
2358          */
2359         /* since handle_stripe can be called at any time we need to handle the
2360          * case where a compute block operation has been submitted and then a
2361          * subsequent call wants to start a write request.  raid5_run_ops only
2362          * handles the case where compute block and postxor are requested
2363          * simultaneously.  If this is not the case then new writes need to be
2364          * held off until the compute completes.
2365          */
2366         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2367             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2368             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2369                 schedule_reconstruction5(sh, s, rcw == 0, 0);
2370 }
2371
2372 static void handle_stripe_dirtying6(raid5_conf_t *conf,
2373                 struct stripe_head *sh, struct stripe_head_state *s,
2374                 struct r6_state *r6s, int disks)
2375 {
2376         int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2377         int qd_idx = r6s->qd_idx;
2378         for (i = disks; i--; ) {
2379                 struct r5dev *dev = &sh->dev[i];
2380                 /* Would I have to read this buffer for reconstruct_write */
2381                 if (!test_bit(R5_OVERWRITE, &dev->flags)
2382                     && i != pd_idx && i != qd_idx
2383                     && (!test_bit(R5_LOCKED, &dev->flags)
2384                             ) &&
2385                     !test_bit(R5_UPTODATE, &dev->flags)) {
2386                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2387                         else {
2388                                 pr_debug("raid6: must_compute: "
2389                                         "disk %d flags=%#lx\n", i, dev->flags);
2390                                 must_compute++;
2391                         }
2392                 }
2393         }
2394         pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2395                (unsigned long long)sh->sector, rcw, must_compute);
2396         set_bit(STRIPE_HANDLE, &sh->state);
2397
2398         if (rcw > 0)
2399                 /* want reconstruct write, but need to get some data */
2400                 for (i = disks; i--; ) {
2401                         struct r5dev *dev = &sh->dev[i];
2402                         if (!test_bit(R5_OVERWRITE, &dev->flags)
2403                             && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2404                             && !test_bit(R5_LOCKED, &dev->flags) &&
2405                             !test_bit(R5_UPTODATE, &dev->flags) &&
2406                             test_bit(R5_Insync, &dev->flags)) {
2407                                 if (
2408                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2409                                         pr_debug("Read_old stripe %llu "
2410                                                 "block %d for Reconstruct\n",
2411                                              (unsigned long long)sh->sector, i);
2412                                         set_bit(R5_LOCKED, &dev->flags);
2413                                         set_bit(R5_Wantread, &dev->flags);
2414                                         s->locked++;
2415                                 } else {
2416                                         pr_debug("Request delayed stripe %llu "
2417                                                 "block %d for Reconstruct\n",
2418                                              (unsigned long long)sh->sector, i);
2419                                         set_bit(STRIPE_DELAYED, &sh->state);
2420                                         set_bit(STRIPE_HANDLE, &sh->state);
2421                                 }
2422                         }
2423                 }
2424         /* now if nothing is locked, and if we have enough data, we can start a
2425          * write request
2426          */
2427         if (s->locked == 0 && rcw == 0 &&
2428             !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2429                 if (must_compute > 0) {
2430                         /* We have failed blocks and need to compute them */
2431                         switch (s->failed) {
2432                         case 0:
2433                                 BUG();
2434                         case 1:
2435                                 compute_block_1(sh, r6s->failed_num[0], 0);
2436                                 break;
2437                         case 2:
2438                                 compute_block_2(sh, r6s->failed_num[0],
2439                                                 r6s->failed_num[1]);
2440                                 break;
2441                         default: /* This request should have been failed? */
2442                                 BUG();
2443                         }
2444                 }
2445
2446                 pr_debug("Computing parity for stripe %llu\n",
2447                         (unsigned long long)sh->sector);
2448                 compute_parity6(sh, RECONSTRUCT_WRITE);
2449                 /* now every locked buffer is ready to be written */
2450                 for (i = disks; i--; )
2451                         if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2452                                 pr_debug("Writing stripe %llu block %d\n",
2453                                        (unsigned long long)sh->sector, i);
2454                                 s->locked++;
2455                                 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2456                         }
2457                 if (s->locked == disks)
2458                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2459                                 atomic_inc(&conf->pending_full_writes);
2460                 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2461                 set_bit(STRIPE_INSYNC, &sh->state);
2462
2463                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2464                         atomic_dec(&conf->preread_active_stripes);
2465                         if (atomic_read(&conf->preread_active_stripes) <
2466                             IO_THRESHOLD)
2467                                 md_wakeup_thread(conf->mddev->thread);
2468                 }
2469         }
2470 }
2471
2472 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2473                                 struct stripe_head_state *s, int disks)
2474 {
2475         struct r5dev *dev = NULL;
2476
2477         set_bit(STRIPE_HANDLE, &sh->state);
2478
2479         switch (sh->check_state) {
2480         case check_state_idle:
2481                 /* start a new check operation if there are no failures */
2482                 if (s->failed == 0) {
2483                         BUG_ON(s->uptodate != disks);
2484                         sh->check_state = check_state_run;
2485                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2486                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2487                         s->uptodate--;
2488                         break;
2489                 }
2490                 dev = &sh->dev[s->failed_num];
2491                 /* fall through */
2492         case check_state_compute_result:
2493                 sh->check_state = check_state_idle;
2494                 if (!dev)
2495                         dev = &sh->dev[sh->pd_idx];
2496
2497                 /* check that a write has not made the stripe insync */
2498                 if (test_bit(STRIPE_INSYNC, &sh->state))
2499                         break;
2500
2501                 /* either failed parity check, or recovery is happening */
2502                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2503                 BUG_ON(s->uptodate != disks);
2504
2505                 set_bit(R5_LOCKED, &dev->flags);
2506                 s->locked++;
2507                 set_bit(R5_Wantwrite, &dev->flags);
2508
2509                 clear_bit(STRIPE_DEGRADED, &sh->state);
2510                 set_bit(STRIPE_INSYNC, &sh->state);
2511                 break;
2512         case check_state_run:
2513                 break; /* we will be called again upon completion */
2514         case check_state_check_result:
2515                 sh->check_state = check_state_idle;
2516
2517                 /* if a failure occurred during the check operation, leave
2518                  * STRIPE_INSYNC not set and let the stripe be handled again
2519                  */
2520                 if (s->failed)
2521                         break;
2522
2523                 /* handle a successful check operation, if parity is correct
2524                  * we are done.  Otherwise update the mismatch count and repair
2525                  * parity if !MD_RECOVERY_CHECK
2526                  */
2527                 if (sh->ops.zero_sum_result == 0)
2528                         /* parity is correct (on disc,
2529                          * not in buffer any more)
2530                          */
2531                         set_bit(STRIPE_INSYNC, &sh->state);
2532                 else {
2533                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2534                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2535                                 /* don't try to repair!! */
2536                                 set_bit(STRIPE_INSYNC, &sh->state);
2537                         else {
2538                                 sh->check_state = check_state_compute_run;
2539                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2540                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2541                                 set_bit(R5_Wantcompute,
2542                                         &sh->dev[sh->pd_idx].flags);
2543                                 sh->ops.target = sh->pd_idx;
2544                                 s->uptodate++;
2545                         }
2546                 }
2547                 break;
2548         case check_state_compute_run:
2549                 break;
2550         default:
2551                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2552                        __func__, sh->check_state,
2553                        (unsigned long long) sh->sector);
2554                 BUG();
2555         }
2556 }
2557
2558
2559 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2560                                 struct stripe_head_state *s,
2561                                 struct r6_state *r6s, struct page *tmp_page,
2562                                 int disks)
2563 {
2564         int update_p = 0, update_q = 0;
2565         struct r5dev *dev;
2566         int pd_idx = sh->pd_idx;
2567         int qd_idx = r6s->qd_idx;
2568
2569         set_bit(STRIPE_HANDLE, &sh->state);
2570
2571         BUG_ON(s->failed > 2);
2572         BUG_ON(s->uptodate < disks);
2573         /* Want to check and possibly repair P and Q.
2574          * However there could be one 'failed' device, in which
2575          * case we can only check one of them, possibly using the
2576          * other to generate missing data
2577          */
2578
2579         /* If !tmp_page, we cannot do the calculations,
2580          * but as we have set STRIPE_HANDLE, we will soon be called
2581          * by stripe_handle with a tmp_page - just wait until then.
2582          */
2583         if (tmp_page) {
2584                 if (s->failed == r6s->q_failed) {
2585                         /* The only possible failed device holds 'Q', so it
2586                          * makes sense to check P (If anything else were failed,
2587                          * we would have used P to recreate it).
2588                          */
2589                         compute_block_1(sh, pd_idx, 1);
2590                         if (!page_is_zero(sh->dev[pd_idx].page)) {
2591                                 compute_block_1(sh, pd_idx, 0);
2592                                 update_p = 1;
2593                         }
2594                 }
2595                 if (!r6s->q_failed && s->failed < 2) {
2596                         /* q is not failed, and we didn't use it to generate
2597                          * anything, so it makes sense to check it
2598                          */
2599                         memcpy(page_address(tmp_page),
2600                                page_address(sh->dev[qd_idx].page),
2601                                STRIPE_SIZE);
2602                         compute_parity6(sh, UPDATE_PARITY);
2603                         if (memcmp(page_address(tmp_page),
2604                                    page_address(sh->dev[qd_idx].page),
2605                                    STRIPE_SIZE) != 0) {
2606                                 clear_bit(STRIPE_INSYNC, &sh->state);
2607                                 update_q = 1;
2608                         }
2609                 }
2610                 if (update_p || update_q) {
2611                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2612                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2613                                 /* don't try to repair!! */
2614                                 update_p = update_q = 0;
2615                 }
2616
2617                 /* now write out any block on a failed drive,
2618                  * or P or Q if they need it
2619                  */
2620
2621                 if (s->failed == 2) {
2622                         dev = &sh->dev[r6s->failed_num[1]];
2623                         s->locked++;
2624                         set_bit(R5_LOCKED, &dev->flags);
2625                         set_bit(R5_Wantwrite, &dev->flags);
2626                 }
2627                 if (s->failed >= 1) {
2628                         dev = &sh->dev[r6s->failed_num[0]];
2629                         s->locked++;
2630                         set_bit(R5_LOCKED, &dev->flags);
2631                         set_bit(R5_Wantwrite, &dev->flags);
2632                 }
2633
2634                 if (update_p) {
2635                         dev = &sh->dev[pd_idx];
2636                         s->locked++;
2637                         set_bit(R5_LOCKED, &dev->flags);
2638                         set_bit(R5_Wantwrite, &dev->flags);
2639                 }
2640                 if (update_q) {
2641                         dev = &sh->dev[qd_idx];
2642                         s->locked++;
2643                         set_bit(R5_LOCKED, &dev->flags);
2644                         set_bit(R5_Wantwrite, &dev->flags);
2645                 }
2646                 clear_bit(STRIPE_DEGRADED, &sh->state);
2647
2648                 set_bit(STRIPE_INSYNC, &sh->state);
2649         }
2650 }
2651
2652 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2653                                 struct r6_state *r6s)
2654 {
2655         int i;
2656
2657         /* We have read all the blocks in this stripe and now we need to
2658          * copy some of them into a target stripe for expand.
