]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/md/raid5.c
b9c0a32a4f9549d8e768ffdff6aeb85225bf179b
[linux-2.6-omap-h63xx.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->bm_write is the number of the last batch successfully written.
31  * conf->bm_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is bm_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/module.h>
47 #include <linux/slab.h>
48 #include <linux/highmem.h>
49 #include <linux/bitops.h>
50 #include <linux/kthread.h>
51 #include <asm/atomic.h>
52 #include "raid6.h"
53
54 #include <linux/raid/bitmap.h>
55 #include <linux/async_tx.h>
56
57 /*
58  * Stripe cache
59  */
60
61 #define NR_STRIPES              256
62 #define STRIPE_SIZE             PAGE_SIZE
63 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
64 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
65 #define IO_THRESHOLD            1
66 #define BYPASS_THRESHOLD        1
67 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
68 #define HASH_MASK               (NR_HASH - 1)
69
70 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
71
72 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
73  * order without overlap.  There may be several bio's per stripe+device, and
74  * a bio could span several devices.
75  * When walking this list for a particular stripe+device, we must never proceed
76  * beyond a bio that extends past this device, as the next bio might no longer
77  * be valid.
78  * This macro is used to determine the 'next' bio in the list, given the sector
79  * of the current stripe+device
80  */
81 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
82 /*
83  * The following can be used to debug the driver
84  */
85 #define RAID5_PARANOIA  1
86 #if RAID5_PARANOIA && defined(CONFIG_SMP)
87 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
88 #else
89 # define CHECK_DEVLOCK()
90 #endif
91
92 #ifdef DEBUG
93 #define inline
94 #define __inline__
95 #endif
96
97 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
98
99 #if !RAID6_USE_EMPTY_ZERO_PAGE
100 /* In .bss so it's zeroed */
101 const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
102 #endif
103
104 static inline int raid6_next_disk(int disk, int raid_disks)
105 {
106         disk++;
107         return (disk < raid_disks) ? disk : 0;
108 }
109
110 static void return_io(struct bio *return_bi)
111 {
112         struct bio *bi = return_bi;
113         while (bi) {
114
115                 return_bi = bi->bi_next;
116                 bi->bi_next = NULL;
117                 bi->bi_size = 0;
118                 bio_endio(bi, 0);
119                 bi = return_bi;
120         }
121 }
122
123 static void print_raid5_conf (raid5_conf_t *conf);
124
125 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
126 {
127         if (atomic_dec_and_test(&sh->count)) {
128                 BUG_ON(!list_empty(&sh->lru));
129                 BUG_ON(atomic_read(&conf->active_stripes)==0);
130                 if (test_bit(STRIPE_HANDLE, &sh->state)) {
131                         if (test_bit(STRIPE_DELAYED, &sh->state)) {
132                                 list_add_tail(&sh->lru, &conf->delayed_list);
133                                 blk_plug_device(conf->mddev->queue);
134                         } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
135                                    sh->bm_seq - conf->seq_write > 0) {
136                                 list_add_tail(&sh->lru, &conf->bitmap_list);
137                                 blk_plug_device(conf->mddev->queue);
138                         } else {
139                                 clear_bit(STRIPE_BIT_DELAY, &sh->state);
140                                 list_add_tail(&sh->lru, &conf->handle_list);
141                         }
142                         md_wakeup_thread(conf->mddev->thread);
143                 } else {
144                         BUG_ON(sh->ops.pending);
145                         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
146                                 atomic_dec(&conf->preread_active_stripes);
147                                 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
148                                         md_wakeup_thread(conf->mddev->thread);
149                         }
150                         atomic_dec(&conf->active_stripes);
151                         if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
152                                 list_add_tail(&sh->lru, &conf->inactive_list);
153                                 wake_up(&conf->wait_for_stripe);
154                                 if (conf->retry_read_aligned)
155                                         md_wakeup_thread(conf->mddev->thread);
156                         }
157                 }
158         }
159 }
160 static void release_stripe(struct stripe_head *sh)
161 {
162         raid5_conf_t *conf = sh->raid_conf;
163         unsigned long flags;
164
165         spin_lock_irqsave(&conf->device_lock, flags);
166         __release_stripe(conf, sh);
167         spin_unlock_irqrestore(&conf->device_lock, flags);
168 }
169
170 static inline void remove_hash(struct stripe_head *sh)
171 {
172         pr_debug("remove_hash(), stripe %llu\n",
173                 (unsigned long long)sh->sector);
174
175         hlist_del_init(&sh->hash);
176 }
177
178 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
179 {
180         struct hlist_head *hp = stripe_hash(conf, sh->sector);
181
182         pr_debug("insert_hash(), stripe %llu\n",
183                 (unsigned long long)sh->sector);
184
185         CHECK_DEVLOCK();
186         hlist_add_head(&sh->hash, hp);
187 }
188
189
190 /* find an idle stripe, make sure it is unhashed, and return it. */
191 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
192 {
193         struct stripe_head *sh = NULL;
194         struct list_head *first;
195
196         CHECK_DEVLOCK();
197         if (list_empty(&conf->inactive_list))
198                 goto out;
199         first = conf->inactive_list.next;
200         sh = list_entry(first, struct stripe_head, lru);
201         list_del_init(first);
202         remove_hash(sh);
203         atomic_inc(&conf->active_stripes);
204 out:
205         return sh;
206 }
207
208 static void shrink_buffers(struct stripe_head *sh, int num)
209 {
210         struct page *p;
211         int i;
212
213         for (i=0; i<num ; i++) {
214                 p = sh->dev[i].page;
215                 if (!p)
216                         continue;
217                 sh->dev[i].page = NULL;
218                 put_page(p);
219         }
220 }
221
222 static int grow_buffers(struct stripe_head *sh, int num)
223 {
224         int i;
225
226         for (i=0; i<num; i++) {
227                 struct page *page;
228
229                 if (!(page = alloc_page(GFP_KERNEL))) {
230                         return 1;
231                 }
232                 sh->dev[i].page = page;
233         }
234         return 0;
235 }
236
237 static void raid5_build_block (struct stripe_head *sh, int i);
238
239 static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
240 {
241         raid5_conf_t *conf = sh->raid_conf;
242         int i;
243
244         BUG_ON(atomic_read(&sh->count) != 0);
245         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
246         BUG_ON(sh->ops.pending || sh->ops.ack || sh->ops.complete);
247
248         CHECK_DEVLOCK();
249         pr_debug("init_stripe called, stripe %llu\n",
250                 (unsigned long long)sh->sector);
251
252         remove_hash(sh);
253
254         sh->sector = sector;
255         sh->pd_idx = pd_idx;
256         sh->state = 0;
257
258         sh->disks = disks;
259
260         for (i = sh->disks; i--; ) {
261                 struct r5dev *dev = &sh->dev[i];
262
263                 if (dev->toread || dev->read || dev->towrite || dev->written ||
264                     test_bit(R5_LOCKED, &dev->flags)) {
265                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
266                                (unsigned long long)sh->sector, i, dev->toread,
267                                dev->read, dev->towrite, dev->written,
268                                test_bit(R5_LOCKED, &dev->flags));
269                         BUG();
270                 }
271                 dev->flags = 0;
272                 raid5_build_block(sh, i);
273         }
274         insert_hash(conf, sh);
275 }
276
277 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
278 {
279         struct stripe_head *sh;
280         struct hlist_node *hn;
281
282         CHECK_DEVLOCK();
283         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
284         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
285                 if (sh->sector == sector && sh->disks == disks)
286                         return sh;
287         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
288         return NULL;
289 }
290
291 static void unplug_slaves(mddev_t *mddev);
292 static void raid5_unplug_device(struct request_queue *q);
293
294 static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
295                                              int pd_idx, int noblock)
296 {
297         struct stripe_head *sh;
298
299         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
300
301         spin_lock_irq(&conf->device_lock);
302
303         do {
304                 wait_event_lock_irq(conf->wait_for_stripe,
305                                     conf->quiesce == 0,
306                                     conf->device_lock, /* nothing */);
307                 sh = __find_stripe(conf, sector, disks);
308                 if (!sh) {
309                         if (!conf->inactive_blocked)
310                                 sh = get_free_stripe(conf);
311                         if (noblock && sh == NULL)
312                                 break;
313                         if (!sh) {
314                                 conf->inactive_blocked = 1;
315                                 wait_event_lock_irq(conf->wait_for_stripe,
316                                                     !list_empty(&conf->inactive_list) &&
317                                                     (atomic_read(&conf->active_stripes)
318                                                      < (conf->max_nr_stripes *3/4)
319                                                      || !conf->inactive_blocked),
320                                                     conf->device_lock,
321                                                     raid5_unplug_device(conf->mddev->queue)
322                                         );
323                                 conf->inactive_blocked = 0;
324                         } else
325                                 init_stripe(sh, sector, pd_idx, disks);
326                 } else {
327                         if (atomic_read(&sh->count)) {
328                           BUG_ON(!list_empty(&sh->lru));
329                         } else {
330                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
331                                         atomic_inc(&conf->active_stripes);
332                                 if (list_empty(&sh->lru) &&
333                                     !test_bit(STRIPE_EXPANDING, &sh->state))
334                                         BUG();
335                                 list_del_init(&sh->lru);
336                         }
337                 }
338         } while (sh == NULL);
339
340         if (sh)
341                 atomic_inc(&sh->count);
342
343         spin_unlock_irq(&conf->device_lock);
344         return sh;
345 }
346
347 /* test_and_ack_op() ensures that we only dequeue an operation once */
348 #define test_and_ack_op(op, pend) \
349 do {                                                    \
350         if (test_bit(op, &sh->ops.pending) &&           \
351                 !test_bit(op, &sh->ops.complete)) {     \
352                 if (test_and_set_bit(op, &sh->ops.ack)) \
353                         clear_bit(op, &pend);           \
354                 else                                    \
355                         ack++;                          \
356         } else                                          \
357                 clear_bit(op, &pend);                   \
358 } while (0)
359
360 /* find new work to run, do not resubmit work that is already
361  * in flight
362  */
363 static unsigned long get_stripe_work(struct stripe_head *sh)
364 {
365         unsigned long pending;
366         int ack = 0;
367
368         pending = sh->ops.pending;
369
370         test_and_ack_op(STRIPE_OP_BIOFILL, pending);
371         test_and_ack_op(STRIPE_OP_COMPUTE_BLK, pending);
372         test_and_ack_op(STRIPE_OP_PREXOR, pending);
373         test_and_ack_op(STRIPE_OP_BIODRAIN, pending);
374         test_and_ack_op(STRIPE_OP_POSTXOR, pending);
375         test_and_ack_op(STRIPE_OP_CHECK, pending);
376
377         sh->ops.count -= ack;
378         if (unlikely(sh->ops.count < 0)) {
379                 printk(KERN_ERR "pending: %#lx ops.pending: %#lx ops.ack: %#lx "
380                         "ops.complete: %#lx\n", pending, sh->ops.pending,
381                         sh->ops.ack, sh->ops.complete);
382                 BUG();
383         }
384
385         return pending;
386 }
387
388 static void
389 raid5_end_read_request(struct bio *bi, int error);
390 static void
391 raid5_end_write_request(struct bio *bi, int error);
392
393 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
394 {
395         raid5_conf_t *conf = sh->raid_conf;
396         int i, disks = sh->disks;
397
398         might_sleep();
399
400         for (i = disks; i--; ) {
401                 int rw;
402                 struct bio *bi;
403                 mdk_rdev_t *rdev;
404                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
405                         rw = WRITE;
406                 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
407                         rw = READ;
408                 else
409                         continue;
410
411                 bi = &sh->dev[i].req;
412
413                 bi->bi_rw = rw;
414                 if (rw == WRITE)
415                         bi->bi_end_io = raid5_end_write_request;
416                 else
417                         bi->bi_end_io = raid5_end_read_request;
418
419                 rcu_read_lock();
420                 rdev = rcu_dereference(conf->disks[i].rdev);
421                 if (rdev && test_bit(Faulty, &rdev->flags))
422                         rdev = NULL;
423                 if (rdev)
424                         atomic_inc(&rdev->nr_pending);
425                 rcu_read_unlock();
426
427                 if (rdev) {
428                         if (s->syncing || s->expanding || s->expanded)
429                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
430
431                         set_bit(STRIPE_IO_STARTED, &sh->state);
432
433                         bi->bi_bdev = rdev->bdev;
434                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
435                                 __func__, (unsigned long long)sh->sector,
436                                 bi->bi_rw, i);
437                         atomic_inc(&sh->count);
438                         bi->bi_sector = sh->sector + rdev->data_offset;
439                         bi->bi_flags = 1 << BIO_UPTODATE;
440                         bi->bi_vcnt = 1;
441                         bi->bi_max_vecs = 1;
442                         bi->bi_idx = 0;
443                         bi->bi_io_vec = &sh->dev[i].vec;
444                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
445                         bi->bi_io_vec[0].bv_offset = 0;
446                         bi->bi_size = STRIPE_SIZE;
447                         bi->bi_next = NULL;
448                         if (rw == WRITE &&
449                             test_bit(R5_ReWrite, &sh->dev[i].flags))
450                                 atomic_add(STRIPE_SECTORS,
451                                         &rdev->corrected_errors);
452                         generic_make_request(bi);
453                 } else {
454                         if (rw == WRITE)
455                                 set_bit(STRIPE_DEGRADED, &sh->state);
456                         pr_debug("skip op %ld on disc %d for sector %llu\n",
457                                 bi->bi_rw, i, (unsigned long long)sh->sector);
458                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
459                         set_bit(STRIPE_HANDLE, &sh->state);
460                 }
461         }
462 }
463
464 static struct dma_async_tx_descriptor *
465 async_copy_data(int frombio, struct bio *bio, struct page *page,
466         sector_t sector, struct dma_async_tx_descriptor *tx)
467 {
468         struct bio_vec *bvl;
469         struct page *bio_page;
470         int i;
471         int page_offset;
472
473         if (bio->bi_sector >= sector)
474                 page_offset = (signed)(bio->bi_sector - sector) * 512;
475         else
476                 page_offset = (signed)(sector - bio->bi_sector) * -512;
477         bio_for_each_segment(bvl, bio, i) {
478                 int len = bio_iovec_idx(bio, i)->bv_len;
479                 int clen;
480                 int b_offset = 0;
481
482                 if (page_offset < 0) {
483                         b_offset = -page_offset;
484                         page_offset += b_offset;
485                         len -= b_offset;
486                 }
487
488                 if (len > 0 && page_offset + len > STRIPE_SIZE)
489                         clen = STRIPE_SIZE - page_offset;
490                 else
491                         clen = len;
492
493                 if (clen > 0) {
494                         b_offset += bio_iovec_idx(bio, i)->bv_offset;
495                         bio_page = bio_iovec_idx(bio, i)->bv_page;
496                         if (frombio)
497                                 tx = async_memcpy(page, bio_page, page_offset,
498                                         b_offset, clen,
499                                         ASYNC_TX_DEP_ACK,
500                                         tx, NULL, NULL);
501                         else
502                                 tx = async_memcpy(bio_page, page, b_offset,
503                                         page_offset, clen,
504                                         ASYNC_TX_DEP_ACK,
505                                         tx, NULL, NULL);
506                 }
507                 if (clen < len) /* hit end of page */
508                         break;
509                 page_offset +=  len;
510         }
511
512         return tx;
513 }
514
515 static void ops_complete_biofill(void *stripe_head_ref)
516 {
517         struct stripe_head *sh = stripe_head_ref;
518         struct bio *return_bi = NULL;
519         raid5_conf_t *conf = sh->raid_conf;
520         int i;
521
522         pr_debug("%s: stripe %llu\n", __func__,
523                 (unsigned long long)sh->sector);
524
525         /* clear completed biofills */
526         spin_lock_irq(&conf->device_lock);
527         for (i = sh->disks; i--; ) {
528                 struct r5dev *dev = &sh->dev[i];
529
530                 /* acknowledge completion of a biofill operation */
531                 /* and check if we need to reply to a read request,
532                  * new R5_Wantfill requests are held off until
533                  * !STRIPE_BIOFILL_RUN
534                  */
535                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
536                         struct bio *rbi, *rbi2;
537
538                         BUG_ON(!dev->read);
539                         rbi = dev->read;
540                         dev->read = NULL;
541                         while (rbi && rbi->bi_sector <
542                                 dev->sector + STRIPE_SECTORS) {
543                                 rbi2 = r5_next_bio(rbi, dev->sector);
