]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/md/raid5.c
md: use stripe_head_state in ops_run_io()
[linux-2.6-omap-h63xx.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->bm_write is the number of the last batch successfully written.
31  * conf->bm_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is bm_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/module.h>
47 #include <linux/slab.h>
48 #include <linux/highmem.h>
49 #include <linux/bitops.h>
50 #include <linux/kthread.h>
51 #include <asm/atomic.h>
52 #include "raid6.h"
53
54 #include <linux/raid/bitmap.h>
55 #include <linux/async_tx.h>
56
57 /*
58  * Stripe cache
59  */
60
61 #define NR_STRIPES              256
62 #define STRIPE_SIZE             PAGE_SIZE
63 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
64 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
65 #define IO_THRESHOLD            1
66 #define BYPASS_THRESHOLD        1
67 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
68 #define HASH_MASK               (NR_HASH - 1)
69
70 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
71
72 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
73  * order without overlap.  There may be several bio's per stripe+device, and
74  * a bio could span several devices.
75  * When walking this list for a particular stripe+device, we must never proceed
76  * beyond a bio that extends past this device, as the next bio might no longer
77  * be valid.
78  * This macro is used to determine the 'next' bio in the list, given the sector
79  * of the current stripe+device
80  */
81 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
82 /*
83  * The following can be used to debug the driver
84  */
85 #define RAID5_PARANOIA  1
86 #if RAID5_PARANOIA && defined(CONFIG_SMP)
87 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
88 #else
89 # define CHECK_DEVLOCK()
90 #endif
91
92 #ifdef DEBUG
93 #define inline
94 #define __inline__
95 #endif
96
97 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
98
99 #if !RAID6_USE_EMPTY_ZERO_PAGE
100 /* In .bss so it's zeroed */
101 const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
102 #endif
103
104 static inline int raid6_next_disk(int disk, int raid_disks)
105 {
106         disk++;
107         return (disk < raid_disks) ? disk : 0;
108 }
109
110 static void return_io(struct bio *return_bi)
111 {
112         struct bio *bi = return_bi;
113         while (bi) {
114
115                 return_bi = bi->bi_next;
116                 bi->bi_next = NULL;
117                 bi->bi_size = 0;
118                 bio_endio(bi, 0);
119                 bi = return_bi;
120         }
121 }
122
123 static void print_raid5_conf (raid5_conf_t *conf);
124
125 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
126 {
127         if (atomic_dec_and_test(&sh->count)) {
128                 BUG_ON(!list_empty(&sh->lru));
129                 BUG_ON(atomic_read(&conf->active_stripes)==0);
130                 if (test_bit(STRIPE_HANDLE, &sh->state)) {
131                         if (test_bit(STRIPE_DELAYED, &sh->state)) {
132                                 list_add_tail(&sh->lru, &conf->delayed_list);
133                                 blk_plug_device(conf->mddev->queue);
134                         } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
135                                    sh->bm_seq - conf->seq_write > 0) {
136                                 list_add_tail(&sh->lru, &conf->bitmap_list);
137                                 blk_plug_device(conf->mddev->queue);
138                         } else {
139                                 clear_bit(STRIPE_BIT_DELAY, &sh->state);
140                                 list_add_tail(&sh->lru, &conf->handle_list);
141                         }
142                         md_wakeup_thread(conf->mddev->thread);
143                 } else {
144                         BUG_ON(sh->ops.pending);
145                         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
146                                 atomic_dec(&conf->preread_active_stripes);
147                                 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
148                                         md_wakeup_thread(conf->mddev->thread);
149                         }
150                         atomic_dec(&conf->active_stripes);
151                         if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
152                                 list_add_tail(&sh->lru, &conf->inactive_list);
153                                 wake_up(&conf->wait_for_stripe);
154                                 if (conf->retry_read_aligned)
155                                         md_wakeup_thread(conf->mddev->thread);
156                         }
157                 }
158         }
159 }
160 static void release_stripe(struct stripe_head *sh)
161 {
162         raid5_conf_t *conf = sh->raid_conf;
163         unsigned long flags;
164
165         spin_lock_irqsave(&conf->device_lock, flags);
166         __release_stripe(conf, sh);
167         spin_unlock_irqrestore(&conf->device_lock, flags);
168 }
169
170 static inline void remove_hash(struct stripe_head *sh)
171 {
172         pr_debug("remove_hash(), stripe %llu\n",
173                 (unsigned long long)sh->sector);
174
175         hlist_del_init(&sh->hash);
176 }
177
178 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
179 {
180         struct hlist_head *hp = stripe_hash(conf, sh->sector);
181
182         pr_debug("insert_hash(), stripe %llu\n",
183                 (unsigned long long)sh->sector);
184
185         CHECK_DEVLOCK();
186         hlist_add_head(&sh->hash, hp);
187 }
188
189
190 /* find an idle stripe, make sure it is unhashed, and return it. */
191 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
192 {
193         struct stripe_head *sh = NULL;
194         struct list_head *first;
195
196         CHECK_DEVLOCK();
197         if (list_empty(&conf->inactive_list))
198                 goto out;
199         first = conf->inactive_list.next;
200         sh = list_entry(first, struct stripe_head, lru);
201         list_del_init(first);
202         remove_hash(sh);
203         atomic_inc(&conf->active_stripes);
204 out:
205         return sh;
206 }
207
208 static void shrink_buffers(struct stripe_head *sh, int num)
209 {
210         struct page *p;
211         int i;
212
213         for (i=0; i<num ; i++) {
214                 p = sh->dev[i].page;
215                 if (!p)
216                         continue;
217                 sh->dev[i].page = NULL;
218                 put_page(p);
219         }
220 }
221
222 static int grow_buffers(struct stripe_head *sh, int num)
223 {
224         int i;
225
226         for (i=0; i<num; i++) {
227                 struct page *page;
228
229                 if (!(page = alloc_page(GFP_KERNEL))) {
230                         return 1;
231                 }
232                 sh->dev[i].page = page;
233         }
234         return 0;
235 }
236
237 static void raid5_build_block (struct stripe_head *sh, int i);
238
239 static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
240 {
241         raid5_conf_t *conf = sh->raid_conf;
242         int i;
243
244         BUG_ON(atomic_read(&sh->count) != 0);
245         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
246         BUG_ON(sh->ops.pending || sh->ops.ack || sh->ops.complete);
247
248         CHECK_DEVLOCK();
249         pr_debug("init_stripe called, stripe %llu\n",
250                 (unsigned long long)sh->sector);
251
252         remove_hash(sh);
253
254         sh->sector = sector;
255         sh->pd_idx = pd_idx;
256         sh->state = 0;
257
258         sh->disks = disks;
259
260         for (i = sh->disks; i--; ) {
261                 struct r5dev *dev = &sh->dev[i];
262
263                 if (dev->toread || dev->read || dev->towrite || dev->written ||
264                     test_bit(R5_LOCKED, &dev->flags)) {
265                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
266                                (unsigned long long)sh->sector, i, dev->toread,
267                                dev->read, dev->towrite, dev->written,
268                                test_bit(R5_LOCKED, &dev->flags));
269                         BUG();
270                 }
271                 dev->flags = 0;
272                 raid5_build_block(sh, i);
273         }
274         insert_hash(conf, sh);
275 }
276
277 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
278 {
279         struct stripe_head *sh;
280         struct hlist_node *hn;
281
282         CHECK_DEVLOCK();
283         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
284         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
285                 if (sh->sector == sector && sh->disks == disks)
286                         return sh;
287         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
288         return NULL;
289 }
290
291 static void unplug_slaves(mddev_t *mddev);
292 static void raid5_unplug_device(struct request_queue *q);
293
294 static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
295                                              int pd_idx, int noblock)
296 {
297         struct stripe_head *sh;
298
299         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
300
301         spin_lock_irq(&conf->device_lock);
302
303         do {
304                 wait_event_lock_irq(conf->wait_for_stripe,
305                                     conf->quiesce == 0,
306                                     conf->device_lock, /* nothing */);
307                 sh = __find_stripe(conf, sector, disks);
308                 if (!sh) {
309                         if (!conf->inactive_blocked)
310                                 sh = get_free_stripe(conf);
311                         if (noblock && sh == NULL)
312                                 break;
313                         if (!sh) {
314                                 conf->inactive_blocked = 1;
315                                 wait_event_lock_irq(conf->wait_for_stripe,
316                                                     !list_empty(&conf->inactive_list) &&
317                                                     (atomic_read(&conf->active_stripes)
318                                                      < (conf->max_nr_stripes *3/4)
319                                                      || !conf->inactive_blocked),
320                                                     conf->device_lock,
321                                                     raid5_unplug_device(conf->mddev->queue)
322                                         );
323                                 conf->inactive_blocked = 0;
324                         } else
325                                 init_stripe(sh, sector, pd_idx, disks);
326                 } else {
327                         if (atomic_read(&sh->count)) {
328                           BUG_ON(!list_empty(&sh->lru));
329                         } else {
330                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
331                                         atomic_inc(&conf->active_stripes);
332                                 if (list_empty(&sh->lru) &&
333                                     !test_bit(STRIPE_EXPANDING, &sh->state))
334                                         BUG();
335                                 list_del_init(&sh->lru);
336                         }
337                 }
338         } while (sh == NULL);
339
340         if (sh)
341                 atomic_inc(&sh->count);
342
343         spin_unlock_irq(&conf->device_lock);
344         return sh;
345 }
346
347 /* test_and_ack_op() ensures that we only dequeue an operation once */
348 #define test_and_ack_op(op, pend) \
349 do {                                                    \
350         if (test_bit(op, &sh->ops.pending) &&           \
351                 !test_bit(op, &sh->ops.complete)) {     \
352                 if (test_and_set_bit(op, &sh->ops.ack)) \
353                         clear_bit(op, &pend);           \
354                 else                                    \
355                         ack++;                          \
356         } else                                          \
357                 clear_bit(op, &pend);                   \
358 } while (0)
359
360 /* find new work to run, do not resubmit work that is already
361  * in flight
362  */
363 static unsigned long get_stripe_work(struct stripe_head *sh)
364 {
365         unsigned long pending;
366         int ack = 0;
367
368         pending = sh->ops.pending;
369
370         test_and_ack_op(STRIPE_OP_BIOFILL, pending);
371         test_and_ack_op(STRIPE_OP_COMPUTE_BLK, pending);
372         test_and_ack_op(STRIPE_OP_PREXOR, pending);
373         test_and_ack_op(STRIPE_OP_BIODRAIN, pending);
374         test_and_ack_op(STRIPE_OP_POSTXOR, pending);
375         test_and_ack_op(STRIPE_OP_CHECK, pending);
376
377         sh->ops.count -= ack;
378         if (unlikely(sh->ops.count < 0)) {
379                 printk(KERN_ERR "pending: %#lx ops.pending: %#lx ops.ack: %#lx "
380                         "ops.complete: %#lx\n", pending, sh->ops.pending,
381                         sh->ops.ack, sh->ops.complete);
382                 BUG();
383         }
384
385         return pending;
386 }
387
388 static void
389 raid5_end_read_request(struct bio *bi, int error);
390 static void
391 raid5_end_write_request(struct bio *bi, int error);
392
393 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
394 {
395         raid5_conf_t *conf = sh->raid_conf;
396         int i, disks = sh->disks;
397
398         might_sleep();
399
400         for (i = disks; i--; ) {
401                 int rw;
402                 struct bio *bi;
403                 mdk_rdev_t *rdev;
404                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
405                         rw = WRITE;
406                 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
407                         rw = READ;
408                 else
409                         continue;
410
411                 bi = &sh->dev[i].req;
412
413                 bi->bi_rw = rw;
414                 if (rw == WRITE)
415                         bi->bi_end_io = raid5_end_write_request;
416                 else
417                         bi->bi_end_io = raid5_end_read_request;
418
419                 rcu_read_lock();
420                 rdev = rcu_dereference(conf->disks[i].rdev);
421                 if (rdev && test_bit(Faulty, &rdev->flags))
422                         rdev = NULL;
423                 if (rdev)
424                         atomic_inc(&rdev->nr_pending);
425                 rcu_read_unlock();
426
427                 if (rdev) {
428                         if (s->syncing || s->expanding || s->expanded)
429                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
430
431                         set_bit(STRIPE_IO_STARTED, &sh->state);
432
433                         bi->bi_bdev = rdev->bdev;
434                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
435                                 __func__, (unsigned long long)sh->sector,
436                                 bi->bi_rw, i);
437                         atomic_inc(&sh->count);
438                         bi->bi_sector = sh->sector + rdev->data_offset;
439                         bi->bi_flags = 1 << BIO_UPTODATE;
440                         bi->bi_vcnt = 1;
441                         bi->bi_max_vecs = 1;
442                         bi->bi_idx = 0;
443                         bi->bi_io_vec = &sh->dev[i].vec;
444                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
445                         bi->bi_io_vec[0].bv_offset = 0;
446                         bi->bi_size = STRIPE_SIZE;
447                         bi->bi_next = NULL;
448                         if (rw == WRITE &&
449                             test_bit(R5_ReWrite, &sh->dev[i].flags))
450                                 atomic_add(STRIPE_SECTORS,
451                                         &rdev->corrected_errors);
452                         generic_make_request(bi);
453                 } else {
454                         if (rw == WRITE)
455                                 set_bit(STRIPE_DEGRADED, &sh->state);
456                         pr_debug("skip op %ld on disc %d for sector %llu\n",
457                                 bi->bi_rw, i, (unsigned long long)sh->sector);
458                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
459                         set_bit(STRIPE_HANDLE, &sh->state);
460                 }
461         }
462 }
463
464 static struct dma_async_tx_descriptor *
465 async_copy_data(int frombio, struct bio *bio, struct page *page,
466         sector_t sector, struct dma_async_tx_descriptor *tx)
467 {
468         struct bio_vec *bvl;
469         struct page *bio_page;
470         int i;
471         int page_offset;
472
473         if (bio->bi_sector >= sector)
474                 page_offset = (signed)(bio->bi_sector - sector) * 512;
475         else
476                 page_offset = (signed)(sector - bio->bi_sector) * -512;
477         bio_for_each_segment(bvl, bio, i) {
478                 int len = bio_iovec_idx(bio, i)->bv_len;
479                 int clen;
480                 int b_offset = 0;
481
482                 if (page_offset < 0) {
483                         b_offset = -page_offset;
484                         page_offset += b_offset;
485                         len -= b_offset;
486                 }
487
488                 if (len > 0 && page_offset + len > STRIPE_SIZE)
489                         clen = STRIPE_SIZE - page_offset;
490                 else
491                         clen = len;
492
493                 if (clen > 0) {
494                         b_offset += bio_iovec_idx(bio, i)->bv_offset;
495                         bio_page = bio_iovec_idx(bio, i)->bv_page;
496                         if (frombio)
497                                 tx = async_memcpy(page, bio_page, page_offset,
498                                         b_offset, clen,
499                                         ASYNC_TX_DEP_ACK,
500                                         tx, NULL, NULL);
501                         else
502                                 tx = async_memcpy(bio_page, page, b_offset,
503                                         page_offset, clen,
504                                         ASYNC_TX_DEP_ACK,
505                                         tx, NULL, NULL);
506                 }
507                 if (clen < len) /* hit end of page */
508                         break;
509                 page_offset +=  len;
510         }
511
512         return tx;
513 }
514
515 static void ops_complete_biofill(void *stripe_head_ref)
516 {
517         struct stripe_head *sh = stripe_head_ref;
518         struct bio *return_bi = NULL;
519         raid5_conf_t *conf = sh->raid_conf;
520         int i;
521
522         pr_debug("%s: stripe %llu\n", __func__,
523                 (unsigned long long)sh->sector);
524
525         /* clear completed biofills */
526         for (i = sh->disks; i--; ) {
527                 struct r5dev *dev = &sh->dev[i];
528
529                 /* acknowledge completion of a biofill operation */
530                 /* and check if we need to reply to a read request,
531                  * new R5_Wantfill requests are held off until
532                  * !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending)
533                  */
534                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
535                         struct bio *rbi, *rbi2;
536
537                         /* The access to dev->read is outside of the
538                          * spin_lock_irq(&conf->device_lock), but is protected
539                          * by the STRIPE_OP_BIOFILL pending bit
540                          */
541                         BUG_ON(!dev->read);
542                         rbi = dev->read;
543                         dev->read = NULL;
544                         while (rbi && rbi->bi_sector <
545                                 dev->sector + STRIPE_SECTORS) {
546                                 rbi2 = r5_next_bio(rbi, dev->sector);
547                                 spin_lock_irq(&conf->device_lock);
548                                 if (--rbi->bi_phys_segments == 0) {
549                                         rbi->bi_next = return_bi;
550                                         return_bi = rbi;
551                                 }
552                                 spin_unlock_irq(&conf->device_lock);
553                                 rbi = rbi2;
554                         }
555                 }
556         }
557         set_bit(STRIPE_OP_BIOFILL, &sh->ops.complete);
558
559         return_io(return_bi);
560
561         set_bit(STRIPE_HANDLE, &sh->state);
562         release_stripe(sh);
563 }
564
565 static void ops_run_biofill(struct stripe_head *sh)
566 {
567         struct dma_async_tx_descriptor *tx = NULL;
568         raid5_conf_t *conf = sh->raid_conf;
569         int i;
570
571         pr_debug("%s: stripe %llu\n", __func__,
572                 (unsigned long long)sh->sector);
573
574         for (i = sh->disks; i--; ) {
575                 struct r5dev *dev = &sh->dev[i];
576                 if (test_bit(R5_Wantfill, &dev->flags)) {
577                         struct bio *rbi;
578                         spin_lock_irq(&conf->device_lock);
579                         dev->read = rbi = dev->toread;
580                         dev->toread = NULL;
581                         spin_unlock_irq(&conf->device_lock);
582                         while (rbi && rbi->bi_sector <
583                                 dev->sector + STRIPE_SECTORS) {
584                                 tx = async_copy_data(0, rbi, dev->page,
585                                         dev->sector, tx);
586                                 rbi = r5_next_bio(rbi, dev->sector);
587                         }
588                 }
589         }
590
591         atomic_inc(&sh->count);
592         async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
593                 ops_complete_biofill, sh);
594 }
595
596 static void ops_complete_compute5(void *stripe_head_ref)
597 {
598         struct stripe_head *sh = stripe_head_ref;
599         int target = sh->ops.target;
600         struct r5dev *tgt = &sh->dev[target];
601
602         pr_debug("%s: stripe %llu\n", __func__,
603                 (unsigned long long)sh->sector);
604
605         set_bit(R5_UPTODATE, &tgt->flags);
606         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
607         clear_bit(R5_Wantcompute, &tgt->flags);
608         set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
609         set_bit(STRIPE_HANDLE, &sh->state);
610         release_stripe(sh);
611 }
612
613 static struct dma_async_tx_descriptor *
614 ops_run_compute5(struct stripe_head *sh, unsigned long pending)
615 {
616         /* kernel stack size limits the total number of disks */
617         int disks = sh->disks;
618         struct page *xor_srcs[disks];
619         int target = sh->ops.target;
620         struct r5dev *tgt = &sh->dev[target];
621         struct page *xor_dest = tgt->page;
622         int count = 0;
623         struct dma_async_tx_descriptor *tx;
624         int i;
625
626         pr_debug("%s: stripe %llu block: %d\n",
627                 __func__, (unsigned long long)sh->sector, target);
628         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
629
630         for (i = disks; i--; )
631                 if (i != target)
632                         xor_srcs[count++] = sh->dev[i].page;
633
634         atomic_inc(&sh->count);
635
636         if (unlikely(count == 1))
637                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
638                         0, NULL, ops_complete_compute5, sh);
639         else
640                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
641                         ASYNC_TX_XOR_ZERO_DST, NULL,
642                         ops_complete_compute5, sh);
643
644         /* ack now if postxor is not set to be run */
645         if (tx && !test_bit(STRIPE_OP_POSTXOR, &pending))
646                 async_tx_ack(tx);
647
648         return tx;
649 }
650
651 static void ops_complete_prexor(void *stripe_head_ref)
652 {
653         struct stripe_head *sh = stripe_head_ref;
654
655         pr_debug("%s: stripe %llu\n", __func__,
656                 (unsigned long long)sh->sector);
657
658         set_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
659 }
660
661 static struct dma_async_tx_descriptor *
662 ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
663 {
664         /* kernel stack size limits the total number of disks */
665         int disks = sh->disks;
666         struct page *xor_srcs[disks];
667         int count = 0, pd_idx = sh->pd_idx, i;
668
669         /* existing parity data subtracted */
670         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
671
672         pr_debug("%s: stripe %llu\n", __func__,
673                 (unsigned long long)sh->sector);
674
675         for (i = disks; i--; ) {
676                 struct r5dev *dev = &sh->dev[i];
677                 /* Only process blocks that are known to be uptodate */
678                 if (dev->towrite && test_bit(R5_Wantprexor, &dev->flags))
679                         xor_srcs[count++] = dev->page;
680         }
681
682         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
683                 ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
684                 ops_complete_prexor, sh);
685
686         return tx;
687 }
688
689 static struct dma_async_tx_descriptor *
690 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx,
691                  unsigned long pending)
692 {
693         int disks = sh->disks;
694         int pd_idx = sh->pd_idx, i;
695
696         /* check if prexor is active which means only process blocks
697          * that are part of a read-modify-write (Wantprexor)
698          */
699         int prexor = test_bit(STRIPE_OP_PREXOR, &pending);
700
701         pr_debug("%s: stripe %llu\n", __func__,
702                 (unsigned long long)sh->sector);
703
704         for (i = disks; i--; ) {
705                 struct r5dev *dev = &sh->dev[i];
706                 struct bio *chosen;
707                 int towrite;
708
709                 towrite = 0;
710                 if (prexor) { /* rmw */
711                         if (dev->towrite &&
712                             test_bit(R5_Wantprexor, &dev->flags))
713                                 towrite = 1;
714                 } else { /* rcw */
715                         if (i != pd_idx && dev->towrite &&
716                                 test_bit(R5_LOCKED, &dev->flags))
717                                 towrite = 1;
718                 }
719
720                 if (towrite) {
721                         struct bio *wbi;
722
723                         spin_lock(&sh->lock);
724                         chosen = dev->towrite;
725                         dev->towrite = NULL;
726                         BUG_ON(dev->written);
727                         wbi = dev->written = chosen;
728                         spin_unlock(&sh->lock);
729
730                         while (wbi && wbi->bi_sector <
731                                 dev->sector + STRIPE_SECTORS) {
732                                 tx = async_copy_data(1, wbi, dev->page,
733                                         dev->sector, tx);
734                                 wbi = r5_next_bio(wbi, dev->sector);
735                         }
736                 }
737         }
738
739         return tx;
740 }
741
742 static void ops_complete_postxor(void *stripe_head_ref)
743 {
744         struct stripe_head *sh = stripe_head_ref;
745
746         pr_debug("%s: stripe %llu\n", __func__,
747                 (unsigned long long)sh->sector);
748
749         set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
750         set_bit(STRIPE_HANDLE, &sh->state);
751         release_stripe(sh);
752 }
753
754 static void ops_complete_write(void *stripe_head_ref)
755 {
756         struct stripe_head *sh = stripe_head_ref;
757         int disks = sh->disks, i, pd_idx = sh->pd_idx;
758
759         pr_debug("%s: stripe %llu\n", __func__,
760                 (unsigned long long)sh->sector);
761
762         for (i = disks; i--; ) {
763                 struct r5dev *dev = &sh->dev[i];
764                 if (dev->written || i == pd_idx)
765                         set_bit(R5_UPTODATE, &dev->flags);
766         }
767
768         set_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
769         set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
770
771         set_bit(STRIPE_HANDLE, &sh->state);
772         release_stripe(sh);
773 }
774
775 static void
776 ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx,
777                 unsigned long pending)
778 {
779         /* kernel stack size limits the total number of disks */
780         int disks = sh->disks;
781         struct page *xor_srcs[disks];
782
783         int count = 0, pd_idx = sh->pd_idx, i;
784         struct page *xor_dest;
785         int prexor = test_bit(STRIPE_OP_PREXOR, &pending);
786         unsigned long flags;
787         dma_async_tx_callback callback;
788
789         pr_debug("%s: stripe %llu\n", __func__,
790                 (unsigned long long)sh->sector);
791
792         /* check if prexor is active which means only process blocks
793          * that are part of a read-modify-write (written)
794          */
795         if (prexor) {
796                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
797                 for (i = disks; i--; ) {
798                         struct r5dev *dev = &sh->dev[i];
799                         if (dev->written)
800                                 xor_srcs[count++] = dev->page;
801                 }
802         } else {
803                 xor_dest = sh->dev[pd_idx].page;
804                 for (i = disks; i--; ) {
805                         struct r5dev *dev = &sh->dev[i];
806                         if (i != pd_idx)
807                                 xor_srcs[count++] = dev->page;
808                 }
809         }
810
811         /* check whether this postxor is part of a write */
812         callback = test_bit(STRIPE_OP_BIODRAIN, &pending) ?