2659          */
2660         struct dma_async_tx_descriptor *tx = NULL;
2661         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2662         for (i = 0; i < sh->disks; i++)
2663                 if (i != sh->pd_idx && (!r6s || i != r6s->qd_idx)) {
2664                         int dd_idx, j;
2665                         struct stripe_head *sh2;
2666
2667                         sector_t bn = compute_blocknr(sh, i);
2668                         sector_t s = raid5_compute_sector(conf, bn, 0,
2669                                                           &dd_idx, NULL);
2670                         sh2 = get_active_stripe(conf, s, 0, 1);
2671                         if (sh2 == NULL)
2672                                 /* so far only the early blocks of this stripe
2673                                  * have been requested.  When later blocks
2674                                  * get requested, we will try again
2675                                  */
2676                                 continue;
2677                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2678                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2679                                 /* must have already done this block */
2680                                 release_stripe(sh2);
2681                                 continue;
2682                         }
2683
2684                         /* place all the copies on one channel */
2685                         tx = async_memcpy(sh2->dev[dd_idx].page,
2686                                 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2687                                 ASYNC_TX_DEP_ACK, tx, NULL, NULL);
2688
2689                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2690                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2691                         for (j = 0; j < conf->raid_disks; j++)
2692                                 if (j != sh2->pd_idx &&
2693                                     (!r6s || j != sh2->qd_idx) &&
2694                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
2695                                         break;
2696                         if (j == conf->raid_disks) {
2697                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2698                                 set_bit(STRIPE_HANDLE, &sh2->state);
2699                         }
2700                         release_stripe(sh2);
2701
2702                 }
2703         /* done submitting copies, wait for them to complete */
2704         if (tx) {
2705                 async_tx_ack(tx);
2706                 dma_wait_for_async_tx(tx);
2707         }
2708 }
2709
2710
2711 /*
2712  * handle_stripe - do things to a stripe.
2713  *
2714  * We lock the stripe and then examine the state of various bits
2715  * to see what needs to be done.
2716  * Possible results:
2717  *    return some read request which now have data
2718  *    return some write requests which are safely on disc
2719  *    schedule a read on some buffers
2720  *    schedule a write of some buffers
2721  *    return confirmation of parity correctness
2722  *
2723  * buffers are taken off read_list or write_list, and bh_cache buffers
2724  * get BH_Lock set before the stripe lock is released.
2725  *
2726  */
2727
2728 static bool handle_stripe5(struct stripe_head *sh)
2729 {
2730         raid5_conf_t *conf = sh->raid_conf;
2731         int disks = sh->disks, i;
2732         struct bio *return_bi = NULL;
2733         struct stripe_head_state s;
2734         struct r5dev *dev;
2735         mdk_rdev_t *blocked_rdev = NULL;
2736         int prexor;
2737
2738         memset(&s, 0, sizeof(s));
2739         pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
2740                  "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
2741                  atomic_read(&sh->count), sh->pd_idx, sh->check_state,
2742                  sh->reconstruct_state);
2743
2744         spin_lock(&sh->lock);
2745         clear_bit(STRIPE_HANDLE, &sh->state);
2746         clear_bit(STRIPE_DELAYED, &sh->state);
2747
2748         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2749         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2750         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2751
2752         /* Now to look around and see what can be done */
2753         rcu_read_lock();
2754         for (i=disks; i--; ) {
2755                 mdk_rdev_t *rdev;
2756                 struct r5dev *dev = &sh->dev[i];
2757                 clear_bit(R5_Insync, &dev->flags);
2758
2759                 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2760                         "written %p\n", i, dev->flags, dev->toread, dev->read,
2761                         dev->towrite, dev->written);
2762
2763                 /* maybe we can request a biofill operation
2764                  *
2765                  * new wantfill requests are only permitted while
2766                  * ops_complete_biofill is guaranteed to be inactive
2767                  */
2768                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2769                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2770                         set_bit(R5_Wantfill, &dev->flags);
2771
2772                 /* now count some things */
2773                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2774                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2775                 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2776
2777                 if (test_bit(R5_Wantfill, &dev->flags))
2778                         s.to_fill++;
2779                 else if (dev->toread)
2780                         s.to_read++;
2781                 if (dev->towrite) {
2782                         s.to_write++;
2783                         if (!test_bit(R5_OVERWRITE, &dev->flags))
2784                                 s.non_overwrite++;
2785                 }
2786                 if (dev->written)
2787                         s.written++;
2788                 rdev = rcu_dereference(conf->disks[i].rdev);
2789                 if (blocked_rdev == NULL &&
2790                     rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2791                         blocked_rdev = rdev;
2792                         atomic_inc(&rdev->nr_pending);
2793                 }
2794                 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2795                         /* The ReadError flag will just be confusing now */
2796                         clear_bit(R5_ReadError, &dev->flags);
2797                         clear_bit(R5_ReWrite, &dev->flags);
2798                 }
2799                 if (!rdev || !test_bit(In_sync, &rdev->flags)
2800                     || test_bit(R5_ReadError, &dev->flags)) {
2801                         s.failed++;
2802                         s.failed_num = i;
2803                 } else
2804                         set_bit(R5_Insync, &dev->flags);
2805         }
2806         rcu_read_unlock();
2807
2808         if (unlikely(blocked_rdev)) {
2809                 if (s.syncing || s.expanding || s.expanded ||
2810                     s.to_write || s.written) {
2811                         set_bit(STRIPE_HANDLE, &sh->state);
2812                         goto unlock;
2813                 }
2814                 /* There is nothing for the blocked_rdev to block */
2815                 rdev_dec_pending(blocked_rdev, conf->mddev);
2816                 blocked_rdev = NULL;
2817         }
2818
2819         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
2820                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
2821                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
2822         }
2823
2824         pr_debug("locked=%d uptodate=%d to_read=%d"
2825                 " to_write=%d failed=%d failed_num=%d\n",
2826                 s.locked, s.uptodate, s.to_read, s.to_write,
2827                 s.failed, s.failed_num);
2828         /* check if the array has lost two devices and, if so, some requests might
2829          * need to be failed
2830          */
2831         if (s.failed > 1 && s.to_read+s.to_write+s.written)
2832                 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
2833         if (s.failed > 1 && s.syncing) {
2834                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2835                 clear_bit(STRIPE_SYNCING, &sh->state);
2836                 s.syncing = 0;
2837         }
2838
2839         /* might be able to return some write requests if the parity block
2840          * is safe, or on a failed drive
2841          */
2842         dev = &sh->dev[sh->pd_idx];
2843         if ( s.written &&
2844              ((test_bit(R5_Insync, &dev->flags) &&
2845                !test_bit(R5_LOCKED, &dev->flags) &&
2846                test_bit(R5_UPTODATE, &dev->flags)) ||
2847                (s.failed == 1 && s.failed_num == sh->pd_idx)))
2848                 handle_stripe_clean_event(conf, sh, disks, &return_bi);
2849
2850         /* Now we might consider reading some blocks, either to check/generate
2851          * parity, or to satisfy requests
2852          * or to load a block that is being partially written.
2853          */
2854         if (s.to_read || s.non_overwrite ||
2855             (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
2856                 handle_stripe_fill5(sh, &s, disks);
2857
2858         /* Now we check to see if any write operations have recently
2859          * completed
2860          */
2861         prexor = 0;
2862         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
2863                 prexor = 1;
2864         if (sh->reconstruct_state == reconstruct_state_drain_result ||
2865             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
2866                 sh->reconstruct_state = reconstruct_state_idle;
2867
2868                 /* All the 'written' buffers and the parity block are ready to
2869                  * be written back to disk
2870                  */
2871                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2872                 for (i = disks; i--; ) {
2873                         dev = &sh->dev[i];
2874                         if (test_bit(R5_LOCKED, &dev->flags) &&
2875                                 (i == sh->pd_idx || dev->written)) {
2876                                 pr_debug("Writing block %d\n", i);
2877                                 set_bit(R5_Wantwrite, &dev->flags);
2878                                 if (prexor)
2879                                         continue;
2880                                 if (!test_bit(R5_Insync, &dev->flags) ||
2881                                     (i == sh->pd_idx && s.failed == 0))
2882                                         set_bit(STRIPE_INSYNC, &sh->state);
2883                         }
2884                 }
2885                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2886                         atomic_dec(&conf->preread_active_stripes);
2887                         if (atomic_read(&conf->preread_active_stripes) <
2888                                 IO_THRESHOLD)
2889                                 md_wakeup_thread(conf->mddev->thread);
2890                 }
2891         }
2892
2893         /* Now to consider new write requests and what else, if anything
2894          * should be read.  We do not handle new writes when:
2895          * 1/ A 'write' operation (copy+xor) is already in flight.
2896          * 2/ A 'check' operation is in flight, as it may clobber the parity
2897          *    block.
2898          */
2899         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
2900                 handle_stripe_dirtying5(conf, sh, &s, disks);
2901
2902         /* maybe we need to check and possibly fix the parity for this stripe
2903          * Any reads will already have been scheduled, so we just see if enough
2904          * data is available.  The parity check is held off while parity
2905          * dependent operations are in flight.