544                                 if (--rbi->bi_phys_segments == 0) {
545                                         rbi->bi_next = return_bi;
546                                         return_bi = rbi;
547                                 }
548                                 rbi = rbi2;
549                         }
550                 }
551         }
552         spin_unlock_irq(&conf->device_lock);
553         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
554
555         return_io(return_bi);
556
557         set_bit(STRIPE_HANDLE, &sh->state);
558         release_stripe(sh);
559 }
560
561 static void ops_run_biofill(struct stripe_head *sh)
562 {
563         struct dma_async_tx_descriptor *tx = NULL;
564         raid5_conf_t *conf = sh->raid_conf;
565         int i;
566
567         pr_debug("%s: stripe %llu\n", __func__,
568                 (unsigned long long)sh->sector);
569
570         for (i = sh->disks; i--; ) {
571                 struct r5dev *dev = &sh->dev[i];
572                 if (test_bit(R5_Wantfill, &dev->flags)) {
573                         struct bio *rbi;
574                         spin_lock_irq(&conf->device_lock);
575                         dev->read = rbi = dev->toread;
576                         dev->toread = NULL;
577                         spin_unlock_irq(&conf->device_lock);
578                         while (rbi && rbi->bi_sector <
579                                 dev->sector + STRIPE_SECTORS) {
580                                 tx = async_copy_data(0, rbi, dev->page,
581                                         dev->sector, tx);
582                                 rbi = r5_next_bio(rbi, dev->sector);
583                         }
584                 }
585         }
586
587         atomic_inc(&sh->count);
588         async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
589                 ops_complete_biofill, sh);
590 }
591
592 static void ops_complete_compute5(void *stripe_head_ref)
593 {
594         struct stripe_head *sh = stripe_head_ref;
595         int target = sh->ops.target;
596         struct r5dev *tgt = &sh->dev[target];
597
598         pr_debug("%s: stripe %llu\n", __func__,
599                 (unsigned long long)sh->sector);
600
601         set_bit(R5_UPTODATE, &tgt->flags);
602         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
603         clear_bit(R5_Wantcompute, &tgt->flags);
604         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
605         if (sh->check_state == check_state_compute_run)
606                 sh->check_state = check_state_compute_result;
607         else
608                 set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
609         set_bit(STRIPE_HANDLE, &sh->state);
610         release_stripe(sh);
611 }
612
613 static struct dma_async_tx_descriptor *
614 ops_run_compute5(struct stripe_head *sh, unsigned long pending)
615 {
616         /* kernel stack size limits the total number of disks */
617         int disks = sh->disks;
618         struct page *xor_srcs[disks];
619         int target = sh->ops.target;
620         struct r5dev *tgt = &sh->dev[target];
621         struct page *xor_dest = tgt->page;
622         int count = 0;
623         struct dma_async_tx_descriptor *tx;
624         int i;
625
626         pr_debug("%s: stripe %llu block: %d\n",
627                 __func__, (unsigned long long)sh->sector, target);
628         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
629
630         for (i = disks; i--; )
631                 if (i != target)
632                         xor_srcs[count++] = sh->dev[i].page;
633
634         atomic_inc(&sh->count);
635
636         if (unlikely(count == 1))
637                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
638                         0, NULL, ops_complete_compute5, sh);
639         else
640                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
641                         ASYNC_TX_XOR_ZERO_DST, NULL,
642                         ops_complete_compute5, sh);
643
644         /* ack now if postxor is not set to be run */
645         if (tx && !test_bit(STRIPE_OP_POSTXOR, &pending))
646                 async_tx_ack(tx);
647
648         return tx;
649 }
650
651 static void ops_complete_prexor(void *stripe_head_ref)
652 {
653         struct stripe_head *sh = stripe_head_ref;
654
655         pr_debug("%s: stripe %llu\n", __func__,
656                 (unsigned long long)sh->sector);
657
658         set_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
659 }
660
661 static struct dma_async_tx_descriptor *
662 ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
663 {
664         /* kernel stack size limits the total number of disks */
665         int disks = sh->disks;
666         struct page *xor_srcs[disks];
667         int count = 0, pd_idx = sh->pd_idx, i;
668
669         /* existing parity data subtracted */
670         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
671
672         pr_debug("%s: stripe %llu\n", __func__,
673                 (unsigned long long)sh->sector);
674
675         for (i = disks; i--; ) {
676                 struct r5dev *dev = &sh->dev[i];
677                 /* Only process blocks that are known to be uptodate */
678                 if (dev->towrite && test_bit(R5_Wantprexor, &dev->flags))
679                         xor_srcs[count++] = dev->page;
680         }
681
682         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
683                 ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
684                 ops_complete_prexor, sh);
685
686         return tx;
687 }
688
689 static struct dma_async_tx_descriptor *
690 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx,
691                  unsigned long pending)
692 {
693         int disks = sh->disks;
694         int pd_idx = sh->pd_idx, i;
695
696         /* check if prexor is active which means only process blocks
697          * that are part of a read-modify-write (Wantprexor)
698          */
699         int prexor = test_bit(STRIPE_OP_PREXOR, &pending);
700
701         pr_debug("%s: stripe %llu\n", __func__,
702                 (unsigned long long)sh->sector);
703
704         for (i = disks; i--; ) {
705                 struct r5dev *dev = &sh->dev[i];
706                 struct bio *chosen;
707                 int towrite;
708
709                 towrite = 0;
710                 if (prexor) { /* rmw */
711                         if (dev->towrite &&
712                             test_bit(R5_Wantprexor, &dev->flags))
713                                 towrite = 1;
714                 } else { /* rcw */
715                         if (i != pd_idx && dev->towrite &&
716                                 test_bit(R5_LOCKED, &dev->flags))
717                                 towrite = 1;
718                 }
719
720                 if (towrite) {
721                         struct bio *wbi;
722
723                         spin_lock(&sh->lock);
724                         chosen = dev->towrite;
725                         dev->towrite = NULL;
726                         BUG_ON(dev->written);
727                         wbi = dev->written = chosen;
728                         spin_unlock(&sh->lock);
729
730                         while (wbi && wbi->bi_sector <
731                                 dev->sector + STRIPE_SECTORS) {
732                                 tx = async_copy_data(1, wbi, dev->page,
733                                         dev->sector, tx);
734                                 wbi = r5_next_bio(wbi, dev->sector);
735                         }
736                 }
737         }
738
739         return tx;
740 }
741
742 static void ops_complete_postxor(void *stripe_head_ref)
743 {
744         struct stripe_head *sh = stripe_head_ref;
745
746         pr_debug("%s: stripe %llu\n", __func__,
747                 (unsigned long long)sh->sector);
748
749         set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
750         set_bit(STRIPE_HANDLE, &sh->state);
751         release_stripe(sh);
752 }
753
754 static void ops_complete_write(void *stripe_head_ref)
755 {
756         struct stripe_head *sh = stripe_head_ref;
757         int disks = sh->disks, i, pd_idx = sh->pd_idx;
758
759         pr_debug("%s: stripe %llu\n", __func__,
760                 (unsigned long long)sh->sector);
761
762         for (i = disks; i--; ) {
763                 struct r5dev *dev = &sh->dev[i];
764                 if (dev->written || i == pd_idx)
765                         set_bit(R5_UPTODATE, &dev->flags);
766         }
767
768         set_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
769         set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
770
771         set_bit(STRIPE_HANDLE, &sh->state);
772         release_stripe(sh);
773 }
774
775 static void
776 ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx,
777                 unsigned long pending)
778 {
779         /* kernel stack size limits the total number of disks */
780         int disks = sh->disks;
781         struct page *xor_srcs[disks];
782
783         int count = 0, pd_idx = sh->pd_idx, i;
784         struct page *xor_dest;
785         int prexor = test_bit(STRIPE_OP_PREXOR, &pending);
786         unsigned long flags;
787         dma_async_tx_callback callback;
788
789         pr_debug("%s: stripe %llu\n", __func__,
790                 (unsigned long long)sh->sector);
791
792         /* check if prexor is active which means only process blocks
793          * that are part of a read-modify-write (written)
794          */
795         if (prexor) {
796                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
797                 for (i = disks; i--; ) {
798                         struct r5dev *dev = &sh->dev[i];
799                         if (dev->written)
800                                 xor_srcs[count++] = dev->page;
801                 }
802         } else {
803                 xor_dest = sh->dev[pd_idx].page;
804                 for (i = disks; i--; ) {
805                         struct r5dev *dev = &sh->dev[i];
806                         if (i != pd_idx)
807                                 xor_srcs[count++] = dev->page;
808                 }
809         }
810
811         /* check whether this postxor is part of a write */
812         callback = test_bit(STRIPE_OP_BIODRAIN, &pending) ?
813                 ops_complete_write : ops_complete_postxor;
814
815         /* 1/ if we prexor'd then the dest is reused as a source
816          * 2/ if we did not prexor then we are redoing the parity
817          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
818          * for the synchronous xor case
819          */
820         flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
821                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
822
823         atomic_inc(&sh->count);
824
825         if (unlikely(count == 1)) {
826                 flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
827                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
828                         flags, tx, callback, sh);
829         } else
830                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
831                         flags, tx, callback, sh);
832 }
833
834 static void ops_complete_check(void *stripe_head_ref)
835 {
836         struct stripe_head *sh = stripe_head_ref;
837
838         pr_debug("%s: stripe %llu\n", __func__,
839                 (unsigned long long)sh->sector);
840
841         sh->check_state = check_state_check_result;
842         set_bit(STRIPE_HANDLE, &sh->state);
843         release_stripe(sh);
844 }
845
846 static void ops_run_check(struct stripe_head *sh)
847 {
848         /* kernel stack size limits the total number of disks */
849         int disks = sh->disks;
850         struct page *xor_srcs[disks];
851         struct dma_async_tx_descriptor *tx;
852
853         int count = 0, pd_idx = sh->pd_idx, i;
854         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
855
856         pr_debug("%s: stripe %llu\n", __func__,
857                 (unsigned long long)sh->sector);
858
859         for (i = disks; i--; ) {
860                 struct r5dev *dev = &sh->dev[i];
861                 if (i != pd_idx)
862                         xor_srcs[count++] = dev->page;
863         }
864
865         tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
866                 &sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
867
868         atomic_inc(&sh->count);
869         tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
870                 ops_complete_check, sh);
871 }
872
873 static void raid5_run_ops(struct stripe_head *sh, unsigned long pending,
874                           unsigned long ops_request)
875 {
876         int overlap_clear = 0, i, disks = sh->disks;
877         struct dma_async_tx_descriptor *tx = NULL;
878
879         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
880                 ops_run_biofill(sh);
881                 overlap_clear++;
882         }
883
884         if (test_bit(STRIPE_OP_COMPUTE_BLK, &pending) ||
885             test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request))
886                 tx = ops_run_compute5(sh, pending);
887
888         if (test_bit(STRIPE_OP_PREXOR, &pending))
889                 tx = ops_run_prexor(sh, tx);
890
891         if (test_bit(STRIPE_OP_BIODRAIN, &pending)) {
892                 tx = ops_run_biodrain(sh, tx, pending);
893                 overlap_clear++;
894         }
895
896         if (test_bit(STRIPE_OP_POSTXOR, &pending))
897                 ops_run_postxor(sh, tx, pending);
898
899         if (test_bit(STRIPE_OP_CHECK, &ops_request))
900                 ops_run_check(sh);
901
902         if (overlap_clear)
903                 for (i = disks; i--; ) {
904                         struct r5dev *dev = &sh->dev[i];
905                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
906                                 wake_up(&sh->raid_conf->wait_for_overlap);
907                 }
908 }
909
910 static int grow_one_stripe(raid5_conf_t *conf)
911 {
912         struct stripe_head *sh;
913         sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
914         if (!sh)
915                 return 0;
916         memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
917         sh->raid_conf = conf;
918         spin_lock_init(&sh->lock);
919
920         if (grow_buffers(sh, conf->raid_disks)) {
921                 shrink_buffers(sh, conf->raid_disks);
922                 kmem_cache_free(conf->slab_cache, sh);
923                 return 0;
924         }
925         sh->disks = conf->raid_disks;
926         /* we just created an active stripe so... */
927         atomic_set(&sh->count, 1);
928         atomic_inc(&conf->active_stripes);
929         INIT_LIST_HEAD(&sh->lru);
930         release_stripe(sh);
931         return 1;
932 }
933
934 static int grow_stripes(raid5_conf_t *conf, int num)
935 {
936         struct kmem_cache *sc;
937         int devs = conf->raid_disks;
938
939         sprintf(conf->cache_name[0], "raid5-%s", mdname(conf->mddev));
940         sprintf(conf->cache_name[1], "raid5-%s-alt", mdname(conf->mddev));
941         conf->active_name = 0;
942         sc = kmem_cache_create(conf->cache_name[conf->active_name],
943                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
944                                0, 0, NULL);
945         if (!sc)
946                 return 1;
947         conf->slab_cache = sc;
948         conf->pool_size = devs;
949         while (num--)
950                 if (!grow_one_stripe(conf))
951                         return 1;
952         return 0;
953 }
954
955 #ifdef CONFIG_MD_RAID5_RESHAPE
956 static int resize_stripes(raid5_conf_t *conf, int newsize)
957 {
958         /* Make all the stripes able to hold 'newsize' devices.
959          * New slots in each stripe get 'page' set to a new page.
960          *
961          * This happens in stages:
962          * 1/ create a new kmem_cache and allocate the required number of
963          *    stripe_heads.
964          * 2/ gather all the old stripe_heads and tranfer the pages across
965          *    to the new stripe_heads.  This will have the side effect of
966          *    freezing the array as once all stripe_heads have been collected,
967          *    no IO will be possible.  Old stripe heads are freed once their
968          *    pages have been transferred over, and the old kmem_cache is
969          *    freed when all stripes are done.
970          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
971          *    we simple return a failre status - no need to clean anything up.
972          * 4/ allocate new pages for the new slots in the new stripe_heads.
973          *    If this fails, we don't bother trying the shrink the
974          *    stripe_heads down again, we just leave them as they are.
975          *    As each stripe_head is processed the new one is released into
976          *    active service.
977          *
978          * Once step2 is started, we cannot afford to wait for a write,
979          * so we use GFP_NOIO allocations.
980          */
981         struct stripe_head *osh, *nsh;
982         LIST_HEAD(newstripes);
983         struct disk_info *ndisks;
984         int err = 0;
985         struct kmem_cache *sc;
986         int i;
987
988         if (newsize <= conf->pool_size)
989                 return 0; /* never bother to shrink */
990
991         md_allow_write(conf->mddev);
992
993         /* Step 1 */
994         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
995                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
996                                0, 0, NULL);
997         if (!sc)
998                 return -ENOMEM;
999
1000         for (i = conf->max_nr_stripes; i; i--) {
1001                 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1002                 if (!nsh)
1003                         break;
1004
1005                 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1006
1007                 nsh->raid_conf = conf;
1008                 spin_lock_init(&nsh->lock);
1009
1010                 list_add(&nsh->lru, &newstripes);
1011         }
1012         if (i) {
1013                 /* didn't get enough, give up */
1014                 while (!list_empty(&newstripes)) {
1015                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1016                         list_del(&nsh->lru);
1017                         kmem_cache_free(sc, nsh);
1018                 }
1019                 kmem_cache_destroy(sc);
1020                 return -ENOMEM;
1021         }
1022         /* Step 2 - Must use GFP_NOIO now.
1023          * OK, we have enough stripes, start collecting inactive
1024          * stripes and copying them over
1025          */
1026         list_for_each_entry(nsh, &newstripes, lru) {
1027                 spin_lock_irq(&conf->device_lock);
1028                 wait_event_lock_irq(conf->wait_for_stripe,
1029                                     !list_empty(&conf->inactive_list),
1030                                     conf->device_lock,
1031                                     unplug_slaves(conf->mddev)
1032                         );
1033                 osh = get_free_stripe(conf);
1034                 spin_unlock_irq(&conf->device_lock);
1035                 atomic_set(&nsh->count, 1);
1036                 for(i=0; i<conf->pool_size; i++)
1037                         nsh->dev[i].page = osh->dev[i].page;
1038                 for( ; i<newsize; i++)
1039                         nsh->dev[i].page = NULL;
1040                 kmem_cache_free(conf->slab_cache, osh);
1041         }
1042         kmem_cache_destroy(conf->slab_cache);
1043
1044         /* Step 3.
1045          * At this point, we are holding all the stripes so the array
1046          * is completely stalled, so now is a good time to resize
1047          * conf->disks.