813                 ops_complete_write : ops_complete_postxor;
814
815         /* 1/ if we prexor'd then the dest is reused as a source
816          * 2/ if we did not prexor then we are redoing the parity
817          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
818          * for the synchronous xor case
819          */
820         flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
821                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
822
823         atomic_inc(&sh->count);
824
825         if (unlikely(count == 1)) {
826                 flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
827                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
828                         flags, tx, callback, sh);
829         } else
830                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
831                         flags, tx, callback, sh);
832 }
833
834 static void ops_complete_check(void *stripe_head_ref)
835 {
836         struct stripe_head *sh = stripe_head_ref;
837
838         pr_debug("%s: stripe %llu\n", __func__,
839                 (unsigned long long)sh->sector);
840
841         set_bit(STRIPE_OP_CHECK, &sh->ops.complete);
842         set_bit(STRIPE_HANDLE, &sh->state);
843         release_stripe(sh);
844 }
845
846 static void ops_run_check(struct stripe_head *sh)
847 {
848         /* kernel stack size limits the total number of disks */
849         int disks = sh->disks;
850         struct page *xor_srcs[disks];
851         struct dma_async_tx_descriptor *tx;
852
853         int count = 0, pd_idx = sh->pd_idx, i;
854         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
855
856         pr_debug("%s: stripe %llu\n", __func__,
857                 (unsigned long long)sh->sector);
858
859         for (i = disks; i--; ) {
860                 struct r5dev *dev = &sh->dev[i];
861                 if (i != pd_idx)
862                         xor_srcs[count++] = dev->page;
863         }
864
865         tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
866                 &sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
867
868         atomic_inc(&sh->count);
869         tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
870                 ops_complete_check, sh);
871 }
872
873 static void raid5_run_ops(struct stripe_head *sh, unsigned long pending)
874 {
875         int overlap_clear = 0, i, disks = sh->disks;
876         struct dma_async_tx_descriptor *tx = NULL;
877
878         if (test_bit(STRIPE_OP_BIOFILL, &pending)) {
879                 ops_run_biofill(sh);
880                 overlap_clear++;
881         }
882
883         if (test_bit(STRIPE_OP_COMPUTE_BLK, &pending))
884                 tx = ops_run_compute5(sh, pending);
885
886         if (test_bit(STRIPE_OP_PREXOR, &pending))
887                 tx = ops_run_prexor(sh, tx);
888
889         if (test_bit(STRIPE_OP_BIODRAIN, &pending)) {
890                 tx = ops_run_biodrain(sh, tx, pending);
891                 overlap_clear++;
892         }
893
894         if (test_bit(STRIPE_OP_POSTXOR, &pending))
895                 ops_run_postxor(sh, tx, pending);
896
897         if (test_bit(STRIPE_OP_CHECK, &pending))
898                 ops_run_check(sh);
899
900         if (overlap_clear)
901                 for (i = disks; i--; ) {
902                         struct r5dev *dev = &sh->dev[i];
903                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
904                                 wake_up(&sh->raid_conf->wait_for_overlap);
905                 }
906 }
907
908 static int grow_one_stripe(raid5_conf_t *conf)
909 {
910         struct stripe_head *sh;
911         sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
912         if (!sh)
913                 return 0;
914         memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
915         sh->raid_conf = conf;
916         spin_lock_init(&sh->lock);
917
918         if (grow_buffers(sh, conf->raid_disks)) {
919                 shrink_buffers(sh, conf->raid_disks);
920                 kmem_cache_free(conf->slab_cache, sh);
921                 return 0;
922         }
923         sh->disks = conf->raid_disks;
924         /* we just created an active stripe so... */
925         atomic_set(&sh->count, 1);
926         atomic_inc(&conf->active_stripes);
927         INIT_LIST_HEAD(&sh->lru);
928         release_stripe(sh);
929         return 1;
930 }
931
932 static int grow_stripes(raid5_conf_t *conf, int num)
933 {
934         struct kmem_cache *sc;
935         int devs = conf->raid_disks;
936
937         sprintf(conf->cache_name[0], "raid5-%s", mdname(conf->mddev));
938         sprintf(conf->cache_name[1], "raid5-%s-alt", mdname(conf->mddev));
939         conf->active_name = 0;
940         sc = kmem_cache_create(conf->cache_name[conf->active_name],
941                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
942                                0, 0, NULL);
943         if (!sc)
944                 return 1;
945         conf->slab_cache = sc;
946         conf->pool_size = devs;
947         while (num--)
948                 if (!grow_one_stripe(conf))
949                         return 1;
950         return 0;
951 }
952
953 #ifdef CONFIG_MD_RAID5_RESHAPE
954 static int resize_stripes(raid5_conf_t *conf, int newsize)
955 {
956         /* Make all the stripes able to hold 'newsize' devices.
957          * New slots in each stripe get 'page' set to a new page.
958          *
959          * This happens in stages:
960          * 1/ create a new kmem_cache and allocate the required number of
961          *    stripe_heads.
962          * 2/ gather all the old stripe_heads and tranfer the pages across
963          *    to the new stripe_heads.  This will have the side effect of
964          *    freezing the array as once all stripe_heads have been collected,
965          *    no IO will be possible.  Old stripe heads are freed once their
966          *    pages have been transferred over, and the old kmem_cache is
967          *    freed when all stripes are done.
968          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
969          *    we simple return a failre status - no need to clean anything up.
970          * 4/ allocate new pages for the new slots in the new stripe_heads.
971          *    If this fails, we don't bother trying the shrink the
972          *    stripe_heads down again, we just leave them as they are.
973          *    As each stripe_head is processed the new one is released into
974          *    active service.
975          *
976          * Once step2 is started, we cannot afford to wait for a write,
977          * so we use GFP_NOIO allocations.
978          */
979         struct stripe_head *osh, *nsh;
980         LIST_HEAD(newstripes);
981         struct disk_info *ndisks;
982         int err = 0;
983         struct kmem_cache *sc;
984         int i;
985
986         if (newsize <= conf->pool_size)
987                 return 0; /* never bother to shrink */
988
989         md_allow_write(conf->mddev);
990
991         /* Step 1 */
992         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
993                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
994                                0, 0, NULL);
995         if (!sc)
996                 return -ENOMEM;
997
998         for (i = conf->max_nr_stripes; i; i--) {
999                 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1000                 if (!nsh)
1001                         break;
1002
1003                 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1004
1005                 nsh->raid_conf = conf;
1006                 spin_lock_init(&nsh->lock);
1007
1008                 list_add(&nsh->lru, &newstripes);
1009         }
1010         if (i) {
1011                 /* didn't get enough, give up */
1012                 while (!list_empty(&newstripes)) {
1013                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1014                         list_del(&nsh->lru);
1015                         kmem_cache_free(sc, nsh);
1016                 }
1017                 kmem_cache_destroy(sc);
1018                 return -ENOMEM;
1019         }
1020         /* Step 2 - Must use GFP_NOIO now.
1021          * OK, we have enough stripes, start collecting inactive
1022          * stripes and copying them over
1023          */
1024         list_for_each_entry(nsh, &newstripes, lru) {
1025                 spin_lock_irq(&conf->device_lock);
1026                 wait_event_lock_irq(conf->wait_for_stripe,
1027                                     !list_empty(&conf->inactive_list),
1028                                     conf->device_lock,
1029                                     unplug_slaves(conf->mddev)
1030                         );
1031                 osh = get_free_stripe(conf);
1032                 spin_unlock_irq(&conf->device_lock);
1033                 atomic_set(&nsh->count, 1);
1034                 for(i=0; i<conf->pool_size; i++)
1035                         nsh->dev[i].page = osh->dev[i].page;
1036                 for( ; i<newsize; i++)
1037                         nsh->dev[i].page = NULL;
1038                 kmem_cache_free(conf->slab_cache, osh);
1039         }
1040         kmem_cache_destroy(conf->slab_cache);
1041
1042         /* Step 3.
1043          * At this point, we are holding all the stripes so the array
1044          * is completely stalled, so now is a good time to resize
1045          * conf->disks.
1046          */
1047         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1048         if (ndisks) {
1049                 for (i=0; i<conf->raid_disks; i++)
1050                         ndisks[i] = conf->disks[i];
1051                 kfree(conf->disks);
1052                 conf->disks = ndisks;
1053         } else
1054                 err = -ENOMEM;
1055
1056         /* Step 4, return new stripes to service */
1057         while(!list_empty(&newstripes)) {
1058                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1059                 list_del_init(&nsh->lru);
1060                 for (i=conf->raid_disks; i < newsize; i++)
1061                         if (nsh->dev[i].page == NULL) {
1062                                 struct page *p = alloc_page(GFP_NOIO);
1063                                 nsh->dev[i].page = p;
1064                                 if (!p)
1065                                         err = -ENOMEM;
1066                         }
1067                 release_stripe(nsh);
1068         }
1069         /* critical section pass, GFP_NOIO no longer needed */
1070
1071         conf->slab_cache = sc;
1072         conf->active_name = 1-conf->active_name;
1073         conf->pool_size = newsize;
1074         return err;
1075 }
1076 #endif
1077
1078 static int drop_one_stripe(raid5_conf_t *conf)
1079 {
1080         struct stripe_head *sh;
1081
1082         spin_lock_irq(&conf->device_lock);
1083         sh = get_free_stripe(conf);
1084         spin_unlock_irq(&conf->device_lock);
1085         if (!sh)
1086                 return 0;
1087         BUG_ON(atomic_read(&sh->count));
1088         shrink_buffers(sh, conf->pool_size);
1089         kmem_cache_free(conf->slab_cache, sh);
1090         atomic_dec(&conf->active_stripes);
1091         return 1;
1092 }
1093
1094 static void shrink_stripes(raid5_conf_t *conf)
1095 {
1096         while (drop_one_stripe(conf))
1097                 ;
1098
1099         if (conf->slab_cache)
1100                 kmem_cache_destroy(conf->slab_cache);
1101         conf->slab_cache = NULL;
1102 }
1103
1104 static void raid5_end_read_request(struct bio * bi, int error)
1105 {
1106         struct stripe_head *sh = bi->bi_private;
1107         raid5_conf_t *conf = sh->raid_conf;
1108         int disks = sh->disks, i;
1109         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1110         char b[BDEVNAME_SIZE];
1111         mdk_rdev_t *rdev;
1112
1113
1114         for (i=0 ; i<disks; i++)
1115                 if (bi == &sh->dev[i].req)
1116                         break;
1117
1118         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1119                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1120                 uptodate);
1121         if (i == disks) {
1122                 BUG();
1123                 return;
1124         }
1125
1126         if (uptodate) {
1127                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1128                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1129                         rdev = conf->disks[i].rdev;
1130                         printk_rl(KERN_INFO "raid5:%s: read error corrected"
1131                                   " (%lu sectors at %llu on %s)\n",
1132                                   mdname(conf->mddev), STRIPE_SECTORS,
1133                                   (unsigned long long)(sh->sector
1134                                                        + rdev->data_offset),
1135                                   bdevname(rdev->bdev, b));
1136                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1137                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1138                 }
1139                 if (atomic_read(&conf->disks[i].rdev->read_errors))
1140                         atomic_set(&conf->disks[i].rdev->read_errors, 0);
1141         } else {
1142                 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1143                 int retry = 0;
1144                 rdev = conf->disks[i].rdev;
1145
1146                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1147                 atomic_inc(&rdev->read_errors);
1148                 if (conf->mddev->degraded)
1149                         printk_rl(KERN_WARNING
1150                                   "raid5:%s: read error not correctable "
1151                                   "(sector %llu on %s).\n",
1152                                   mdname(conf->mddev),
1153                                   (unsigned long long)(sh->sector
1154                                                        + rdev->data_offset),
1155                                   bdn);
1156                 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1157                         /* Oh, no!!! */
1158                         printk_rl(KERN_WARNING
1159                                   "raid5:%s: read error NOT corrected!! "
1160                                   "(sector %llu on %s).\n",
1161                                   mdname(conf->mddev),
1162                                   (unsigned long long)(sh->sector
1163                                                        + rdev->data_offset),
1164                                   bdn);
1165                 else if (atomic_read(&rdev->read_errors)
1166                          > conf->max_nr_stripes)
1167                         printk(KERN_WARNING
1168                                "raid5:%s: Too many read errors, failing device %s.\n",
1169                                mdname(conf->mddev), bdn);
1170                 else
1171                         retry = 1;
1172                 if (retry)
1173                         set_bit(R5_ReadError, &sh->dev[i].flags);
1174                 else {
1175                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1176                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1177                         md_error(conf->mddev, rdev);
1178                 }
1179         }
1180         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1181         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1182         set_bit(STRIPE_HANDLE, &sh->state);
1183         release_stripe(sh);
1184 }
1185
1186 static void raid5_end_write_request (struct bio *bi, int error)
1187 {
1188         struct stripe_head *sh = bi->bi_private;
1189         raid5_conf_t *conf = sh->raid_conf;
1190         int disks = sh->disks, i;
1191         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1192
1193         for (i=0 ; i<disks; i++)
1194                 if (bi == &sh->dev[i].req)
1195                         break;
1196
1197         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1198                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1199                 uptodate);
1200         if (i == disks) {
1201                 BUG();
1202                 return;
1203         }
1204
1205         if (!uptodate)
1206                 md_error(conf->mddev, conf->disks[i].rdev);
1207
1208         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1209         
1210         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1211         set_bit(STRIPE_HANDLE, &sh->state);
1212         release_stripe(sh);
1213 }
1214
1215
1216 static sector_t compute_blocknr(struct stripe_head *sh, int i);
1217         
1218 static void raid5_build_block (struct stripe_head *sh, int i)
1219 {
1220         struct r5dev *dev = &sh->dev[i];
1221
1222         bio_init(&dev->req);
1223         dev->req.bi_io_vec = &dev->vec;
1224         dev->req.bi_vcnt++;
1225         dev->req.bi_max_vecs++;
1226         dev->vec.bv_page = dev->page;
1227         dev->vec.bv_len = STRIPE_SIZE;
1228         dev->vec.bv_offset = 0;
1229
1230         dev->req.bi_sector = sh->sector;
1231         dev->req.bi_private = sh;
1232
1233         dev->flags = 0;
1234         dev->sector = compute_blocknr(sh, i);
1235 }
1236
1237 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1238 {
1239         char b[BDEVNAME_SIZE];
1240         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1241         pr_debug("raid5: error called\n");
1242
1243         if (!test_bit(Faulty, &rdev->flags)) {
1244                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1245                 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1246                         unsigned long flags;
1247                         spin_lock_irqsave(&conf->device_lock, flags);
1248                         mddev->degraded++;
1249                         spin_unlock_irqrestore(&conf->device_lock, flags);
1250                         /*
1251                          * if recovery was running, make sure it aborts.
1252                          */
1253                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1254                 }
1255                 set_bit(Faulty, &rdev->flags);
1256                 printk (KERN_ALERT
1257                         "raid5: Disk failure on %s, disabling device.\n"
1258                         "raid5: Operation continuing on %d devices.\n",
1259                         bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1260         }
1261 }
1262
1263 /*
1264  * Input: a 'big' sector number,
1265  * Output: index of the data and parity disk, and the sector # in them.
1266  */
1267 static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
1268                         unsigned int data_disks, unsigned int * dd_idx,
1269                         unsigned int * pd_idx, raid5_conf_t *conf)
1270 {
1271         long stripe;
1272         unsigned long chunk_number;
1273         unsigned int chunk_offset;
1274         sector_t new_sector;
1275         int sectors_per_chunk = conf->chunk_size >> 9;
1276
1277         /* First compute the information on this sector */
1278
1279         /*
1280          * Compute the chunk number and the sector offset inside the chunk
1281          */
1282         chunk_offset = sector_div(r_sector, sectors_per_chunk);
1283         chunk_number = r_sector;
1284         BUG_ON(r_sector != chunk_number);
1285
1286         /*
1287          * Compute the stripe number
1288          */
1289         stripe = chunk_number / data_disks;
1290
1291         /*
1292          * Compute the data disk and parity disk indexes inside the stripe
1293          */
1294         *dd_idx = chunk_number % data_disks;
1295
1296         /*
1297          * Select the parity disk based on the user selected algorithm.