2906          */
2907         if (sh->check_state ||
2908             (s.syncing && s.locked == 0 &&
2909              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
2910              !test_bit(STRIPE_INSYNC, &sh->state)))
2911                 handle_parity_checks5(conf, sh, &s, disks);
2912
2913         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2914                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2915                 clear_bit(STRIPE_SYNCING, &sh->state);
2916         }
2917
2918         /* If the failed drive is just a ReadError, then we might need to progress
2919          * the repair/check process
2920          */
2921         if (s.failed == 1 && !conf->mddev->ro &&
2922             test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2923             && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2924             && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
2925                 ) {
2926                 dev = &sh->dev[s.failed_num];
2927                 if (!test_bit(R5_ReWrite, &dev->flags)) {
2928                         set_bit(R5_Wantwrite, &dev->flags);
2929                         set_bit(R5_ReWrite, &dev->flags);
2930                         set_bit(R5_LOCKED, &dev->flags);
2931                         s.locked++;
2932                 } else {
2933                         /* let's read it back */
2934                         set_bit(R5_Wantread, &dev->flags);
2935                         set_bit(R5_LOCKED, &dev->flags);
2936                         s.locked++;
2937                 }
2938         }
2939
2940         /* Finish reconstruct operations initiated by the expansion process */
2941         if (sh->reconstruct_state == reconstruct_state_result) {
2942                 sh->reconstruct_state = reconstruct_state_idle;
2943                 clear_bit(STRIPE_EXPANDING, &sh->state);
2944                 for (i = conf->raid_disks; i--; ) {
2945                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
2946                         set_bit(R5_LOCKED, &sh->dev[i].flags);
2947                         s.locked++;
2948                 }
2949         }
2950
2951         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2952             !sh->reconstruct_state) {
2953                 /* Need to write out all blocks after computing parity */
2954                 sh->disks = conf->raid_disks;
2955                 stripe_set_idx(sh->sector, conf, 0, sh);
2956                 schedule_reconstruction5(sh, &s, 1, 1);
2957         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
2958                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
2959                 atomic_dec(&conf->reshape_stripes);
2960                 wake_up(&conf->wait_for_overlap);
2961                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2962         }
2963
2964         if (s.expanding && s.locked == 0 &&
2965             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
2966                 handle_stripe_expansion(conf, sh, NULL);
2967
2968  unlock:
2969         spin_unlock(&sh->lock);
2970
2971         /* wait for this device to become unblocked */
2972         if (unlikely(blocked_rdev))
2973                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
2974
2975         if (s.ops_request)
2976                 raid5_run_ops(sh, s.ops_request);
2977
2978         ops_run_io(sh, &s);
2979
2980         return_io(return_bi);
2981
2982         return blocked_rdev == NULL;
2983 }
2984
2985 static bool handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
2986 {
2987         raid5_conf_t *conf = sh->raid_conf;
2988         int disks = sh->disks;
2989         struct bio *return_bi = NULL;
2990         int i, pd_idx = sh->pd_idx;
2991         struct stripe_head_state s;
2992         struct r6_state r6s;
2993         struct r5dev *dev, *pdev, *qdev;
2994         mdk_rdev_t *blocked_rdev = NULL;
2995
2996         r6s.qd_idx = sh->qd_idx;
2997         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
2998                 "pd_idx=%d, qd_idx=%d\n",
2999                (unsigned long long)sh->sector, sh->state,
3000                atomic_read(&sh->count), pd_idx, r6s.qd_idx);
3001         memset(&s, 0, sizeof(s));
3002
3003         spin_lock(&sh->lock);
3004         clear_bit(STRIPE_HANDLE, &sh->state);
3005         clear_bit(STRIPE_DELAYED, &sh->state);
3006
3007         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3008         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3009         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3010         /* Now to look around and see what can be done */
3011
3012         rcu_read_lock();
3013         for (i=disks; i--; ) {
3014                 mdk_rdev_t *rdev;
3015                 dev = &sh->dev[i];
3016                 clear_bit(R5_Insync, &dev->flags);
3017
3018                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3019                         i, dev->flags, dev->toread, dev->towrite, dev->written);
3020                 /* maybe we can reply to a read */
3021                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
3022                         struct bio *rbi, *rbi2;
3023                         pr_debug("Return read for disc %d\n", i);
3024                         spin_lock_irq(&conf->device_lock);
3025                         rbi = dev->toread;
3026                         dev->toread = NULL;
3027                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
3028                                 wake_up(&conf->wait_for_overlap);
3029                         spin_unlock_irq(&conf->device_lock);
3030                         while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
3031                                 copy_data(0, rbi, dev->page, dev->sector);
3032                                 rbi2 = r5_next_bio(rbi, dev->sector);
3033                                 spin_lock_irq(&conf->device_lock);
3034                                 if (!raid5_dec_bi_phys_segments(rbi)) {
3035                                         rbi->bi_next = return_bi;
3036                                         return_bi = rbi;
3037                                 }
3038                                 spin_unlock_irq(&conf->device_lock);
3039                                 rbi = rbi2;
3040                         }
3041                 }
3042
3043                 /* now count some things */
3044                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3045                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3046
3047
3048                 if (dev->toread)
3049                         s.to_read++;
3050                 if (dev->towrite) {
3051                         s.to_write++;
3052                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3053                                 s.non_overwrite++;
3054                 }
3055                 if (dev->written)
3056                         s.written++;
3057                 rdev = rcu_dereference(conf->disks[i].rdev);
3058                 if (blocked_rdev == NULL &&
3059                     rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3060                         blocked_rdev = rdev;
3061                         atomic_inc(&rdev->nr_pending);
3062                 }
3063                 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3064                         /* The ReadError flag will just be confusing now */
3065                         clear_bit(R5_ReadError, &dev->flags);
3066                         clear_bit(R5_ReWrite, &dev->flags);
3067                 }
3068                 if (!rdev || !test_bit(In_sync, &rdev->flags)
3069                     || test_bit(R5_ReadError, &dev->flags)) {
3070                         if (s.failed < 2)
3071                                 r6s.failed_num[s.failed] = i;
3072                         s.failed++;
3073                 } else
3074                         set_bit(R5_Insync, &dev->flags);
3075         }
3076         rcu_read_unlock();
3077
3078         if (unlikely(blocked_rdev)) {
3079                 if (s.syncing || s.expanding || s.expanded ||
3080                     s.to_write || s.written) {
3081                         set_bit(STRIPE_HANDLE, &sh->state);
3082                         goto unlock;
3083                 }
3084                 /* There is nothing for the blocked_rdev to block */
3085                 rdev_dec_pending(blocked_rdev, conf->mddev);
3086                 blocked_rdev = NULL;
3087         }
3088
3089         pr_debug("locked=%d uptodate=%d to_read=%d"
3090                " to_write=%d failed=%d failed_num=%d,%d\n",
3091                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3092                r6s.failed_num[0], r6s.failed_num[1]);
3093         /* check if the array has lost >2 devices and, if so, some requests
3094          * might need to be failed
3095          */
3096         if (s.failed > 2 && s.to_read+s.to_write+s.written)
3097                 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3098         if (s.failed > 2 && s.syncing) {
3099                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3100                 clear_bit(STRIPE_SYNCING, &sh->state);
3101                 s.syncing = 0;
3102         }
3103
3104         /*
3105          * might be able to return some write requests if the parity blocks
3106          * are safe, or on a failed drive
3107          */
3108         pdev = &sh->dev[pd_idx];
3109         r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3110                 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3111         qdev = &sh->dev[r6s.qd_idx];
3112         r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == r6s.qd_idx)
3113                 || (s.failed >= 2 && r6s.failed_num[1] == r6s.qd_idx);
3114
3115         if ( s.written &&
3116              ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3117                              && !test_bit(R5_LOCKED, &pdev->flags)
3118                              && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3119              ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3120                              && !test_bit(R5_LOCKED, &qdev->flags)
3121                              && test_bit(R5_UPTODATE, &qdev->flags)))))
3122                 handle_stripe_clean_event(conf, sh, disks, &return_bi);
3123
3124         /* Now we might consider reading some blocks, either to check/generate
3125          * parity, or to satisfy requests
3126          * or to load a block that is being partially written.
3127          */
3128         if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3129             (s.syncing && (s.uptodate < disks)) || s.expanding)
3130                 handle_stripe_fill6(sh, &s, &r6s, disks);
3131
3132         /* now to consider writing and what else, if anything should be read */
3133         if (s.to_write)
3134                 handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3135
3136         /* maybe we need to check and possibly fix the parity for this stripe
3137          * Any reads will already have been scheduled, so we just see if enough
3138          * data is available
3139          */
3140         if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
3141                 handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
3142
3143         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3144                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3145                 clear_bit(STRIPE_SYNCING, &sh->state);
3146         }
3147
3148         /* If the failed drives are just a ReadError, then we might need
3149          * to progress the repair/check process
3150          */
3151         if (s.failed <= 2 && !conf->mddev->ro)
3152                 for (i = 0; i < s.failed; i++) {
3153                         dev = &sh->dev[r6s.failed_num[i]];
3154                         if (test_bit(R5_ReadError, &dev->flags)
3155                             && !test_bit(R5_LOCKED, &dev->flags)
3156                             && test_bit(R5_UPTODATE, &dev->flags)
3157                                 ) {
3158                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3159                                         set_bit(R5_Wantwrite, &dev->flags);
3160                                         set_bit(R5_ReWrite, &dev->flags);
3161                                         set_bit(R5_LOCKED, &dev->flags);
3162                                 } else {
3163                                         /* let's read it back */
3164                                         set_bit(R5_Wantread, &dev->flags);
3165                                         set_bit(R5_LOCKED, &dev->flags);
3166                                 }
3167                         }
3168                 }
3169
3170         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
3171                 /* Need to write out all blocks after computing P&Q */
3172                 sh->disks = conf->raid_disks;
3173                 stripe_set_idx(sh->sector, conf, 0, sh);
3174                 compute_parity6(sh, RECONSTRUCT_WRITE);
3175                 for (i = conf->raid_disks ; i-- ;  ) {
3176                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3177                         s.locked++;
3178                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3179                 }
3180                 clear_bit(STRIPE_EXPANDING, &sh->state);
3181         } else if (s.expanded) {
3182                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3183                 atomic_dec(&conf->reshape_stripes);
3184                 wake_up(&conf->wait_for_overlap);
3185                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3186         }
3187
3188         if (s.expanding && s.locked == 0 &&
3189             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3190                 handle_stripe_expansion(conf, sh, &r6s);
3191
3192  unlock:
3193         spin_unlock(&sh->lock);
3194
3195         /* wait for this device to become unblocked */
3196         if (unlikely(blocked_rdev))
3197                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3198
3199         ops_run_io(sh, &s);
3200
3201         return_io(return_bi);
3202
3203         return blocked_rdev == NULL;
3204 }
3205
3206 /* returns true if the stripe was handled */
3207 static bool handle_stripe(struct stripe_head *sh, struct page *tmp_page)
3208 {
3209         if (sh->raid_conf->level == 6)
3210                 return handle_stripe6(sh, tmp_page);
3211         else
3212                 return handle_stripe5(sh);
3213 }
3214
3215
3216
3217 static void raid5_activate_delayed(raid5_conf_t *conf)
3218 {
3219         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3220                 while (!list_empty(&conf->delayed_list)) {
3221                         struct list_head *l = conf->delayed_list.next;
3222                         struct stripe_head *sh;
3223                         sh = list_entry(l, struct stripe_head, lru);
3224                         list_del_init(l);
3225                         clear_bit(STRIPE_DELAYED, &sh->state);
3226                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3227                                 atomic_inc(&conf->preread_active_stripes);
3228                         list_add_tail(&sh->lru, &conf->hold_list);
3229                 }
3230         } else
3231                 blk_plug_device(conf->mddev->queue);
3232 }
3233
3234 static void activate_bit_delay(raid5_conf_t *conf)
3235 {
3236         /* device_lock is held */
3237         struct list_head head;
3238         list_add(&head, &conf->bitmap_list);
3239         list_del_init(&conf->bitmap_list);
3240         while (!list_empty(&head)) {
3241                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3242                 list_del_init(&sh->lru);
3243                 atomic_inc(&sh->count);
3244                 __release_stripe(conf, sh);
3245         }
3246 }
3247
3248 static void unplug_slaves(mddev_t *mddev)
3249 {
3250         raid5_conf_t *conf = mddev_to_conf(mddev);
3251         int i;
3252
3253         rcu_read_lock();
3254         for (i=0; i<mddev->raid_disks; i++) {
3255                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3256                 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3257                         struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3258
3259                         atomic_inc(&rdev->nr_pending);
3260                         rcu_read_unlock();
3261
3262                         blk_unplug(r_queue);
3263
3264                         rdev_dec_pending(rdev, mddev);
3265                         rcu_read_lock();
3266                 }
3267         }
3268         rcu_read_unlock();
3269 }
3270
3271 static void raid5_unplug_device(struct request_queue *q)
3272 {
3273         mddev_t *mddev = q->queuedata;
3274         raid5_conf_t *conf = mddev_to_conf(mddev);
3275         unsigned long flags;
3276
3277         spin_lock_irqsave(&conf->device_lock, flags);
3278
3279         if (blk_remove_plug(q)) {
3280                 conf->seq_flush++;
3281                 raid5_activate_delayed(conf);
3282         }
3283         md_wakeup_thread(mddev->thread);
3284
3285         spin_unlock_irqrestore(&conf->device_lock, flags);
3286
3287         unplug_slaves(mddev);
3288 }
3289
3290 static int raid5_congested(void *data, int bits)
3291 {
3292         mddev_t *mddev = data;
3293         raid5_conf_t *conf = mddev_to_conf(mddev);
3294
3295         /* No difference between reads and writes.  Just check
3296          * how busy the stripe_cache is
3297          */
3298         if (conf->inactive_blocked)
3299                 return 1;
3300         if (conf->quiesce)
3301                 return 1;
3302         if (list_empty_careful(&conf->inactive_list))
3303                 return 1;
3304
3305         return 0;
3306 }
3307
3308 /* We want read requests to align with chunks where possible,
3309  * but write requests don't need to.