1048          */
1049         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1050         if (ndisks) {
1051                 for (i=0; i<conf->raid_disks; i++)
1052                         ndisks[i] = conf->disks[i];
1053                 kfree(conf->disks);
1054                 conf->disks = ndisks;
1055         } else
1056                 err = -ENOMEM;
1057
1058         /* Step 4, return new stripes to service */
1059         while(!list_empty(&newstripes)) {
1060                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1061                 list_del_init(&nsh->lru);
1062                 for (i=conf->raid_disks; i < newsize; i++)
1063                         if (nsh->dev[i].page == NULL) {
1064                                 struct page *p = alloc_page(GFP_NOIO);
1065                                 nsh->dev[i].page = p;
1066                                 if (!p)
1067                                         err = -ENOMEM;
1068                         }
1069                 release_stripe(nsh);
1070         }
1071         /* critical section pass, GFP_NOIO no longer needed */
1072
1073         conf->slab_cache = sc;
1074         conf->active_name = 1-conf->active_name;
1075         conf->pool_size = newsize;
1076         return err;
1077 }
1078 #endif
1079
1080 static int drop_one_stripe(raid5_conf_t *conf)
1081 {
1082         struct stripe_head *sh;
1083
1084         spin_lock_irq(&conf->device_lock);
1085         sh = get_free_stripe(conf);
1086         spin_unlock_irq(&conf->device_lock);
1087         if (!sh)
1088                 return 0;
1089         BUG_ON(atomic_read(&sh->count));
1090         shrink_buffers(sh, conf->pool_size);
1091         kmem_cache_free(conf->slab_cache, sh);
1092         atomic_dec(&conf->active_stripes);
1093         return 1;
1094 }
1095
1096 static void shrink_stripes(raid5_conf_t *conf)
1097 {
1098         while (drop_one_stripe(conf))
1099                 ;
1100
1101         if (conf->slab_cache)
1102                 kmem_cache_destroy(conf->slab_cache);
1103         conf->slab_cache = NULL;
1104 }
1105
1106 static void raid5_end_read_request(struct bio * bi, int error)
1107 {
1108         struct stripe_head *sh = bi->bi_private;
1109         raid5_conf_t *conf = sh->raid_conf;
1110         int disks = sh->disks, i;
1111         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1112         char b[BDEVNAME_SIZE];
1113         mdk_rdev_t *rdev;
1114
1115
1116         for (i=0 ; i<disks; i++)
1117                 if (bi == &sh->dev[i].req)
1118                         break;
1119
1120         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1121                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1122                 uptodate);
1123         if (i == disks) {
1124                 BUG();
1125                 return;
1126         }
1127
1128         if (uptodate) {
1129                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1130                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1131                         rdev = conf->disks[i].rdev;
1132                         printk_rl(KERN_INFO "raid5:%s: read error corrected"
1133                                   " (%lu sectors at %llu on %s)\n",
1134                                   mdname(conf->mddev), STRIPE_SECTORS,
1135                                   (unsigned long long)(sh->sector
1136                                                        + rdev->data_offset),
1137                                   bdevname(rdev->bdev, b));
1138                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1139                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1140                 }
1141                 if (atomic_read(&conf->disks[i].rdev->read_errors))
1142                         atomic_set(&conf->disks[i].rdev->read_errors, 0);
1143         } else {
1144                 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1145                 int retry = 0;
1146                 rdev = conf->disks[i].rdev;
1147
1148                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1149                 atomic_inc(&rdev->read_errors);
1150                 if (conf->mddev->degraded)
1151                         printk_rl(KERN_WARNING
1152                                   "raid5:%s: read error not correctable "
1153                                   "(sector %llu on %s).\n",
1154                                   mdname(conf->mddev),
1155                                   (unsigned long long)(sh->sector
1156                                                        + rdev->data_offset),
1157                                   bdn);
1158                 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1159                         /* Oh, no!!! */
1160                         printk_rl(KERN_WARNING
1161                                   "raid5:%s: read error NOT corrected!! "
1162                                   "(sector %llu on %s).\n",
1163                                   mdname(conf->mddev),
1164                                   (unsigned long long)(sh->sector
1165                                                        + rdev->data_offset),
1166                                   bdn);
1167                 else if (atomic_read(&rdev->read_errors)
1168                          > conf->max_nr_stripes)
1169                         printk(KERN_WARNING
1170                                "raid5:%s: Too many read errors, failing device %s.\n",
1171                                mdname(conf->mddev), bdn);
1172                 else
1173                         retry = 1;
1174                 if (retry)
1175                         set_bit(R5_ReadError, &sh->dev[i].flags);
1176                 else {
1177                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1178                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1179                         md_error(conf->mddev, rdev);
1180                 }
1181         }
1182         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1183         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1184         set_bit(STRIPE_HANDLE, &sh->state);
1185         release_stripe(sh);
1186 }
1187
1188 static void raid5_end_write_request (struct bio *bi, int error)
1189 {
1190         struct stripe_head *sh = bi->bi_private;
1191         raid5_conf_t *conf = sh->raid_conf;
1192         int disks = sh->disks, i;
1193         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1194
1195         for (i=0 ; i<disks; i++)
1196                 if (bi == &sh->dev[i].req)
1197                         break;
1198
1199         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1200                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1201                 uptodate);
1202         if (i == disks) {
1203                 BUG();
1204                 return;
1205         }
1206
1207         if (!uptodate)
1208                 md_error(conf->mddev, conf->disks[i].rdev);
1209
1210         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1211         
1212         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1213         set_bit(STRIPE_HANDLE, &sh->state);
1214         release_stripe(sh);
1215 }
1216
1217
1218 static sector_t compute_blocknr(struct stripe_head *sh, int i);
1219         
1220 static void raid5_build_block (struct stripe_head *sh, int i)
1221 {
1222         struct r5dev *dev = &sh->dev[i];
1223
1224         bio_init(&dev->req);
1225         dev->req.bi_io_vec = &dev->vec;
1226         dev->req.bi_vcnt++;
1227         dev->req.bi_max_vecs++;
1228         dev->vec.bv_page = dev->page;
1229         dev->vec.bv_len = STRIPE_SIZE;
1230         dev->vec.bv_offset = 0;
1231
1232         dev->req.bi_sector = sh->sector;
1233         dev->req.bi_private = sh;
1234
1235         dev->flags = 0;
1236         dev->sector = compute_blocknr(sh, i);
1237 }
1238
1239 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1240 {
1241         char b[BDEVNAME_SIZE];
1242         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1243         pr_debug("raid5: error called\n");
1244
1245         if (!test_bit(Faulty, &rdev->flags)) {
1246                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1247                 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1248                         unsigned long flags;
1249                         spin_lock_irqsave(&conf->device_lock, flags);
1250                         mddev->degraded++;
1251                         spin_unlock_irqrestore(&conf->device_lock, flags);
1252                         /*
1253                          * if recovery was running, make sure it aborts.
1254                          */
1255                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1256                 }
1257                 set_bit(Faulty, &rdev->flags);
1258                 printk (KERN_ALERT
1259                         "raid5: Disk failure on %s, disabling device.\n"
1260                         "raid5: Operation continuing on %d devices.\n",
1261                         bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1262         }
1263 }
1264
1265 /*
1266  * Input: a 'big' sector number,
1267  * Output: index of the data and parity disk, and the sector # in them.
1268  */
1269 static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
1270                         unsigned int data_disks, unsigned int * dd_idx,
1271                         unsigned int * pd_idx, raid5_conf_t *conf)
1272 {
1273         long stripe;
1274         unsigned long chunk_number;
1275         unsigned int chunk_offset;
1276         sector_t new_sector;
1277         int sectors_per_chunk = conf->chunk_size >> 9;
1278
1279         /* First compute the information on this sector */
1280
1281         /*
1282          * Compute the chunk number and the sector offset inside the chunk
1283          */
1284         chunk_offset = sector_div(r_sector, sectors_per_chunk);
1285         chunk_number = r_sector;
1286         BUG_ON(r_sector != chunk_number);
1287
1288         /*
1289          * Compute the stripe number
1290          */
1291         stripe = chunk_number / data_disks;
1292
1293         /*
1294          * Compute the data disk and parity disk indexes inside the stripe
1295          */
1296         *dd_idx = chunk_number % data_disks;
1297
1298         /*
1299          * Select the parity disk based on the user selected algorithm.
1300          */
1301         switch(conf->level) {
1302         case 4:
1303                 *pd_idx = data_disks;
1304                 break;
1305         case 5:
1306                 switch (conf->algorithm) {
1307                 case ALGORITHM_LEFT_ASYMMETRIC:
1308                         *pd_idx = data_disks - stripe % raid_disks;
1309                         if (*dd_idx >= *pd_idx)
1310                                 (*dd_idx)++;
1311                         break;
1312                 case ALGORITHM_RIGHT_ASYMMETRIC:
1313                         *pd_idx = stripe % raid_disks;
1314                         if (*dd_idx >= *pd_idx)
1315                                 (*dd_idx)++;
1316                         break;
1317                 case ALGORITHM_LEFT_SYMMETRIC:
1318                         *pd_idx = data_disks - stripe % raid_disks;
1319                         *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1320                         break;
1321                 case ALGORITHM_RIGHT_SYMMETRIC:
1322                         *pd_idx = stripe % raid_disks;
1323                         *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1324                         break;
1325                 default:
1326                         printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1327                                 conf->algorithm);
1328                 }
1329                 break;
1330         case 6:
1331
1332                 /**** FIX THIS ****/
1333                 switch (conf->algorithm) {
1334                 case ALGORITHM_LEFT_ASYMMETRIC:
1335                         *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1336                         if (*pd_idx == raid_disks-1)
1337                                 (*dd_idx)++;    /* Q D D D P */
1338                         else if (*dd_idx >= *pd_idx)
1339                                 (*dd_idx) += 2; /* D D P Q D */
1340                         break;
1341                 case ALGORITHM_RIGHT_ASYMMETRIC:
1342                         *pd_idx = stripe % raid_disks;
1343                         if (*pd_idx == raid_disks-1)
1344                                 (*dd_idx)++;    /* Q D D D P */
1345                         else if (*dd_idx >= *pd_idx)
1346                                 (*dd_idx) += 2; /* D D P Q D */
1347                         break;
1348                 case ALGORITHM_LEFT_SYMMETRIC:
1349                         *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1350                         *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1351                         break;
1352                 case ALGORITHM_RIGHT_SYMMETRIC:
1353                         *pd_idx = stripe % raid_disks;
1354                         *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1355                         break;
1356                 default:
1357                         printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1358                                 conf->algorithm);
1359                 }
1360                 break;
1361         }
1362
1363         /*
1364          * Finally, compute the new sector number
1365          */
1366         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1367         return new_sector;
1368 }
1369
1370
1371 static sector_t compute_blocknr(struct stripe_head *sh, int i)
1372 {
1373         raid5_conf_t *conf = sh->raid_conf;
1374         int raid_disks = sh->disks;
1375         int data_disks = raid_disks - conf->max_degraded;
1376         sector_t new_sector = sh->sector, check;
1377         int sectors_per_chunk = conf->chunk_size >> 9;
1378         sector_t stripe;
1379         int chunk_offset;
1380         int chunk_number, dummy1, dummy2, dd_idx = i;
1381         sector_t r_sector;
1382
1383
1384         chunk_offset = sector_div(new_sector, sectors_per_chunk);
1385         stripe = new_sector;
1386         BUG_ON(new_sector != stripe);
1387
1388         if (i == sh->pd_idx)
1389                 return 0;
1390         switch(conf->level) {
1391         case 4: break;
1392         case 5:
1393                 switch (conf->algorithm) {
1394                 case ALGORITHM_LEFT_ASYMMETRIC:
1395                 case ALGORITHM_RIGHT_ASYMMETRIC:
1396                         if (i > sh->pd_idx)
1397                                 i--;
1398                         break;
1399                 case ALGORITHM_LEFT_SYMMETRIC:
1400                 case ALGORITHM_RIGHT_SYMMETRIC:
1401                         if (i < sh->pd_idx)
1402                                 i += raid_disks;
1403                         i -= (sh->pd_idx + 1);
1404                         break;
1405                 default:
1406                         printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1407                                conf->algorithm);
1408                 }
1409                 break;
1410         case 6:
1411                 if (i == raid6_next_disk(sh->pd_idx, raid_disks))
1412                         return 0; /* It is the Q disk */
1413                 switch (conf->algorithm) {
1414                 case ALGORITHM_LEFT_ASYMMETRIC:
1415                 case ALGORITHM_RIGHT_ASYMMETRIC:
1416                         if (sh->pd_idx == raid_disks-1)
1417                                 i--;    /* Q D D D P */
1418                         else if (i > sh->pd_idx)
1419                                 i -= 2; /* D D P Q D */
1420                         break;
1421                 case ALGORITHM_LEFT_SYMMETRIC:
1422                 case ALGORITHM_RIGHT_SYMMETRIC:
1423                         if (sh->pd_idx == raid_disks-1)
1424                                 i--; /* Q D D D P */
1425                         else {
1426                                 /* D D P Q D */
1427                                 if (i < sh->pd_idx)
1428                                         i += raid_disks;
1429                                 i -= (sh->pd_idx + 2);
1430                         }
1431                         break;
1432                 default:
1433                         printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1434                                 conf->algorithm);
1435                 }
1436                 break;
1437         }
1438
1439         chunk_number = stripe * data_disks + i;
1440         r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1441
1442         check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
1443         if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
1444                 printk(KERN_ERR "compute_blocknr: map not correct\n");
1445                 return 0;
1446         }
1447         return r_sector;
1448 }
1449
1450
1451
1452 /*
1453  * Copy data between a page in the stripe cache, and one or more bion
1454  * The page could align with the middle of the bio, or there could be
1455  * several bion, each with several bio_vecs, which cover part of the page
1456  * Multiple bion are linked together on bi_next.  There may be extras
1457  * at the end of this list.  We ignore them.