1298          */
1299         switch(conf->level) {
1300         case 4:
1301                 *pd_idx = data_disks;
1302                 break;
1303         case 5:
1304                 switch (conf->algorithm) {
1305                 case ALGORITHM_LEFT_ASYMMETRIC:
1306                         *pd_idx = data_disks - stripe % raid_disks;
1307                         if (*dd_idx >= *pd_idx)
1308                                 (*dd_idx)++;
1309                         break;
1310                 case ALGORITHM_RIGHT_ASYMMETRIC:
1311                         *pd_idx = stripe % raid_disks;
1312                         if (*dd_idx >= *pd_idx)
1313                                 (*dd_idx)++;
1314                         break;
1315                 case ALGORITHM_LEFT_SYMMETRIC:
1316                         *pd_idx = data_disks - stripe % raid_disks;
1317                         *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1318                         break;
1319                 case ALGORITHM_RIGHT_SYMMETRIC:
1320                         *pd_idx = stripe % raid_disks;
1321                         *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1322                         break;
1323                 default:
1324                         printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1325                                 conf->algorithm);
1326                 }
1327                 break;
1328         case 6:
1329
1330                 /**** FIX THIS ****/
1331                 switch (conf->algorithm) {
1332                 case ALGORITHM_LEFT_ASYMMETRIC:
1333                         *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1334                         if (*pd_idx == raid_disks-1)
1335                                 (*dd_idx)++;    /* Q D D D P */
1336                         else if (*dd_idx >= *pd_idx)
1337                                 (*dd_idx) += 2; /* D D P Q D */
1338                         break;
1339                 case ALGORITHM_RIGHT_ASYMMETRIC:
1340                         *pd_idx = stripe % raid_disks;
1341                         if (*pd_idx == raid_disks-1)
1342                                 (*dd_idx)++;    /* Q D D D P */
1343                         else if (*dd_idx >= *pd_idx)
1344                                 (*dd_idx) += 2; /* D D P Q D */
1345                         break;
1346                 case ALGORITHM_LEFT_SYMMETRIC:
1347                         *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1348                         *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1349                         break;
1350                 case ALGORITHM_RIGHT_SYMMETRIC:
1351                         *pd_idx = stripe % raid_disks;
1352                         *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1353                         break;
1354                 default:
1355                         printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1356                                 conf->algorithm);
1357                 }
1358                 break;
1359         }
1360
1361         /*
1362          * Finally, compute the new sector number
1363          */
1364         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1365         return new_sector;
1366 }
1367
1368
1369 static sector_t compute_blocknr(struct stripe_head *sh, int i)
1370 {
1371         raid5_conf_t *conf = sh->raid_conf;
1372         int raid_disks = sh->disks;
1373         int data_disks = raid_disks - conf->max_degraded;
1374         sector_t new_sector = sh->sector, check;
1375         int sectors_per_chunk = conf->chunk_size >> 9;
1376         sector_t stripe;
1377         int chunk_offset;
1378         int chunk_number, dummy1, dummy2, dd_idx = i;
1379         sector_t r_sector;
1380
1381
1382         chunk_offset = sector_div(new_sector, sectors_per_chunk);
1383         stripe = new_sector;
1384         BUG_ON(new_sector != stripe);
1385
1386         if (i == sh->pd_idx)
1387                 return 0;
1388         switch(conf->level) {
1389         case 4: break;
1390         case 5:
1391                 switch (conf->algorithm) {
1392                 case ALGORITHM_LEFT_ASYMMETRIC:
1393                 case ALGORITHM_RIGHT_ASYMMETRIC:
1394                         if (i > sh->pd_idx)
1395                                 i--;
1396                         break;
1397                 case ALGORITHM_LEFT_SYMMETRIC:
1398                 case ALGORITHM_RIGHT_SYMMETRIC:
1399                         if (i < sh->pd_idx)
1400                                 i += raid_disks;
1401                         i -= (sh->pd_idx + 1);
1402                         break;
1403                 default:
1404                         printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1405                                conf->algorithm);
1406                 }
1407                 break;
1408         case 6:
1409                 if (i == raid6_next_disk(sh->pd_idx, raid_disks))
1410                         return 0; /* It is the Q disk */
1411                 switch (conf->algorithm) {
1412                 case ALGORITHM_LEFT_ASYMMETRIC:
1413                 case ALGORITHM_RIGHT_ASYMMETRIC:
1414                         if (sh->pd_idx == raid_disks-1)
1415                                 i--;    /* Q D D D P */
1416                         else if (i > sh->pd_idx)
1417                                 i -= 2; /* D D P Q D */
1418                         break;
1419                 case ALGORITHM_LEFT_SYMMETRIC:
1420                 case ALGORITHM_RIGHT_SYMMETRIC:
1421                         if (sh->pd_idx == raid_disks-1)
1422                                 i--; /* Q D D D P */
1423                         else {
1424                                 /* D D P Q D */
1425                                 if (i < sh->pd_idx)
1426                                         i += raid_disks;
1427                                 i -= (sh->pd_idx + 2);
1428                         }
1429                         break;
1430                 default:
1431                         printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1432                                 conf->algorithm);
1433                 }
1434                 break;
1435         }
1436
1437         chunk_number = stripe * data_disks + i;
1438         r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1439
1440         check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
1441         if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
1442                 printk(KERN_ERR "compute_blocknr: map not correct\n");
1443                 return 0;
1444         }
1445         return r_sector;
1446 }
1447
1448
1449
1450 /*
1451  * Copy data between a page in the stripe cache, and one or more bion
1452  * The page could align with the middle of the bio, or there could be
1453  * several bion, each with several bio_vecs, which cover part of the page
1454  * Multiple bion are linked together on bi_next.  There may be extras
1455  * at the end of this list.  We ignore them.
1456  */
1457 static void copy_data(int frombio, struct bio *bio,
1458                      struct page *page,
1459                      sector_t sector)
1460 {
1461         char *pa = page_address(page);
1462         struct bio_vec *bvl;
1463         int i;
1464         int page_offset;
1465
1466         if (bio->bi_sector >= sector)
1467                 page_offset = (signed)(bio->bi_sector - sector) * 512;
1468         else
1469                 page_offset = (signed)(sector - bio->bi_sector) * -512;
1470         bio_for_each_segment(bvl, bio, i) {
1471                 int len = bio_iovec_idx(bio,i)->bv_len;
1472                 int clen;
1473                 int b_offset = 0;
1474
1475                 if (page_offset < 0) {
1476                         b_offset = -page_offset;
1477                         page_offset += b_offset;
1478                         len -= b_offset;
1479                 }
1480
1481                 if (len > 0 && page_offset + len > STRIPE_SIZE)
1482                         clen = STRIPE_SIZE - page_offset;
1483                 else clen = len;
1484
1485                 if (clen > 0) {
1486                         char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1487                         if (frombio)
1488                                 memcpy(pa+page_offset, ba+b_offset, clen);
1489                         else
1490                                 memcpy(ba+b_offset, pa+page_offset, clen);
1491                         __bio_kunmap_atomic(ba, KM_USER0);
1492                 }
1493                 if (clen < len) /* hit end of page */
1494                         break;
1495                 page_offset +=  len;
1496         }
1497 }
1498
1499 #define check_xor()     do {                                              \
1500                                 if (count == MAX_XOR_BLOCKS) {            \
1501                                 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1502                                 count = 0;                                \
1503                            }                                              \
1504                         } while(0)
1505
1506 static void compute_parity6(struct stripe_head *sh, int method)
1507 {
1508         raid6_conf_t *conf = sh->raid_conf;
1509         int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1510         struct bio *chosen;
1511         /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1512         void *ptrs[disks];
1513
1514         qd_idx = raid6_next_disk(pd_idx, disks);
1515         d0_idx = raid6_next_disk(qd_idx, disks);
1516
1517         pr_debug("compute_parity, stripe %llu, method %d\n",
1518                 (unsigned long long)sh->sector, method);
1519
1520         switch(method) {
1521         case READ_MODIFY_WRITE:
1522                 BUG();          /* READ_MODIFY_WRITE N/A for RAID-6 */
1523         case RECONSTRUCT_WRITE:
1524                 for (i= disks; i-- ;)
1525                         if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1526                                 chosen = sh->dev[i].towrite;
1527                                 sh->dev[i].towrite = NULL;
1528
1529                                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1530                                         wake_up(&conf->wait_for_overlap);
1531
1532                                 BUG_ON(sh->dev[i].written);
1533                                 sh->dev[i].written = chosen;
1534                         }
1535                 break;
1536         case CHECK_PARITY:
1537                 BUG();          /* Not implemented yet */
1538         }
1539
1540         for (i = disks; i--;)
1541                 if (sh->dev[i].written) {
1542                         sector_t sector = sh->dev[i].sector;
1543                         struct bio *wbi = sh->dev[i].written;
1544                         while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1545                                 copy_data(1, wbi, sh->dev[i].page, sector);
1546                                 wbi = r5_next_bio(wbi, sector);
1547                         }
1548
1549                         set_bit(R5_LOCKED, &sh->dev[i].flags);
1550                         set_bit(R5_UPTODATE, &sh->dev[i].flags);
1551                 }
1552
1553 //      switch(method) {
1554 //      case RECONSTRUCT_WRITE:
1555 //      case CHECK_PARITY:
1556 //      case UPDATE_PARITY:
1557                 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1558                 /* FIX: Is this ordering of drives even remotely optimal? */
1559                 count = 0;
1560                 i = d0_idx;
1561                 do {
1562                         ptrs[count++] = page_address(sh->dev[i].page);
1563                         if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1564                                 printk("block %d/%d not uptodate on parity calc\n", i,count);
1565                         i = raid6_next_disk(i, disks);
1566                 } while ( i != d0_idx );
1567 //              break;
1568 //      }
1569
1570         raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
1571
1572         switch(method) {
1573         case RECONSTRUCT_WRITE:
1574                 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1575                 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1576                 set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
1577                 set_bit(R5_LOCKED,   &sh->dev[qd_idx].flags);
1578                 break;
1579         case UPDATE_PARITY:
1580                 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1581                 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1582                 break;
1583         }
1584 }
1585
1586
1587 /* Compute one missing block */
1588 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1589 {
1590         int i, count, disks = sh->disks;
1591         void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1592         int pd_idx = sh->pd_idx;
1593         int qd_idx = raid6_next_disk(pd_idx, disks);
1594
1595         pr_debug("compute_block_1, stripe %llu, idx %d\n",
1596                 (unsigned long long)sh->sector, dd_idx);
1597
1598         if ( dd_idx == qd_idx ) {
1599                 /* We're actually computing the Q drive */
1600                 compute_parity6(sh, UPDATE_PARITY);
1601         } else {
1602                 dest = page_address(sh->dev[dd_idx].page);
1603                 if (!nozero) memset(dest, 0, STRIPE_SIZE);
1604                 count = 0;
1605                 for (i = disks ; i--; ) {
1606                         if (i == dd_idx || i == qd_idx)
1607                                 continue;
1608                         p = page_address(sh->dev[i].page);
1609                         if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1610                                 ptr[count++] = p;
1611                         else
1612                                 printk("compute_block() %d, stripe %llu, %d"
1613                                        " not present\n", dd_idx,
1614                                        (unsigned long long)sh->sector, i);
1615
1616                         check_xor();
1617                 }
1618                 if (count)
1619                         xor_blocks(count, STRIPE_SIZE, dest, ptr);
1620                 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1621                 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1622         }
1623 }
1624
1625 /* Compute two missing blocks */
1626 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1627 {
1628         int i, count, disks = sh->disks;
1629         int pd_idx = sh->pd_idx;
1630         int qd_idx = raid6_next_disk(pd_idx, disks);
1631         int d0_idx = raid6_next_disk(qd_idx, disks);
1632         int faila, failb;
1633
1634         /* faila and failb are disk numbers relative to d0_idx */
1635         /* pd_idx become disks-2 and qd_idx become disks-1 */
1636         faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
1637         failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
1638
1639         BUG_ON(faila == failb);
1640         if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1641
1642         pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1643                (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
1644
1645         if ( failb == disks-1 ) {
1646                 /* Q disk is one of the missing disks */
1647                 if ( faila == disks-2 ) {
1648                         /* Missing P+Q, just recompute */
1649                         compute_parity6(sh, UPDATE_PARITY);
1650                         return;
1651                 } else {
1652                         /* We're missing D+Q; recompute D from P */
1653                         compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
1654                         compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1655                         return;
1656                 }
1657         }
1658
1659         /* We're missing D+P or D+D; build pointer table */
1660         {
1661                 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1662                 void *ptrs[disks];
1663
1664                 count = 0;
1665                 i = d0_idx;
1666                 do {
1667                         ptrs[count++] = page_address(sh->dev[i].page);
1668                         i = raid6_next_disk(i, disks);
1669                         if (i != dd_idx1 && i != dd_idx2 &&
1670                             !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1671                                 printk("compute_2 with missing block %d/%d\n", count, i);
1672                 } while ( i != d0_idx );
1673
1674                 if ( failb == disks-2 ) {
1675                         /* We're missing D+P. */
1676                         raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
1677                 } else {
1678                         /* We're missing D+D. */
1679                         raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
1680                 }
1681
1682                 /* Both the above update both missing blocks */
1683                 set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1684                 set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1685         }
1686 }
1687
1688 static int
1689 handle_write_operations5(struct stripe_head *sh, int rcw, int expand)
1690 {
1691         int i, pd_idx = sh->pd_idx, disks = sh->disks;
1692         int locked = 0;
1693
1694         if (rcw) {
1695                 /* if we are not expanding this is a proper write request, and
1696                  * there will be bios with new data to be drained into the
1697                  * stripe cache
1698                  */
1699                 if (!expand) {
1700                         set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1701                         sh->ops.count++;
1702                 }
1703
1704                 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1705                 sh->ops.count++;
1706
1707                 for (i = disks; i--; ) {
1708                         struct r5dev *dev = &sh->dev[i];
1709
1710                         if (dev->towrite) {
1711                                 set_bit(R5_LOCKED, &dev->flags);
1712                                 if (!expand)
1713                                         clear_bit(R5_UPTODATE, &dev->flags);
1714                                 locked++;
1715                         }
1716                 }
1717                 if (locked + 1 == disks)
1718                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
1719                                 atomic_inc(&sh->raid_conf->pending_full_writes);
1720         } else {
1721                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1722                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1723
1724                 set_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
1725                 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1726                 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1727
1728                 sh->ops.count += 3;
1729
1730                 for (i = disks; i--; ) {
1731                         struct r5dev *dev = &sh->dev[i];
1732                         if (i == pd_idx)
1733                                 continue;
1734
1735                         /* For a read-modify write there may be blocks that are
1736                          * locked for reading while others are ready to be
1737                          * written so we distinguish these blocks by the
1738                          * R5_Wantprexor bit
1739                          */
1740                         if (dev->towrite &&
1741                             (test_bit(R5_UPTODATE, &dev->flags) ||
1742                             test_bit(R5_Wantcompute, &dev->flags))) {
1743                                 set_bit(R5_Wantprexor, &dev->flags);
1744                                 set_bit(R5_LOCKED, &dev->flags);
1745                                 clear_bit(R5_UPTODATE, &dev->flags);
1746                                 locked++;
1747                         }
1748                 }
1749         }
1750
1751         /* keep the parity disk locked while asynchronous operations
1752          * are in flight
1753          */
1754         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1755         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1756         locked++;
1757
1758         pr_debug("%s: stripe %llu locked: %d pending: %lx\n",
1759                 __func__, (unsigned long long)sh->sector,
1760                 locked, sh->ops.pending);
1761
1762         return locked;
1763 }
1764
1765 /*
1766  * Each stripe/dev can have one or more bion attached.
1767  * toread/towrite point to the first in a chain.
1768  * The bi_next chain must be in order.
1769  */
1770 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1771 {
1772         struct bio **bip;
1773         raid5_conf_t *conf = sh->raid_conf;
1774         int firstwrite=0;
1775
1776         pr_debug("adding bh b#%llu to stripe s#%llu\n",
1777                 (unsigned long long)bi->bi_sector,
1778                 (unsigned long long)sh->sector);
1779
1780
1781         spin_lock(&sh->lock);
1782         spin_lock_irq(&conf->device_lock);
1783         if (forwrite) {
1784                 bip = &sh->dev[dd_idx].towrite;
1785                 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1786                         firstwrite = 1;
1787         } else
1788                 bip = &sh->dev[dd_idx].toread;
1789         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1790                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1791                         goto overlap;
1792                 bip = & (*bip)->bi_next;
1793         }
1794         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1795                 goto overlap;
1796
1797         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1798         if (*bip)
1799                 bi->bi_next = *bip;
1800         *bip = bi;
1801         bi->bi_phys_segments ++;
1802         spin_unlock_irq(&conf->device_lock);
1803         spin_unlock(&sh->lock);
1804
1805         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1806                 (unsigned long long)bi->bi_sector,
1807                 (unsigned long long)sh->sector, dd_idx);
1808
1809         if (conf->mddev->bitmap && firstwrite) {
1810                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1811                                   STRIPE_SECTORS, 0);
1812                 sh->bm_seq = conf->seq_flush+1;
1813                 set_bit(STRIPE_BIT_DELAY, &sh->state);
1814         }
1815
1816         if (forwrite) {
1817                 /* check if page is covered */
1818                 sector_t sector = sh->dev[dd_idx].sector;
1819                 for (bi=sh->dev[dd_idx].towrite;
1820                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1821                              bi && bi->bi_sector <= sector;
1822                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1823                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1824                                 sector = bi->bi_sector + (bi->bi_size>>9);
1825                 }
1826                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1827                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1828         }
1829         return 1;
1830
1831  overlap:
1832         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1833         spin_unlock_irq(&conf->device_lock);
1834         spin_unlock(&sh->lock);
1835         return 0;
1836 }
1837
1838 static void end_reshape(raid5_conf_t *conf);
1839
1840 static int page_is_zero(struct page *p)
1841 {
1842         char *a = page_address(p);
1843         return ((*(u32*)a) == 0 &&
1844                 memcmp(a, a+4, STRIPE_SIZE-4)==0);
1845 }
1846
1847 static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
1848 {
1849         int sectors_per_chunk = conf->chunk_size >> 9;
1850         int pd_idx, dd_idx;
1851         int chunk_offset = sector_div(stripe, sectors_per_chunk);
1852
1853         raid5_compute_sector(stripe * (disks - conf->max_degraded)
1854                              *sectors_per_chunk + chunk_offset,
1855                              disks, disks - conf->max_degraded,
1856                              &dd_idx, &pd_idx, conf);
1857         return pd_idx;
1858 }
1859
1860 static void
1861 handle_requests_to_failed_array(raid5_conf_t *conf, struct stripe_head *sh,
1862                                 struct stripe_head_state *s, int disks,
1863                                 struct bio **return_bi)
1864 {
1865         int i;
1866         for (i = disks; i--; ) {
1867                 struct bio *bi;
1868                 int bitmap_end = 0;
1869
1870                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1871                         mdk_rdev_t *rdev;
1872                         rcu_read_lock();
1873                         rdev = rcu_dereference(conf->disks[i].rdev);
1874                         if (rdev && test_bit(In_sync, &rdev->flags))
1875                                 /* multiple read failures in one stripe */
1876                                 md_error(conf->mddev, rdev);
1877                         rcu_read_unlock();
1878                 }
1879                 spin_lock_irq(&conf->device_lock);
1880                 /* fail all writes first */
1881                 bi = sh->dev[i].towrite;
1882                 sh->dev[i].towrite = NULL;
1883                 if (bi) {
1884                         s->to_write--;
1885                         bitmap_end = 1;
1886                 }
1887
1888                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1889                         wake_up(&conf->wait_for_overlap);
1890
1891                 while (bi && bi->bi_sector <
1892                         sh->dev[i].sector + STRIPE_SECTORS) {
1893                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1894                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
1895                         if (--bi->bi_phys_segments == 0) {
1896                                 md_write_end(conf->mddev);
1897                                 bi->bi_next = *return_bi;
1898                                 *return_bi = bi;
1899                         }
1900                         bi = nextbi;
1901                 }
1902                 /* and fail all 'written' */
1903                 bi = sh->dev[i].written;
1904                 sh->dev[i].written = NULL;
1905                 if (bi) bitmap_end = 1;
1906                 while (bi && bi->bi_sector <
1907                        sh->dev[i].sector + STRIPE_SECTORS) {
1908                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1909                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
1910                         if (--bi->bi_phys_segments == 0) {
1911                                 md_write_end(conf->mddev);
1912                                 bi->bi_next = *return_bi;
1913                                 *return_bi = bi;
1914                         }
1915                         bi = bi2;
1916                 }
1917
1918                 /* fail any reads if this device is non-operational and
1919                  * the data has not reached the cache yet.
1920                  */
1921                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
1922                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1923                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
1924                         bi = sh->dev[i].toread;
1925                         sh->dev[i].toread = NULL;
1926                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1927                                 wake_up(&conf->wait_for_overlap);
1928                         if (bi) s->to_read--;
1929                         while (bi && bi->bi_sector <
1930                                sh->dev[i].sector + STRIPE_SECTORS) {
1931                                 struct bio *nextbi =
1932                                         r5_next_bio(bi, sh->dev[i].sector);
1933                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1934                                 if (--bi->bi_phys_segments == 0) {
1935                                         bi->bi_next = *return_bi;
1936                                         *return_bi = bi;
1937                                 }
1938                                 bi = nextbi;
1939                         }
1940                 }
1941                 spin_unlock_irq(&conf->device_lock);
1942                 if (bitmap_end)
1943                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1944                                         STRIPE_SECTORS, 0, 0);
1945         }
1946
1947         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
1948                 if (atomic_dec_and_test(&conf->pending_full_writes))
1949                         md_wakeup_thread(conf->mddev->thread);
1950 }
1951
1952 /* __handle_issuing_new_read_requests5 - returns 0 if there are no more disks
1953  * to process
1954  */
1955 static int __handle_issuing_new_read_requests5(struct stripe_head *sh,
1956                         struct stripe_head_state *s, int disk_idx, int disks)
1957 {
1958         struct r5dev *dev = &sh->dev[disk_idx];
1959         struct r5dev *failed_dev = &sh->dev[s->failed_num];
1960
1961         /* don't schedule compute operations or reads on the parity block while
1962          * a check is in flight
1963          */
1964         if ((disk_idx == sh->pd_idx) &&
1965              test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
1966                 return ~0;
1967
1968         /* is the data in this block needed, and can we get it? */
1969         if (!test_bit(R5_LOCKED, &dev->flags) &&
1970             !test_bit(R5_UPTODATE, &dev->flags) && (dev->toread ||
1971             (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1972              s->syncing || s->expanding || (s->failed &&
1973              (failed_dev->toread || (failed_dev->towrite &&
1974              !test_bit(R5_OVERWRITE, &failed_dev->flags)
1975              ))))) {
1976                 /* 1/ We would like to get this block, possibly by computing it,
1977                  * but we might not be able to.