3310  */
3311 static int raid5_mergeable_bvec(struct request_queue *q,
3312                                 struct bvec_merge_data *bvm,
3313                                 struct bio_vec *biovec)
3314 {
3315         mddev_t *mddev = q->queuedata;
3316         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3317         int max;
3318         unsigned int chunk_sectors = mddev->chunk_size >> 9;
3319         unsigned int bio_sectors = bvm->bi_size >> 9;
3320
3321         if ((bvm->bi_rw & 1) == WRITE)
3322                 return biovec->bv_len; /* always allow writes to be mergeable */
3323
3324         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3325         if (max < 0) max = 0;
3326         if (max <= biovec->bv_len && bio_sectors == 0)
3327                 return biovec->bv_len;
3328         else
3329                 return max;
3330 }
3331
3332
3333 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3334 {
3335         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3336         unsigned int chunk_sectors = mddev->chunk_size >> 9;
3337         unsigned int bio_sectors = bio->bi_size >> 9;
3338
3339         return  chunk_sectors >=
3340                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3341 }
3342
3343 /*
3344  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3345  *  later sampled by raid5d.
3346  */
3347 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3348 {
3349         unsigned long flags;
3350
3351         spin_lock_irqsave(&conf->device_lock, flags);
3352
3353         bi->bi_next = conf->retry_read_aligned_list;
3354         conf->retry_read_aligned_list = bi;
3355
3356         spin_unlock_irqrestore(&conf->device_lock, flags);
3357         md_wakeup_thread(conf->mddev->thread);
3358 }
3359
3360
3361 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3362 {
3363         struct bio *bi;
3364
3365         bi = conf->retry_read_aligned;
3366         if (bi) {
3367                 conf->retry_read_aligned = NULL;
3368                 return bi;
3369         }
3370         bi = conf->retry_read_aligned_list;
3371         if(bi) {
3372                 conf->retry_read_aligned_list = bi->bi_next;
3373                 bi->bi_next = NULL;
3374                 /*
3375                  * this sets the active strip count to 1 and the processed
3376                  * strip count to zero (upper 8 bits)
3377                  */
3378                 bi->bi_phys_segments = 1; /* biased count of active stripes */
3379         }
3380
3381         return bi;
3382 }
3383
3384
3385 /*
3386  *  The "raid5_align_endio" should check if the read succeeded and if it
3387  *  did, call bio_endio on the original bio (having bio_put the new bio
3388  *  first).
3389  *  If the read failed..
3390  */
3391 static void raid5_align_endio(struct bio *bi, int error)
3392 {
3393         struct bio* raid_bi  = bi->bi_private;
3394         mddev_t *mddev;
3395         raid5_conf_t *conf;
3396         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3397         mdk_rdev_t *rdev;
3398
3399         bio_put(bi);
3400
3401         mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3402         conf = mddev_to_conf(mddev);
3403         rdev = (void*)raid_bi->bi_next;
3404         raid_bi->bi_next = NULL;
3405
3406         rdev_dec_pending(rdev, conf->mddev);
3407
3408         if (!error && uptodate) {
3409                 bio_endio(raid_bi, 0);
3410                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3411                         wake_up(&conf->wait_for_stripe);
3412                 return;
3413         }
3414
3415
3416         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3417
3418         add_bio_to_retry(raid_bi, conf);
3419 }
3420
3421 static int bio_fits_rdev(struct bio *bi)
3422 {
3423         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3424
3425         if ((bi->bi_size>>9) > q->max_sectors)
3426                 return 0;
3427         blk_recount_segments(q, bi);
3428         if (bi->bi_phys_segments > q->max_phys_segments)
3429                 return 0;
3430
3431         if (q->merge_bvec_fn)
3432                 /* it's too hard to apply the merge_bvec_fn at this stage,
3433                  * just just give up
3434                  */
3435                 return 0;
3436
3437         return 1;
3438 }
3439
3440
3441 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3442 {
3443         mddev_t *mddev = q->queuedata;
3444         raid5_conf_t *conf = mddev_to_conf(mddev);
3445         unsigned int dd_idx;
3446         struct bio* align_bi;
3447         mdk_rdev_t *rdev;
3448
3449         if (!in_chunk_boundary(mddev, raid_bio)) {
3450                 pr_debug("chunk_aligned_read : non aligned\n");
3451                 return 0;
3452         }
3453         /*
3454          * use bio_clone to make a copy of the bio
3455          */
3456         align_bi = bio_clone(raid_bio, GFP_NOIO);
3457         if (!align_bi)
3458                 return 0;
3459         /*
3460          *   set bi_end_io to a new function, and set bi_private to the
3461          *     original bio.
3462          */
3463         align_bi->bi_end_io  = raid5_align_endio;
3464         align_bi->bi_private = raid_bio;
3465         /*
3466          *      compute position
3467          */
3468         align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3469                                                     0,
3470                                                     &dd_idx, NULL);
3471
3472         rcu_read_lock();
3473         rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3474         if (rdev && test_bit(In_sync, &rdev->flags)) {
3475                 atomic_inc(&rdev->nr_pending);
3476                 rcu_read_unlock();
3477                 raid_bio->bi_next = (void*)rdev;
3478                 align_bi->bi_bdev =  rdev->bdev;
3479                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3480                 align_bi->bi_sector += rdev->data_offset;
3481
3482                 if (!bio_fits_rdev(align_bi)) {
3483                         /* too big in some way */
3484                         bio_put(align_bi);
3485                         rdev_dec_pending(rdev, mddev);
3486                         return 0;
3487                 }
3488
3489                 spin_lock_irq(&conf->device_lock);
3490                 wait_event_lock_irq(conf->wait_for_stripe,
3491                                     conf->quiesce == 0,
3492                                     conf->device_lock, /* nothing */);
3493                 atomic_inc(&conf->active_aligned_reads);
3494                 spin_unlock_irq(&conf->device_lock);
3495
3496                 generic_make_request(align_bi);
3497                 return 1;
3498         } else {
3499                 rcu_read_unlock();
3500                 bio_put(align_bi);
3501                 return 0;
3502         }
3503 }
3504
3505 /* __get_priority_stripe - get the next stripe to process
3506  *
3507  * Full stripe writes are allowed to pass preread active stripes up until
3508  * the bypass_threshold is exceeded.  In general the bypass_count
3509  * increments when the handle_list is handled before the hold_list; however, it
3510  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3511  * stripe with in flight i/o.  The bypass_count will be reset when the
3512  * head of the hold_list has changed, i.e. the head was promoted to the
3513  * handle_list.
3514  */
3515 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3516 {
3517         struct stripe_head *sh;
3518
3519         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3520                   __func__,
3521                   list_empty(&conf->handle_list) ? "empty" : "busy",
3522                   list_empty(&conf->hold_list) ? "empty" : "busy",
3523                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
3524
3525         if (!list_empty(&conf->handle_list)) {
3526                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3527
3528                 if (list_empty(&conf->hold_list))
3529                         conf->bypass_count = 0;
3530                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3531                         if (conf->hold_list.next == conf->last_hold)
3532                                 conf->bypass_count++;
3533                         else {
3534                                 conf->last_hold = conf->hold_list.next;
3535                                 conf->bypass_count -= conf->bypass_threshold;
3536                                 if (conf->bypass_count < 0)
3537                                         conf->bypass_count = 0;
3538                         }
3539                 }
3540         } else if (!list_empty(&conf->hold_list) &&
3541                    ((conf->bypass_threshold &&
3542                      conf->bypass_count > conf->bypass_threshold) ||
3543                     atomic_read(&conf->pending_full_writes) == 0)) {
3544                 sh = list_entry(conf->hold_list.next,
3545                                 typeof(*sh), lru);
3546                 conf->bypass_count -= conf->bypass_threshold;
3547                 if (conf->bypass_count < 0)
3548                         conf->bypass_count = 0;
3549         } else
3550                 return NULL;
3551
3552         list_del_init(&sh->lru);
3553         atomic_inc(&sh->count);
3554         BUG_ON(atomic_read(&sh->count) != 1);
3555         return sh;
3556 }
3557
3558 static int make_request(struct request_queue *q, struct bio * bi)
3559 {
3560         mddev_t *mddev = q->queuedata;
3561         raid5_conf_t *conf = mddev_to_conf(mddev);
3562         int dd_idx;
3563         sector_t new_sector;
3564         sector_t logical_sector, last_sector;
3565         struct stripe_head *sh;
3566         const int rw = bio_data_dir(bi);
3567         int cpu, remaining;
3568
3569         if (unlikely(bio_barrier(bi))) {
3570                 bio_endio(bi, -EOPNOTSUPP);
3571                 return 0;
3572         }
3573
3574         md_write_start(mddev, bi);
3575
3576         cpu = part_stat_lock();
3577         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
3578         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
3579                       bio_sectors(bi));
3580         part_stat_unlock();
3581
3582         if (rw == READ &&
3583              mddev->reshape_position == MaxSector &&
3584              chunk_aligned_read(q,bi))
3585                 return 0;
3586
3587         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3588         last_sector = bi->bi_sector + (bi->bi_size>>9);
3589         bi->bi_next = NULL;
3590         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
3591
3592         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3593                 DEFINE_WAIT(w);
3594                 int disks, data_disks;
3595                 int previous;
3596
3597         retry:
3598                 previous = 0;
3599                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3600                 if (likely(conf->expand_progress == MaxSector))
3601                         disks = conf->raid_disks;
3602                 else {
3603                         /* spinlock is needed as expand_progress may be
3604                          * 64bit on a 32bit platform, and so it might be
3605                          * possible to see a half-updated value
3606                          * Ofcourse expand_progress could change after
3607                          * the lock is dropped, so once we get a reference
3608                          * to the stripe that we think it is, we will have
3609                          * to check again.
3610                          */
3611                         spin_lock_irq(&conf->device_lock);
3612                         disks = conf->raid_disks;
3613                         if (logical_sector >= conf->expand_progress) {
3614                                 disks = conf->previous_raid_disks;
3615                                 previous = 1;
3616                         } else {
3617                                 if (logical_sector >= conf->expand_lo) {
3618                                         spin_unlock_irq(&conf->device_lock);
3619                                         schedule();
3620                                         goto retry;
3621                                 }
3622                         }
3623                         spin_unlock_irq(&conf->device_lock);
3624                 }
3625                 data_disks = disks - conf->max_degraded;
3626
3627                 new_sector = raid5_compute_sector(conf, logical_sector,
3628                                                   previous,
3629                                                   &dd_idx, NULL);
3630                 pr_debug("raid5: make_request, sector %llu logical %llu\n",
3631                         (unsigned long long)new_sector, 
3632                         (unsigned long long)logical_sector);
3633
3634                 sh = get_active_stripe(conf, new_sector, previous,
3635                                        (bi->bi_rw&RWA_MASK));
3636                 if (sh) {
3637                         if (unlikely(conf->expand_progress != MaxSector)) {
3638                                 /* expansion might have moved on while waiting for a
3639                                  * stripe, so we must do the range check again.
3640                                  * Expansion could still move past after this
3641                                  * test, but as we are holding a reference to
3642                                  * 'sh', we know that if that happens,
3643                                  *  STRIPE_EXPANDING will get set and the expansion
3644                                  * won't proceed until we finish with the stripe.