1458  */
1459 static void copy_data(int frombio, struct bio *bio,
1460                      struct page *page,
1461                      sector_t sector)
1462 {
1463         char *pa = page_address(page);
1464         struct bio_vec *bvl;
1465         int i;
1466         int page_offset;
1467
1468         if (bio->bi_sector >= sector)
1469                 page_offset = (signed)(bio->bi_sector - sector) * 512;
1470         else
1471                 page_offset = (signed)(sector - bio->bi_sector) * -512;
1472         bio_for_each_segment(bvl, bio, i) {
1473                 int len = bio_iovec_idx(bio,i)->bv_len;
1474                 int clen;
1475                 int b_offset = 0;
1476
1477                 if (page_offset < 0) {
1478                         b_offset = -page_offset;
1479                         page_offset += b_offset;
1480                         len -= b_offset;
1481                 }
1482
1483                 if (len > 0 && page_offset + len > STRIPE_SIZE)
1484                         clen = STRIPE_SIZE - page_offset;
1485                 else clen = len;
1486
1487                 if (clen > 0) {
1488                         char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1489                         if (frombio)
1490                                 memcpy(pa+page_offset, ba+b_offset, clen);
1491                         else
1492                                 memcpy(ba+b_offset, pa+page_offset, clen);
1493                         __bio_kunmap_atomic(ba, KM_USER0);
1494                 }
1495                 if (clen < len) /* hit end of page */
1496                         break;
1497                 page_offset +=  len;
1498         }
1499 }
1500
1501 #define check_xor()     do {                                              \
1502                                 if (count == MAX_XOR_BLOCKS) {            \
1503                                 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1504                                 count = 0;                                \
1505                            }                                              \
1506                         } while(0)
1507
1508 static void compute_parity6(struct stripe_head *sh, int method)
1509 {
1510         raid6_conf_t *conf = sh->raid_conf;
1511         int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1512         struct bio *chosen;
1513         /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1514         void *ptrs[disks];
1515
1516         qd_idx = raid6_next_disk(pd_idx, disks);
1517         d0_idx = raid6_next_disk(qd_idx, disks);
1518
1519         pr_debug("compute_parity, stripe %llu, method %d\n",
1520                 (unsigned long long)sh->sector, method);
1521
1522         switch(method) {
1523         case READ_MODIFY_WRITE:
1524                 BUG();          /* READ_MODIFY_WRITE N/A for RAID-6 */
1525         case RECONSTRUCT_WRITE:
1526                 for (i= disks; i-- ;)
1527                         if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1528                                 chosen = sh->dev[i].towrite;
1529                                 sh->dev[i].towrite = NULL;
1530
1531                                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1532                                         wake_up(&conf->wait_for_overlap);
1533
1534                                 BUG_ON(sh->dev[i].written);
1535                                 sh->dev[i].written = chosen;
1536                         }
1537                 break;
1538         case CHECK_PARITY:
1539                 BUG();          /* Not implemented yet */
1540         }
1541
1542         for (i = disks; i--;)
1543                 if (sh->dev[i].written) {
1544                         sector_t sector = sh->dev[i].sector;
1545                         struct bio *wbi = sh->dev[i].written;
1546                         while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1547                                 copy_data(1, wbi, sh->dev[i].page, sector);
1548                                 wbi = r5_next_bio(wbi, sector);
1549                         }
1550
1551                         set_bit(R5_LOCKED, &sh->dev[i].flags);
1552                         set_bit(R5_UPTODATE, &sh->dev[i].flags);
1553                 }
1554
1555 //      switch(method) {
1556 //      case RECONSTRUCT_WRITE:
1557 //      case CHECK_PARITY:
1558 //      case UPDATE_PARITY:
1559                 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1560                 /* FIX: Is this ordering of drives even remotely optimal? */
1561                 count = 0;
1562                 i = d0_idx;
1563                 do {
1564                         ptrs[count++] = page_address(sh->dev[i].page);
1565                         if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1566                                 printk("block %d/%d not uptodate on parity calc\n", i,count);
1567                         i = raid6_next_disk(i, disks);
1568                 } while ( i != d0_idx );
1569 //              break;
1570 //      }
1571
1572         raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
1573
1574         switch(method) {
1575         case RECONSTRUCT_WRITE:
1576                 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1577                 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1578                 set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
1579                 set_bit(R5_LOCKED,   &sh->dev[qd_idx].flags);
1580                 break;
1581         case UPDATE_PARITY:
1582                 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1583                 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1584                 break;
1585         }
1586 }
1587
1588
1589 /* Compute one missing block */
1590 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1591 {
1592         int i, count, disks = sh->disks;
1593         void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1594         int pd_idx = sh->pd_idx;
1595         int qd_idx = raid6_next_disk(pd_idx, disks);
1596
1597         pr_debug("compute_block_1, stripe %llu, idx %d\n",
1598                 (unsigned long long)sh->sector, dd_idx);
1599
1600         if ( dd_idx == qd_idx ) {
1601                 /* We're actually computing the Q drive */
1602                 compute_parity6(sh, UPDATE_PARITY);
1603         } else {
1604                 dest = page_address(sh->dev[dd_idx].page);
1605                 if (!nozero) memset(dest, 0, STRIPE_SIZE);
1606                 count = 0;
1607                 for (i = disks ; i--; ) {
1608                         if (i == dd_idx || i == qd_idx)
1609                                 continue;
1610                         p = page_address(sh->dev[i].page);
1611                         if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1612                                 ptr[count++] = p;
1613                         else
1614                                 printk("compute_block() %d, stripe %llu, %d"
1615                                        " not present\n", dd_idx,
1616                                        (unsigned long long)sh->sector, i);
1617
1618                         check_xor();
1619                 }
1620                 if (count)
1621                         xor_blocks(count, STRIPE_SIZE, dest, ptr);
1622                 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1623                 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1624         }
1625 }
1626
1627 /* Compute two missing blocks */
1628 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1629 {
1630         int i, count, disks = sh->disks;
1631         int pd_idx = sh->pd_idx;
1632         int qd_idx = raid6_next_disk(pd_idx, disks);
1633         int d0_idx = raid6_next_disk(qd_idx, disks);
1634         int faila, failb;
1635
1636         /* faila and failb are disk numbers relative to d0_idx */
1637         /* pd_idx become disks-2 and qd_idx become disks-1 */
1638         faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
1639         failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
1640
1641         BUG_ON(faila == failb);
1642         if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1643
1644         pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1645                (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
1646
1647         if ( failb == disks-1 ) {
1648                 /* Q disk is one of the missing disks */
1649                 if ( faila == disks-2 ) {
1650                         /* Missing P+Q, just recompute */
1651                         compute_parity6(sh, UPDATE_PARITY);
1652                         return;
1653                 } else {
1654                         /* We're missing D+Q; recompute D from P */
1655                         compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
1656                         compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1657                         return;
1658                 }
1659         }
1660
1661         /* We're missing D+P or D+D; build pointer table */
1662         {
1663                 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1664                 void *ptrs[disks];
1665
1666                 count = 0;
1667                 i = d0_idx;
1668                 do {
1669                         ptrs[count++] = page_address(sh->dev[i].page);
1670                         i = raid6_next_disk(i, disks);
1671                         if (i != dd_idx1 && i != dd_idx2 &&
1672                             !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1673                                 printk("compute_2 with missing block %d/%d\n", count, i);
1674                 } while ( i != d0_idx );
1675
1676                 if ( failb == disks-2 ) {
1677                         /* We're missing D+P. */
1678                         raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
1679                 } else {
1680                         /* We're missing D+D. */
1681                         raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
1682                 }
1683
1684                 /* Both the above update both missing blocks */
1685                 set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1686                 set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1687         }
1688 }
1689
1690 static int
1691 handle_write_operations5(struct stripe_head *sh, int rcw, int expand)
1692 {
1693         int i, pd_idx = sh->pd_idx, disks = sh->disks;
1694         int locked = 0;
1695
1696         if (rcw) {
1697                 /* if we are not expanding this is a proper write request, and
1698                  * there will be bios with new data to be drained into the
1699                  * stripe cache
1700                  */
1701                 if (!expand) {
1702                         set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1703                         sh->ops.count++;
1704                 }
1705
1706                 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1707                 sh->ops.count++;
1708
1709                 for (i = disks; i--; ) {
1710                         struct r5dev *dev = &sh->dev[i];
1711
1712                         if (dev->towrite) {
1713                                 set_bit(R5_LOCKED, &dev->flags);
1714                                 if (!expand)
1715                                         clear_bit(R5_UPTODATE, &dev->flags);
1716                                 locked++;
1717                         }
1718                 }
1719                 if (locked + 1 == disks)
1720                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
1721                                 atomic_inc(&sh->raid_conf->pending_full_writes);
1722         } else {
1723                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1724                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1725
1726                 set_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
1727                 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1728                 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1729
1730                 sh->ops.count += 3;
1731
1732                 for (i = disks; i--; ) {
1733                         struct r5dev *dev = &sh->dev[i];
1734                         if (i == pd_idx)
1735                                 continue;
1736
1737                         /* For a read-modify write there may be blocks that are
1738                          * locked for reading while others are ready to be
1739                          * written so we distinguish these blocks by the
1740                          * R5_Wantprexor bit
1741                          */
1742                         if (dev->towrite &&
1743                             (test_bit(R5_UPTODATE, &dev->flags) ||
1744                             test_bit(R5_Wantcompute, &dev->flags))) {
1745                                 set_bit(R5_Wantprexor, &dev->flags);
1746                                 set_bit(R5_LOCKED, &dev->flags);
1747                                 clear_bit(R5_UPTODATE, &dev->flags);
1748                                 locked++;
1749                         }
1750                 }
1751         }
1752
1753         /* keep the parity disk locked while asynchronous operations
1754          * are in flight
1755          */
1756         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1757         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1758         locked++;
1759
1760         pr_debug("%s: stripe %llu locked: %d pending: %lx\n",
1761                 __func__, (unsigned long long)sh->sector,
1762                 locked, sh->ops.pending);
1763
1764         return locked;
1765 }
1766
1767 /*
1768  * Each stripe/dev can have one or more bion attached.
1769  * toread/towrite point to the first in a chain.
1770  * The bi_next chain must be in order.
1771  */
1772 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1773 {
1774         struct bio **bip;
1775         raid5_conf_t *conf = sh->raid_conf;
1776         int firstwrite=0;
1777
1778         pr_debug("adding bh b#%llu to stripe s#%llu\n",
1779                 (unsigned long long)bi->bi_sector,
1780                 (unsigned long long)sh->sector);
1781
1782
1783         spin_lock(&sh->lock);
1784         spin_lock_irq(&conf->device_lock);
1785         if (forwrite) {
1786                 bip = &sh->dev[dd_idx].towrite;
1787                 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1788                         firstwrite = 1;
1789         } else
1790                 bip = &sh->dev[dd_idx].toread;
1791         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1792                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1793                         goto overlap;
1794                 bip = & (*bip)->bi_next;
1795         }
1796         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1797                 goto overlap;
1798
1799         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1800         if (*bip)
1801                 bi->bi_next = *bip;
1802         *bip = bi;
1803         bi->bi_phys_segments ++;
1804         spin_unlock_irq(&conf->device_lock);
1805         spin_unlock(&sh->lock);
1806
1807         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1808                 (unsigned long long)bi->bi_sector,
1809                 (unsigned long long)sh->sector, dd_idx);
1810
1811         if (conf->mddev->bitmap && firstwrite) {
1812                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1813                                   STRIPE_SECTORS, 0);
1814                 sh->bm_seq = conf->seq_flush+1;
1815                 set_bit(STRIPE_BIT_DELAY, &sh->state);
1816         }
1817
1818         if (forwrite) {
1819                 /* check if page is covered */
1820                 sector_t sector = sh->dev[dd_idx].sector;
1821                 for (bi=sh->dev[dd_idx].towrite;
1822                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1823                              bi && bi->bi_sector <= sector;
1824                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1825                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1826                                 sector = bi->bi_sector + (bi->bi_size>>9);
1827                 }
1828                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1829                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1830         }
1831         return 1;
1832
1833  overlap:
1834         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1835         spin_unlock_irq(&conf->device_lock);
1836         spin_unlock(&sh->lock);
1837         return 0;
1838 }
1839
1840 static void end_reshape(raid5_conf_t *conf);
1841
1842 static int page_is_zero(struct page *p)
1843 {
1844         char *a = page_address(p);
1845         return ((*(u32*)a) == 0 &&
1846                 memcmp(a, a+4, STRIPE_SIZE-4)==0);
1847 }
1848
1849 static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
1850 {
1851         int sectors_per_chunk = conf->chunk_size >> 9;
1852         int pd_idx, dd_idx;
1853         int chunk_offset = sector_div(stripe, sectors_per_chunk);
1854
1855         raid5_compute_sector(stripe * (disks - conf->max_degraded)
1856                              *sectors_per_chunk + chunk_offset,
1857                              disks, disks - conf->max_degraded,
1858                              &dd_idx, &pd_idx, conf);
1859         return pd_idx;
1860 }
1861
1862 static void
1863 handle_requests_to_failed_array(raid5_conf_t *conf, struct stripe_head *sh,
1864                                 struct stripe_head_state *s, int disks,
1865                                 struct bio **return_bi)
1866 {
1867         int i;
1868         for (i = disks; i--; ) {
1869                 struct bio *bi;
1870                 int bitmap_end = 0;
1871
1872                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1873                         mdk_rdev_t *rdev;
1874                         rcu_read_lock();
1875                         rdev = rcu_dereference(conf->disks[i].rdev);
1876                         if (rdev && test_bit(In_sync, &rdev->flags))
1877                                 /* multiple read failures in one stripe */
1878                                 md_error(conf->mddev, rdev);
1879                         rcu_read_unlock();
1880                 }
1881                 spin_lock_irq(&conf->device_lock);
1882                 /* fail all writes first */
1883                 bi = sh->dev[i].towrite;
1884                 sh->dev[i].towrite = NULL;
1885                 if (bi) {
1886                         s->to_write--;
1887                         bitmap_end = 1;
1888                 }
1889
1890                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1891                         wake_up(&conf->wait_for_overlap);
1892
1893                 while (bi && bi->bi_sector <
1894                         sh->dev[i].sector + STRIPE_SECTORS) {
1895                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1896                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
1897                         if (--bi->bi_phys_segments == 0) {
1898                                 md_write_end(conf->mddev);
1899                                 bi->bi_next = *return_bi;
1900                                 *return_bi = bi;
1901                         }
1902                         bi = nextbi;
1903                 }
1904                 /* and fail all 'written' */
1905                 bi = sh->dev[i].written;
1906                 sh->dev[i].written = NULL;
1907                 if (bi) bitmap_end = 1;
1908                 while (bi && bi->bi_sector <
1909                        sh->dev[i].sector + STRIPE_SECTORS) {
1910                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1911                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
1912                         if (--bi->bi_phys_segments == 0) {
1913                                 md_write_end(conf->mddev);
1914                                 bi->bi_next = *return_bi;
1915                                 *return_bi = bi;
1916                         }
1917                         bi = bi2;
1918                 }
1919
1920                 /* fail any reads if this device is non-operational and
1921                  * the data has not reached the cache yet.
1922                  */
1923                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
1924                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1925                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
1926                         bi = sh->dev[i].toread;
1927                         sh->dev[i].toread = NULL;
1928                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1929                                 wake_up(&conf->wait_for_overlap);
1930                         if (bi) s->to_read--;
1931                         while (bi && bi->bi_sector <
1932                                sh->dev[i].sector + STRIPE_SECTORS) {
1933                                 struct bio *nextbi =
1934                                         r5_next_bio(bi, sh->dev[i].sector);
1935                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1936                                 if (--bi->bi_phys_segments == 0) {
1937                                         bi->bi_next = *return_bi;
1938                                         *return_bi = bi;
1939                                 }
1940                                 bi = nextbi;
1941                         }
1942                 }
1943                 spin_unlock_irq(&conf->device_lock);
1944                 if (bitmap_end)
1945                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1946                                         STRIPE_SECTORS, 0, 0);
1947         }
1948
1949         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
1950                 if (atomic_dec_and_test(&conf->pending_full_writes))
1951                         md_wakeup_thread(conf->mddev->thread);
1952 }
1953
1954 /* __handle_issuing_new_read_requests5 - returns 0 if there are no more disks
1955  * to process
1956  */
1957 static int __handle_issuing_new_read_requests5(struct stripe_head *sh,
1958                         struct stripe_head_state *s, int disk_idx, int disks)
1959 {
1960         struct r5dev *dev = &sh->dev[disk_idx];
1961         struct r5dev *failed_dev = &sh->dev[s->failed_num];
1962
1963         /* don't schedule compute operations or reads on the parity block while
1964          * a check is in flight
1965          */
1966         if (disk_idx == sh->pd_idx && sh->check_state)
1967                 return ~0;
1968
1969         /* is the data in this block needed, and can we get it? */
1970         if (!test_bit(R5_LOCKED, &dev->flags) &&
1971             !test_bit(R5_UPTODATE, &dev->flags) && (dev->toread ||
1972             (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1973              s->syncing || s->expanding || (s->failed &&
1974              (failed_dev->toread || (failed_dev->towrite &&
1975              !test_bit(R5_OVERWRITE, &failed_dev->flags)
1976              ))))) {
1977                 /* 1/ We would like to get this block, possibly by computing it,
1978                  * but we might not be able to.
1979                  *
1980                  * 2/ Since parity check operations potentially make the parity
1981                  * block !uptodate it will need to be refreshed before any
1982                  * compute operations on data disks are scheduled.
1983                  *
1984                  * 3/ We hold off parity block re-reads until check operations
1985                  * have quiesced.
1986                  */
1987                 if ((s->uptodate == disks - 1) && !sh->check_state &&
1988                     (s->failed && disk_idx == s->failed_num)) {
1989                         set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
1990                         set_bit(R5_Wantcompute, &dev->flags);
1991                         sh->ops.target = disk_idx;
1992                         s->req_compute = 1;
1993                         sh->ops.count++;
1994                         /* Careful: from this point on 'uptodate' is in the eye
1995                          * of raid5_run_ops which services 'compute' operations
1996                          * before writes. R5_Wantcompute flags a block that will
1997                          * be R5_UPTODATE by the time it is needed for a
1998                          * subsequent operation.