1978                  *
1979                  * 2/ Since parity check operations potentially make the parity
1980                  * block !uptodate it will need to be refreshed before any
1981                  * compute operations on data disks are scheduled.
1982                  *
1983                  * 3/ We hold off parity block re-reads until check operations
1984                  * have quiesced.
1985                  */
1986                 if ((s->uptodate == disks - 1) &&
1987                     (s->failed && disk_idx == s->failed_num) &&
1988                     !test_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
1989                         set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
1990                         set_bit(R5_Wantcompute, &dev->flags);
1991                         sh->ops.target = disk_idx;
1992                         s->req_compute = 1;
1993                         sh->ops.count++;
1994                         /* Careful: from this point on 'uptodate' is in the eye
1995                          * of raid5_run_ops which services 'compute' operations
1996                          * before writes. R5_Wantcompute flags a block that will
1997                          * be R5_UPTODATE by the time it is needed for a
1998                          * subsequent operation.
1999                          */
2000                         s->uptodate++;
2001                         return 0; /* uptodate + compute == disks */
2002                 } else if ((s->uptodate < disks - 1) &&
2003                         test_bit(R5_Insync, &dev->flags)) {
2004                         /* Note: we hold off compute operations while checks are
2005                          * in flight, but we still prefer 'compute' over 'read'
2006                          * hence we only read if (uptodate < * disks-1)
2007                          */
2008                         set_bit(R5_LOCKED, &dev->flags);
2009                         set_bit(R5_Wantread, &dev->flags);
2010                         s->locked++;
2011                         pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2012                                 s->syncing);
2013                 }
2014         }
2015
2016         return ~0;
2017 }
2018
2019 static void handle_issuing_new_read_requests5(struct stripe_head *sh,
2020                         struct stripe_head_state *s, int disks)
2021 {
2022         int i;
2023
2024         /* Clear completed compute operations.  Parity recovery
2025          * (STRIPE_OP_MOD_REPAIR_PD) implies a write-back which is handled
2026          * later on in this routine
2027          */
2028         if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
2029                 !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2030                 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2031                 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2032                 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2033         }
2034
2035         /* look for blocks to read/compute, skip this if a compute
2036          * is already in flight, or if the stripe contents are in the
2037          * midst of changing due to a write
2038          */
2039         if (!test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2040                 !test_bit(STRIPE_OP_PREXOR, &sh->ops.pending) &&
2041                 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2042                 for (i = disks; i--; )
2043                         if (__handle_issuing_new_read_requests5(
2044                                 sh, s, i, disks) == 0)
2045                                 break;
2046         }
2047         set_bit(STRIPE_HANDLE, &sh->state);
2048 }
2049
2050 static void handle_issuing_new_read_requests6(struct stripe_head *sh,
2051                         struct stripe_head_state *s, struct r6_state *r6s,
2052                         int disks)
2053 {
2054         int i;
2055         for (i = disks; i--; ) {
2056                 struct r5dev *dev = &sh->dev[i];
2057                 if (!test_bit(R5_LOCKED, &dev->flags) &&
2058                     !test_bit(R5_UPTODATE, &dev->flags) &&
2059                     (dev->toread || (dev->towrite &&
2060                      !test_bit(R5_OVERWRITE, &dev->flags)) ||
2061                      s->syncing || s->expanding ||
2062                      (s->failed >= 1 &&
2063                       (sh->dev[r6s->failed_num[0]].toread ||
2064                        s->to_write)) ||
2065                      (s->failed >= 2 &&
2066                       (sh->dev[r6s->failed_num[1]].toread ||
2067                        s->to_write)))) {
2068                         /* we would like to get this block, possibly
2069                          * by computing it, but we might not be able to
2070                          */
2071                         if ((s->uptodate == disks - 1) &&
2072                             (s->failed && (i == r6s->failed_num[0] ||
2073                                            i == r6s->failed_num[1]))) {
2074                                 pr_debug("Computing stripe %llu block %d\n",
2075                                        (unsigned long long)sh->sector, i);
2076                                 compute_block_1(sh, i, 0);
2077                                 s->uptodate++;
2078                         } else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2079                                 /* Computing 2-failure is *very* expensive; only
2080                                  * do it if failed >= 2
2081                                  */
2082                                 int other;
2083                                 for (other = disks; other--; ) {
2084                                         if (other == i)
2085                                                 continue;
2086                                         if (!test_bit(R5_UPTODATE,
2087                                               &sh->dev[other].flags))
2088                                                 break;
2089                                 }
2090                                 BUG_ON(other < 0);
2091                                 pr_debug("Computing stripe %llu blocks %d,%d\n",
2092                                        (unsigned long long)sh->sector,
2093                                        i, other);
2094                                 compute_block_2(sh, i, other);
2095                                 s->uptodate += 2;
2096                         } else if (test_bit(R5_Insync, &dev->flags)) {
2097                                 set_bit(R5_LOCKED, &dev->flags);
2098                                 set_bit(R5_Wantread, &dev->flags);
2099                                 s->locked++;
2100                                 pr_debug("Reading block %d (sync=%d)\n",
2101                                         i, s->syncing);
2102                         }
2103                 }
2104         }
2105         set_bit(STRIPE_HANDLE, &sh->state);
2106 }
2107
2108
2109 /* handle_completed_write_requests
2110  * any written block on an uptodate or failed drive can be returned.
2111  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2112  * never LOCKED, so we don't need to test 'failed' directly.
2113  */
2114 static void handle_completed_write_requests(raid5_conf_t *conf,
2115         struct stripe_head *sh, int disks, struct bio **return_bi)
2116 {
2117         int i;
2118         struct r5dev *dev;
2119
2120         for (i = disks; i--; )
2121                 if (sh->dev[i].written) {
2122                         dev = &sh->dev[i];
2123                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2124                                 test_bit(R5_UPTODATE, &dev->flags)) {
2125                                 /* We can return any write requests */
2126                                 struct bio *wbi, *wbi2;
2127                                 int bitmap_end = 0;
2128                                 pr_debug("Return write for disc %d\n", i);
2129                                 spin_lock_irq(&conf->device_lock);
2130                                 wbi = dev->written;
2131                                 dev->written = NULL;
2132                                 while (wbi && wbi->bi_sector <
2133                                         dev->sector + STRIPE_SECTORS) {
2134                                         wbi2 = r5_next_bio(wbi, dev->sector);
2135                                         if (--wbi->bi_phys_segments == 0) {
2136                                                 md_write_end(conf->mddev);
2137                                                 wbi->bi_next = *return_bi;
2138                                                 *return_bi = wbi;
2139                                         }
2140                                         wbi = wbi2;
2141                                 }
2142                                 if (dev->towrite == NULL)
2143                                         bitmap_end = 1;
2144                                 spin_unlock_irq(&conf->device_lock);
2145                                 if (bitmap_end)
2146                                         bitmap_endwrite(conf->mddev->bitmap,
2147                                                         sh->sector,
2148                                                         STRIPE_SECTORS,
2149                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2150                                                         0);
2151                         }
2152                 }
2153
2154         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2155                 if (atomic_dec_and_test(&conf->pending_full_writes))
2156                         md_wakeup_thread(conf->mddev->thread);
2157 }
2158
2159 static void handle_issuing_new_write_requests5(raid5_conf_t *conf,
2160                 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2161 {
2162         int rmw = 0, rcw = 0, i;
2163         for (i = disks; i--; ) {
2164                 /* would I have to read this buffer for read_modify_write */
2165                 struct r5dev *dev = &sh->dev[i];
2166                 if ((dev->towrite || i == sh->pd_idx) &&
2167                     !test_bit(R5_LOCKED, &dev->flags) &&
2168                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2169                       test_bit(R5_Wantcompute, &dev->flags))) {
2170                         if (test_bit(R5_Insync, &dev->flags))
2171                                 rmw++;
2172                         else
2173                                 rmw += 2*disks;  /* cannot read it */
2174                 }
2175                 /* Would I have to read this buffer for reconstruct_write */
2176                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2177                     !test_bit(R5_LOCKED, &dev->flags) &&
2178                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2179                     test_bit(R5_Wantcompute, &dev->flags))) {
2180                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2181                         else
2182                                 rcw += 2*disks;
2183                 }
2184         }
2185         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2186                 (unsigned long long)sh->sector, rmw, rcw);
2187         set_bit(STRIPE_HANDLE, &sh->state);
2188         if (rmw < rcw && rmw > 0)
2189                 /* prefer read-modify-write, but need to get some data */
2190                 for (i = disks; i--; ) {
2191                         struct r5dev *dev = &sh->dev[i];
2192                         if ((dev->towrite || i == sh->pd_idx) &&
2193                             !test_bit(R5_LOCKED, &dev->flags) &&
2194                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2195                             test_bit(R5_Wantcompute, &dev->flags)) &&
2196                             test_bit(R5_Insync, &dev->flags)) {
2197                                 if (
2198                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2199                                         pr_debug("Read_old block "
2200                                                 "%d for r-m-w\n", i);
2201                                         set_bit(R5_LOCKED, &dev->flags);
2202                                         set_bit(R5_Wantread, &dev->flags);
2203                                         s->locked++;
2204                                 } else {
2205                                         set_bit(STRIPE_DELAYED, &sh->state);
2206                                         set_bit(STRIPE_HANDLE, &sh->state);
2207                                 }
2208                         }
2209                 }
2210         if (rcw <= rmw && rcw > 0)
2211                 /* want reconstruct write, but need to get some data */
2212                 for (i = disks; i--; ) {
2213                         struct r5dev *dev = &sh->dev[i];
2214                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2215                             i != sh->pd_idx &&
2216                             !test_bit(R5_LOCKED, &dev->flags) &&
2217                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2218                             test_bit(R5_Wantcompute, &dev->flags)) &&
2219                             test_bit(R5_Insync, &dev->flags)) {
2220                                 if (
2221                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2222                                         pr_debug("Read_old block "
2223                                                 "%d for Reconstruct\n", i);
2224                                         set_bit(R5_LOCKED, &dev->flags);
2225                                         set_bit(R5_Wantread, &dev->flags);
2226                                         s->locked++;
2227                                 } else {
2228                                         set_bit(STRIPE_DELAYED, &sh->state);
2229                                         set_bit(STRIPE_HANDLE, &sh->state);
2230                                 }
2231                         }
2232                 }
2233         /* now if nothing is locked, and if we have enough data,
2234          * we can start a write request
2235          */
2236         /* since handle_stripe can be called at any time we need to handle the
2237          * case where a compute block operation has been submitted and then a
2238          * subsequent call wants to start a write request.  raid5_run_ops only
2239          * handles the case where compute block and postxor are requested
2240          * simultaneously.  If this is not the case then new writes need to be
2241          * held off until the compute completes.
2242          */
2243         if ((s->req_compute ||
2244             !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) &&
2245                 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2246                 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2247                 s->locked += handle_write_operations5(sh, rcw == 0, 0);
2248 }
2249
2250 static void handle_issuing_new_write_requests6(raid5_conf_t *conf,
2251                 struct stripe_head *sh, struct stripe_head_state *s,
2252                 struct r6_state *r6s, int disks)
2253 {
2254         int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2255         int qd_idx = r6s->qd_idx;
2256         for (i = disks; i--; ) {
2257                 struct r5dev *dev = &sh->dev[i];
2258                 /* Would I have to read this buffer for reconstruct_write */
2259                 if (!test_bit(R5_OVERWRITE, &dev->flags)
2260                     && i != pd_idx && i != qd_idx
2261                     && (!test_bit(R5_LOCKED, &dev->flags)
2262                             ) &&
2263                     !test_bit(R5_UPTODATE, &dev->flags)) {
2264                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2265                         else {
2266                                 pr_debug("raid6: must_compute: "
2267                                         "disk %d flags=%#lx\n", i, dev->flags);
2268                                 must_compute++;
2269                         }
2270                 }
2271         }
2272         pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2273                (unsigned long long)sh->sector, rcw, must_compute);
2274         set_bit(STRIPE_HANDLE, &sh->state);
2275
2276         if (rcw > 0)
2277                 /* want reconstruct write, but need to get some data */
2278                 for (i = disks; i--; ) {
2279                         struct r5dev *dev = &sh->dev[i];
2280                         if (!test_bit(R5_OVERWRITE, &dev->flags)
2281                             && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2282                             && !test_bit(R5_LOCKED, &dev->flags) &&
2283                             !test_bit(R5_UPTODATE, &dev->flags) &&
2284                             test_bit(R5_Insync, &dev->flags)) {
2285                                 if (
2286                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2287                                         pr_debug("Read_old stripe %llu "
2288                                                 "block %d for Reconstruct\n",
2289                                              (unsigned long long)sh->sector, i);
2290                                         set_bit(R5_LOCKED, &dev->flags);
2291                                         set_bit(R5_Wantread, &dev->flags);
2292                                         s->locked++;
2293                                 } else {
2294                                         pr_debug("Request delayed stripe %llu "
2295                                                 "block %d for Reconstruct\n",
2296                                              (unsigned long long)sh->sector, i);
2297                                         set_bit(STRIPE_DELAYED, &sh->state);
2298                                         set_bit(STRIPE_HANDLE, &sh->state);
2299                                 }
2300                         }
2301                 }
2302         /* now if nothing is locked, and if we have enough data, we can start a
2303          * write request
2304          */
2305         if (s->locked == 0 && rcw == 0 &&
2306             !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2307                 if (must_compute > 0) {
2308                         /* We have failed blocks and need to compute them */
2309                         switch (s->failed) {
2310                         case 0:
2311                                 BUG();
2312                         case 1:
2313                                 compute_block_1(sh, r6s->failed_num[0], 0);
2314                                 break;
2315                         case 2:
2316                                 compute_block_2(sh, r6s->failed_num[0],
2317                                                 r6s->failed_num[1]);
2318                                 break;
2319                         default: /* This request should have been failed? */
2320                                 BUG();
2321                         }
2322                 }
2323
2324                 pr_debug("Computing parity for stripe %llu\n",
2325                         (unsigned long long)sh->sector);
2326                 compute_parity6(sh, RECONSTRUCT_WRITE);
2327                 /* now every locked buffer is ready to be written */
2328                 for (i = disks; i--; )
2329                         if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2330                                 pr_debug("Writing stripe %llu block %d\n",
2331                                        (unsigned long long)sh->sector, i);
2332                                 s->locked++;
2333                                 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2334                         }
2335                 if (s->locked == disks)
2336                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2337                                 atomic_inc(&conf->pending_full_writes);
2338                 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2339                 set_bit(STRIPE_INSYNC, &sh->state);
2340
2341                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2342                         atomic_dec(&conf->preread_active_stripes);
2343                         if (atomic_read(&conf->preread_active_stripes) <
2344                             IO_THRESHOLD)
2345                                 md_wakeup_thread(conf->mddev->thread);
2346                 }
2347         }
2348 }
2349
2350 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2351                                 struct stripe_head_state *s, int disks)
2352 {
2353         int canceled_check = 0;
2354
2355         set_bit(STRIPE_HANDLE, &sh->state);
2356
2357         /* complete a check operation */
2358         if (test_and_clear_bit(STRIPE_OP_CHECK, &sh->ops.complete)) {
2359                 clear_bit(STRIPE_OP_CHECK, &sh->ops.ack);
2360                 clear_bit(STRIPE_OP_CHECK, &sh->ops.pending);
2361                 if (s->failed == 0) {
2362                         if (sh->ops.zero_sum_result == 0)
2363                                 /* parity is correct (on disc,
2364                                  * not in buffer any more)
2365                                  */
2366                                 set_bit(STRIPE_INSYNC, &sh->state);
2367                         else {
2368                                 conf->mddev->resync_mismatches +=
2369                                         STRIPE_SECTORS;
2370                                 if (test_bit(
2371                                      MD_RECOVERY_CHECK, &conf->mddev->recovery))
2372                                         /* don't try to repair!! */
2373                                         set_bit(STRIPE_INSYNC, &sh->state);
2374                                 else {
2375                                         set_bit(STRIPE_OP_COMPUTE_BLK,
2376                                                 &sh->ops.pending);
2377                                         set_bit(STRIPE_OP_MOD_REPAIR_PD,
2378                                                 &sh->ops.pending);
2379                                         set_bit(R5_Wantcompute,
2380                                                 &sh->dev[sh->pd_idx].flags);
2381                                         sh->ops.target = sh->pd_idx;
2382                                         sh->ops.count++;
2383                                         s->uptodate++;
2384                                 }
2385                         }
2386                 } else
2387                         canceled_check = 1; /* STRIPE_INSYNC is not set */
2388         }
2389
2390         /* start a new check operation if there are no failures, the stripe is
2391          * not insync, and a repair is not in flight
2392          */
2393         if (s->failed == 0 &&
2394             !test_bit(STRIPE_INSYNC, &sh->state) &&
2395             !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2396                 if (!test_and_set_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
2397                         BUG_ON(s->uptodate != disks);
2398                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2399                         sh->ops.count++;
2400                         s->uptodate--;
2401                 }
2402         }
2403
2404         /* check if we can clear a parity disk reconstruct */
2405         if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
2406             test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2407
2408                 clear_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending);
2409                 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2410                 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2411                 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2412         }
2413
2414
2415         /* Wait for check parity and compute block operations to complete
2416          * before write-back.  If a failure occurred while the check operation
2417          * was in flight we need to cycle this stripe through handle_stripe
2418          * since the parity block may not be uptodate
2419          */
2420         if (!canceled_check && !test_bit(STRIPE_INSYNC, &sh->state) &&
2421             !test_bit(STRIPE_OP_CHECK, &sh->ops.pending) &&
2422             !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) {
2423                 struct r5dev *dev;
2424                 /* either failed parity check, or recovery is happening */
2425                 if (s->failed == 0)
2426                         s->failed_num = sh->pd_idx;
2427                 dev = &sh->dev[s->failed_num];
2428                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2429                 BUG_ON(s->uptodate != disks);
2430
2431                 set_bit(R5_LOCKED, &dev->flags);
2432                 set_bit(R5_Wantwrite, &dev->flags);
2433
2434                 clear_bit(STRIPE_DEGRADED, &sh->state);
2435                 s->locked++;
2436                 set_bit(STRIPE_INSYNC, &sh->state);
2437         }
2438 }
2439
2440
2441 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2442                                 struct stripe_head_state *s,
2443                                 struct r6_state *r6s, struct page *tmp_page,
2444                                 int disks)
2445 {
2446         int update_p = 0, update_q = 0;
2447         struct r5dev *dev;
2448         int pd_idx = sh->pd_idx;
2449         int qd_idx = r6s->qd_idx;
2450
2451         set_bit(STRIPE_HANDLE, &sh->state);
2452
2453         BUG_ON(s->failed > 2);
2454         BUG_ON(s->uptodate < disks);
2455         /* Want to check and possibly repair P and Q.
2456          * However there could be one 'failed' device, in which
2457          * case we can only check one of them, possibly using the
2458          * other to generate missing data
2459          */
2460
2461         /* If !tmp_page, we cannot do the calculations,
2462          * but as we have set STRIPE_HANDLE, we will soon be called
2463          * by stripe_handle with a tmp_page - just wait until then.
2464          */
2465         if (tmp_page) {
2466                 if (s->failed == r6s->q_failed) {
2467                         /* The only possible failed device holds 'Q', so it
2468                          * makes sense to check P (If anything else were failed,
2469                          * we would have used P to recreate it).