3645                                  */
3646                                 int must_retry = 0;
3647                                 spin_lock_irq(&conf->device_lock);
3648                                 if (logical_sector <  conf->expand_progress &&
3649                                     disks == conf->previous_raid_disks)
3650                                         /* mismatch, need to try again */
3651                                         must_retry = 1;
3652                                 spin_unlock_irq(&conf->device_lock);
3653                                 if (must_retry) {
3654                                         release_stripe(sh);
3655                                         goto retry;
3656                                 }
3657                         }
3658                         /* FIXME what if we get a false positive because these
3659                          * are being updated.
3660                          */
3661                         if (logical_sector >= mddev->suspend_lo &&
3662                             logical_sector < mddev->suspend_hi) {
3663                                 release_stripe(sh);
3664                                 schedule();
3665                                 goto retry;
3666                         }
3667
3668                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3669                             !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3670                                 /* Stripe is busy expanding or
3671                                  * add failed due to overlap.  Flush everything
3672                                  * and wait a while
3673                                  */
3674                                 raid5_unplug_device(mddev->queue);
3675                                 release_stripe(sh);
3676                                 schedule();
3677                                 goto retry;
3678                         }
3679                         finish_wait(&conf->wait_for_overlap, &w);
3680                         set_bit(STRIPE_HANDLE, &sh->state);
3681                         clear_bit(STRIPE_DELAYED, &sh->state);
3682                         release_stripe(sh);
3683                 } else {
3684                         /* cannot get stripe for read-ahead, just give-up */
3685                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
3686                         finish_wait(&conf->wait_for_overlap, &w);
3687                         break;
3688                 }
3689                         
3690         }
3691         spin_lock_irq(&conf->device_lock);
3692         remaining = raid5_dec_bi_phys_segments(bi);
3693         spin_unlock_irq(&conf->device_lock);
3694         if (remaining == 0) {
3695
3696                 if ( rw == WRITE )
3697                         md_write_end(mddev);
3698
3699                 bio_endio(bi, 0);
3700         }
3701         return 0;
3702 }
3703
3704 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3705 {
3706         /* reshaping is quite different to recovery/resync so it is
3707          * handled quite separately ... here.
3708          *
3709          * On each call to sync_request, we gather one chunk worth of
3710          * destination stripes and flag them as expanding.
3711          * Then we find all the source stripes and request reads.
3712          * As the reads complete, handle_stripe will copy the data
3713          * into the destination stripe and release that stripe.
3714          */
3715         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3716         struct stripe_head *sh;
3717         sector_t first_sector, last_sector;
3718         int raid_disks = conf->previous_raid_disks;
3719         int data_disks = raid_disks - conf->max_degraded;
3720         int new_data_disks = conf->raid_disks - conf->max_degraded;
3721         int i;
3722         int dd_idx;
3723         sector_t writepos, safepos, gap;
3724
3725         if (sector_nr == 0 &&
3726             conf->expand_progress != 0) {
3727                 /* restarting in the middle, skip the initial sectors */
3728                 sector_nr = conf->expand_progress;
3729                 sector_div(sector_nr, new_data_disks);
3730                 *skipped = 1;
3731                 return sector_nr;
3732         }
3733
3734         /* we update the metadata when there is more than 3Meg
3735          * in the block range (that is rather arbitrary, should
3736          * probably be time based) or when the data about to be
3737          * copied would over-write the source of the data at
3738          * the front of the range.
3739          * i.e. one new_stripe forward from expand_progress new_maps
3740          * to after where expand_lo old_maps to
3741          */
3742         writepos = conf->expand_progress +
3743                 conf->chunk_size/512*(new_data_disks);
3744         sector_div(writepos, new_data_disks);
3745         safepos = conf->expand_lo;
3746         sector_div(safepos, data_disks);
3747         gap = conf->expand_progress - conf->expand_lo;
3748
3749         if (writepos >= safepos ||
3750             gap > (new_data_disks)*3000*2 /*3Meg*/) {
3751                 /* Cannot proceed until we've updated the superblock... */
3752                 wait_event(conf->wait_for_overlap,
3753                            atomic_read(&conf->reshape_stripes)==0);
3754                 mddev->reshape_position = conf->expand_progress;
3755                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3756                 md_wakeup_thread(mddev->thread);
3757                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
3758                            kthread_should_stop());
3759                 spin_lock_irq(&conf->device_lock);
3760                 conf->expand_lo = mddev->reshape_position;
3761                 spin_unlock_irq(&conf->device_lock);
3762                 wake_up(&conf->wait_for_overlap);
3763         }
3764
3765         for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
3766                 int j;
3767                 int skipped = 0;
3768                 sh = get_active_stripe(conf, sector_nr+i, 0, 0);
3769                 set_bit(STRIPE_EXPANDING, &sh->state);
3770                 atomic_inc(&conf->reshape_stripes);
3771                 /* If any of this stripe is beyond the end of the old
3772                  * array, then we need to zero those blocks
3773                  */
3774                 for (j=sh->disks; j--;) {
3775                         sector_t s;
3776                         if (j == sh->pd_idx)
3777                                 continue;
3778                         if (conf->level == 6 &&
3779                             j == sh->qd_idx)
3780                                 continue;
3781                         s = compute_blocknr(sh, j);
3782                         if (s < mddev->array_sectors) {
3783                                 skipped = 1;
3784                                 continue;
3785                         }
3786                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3787                         set_bit(R5_Expanded, &sh->dev[j].flags);
3788                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
3789                 }
3790                 if (!skipped) {
3791                         set_bit(STRIPE_EXPAND_READY, &sh->state);
3792                         set_bit(STRIPE_HANDLE, &sh->state);
3793                 }
3794                 release_stripe(sh);
3795         }
3796         spin_lock_irq(&conf->device_lock);
3797         conf->expand_progress = (sector_nr + i) * new_data_disks;
3798         spin_unlock_irq(&conf->device_lock);
3799         /* Ok, those stripe are ready. We can start scheduling
3800          * reads on the source stripes.
3801          * The source stripes are determined by mapping the first and last
3802          * block on the destination stripes.
3803          */
3804         first_sector =
3805                 raid5_compute_sector(conf, sector_nr*(new_data_disks),
3806                                      1, &dd_idx, NULL);
3807         last_sector =
3808                 raid5_compute_sector(conf, ((sector_nr+conf->chunk_size/512)
3809                                             *(new_data_disks) - 1),
3810                                      1, &dd_idx, NULL);
3811         if (last_sector >= mddev->dev_sectors)
3812                 last_sector = mddev->dev_sectors - 1;
3813         while (first_sector <= last_sector) {
3814                 sh = get_active_stripe(conf, first_sector, 1, 0);
3815                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3816                 set_bit(STRIPE_HANDLE, &sh->state);
3817                 release_stripe(sh);
3818                 first_sector += STRIPE_SECTORS;
3819         }
3820         /* If this takes us to the resync_max point where we have to pause,
3821          * then we need to write out the superblock.
3822          */
3823         sector_nr += conf->chunk_size>>9;
3824         if (sector_nr >= mddev->resync_max) {
3825                 /* Cannot proceed until we've updated the superblock... */
3826                 wait_event(conf->wait_for_overlap,
3827                            atomic_read(&conf->reshape_stripes) == 0);
3828                 mddev->reshape_position = conf->expand_progress;
3829                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3830                 md_wakeup_thread(mddev->thread);
3831                 wait_event(mddev->sb_wait,
3832                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
3833                            || kthread_should_stop());
3834                 spin_lock_irq(&conf->device_lock);
3835                 conf->expand_lo = mddev->reshape_position;
3836                 spin_unlock_irq(&conf->device_lock);
3837                 wake_up(&conf->wait_for_overlap);
3838         }
3839         return conf->chunk_size>>9;
3840 }
3841
3842 /* FIXME go_faster isn't used */
3843 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3844 {
3845         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3846         struct stripe_head *sh;
3847         sector_t max_sector = mddev->dev_sectors;
3848         int sync_blocks;
3849         int still_degraded = 0;
3850         int i;
3851
3852         if (sector_nr >= max_sector) {
3853                 /* just being told to finish up .. nothing much to do */
3854                 unplug_slaves(mddev);
3855                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3856                         end_reshape(conf);
3857                         return 0;
3858                 }
3859
3860                 if (mddev->curr_resync < max_sector) /* aborted */
3861                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3862                                         &sync_blocks, 1);
3863                 else /* completed sync */
3864                         conf->fullsync = 0;
3865                 bitmap_close_sync(mddev->bitmap);
3866
3867                 return 0;
3868         }
3869
3870         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3871                 return reshape_request(mddev, sector_nr, skipped);
3872
3873         /* No need to check resync_max as we never do more than one
3874          * stripe, and as resync_max will always be on a chunk boundary,
3875          * if the check in md_do_sync didn't fire, there is no chance
3876          * of overstepping resync_max here
3877          */
3878
3879         /* if there is too many failed drives and we are trying
3880          * to resync, then assert that we are finished, because there is
3881          * nothing we can do.
3882          */
3883         if (mddev->degraded >= conf->max_degraded &&
3884             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3885                 sector_t rv = mddev->dev_sectors - sector_nr;
3886                 *skipped = 1;
3887                 return rv;
3888         }
3889         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3890             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3891             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3892                 /* we can skip this block, and probably more */
3893                 sync_blocks /= STRIPE_SECTORS;
3894                 *skipped = 1;
3895                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3896         }
3897
3898
3899         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3900
3901         sh = get_active_stripe(conf, sector_nr, 0, 1);
3902         if (sh == NULL) {
3903                 sh = get_active_stripe(conf, sector_nr, 0, 0);
3904                 /* make sure we don't swamp the stripe cache if someone else
3905                  * is trying to get access
3906                  */
3907                 schedule_timeout_uninterruptible(1);
3908         }
3909         /* Need to check if array will still be degraded after recovery/resync
3910          * We don't need to check the 'failed' flag as when that gets set,
3911          * recovery aborts.
3912          */
3913         for (i=0; i<mddev->raid_disks; i++)
3914                 if (conf->disks[i].rdev == NULL)
3915                         still_degraded = 1;
3916
3917         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
3918
3919         spin_lock(&sh->lock);
3920         set_bit(STRIPE_SYNCING, &sh->state);
3921         clear_bit(STRIPE_INSYNC, &sh->state);
3922         spin_unlock(&sh->lock);
3923
3924         /* wait for any blocked device to be handled */
3925         while(unlikely(!handle_stripe(sh, NULL)))
3926                 ;
3927         release_stripe(sh);
3928
3929         return STRIPE_SECTORS;
3930 }
3931
3932 static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
3933 {
3934         /* We may not be able to submit a whole bio at once as there
3935          * may not be enough stripe_heads available.
3936          * We cannot pre-allocate enough stripe_heads as we may need
3937          * more than exist in the cache (if we allow ever large chunks).
3938          * So we do one stripe head at a time and record in
3939          * ->bi_hw_segments how many have been done.