1999                          */
2000                         s->uptodate++;
2001                         return 0; /* uptodate + compute == disks */
2002                 } else if ((s->uptodate < disks - 1) &&
2003                         test_bit(R5_Insync, &dev->flags)) {
2004                         /* Note: we hold off compute operations while checks are
2005                          * in flight, but we still prefer 'compute' over 'read'
2006                          * hence we only read if (uptodate < * disks-1)
2007                          */
2008                         set_bit(R5_LOCKED, &dev->flags);
2009                         set_bit(R5_Wantread, &dev->flags);
2010                         s->locked++;
2011                         pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2012                                 s->syncing);
2013                 }
2014         }
2015
2016         return ~0;
2017 }
2018
2019 static void handle_issuing_new_read_requests5(struct stripe_head *sh,
2020                         struct stripe_head_state *s, int disks)
2021 {
2022         int i;
2023
2024         /* Clear completed compute operations */
2025         if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete)) {
2026                 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2027                 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2028                 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2029         }
2030
2031         /* look for blocks to read/compute, skip this if a compute
2032          * is already in flight, or if the stripe contents are in the
2033          * midst of changing due to a write
2034          */
2035         if (!test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2036                 !test_bit(STRIPE_OP_PREXOR, &sh->ops.pending) &&
2037                 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2038                 for (i = disks; i--; )
2039                         if (__handle_issuing_new_read_requests5(
2040                                 sh, s, i, disks) == 0)
2041                                 break;
2042         }
2043         set_bit(STRIPE_HANDLE, &sh->state);
2044 }
2045
2046 static void handle_issuing_new_read_requests6(struct stripe_head *sh,
2047                         struct stripe_head_state *s, struct r6_state *r6s,
2048                         int disks)
2049 {
2050         int i;
2051         for (i = disks; i--; ) {
2052                 struct r5dev *dev = &sh->dev[i];
2053                 if (!test_bit(R5_LOCKED, &dev->flags) &&
2054                     !test_bit(R5_UPTODATE, &dev->flags) &&
2055                     (dev->toread || (dev->towrite &&
2056                      !test_bit(R5_OVERWRITE, &dev->flags)) ||
2057                      s->syncing || s->expanding ||
2058                      (s->failed >= 1 &&
2059                       (sh->dev[r6s->failed_num[0]].toread ||
2060                        s->to_write)) ||
2061                      (s->failed >= 2 &&
2062                       (sh->dev[r6s->failed_num[1]].toread ||
2063                        s->to_write)))) {
2064                         /* we would like to get this block, possibly
2065                          * by computing it, but we might not be able to
2066                          */
2067                         if ((s->uptodate == disks - 1) &&
2068                             (s->failed && (i == r6s->failed_num[0] ||
2069                                            i == r6s->failed_num[1]))) {
2070                                 pr_debug("Computing stripe %llu block %d\n",
2071                                        (unsigned long long)sh->sector, i);
2072                                 compute_block_1(sh, i, 0);
2073                                 s->uptodate++;
2074                         } else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2075                                 /* Computing 2-failure is *very* expensive; only
2076                                  * do it if failed >= 2
2077                                  */
2078                                 int other;
2079                                 for (other = disks; other--; ) {
2080                                         if (other == i)
2081                                                 continue;
2082                                         if (!test_bit(R5_UPTODATE,
2083                                               &sh->dev[other].flags))
2084                                                 break;
2085                                 }
2086                                 BUG_ON(other < 0);
2087                                 pr_debug("Computing stripe %llu blocks %d,%d\n",
2088                                        (unsigned long long)sh->sector,
2089                                        i, other);
2090                                 compute_block_2(sh, i, other);
2091                                 s->uptodate += 2;
2092                         } else if (test_bit(R5_Insync, &dev->flags)) {
2093                                 set_bit(R5_LOCKED, &dev->flags);
2094                                 set_bit(R5_Wantread, &dev->flags);
2095                                 s->locked++;
2096                                 pr_debug("Reading block %d (sync=%d)\n",
2097                                         i, s->syncing);
2098                         }
2099                 }
2100         }
2101         set_bit(STRIPE_HANDLE, &sh->state);
2102 }
2103
2104
2105 /* handle_completed_write_requests
2106  * any written block on an uptodate or failed drive can be returned.
2107  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2108  * never LOCKED, so we don't need to test 'failed' directly.
2109  */
2110 static void handle_completed_write_requests(raid5_conf_t *conf,
2111         struct stripe_head *sh, int disks, struct bio **return_bi)
2112 {
2113         int i;
2114         struct r5dev *dev;
2115
2116         for (i = disks; i--; )
2117                 if (sh->dev[i].written) {
2118                         dev = &sh->dev[i];
2119                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2120                                 test_bit(R5_UPTODATE, &dev->flags)) {
2121                                 /* We can return any write requests */
2122                                 struct bio *wbi, *wbi2;
2123                                 int bitmap_end = 0;
2124                                 pr_debug("Return write for disc %d\n", i);
2125                                 spin_lock_irq(&conf->device_lock);
2126                                 wbi = dev->written;
2127                                 dev->written = NULL;
2128                                 while (wbi && wbi->bi_sector <
2129                                         dev->sector + STRIPE_SECTORS) {
2130                                         wbi2 = r5_next_bio(wbi, dev->sector);
2131                                         if (--wbi->bi_phys_segments == 0) {
2132                                                 md_write_end(conf->mddev);
2133                                                 wbi->bi_next = *return_bi;
2134                                                 *return_bi = wbi;
2135                                         }
2136                                         wbi = wbi2;
2137                                 }
2138                                 if (dev->towrite == NULL)
2139                                         bitmap_end = 1;
2140                                 spin_unlock_irq(&conf->device_lock);
2141                                 if (bitmap_end)
2142                                         bitmap_endwrite(conf->mddev->bitmap,
2143                                                         sh->sector,
2144                                                         STRIPE_SECTORS,
2145                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2146                                                         0);
2147                         }
2148                 }
2149
2150         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2151                 if (atomic_dec_and_test(&conf->pending_full_writes))
2152                         md_wakeup_thread(conf->mddev->thread);
2153 }
2154
2155 static void handle_issuing_new_write_requests5(raid5_conf_t *conf,
2156                 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2157 {
2158         int rmw = 0, rcw = 0, i;
2159         for (i = disks; i--; ) {
2160                 /* would I have to read this buffer for read_modify_write */
2161                 struct r5dev *dev = &sh->dev[i];
2162                 if ((dev->towrite || i == sh->pd_idx) &&
2163                     !test_bit(R5_LOCKED, &dev->flags) &&
2164                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2165                       test_bit(R5_Wantcompute, &dev->flags))) {
2166                         if (test_bit(R5_Insync, &dev->flags))
2167                                 rmw++;
2168                         else
2169                                 rmw += 2*disks;  /* cannot read it */
2170                 }
2171                 /* Would I have to read this buffer for reconstruct_write */
2172                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2173                     !test_bit(R5_LOCKED, &dev->flags) &&
2174                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2175                     test_bit(R5_Wantcompute, &dev->flags))) {
2176                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2177                         else
2178                                 rcw += 2*disks;
2179                 }
2180         }
2181         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2182                 (unsigned long long)sh->sector, rmw, rcw);
2183         set_bit(STRIPE_HANDLE, &sh->state);
2184         if (rmw < rcw && rmw > 0)
2185                 /* prefer read-modify-write, but need to get some data */
2186                 for (i = disks; i--; ) {
2187                         struct r5dev *dev = &sh->dev[i];
2188                         if ((dev->towrite || i == sh->pd_idx) &&
2189                             !test_bit(R5_LOCKED, &dev->flags) &&
2190                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2191                             test_bit(R5_Wantcompute, &dev->flags)) &&
2192                             test_bit(R5_Insync, &dev->flags)) {
2193                                 if (
2194                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2195                                         pr_debug("Read_old block "
2196                                                 "%d for r-m-w\n", i);
2197                                         set_bit(R5_LOCKED, &dev->flags);
2198                                         set_bit(R5_Wantread, &dev->flags);
2199                                         s->locked++;
2200                                 } else {
2201                                         set_bit(STRIPE_DELAYED, &sh->state);
2202                                         set_bit(STRIPE_HANDLE, &sh->state);
2203                                 }
2204                         }
2205                 }
2206         if (rcw <= rmw && rcw > 0)
2207                 /* want reconstruct write, but need to get some data */
2208                 for (i = disks; i--; ) {
2209                         struct r5dev *dev = &sh->dev[i];
2210                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2211                             i != sh->pd_idx &&
2212                             !test_bit(R5_LOCKED, &dev->flags) &&
2213                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2214                             test_bit(R5_Wantcompute, &dev->flags)) &&
2215                             test_bit(R5_Insync, &dev->flags)) {
2216                                 if (
2217                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2218                                         pr_debug("Read_old block "
2219                                                 "%d for Reconstruct\n", i);
2220                                         set_bit(R5_LOCKED, &dev->flags);
2221                                         set_bit(R5_Wantread, &dev->flags);
2222                                         s->locked++;
2223                                 } else {
2224                                         set_bit(STRIPE_DELAYED, &sh->state);
2225                                         set_bit(STRIPE_HANDLE, &sh->state);
2226                                 }
2227                         }
2228                 }
2229         /* now if nothing is locked, and if we have enough data,
2230          * we can start a write request
2231          */
2232         /* since handle_stripe can be called at any time we need to handle the
2233          * case where a compute block operation has been submitted and then a
2234          * subsequent call wants to start a write request.  raid5_run_ops only
2235          * handles the case where compute block and postxor are requested
2236          * simultaneously.  If this is not the case then new writes need to be
2237          * held off until the compute completes.
2238          */
2239         if ((s->req_compute ||
2240             !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) &&
2241                 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2242                 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2243                 s->locked += handle_write_operations5(sh, rcw == 0, 0);
2244 }
2245
2246 static void handle_issuing_new_write_requests6(raid5_conf_t *conf,
2247                 struct stripe_head *sh, struct stripe_head_state *s,
2248                 struct r6_state *r6s, int disks)
2249 {
2250         int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2251         int qd_idx = r6s->qd_idx;
2252         for (i = disks; i--; ) {
2253                 struct r5dev *dev = &sh->dev[i];
2254                 /* Would I have to read this buffer for reconstruct_write */
2255                 if (!test_bit(R5_OVERWRITE, &dev->flags)
2256                     && i != pd_idx && i != qd_idx
2257                     && (!test_bit(R5_LOCKED, &dev->flags)
2258                             ) &&
2259                     !test_bit(R5_UPTODATE, &dev->flags)) {
2260                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2261                         else {
2262                                 pr_debug("raid6: must_compute: "
2263                                         "disk %d flags=%#lx\n", i, dev->flags);
2264                                 must_compute++;
2265                         }
2266                 }
2267         }
2268         pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2269                (unsigned long long)sh->sector, rcw, must_compute);
2270         set_bit(STRIPE_HANDLE, &sh->state);
2271
2272         if (rcw > 0)
2273                 /* want reconstruct write, but need to get some data */
2274                 for (i = disks; i--; ) {
2275                         struct r5dev *dev = &sh->dev[i];
2276                         if (!test_bit(R5_OVERWRITE, &dev->flags)
2277                             && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2278                             && !test_bit(R5_LOCKED, &dev->flags) &&
2279                             !test_bit(R5_UPTODATE, &dev->flags) &&
2280                             test_bit(R5_Insync, &dev->flags)) {
2281                                 if (
2282                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2283                                         pr_debug("Read_old stripe %llu "
2284                                                 "block %d for Reconstruct\n",
2285                                              (unsigned long long)sh->sector, i);
2286                                         set_bit(R5_LOCKED, &dev->flags);
2287                                         set_bit(R5_Wantread, &dev->flags);
2288                                         s->locked++;
2289                                 } else {
2290                                         pr_debug("Request delayed stripe %llu "
2291                                                 "block %d for Reconstruct\n",
2292                                              (unsigned long long)sh->sector, i);
2293                                         set_bit(STRIPE_DELAYED, &sh->state);
2294                                         set_bit(STRIPE_HANDLE, &sh->state);
2295                                 }
2296                         }
2297                 }
2298         /* now if nothing is locked, and if we have enough data, we can start a
2299          * write request
2300          */
2301         if (s->locked == 0 && rcw == 0 &&
2302             !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2303                 if (must_compute > 0) {
2304                         /* We have failed blocks and need to compute them */
2305                         switch (s->failed) {
2306                         case 0:
2307                                 BUG();
2308                         case 1:
2309                                 compute_block_1(sh, r6s->failed_num[0], 0);
2310                                 break;
2311                         case 2:
2312                                 compute_block_2(sh, r6s->failed_num[0],
2313                                                 r6s->failed_num[1]);
2314                                 break;
2315                         default: /* This request should have been failed? */
2316                                 BUG();
2317                         }
2318                 }
2319
2320                 pr_debug("Computing parity for stripe %llu\n",
2321                         (unsigned long long)sh->sector);
2322                 compute_parity6(sh, RECONSTRUCT_WRITE);
2323                 /* now every locked buffer is ready to be written */
2324                 for (i = disks; i--; )
2325                         if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2326                                 pr_debug("Writing stripe %llu block %d\n",
2327                                        (unsigned long long)sh->sector, i);
2328                                 s->locked++;
2329                                 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2330                         }
2331                 if (s->locked == disks)
2332                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2333                                 atomic_inc(&conf->pending_full_writes);
2334                 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2335                 set_bit(STRIPE_INSYNC, &sh->state);
2336
2337                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2338                         atomic_dec(&conf->preread_active_stripes);
2339                         if (atomic_read(&conf->preread_active_stripes) <
2340                             IO_THRESHOLD)
2341                                 md_wakeup_thread(conf->mddev->thread);
2342                 }
2343         }
2344 }
2345
2346 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2347                                 struct stripe_head_state *s, int disks)
2348 {
2349         struct r5dev *dev = NULL;
2350
2351         set_bit(STRIPE_HANDLE, &sh->state);
2352
2353         switch (sh->check_state) {
2354         case check_state_idle:
2355                 /* start a new check operation if there are no failures */
2356                 if (s->failed == 0) {
2357                         BUG_ON(s->uptodate != disks);
2358                         sh->check_state = check_state_run;
2359                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2360                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2361                         s->uptodate--;
2362                         break;
2363                 }
2364                 dev = &sh->dev[s->failed_num];
2365                 /* fall through */
2366         case check_state_compute_result:
2367                 sh->check_state = check_state_idle;
2368                 if (!dev)
2369                         dev = &sh->dev[sh->pd_idx];
2370
2371                 /* check that a write has not made the stripe insync */
2372                 if (test_bit(STRIPE_INSYNC, &sh->state))
2373                         break;
2374
2375                 /* either failed parity check, or recovery is happening */
2376                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2377                 BUG_ON(s->uptodate != disks);
2378
2379                 set_bit(R5_LOCKED, &dev->flags);
2380                 s->locked++;
2381                 set_bit(R5_Wantwrite, &dev->flags);
2382
2383                 clear_bit(STRIPE_DEGRADED, &sh->state);
2384                 set_bit(STRIPE_INSYNC, &sh->state);
2385                 break;
2386         case check_state_run:
2387                 break; /* we will be called again upon completion */
2388         case check_state_check_result:
2389                 sh->check_state = check_state_idle;
2390
2391                 /* if a failure occurred during the check operation, leave
2392                  * STRIPE_INSYNC not set and let the stripe be handled again
2393                  */
2394                 if (s->failed)
2395                         break;
2396
2397                 /* handle a successful check operation, if parity is correct
2398                  * we are done.  Otherwise update the mismatch count and repair
2399                  * parity if !MD_RECOVERY_CHECK
2400                  */
2401                 if (sh->ops.zero_sum_result == 0)
2402                         /* parity is correct (on disc,
2403                          * not in buffer any more)
2404                          */
2405                         set_bit(STRIPE_INSYNC, &sh->state);
2406                 else {
2407                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2408                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2409                                 /* don't try to repair!! */
2410                                 set_bit(STRIPE_INSYNC, &sh->state);
2411                         else {
2412                                 sh->check_state = check_state_compute_run;
2413                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2414                                 set_bit(R5_Wantcompute,
2415                                         &sh->dev[sh->pd_idx].flags);
2416                                 sh->ops.target = sh->pd_idx;
2417                                 s->uptodate++;
2418                         }
2419                 }
2420                 break;
2421         case check_state_compute_run:
2422                 break;
2423         default:
2424                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2425                        __func__, sh->check_state,
2426                        (unsigned long long) sh->sector);
2427                 BUG();
2428         }
2429 }
2430
2431
2432 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2433                                 struct stripe_head_state *s,
2434                                 struct r6_state *r6s, struct page *tmp_page,
2435                                 int disks)
2436 {
2437         int update_p = 0, update_q = 0;
2438         struct r5dev *dev;
2439         int pd_idx = sh->pd_idx;
2440         int qd_idx = r6s->qd_idx;
2441
2442         set_bit(STRIPE_HANDLE, &sh->state);
2443
2444         BUG_ON(s->failed > 2);
2445         BUG_ON(s->uptodate < disks);
2446         /* Want to check and possibly repair P and Q.
2447          * However there could be one 'failed' device, in which
2448          * case we can only check one of them, possibly using the
2449          * other to generate missing data
2450          */
2451
2452         /* If !tmp_page, we cannot do the calculations,
2453          * but as we have set STRIPE_HANDLE, we will soon be called
2454          * by stripe_handle with a tmp_page - just wait until then.
2455          */
2456         if (tmp_page) {
2457                 if (s->failed == r6s->q_failed) {
2458                         /* The only possible failed device holds 'Q', so it
2459                          * makes sense to check P (If anything else were failed,
2460                          * we would have used P to recreate it).