2470                          */
2471                         compute_block_1(sh, pd_idx, 1);
2472                         if (!page_is_zero(sh->dev[pd_idx].page)) {
2473                                 compute_block_1(sh, pd_idx, 0);
2474                                 update_p = 1;
2475                         }
2476                 }
2477                 if (!r6s->q_failed && s->failed < 2) {
2478                         /* q is not failed, and we didn't use it to generate
2479                          * anything, so it makes sense to check it
2480                          */
2481                         memcpy(page_address(tmp_page),
2482                                page_address(sh->dev[qd_idx].page),
2483                                STRIPE_SIZE);
2484                         compute_parity6(sh, UPDATE_PARITY);
2485                         if (memcmp(page_address(tmp_page),
2486                                    page_address(sh->dev[qd_idx].page),
2487                                    STRIPE_SIZE) != 0) {
2488                                 clear_bit(STRIPE_INSYNC, &sh->state);
2489                                 update_q = 1;
2490                         }
2491                 }
2492                 if (update_p || update_q) {
2493                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2494                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2495                                 /* don't try to repair!! */
2496                                 update_p = update_q = 0;
2497                 }
2498
2499                 /* now write out any block on a failed drive,
2500                  * or P or Q if they need it
2501                  */
2502
2503                 if (s->failed == 2) {
2504                         dev = &sh->dev[r6s->failed_num[1]];
2505                         s->locked++;
2506                         set_bit(R5_LOCKED, &dev->flags);
2507                         set_bit(R5_Wantwrite, &dev->flags);
2508                 }
2509                 if (s->failed >= 1) {
2510                         dev = &sh->dev[r6s->failed_num[0]];
2511                         s->locked++;
2512                         set_bit(R5_LOCKED, &dev->flags);
2513                         set_bit(R5_Wantwrite, &dev->flags);
2514                 }
2515
2516                 if (update_p) {
2517                         dev = &sh->dev[pd_idx];
2518                         s->locked++;
2519                         set_bit(R5_LOCKED, &dev->flags);
2520                         set_bit(R5_Wantwrite, &dev->flags);
2521                 }
2522                 if (update_q) {
2523                         dev = &sh->dev[qd_idx];
2524                         s->locked++;
2525                         set_bit(R5_LOCKED, &dev->flags);
2526                         set_bit(R5_Wantwrite, &dev->flags);
2527                 }
2528                 clear_bit(STRIPE_DEGRADED, &sh->state);
2529
2530                 set_bit(STRIPE_INSYNC, &sh->state);
2531         }
2532 }
2533
2534 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2535                                 struct r6_state *r6s)
2536 {
2537         int i;
2538
2539         /* We have read all the blocks in this stripe and now we need to
2540          * copy some of them into a target stripe for expand.
2541          */
2542         struct dma_async_tx_descriptor *tx = NULL;
2543         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2544         for (i = 0; i < sh->disks; i++)
2545                 if (i != sh->pd_idx && (!r6s || i != r6s->qd_idx)) {
2546                         int dd_idx, pd_idx, j;
2547                         struct stripe_head *sh2;
2548
2549                         sector_t bn = compute_blocknr(sh, i);
2550                         sector_t s = raid5_compute_sector(bn, conf->raid_disks,
2551                                                 conf->raid_disks -
2552                                                 conf->max_degraded, &dd_idx,
2553                                                 &pd_idx, conf);
2554                         sh2 = get_active_stripe(conf, s, conf->raid_disks,
2555                                                 pd_idx, 1);
2556                         if (sh2 == NULL)
2557                                 /* so far only the early blocks of this stripe
2558                                  * have been requested.  When later blocks
2559                                  * get requested, we will try again
2560                                  */
2561                                 continue;
2562                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2563                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2564                                 /* must have already done this block */
2565                                 release_stripe(sh2);
2566                                 continue;
2567                         }
2568
2569                         /* place all the copies on one channel */
2570                         tx = async_memcpy(sh2->dev[dd_idx].page,
2571                                 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2572                                 ASYNC_TX_DEP_ACK, tx, NULL, NULL);
2573
2574                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2575                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2576                         for (j = 0; j < conf->raid_disks; j++)
2577                                 if (j != sh2->pd_idx &&
2578                                     (!r6s || j != raid6_next_disk(sh2->pd_idx,
2579                                                                  sh2->disks)) &&
2580                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
2581                                         break;
2582                         if (j == conf->raid_disks) {
2583                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2584                                 set_bit(STRIPE_HANDLE, &sh2->state);
2585                         }
2586                         release_stripe(sh2);
2587
2588                 }
2589         /* done submitting copies, wait for them to complete */
2590         if (tx) {
2591                 async_tx_ack(tx);
2592                 dma_wait_for_async_tx(tx);
2593         }
2594 }
2595
2596
2597 /*
2598  * handle_stripe - do things to a stripe.
2599  *
2600  * We lock the stripe and then examine the state of various bits
2601  * to see what needs to be done.
2602  * Possible results:
2603  *    return some read request which now have data
2604  *    return some write requests which are safely on disc
2605  *    schedule a read on some buffers
2606  *    schedule a write of some buffers
2607  *    return confirmation of parity correctness
2608  *
2609  * buffers are taken off read_list or write_list, and bh_cache buffers
2610  * get BH_Lock set before the stripe lock is released.
2611  *
2612  */
2613
2614 static void handle_stripe5(struct stripe_head *sh)
2615 {
2616         raid5_conf_t *conf = sh->raid_conf;
2617         int disks = sh->disks, i;
2618         struct bio *return_bi = NULL;
2619         struct stripe_head_state s;
2620         struct r5dev *dev;
2621         unsigned long pending = 0;
2622         mdk_rdev_t *blocked_rdev = NULL;
2623         int prexor;
2624
2625         memset(&s, 0, sizeof(s));
2626         pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d "
2627                 "ops=%lx:%lx:%lx\n", (unsigned long long)sh->sector, sh->state,
2628                 atomic_read(&sh->count), sh->pd_idx,
2629                 sh->ops.pending, sh->ops.ack, sh->ops.complete);
2630
2631         spin_lock(&sh->lock);
2632         clear_bit(STRIPE_HANDLE, &sh->state);
2633         clear_bit(STRIPE_DELAYED, &sh->state);
2634
2635         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2636         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2637         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2638         /* Now to look around and see what can be done */
2639
2640         /* clean-up completed biofill operations */
2641         if (test_bit(STRIPE_OP_BIOFILL, &sh->ops.complete)) {
2642                 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.pending);
2643                 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.ack);
2644                 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.complete);
2645         }
2646
2647         rcu_read_lock();
2648         for (i=disks; i--; ) {
2649                 mdk_rdev_t *rdev;
2650                 struct r5dev *dev = &sh->dev[i];
2651                 clear_bit(R5_Insync, &dev->flags);
2652
2653                 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2654                         "written %p\n", i, dev->flags, dev->toread, dev->read,
2655                         dev->towrite, dev->written);
2656
2657                 /* maybe we can request a biofill operation
2658                  *
2659                  * new wantfill requests are only permitted while
2660                  * STRIPE_OP_BIOFILL is clear
2661                  */
2662                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2663                         !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2664                         set_bit(R5_Wantfill, &dev->flags);
2665
2666                 /* now count some things */
2667                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2668                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2669                 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2670
2671                 if (test_bit(R5_Wantfill, &dev->flags))
2672                         s.to_fill++;
2673                 else if (dev->toread)
2674                         s.to_read++;
2675                 if (dev->towrite) {
2676                         s.to_write++;
2677                         if (!test_bit(R5_OVERWRITE, &dev->flags))
2678                                 s.non_overwrite++;
2679                 }
2680                 if (dev->written)
2681                         s.written++;
2682                 rdev = rcu_dereference(conf->disks[i].rdev);
2683                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2684                         blocked_rdev = rdev;
2685                         atomic_inc(&rdev->nr_pending);
2686                         break;
2687                 }
2688                 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2689                         /* The ReadError flag will just be confusing now */
2690                         clear_bit(R5_ReadError, &dev->flags);
2691                         clear_bit(R5_ReWrite, &dev->flags);
2692                 }
2693                 if (!rdev || !test_bit(In_sync, &rdev->flags)
2694                     || test_bit(R5_ReadError, &dev->flags)) {
2695                         s.failed++;
2696                         s.failed_num = i;
2697                 } else
2698                         set_bit(R5_Insync, &dev->flags);
2699         }
2700         rcu_read_unlock();
2701
2702         if (unlikely(blocked_rdev)) {
2703                 set_bit(STRIPE_HANDLE, &sh->state);
2704                 goto unlock;
2705         }
2706
2707         if (s.to_fill && !test_and_set_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2708                 sh->ops.count++;
2709
2710         pr_debug("locked=%d uptodate=%d to_read=%d"
2711                 " to_write=%d failed=%d failed_num=%d\n",
2712                 s.locked, s.uptodate, s.to_read, s.to_write,
2713                 s.failed, s.failed_num);
2714         /* check if the array has lost two devices and, if so, some requests might
2715          * need to be failed
2716          */
2717         if (s.failed > 1 && s.to_read+s.to_write+s.written)
2718                 handle_requests_to_failed_array(conf, sh, &s, disks,
2719                                                 &return_bi);
2720         if (s.failed > 1 && s.syncing) {
2721                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2722                 clear_bit(STRIPE_SYNCING, &sh->state);
2723                 s.syncing = 0;
2724         }
2725
2726         /* might be able to return some write requests if the parity block
2727          * is safe, or on a failed drive
2728          */
2729         dev = &sh->dev[sh->pd_idx];
2730         if ( s.written &&
2731              ((test_bit(R5_Insync, &dev->flags) &&
2732                !test_bit(R5_LOCKED, &dev->flags) &&
2733                test_bit(R5_UPTODATE, &dev->flags)) ||
2734                (s.failed == 1 && s.failed_num == sh->pd_idx)))
2735                 handle_completed_write_requests(conf, sh, disks, &return_bi);
2736
2737         /* Now we might consider reading some blocks, either to check/generate
2738          * parity, or to satisfy requests
2739          * or to load a block that is being partially written.
2740          */
2741         if (s.to_read || s.non_overwrite ||
2742             (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding ||
2743             test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
2744                 handle_issuing_new_read_requests5(sh, &s, disks);
2745
2746         /* Now we check to see if any write operations have recently
2747          * completed
2748          */
2749
2750         /* leave prexor set until postxor is done, allows us to distinguish
2751          * a rmw from a rcw during biodrain
2752          */
2753         prexor = 0;
2754         if (test_bit(STRIPE_OP_PREXOR, &sh->ops.complete) &&
2755                 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2756
2757                 prexor = 1;
2758                 clear_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
2759                 clear_bit(STRIPE_OP_PREXOR, &sh->ops.ack);
2760                 clear_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
2761
2762                 for (i = disks; i--; )
2763                         clear_bit(R5_Wantprexor, &sh->dev[i].flags);
2764         }
2765
2766         /* if only POSTXOR is set then this is an 'expand' postxor */
2767         if (test_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete) &&
2768                 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2769
2770                 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
2771                 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.ack);
2772                 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
2773
2774                 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2775                 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2776                 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2777
2778                 /* All the 'written' buffers and the parity block are ready to
2779                  * be written back to disk
2780                  */
2781                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2782                 for (i = disks; i--; ) {
2783                         dev = &sh->dev[i];
2784                         if (test_bit(R5_LOCKED, &dev->flags) &&
2785                                 (i == sh->pd_idx || dev->written)) {
2786                                 pr_debug("Writing block %d\n", i);
2787                                 set_bit(R5_Wantwrite, &dev->flags);
2788                                 if (prexor)
2789                                         continue;
2790                                 if (!test_bit(R5_Insync, &dev->flags) ||
2791                                     (i == sh->pd_idx && s.failed == 0))
2792                                         set_bit(STRIPE_INSYNC, &sh->state);
2793                         }
2794                 }
2795                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2796                         atomic_dec(&conf->preread_active_stripes);
2797                         if (atomic_read(&conf->preread_active_stripes) <
2798                                 IO_THRESHOLD)
2799                                 md_wakeup_thread(conf->mddev->thread);
2800                 }
2801         }
2802
2803         /* Now to consider new write requests and what else, if anything
2804          * should be read.  We do not handle new writes when:
2805          * 1/ A 'write' operation (copy+xor) is already in flight.
2806          * 2/ A 'check' operation is in flight, as it may clobber the parity
2807          *    block.
2808          */
2809         if (s.to_write && !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending) &&
2810                           !test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
2811                 handle_issuing_new_write_requests5(conf, sh, &s, disks);
2812
2813         /* maybe we need to check and possibly fix the parity for this stripe
2814          * Any reads will already have been scheduled, so we just see if enough
2815          * data is available.  The parity check is held off while parity
2816          * dependent operations are in flight.
2817          */
2818         if ((s.syncing && s.locked == 0 &&
2819              !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2820              !test_bit(STRIPE_INSYNC, &sh->state)) ||
2821               test_bit(STRIPE_OP_CHECK, &sh->ops.pending) ||
2822               test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending))
2823                 handle_parity_checks5(conf, sh, &s, disks);
2824
2825         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2826                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2827                 clear_bit(STRIPE_SYNCING, &sh->state);
2828         }
2829
2830         /* If the failed drive is just a ReadError, then we might need to progress
2831          * the repair/check process
2832          */
2833         if (s.failed == 1 && !conf->mddev->ro &&
2834             test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2835             && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2836             && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
2837                 ) {
2838                 dev = &sh->dev[s.failed_num];
2839                 if (!test_bit(R5_ReWrite, &dev->flags)) {
2840                         set_bit(R5_Wantwrite, &dev->flags);
2841                         set_bit(R5_ReWrite, &dev->flags);
2842                         set_bit(R5_LOCKED, &dev->flags);
2843                         s.locked++;
2844                 } else {
2845                         /* let's read it back */
2846                         set_bit(R5_Wantread, &dev->flags);
2847                         set_bit(R5_LOCKED, &dev->flags);
2848                         s.locked++;
2849                 }
2850         }
2851
2852         /* Finish postxor operations initiated by the expansion
2853          * process
2854          */
2855         if (test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete) &&
2856                 !test_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending)) {
2857
2858                 clear_bit(STRIPE_EXPANDING, &sh->state);
2859
2860                 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2861                 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2862                 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2863
2864                 for (i = conf->raid_disks; i--; )
2865                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
2866                         set_bit(R5_LOCKED, &dev->flags);
2867                         s.locked++;
2868         }
2869
2870         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2871                 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2872                 /* Need to write out all blocks after computing parity */
2873                 sh->disks = conf->raid_disks;
2874                 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
2875                         conf->raid_disks);
2876                 s.locked += handle_write_operations5(sh, 1, 1);
2877         } else if (s.expanded &&
2878                    s.locked == 0 &&
2879                 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2880                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
2881                 atomic_dec(&conf->reshape_stripes);
2882                 wake_up(&conf->wait_for_overlap);
2883                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2884         }
2885
2886         if (s.expanding && s.locked == 0 &&
2887             !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
2888                 handle_stripe_expansion(conf, sh, NULL);
2889
2890         if (sh->ops.count)
2891                 pending = get_stripe_work(sh);
2892
2893  unlock:
2894         spin_unlock(&sh->lock);
2895
2896         /* wait for this device to become unblocked */
2897         if (unlikely(blocked_rdev))
2898                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
2899
2900         if (pending)
2901                 raid5_run_ops(sh, pending);
2902
2903         ops_run_io(sh, &s);
2904
2905         return_io(return_bi);
2906 }
2907
2908 static void handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
2909 {
2910         raid6_conf_t *conf = sh->raid_conf;
2911         int disks = sh->disks;
2912         struct bio *return_bi = NULL;
2913         int i, pd_idx = sh->pd_idx;
2914         struct stripe_head_state s;
2915         struct r6_state r6s;
2916         struct r5dev *dev, *pdev, *qdev;
2917         mdk_rdev_t *blocked_rdev = NULL;
2918
2919         r6s.qd_idx = raid6_next_disk(pd_idx, disks);
2920         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
2921                 "pd_idx=%d, qd_idx=%d\n",
2922                (unsigned long long)sh->sector, sh->state,
2923                atomic_read(&sh->count), pd_idx, r6s.qd_idx);
2924         memset(&s, 0, sizeof(s));
2925
2926         spin_lock(&sh->lock);
2927         clear_bit(STRIPE_HANDLE, &sh->state);
2928         clear_bit(STRIPE_DELAYED, &sh->state);
2929
2930         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2931         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2932         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2933         /* Now to look around and see what can be done */
2934
2935         rcu_read_lock();
2936         for (i=disks; i--; ) {
2937                 mdk_rdev_t *rdev;
2938                 dev = &sh->dev[i];
2939                 clear_bit(R5_Insync, &dev->flags);
2940
2941                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
2942                         i, dev->flags, dev->toread, dev->towrite, dev->written);
2943                 /* maybe we can reply to a read */
2944                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
2945                         struct bio *rbi, *rbi2;
2946                         pr_debug("Return read for disc %d\n", i);
2947                         spin_lock_irq(&conf->device_lock);
2948                         rbi = dev->toread;
2949                         dev->toread = NULL;
2950                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
2951                                 wake_up(&conf->wait_for_overlap);
2952                         spin_unlock_irq(&conf->device_lock);
2953                         while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
2954                                 copy_data(0, rbi, dev->page, dev->sector);
2955                                 rbi2 = r5_next_bio(rbi, dev->sector);
2956                                 spin_lock_irq(&conf->device_lock);
2957                                 if (--rbi->bi_phys_segments == 0) {
2958                                         rbi->bi_next = return_bi;
2959                                         return_bi = rbi;
2960                                 }
2961                                 spin_unlock_irq(&conf->device_lock);
2962                                 rbi = rbi2;
2963                         }
2964                 }
2965
2966                 /* now count some things */
2967                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2968                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2969
2970
2971                 if (dev->toread)
2972                         s.to_read++;
2973                 if (dev->towrite) {
2974                         s.to_write++;
2975                         if (!test_bit(R5_OVERWRITE, &dev->flags))
2976                                 s.non_overwrite++;
2977                 }
2978                 if (dev->written)
2979                         s.written++;
2980                 rdev = rcu_dereference(conf->disks[i].rdev);
2981                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2982                         blocked_rdev = rdev;
2983                         atomic_inc(&rdev->nr_pending);
2984                         break;
2985                 }
2986                 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2987                         /* The ReadError flag will just be confusing now */
2988                         clear_bit(R5_ReadError, &dev->flags);
2989                         clear_bit(R5_ReWrite, &dev->flags);
2990                 }
2991                 if (!rdev || !test_bit(In_sync, &rdev->flags)
2992                     || test_bit(R5_ReadError, &dev->flags)) {
2993                         if (s.failed < 2)
2994                                 r6s.failed_num[s.failed] = i;
2995                         s.failed++;
2996                 } else
2997                         set_bit(R5_Insync, &dev->flags);
2998         }
2999         rcu_read_unlock();
3000
3001         if (unlikely(blocked_rdev)) {
3002                 set_bit(STRIPE_HANDLE, &sh->state);
3003                 goto unlock;
3004         }
3005         pr_debug("locked=%d uptodate=%d to_read=%d"
3006                " to_write=%d failed=%d failed_num=%d,%d\n",
3007                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3008                r6s.failed_num[0], r6s.failed_num[1]);
3009         /* check if the array has lost >2 devices and, if so, some requests
3010          * might need to be failed
3011          */
3012         if (s.failed > 2 && s.to_read+s.to_write+s.written)
3013                 handle_requests_to_failed_array(conf, sh, &s, disks,
3014                                                 &return_bi);
3015         if (s.failed > 2 && s.syncing) {
3016                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3017                 clear_bit(STRIPE_SYNCING, &sh->state);
3018                 s.syncing = 0;
3019         }
3020
3021         /*
3022          * might be able to return some write requests if the parity blocks
3023          * are safe, or on a failed drive
3024          */
3025         pdev = &sh->dev[pd_idx];
3026         r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3027                 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3028         qdev = &sh->dev[r6s.qd_idx];
3029         r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == r6s.qd_idx)
3030                 || (s.failed >= 2 && r6s.failed_num[1] == r6s.qd_idx);
3031
3032         if ( s.written &&
3033              ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3034                              && !test_bit(R5_LOCKED, &pdev->flags)
3035                              && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3036              ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3037                              && !test_bit(R5_LOCKED, &qdev->flags)
3038                              && test_bit(R5_UPTODATE, &qdev->flags)))))
3039                 handle_completed_write_requests(conf, sh, disks, &return_bi);
3040
3041         /* Now we might consider reading some blocks, either to check/generate
3042          * parity, or to satisfy requests
3043          * or to load a block that is being partially written.