3940          *
3941          * We *know* that this entire raid_bio is in one chunk, so
3942          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3943          */
3944         struct stripe_head *sh;
3945         int dd_idx;
3946         sector_t sector, logical_sector, last_sector;
3947         int scnt = 0;
3948         int remaining;
3949         int handled = 0;
3950
3951         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3952         sector = raid5_compute_sector(conf, logical_sector,
3953                                       0, &dd_idx, NULL);
3954         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
3955
3956         for (; logical_sector < last_sector;
3957              logical_sector += STRIPE_SECTORS,
3958                      sector += STRIPE_SECTORS,
3959                      scnt++) {
3960
3961                 if (scnt < raid5_bi_hw_segments(raid_bio))
3962                         /* already done this stripe */
3963                         continue;
3964
3965                 sh = get_active_stripe(conf, sector, 0, 1);
3966
3967                 if (!sh) {
3968                         /* failed to get a stripe - must wait */
3969                         raid5_set_bi_hw_segments(raid_bio, scnt);
3970                         conf->retry_read_aligned = raid_bio;
3971                         return handled;
3972                 }
3973
3974                 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
3975                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
3976                         release_stripe(sh);
3977                         raid5_set_bi_hw_segments(raid_bio, scnt);
3978                         conf->retry_read_aligned = raid_bio;
3979                         return handled;
3980                 }
3981
3982                 handle_stripe(sh, NULL);
3983                 release_stripe(sh);
3984                 handled++;
3985         }
3986         spin_lock_irq(&conf->device_lock);
3987         remaining = raid5_dec_bi_phys_segments(raid_bio);
3988         spin_unlock_irq(&conf->device_lock);
3989         if (remaining == 0)
3990                 bio_endio(raid_bio, 0);
3991         if (atomic_dec_and_test(&conf->active_aligned_reads))
3992                 wake_up(&conf->wait_for_stripe);
3993         return handled;
3994 }
3995
3996
3997
3998 /*
3999  * This is our raid5 kernel thread.
4000  *
4001  * We scan the hash table for stripes which can be handled now.
4002  * During the scan, completed stripes are saved for us by the interrupt
4003  * handler, so that they will not have to wait for our next wakeup.
4004  */
4005 static void raid5d(mddev_t *mddev)
4006 {
4007         struct stripe_head *sh;
4008         raid5_conf_t *conf = mddev_to_conf(mddev);
4009         int handled;
4010
4011         pr_debug("+++ raid5d active\n");
4012
4013         md_check_recovery(mddev);
4014
4015         handled = 0;
4016         spin_lock_irq(&conf->device_lock);
4017         while (1) {
4018                 struct bio *bio;
4019
4020                 if (conf->seq_flush != conf->seq_write) {
4021                         int seq = conf->seq_flush;
4022                         spin_unlock_irq(&conf->device_lock);
4023                         bitmap_unplug(mddev->bitmap);
4024                         spin_lock_irq(&conf->device_lock);
4025                         conf->seq_write = seq;
4026                         activate_bit_delay(conf);
4027                 }
4028
4029                 while ((bio = remove_bio_from_retry(conf))) {
4030                         int ok;
4031                         spin_unlock_irq(&conf->device_lock);
4032                         ok = retry_aligned_read(conf, bio);
4033                         spin_lock_irq(&conf->device_lock);
4034                         if (!ok)
4035                                 break;
4036                         handled++;
4037                 }
4038
4039                 sh = __get_priority_stripe(conf);
4040
4041                 if (!sh)
4042                         break;
4043                 spin_unlock_irq(&conf->device_lock);
4044                 
4045                 handled++;
4046                 handle_stripe(sh, conf->spare_page);
4047                 release_stripe(sh);
4048
4049                 spin_lock_irq(&conf->device_lock);
4050         }
4051         pr_debug("%d stripes handled\n", handled);
4052
4053         spin_unlock_irq(&conf->device_lock);
4054
4055         async_tx_issue_pending_all();
4056         unplug_slaves(mddev);
4057
4058         pr_debug("--- raid5d inactive\n");
4059 }
4060
4061 static ssize_t
4062 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4063 {
4064         raid5_conf_t *conf = mddev_to_conf(mddev);
4065         if (conf)
4066                 return sprintf(page, "%d\n", conf->max_nr_stripes);
4067         else
4068                 return 0;
4069 }
4070
4071 static ssize_t
4072 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4073 {
4074         raid5_conf_t *conf = mddev_to_conf(mddev);
4075         unsigned long new;
4076         int err;
4077
4078         if (len >= PAGE_SIZE)
4079                 return -EINVAL;
4080         if (!conf)
4081                 return -ENODEV;
4082
4083         if (strict_strtoul(page, 10, &new))
4084                 return -EINVAL;
4085         if (new <= 16 || new > 32768)
4086                 return -EINVAL;
4087         while (new < conf->max_nr_stripes) {
4088                 if (drop_one_stripe(conf))
4089                         conf->max_nr_stripes--;
4090                 else
4091                         break;
4092         }
4093         err = md_allow_write(mddev);
4094         if (err)
4095                 return err;
4096         while (new > conf->max_nr_stripes) {
4097                 if (grow_one_stripe(conf))
4098                         conf->max_nr_stripes++;
4099                 else break;
4100         }
4101         return len;
4102 }
4103
4104 static struct md_sysfs_entry
4105 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4106                                 raid5_show_stripe_cache_size,
4107                                 raid5_store_stripe_cache_size);
4108
4109 static ssize_t
4110 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4111 {
4112         raid5_conf_t *conf = mddev_to_conf(mddev);
4113         if (conf)
4114                 return sprintf(page, "%d\n", conf->bypass_threshold);
4115         else
4116                 return 0;
4117 }
4118
4119 static ssize_t
4120 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4121 {
4122         raid5_conf_t *conf = mddev_to_conf(mddev);
4123         unsigned long new;
4124         if (len >= PAGE_SIZE)
4125                 return -EINVAL;
4126         if (!conf)
4127                 return -ENODEV;
4128
4129         if (strict_strtoul(page, 10, &new))
4130                 return -EINVAL;
4131         if (new > conf->max_nr_stripes)
4132                 return -EINVAL;
4133         conf->bypass_threshold = new;
4134         return len;
4135 }
4136
4137 static struct md_sysfs_entry
4138 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4139                                         S_IRUGO | S_IWUSR,
4140                                         raid5_show_preread_threshold,
4141                                         raid5_store_preread_threshold);
4142
4143 static ssize_t
4144 stripe_cache_active_show(mddev_t *mddev, char *page)
4145 {
4146         raid5_conf_t *conf = mddev_to_conf(mddev);
4147         if (conf)
4148                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4149         else
4150                 return 0;
4151 }
4152
4153 static struct md_sysfs_entry
4154 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4155
4156 static struct attribute *raid5_attrs[] =  {
4157         &raid5_stripecache_size.attr,
4158         &raid5_stripecache_active.attr,
4159         &raid5_preread_bypass_threshold.attr,
4160         NULL,
4161 };
4162 static struct attribute_group raid5_attrs_group = {
4163         .name = NULL,
4164         .attrs = raid5_attrs,
4165 };
4166
4167 static int run(mddev_t *mddev)
4168 {
4169         raid5_conf_t *conf;
4170         int raid_disk, memory;
4171         mdk_rdev_t *rdev;
4172         struct disk_info *disk;
4173         int working_disks = 0;
4174
4175         if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
4176                 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4177                        mdname(mddev), mddev->level);
4178                 return -EIO;
4179         }
4180         if ((mddev->level == 5 && !algorithm_valid_raid5(mddev->layout)) ||
4181             (mddev->level == 6 && !algorithm_valid_raid6(mddev->layout))) {
4182                 printk(KERN_ERR "raid5: %s: layout %d not supported\n",
4183                        mdname(mddev), mddev->layout);
4184                 return -EIO;
4185         }
4186
4187         if (mddev->chunk_size < PAGE_SIZE) {
4188                 printk(KERN_ERR "md/raid5: chunk_size must be at least "
4189                        "PAGE_SIZE but %d < %ld\n",
4190                        mddev->chunk_size, PAGE_SIZE);
4191                 return -EINVAL;
4192         }
4193
4194         if (mddev->reshape_position != MaxSector) {
4195                 /* Check that we can continue the reshape.
4196                  * Currently only disks can change, it must
4197                  * increase, and we must be past the point where
4198                  * a stripe over-writes itself
4199                  */
4200                 sector_t here_new, here_old;
4201                 int old_disks;
4202                 int max_degraded = (mddev->level == 5 ? 1 : 2);
4203
4204                 if (mddev->new_level != mddev->level ||
4205                     mddev->new_layout != mddev->layout ||
4206                     mddev->new_chunk != mddev->chunk_size) {
4207                         printk(KERN_ERR "raid5: %s: unsupported reshape "
4208                                "required - aborting.\n",
4209                                mdname(mddev));
4210                         return -EINVAL;
4211                 }
4212                 if (mddev->delta_disks <= 0) {
4213                         printk(KERN_ERR "raid5: %s: unsupported reshape "
4214                                "(reduce disks) required - aborting.\n",
4215                                mdname(mddev));
4216                         return -EINVAL;
4217                 }
4218                 old_disks = mddev->raid_disks - mddev->delta_disks;
4219                 /* reshape_position must be on a new-stripe boundary, and one
4220                  * further up in new geometry must map after here in old
4221                  * geometry.
4222                  */
4223                 here_new = mddev->reshape_position;
4224                 if (sector_div(here_new, (mddev->chunk_size>>9)*
4225                                (mddev->raid_disks - max_degraded))) {
4226                         printk(KERN_ERR "raid5: reshape_position not "
4227                                "on a stripe boundary\n");
4228                         return -EINVAL;
4229                 }
4230                 /* here_new is the stripe we will write to */
4231                 here_old = mddev->reshape_position;
4232                 sector_div(here_old, (mddev->chunk_size>>9)*
4233                            (old_disks-max_degraded));
4234                 /* here_old is the first stripe that we might need to read
4235                  * from */
4236                 if (here_new >= here_old) {
4237                         /* Reading from the same stripe as writing to - bad */
4238                         printk(KERN_ERR "raid5: reshape_position too early for "
4239                                "auto-recovery - aborting.\n");
4240                         return -EINVAL;
4241                 }
4242                 printk(KERN_INFO "raid5: reshape will continue\n");
4243                 /* OK, we should be able to continue; */
4244         }
4245
4246
4247         mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
4248         if ((conf = mddev->private) == NULL)
4249                 goto abort;
4250         if (mddev->reshape_position == MaxSector) {
4251                 conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
4252         } else {
4253                 conf->raid_disks = mddev->raid_disks;
4254                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4255         }
4256
4257         conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4258                               GFP_KERNEL);
4259         if (!conf->disks)
4260                 goto abort;
4261
4262         conf->mddev = mddev;
4263
4264         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4265                 goto abort;
4266
4267         if (mddev->level == 6) {
4268                 conf->spare_page = alloc_page(GFP_KERNEL);
4269                 if (!conf->spare_page)
4270                         goto abort;
4271         }
4272         spin_lock_init(&conf->device_lock);
4273         mddev->queue->queue_lock = &conf->device_lock;
4274         init_waitqueue_head(&conf->wait_for_stripe);
4275         init_waitqueue_head(&conf->wait_for_overlap);
4276         INIT_LIST_HEAD(&conf->handle_list);
4277         INIT_LIST_HEAD(&conf->hold_list);
4278         INIT_LIST_HEAD(&conf->delayed_list);
4279         INIT_LIST_HEAD(&conf->bitmap_list);
4280         INIT_LIST_HEAD(&conf->inactive_list);
4281         atomic_set(&conf->active_stripes, 0);
4282         atomic_set(&conf->preread_active_stripes, 0);
4283         atomic_set(&conf->active_aligned_reads, 0);
4284         conf->bypass_threshold = BYPASS_THRESHOLD;
4285
4286         pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4287
4288         list_for_each_entry(rdev, &mddev->disks, same_set) {
4289                 raid_disk = rdev->raid_disk;
4290                 if (raid_disk >= conf->raid_disks
4291                     || raid_disk < 0)
4292                         continue;
4293                 disk = conf->disks + raid_disk;
4294
4295                 disk->rdev = rdev;
4296
4297                 if (test_bit(In_sync, &rdev->flags)) {
4298                         char b[BDEVNAME_SIZE];
4299                         printk(KERN_INFO "raid5: device %s operational as raid"
4300                                 " disk %d\n", bdevname(rdev->bdev,b),
4301                                 raid_disk);
4302                         working_disks++;
4303                 } else
4304                         /* Cannot rely on bitmap to complete recovery */
4305                         conf->fullsync = 1;
4306         }
4307
4308         /*
4309          * 0 for a fully functional array, 1 or 2 for a degraded array.