2461                          */
2462                         compute_block_1(sh, pd_idx, 1);
2463                         if (!page_is_zero(sh->dev[pd_idx].page)) {
2464                                 compute_block_1(sh, pd_idx, 0);
2465                                 update_p = 1;
2466                         }
2467                 }
2468                 if (!r6s->q_failed && s->failed < 2) {
2469                         /* q is not failed, and we didn't use it to generate
2470                          * anything, so it makes sense to check it
2471                          */
2472                         memcpy(page_address(tmp_page),
2473                                page_address(sh->dev[qd_idx].page),
2474                                STRIPE_SIZE);
2475                         compute_parity6(sh, UPDATE_PARITY);
2476                         if (memcmp(page_address(tmp_page),
2477                                    page_address(sh->dev[qd_idx].page),
2478                                    STRIPE_SIZE) != 0) {
2479                                 clear_bit(STRIPE_INSYNC, &sh->state);
2480                                 update_q = 1;
2481                         }
2482                 }
2483                 if (update_p || update_q) {
2484                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2485                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2486                                 /* don't try to repair!! */
2487                                 update_p = update_q = 0;
2488                 }
2489
2490                 /* now write out any block on a failed drive,
2491                  * or P or Q if they need it
2492                  */
2493
2494                 if (s->failed == 2) {
2495                         dev = &sh->dev[r6s->failed_num[1]];
2496                         s->locked++;
2497                         set_bit(R5_LOCKED, &dev->flags);
2498                         set_bit(R5_Wantwrite, &dev->flags);
2499                 }
2500                 if (s->failed >= 1) {
2501                         dev = &sh->dev[r6s->failed_num[0]];
2502                         s->locked++;
2503                         set_bit(R5_LOCKED, &dev->flags);
2504                         set_bit(R5_Wantwrite, &dev->flags);
2505                 }
2506
2507                 if (update_p) {
2508                         dev = &sh->dev[pd_idx];
2509                         s->locked++;
2510                         set_bit(R5_LOCKED, &dev->flags);
2511                         set_bit(R5_Wantwrite, &dev->flags);
2512                 }
2513                 if (update_q) {
2514                         dev = &sh->dev[qd_idx];
2515                         s->locked++;
2516                         set_bit(R5_LOCKED, &dev->flags);
2517                         set_bit(R5_Wantwrite, &dev->flags);
2518                 }
2519                 clear_bit(STRIPE_DEGRADED, &sh->state);
2520
2521                 set_bit(STRIPE_INSYNC, &sh->state);
2522         }
2523 }
2524
2525 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2526                                 struct r6_state *r6s)
2527 {
2528         int i;
2529
2530         /* We have read all the blocks in this stripe and now we need to
2531          * copy some of them into a target stripe for expand.
2532          */
2533         struct dma_async_tx_descriptor *tx = NULL;
2534         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2535         for (i = 0; i < sh->disks; i++)
2536                 if (i != sh->pd_idx && (!r6s || i != r6s->qd_idx)) {
2537                         int dd_idx, pd_idx, j;
2538                         struct stripe_head *sh2;
2539
2540                         sector_t bn = compute_blocknr(sh, i);
2541                         sector_t s = raid5_compute_sector(bn, conf->raid_disks,
2542                                                 conf->raid_disks -
2543                                                 conf->max_degraded, &dd_idx,
2544                                                 &pd_idx, conf);
2545                         sh2 = get_active_stripe(conf, s, conf->raid_disks,
2546                                                 pd_idx, 1);
2547                         if (sh2 == NULL)
2548                                 /* so far only the early blocks of this stripe
2549                                  * have been requested.  When later blocks
2550                                  * get requested, we will try again
2551                                  */
2552                                 continue;
2553                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2554                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2555                                 /* must have already done this block */
2556                                 release_stripe(sh2);
2557                                 continue;
2558                         }
2559
2560                         /* place all the copies on one channel */
2561                         tx = async_memcpy(sh2->dev[dd_idx].page,
2562                                 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2563                                 ASYNC_TX_DEP_ACK, tx, NULL, NULL);
2564
2565                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2566                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2567                         for (j = 0; j < conf->raid_disks; j++)
2568                                 if (j != sh2->pd_idx &&
2569                                     (!r6s || j != raid6_next_disk(sh2->pd_idx,
2570                                                                  sh2->disks)) &&
2571                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
2572                                         break;
2573                         if (j == conf->raid_disks) {
2574                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2575                                 set_bit(STRIPE_HANDLE, &sh2->state);
2576                         }
2577                         release_stripe(sh2);
2578
2579                 }
2580         /* done submitting copies, wait for them to complete */
2581         if (tx) {
2582                 async_tx_ack(tx);
2583                 dma_wait_for_async_tx(tx);
2584         }
2585 }
2586
2587
2588 /*
2589  * handle_stripe - do things to a stripe.
2590  *
2591  * We lock the stripe and then examine the state of various bits
2592  * to see what needs to be done.
2593  * Possible results:
2594  *    return some read request which now have data
2595  *    return some write requests which are safely on disc
2596  *    schedule a read on some buffers
2597  *    schedule a write of some buffers
2598  *    return confirmation of parity correctness
2599  *
2600  * buffers are taken off read_list or write_list, and bh_cache buffers
2601  * get BH_Lock set before the stripe lock is released.
2602  *
2603  */
2604
2605 static void handle_stripe5(struct stripe_head *sh)
2606 {
2607         raid5_conf_t *conf = sh->raid_conf;
2608         int disks = sh->disks, i;
2609         struct bio *return_bi = NULL;
2610         struct stripe_head_state s;
2611         struct r5dev *dev;
2612         unsigned long pending = 0;
2613         mdk_rdev_t *blocked_rdev = NULL;
2614         int prexor;
2615
2616         memset(&s, 0, sizeof(s));
2617         pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d "
2618                 "ops=%lx:%lx:%lx\n", (unsigned long long)sh->sector, sh->state,
2619                 atomic_read(&sh->count), sh->pd_idx,
2620                 sh->ops.pending, sh->ops.ack, sh->ops.complete);
2621
2622         spin_lock(&sh->lock);
2623         clear_bit(STRIPE_HANDLE, &sh->state);
2624         clear_bit(STRIPE_DELAYED, &sh->state);
2625
2626         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2627         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2628         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2629
2630         /* Now to look around and see what can be done */
2631         rcu_read_lock();
2632         for (i=disks; i--; ) {
2633                 mdk_rdev_t *rdev;
2634                 struct r5dev *dev = &sh->dev[i];
2635                 clear_bit(R5_Insync, &dev->flags);
2636
2637                 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2638                         "written %p\n", i, dev->flags, dev->toread, dev->read,
2639                         dev->towrite, dev->written);
2640
2641                 /* maybe we can request a biofill operation
2642                  *
2643                  * new wantfill requests are only permitted while
2644                  * ops_complete_biofill is guaranteed to be inactive
2645                  */
2646                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2647                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2648                         set_bit(R5_Wantfill, &dev->flags);
2649
2650                 /* now count some things */
2651                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2652                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2653                 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2654
2655                 if (test_bit(R5_Wantfill, &dev->flags))
2656                         s.to_fill++;
2657                 else if (dev->toread)
2658                         s.to_read++;
2659                 if (dev->towrite) {
2660                         s.to_write++;
2661                         if (!test_bit(R5_OVERWRITE, &dev->flags))
2662                                 s.non_overwrite++;
2663                 }
2664                 if (dev->written)
2665                         s.written++;
2666                 rdev = rcu_dereference(conf->disks[i].rdev);
2667                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2668                         blocked_rdev = rdev;
2669                         atomic_inc(&rdev->nr_pending);
2670                         break;
2671                 }
2672                 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2673                         /* The ReadError flag will just be confusing now */
2674                         clear_bit(R5_ReadError, &dev->flags);
2675                         clear_bit(R5_ReWrite, &dev->flags);
2676                 }
2677                 if (!rdev || !test_bit(In_sync, &rdev->flags)
2678                     || test_bit(R5_ReadError, &dev->flags)) {
2679                         s.failed++;
2680                         s.failed_num = i;
2681                 } else
2682                         set_bit(R5_Insync, &dev->flags);
2683         }
2684         rcu_read_unlock();
2685
2686         if (unlikely(blocked_rdev)) {
2687                 set_bit(STRIPE_HANDLE, &sh->state);
2688                 goto unlock;
2689         }
2690
2691         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
2692                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
2693                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
2694         }
2695
2696         pr_debug("locked=%d uptodate=%d to_read=%d"
2697                 " to_write=%d failed=%d failed_num=%d\n",
2698                 s.locked, s.uptodate, s.to_read, s.to_write,
2699                 s.failed, s.failed_num);
2700         /* check if the array has lost two devices and, if so, some requests might
2701          * need to be failed
2702          */
2703         if (s.failed > 1 && s.to_read+s.to_write+s.written)
2704                 handle_requests_to_failed_array(conf, sh, &s, disks,
2705                                                 &return_bi);
2706         if (s.failed > 1 && s.syncing) {
2707                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2708                 clear_bit(STRIPE_SYNCING, &sh->state);
2709                 s.syncing = 0;
2710         }
2711
2712         /* might be able to return some write requests if the parity block
2713          * is safe, or on a failed drive
2714          */
2715         dev = &sh->dev[sh->pd_idx];
2716         if ( s.written &&
2717              ((test_bit(R5_Insync, &dev->flags) &&
2718                !test_bit(R5_LOCKED, &dev->flags) &&
2719                test_bit(R5_UPTODATE, &dev->flags)) ||
2720                (s.failed == 1 && s.failed_num == sh->pd_idx)))
2721                 handle_completed_write_requests(conf, sh, disks, &return_bi);
2722
2723         /* Now we might consider reading some blocks, either to check/generate
2724          * parity, or to satisfy requests
2725          * or to load a block that is being partially written.
2726          */
2727         if (s.to_read || s.non_overwrite ||
2728             (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding ||
2729             test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
2730                 handle_issuing_new_read_requests5(sh, &s, disks);
2731
2732         /* Now we check to see if any write operations have recently
2733          * completed
2734          */
2735
2736         /* leave prexor set until postxor is done, allows us to distinguish
2737          * a rmw from a rcw during biodrain
2738          */
2739         prexor = 0;
2740         if (test_bit(STRIPE_OP_PREXOR, &sh->ops.complete) &&
2741                 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2742
2743                 prexor = 1;
2744                 clear_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
2745                 clear_bit(STRIPE_OP_PREXOR, &sh->ops.ack);
2746                 clear_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
2747
2748                 for (i = disks; i--; )
2749                         clear_bit(R5_Wantprexor, &sh->dev[i].flags);
2750         }
2751
2752         /* if only POSTXOR is set then this is an 'expand' postxor */
2753         if (test_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete) &&
2754                 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2755
2756                 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
2757                 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.ack);
2758                 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
2759
2760                 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2761                 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2762                 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2763
2764                 /* All the 'written' buffers and the parity block are ready to
2765                  * be written back to disk
2766                  */
2767                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2768                 for (i = disks; i--; ) {
2769                         dev = &sh->dev[i];
2770                         if (test_bit(R5_LOCKED, &dev->flags) &&
2771                                 (i == sh->pd_idx || dev->written)) {
2772                                 pr_debug("Writing block %d\n", i);
2773                                 set_bit(R5_Wantwrite, &dev->flags);
2774                                 if (prexor)
2775                                         continue;
2776                                 if (!test_bit(R5_Insync, &dev->flags) ||
2777                                     (i == sh->pd_idx && s.failed == 0))
2778                                         set_bit(STRIPE_INSYNC, &sh->state);
2779                         }
2780                 }
2781                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2782                         atomic_dec(&conf->preread_active_stripes);
2783                         if (atomic_read(&conf->preread_active_stripes) <
2784                                 IO_THRESHOLD)
2785                                 md_wakeup_thread(conf->mddev->thread);
2786                 }
2787         }
2788
2789         /* Now to consider new write requests and what else, if anything
2790          * should be read.  We do not handle new writes when:
2791          * 1/ A 'write' operation (copy+xor) is already in flight.
2792          * 2/ A 'check' operation is in flight, as it may clobber the parity
2793          *    block.
2794          */
2795         if (s.to_write && !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending) &&
2796             !sh->check_state)
2797                 handle_issuing_new_write_requests5(conf, sh, &s, disks);
2798
2799         /* maybe we need to check and possibly fix the parity for this stripe
2800          * Any reads will already have been scheduled, so we just see if enough
2801          * data is available.  The parity check is held off while parity
2802          * dependent operations are in flight.
2803          */
2804         if (sh->check_state ||
2805             (s.syncing && s.locked == 0 &&
2806              !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2807              !test_bit(STRIPE_INSYNC, &sh->state)))
2808                 handle_parity_checks5(conf, sh, &s, disks);
2809
2810         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2811                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2812                 clear_bit(STRIPE_SYNCING, &sh->state);
2813         }
2814
2815         /* If the failed drive is just a ReadError, then we might need to progress
2816          * the repair/check process
2817          */
2818         if (s.failed == 1 && !conf->mddev->ro &&
2819             test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2820             && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2821             && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
2822                 ) {
2823                 dev = &sh->dev[s.failed_num];
2824                 if (!test_bit(R5_ReWrite, &dev->flags)) {
2825                         set_bit(R5_Wantwrite, &dev->flags);
2826                         set_bit(R5_ReWrite, &dev->flags);
2827                         set_bit(R5_LOCKED, &dev->flags);
2828                         s.locked++;
2829                 } else {
2830                         /* let's read it back */
2831                         set_bit(R5_Wantread, &dev->flags);
2832                         set_bit(R5_LOCKED, &dev->flags);
2833                         s.locked++;
2834                 }
2835         }
2836
2837         /* Finish postxor operations initiated by the expansion
2838          * process
2839          */
2840         if (test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete) &&
2841                 !test_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending)) {
2842
2843                 clear_bit(STRIPE_EXPANDING, &sh->state);
2844
2845                 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2846                 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2847                 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2848
2849                 for (i = conf->raid_disks; i--; )
2850                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
2851                         set_bit(R5_LOCKED, &dev->flags);
2852                         s.locked++;
2853         }
2854
2855         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2856                 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2857                 /* Need to write out all blocks after computing parity */
2858                 sh->disks = conf->raid_disks;
2859                 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
2860                         conf->raid_disks);
2861                 s.locked += handle_write_operations5(sh, 1, 1);
2862         } else if (s.expanded &&
2863                    s.locked == 0 &&
2864                 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2865                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
2866                 atomic_dec(&conf->reshape_stripes);
2867                 wake_up(&conf->wait_for_overlap);
2868                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2869         }
2870
2871         if (s.expanding && s.locked == 0 &&
2872             !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
2873                 handle_stripe_expansion(conf, sh, NULL);
2874
2875         if (sh->ops.count)
2876                 pending = get_stripe_work(sh);
2877
2878  unlock:
2879         spin_unlock(&sh->lock);
2880
2881         /* wait for this device to become unblocked */
2882         if (unlikely(blocked_rdev))
2883                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
2884
2885         if (pending || s.ops_request)
2886                 raid5_run_ops(sh, pending, s.ops_request);
2887
2888         ops_run_io(sh, &s);
2889
2890         return_io(return_bi);
2891 }
2892
2893 static void handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
2894 {
2895         raid6_conf_t *conf = sh->raid_conf;
2896         int disks = sh->disks;
2897         struct bio *return_bi = NULL;
2898         int i, pd_idx = sh->pd_idx;
2899         struct stripe_head_state s;
2900         struct r6_state r6s;
2901         struct r5dev *dev, *pdev, *qdev;
2902         mdk_rdev_t *blocked_rdev = NULL;
2903
2904         r6s.qd_idx = raid6_next_disk(pd_idx, disks);
2905         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
2906                 "pd_idx=%d, qd_idx=%d\n",
2907                (unsigned long long)sh->sector, sh->state,
2908                atomic_read(&sh->count), pd_idx, r6s.qd_idx);
2909         memset(&s, 0, sizeof(s));
2910
2911         spin_lock(&sh->lock);
2912         clear_bit(STRIPE_HANDLE, &sh->state);
2913         clear_bit(STRIPE_DELAYED, &sh->state);
2914
2915         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2916         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2917         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2918         /* Now to look around and see what can be done */
2919
2920         rcu_read_lock();
2921         for (i=disks; i--; ) {
2922                 mdk_rdev_t *rdev;
2923                 dev = &sh->dev[i];
2924                 clear_bit(R5_Insync, &dev->flags);
2925
2926                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
2927                         i, dev->flags, dev->toread, dev->towrite, dev->written);
2928                 /* maybe we can reply to a read */
2929                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
2930                         struct bio *rbi, *rbi2;
2931                         pr_debug("Return read for disc %d\n", i);
2932                         spin_lock_irq(&conf->device_lock);
2933                         rbi = dev->toread;
2934                         dev->toread = NULL;
2935                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
2936                                 wake_up(&conf->wait_for_overlap);
2937                         spin_unlock_irq(&conf->device_lock);
2938                         while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
2939                                 copy_data(0, rbi, dev->page, dev->sector);
2940                                 rbi2 = r5_next_bio(rbi, dev->sector);
2941                                 spin_lock_irq(&conf->device_lock);
2942                                 if (--rbi->bi_phys_segments == 0) {
2943                                         rbi->bi_next = return_bi;
2944                                         return_bi = rbi;
2945                                 }
2946                                 spin_unlock_irq(&conf->device_lock);
2947                                 rbi = rbi2;
2948                         }
2949                 }
2950
2951                 /* now count some things */
2952                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2953                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2954
2955
2956                 if (dev->toread)
2957                         s.to_read++;
2958                 if (dev->towrite) {
2959                         s.to_write++;
2960                         if (!test_bit(R5_OVERWRITE, &dev->flags))
2961                                 s.non_overwrite++;
2962                 }
2963                 if (dev->written)
2964                         s.written++;
2965                 rdev = rcu_dereference(conf->disks[i].rdev);
2966                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2967                         blocked_rdev = rdev;
2968                         atomic_inc(&rdev->nr_pending);
2969                         break;
2970                 }
2971                 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2972                         /* The ReadError flag will just be confusing now */
2973                         clear_bit(R5_ReadError, &dev->flags);
2974                         clear_bit(R5_ReWrite, &dev->flags);
2975                 }
2976                 if (!rdev || !test_bit(In_sync, &rdev->flags)
2977                     || test_bit(R5_ReadError, &dev->flags)) {
2978                         if (s.failed < 2)
2979                                 r6s.failed_num[s.failed] = i;
2980                         s.failed++;
2981                 } else
2982                         set_bit(R5_Insync, &dev->flags);
2983         }
2984         rcu_read_unlock();
2985
2986         if (unlikely(blocked_rdev)) {
2987                 set_bit(STRIPE_HANDLE, &sh->state);
2988                 goto unlock;
2989         }
2990         pr_debug("locked=%d uptodate=%d to_read=%d"
2991                " to_write=%d failed=%d failed_num=%d,%d\n",
2992                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
2993                r6s.failed_num[0], r6s.failed_num[1]);
2994         /* check if the array has lost >2 devices and, if so, some requests
2995          * might need to be failed
2996          */
2997         if (s.failed > 2 && s.to_read+s.to_write+s.written)
2998                 handle_requests_to_failed_array(conf, sh, &s, disks,
2999                                                 &return_bi);
3000         if (s.failed > 2 && s.syncing) {
3001                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3002                 clear_bit(STRIPE_SYNCING, &sh->state);
3003                 s.syncing = 0;
3004         }
3005
3006         /*
3007          * might be able to return some write requests if the parity blocks
3008          * are safe, or on a failed drive
3009          */
3010         pdev = &sh->dev[pd_idx];
3011         r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3012                 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3013         qdev = &sh->dev[r6s.qd_idx];
3014         r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == r6s.qd_idx)
3015                 || (s.failed >= 2 && r6s.failed_num[1] == r6s.qd_idx);
3016
3017         if ( s.written &&
3018              ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3019                              && !test_bit(R5_LOCKED, &pdev->flags)
3020                              && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3021              ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3022                              && !test_bit(R5_LOCKED, &qdev->flags)
3023                              && test_bit(R5_UPTODATE, &qdev->flags)))))
3024                 handle_completed_write_requests(conf, sh, disks, &return_bi);
3025
3026         /* Now we might consider reading some blocks, either to check/generate
3027          * parity, or to satisfy requests
3028          * or to load a block that is being partially written.