3044          */
3045         if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3046             (s.syncing && (s.uptodate < disks)) || s.expanding)
3047                 handle_issuing_new_read_requests6(sh, &s, &r6s, disks);
3048
3049         /* now to consider writing and what else, if anything should be read */
3050         if (s.to_write)
3051                 handle_issuing_new_write_requests6(conf, sh, &s, &r6s, disks);
3052
3053         /* maybe we need to check and possibly fix the parity for this stripe
3054          * Any reads will already have been scheduled, so we just see if enough
3055          * data is available
3056          */
3057         if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
3058                 handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
3059
3060         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3061                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3062                 clear_bit(STRIPE_SYNCING, &sh->state);
3063         }
3064
3065         /* If the failed drives are just a ReadError, then we might need
3066          * to progress the repair/check process
3067          */
3068         if (s.failed <= 2 && !conf->mddev->ro)
3069                 for (i = 0; i < s.failed; i++) {
3070                         dev = &sh->dev[r6s.failed_num[i]];
3071                         if (test_bit(R5_ReadError, &dev->flags)
3072                             && !test_bit(R5_LOCKED, &dev->flags)
3073                             && test_bit(R5_UPTODATE, &dev->flags)
3074                                 ) {
3075                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3076                                         set_bit(R5_Wantwrite, &dev->flags);
3077                                         set_bit(R5_ReWrite, &dev->flags);
3078                                         set_bit(R5_LOCKED, &dev->flags);
3079                                 } else {
3080                                         /* let's read it back */
3081                                         set_bit(R5_Wantread, &dev->flags);
3082                                         set_bit(R5_LOCKED, &dev->flags);
3083                                 }
3084                         }
3085                 }
3086
3087         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
3088                 /* Need to write out all blocks after computing P&Q */
3089                 sh->disks = conf->raid_disks;
3090                 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
3091                                              conf->raid_disks);
3092                 compute_parity6(sh, RECONSTRUCT_WRITE);
3093                 for (i = conf->raid_disks ; i-- ;  ) {
3094                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3095                         s.locked++;
3096                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3097                 }
3098                 clear_bit(STRIPE_EXPANDING, &sh->state);
3099         } else if (s.expanded) {
3100                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3101                 atomic_dec(&conf->reshape_stripes);
3102                 wake_up(&conf->wait_for_overlap);
3103                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3104         }
3105
3106         if (s.expanding && s.locked == 0 &&
3107             !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
3108                 handle_stripe_expansion(conf, sh, &r6s);
3109
3110  unlock:
3111         spin_unlock(&sh->lock);
3112
3113         /* wait for this device to become unblocked */
3114         if (unlikely(blocked_rdev))
3115                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3116
3117         return_io(return_bi);
3118
3119         for (i=disks; i-- ;) {
3120                 int rw;
3121                 struct bio *bi;
3122                 mdk_rdev_t *rdev;
3123                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
3124                         rw = WRITE;
3125                 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
3126                         rw = READ;
3127                 else
3128                         continue;
3129
3130                 set_bit(STRIPE_IO_STARTED, &sh->state);
3131
3132                 bi = &sh->dev[i].req;
3133
3134                 bi->bi_rw = rw;
3135                 if (rw == WRITE)
3136                         bi->bi_end_io = raid5_end_write_request;
3137                 else
3138                         bi->bi_end_io = raid5_end_read_request;
3139
3140                 rcu_read_lock();
3141                 rdev = rcu_dereference(conf->disks[i].rdev);
3142                 if (rdev && test_bit(Faulty, &rdev->flags))
3143                         rdev = NULL;
3144                 if (rdev)
3145                         atomic_inc(&rdev->nr_pending);
3146                 rcu_read_unlock();
3147
3148                 if (rdev) {
3149                         if (s.syncing || s.expanding || s.expanded)
3150                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
3151
3152                         bi->bi_bdev = rdev->bdev;
3153                         pr_debug("for %llu schedule op %ld on disc %d\n",
3154                                 (unsigned long long)sh->sector, bi->bi_rw, i);
3155                         atomic_inc(&sh->count);
3156                         bi->bi_sector = sh->sector + rdev->data_offset;
3157                         bi->bi_flags = 1 << BIO_UPTODATE;
3158                         bi->bi_vcnt = 1;
3159                         bi->bi_max_vecs = 1;
3160                         bi->bi_idx = 0;
3161                         bi->bi_io_vec = &sh->dev[i].vec;
3162                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
3163                         bi->bi_io_vec[0].bv_offset = 0;
3164                         bi->bi_size = STRIPE_SIZE;
3165                         bi->bi_next = NULL;
3166                         if (rw == WRITE &&
3167                             test_bit(R5_ReWrite, &sh->dev[i].flags))
3168                                 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
3169                         generic_make_request(bi);
3170                 } else {
3171                         if (rw == WRITE)
3172                                 set_bit(STRIPE_DEGRADED, &sh->state);
3173                         pr_debug("skip op %ld on disc %d for sector %llu\n",
3174                                 bi->bi_rw, i, (unsigned long long)sh->sector);
3175                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
3176                         set_bit(STRIPE_HANDLE, &sh->state);
3177                 }
3178         }
3179 }
3180
3181 static void handle_stripe(struct stripe_head *sh, struct page *tmp_page)
3182 {
3183         if (sh->raid_conf->level == 6)
3184                 handle_stripe6(sh, tmp_page);
3185         else
3186                 handle_stripe5(sh);
3187 }
3188
3189
3190
3191 static void raid5_activate_delayed(raid5_conf_t *conf)
3192 {
3193         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3194                 while (!list_empty(&conf->delayed_list)) {
3195                         struct list_head *l = conf->delayed_list.next;
3196                         struct stripe_head *sh;
3197                         sh = list_entry(l, struct stripe_head, lru);
3198                         list_del_init(l);
3199                         clear_bit(STRIPE_DELAYED, &sh->state);
3200                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3201                                 atomic_inc(&conf->preread_active_stripes);
3202                         list_add_tail(&sh->lru, &conf->hold_list);
3203                 }
3204         } else
3205                 blk_plug_device(conf->mddev->queue);
3206 }
3207
3208 static void activate_bit_delay(raid5_conf_t *conf)
3209 {
3210         /* device_lock is held */
3211         struct list_head head;
3212         list_add(&head, &conf->bitmap_list);
3213         list_del_init(&conf->bitmap_list);
3214         while (!list_empty(&head)) {
3215                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3216                 list_del_init(&sh->lru);
3217                 atomic_inc(&sh->count);
3218                 __release_stripe(conf, sh);
3219         }
3220 }
3221
3222 static void unplug_slaves(mddev_t *mddev)
3223 {
3224         raid5_conf_t *conf = mddev_to_conf(mddev);
3225         int i;
3226
3227         rcu_read_lock();
3228         for (i=0; i<mddev->raid_disks; i++) {
3229                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3230                 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3231                         struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3232
3233                         atomic_inc(&rdev->nr_pending);
3234                         rcu_read_unlock();
3235
3236                         blk_unplug(r_queue);
3237
3238                         rdev_dec_pending(rdev, mddev);
3239                         rcu_read_lock();
3240                 }
3241         }
3242         rcu_read_unlock();
3243 }
3244
3245 static void raid5_unplug_device(struct request_queue *q)
3246 {
3247         mddev_t *mddev = q->queuedata;
3248         raid5_conf_t *conf = mddev_to_conf(mddev);
3249         unsigned long flags;
3250
3251         spin_lock_irqsave(&conf->device_lock, flags);
3252
3253         if (blk_remove_plug(q)) {
3254                 conf->seq_flush++;
3255                 raid5_activate_delayed(conf);
3256         }
3257         md_wakeup_thread(mddev->thread);
3258
3259         spin_unlock_irqrestore(&conf->device_lock, flags);
3260
3261         unplug_slaves(mddev);
3262 }
3263
3264 static int raid5_congested(void *data, int bits)
3265 {
3266         mddev_t *mddev = data;
3267         raid5_conf_t *conf = mddev_to_conf(mddev);
3268
3269         /* No difference between reads and writes.  Just check
3270          * how busy the stripe_cache is
3271          */
3272         if (conf->inactive_blocked)
3273                 return 1;
3274         if (conf->quiesce)
3275                 return 1;
3276         if (list_empty_careful(&conf->inactive_list))
3277                 return 1;
3278
3279         return 0;
3280 }
3281
3282 /* We want read requests to align with chunks where possible,
3283  * but write requests don't need to.
3284  */
3285 static int raid5_mergeable_bvec(struct request_queue *q, struct bio *bio, struct bio_vec *biovec)
3286 {
3287         mddev_t *mddev = q->queuedata;
3288         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3289         int max;
3290         unsigned int chunk_sectors = mddev->chunk_size >> 9;
3291         unsigned int bio_sectors = bio->bi_size >> 9;
3292
3293         if (bio_data_dir(bio) == WRITE)
3294                 return biovec->bv_len; /* always allow writes to be mergeable */
3295
3296         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3297         if (max < 0) max = 0;
3298         if (max <= biovec->bv_len && bio_sectors == 0)
3299                 return biovec->bv_len;
3300         else
3301                 return max;
3302 }
3303
3304
3305 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3306 {
3307         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3308         unsigned int chunk_sectors = mddev->chunk_size >> 9;
3309         unsigned int bio_sectors = bio->bi_size >> 9;
3310
3311         return  chunk_sectors >=
3312                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3313 }
3314
3315 /*
3316  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3317  *  later sampled by raid5d.
3318  */
3319 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3320 {
3321         unsigned long flags;
3322
3323         spin_lock_irqsave(&conf->device_lock, flags);
3324
3325         bi->bi_next = conf->retry_read_aligned_list;
3326         conf->retry_read_aligned_list = bi;
3327
3328         spin_unlock_irqrestore(&conf->device_lock, flags);
3329         md_wakeup_thread(conf->mddev->thread);
3330 }
3331
3332
3333 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3334 {
3335         struct bio *bi;
3336
3337         bi = conf->retry_read_aligned;
3338         if (bi) {
3339                 conf->retry_read_aligned = NULL;
3340                 return bi;
3341         }
3342         bi = conf->retry_read_aligned_list;
3343         if(bi) {
3344                 conf->retry_read_aligned_list = bi->bi_next;
3345                 bi->bi_next = NULL;
3346                 bi->bi_phys_segments = 1; /* biased count of active stripes */
3347                 bi->bi_hw_segments = 0; /* count of processed stripes */
3348         }
3349
3350         return bi;
3351 }
3352
3353
3354 /*
3355  *  The "raid5_align_endio" should check if the read succeeded and if it
3356  *  did, call bio_endio on the original bio (having bio_put the new bio
3357  *  first).
3358  *  If the read failed..
3359  */
3360 static void raid5_align_endio(struct bio *bi, int error)
3361 {
3362         struct bio* raid_bi  = bi->bi_private;
3363         mddev_t *mddev;
3364         raid5_conf_t *conf;
3365         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3366         mdk_rdev_t *rdev;
3367
3368         bio_put(bi);
3369
3370         mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3371         conf = mddev_to_conf(mddev);
3372         rdev = (void*)raid_bi->bi_next;
3373         raid_bi->bi_next = NULL;
3374
3375         rdev_dec_pending(rdev, conf->mddev);
3376
3377         if (!error && uptodate) {
3378                 bio_endio(raid_bi, 0);
3379                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3380                         wake_up(&conf->wait_for_stripe);
3381                 return;
3382         }
3383
3384
3385         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3386
3387         add_bio_to_retry(raid_bi, conf);
3388 }
3389
3390 static int bio_fits_rdev(struct bio *bi)
3391 {
3392         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3393
3394         if ((bi->bi_size>>9) > q->max_sectors)
3395                 return 0;
3396         blk_recount_segments(q, bi);
3397         if (bi->bi_phys_segments > q->max_phys_segments ||
3398             bi->bi_hw_segments > q->max_hw_segments)
3399                 return 0;
3400
3401         if (q->merge_bvec_fn)
3402                 /* it's too hard to apply the merge_bvec_fn at this stage,
3403                  * just just give up
3404                  */
3405                 return 0;
3406
3407         return 1;
3408 }
3409
3410
3411 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3412 {
3413         mddev_t *mddev = q->queuedata;
3414         raid5_conf_t *conf = mddev_to_conf(mddev);
3415         const unsigned int raid_disks = conf->raid_disks;
3416         const unsigned int data_disks = raid_disks - conf->max_degraded;
3417         unsigned int dd_idx, pd_idx;
3418         struct bio* align_bi;
3419         mdk_rdev_t *rdev;
3420
3421         if (!in_chunk_boundary(mddev, raid_bio)) {
3422                 pr_debug("chunk_aligned_read : non aligned\n");
3423                 return 0;
3424         }
3425         /*
3426          * use bio_clone to make a copy of the bio
3427          */
3428         align_bi = bio_clone(raid_bio, GFP_NOIO);
3429         if (!align_bi)
3430                 return 0;
3431         /*
3432          *   set bi_end_io to a new function, and set bi_private to the
3433          *     original bio.
3434          */
3435         align_bi->bi_end_io  = raid5_align_endio;
3436         align_bi->bi_private = raid_bio;
3437         /*
3438          *      compute position
3439          */
3440         align_bi->bi_sector =  raid5_compute_sector(raid_bio->bi_sector,
3441                                         raid_disks,
3442                                         data_disks,
3443                                         &dd_idx,
3444                                         &pd_idx,
3445                                         conf);
3446
3447         rcu_read_lock();
3448         rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3449         if (rdev && test_bit(In_sync, &rdev->flags)) {
3450                 atomic_inc(&rdev->nr_pending);
3451                 rcu_read_unlock();
3452                 raid_bio->bi_next = (void*)rdev;
3453                 align_bi->bi_bdev =  rdev->bdev;
3454                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3455                 align_bi->bi_sector += rdev->data_offset;
3456
3457                 if (!bio_fits_rdev(align_bi)) {
3458                         /* too big in some way */
3459                         bio_put(align_bi);
3460                         rdev_dec_pending(rdev, mddev);
3461                         return 0;
3462                 }
3463
3464                 spin_lock_irq(&conf->device_lock);
3465                 wait_event_lock_irq(conf->wait_for_stripe,
3466                                     conf->quiesce == 0,
3467                                     conf->device_lock, /* nothing */);
3468                 atomic_inc(&conf->active_aligned_reads);
3469                 spin_unlock_irq(&conf->device_lock);
3470
3471                 generic_make_request(align_bi);
3472                 return 1;
3473         } else {
3474                 rcu_read_unlock();
3475                 bio_put(align_bi);
3476                 return 0;
3477         }
3478 }
3479
3480 /* __get_priority_stripe - get the next stripe to process
3481  *
3482  * Full stripe writes are allowed to pass preread active stripes up until
3483  * the bypass_threshold is exceeded.  In general the bypass_count
3484  * increments when the handle_list is handled before the hold_list; however, it
3485  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3486  * stripe with in flight i/o.  The bypass_count will be reset when the
3487  * head of the hold_list has changed, i.e. the head was promoted to the
3488  * handle_list.
3489  */
3490 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3491 {
3492         struct stripe_head *sh;
3493
3494         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3495                   __func__,
3496                   list_empty(&conf->handle_list) ? "empty" : "busy",
3497                   list_empty(&conf->hold_list) ? "empty" : "busy",
3498                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
3499
3500         if (!list_empty(&conf->handle_list)) {
3501                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3502
3503                 if (list_empty(&conf->hold_list))
3504                         conf->bypass_count = 0;
3505                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3506                         if (conf->hold_list.next == conf->last_hold)
3507                                 conf->bypass_count++;
3508                         else {
3509                                 conf->last_hold = conf->hold_list.next;
3510                                 conf->bypass_count -= conf->bypass_threshold;
3511                                 if (conf->bypass_count < 0)
3512                                         conf->bypass_count = 0;
3513                         }
3514                 }
3515         } else if (!list_empty(&conf->hold_list) &&
3516                    ((conf->bypass_threshold &&
3517                      conf->bypass_count > conf->bypass_threshold) ||
3518                     atomic_read(&conf->pending_full_writes) == 0)) {
3519                 sh = list_entry(conf->hold_list.next,
3520                                 typeof(*sh), lru);
3521                 conf->bypass_count -= conf->bypass_threshold;
3522                 if (conf->bypass_count < 0)
3523                         conf->bypass_count = 0;
3524         } else
3525                 return NULL;
3526
3527         list_del_init(&sh->lru);
3528         atomic_inc(&sh->count);
3529         BUG_ON(atomic_read(&sh->count) != 1);
3530         return sh;
3531 }
3532
3533 static int make_request(struct request_queue *q, struct bio * bi)
3534 {
3535         mddev_t *mddev = q->queuedata;
3536         raid5_conf_t *conf = mddev_to_conf(mddev);
3537         unsigned int dd_idx, pd_idx;
3538         sector_t new_sector;
3539         sector_t logical_sector, last_sector;
3540         struct stripe_head *sh;
3541         const int rw = bio_data_dir(bi);
3542         int remaining;
3543
3544         if (unlikely(bio_barrier(bi))) {
3545                 bio_endio(bi, -EOPNOTSUPP);
3546                 return 0;
3547         }
3548
3549         md_write_start(mddev, bi);
3550
3551         disk_stat_inc(mddev->gendisk, ios[rw]);
3552         disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
3553
3554         if (rw == READ &&
3555              mddev->reshape_position == MaxSector &&
3556              chunk_aligned_read(q,bi))
3557                 return 0;
3558
3559         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3560         last_sector = bi->bi_sector + (bi->bi_size>>9);
3561         bi->bi_next = NULL;
3562         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
3563
3564         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3565                 DEFINE_WAIT(w);
3566                 int disks, data_disks;
3567
3568         retry:
3569                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3570                 if (likely(conf->expand_progress == MaxSector))
3571                         disks = conf->raid_disks;
3572                 else {
3573                         /* spinlock is needed as expand_progress may be
3574                          * 64bit on a 32bit platform, and so it might be
3575                          * possible to see a half-updated value
3576                          * Ofcourse expand_progress could change after
3577                          * the lock is dropped, so once we get a reference
3578                          * to the stripe that we think it is, we will have
3579                          * to check again.
3580                          */
3581                         spin_lock_irq(&conf->device_lock);
3582                         disks = conf->raid_disks;
3583                         if (logical_sector >= conf->expand_progress)
3584                                 disks = conf->previous_raid_disks;
3585                         else {
3586                                 if (logical_sector >= conf->expand_lo) {
3587                                         spin_unlock_irq(&conf->device_lock);
3588                                         schedule();
3589                                         goto retry;
3590                                 }
3591                         }
3592                         spin_unlock_irq(&conf->device_lock);
3593                 }
3594                 data_disks = disks - conf->max_degraded;
3595
3596                 new_sector = raid5_compute_sector(logical_sector, disks, data_disks,
3597                                                   &dd_idx, &pd_idx, conf);
3598                 pr_debug("raid5: make_request, sector %llu logical %llu\n",
3599                         (unsigned long long)new_sector, 
3600                         (unsigned long long)logical_sector);
3601
3602                 sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
3603                 if (sh) {
3604                         if (unlikely(conf->expand_progress != MaxSector)) {
3605                                 /* expansion might have moved on while waiting for a
3606                                  * stripe, so we must do the range check again.
3607                                  * Expansion could still move past after this
3608                                  * test, but as we are holding a reference to
3609                                  * 'sh', we know that if that happens,
3610                                  *  STRIPE_EXPANDING will get set and the expansion
3611                                  * won't proceed until we finish with the stripe.
3612                                  */
3613                                 int must_retry = 0;
3614                                 spin_lock_irq(&conf->device_lock);
3615                                 if (logical_sector <  conf->expand_progress &&
3616                                     disks == conf->previous_raid_disks)
3617                                         /* mismatch, need to try again */
3618                                         must_retry = 1;
3619                                 spin_unlock_irq(&conf->device_lock);
3620                                 if (must_retry) {
3621                                         release_stripe(sh);
3622                                         goto retry;
3623                                 }
3624                         }
3625                         /* FIXME what if we get a false positive because these
3626                          * are being updated.
3627                          */
3628                         if (logical_sector >= mddev->suspend_lo &&
3629                             logical_sector < mddev->suspend_hi) {
3630                                 release_stripe(sh);
3631                                 schedule();
3632                                 goto retry;
3633                         }
3634
3635                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3636                             !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3637                                 /* Stripe is busy expanding or
3638                                  * add failed due to overlap.  Flush everything
3639                                  * and wait a while
3640                                  */
3641                                 raid5_unplug_device(mddev->queue);
3642                                 release_stripe(sh);
3643                                 schedule();
3644                                 goto retry;
3645                         }
3646                         finish_wait(&conf->wait_for_overlap, &w);
3647                         set_bit(STRIPE_HANDLE, &sh->state);
3648                         clear_bit(STRIPE_DELAYED, &sh->state);
3649                         release_stripe(sh);
3650                 } else {
3651                         /* cannot get stripe for read-ahead, just give-up */
3652                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
3653                         finish_wait(&conf->wait_for_overlap, &w);
3654                         break;
3655                 }
3656                         
3657         }
3658         spin_lock_irq(&conf->device_lock);
3659         remaining = --bi->bi_phys_segments;
3660         spin_unlock_irq(&conf->device_lock);
3661         if (remaining == 0) {
3662
3663                 if ( rw == WRITE )
3664                         md_write_end(mddev);
3665
3666                 bio_endio(bi, 0);
3667         }
3668         return 0;
3669 }
3670
3671 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3672 {
3673         /* reshaping is quite different to recovery/resync so it is
3674          * handled quite separately ... here.
3675          *
3676          * On each call to sync_request, we gather one chunk worth of
3677          * destination stripes and flag them as expanding.
3678          * Then we find all the source stripes and request reads.
3679          * As the reads complete, handle_stripe will copy the data
3680          * into the destination stripe and release that stripe.
3681          */
3682         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3683         struct stripe_head *sh;
3684         int pd_idx;
3685         sector_t first_sector, last_sector;
3686         int raid_disks = conf->previous_raid_disks;
3687         int data_disks = raid_disks - conf->max_degraded;
3688         int new_data_disks = conf->raid_disks - conf->max_degraded;
3689         int i;
3690         int dd_idx;
3691         sector_t writepos, safepos, gap;
3692
3693         if (sector_nr == 0 &&
3694             conf->expand_progress != 0) {
3695                 /* restarting in the middle, skip the initial sectors */
3696                 sector_nr = conf->expand_progress;
3697                 sector_div(sector_nr, new_data_disks);
3698                 *skipped = 1;
3699                 return sector_nr;
3700         }
3701
3702         /* we update the metadata when there is more than 3Meg
3703          * in the block range (that is rather arbitrary, should
3704          * probably be time based) or when the data about to be
3705          * copied would over-write the source of the data at
3706          * the front of the range.