4310          */
4311         mddev->degraded = conf->raid_disks - working_disks;
4312         conf->mddev = mddev;
4313         conf->chunk_size = mddev->chunk_size;
4314         conf->level = mddev->level;
4315         if (conf->level == 6)
4316                 conf->max_degraded = 2;
4317         else
4318                 conf->max_degraded = 1;
4319         conf->algorithm = mddev->layout;
4320         conf->max_nr_stripes = NR_STRIPES;
4321         conf->expand_progress = mddev->reshape_position;
4322
4323         /* device size must be a multiple of chunk size */
4324         mddev->dev_sectors &= ~(mddev->chunk_size / 512 - 1);
4325         mddev->resync_max_sectors = mddev->dev_sectors;
4326
4327         if (conf->level == 6 && conf->raid_disks < 4) {
4328                 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4329                        mdname(mddev), conf->raid_disks);
4330                 goto abort;
4331         }
4332         if (!conf->chunk_size || conf->chunk_size % 4) {
4333                 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4334                         conf->chunk_size, mdname(mddev));
4335                 goto abort;
4336         }
4337         if (mddev->degraded > conf->max_degraded) {
4338                 printk(KERN_ERR "raid5: not enough operational devices for %s"
4339                         " (%d/%d failed)\n",
4340                         mdname(mddev), mddev->degraded, conf->raid_disks);
4341                 goto abort;
4342         }
4343
4344         if (mddev->degraded > 0 &&
4345             mddev->recovery_cp != MaxSector) {
4346                 if (mddev->ok_start_degraded)
4347                         printk(KERN_WARNING
4348                                "raid5: starting dirty degraded array: %s"
4349                                "- data corruption possible.\n",
4350                                mdname(mddev));
4351                 else {
4352                         printk(KERN_ERR
4353                                "raid5: cannot start dirty degraded array for %s\n",
4354                                mdname(mddev));
4355                         goto abort;
4356                 }
4357         }
4358
4359         {
4360                 mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4361                 if (!mddev->thread) {
4362                         printk(KERN_ERR 
4363                                 "raid5: couldn't allocate thread for %s\n",
4364                                 mdname(mddev));
4365                         goto abort;
4366                 }
4367         }
4368         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4369                  conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4370         if (grow_stripes(conf, conf->max_nr_stripes)) {
4371                 printk(KERN_ERR 
4372                         "raid5: couldn't allocate %dkB for buffers\n", memory);
4373                 shrink_stripes(conf);
4374                 md_unregister_thread(mddev->thread);
4375                 goto abort;
4376         } else
4377                 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4378                         memory, mdname(mddev));
4379
4380         if (mddev->degraded == 0)
4381                 printk("raid5: raid level %d set %s active with %d out of %d"
4382                         " devices, algorithm %d\n", conf->level, mdname(mddev), 
4383                         mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4384                         conf->algorithm);
4385         else
4386                 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4387                         " out of %d devices, algorithm %d\n", conf->level,
4388                         mdname(mddev), mddev->raid_disks - mddev->degraded,
4389                         mddev->raid_disks, conf->algorithm);
4390
4391         print_raid5_conf(conf);
4392
4393         if (conf->expand_progress != MaxSector) {
4394                 printk("...ok start reshape thread\n");
4395                 conf->expand_lo = conf->expand_progress;
4396                 atomic_set(&conf->reshape_stripes, 0);
4397                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4398                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4399                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4400                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4401                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4402                                                         "%s_reshape");
4403         }
4404
4405         /* read-ahead size must cover two whole stripes, which is
4406          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4407          */
4408         {
4409                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4410                 int stripe = data_disks *
4411                         (mddev->chunk_size / PAGE_SIZE);
4412                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4413                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4414         }
4415
4416         /* Ok, everything is just fine now */
4417         if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4418                 printk(KERN_WARNING
4419                        "raid5: failed to create sysfs attributes for %s\n",
4420                        mdname(mddev));
4421
4422         mddev->queue->unplug_fn = raid5_unplug_device;
4423         mddev->queue->backing_dev_info.congested_data = mddev;
4424         mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4425
4426         mddev->array_sectors = mddev->dev_sectors *
4427                 (conf->previous_raid_disks - conf->max_degraded);
4428
4429         blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4430
4431         return 0;
4432 abort:
4433         if (conf) {
4434                 print_raid5_conf(conf);
4435                 safe_put_page(conf->spare_page);
4436                 kfree(conf->disks);
4437                 kfree(conf->stripe_hashtbl);
4438                 kfree(conf);
4439         }
4440         mddev->private = NULL;
4441         printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4442         return -EIO;
4443 }
4444
4445
4446
4447 static int stop(mddev_t *mddev)
4448 {
4449         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4450
4451         md_unregister_thread(mddev->thread);
4452         mddev->thread = NULL;
4453         shrink_stripes(conf);
4454         kfree(conf->stripe_hashtbl);
4455         mddev->queue->backing_dev_info.congested_fn = NULL;
4456         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
4457         sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
4458         kfree(conf->disks);
4459         kfree(conf);
4460         mddev->private = NULL;
4461         return 0;
4462 }
4463
4464 #ifdef DEBUG
4465 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
4466 {
4467         int i;
4468
4469         seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4470                    (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4471         seq_printf(seq, "sh %llu,  count %d.\n",
4472                    (unsigned long long)sh->sector, atomic_read(&sh->count));
4473         seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4474         for (i = 0; i < sh->disks; i++) {
4475                 seq_printf(seq, "(cache%d: %p %ld) ",
4476                            i, sh->dev[i].page, sh->dev[i].flags);
4477         }
4478         seq_printf(seq, "\n");
4479 }
4480
4481 static void printall(struct seq_file *seq, raid5_conf_t *conf)
4482 {
4483         struct stripe_head *sh;
4484         struct hlist_node *hn;
4485         int i;
4486
4487         spin_lock_irq(&conf->device_lock);
4488         for (i = 0; i < NR_HASH; i++) {
4489                 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4490                         if (sh->raid_conf != conf)
4491                                 continue;
4492                         print_sh(seq, sh);
4493                 }
4494         }
4495         spin_unlock_irq(&conf->device_lock);
4496 }
4497 #endif
4498
4499 static void status(struct seq_file *seq, mddev_t *mddev)
4500 {
4501         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4502         int i;
4503
4504         seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
4505         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4506         for (i = 0; i < conf->raid_disks; i++)
4507                 seq_printf (seq, "%s",
4508                                conf->disks[i].rdev &&
4509                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4510         seq_printf (seq, "]");
4511 #ifdef DEBUG
4512         seq_printf (seq, "\n");
4513         printall(seq, conf);
4514 #endif
4515 }
4516
4517 static void print_raid5_conf (raid5_conf_t *conf)
4518 {
4519         int i;
4520         struct disk_info *tmp;
4521
4522         printk("RAID5 conf printout:\n");
4523         if (!conf) {
4524                 printk("(conf==NULL)\n");
4525                 return;
4526         }
4527         printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4528                  conf->raid_disks - conf->mddev->degraded);
4529
4530         for (i = 0; i < conf->raid_disks; i++) {
4531                 char b[BDEVNAME_SIZE];
4532                 tmp = conf->disks + i;
4533                 if (tmp->rdev)
4534                 printk(" disk %d, o:%d, dev:%s\n",
4535                         i, !test_bit(Faulty, &tmp->rdev->flags),
4536                         bdevname(tmp->rdev->bdev,b));
4537         }
4538 }
4539
4540 static int raid5_spare_active(mddev_t *mddev)
4541 {
4542         int i;
4543         raid5_conf_t *conf = mddev->private;
4544         struct disk_info *tmp;
4545
4546         for (i = 0; i < conf->raid_disks; i++) {
4547                 tmp = conf->disks + i;
4548                 if (tmp->rdev
4549                     && !test_bit(Faulty, &tmp->rdev->flags)
4550                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4551                         unsigned long flags;
4552                         spin_lock_irqsave(&conf->device_lock, flags);
4553                         mddev->degraded--;
4554                         spin_unlock_irqrestore(&conf->device_lock, flags);
4555                 }
4556         }
4557         print_raid5_conf(conf);
4558         return 0;
4559 }
4560
4561 static int raid5_remove_disk(mddev_t *mddev, int number)
4562 {
4563         raid5_conf_t *conf = mddev->private;
4564         int err = 0;
4565         mdk_rdev_t *rdev;
4566         struct disk_info *p = conf->disks + number;
4567
4568         print_raid5_conf(conf);
4569         rdev = p->rdev;
4570         if (rdev) {
4571                 if (test_bit(In_sync, &rdev->flags) ||
4572                     atomic_read(&rdev->nr_pending)) {
4573                         err = -EBUSY;
4574                         goto abort;
4575                 }
4576                 /* Only remove non-faulty devices if recovery
4577                  * isn't possible.
4578                  */
4579                 if (!test_bit(Faulty, &rdev->flags) &&
4580                     mddev->degraded <= conf->max_degraded) {
4581                         err = -EBUSY;
4582                         goto abort;
4583                 }
4584                 p->rdev = NULL;
4585                 synchronize_rcu();
4586                 if (atomic_read(&rdev->nr_pending)) {
4587                         /* lost the race, try later */
4588                         err = -EBUSY;
4589                         p->rdev = rdev;
4590                 }
4591         }
4592 abort:
4593
4594         print_raid5_conf(conf);
4595         return err;
4596 }
4597
4598 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4599 {
4600         raid5_conf_t *conf = mddev->private;
4601         int err = -EEXIST;
4602         int disk;
4603         struct disk_info *p;
4604         int first = 0;
4605         int last = conf->raid_disks - 1;
4606
4607         if (mddev->degraded > conf->max_degraded)
4608                 /* no point adding a device */
4609                 return -EINVAL;
4610
4611         if (rdev->raid_disk >= 0)
4612                 first = last = rdev->raid_disk;
4613
4614         /*
4615          * find the disk ... but prefer rdev->saved_raid_disk
4616          * if possible.
4617          */
4618         if (rdev->saved_raid_disk >= 0 &&
4619             rdev->saved_raid_disk >= first &&
4620             conf->disks[rdev->saved_raid_disk].rdev == NULL)
4621                 disk = rdev->saved_raid_disk;
4622         else
4623                 disk = first;
4624         for ( ; disk <= last ; disk++)
4625                 if ((p=conf->disks + disk)->rdev == NULL) {
4626                         clear_bit(In_sync, &rdev->flags);
4627                         rdev->raid_disk = disk;
4628                         err = 0;
4629                         if (rdev->saved_raid_disk != disk)
4630                                 conf->fullsync = 1;
4631                         rcu_assign_pointer(p->rdev, rdev);
4632                         break;
4633                 }
4634         print_raid5_conf(conf);
4635         return err;
4636 }
4637
4638 static int raid5_resize(mddev_t *mddev, sector_t sectors)
4639 {
4640         /* no resync is happening, and there is enough space
4641          * on all devices, so we can resize.