3029          */
3030         if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3031             (s.syncing && (s.uptodate < disks)) || s.expanding)
3032                 handle_issuing_new_read_requests6(sh, &s, &r6s, disks);
3033
3034         /* now to consider writing and what else, if anything should be read */
3035         if (s.to_write)
3036                 handle_issuing_new_write_requests6(conf, sh, &s, &r6s, disks);
3037
3038         /* maybe we need to check and possibly fix the parity for this stripe
3039          * Any reads will already have been scheduled, so we just see if enough
3040          * data is available
3041          */
3042         if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
3043                 handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
3044
3045         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3046                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3047                 clear_bit(STRIPE_SYNCING, &sh->state);
3048         }
3049
3050         /* If the failed drives are just a ReadError, then we might need
3051          * to progress the repair/check process
3052          */
3053         if (s.failed <= 2 && !conf->mddev->ro)
3054                 for (i = 0; i < s.failed; i++) {
3055                         dev = &sh->dev[r6s.failed_num[i]];
3056                         if (test_bit(R5_ReadError, &dev->flags)
3057                             && !test_bit(R5_LOCKED, &dev->flags)
3058                             && test_bit(R5_UPTODATE, &dev->flags)
3059                                 ) {
3060                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3061                                         set_bit(R5_Wantwrite, &dev->flags);
3062                                         set_bit(R5_ReWrite, &dev->flags);
3063                                         set_bit(R5_LOCKED, &dev->flags);
3064                                 } else {
3065                                         /* let's read it back */
3066                                         set_bit(R5_Wantread, &dev->flags);
3067                                         set_bit(R5_LOCKED, &dev->flags);
3068                                 }
3069                         }
3070                 }
3071
3072         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
3073                 /* Need to write out all blocks after computing P&Q */
3074                 sh->disks = conf->raid_disks;
3075                 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
3076                                              conf->raid_disks);
3077                 compute_parity6(sh, RECONSTRUCT_WRITE);
3078                 for (i = conf->raid_disks ; i-- ;  ) {
3079                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3080                         s.locked++;
3081                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3082                 }
3083                 clear_bit(STRIPE_EXPANDING, &sh->state);
3084         } else if (s.expanded) {
3085                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3086                 atomic_dec(&conf->reshape_stripes);
3087                 wake_up(&conf->wait_for_overlap);
3088                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3089         }
3090
3091         if (s.expanding && s.locked == 0 &&
3092             !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
3093                 handle_stripe_expansion(conf, sh, &r6s);
3094
3095  unlock:
3096         spin_unlock(&sh->lock);
3097
3098         /* wait for this device to become unblocked */
3099         if (unlikely(blocked_rdev))
3100                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3101
3102         ops_run_io(sh, &s);
3103
3104         return_io(return_bi);
3105 }
3106
3107 static void handle_stripe(struct stripe_head *sh, struct page *tmp_page)
3108 {
3109         if (sh->raid_conf->level == 6)
3110                 handle_stripe6(sh, tmp_page);
3111         else
3112                 handle_stripe5(sh);
3113 }
3114
3115
3116
3117 static void raid5_activate_delayed(raid5_conf_t *conf)
3118 {
3119         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3120                 while (!list_empty(&conf->delayed_list)) {
3121                         struct list_head *l = conf->delayed_list.next;
3122                         struct stripe_head *sh;
3123                         sh = list_entry(l, struct stripe_head, lru);
3124                         list_del_init(l);
3125                         clear_bit(STRIPE_DELAYED, &sh->state);
3126                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3127                                 atomic_inc(&conf->preread_active_stripes);
3128                         list_add_tail(&sh->lru, &conf->hold_list);
3129                 }
3130         } else
3131                 blk_plug_device(conf->mddev->queue);
3132 }
3133
3134 static void activate_bit_delay(raid5_conf_t *conf)
3135 {
3136         /* device_lock is held */
3137         struct list_head head;
3138         list_add(&head, &conf->bitmap_list);
3139         list_del_init(&conf->bitmap_list);
3140         while (!list_empty(&head)) {
3141                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3142                 list_del_init(&sh->lru);
3143                 atomic_inc(&sh->count);
3144                 __release_stripe(conf, sh);
3145         }
3146 }
3147
3148 static void unplug_slaves(mddev_t *mddev)
3149 {
3150         raid5_conf_t *conf = mddev_to_conf(mddev);
3151         int i;
3152
3153         rcu_read_lock();
3154         for (i=0; i<mddev->raid_disks; i++) {
3155                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3156                 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3157                         struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3158
3159                         atomic_inc(&rdev->nr_pending);
3160                         rcu_read_unlock();
3161
3162                         blk_unplug(r_queue);
3163
3164                         rdev_dec_pending(rdev, mddev);
3165                         rcu_read_lock();
3166                 }
3167         }
3168         rcu_read_unlock();
3169 }
3170
3171 static void raid5_unplug_device(struct request_queue *q)
3172 {
3173         mddev_t *mddev = q->queuedata;
3174         raid5_conf_t *conf = mddev_to_conf(mddev);
3175         unsigned long flags;
3176
3177         spin_lock_irqsave(&conf->device_lock, flags);
3178
3179         if (blk_remove_plug(q)) {
3180                 conf->seq_flush++;
3181                 raid5_activate_delayed(conf);
3182         }
3183         md_wakeup_thread(mddev->thread);
3184
3185         spin_unlock_irqrestore(&conf->device_lock, flags);
3186
3187         unplug_slaves(mddev);
3188 }
3189
3190 static int raid5_congested(void *data, int bits)
3191 {
3192         mddev_t *mddev = data;
3193         raid5_conf_t *conf = mddev_to_conf(mddev);
3194
3195         /* No difference between reads and writes.  Just check
3196          * how busy the stripe_cache is
3197          */
3198         if (conf->inactive_blocked)
3199                 return 1;
3200         if (conf->quiesce)
3201                 return 1;
3202         if (list_empty_careful(&conf->inactive_list))
3203                 return 1;
3204
3205         return 0;
3206 }
3207
3208 /* We want read requests to align with chunks where possible,
3209  * but write requests don't need to.
3210  */
3211 static int raid5_mergeable_bvec(struct request_queue *q, struct bio *bio, struct bio_vec *biovec)
3212 {
3213         mddev_t *mddev = q->queuedata;
3214         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3215         int max;
3216         unsigned int chunk_sectors = mddev->chunk_size >> 9;
3217         unsigned int bio_sectors = bio->bi_size >> 9;
3218
3219         if (bio_data_dir(bio) == WRITE)
3220                 return biovec->bv_len; /* always allow writes to be mergeable */
3221
3222         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3223         if (max < 0) max = 0;
3224         if (max <= biovec->bv_len && bio_sectors == 0)
3225                 return biovec->bv_len;
3226         else
3227                 return max;
3228 }
3229
3230
3231 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3232 {
3233         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3234         unsigned int chunk_sectors = mddev->chunk_size >> 9;
3235         unsigned int bio_sectors = bio->bi_size >> 9;
3236
3237         return  chunk_sectors >=
3238                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3239 }
3240
3241 /*
3242  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3243  *  later sampled by raid5d.
3244  */
3245 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3246 {
3247         unsigned long flags;
3248
3249         spin_lock_irqsave(&conf->device_lock, flags);
3250
3251         bi->bi_next = conf->retry_read_aligned_list;
3252         conf->retry_read_aligned_list = bi;
3253
3254         spin_unlock_irqrestore(&conf->device_lock, flags);
3255         md_wakeup_thread(conf->mddev->thread);
3256 }
3257
3258
3259 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3260 {
3261         struct bio *bi;
3262
3263         bi = conf->retry_read_aligned;
3264         if (bi) {
3265                 conf->retry_read_aligned = NULL;
3266                 return bi;
3267         }
3268         bi = conf->retry_read_aligned_list;
3269         if(bi) {
3270                 conf->retry_read_aligned_list = bi->bi_next;
3271                 bi->bi_next = NULL;
3272                 bi->bi_phys_segments = 1; /* biased count of active stripes */
3273                 bi->bi_hw_segments = 0; /* count of processed stripes */
3274         }
3275
3276         return bi;
3277 }
3278
3279
3280 /*
3281  *  The "raid5_align_endio" should check if the read succeeded and if it
3282  *  did, call bio_endio on the original bio (having bio_put the new bio
3283  *  first).
3284  *  If the read failed..
3285  */
3286 static void raid5_align_endio(struct bio *bi, int error)
3287 {
3288         struct bio* raid_bi  = bi->bi_private;
3289         mddev_t *mddev;
3290         raid5_conf_t *conf;
3291         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3292         mdk_rdev_t *rdev;
3293
3294         bio_put(bi);
3295
3296         mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3297         conf = mddev_to_conf(mddev);
3298         rdev = (void*)raid_bi->bi_next;
3299         raid_bi->bi_next = NULL;
3300
3301         rdev_dec_pending(rdev, conf->mddev);
3302
3303         if (!error && uptodate) {
3304                 bio_endio(raid_bi, 0);
3305                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3306                         wake_up(&conf->wait_for_stripe);
3307                 return;
3308         }
3309
3310
3311         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3312
3313         add_bio_to_retry(raid_bi, conf);
3314 }
3315
3316 static int bio_fits_rdev(struct bio *bi)
3317 {
3318         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3319
3320         if ((bi->bi_size>>9) > q->max_sectors)
3321                 return 0;
3322         blk_recount_segments(q, bi);
3323         if (bi->bi_phys_segments > q->max_phys_segments ||
3324             bi->bi_hw_segments > q->max_hw_segments)
3325                 return 0;
3326
3327         if (q->merge_bvec_fn)
3328                 /* it's too hard to apply the merge_bvec_fn at this stage,
3329                  * just just give up
3330                  */
3331                 return 0;
3332
3333         return 1;
3334 }
3335
3336
3337 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3338 {
3339         mddev_t *mddev = q->queuedata;
3340         raid5_conf_t *conf = mddev_to_conf(mddev);
3341         const unsigned int raid_disks = conf->raid_disks;
3342         const unsigned int data_disks = raid_disks - conf->max_degraded;
3343         unsigned int dd_idx, pd_idx;
3344         struct bio* align_bi;
3345         mdk_rdev_t *rdev;
3346
3347         if (!in_chunk_boundary(mddev, raid_bio)) {
3348                 pr_debug("chunk_aligned_read : non aligned\n");
3349                 return 0;
3350         }
3351         /*
3352          * use bio_clone to make a copy of the bio
3353          */
3354         align_bi = bio_clone(raid_bio, GFP_NOIO);
3355         if (!align_bi)
3356                 return 0;
3357         /*
3358          *   set bi_end_io to a new function, and set bi_private to the
3359          *     original bio.
3360          */
3361         align_bi->bi_end_io  = raid5_align_endio;
3362         align_bi->bi_private = raid_bio;
3363         /*
3364          *      compute position
3365          */
3366         align_bi->bi_sector =  raid5_compute_sector(raid_bio->bi_sector,
3367                                         raid_disks,
3368                                         data_disks,
3369                                         &dd_idx,
3370                                         &pd_idx,
3371                                         conf);
3372
3373         rcu_read_lock();
3374         rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3375         if (rdev && test_bit(In_sync, &rdev->flags)) {
3376                 atomic_inc(&rdev->nr_pending);
3377                 rcu_read_unlock();
3378                 raid_bio->bi_next = (void*)rdev;
3379                 align_bi->bi_bdev =  rdev->bdev;
3380                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3381                 align_bi->bi_sector += rdev->data_offset;
3382
3383                 if (!bio_fits_rdev(align_bi)) {
3384                         /* too big in some way */
3385                         bio_put(align_bi);
3386                         rdev_dec_pending(rdev, mddev);
3387                         return 0;
3388                 }
3389
3390                 spin_lock_irq(&conf->device_lock);
3391                 wait_event_lock_irq(conf->wait_for_stripe,
3392                                     conf->quiesce == 0,
3393                                     conf->device_lock, /* nothing */);
3394                 atomic_inc(&conf->active_aligned_reads);
3395                 spin_unlock_irq(&conf->device_lock);
3396
3397                 generic_make_request(align_bi);
3398                 return 1;
3399         } else {
3400                 rcu_read_unlock();
3401                 bio_put(align_bi);
3402                 return 0;
3403         }
3404 }
3405
3406 /* __get_priority_stripe - get the next stripe to process
3407  *
3408  * Full stripe writes are allowed to pass preread active stripes up until
3409  * the bypass_threshold is exceeded.  In general the bypass_count
3410  * increments when the handle_list is handled before the hold_list; however, it
3411  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3412  * stripe with in flight i/o.  The bypass_count will be reset when the
3413  * head of the hold_list has changed, i.e. the head was promoted to the
3414  * handle_list.