3707          * i.e. one new_stripe forward from expand_progress new_maps
3708          * to after where expand_lo old_maps to
3709          */
3710         writepos = conf->expand_progress +
3711                 conf->chunk_size/512*(new_data_disks);
3712         sector_div(writepos, new_data_disks);
3713         safepos = conf->expand_lo;
3714         sector_div(safepos, data_disks);
3715         gap = conf->expand_progress - conf->expand_lo;
3716
3717         if (writepos >= safepos ||
3718             gap > (new_data_disks)*3000*2 /*3Meg*/) {
3719                 /* Cannot proceed until we've updated the superblock... */
3720                 wait_event(conf->wait_for_overlap,
3721                            atomic_read(&conf->reshape_stripes)==0);
3722                 mddev->reshape_position = conf->expand_progress;
3723                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3724                 md_wakeup_thread(mddev->thread);
3725                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
3726                            kthread_should_stop());
3727                 spin_lock_irq(&conf->device_lock);
3728                 conf->expand_lo = mddev->reshape_position;
3729                 spin_unlock_irq(&conf->device_lock);
3730                 wake_up(&conf->wait_for_overlap);
3731         }
3732
3733         for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
3734                 int j;
3735                 int skipped = 0;
3736                 pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
3737                 sh = get_active_stripe(conf, sector_nr+i,
3738                                        conf->raid_disks, pd_idx, 0);
3739                 set_bit(STRIPE_EXPANDING, &sh->state);
3740                 atomic_inc(&conf->reshape_stripes);
3741                 /* If any of this stripe is beyond the end of the old
3742                  * array, then we need to zero those blocks
3743                  */
3744                 for (j=sh->disks; j--;) {
3745                         sector_t s;
3746                         if (j == sh->pd_idx)
3747                                 continue;
3748                         if (conf->level == 6 &&
3749                             j == raid6_next_disk(sh->pd_idx, sh->disks))
3750                                 continue;
3751                         s = compute_blocknr(sh, j);
3752                         if (s < (mddev->array_size<<1)) {
3753                                 skipped = 1;
3754                                 continue;
3755                         }
3756                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3757                         set_bit(R5_Expanded, &sh->dev[j].flags);
3758                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
3759                 }
3760                 if (!skipped) {
3761                         set_bit(STRIPE_EXPAND_READY, &sh->state);
3762                         set_bit(STRIPE_HANDLE, &sh->state);
3763                 }
3764                 release_stripe(sh);
3765         }
3766         spin_lock_irq(&conf->device_lock);
3767         conf->expand_progress = (sector_nr + i) * new_data_disks;
3768         spin_unlock_irq(&conf->device_lock);
3769         /* Ok, those stripe are ready. We can start scheduling
3770          * reads on the source stripes.
3771          * The source stripes are determined by mapping the first and last
3772          * block on the destination stripes.
3773          */
3774         first_sector =
3775                 raid5_compute_sector(sector_nr*(new_data_disks),
3776                                      raid_disks, data_disks,
3777                                      &dd_idx, &pd_idx, conf);
3778         last_sector =
3779                 raid5_compute_sector((sector_nr+conf->chunk_size/512)
3780                                      *(new_data_disks) -1,
3781                                      raid_disks, data_disks,
3782                                      &dd_idx, &pd_idx, conf);
3783         if (last_sector >= (mddev->size<<1))
3784                 last_sector = (mddev->size<<1)-1;
3785         while (first_sector <= last_sector) {
3786                 pd_idx = stripe_to_pdidx(first_sector, conf,
3787                                          conf->previous_raid_disks);
3788                 sh = get_active_stripe(conf, first_sector,
3789                                        conf->previous_raid_disks, pd_idx, 0);
3790                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3791                 set_bit(STRIPE_HANDLE, &sh->state);
3792                 release_stripe(sh);
3793                 first_sector += STRIPE_SECTORS;
3794         }
3795         /* If this takes us to the resync_max point where we have to pause,
3796          * then we need to write out the superblock.
3797          */
3798         sector_nr += conf->chunk_size>>9;
3799         if (sector_nr >= mddev->resync_max) {
3800                 /* Cannot proceed until we've updated the superblock... */
3801                 wait_event(conf->wait_for_overlap,
3802                            atomic_read(&conf->reshape_stripes) == 0);
3803                 mddev->reshape_position = conf->expand_progress;
3804                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3805                 md_wakeup_thread(mddev->thread);
3806                 wait_event(mddev->sb_wait,
3807                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
3808                            || kthread_should_stop());
3809                 spin_lock_irq(&conf->device_lock);
3810                 conf->expand_lo = mddev->reshape_position;
3811                 spin_unlock_irq(&conf->device_lock);
3812                 wake_up(&conf->wait_for_overlap);
3813         }
3814         return conf->chunk_size>>9;
3815 }
3816
3817 /* FIXME go_faster isn't used */
3818 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3819 {
3820         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3821         struct stripe_head *sh;
3822         int pd_idx;
3823         int raid_disks = conf->raid_disks;
3824         sector_t max_sector = mddev->size << 1;
3825         int sync_blocks;
3826         int still_degraded = 0;
3827         int i;
3828
3829         if (sector_nr >= max_sector) {
3830                 /* just being told to finish up .. nothing much to do */
3831                 unplug_slaves(mddev);
3832                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3833                         end_reshape(conf);
3834                         return 0;
3835                 }
3836
3837                 if (mddev->curr_resync < max_sector) /* aborted */
3838                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3839                                         &sync_blocks, 1);
3840                 else /* completed sync */
3841                         conf->fullsync = 0;
3842                 bitmap_close_sync(mddev->bitmap);
3843
3844                 return 0;
3845         }
3846
3847         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3848                 return reshape_request(mddev, sector_nr, skipped);
3849
3850         /* No need to check resync_max as we never do more than one
3851          * stripe, and as resync_max will always be on a chunk boundary,
3852          * if the check in md_do_sync didn't fire, there is no chance
3853          * of overstepping resync_max here
3854          */
3855
3856         /* if there is too many failed drives and we are trying
3857          * to resync, then assert that we are finished, because there is
3858          * nothing we can do.
3859          */
3860         if (mddev->degraded >= conf->max_degraded &&
3861             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3862                 sector_t rv = (mddev->size << 1) - sector_nr;
3863                 *skipped = 1;
3864                 return rv;
3865         }
3866         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3867             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3868             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3869                 /* we can skip this block, and probably more */
3870                 sync_blocks /= STRIPE_SECTORS;
3871                 *skipped = 1;
3872                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3873         }
3874
3875
3876         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3877
3878         pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
3879         sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
3880         if (sh == NULL) {
3881                 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
3882                 /* make sure we don't swamp the stripe cache if someone else
3883                  * is trying to get access
3884                  */
3885                 schedule_timeout_uninterruptible(1);
3886         }
3887         /* Need to check if array will still be degraded after recovery/resync
3888          * We don't need to check the 'failed' flag as when that gets set,
3889          * recovery aborts.
3890          */
3891         for (i=0; i<mddev->raid_disks; i++)
3892                 if (conf->disks[i].rdev == NULL)
3893                         still_degraded = 1;
3894
3895         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
3896
3897         spin_lock(&sh->lock);
3898         set_bit(STRIPE_SYNCING, &sh->state);
3899         clear_bit(STRIPE_INSYNC, &sh->state);
3900         spin_unlock(&sh->lock);
3901
3902         handle_stripe(sh, NULL);
3903         release_stripe(sh);
3904
3905         return STRIPE_SECTORS;
3906 }
3907
3908 static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
3909 {
3910         /* We may not be able to submit a whole bio at once as there
3911          * may not be enough stripe_heads available.
3912          * We cannot pre-allocate enough stripe_heads as we may need
3913          * more than exist in the cache (if we allow ever large chunks).
3914          * So we do one stripe head at a time and record in
3915          * ->bi_hw_segments how many have been done.
3916          *
3917          * We *know* that this entire raid_bio is in one chunk, so
3918          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3919          */
3920         struct stripe_head *sh;
3921         int dd_idx, pd_idx;
3922         sector_t sector, logical_sector, last_sector;
3923         int scnt = 0;
3924         int remaining;
3925         int handled = 0;
3926
3927         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3928         sector = raid5_compute_sector(  logical_sector,
3929                                         conf->raid_disks,
3930                                         conf->raid_disks - conf->max_degraded,
3931                                         &dd_idx,
3932                                         &pd_idx,
3933                                         conf);
3934         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
3935
3936         for (; logical_sector < last_sector;
3937              logical_sector += STRIPE_SECTORS,
3938                      sector += STRIPE_SECTORS,
3939                      scnt++) {
3940
3941                 if (scnt < raid_bio->bi_hw_segments)
3942                         /* already done this stripe */
3943                         continue;
3944
3945                 sh = get_active_stripe(conf, sector, conf->raid_disks, pd_idx, 1);
3946
3947                 if (!sh) {
3948                         /* failed to get a stripe - must wait */
3949                         raid_bio->bi_hw_segments = scnt;
3950                         conf->retry_read_aligned = raid_bio;
3951                         return handled;
3952                 }
3953
3954                 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
3955                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
3956                         release_stripe(sh);
3957                         raid_bio->bi_hw_segments = scnt;
3958                         conf->retry_read_aligned = raid_bio;
3959                         return handled;
3960                 }
3961
3962                 handle_stripe(sh, NULL);
3963                 release_stripe(sh);
3964                 handled++;
3965         }
3966         spin_lock_irq(&conf->device_lock);
3967         remaining = --raid_bio->bi_phys_segments;
3968         spin_unlock_irq(&conf->device_lock);
3969         if (remaining == 0)
3970                 bio_endio(raid_bio, 0);
3971         if (atomic_dec_and_test(&conf->active_aligned_reads))
3972                 wake_up(&conf->wait_for_stripe);
3973         return handled;
3974 }
3975
3976
3977
3978 /*
3979  * This is our raid5 kernel thread.
3980  *
3981  * We scan the hash table for stripes which can be handled now.
3982  * During the scan, completed stripes are saved for us by the interrupt
3983  * handler, so that they will not have to wait for our next wakeup.
3984  */
3985 static void raid5d(mddev_t *mddev)
3986 {
3987         struct stripe_head *sh;
3988         raid5_conf_t *conf = mddev_to_conf(mddev);
3989         int handled;
3990
3991         pr_debug("+++ raid5d active\n");
3992
3993         md_check_recovery(mddev);
3994
3995         handled = 0;
3996         spin_lock_irq(&conf->device_lock);
3997         while (1) {
3998                 struct bio *bio;
3999
4000                 if (conf->seq_flush != conf->seq_write) {
4001                         int seq = conf->seq_flush;
4002                         spin_unlock_irq(&conf->device_lock);
4003                         bitmap_unplug(mddev->bitmap);
4004                         spin_lock_irq(&conf->device_lock);
4005                         conf->seq_write = seq;
4006                         activate_bit_delay(conf);
4007                 }
4008
4009                 while ((bio = remove_bio_from_retry(conf))) {
4010                         int ok;
4011                         spin_unlock_irq(&conf->device_lock);
4012                         ok = retry_aligned_read(conf, bio);
4013                         spin_lock_irq(&conf->device_lock);
4014                         if (!ok)
4015                                 break;
4016                         handled++;
4017                 }
4018
4019                 sh = __get_priority_stripe(conf);
4020
4021                 if (!sh) {
4022                         async_tx_issue_pending_all();
4023                         break;
4024                 }
4025                 spin_unlock_irq(&conf->device_lock);
4026                 
4027                 handled++;
4028                 handle_stripe(sh, conf->spare_page);
4029                 release_stripe(sh);
4030
4031                 spin_lock_irq(&conf->device_lock);
4032         }
4033         pr_debug("%d stripes handled\n", handled);
4034
4035         spin_unlock_irq(&conf->device_lock);
4036
4037         unplug_slaves(mddev);
4038
4039         pr_debug("--- raid5d inactive\n");
4040 }
4041
4042 static ssize_t
4043 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4044 {
4045         raid5_conf_t *conf = mddev_to_conf(mddev);
4046         if (conf)
4047                 return sprintf(page, "%d\n", conf->max_nr_stripes);
4048         else
4049                 return 0;
4050 }
4051
4052 static ssize_t
4053 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4054 {
4055         raid5_conf_t *conf = mddev_to_conf(mddev);
4056         unsigned long new;
4057         if (len >= PAGE_SIZE)
4058                 return -EINVAL;
4059         if (!conf)
4060                 return -ENODEV;
4061
4062         if (strict_strtoul(page, 10, &new))
4063                 return -EINVAL;
4064         if (new <= 16 || new > 32768)
4065                 return -EINVAL;
4066         while (new < conf->max_nr_stripes) {
4067                 if (drop_one_stripe(conf))
4068                         conf->max_nr_stripes--;
4069                 else
4070                         break;
4071         }
4072         md_allow_write(mddev);
4073         while (new > conf->max_nr_stripes) {
4074                 if (grow_one_stripe(conf))
4075                         conf->max_nr_stripes++;
4076                 else break;
4077         }
4078         return len;
4079 }
4080
4081 static struct md_sysfs_entry
4082 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4083                                 raid5_show_stripe_cache_size,
4084                                 raid5_store_stripe_cache_size);
4085
4086 static ssize_t
4087 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4088 {
4089         raid5_conf_t *conf = mddev_to_conf(mddev);
4090         if (conf)
4091                 return sprintf(page, "%d\n", conf->bypass_threshold);
4092         else
4093                 return 0;
4094 }
4095
4096 static ssize_t
4097 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4098 {
4099         raid5_conf_t *conf = mddev_to_conf(mddev);
4100         unsigned long new;
4101         if (len >= PAGE_SIZE)
4102                 return -EINVAL;
4103         if (!conf)
4104                 return -ENODEV;
4105
4106         if (strict_strtoul(page, 10, &new))
4107                 return -EINVAL;
4108         if (new > conf->max_nr_stripes)
4109                 return -EINVAL;
4110         conf->bypass_threshold = new;
4111         return len;
4112 }
4113
4114 static struct md_sysfs_entry
4115 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4116                                         S_IRUGO | S_IWUSR,
4117                                         raid5_show_preread_threshold,
4118                                         raid5_store_preread_threshold);
4119
4120 static ssize_t
4121 stripe_cache_active_show(mddev_t *mddev, char *page)
4122 {
4123         raid5_conf_t *conf = mddev_to_conf(mddev);
4124         if (conf)
4125                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4126         else
4127                 return 0;
4128 }
4129
4130 static struct md_sysfs_entry
4131 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4132
4133 static struct attribute *raid5_attrs[] =  {
4134         &raid5_stripecache_size.attr,
4135         &raid5_stripecache_active.attr,
4136         &raid5_preread_bypass_threshold.attr,
4137         NULL,
4138 };
4139 static struct attribute_group raid5_attrs_group = {
4140         .name = NULL,
4141         .attrs = raid5_attrs,
4142 };
4143
4144 static int run(mddev_t *mddev)
4145 {
4146         raid5_conf_t *conf;
4147         int raid_disk, memory;
4148         mdk_rdev_t *rdev;
4149         struct disk_info *disk;
4150         struct list_head *tmp;
4151         int working_disks = 0;
4152
4153         if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
4154                 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4155                        mdname(mddev), mddev->level);
4156                 return -EIO;
4157         }
4158
4159         if (mddev->reshape_position != MaxSector) {
4160                 /* Check that we can continue the reshape.
4161                  * Currently only disks can change, it must
4162                  * increase, and we must be past the point where
4163                  * a stripe over-writes itself
4164                  */
4165                 sector_t here_new, here_old;
4166                 int old_disks;
4167                 int max_degraded = (mddev->level == 5 ? 1 : 2);
4168
4169                 if (mddev->new_level != mddev->level ||
4170                     mddev->new_layout != mddev->layout ||
4171                     mddev->new_chunk != mddev->chunk_size) {
4172                         printk(KERN_ERR "raid5: %s: unsupported reshape "
4173                                "required - aborting.\n",
4174                                mdname(mddev));
4175                         return -EINVAL;
4176                 }
4177                 if (mddev->delta_disks <= 0) {
4178                         printk(KERN_ERR "raid5: %s: unsupported reshape "
4179                                "(reduce disks) required - aborting.\n",
4180                                mdname(mddev));
4181                         return -EINVAL;
4182                 }
4183                 old_disks = mddev->raid_disks - mddev->delta_disks;
4184                 /* reshape_position must be on a new-stripe boundary, and one
4185                  * further up in new geometry must map after here in old
4186                  * geometry.
4187                  */
4188                 here_new = mddev->reshape_position;
4189                 if (sector_div(here_new, (mddev->chunk_size>>9)*
4190                                (mddev->raid_disks - max_degraded))) {
4191                         printk(KERN_ERR "raid5: reshape_position not "
4192                                "on a stripe boundary\n");
4193                         return -EINVAL;
4194                 }
4195                 /* here_new is the stripe we will write to */
4196                 here_old = mddev->reshape_position;
4197                 sector_div(here_old, (mddev->chunk_size>>9)*
4198                            (old_disks-max_degraded));
4199                 /* here_old is the first stripe that we might need to read
4200                  * from */
4201                 if (here_new >= here_old) {
4202                         /* Reading from the same stripe as writing to - bad */
4203                         printk(KERN_ERR "raid5: reshape_position too early for "
4204                                "auto-recovery - aborting.\n");
4205                         return -EINVAL;
4206                 }
4207                 printk(KERN_INFO "raid5: reshape will continue\n");
4208                 /* OK, we should be able to continue; */
4209         }
4210
4211
4212         mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
4213         if ((conf = mddev->private) == NULL)
4214                 goto abort;
4215         if (mddev->reshape_position == MaxSector) {
4216                 conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
4217         } else {
4218                 conf->raid_disks = mddev->raid_disks;
4219                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4220         }
4221
4222         conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4223                               GFP_KERNEL);
4224         if (!conf->disks)
4225                 goto abort;
4226
4227         conf->mddev = mddev;
4228
4229         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4230                 goto abort;
4231
4232         if (mddev->level == 6) {
4233                 conf->spare_page = alloc_page(GFP_KERNEL);
4234                 if (!conf->spare_page)
4235                         goto abort;
4236         }
4237         spin_lock_init(&conf->device_lock);
4238         mddev->queue->queue_lock = &conf->device_lock;
4239         init_waitqueue_head(&conf->wait_for_stripe);
4240         init_waitqueue_head(&conf->wait_for_overlap);
4241         INIT_LIST_HEAD(&conf->handle_list);
4242         INIT_LIST_HEAD(&conf->hold_list);
4243         INIT_LIST_HEAD(&conf->delayed_list);
4244         INIT_LIST_HEAD(&conf->bitmap_list);
4245         INIT_LIST_HEAD(&conf->inactive_list);
4246         atomic_set(&conf->active_stripes, 0);
4247         atomic_set(&conf->preread_active_stripes, 0);
4248         atomic_set(&conf->active_aligned_reads, 0);
4249         conf->bypass_threshold = BYPASS_THRESHOLD;
4250
4251         pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4252
4253         rdev_for_each(rdev, tmp, mddev) {
4254                 raid_disk = rdev->raid_disk;
4255                 if (raid_disk >= conf->raid_disks
4256                     || raid_disk < 0)
4257                         continue;
4258                 disk = conf->disks + raid_disk;
4259
4260                 disk->rdev = rdev;
4261
4262                 if (test_bit(In_sync, &rdev->flags)) {
4263                         char b[BDEVNAME_SIZE];
4264                         printk(KERN_INFO "raid5: device %s operational as raid"
4265                                 " disk %d\n", bdevname(rdev->bdev,b),
4266                                 raid_disk);
4267                         working_disks++;
4268                 } else
4269                         /* Cannot rely on bitmap to complete recovery */
4270                         conf->fullsync = 1;
4271         }
4272
4273         /*
4274          * 0 for a fully functional array, 1 or 2 for a degraded array.