4642          * We need to make sure resync covers any new space.
4643          * If the array is shrinking we should possibly wait until
4644          * any io in the removed space completes, but it hardly seems
4645          * worth it.
4646          */
4647         raid5_conf_t *conf = mddev_to_conf(mddev);
4648
4649         sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4650         mddev->array_sectors = sectors * (mddev->raid_disks
4651                                           - conf->max_degraded);
4652         set_capacity(mddev->gendisk, mddev->array_sectors);
4653         mddev->changed = 1;
4654         if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
4655                 mddev->recovery_cp = mddev->dev_sectors;
4656                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4657         }
4658         mddev->dev_sectors = sectors;
4659         mddev->resync_max_sectors = sectors;
4660         return 0;
4661 }
4662
4663 #ifdef CONFIG_MD_RAID5_RESHAPE
4664 static int raid5_check_reshape(mddev_t *mddev)
4665 {
4666         raid5_conf_t *conf = mddev_to_conf(mddev);
4667         int err;
4668
4669         if (mddev->delta_disks < 0 ||
4670             mddev->new_level != mddev->level)
4671                 return -EINVAL; /* Cannot shrink array or change level yet */
4672         if (mddev->delta_disks == 0)
4673                 return 0; /* nothing to do */
4674         if (mddev->bitmap)
4675                 /* Cannot grow a bitmap yet */
4676                 return -EBUSY;
4677
4678         /* Can only proceed if there are plenty of stripe_heads.
4679          * We need a minimum of one full stripe,, and for sensible progress
4680          * it is best to have about 4 times that.
4681          * If we require 4 times, then the default 256 4K stripe_heads will
4682          * allow for chunk sizes up to 256K, which is probably OK.
4683          * If the chunk size is greater, user-space should request more
4684          * stripe_heads first.
4685          */
4686         if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4687             (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
4688                 printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
4689                        (mddev->chunk_size / STRIPE_SIZE)*4);
4690                 return -ENOSPC;
4691         }
4692
4693         err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4694         if (err)
4695                 return err;
4696
4697         if (mddev->degraded > conf->max_degraded)
4698                 return -EINVAL;
4699         /* looks like we might be able to manage this */
4700         return 0;
4701 }
4702
4703 static int raid5_start_reshape(mddev_t *mddev)
4704 {
4705         raid5_conf_t *conf = mddev_to_conf(mddev);
4706         mdk_rdev_t *rdev;
4707         int spares = 0;
4708         int added_devices = 0;
4709         unsigned long flags;
4710
4711         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4712                 return -EBUSY;
4713
4714         list_for_each_entry(rdev, &mddev->disks, same_set)
4715                 if (rdev->raid_disk < 0 &&
4716                     !test_bit(Faulty, &rdev->flags))
4717                         spares++;
4718
4719         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
4720                 /* Not enough devices even to make a degraded array
4721                  * of that size
4722                  */
4723                 return -EINVAL;
4724
4725         atomic_set(&conf->reshape_stripes, 0);
4726         spin_lock_irq(&conf->device_lock);
4727         conf->previous_raid_disks = conf->raid_disks;
4728         conf->raid_disks += mddev->delta_disks;
4729         conf->expand_progress = 0;
4730         conf->expand_lo = 0;
4731         spin_unlock_irq(&conf->device_lock);
4732
4733         /* Add some new drives, as many as will fit.
4734          * We know there are enough to make the newly sized array work.
4735          */
4736         list_for_each_entry(rdev, &mddev->disks, same_set)
4737                 if (rdev->raid_disk < 0 &&
4738                     !test_bit(Faulty, &rdev->flags)) {
4739                         if (raid5_add_disk(mddev, rdev) == 0) {
4740                                 char nm[20];
4741                                 set_bit(In_sync, &rdev->flags);
4742                                 added_devices++;
4743                                 rdev->recovery_offset = 0;
4744                                 sprintf(nm, "rd%d", rdev->raid_disk);
4745                                 if (sysfs_create_link(&mddev->kobj,
4746                                                       &rdev->kobj, nm))
4747                                         printk(KERN_WARNING
4748                                                "raid5: failed to create "
4749                                                " link %s for %s\n",
4750                                                nm, mdname(mddev));
4751                         } else
4752                                 break;
4753                 }
4754
4755         spin_lock_irqsave(&conf->device_lock, flags);
4756         mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
4757         spin_unlock_irqrestore(&conf->device_lock, flags);
4758         mddev->raid_disks = conf->raid_disks;
4759         mddev->reshape_position = 0;
4760         set_bit(MD_CHANGE_DEVS, &mddev->flags);
4761
4762         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4763         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4764         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4765         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4766         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4767                                                 "%s_reshape");
4768         if (!mddev->sync_thread) {
4769                 mddev->recovery = 0;
4770                 spin_lock_irq(&conf->device_lock);
4771                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4772                 conf->expand_progress = MaxSector;
4773                 spin_unlock_irq(&conf->device_lock);
4774                 return -EAGAIN;
4775         }
4776         md_wakeup_thread(mddev->sync_thread);
4777         md_new_event(mddev);
4778         return 0;
4779 }
4780 #endif
4781
4782 static void end_reshape(raid5_conf_t *conf)
4783 {
4784         struct block_device *bdev;
4785
4786         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
4787                 conf->mddev->array_sectors = conf->mddev->dev_sectors *
4788                         (conf->raid_disks - conf->max_degraded);
4789                 set_capacity(conf->mddev->gendisk, conf->mddev->array_sectors);
4790                 conf->mddev->changed = 1;
4791
4792                 bdev = bdget_disk(conf->mddev->gendisk, 0);
4793                 if (bdev) {
4794                         mutex_lock(&bdev->bd_inode->i_mutex);
4795                         i_size_write(bdev->bd_inode,
4796                                      (loff_t)conf->mddev->array_sectors << 9);
4797                         mutex_unlock(&bdev->bd_inode->i_mutex);
4798                         bdput(bdev);
4799                 }
4800                 spin_lock_irq(&conf->device_lock);
4801                 conf->expand_progress = MaxSector;
4802                 spin_unlock_irq(&conf->device_lock);
4803                 conf->mddev->reshape_position = MaxSector;
4804
4805                 /* read-ahead size must cover two whole stripes, which is
4806                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4807                  */
4808                 {
4809                         int data_disks = conf->previous_raid_disks - conf->max_degraded;
4810                         int stripe = data_disks *
4811                                 (conf->mddev->chunk_size / PAGE_SIZE);
4812                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4813                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4814                 }
4815         }
4816 }
4817
4818 static void raid5_quiesce(mddev_t *mddev, int state)
4819 {
4820         raid5_conf_t *conf = mddev_to_conf(mddev);
4821
4822         switch(state) {
4823         case 2: /* resume for a suspend */
4824                 wake_up(&conf->wait_for_overlap);
4825                 break;
4826
4827         case 1: /* stop all writes */
4828                 spin_lock_irq(&conf->device_lock);
4829                 conf->quiesce = 1;
4830                 wait_event_lock_irq(conf->wait_for_stripe,
4831                                     atomic_read(&conf->active_stripes) == 0 &&
4832                                     atomic_read(&conf->active_aligned_reads) == 0,
4833                                     conf->device_lock, /* nothing */);
4834                 spin_unlock_irq(&conf->device_lock);
4835                 break;
4836
4837         case 0: /* re-enable writes */
4838                 spin_lock_irq(&conf->device_lock);
4839                 conf->quiesce = 0;
4840                 wake_up(&conf->wait_for_stripe);
4841                 wake_up(&conf->wait_for_overlap);
4842                 spin_unlock_irq(&conf->device_lock);
4843                 break;
4844         }
4845 }
4846
4847 static struct mdk_personality raid6_personality =
4848 {
4849         .name           = "raid6",
4850         .level          = 6,
4851         .owner          = THIS_MODULE,
4852         .make_request   = make_request,
4853         .run            = run,
4854         .stop           = stop,
4855         .status         = status,
4856         .error_handler  = error,
4857         .hot_add_disk   = raid5_add_disk,
4858         .hot_remove_disk= raid5_remove_disk,
4859         .spare_active   = raid5_spare_active,
4860         .sync_request   = sync_request,
4861         .resize         = raid5_resize,
4862 #ifdef CONFIG_MD_RAID5_RESHAPE
4863         .check_reshape  = raid5_check_reshape,
4864         .start_reshape  = raid5_start_reshape,
4865 #endif
4866         .quiesce        = raid5_quiesce,
4867 };
4868 static struct mdk_personality raid5_personality =
4869 {
4870         .name           = "raid5",
4871         .level          = 5,
4872         .owner          = THIS_MODULE,
4873         .make_request   = make_request,
4874         .run            = run,
4875         .stop           = stop,
4876         .status         = status,
4877         .error_handler  = error,
4878         .hot_add_disk   = raid5_add_disk,
4879         .hot_remove_disk= raid5_remove_disk,
4880         .spare_active   = raid5_spare_active,
4881         .sync_request   = sync_request,
4882         .resize         = raid5_resize,
4883 #ifdef CONFIG_MD_RAID5_RESHAPE
4884         .check_reshape  = raid5_check_reshape,
4885         .start_reshape  = raid5_start_reshape,
4886 #endif
4887         .quiesce        = raid5_quiesce,
4888 };
4889
4890 static struct mdk_personality raid4_personality =
4891 {
4892         .name           = "raid4",
4893         .level          = 4,
4894         .owner          = THIS_MODULE,
4895         .make_request   = make_request,
4896         .run            = run,
4897         .stop           = stop,
4898         .status         = status,
4899         .error_handler  = error,
4900         .hot_add_disk   = raid5_add_disk,
4901         .hot_remove_disk= raid5_remove_disk,
4902         .spare_active   = raid5_spare_active,
4903         .sync_request   = sync_request,
4904         .resize         = raid5_resize,
4905 #ifdef CONFIG_MD_RAID5_RESHAPE
4906         .check_reshape  = raid5_check_reshape,
4907         .start_reshape  = raid5_start_reshape,
4908 #endif
4909         .quiesce        = raid5_quiesce,
4910 };
4911
4912 static int __init raid5_init(void)
4913 {
4914         int e;
4915
4916         e = raid6_select_algo();
4917         if ( e )
4918                 return e;
4919         register_md_personality(&raid6_personality);
4920         register_md_personality(&raid5_personality);
4921         register_md_personality(&raid4_personality);
4922         return 0;
4923 }
4924
4925 static void raid5_exit(void)
4926 {
4927         unregister_md_personality(&raid6_personality);
4928         unregister_md_personality(&raid5_personality);
4929         unregister_md_personality(&raid4_personality);
4930 }
4931
4932 module_init(raid5_init);
4933 module_exit(raid5_exit);
4934 MODULE_LICENSE("GPL");
4935 MODULE_ALIAS("md-personality-4"); /* RAID5 */
4936 MODULE_ALIAS("md-raid5");
4937 MODULE_ALIAS("md-raid4");
4938 MODULE_ALIAS("md-level-5");
4939 MODULE_ALIAS("md-level-4");
4940 MODULE_ALIAS("md-personality-8"); /* RAID6 */
4941 MODULE_ALIAS("md-raid6");
4942 MODULE_ALIAS("md-level-6");
4943
4944 /* This used to be two separate modules, they were: */
4945 MODULE_ALIAS("raid5");
4946 MODULE_ALIAS("raid6");