4275          */
4276         mddev->degraded = conf->raid_disks - working_disks;
4277         conf->mddev = mddev;
4278         conf->chunk_size = mddev->chunk_size;
4279         conf->level = mddev->level;
4280         if (conf->level == 6)
4281                 conf->max_degraded = 2;
4282         else
4283                 conf->max_degraded = 1;
4284         conf->algorithm = mddev->layout;
4285         conf->max_nr_stripes = NR_STRIPES;
4286         conf->expand_progress = mddev->reshape_position;
4287
4288         /* device size must be a multiple of chunk size */
4289         mddev->size &= ~(mddev->chunk_size/1024 -1);
4290         mddev->resync_max_sectors = mddev->size << 1;
4291
4292         if (conf->level == 6 && conf->raid_disks < 4) {
4293                 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4294                        mdname(mddev), conf->raid_disks);
4295                 goto abort;
4296         }
4297         if (!conf->chunk_size || conf->chunk_size % 4) {
4298                 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4299                         conf->chunk_size, mdname(mddev));
4300                 goto abort;
4301         }
4302         if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
4303                 printk(KERN_ERR 
4304                         "raid5: unsupported parity algorithm %d for %s\n",
4305                         conf->algorithm, mdname(mddev));
4306                 goto abort;
4307         }
4308         if (mddev->degraded > conf->max_degraded) {
4309                 printk(KERN_ERR "raid5: not enough operational devices for %s"
4310                         " (%d/%d failed)\n",
4311                         mdname(mddev), mddev->degraded, conf->raid_disks);
4312                 goto abort;
4313         }
4314
4315         if (mddev->degraded > 0 &&
4316             mddev->recovery_cp != MaxSector) {
4317                 if (mddev->ok_start_degraded)
4318                         printk(KERN_WARNING
4319                                "raid5: starting dirty degraded array: %s"
4320                                "- data corruption possible.\n",
4321                                mdname(mddev));
4322                 else {
4323                         printk(KERN_ERR
4324                                "raid5: cannot start dirty degraded array for %s\n",
4325                                mdname(mddev));
4326                         goto abort;
4327                 }
4328         }
4329
4330         {
4331                 mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4332                 if (!mddev->thread) {
4333                         printk(KERN_ERR 
4334                                 "raid5: couldn't allocate thread for %s\n",
4335                                 mdname(mddev));
4336                         goto abort;
4337                 }
4338         }
4339         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4340                  conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4341         if (grow_stripes(conf, conf->max_nr_stripes)) {
4342                 printk(KERN_ERR 
4343                         "raid5: couldn't allocate %dkB for buffers\n", memory);
4344                 shrink_stripes(conf);
4345                 md_unregister_thread(mddev->thread);
4346                 goto abort;
4347         } else
4348                 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4349                         memory, mdname(mddev));
4350
4351         if (mddev->degraded == 0)
4352                 printk("raid5: raid level %d set %s active with %d out of %d"
4353                         " devices, algorithm %d\n", conf->level, mdname(mddev), 
4354                         mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4355                         conf->algorithm);
4356         else
4357                 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4358                         " out of %d devices, algorithm %d\n", conf->level,
4359                         mdname(mddev), mddev->raid_disks - mddev->degraded,
4360                         mddev->raid_disks, conf->algorithm);
4361
4362         print_raid5_conf(conf);
4363
4364         if (conf->expand_progress != MaxSector) {
4365                 printk("...ok start reshape thread\n");
4366                 conf->expand_lo = conf->expand_progress;
4367                 atomic_set(&conf->reshape_stripes, 0);
4368                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4369                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4370                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4371                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4372                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4373                                                         "%s_reshape");
4374         }
4375
4376         /* read-ahead size must cover two whole stripes, which is
4377          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4378          */
4379         {
4380                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4381                 int stripe = data_disks *
4382                         (mddev->chunk_size / PAGE_SIZE);
4383                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4384                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4385         }
4386
4387         /* Ok, everything is just fine now */
4388         if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4389                 printk(KERN_WARNING
4390                        "raid5: failed to create sysfs attributes for %s\n",
4391                        mdname(mddev));
4392
4393         mddev->queue->unplug_fn = raid5_unplug_device;
4394         mddev->queue->backing_dev_info.congested_data = mddev;
4395         mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4396
4397         mddev->array_size =  mddev->size * (conf->previous_raid_disks -
4398                                             conf->max_degraded);
4399
4400         blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4401
4402         return 0;
4403 abort:
4404         if (conf) {
4405                 print_raid5_conf(conf);
4406                 safe_put_page(conf->spare_page);
4407                 kfree(conf->disks);
4408                 kfree(conf->stripe_hashtbl);
4409                 kfree(conf);
4410         }
4411         mddev->private = NULL;
4412         printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4413         return -EIO;
4414 }
4415
4416
4417
4418 static int stop(mddev_t *mddev)
4419 {
4420         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4421
4422         md_unregister_thread(mddev->thread);
4423         mddev->thread = NULL;
4424         shrink_stripes(conf);
4425         kfree(conf->stripe_hashtbl);
4426         mddev->queue->backing_dev_info.congested_fn = NULL;
4427         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
4428         sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
4429         kfree(conf->disks);
4430         kfree(conf);
4431         mddev->private = NULL;
4432         return 0;
4433 }
4434
4435 #ifdef DEBUG
4436 static void print_sh (struct seq_file *seq, struct stripe_head *sh)
4437 {
4438         int i;
4439
4440         seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4441                    (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4442         seq_printf(seq, "sh %llu,  count %d.\n",
4443                    (unsigned long long)sh->sector, atomic_read(&sh->count));
4444         seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4445         for (i = 0; i < sh->disks; i++) {
4446                 seq_printf(seq, "(cache%d: %p %ld) ",
4447                            i, sh->dev[i].page, sh->dev[i].flags);
4448         }
4449         seq_printf(seq, "\n");
4450 }
4451
4452 static void printall (struct seq_file *seq, raid5_conf_t *conf)
4453 {
4454         struct stripe_head *sh;
4455         struct hlist_node *hn;
4456         int i;
4457
4458         spin_lock_irq(&conf->device_lock);
4459         for (i = 0; i < NR_HASH; i++) {
4460                 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4461                         if (sh->raid_conf != conf)
4462                                 continue;
4463                         print_sh(seq, sh);
4464                 }
4465         }
4466         spin_unlock_irq(&conf->device_lock);
4467 }
4468 #endif
4469
4470 static void status (struct seq_file *seq, mddev_t *mddev)
4471 {
4472         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4473         int i;
4474
4475         seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
4476         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4477         for (i = 0; i < conf->raid_disks; i++)
4478                 seq_printf (seq, "%s",
4479                                conf->disks[i].rdev &&
4480                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4481         seq_printf (seq, "]");
4482 #ifdef DEBUG
4483         seq_printf (seq, "\n");
4484         printall(seq, conf);
4485 #endif
4486 }
4487
4488 static void print_raid5_conf (raid5_conf_t *conf)
4489 {
4490         int i;
4491         struct disk_info *tmp;
4492
4493         printk("RAID5 conf printout:\n");
4494         if (!conf) {
4495                 printk("(conf==NULL)\n");
4496                 return;
4497         }
4498         printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4499                  conf->raid_disks - conf->mddev->degraded);
4500
4501         for (i = 0; i < conf->raid_disks; i++) {
4502                 char b[BDEVNAME_SIZE];
4503                 tmp = conf->disks + i;
4504                 if (tmp->rdev)
4505                 printk(" disk %d, o:%d, dev:%s\n",
4506                         i, !test_bit(Faulty, &tmp->rdev->flags),
4507                         bdevname(tmp->rdev->bdev,b));
4508         }
4509 }
4510
4511 static int raid5_spare_active(mddev_t *mddev)
4512 {
4513         int i;
4514         raid5_conf_t *conf = mddev->private;
4515         struct disk_info *tmp;
4516
4517         for (i = 0; i < conf->raid_disks; i++) {
4518                 tmp = conf->disks + i;
4519                 if (tmp->rdev
4520                     && !test_bit(Faulty, &tmp->rdev->flags)
4521                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4522                         unsigned long flags;
4523                         spin_lock_irqsave(&conf->device_lock, flags);
4524                         mddev->degraded--;
4525                         spin_unlock_irqrestore(&conf->device_lock, flags);
4526                 }
4527         }
4528         print_raid5_conf(conf);
4529         return 0;
4530 }
4531
4532 static int raid5_remove_disk(mddev_t *mddev, int number)
4533 {
4534         raid5_conf_t *conf = mddev->private;
4535         int err = 0;
4536         mdk_rdev_t *rdev;
4537         struct disk_info *p = conf->disks + number;
4538
4539         print_raid5_conf(conf);
4540         rdev = p->rdev;
4541         if (rdev) {
4542                 if (test_bit(In_sync, &rdev->flags) ||
4543                     atomic_read(&rdev->nr_pending)) {
4544                         err = -EBUSY;
4545                         goto abort;
4546                 }
4547                 /* Only remove non-faulty devices if recovery
4548                  * isn't possible.
4549                  */
4550                 if (!test_bit(Faulty, &rdev->flags) &&
4551                     mddev->degraded <= conf->max_degraded) {
4552                         err = -EBUSY;
4553                         goto abort;
4554                 }
4555                 p->rdev = NULL;
4556                 synchronize_rcu();
4557                 if (atomic_read(&rdev->nr_pending)) {
4558                         /* lost the race, try later */
4559                         err = -EBUSY;
4560                         p->rdev = rdev;
4561                 }
4562         }
4563 abort:
4564
4565         print_raid5_conf(conf);
4566         return err;
4567 }
4568
4569 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4570 {
4571         raid5_conf_t *conf = mddev->private;
4572         int err = -EEXIST;
4573         int disk;
4574         struct disk_info *p;
4575         int first = 0;
4576         int last = conf->raid_disks - 1;
4577
4578         if (mddev->degraded > conf->max_degraded)
4579                 /* no point adding a device */
4580                 return -EINVAL;
4581
4582         if (rdev->raid_disk >= 0)
4583                 first = last = rdev->raid_disk;
4584
4585         /*
4586          * find the disk ... but prefer rdev->saved_raid_disk
4587          * if possible.
4588          */
4589         if (rdev->saved_raid_disk >= 0 &&
4590             rdev->saved_raid_disk >= first &&
4591             conf->disks[rdev->saved_raid_disk].rdev == NULL)
4592                 disk = rdev->saved_raid_disk;
4593         else
4594                 disk = first;
4595         for ( ; disk <= last ; disk++)
4596                 if ((p=conf->disks + disk)->rdev == NULL) {
4597                         clear_bit(In_sync, &rdev->flags);
4598                         rdev->raid_disk = disk;
4599                         err = 0;
4600                         if (rdev->saved_raid_disk != disk)
4601                                 conf->fullsync = 1;
4602                         rcu_assign_pointer(p->rdev, rdev);
4603                         break;
4604                 }
4605         print_raid5_conf(conf);
4606         return err;
4607 }
4608
4609 static int raid5_resize(mddev_t *mddev, sector_t sectors)
4610 {
4611         /* no resync is happening, and there is enough space
4612          * on all devices, so we can resize.
4613          * We need to make sure resync covers any new space.
4614          * If the array is shrinking we should possibly wait until
4615          * any io in the removed space completes, but it hardly seems
4616          * worth it.
4617          */
4618         raid5_conf_t *conf = mddev_to_conf(mddev);
4619
4620         sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4621         mddev->array_size = (sectors * (mddev->raid_disks-conf->max_degraded))>>1;
4622         set_capacity(mddev->gendisk, mddev->array_size << 1);
4623         mddev->changed = 1;
4624         if (sectors/2  > mddev->size && mddev->recovery_cp == MaxSector) {
4625                 mddev->recovery_cp = mddev->size << 1;
4626                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4627         }
4628         mddev->size = sectors /2;
4629         mddev->resync_max_sectors = sectors;
4630         return 0;
4631 }
4632
4633 #ifdef CONFIG_MD_RAID5_RESHAPE
4634 static int raid5_check_reshape(mddev_t *mddev)
4635 {
4636         raid5_conf_t *conf = mddev_to_conf(mddev);
4637         int err;
4638
4639         if (mddev->delta_disks < 0 ||
4640             mddev->new_level != mddev->level)
4641                 return -EINVAL; /* Cannot shrink array or change level yet */
4642         if (mddev->delta_disks == 0)
4643                 return 0; /* nothing to do */
4644
4645         /* Can only proceed if there are plenty of stripe_heads.
4646          * We need a minimum of one full stripe,, and for sensible progress
4647          * it is best to have about 4 times that.
4648          * If we require 4 times, then the default 256 4K stripe_heads will
4649          * allow for chunk sizes up to 256K, which is probably OK.
4650          * If the chunk size is greater, user-space should request more
4651          * stripe_heads first.
4652          */
4653         if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4654             (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
4655                 printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
4656                        (mddev->chunk_size / STRIPE_SIZE)*4);
4657                 return -ENOSPC;
4658         }
4659
4660         err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4661         if (err)
4662                 return err;
4663
4664         if (mddev->degraded > conf->max_degraded)
4665                 return -EINVAL;
4666         /* looks like we might be able to manage this */
4667         return 0;
4668 }
4669
4670 static int raid5_start_reshape(mddev_t *mddev)
4671 {
4672         raid5_conf_t *conf = mddev_to_conf(mddev);
4673         mdk_rdev_t *rdev;
4674         struct list_head *rtmp;
4675         int spares = 0;
4676         int added_devices = 0;
4677         unsigned long flags;
4678
4679         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4680                 return -EBUSY;
4681
4682         rdev_for_each(rdev, rtmp, mddev)
4683                 if (rdev->raid_disk < 0 &&
4684                     !test_bit(Faulty, &rdev->flags))
4685                         spares++;
4686
4687         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
4688                 /* Not enough devices even to make a degraded array
4689                  * of that size
4690                  */
4691                 return -EINVAL;
4692
4693         atomic_set(&conf->reshape_stripes, 0);
4694         spin_lock_irq(&conf->device_lock);
4695         conf->previous_raid_disks = conf->raid_disks;
4696         conf->raid_disks += mddev->delta_disks;
4697         conf->expand_progress = 0;
4698         conf->expand_lo = 0;
4699         spin_unlock_irq(&conf->device_lock);
4700
4701         /* Add some new drives, as many as will fit.
4702          * We know there are enough to make the newly sized array work.
4703          */
4704         rdev_for_each(rdev, rtmp, mddev)
4705                 if (rdev->raid_disk < 0 &&
4706                     !test_bit(Faulty, &rdev->flags)) {
4707                         if (raid5_add_disk(mddev, rdev) == 0) {
4708                                 char nm[20];
4709                                 set_bit(In_sync, &rdev->flags);
4710                                 added_devices++;
4711                                 rdev->recovery_offset = 0;
4712                                 sprintf(nm, "rd%d", rdev->raid_disk);
4713                                 if (sysfs_create_link(&mddev->kobj,
4714                                                       &rdev->kobj, nm))
4715                                         printk(KERN_WARNING
4716                                                "raid5: failed to create "
4717                                                " link %s for %s\n",
4718                                                nm, mdname(mddev));
4719                         } else
4720                                 break;
4721                 }
4722
4723         spin_lock_irqsave(&conf->device_lock, flags);
4724         mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
4725         spin_unlock_irqrestore(&conf->device_lock, flags);
4726         mddev->raid_disks = conf->raid_disks;
4727         mddev->reshape_position = 0;
4728         set_bit(MD_CHANGE_DEVS, &mddev->flags);
4729
4730         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4731         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4732         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4733         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4734         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4735                                                 "%s_reshape");
4736         if (!mddev->sync_thread) {
4737                 mddev->recovery = 0;
4738                 spin_lock_irq(&conf->device_lock);
4739                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4740                 conf->expand_progress = MaxSector;
4741                 spin_unlock_irq(&conf->device_lock);
4742                 return -EAGAIN;
4743         }
4744         md_wakeup_thread(mddev->sync_thread);
4745         md_new_event(mddev);
4746         return 0;
4747 }
4748 #endif
4749
4750 static void end_reshape(raid5_conf_t *conf)
4751 {
4752         struct block_device *bdev;
4753
4754         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
4755                 conf->mddev->array_size = conf->mddev->size *
4756                         (conf->raid_disks - conf->max_degraded);
4757                 set_capacity(conf->mddev->gendisk, conf->mddev->array_size << 1);
4758                 conf->mddev->changed = 1;
4759
4760                 bdev = bdget_disk(conf->mddev->gendisk, 0);
4761                 if (bdev) {
4762                         mutex_lock(&bdev->bd_inode->i_mutex);
4763                         i_size_write(bdev->bd_inode, (loff_t)conf->mddev->array_size << 10);
4764                         mutex_unlock(&bdev->bd_inode->i_mutex);
4765                         bdput(bdev);
4766                 }
4767                 spin_lock_irq(&conf->device_lock);
4768                 conf->expand_progress = MaxSector;
4769                 spin_unlock_irq(&conf->device_lock);
4770                 conf->mddev->reshape_position = MaxSector;
4771
4772                 /* read-ahead size must cover two whole stripes, which is
4773                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4774                  */
4775                 {
4776                         int data_disks = conf->previous_raid_disks - conf->max_degraded;
4777                         int stripe = data_disks *
4778                                 (conf->mddev->chunk_size / PAGE_SIZE);
4779                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4780                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4781                 }
4782         }
4783 }
4784
4785 static void raid5_quiesce(mddev_t *mddev, int state)
4786 {
4787         raid5_conf_t *conf = mddev_to_conf(mddev);
4788
4789         switch(state) {
4790         case 2: /* resume for a suspend */
4791                 wake_up(&conf->wait_for_overlap);
4792                 break;
4793
4794         case 1: /* stop all writes */
4795                 spin_lock_irq(&conf->device_lock);
4796                 conf->quiesce = 1;
4797                 wait_event_lock_irq(conf->wait_for_stripe,
4798                                     atomic_read(&conf->active_stripes) == 0 &&
4799                                     atomic_read(&conf->active_aligned_reads) == 0,
4800                                     conf->device_lock, /* nothing */);
4801                 spin_unlock_irq(&conf->device_lock);
4802                 break;
4803
4804         case 0: /* re-enable writes */
4805                 spin_lock_irq(&conf->device_lock);
4806                 conf->quiesce = 0;
4807                 wake_up(&conf->wait_for_stripe);
4808                 wake_up(&conf->wait_for_overlap);
4809                 spin_unlock_irq(&conf->device_lock);
4810                 break;
4811         }
4812 }
4813
4814 static struct mdk_personality raid6_personality =
4815 {
4816         .name           = "raid6",
4817         .level          = 6,
4818         .owner          = THIS_MODULE,
4819         .make_request   = make_request,
4820         .run            = run,
4821         .stop           = stop,
4822         .status         = status,
4823         .error_handler  = error,
4824         .hot_add_disk   = raid5_add_disk,
4825         .hot_remove_disk= raid5_remove_disk,
4826         .spare_active   = raid5_spare_active,
4827         .sync_request   = sync_request,
4828         .resize         = raid5_resize,
4829 #ifdef CONFIG_MD_RAID5_RESHAPE
4830         .check_reshape  = raid5_check_reshape,
4831         .start_reshape  = raid5_start_reshape,
4832 #endif
4833         .quiesce        = raid5_quiesce,
4834 };
4835 static struct mdk_personality raid5_personality =
4836 {
4837         .name           = "raid5",
4838         .level          = 5,
4839         .owner          = THIS_MODULE,
4840         .make_request   = make_request,
4841         .run            = run,
4842         .stop           = stop,
4843         .status         = status,
4844         .error_handler  = error,
4845         .hot_add_disk   = raid5_add_disk,
4846         .hot_remove_disk= raid5_remove_disk,
4847         .spare_active   = raid5_spare_active,
4848         .sync_request   = sync_request,
4849         .resize         = raid5_resize,
4850 #ifdef CONFIG_MD_RAID5_RESHAPE
4851         .check_reshape  = raid5_check_reshape,
4852         .start_reshape  = raid5_start_reshape,
4853 #endif
4854         .quiesce        = raid5_quiesce,
4855 };
4856
4857 static struct mdk_personality raid4_personality =
4858 {
4859         .name           = "raid4",
4860         .level          = 4,
4861         .owner          = THIS_MODULE,
4862         .make_request   = make_request,
4863         .run            = run,
4864         .stop           = stop,
4865         .status         = status,
4866         .error_handler  = error,
4867         .hot_add_disk   = raid5_add_disk,
4868         .hot_remove_disk= raid5_remove_disk,
4869         .spare_active   = raid5_spare_active,
4870         .sync_request   = sync_request,
4871         .resize         = raid5_resize,
4872 #ifdef CONFIG_MD_RAID5_RESHAPE
4873         .check_reshape  = raid5_check_reshape,
4874         .start_reshape  = raid5_start_reshape,
4875 #endif
4876         .quiesce        = raid5_quiesce,
4877 };
4878
4879 static int __init raid5_init(void)
4880 {
4881         int e;
4882
4883         e = raid6_select_algo();
4884         if ( e )
4885                 return e;
4886         register_md_personality(&raid6_personality);
4887         register_md_personality(&raid5_personality);
4888         register_md_personality(&raid4_personality);
4889         return 0;
4890 }
4891
4892 static void raid5_exit(void)
4893 {
4894         unregister_md_personality(&raid6_personality);
4895         unregister_md_personality(&raid5_personality);
4896         unregister_md_personality(&raid4_personality);
4897 }
4898
4899 module_init(raid5_init);
4900 module_exit(raid5_exit);
4901 MODULE_LICENSE("GPL");
4902 MODULE_ALIAS("md-personality-4"); /* RAID5 */
4903 MODULE_ALIAS("md-raid5");
4904 MODULE_ALIAS("md-raid4");
4905 MODULE_ALIAS("md-level-5");
4906 MODULE_ALIAS("md-level-4");
4907 MODULE_ALIAS("md-personality-8"); /* RAID6 */
4908 MODULE_ALIAS("md-raid6");
4909 MODULE_ALIAS("md-level-6");
4910
4911 /* This used to be two separate modules, they were: */
4912 MODULE_ALIAS("raid5");
4913 MODULE_ALIAS("raid6");