3415  */
3416 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3417 {
3418         struct stripe_head *sh;
3419
3420         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3421                   __func__,
3422                   list_empty(&conf->handle_list) ? "empty" : "busy",
3423                   list_empty(&conf->hold_list) ? "empty" : "busy",
3424                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
3425
3426         if (!list_empty(&conf->handle_list)) {
3427                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3428
3429                 if (list_empty(&conf->hold_list))
3430                         conf->bypass_count = 0;
3431                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3432                         if (conf->hold_list.next == conf->last_hold)
3433                                 conf->bypass_count++;
3434                         else {
3435                                 conf->last_hold = conf->hold_list.next;
3436                                 conf->bypass_count -= conf->bypass_threshold;
3437                                 if (conf->bypass_count < 0)
3438                                         conf->bypass_count = 0;
3439                         }
3440                 }
3441         } else if (!list_empty(&conf->hold_list) &&
3442                    ((conf->bypass_threshold &&
3443                      conf->bypass_count > conf->bypass_threshold) ||
3444                     atomic_read(&conf->pending_full_writes) == 0)) {
3445                 sh = list_entry(conf->hold_list.next,
3446                                 typeof(*sh), lru);
3447                 conf->bypass_count -= conf->bypass_threshold;
3448                 if (conf->bypass_count < 0)
3449                         conf->bypass_count = 0;
3450         } else
3451                 return NULL;
3452
3453         list_del_init(&sh->lru);
3454         atomic_inc(&sh->count);
3455         BUG_ON(atomic_read(&sh->count) != 1);
3456         return sh;
3457 }
3458
3459 static int make_request(struct request_queue *q, struct bio * bi)
3460 {
3461         mddev_t *mddev = q->queuedata;
3462         raid5_conf_t *conf = mddev_to_conf(mddev);
3463         unsigned int dd_idx, pd_idx;
3464         sector_t new_sector;
3465         sector_t logical_sector, last_sector;
3466         struct stripe_head *sh;
3467         const int rw = bio_data_dir(bi);
3468         int remaining;
3469
3470         if (unlikely(bio_barrier(bi))) {
3471                 bio_endio(bi, -EOPNOTSUPP);
3472                 return 0;
3473         }
3474
3475         md_write_start(mddev, bi);
3476
3477         disk_stat_inc(mddev->gendisk, ios[rw]);
3478         disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
3479
3480         if (rw == READ &&
3481              mddev->reshape_position == MaxSector &&
3482              chunk_aligned_read(q,bi))
3483                 return 0;
3484
3485         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3486         last_sector = bi->bi_sector + (bi->bi_size>>9);
3487         bi->bi_next = NULL;
3488         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
3489
3490         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3491                 DEFINE_WAIT(w);
3492                 int disks, data_disks;
3493
3494         retry:
3495                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3496                 if (likely(conf->expand_progress == MaxSector))
3497                         disks = conf->raid_disks;
3498                 else {
3499                         /* spinlock is needed as expand_progress may be
3500                          * 64bit on a 32bit platform, and so it might be
3501                          * possible to see a half-updated value
3502                          * Ofcourse expand_progress could change after
3503                          * the lock is dropped, so once we get a reference
3504                          * to the stripe that we think it is, we will have
3505                          * to check again.
3506                          */
3507                         spin_lock_irq(&conf->device_lock);
3508                         disks = conf->raid_disks;
3509                         if (logical_sector >= conf->expand_progress)
3510                                 disks = conf->previous_raid_disks;
3511                         else {
3512                                 if (logical_sector >= conf->expand_lo) {
3513                                         spin_unlock_irq(&conf->device_lock);
3514                                         schedule();
3515                                         goto retry;
3516                                 }
3517                         }
3518                         spin_unlock_irq(&conf->device_lock);
3519                 }
3520                 data_disks = disks - conf->max_degraded;
3521
3522                 new_sector = raid5_compute_sector(logical_sector, disks, data_disks,
3523                                                   &dd_idx, &pd_idx, conf);
3524                 pr_debug("raid5: make_request, sector %llu logical %llu\n",
3525                         (unsigned long long)new_sector, 
3526                         (unsigned long long)logical_sector);
3527
3528                 sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
3529                 if (sh) {
3530                         if (unlikely(conf->expand_progress != MaxSector)) {
3531                                 /* expansion might have moved on while waiting for a
3532                                  * stripe, so we must do the range check again.
3533                                  * Expansion could still move past after this
3534                                  * test, but as we are holding a reference to
3535                                  * 'sh', we know that if that happens,
3536                                  *  STRIPE_EXPANDING will get set and the expansion
3537                                  * won't proceed until we finish with the stripe.
3538                                  */
3539                                 int must_retry = 0;
3540                                 spin_lock_irq(&conf->device_lock);
3541                                 if (logical_sector <  conf->expand_progress &&
3542                                     disks == conf->previous_raid_disks)
3543                                         /* mismatch, need to try again */
3544                                         must_retry = 1;
3545                                 spin_unlock_irq(&conf->device_lock);
3546                                 if (must_retry) {
3547                                         release_stripe(sh);
3548                                         goto retry;
3549                                 }
3550                         }
3551                         /* FIXME what if we get a false positive because these
3552                          * are being updated.
3553                          */
3554                         if (logical_sector >= mddev->suspend_lo &&
3555                             logical_sector < mddev->suspend_hi) {
3556                                 release_stripe(sh);
3557                                 schedule();
3558                                 goto retry;
3559                         }
3560
3561                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3562                             !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3563                                 /* Stripe is busy expanding or
3564                                  * add failed due to overlap.  Flush everything
3565                                  * and wait a while
3566                                  */
3567                                 raid5_unplug_device(mddev->queue);
3568                                 release_stripe(sh);
3569                                 schedule();
3570                                 goto retry;
3571                         }
3572                         finish_wait(&conf->wait_for_overlap, &w);
3573                         set_bit(STRIPE_HANDLE, &sh->state);
3574                         clear_bit(STRIPE_DELAYED, &sh->state);
3575                         release_stripe(sh);
3576                 } else {
3577                         /* cannot get stripe for read-ahead, just give-up */
3578                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
3579                         finish_wait(&conf->wait_for_overlap, &w);
3580                         break;
3581                 }
3582                         
3583         }
3584         spin_lock_irq(&conf->device_lock);
3585         remaining = --bi->bi_phys_segments;
3586         spin_unlock_irq(&conf->device_lock);
3587         if (remaining == 0) {
3588
3589                 if ( rw == WRITE )
3590                         md_write_end(mddev);
3591
3592                 bio_endio(bi, 0);
3593         }
3594         return 0;
3595 }
3596
3597 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3598 {
3599         /* reshaping is quite different to recovery/resync so it is
3600          * handled quite separately ... here.
3601          *
3602          * On each call to sync_request, we gather one chunk worth of
3603          * destination stripes and flag them as expanding.
3604          * Then we find all the source stripes and request reads.
3605          * As the reads complete, handle_stripe will copy the data
3606          * into the destination stripe and release that stripe.
3607          */
3608         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3609         struct stripe_head *sh;
3610         int pd_idx;
3611         sector_t first_sector, last_sector;
3612         int raid_disks = conf->previous_raid_disks;
3613         int data_disks = raid_disks - conf->max_degraded;
3614         int new_data_disks = conf->raid_disks - conf->max_degraded;
3615         int i;
3616         int dd_idx;
3617         sector_t writepos, safepos, gap;
3618
3619         if (sector_nr == 0 &&
3620             conf->expand_progress != 0) {
3621                 /* restarting in the middle, skip the initial sectors */
3622                 sector_nr = conf->expand_progress;
3623                 sector_div(sector_nr, new_data_disks);
3624                 *skipped = 1;
3625                 return sector_nr;
3626         }
3627
3628         /* we update the metadata when there is more than 3Meg
3629          * in the block range (that is rather arbitrary, should
3630          * probably be time based) or when the data about to be
3631          * copied would over-write the source of the data at
3632          * the front of the range.
3633          * i.e. one new_stripe forward from expand_progress new_maps
3634          * to after where expand_lo old_maps to
3635          */
3636         writepos = conf->expand_progress +
3637                 conf->chunk_size/512*(new_data_disks);
3638         sector_div(writepos, new_data_disks);
3639         safepos = conf->expand_lo;
3640         sector_div(safepos, data_disks);
3641         gap = conf->expand_progress - conf->expand_lo;
3642
3643         if (writepos >= safepos ||
3644             gap > (new_data_disks)*3000*2 /*3Meg*/) {
3645                 /* Cannot proceed until we've updated the superblock... */
3646                 wait_event(conf->wait_for_overlap,
3647                            atomic_read(&conf->reshape_stripes)==0);
3648                 mddev->reshape_position = conf->expand_progress;
3649                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3650                 md_wakeup_thread(mddev->thread);
3651                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
3652                            kthread_should_stop());
3653                 spin_lock_irq(&conf->device_lock);
3654                 conf->expand_lo = mddev->reshape_position;
3655                 spin_unlock_irq(&conf->device_lock);
3656                 wake_up(&conf->wait_for_overlap);
3657         }
3658
3659         for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
3660                 int j;
3661                 int skipped = 0;
3662                 pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
3663                 sh = get_active_stripe(conf, sector_nr+i,
3664                                        conf->raid_disks, pd_idx, 0);
3665                 set_bit(STRIPE_EXPANDING, &sh->state);
3666                 atomic_inc(&conf->reshape_stripes);
3667                 /* If any of this stripe is beyond the end of the old
3668                  * array, then we need to zero those blocks
3669                  */
3670                 for (j=sh->disks; j--;) {
3671                         sector_t s;
3672                         if (j == sh->pd_idx)
3673                                 continue;
3674                         if (conf->level == 6 &&
3675                             j == raid6_next_disk(sh->pd_idx, sh->disks))
3676                                 continue;
3677                         s = compute_blocknr(sh, j);
3678                         if (s < (mddev->array_size<<1)) {
3679                                 skipped = 1;
3680                                 continue;
3681                         }
3682                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3683                         set_bit(R5_Expanded, &sh->dev[j].flags);
3684                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
3685                 }
3686                 if (!skipped) {
3687                         set_bit(STRIPE_EXPAND_READY, &sh->state);
3688                         set_bit(STRIPE_HANDLE, &sh->state);
3689                 }
3690                 release_stripe(sh);
3691         }
3692         spin_lock_irq(&conf->device_lock);
3693         conf->expand_progress = (sector_nr + i) * new_data_disks;
3694         spin_unlock_irq(&conf->device_lock);
3695         /* Ok, those stripe are ready. We can start scheduling
3696          * reads on the source stripes.
3697          * The source stripes are determined by mapping the first and last
3698          * block on the destination stripes.
3699          */
3700         first_sector =
3701                 raid5_compute_sector(sector_nr*(new_data_disks),
3702                                      raid_disks, data_disks,
3703                                      &dd_idx, &pd_idx, conf);
3704         last_sector =
3705                 raid5_compute_sector((sector_nr+conf->chunk_size/512)
3706                                      *(new_data_disks) -1,
3707                                      raid_disks, data_disks,
3708                                      &dd_idx, &pd_idx, conf);
3709         if (last_sector >= (mddev->size<<1))
3710                 last_sector = (mddev->size<<1)-1;
3711         while (first_sector <= last_sector) {
3712                 pd_idx = stripe_to_pdidx(first_sector, conf,
3713                                          conf->previous_raid_disks);
3714                 sh = get_active_stripe(conf, first_sector,
3715                                        conf->previous_raid_disks, pd_idx, 0);
3716                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3717                 set_bit(STRIPE_HANDLE, &sh->state);
3718                 release_stripe(sh);
3719                 first_sector += STRIPE_SECTORS;
3720         }
3721         /* If this takes us to the resync_max point where we have to pause,
3722          * then we need to write out the superblock.
3723          */
3724         sector_nr += conf->chunk_size>>9;
3725         if (sector_nr >= mddev->resync_max) {
3726                 /* Cannot proceed until we've updated the superblock... */
3727                 wait_event(conf->wait_for_overlap,
3728                            atomic_read(&conf->reshape_stripes) == 0);
3729                 mddev->reshape_position = conf->expand_progress;
3730                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3731                 md_wakeup_thread(mddev->thread);
3732                 wait_event(mddev->sb_wait,
3733                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
3734                            || kthread_should_stop());
3735                 spin_lock_irq(&conf->device_lock);
3736                 conf->expand_lo = mddev->reshape_position;
3737                 spin_unlock_irq(&conf->device_lock);
3738                 wake_up(&conf->wait_for_overlap);
3739         }
3740         return conf->chunk_size>>9;
3741 }
3742
3743 /* FIXME go_faster isn't used */
3744 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3745 {
3746         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3747         struct stripe_head *sh;
3748         int pd_idx;
3749         int raid_disks = conf->raid_disks;
3750         sector_t max_sector = mddev->size << 1;
3751         int sync_blocks;
3752         int still_degraded = 0;
3753         int i;
3754
3755         if (sector_nr >= max_sector) {
3756                 /* just being told to finish up .. nothing much to do */
3757                 unplug_slaves(mddev);
3758                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3759                         end_reshape(conf);
3760                         return 0;
3761                 }
3762
3763                 if (mddev->curr_resync < max_sector) /* aborted */
3764                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3765                                         &sync_blocks, 1);
3766                 else /* completed sync */
3767                         conf->fullsync = 0;
3768                 bitmap_close_sync(mddev->bitmap);
3769
3770                 return 0;
3771         }
3772
3773         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3774                 return reshape_request(mddev, sector_nr, skipped);
3775
3776         /* No need to check resync_max as we never do more than one
3777          * stripe, and as resync_max will always be on a chunk boundary,
3778          * if the check in md_do_sync didn't fire, there is no chance
3779          * of overstepping resync_max here
3780          */
3781
3782         /* if there is too many failed drives and we are trying
3783          * to resync, then assert that we are finished, because there is
3784          * nothing we can do.
3785          */
3786         if (mddev->degraded >= conf->max_degraded &&
3787             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3788                 sector_t rv = (mddev->size << 1) - sector_nr;
3789                 *skipped = 1;
3790                 return rv;
3791         }
3792         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3793             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3794             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3795                 /* we can skip this block, and probably more */
3796                 sync_blocks /= STRIPE_SECTORS;
3797                 *skipped = 1;
3798                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3799         }
3800
3801
3802         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3803
3804         pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
3805         sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
3806         if (sh == NULL) {
3807                 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
3808                 /* make sure we don't swamp the stripe cache if someone else
3809                  * is trying to get access
3810                  */
3811                 schedule_timeout_uninterruptible(1);
3812         }
3813         /* Need to check if array will still be degraded after recovery/resync
3814          * We don't need to check the 'failed' flag as when that gets set,
3815          * recovery aborts.
3816          */
3817         for (i=0; i<mddev->raid_disks; i++)
3818                 if (conf->disks[i].rdev == NULL)
3819                         still_degraded = 1;
3820
3821         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
3822
3823         spin_lock(&sh->lock);
3824         set_bit(STRIPE_SYNCING, &sh->state);
3825         clear_bit(STRIPE_INSYNC, &sh->state);
3826         spin_unlock(&sh->lock);
3827
3828         handle_stripe(sh, NULL);
3829         release_stripe(sh);
3830
3831         return STRIPE_SECTORS;
3832 }
3833
3834 static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
3835 {
3836         /* We may not be able to submit a whole bio at once as there
3837          * may not be enough stripe_heads available.
3838          * We cannot pre-allocate enough stripe_heads as we may need
3839          * more than exist in the cache (if we allow ever large chunks).
3840          * So we do one stripe head at a time and record in
3841          * ->bi_hw_segments how many have been done.
3842          *
3843          * We *know* that this entire raid_bio is in one chunk, so
3844          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3845          */
3846         struct stripe_head *sh;
3847         int dd_idx, pd_idx;
3848         sector_t sector, logical_sector, last_sector;
3849         int scnt = 0;
3850         int remaining;
3851         int handled = 0;
3852
3853         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3854         sector = raid5_compute_sector(  logical_sector,
3855                                         conf->raid_disks,
3856                                         conf->raid_disks - conf->max_degraded,
3857                                         &dd_idx,
3858                                         &pd_idx,
3859                                         conf);
3860         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
3861
3862         for (; logical_sector < last_sector;
3863              logical_sector += STRIPE_SECTORS,
3864                      sector += STRIPE_SECTORS,
3865                      scnt++) {
3866
3867                 if (scnt < raid_bio->bi_hw_segments)
3868                         /* already done this stripe */
3869                         continue;
3870
3871                 sh = get_active_stripe(conf, sector, conf->raid_disks, pd_idx, 1);
3872
3873                 if (!sh) {
3874                         /* failed to get a stripe - must wait */
3875                         raid_bio->bi_hw_segments = scnt;
3876                         conf->retry_read_aligned = raid_bio;
3877                         return handled;
3878                 }
3879
3880                 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
3881                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
3882                         release_stripe(sh);
3883                         raid_bio->bi_hw_segments = scnt;
3884                         conf->retry_read_aligned = raid_bio;
3885                         return handled;
3886                 }
3887
3888                 handle_stripe(sh, NULL);
3889                 release_stripe(sh);
3890                 handled++;
3891         }
3892         spin_lock_irq(&conf->device_lock);
3893         remaining = --raid_bio->bi_phys_segments;
3894         spin_unlock_irq(&conf->device_lock);
3895         if (remaining == 0)
3896                 bio_endio(raid_bio, 0);
3897         if (atomic_dec_and_test(&conf->active_aligned_reads))
3898                 wake_up(&conf->wait_for_stripe);
3899         return handled;
3900 }
3901
3902
3903
3904 /*
3905  * This is our raid5 kernel thread.
3906  *
3907  * We scan the hash table for stripes which can be handled now.
3908  * During the scan, completed stripes are saved for us by the interrupt
3909  * handler, so that they will not have to wait for our next wakeup.
3910  */
3911 static void raid5d(mddev_t *mddev)
3912 {
3913         struct stripe_head *sh;
3914         raid5_conf_t *conf = mddev_to_conf(mddev);
3915         int handled;
3916
3917         pr_debug("+++ raid5d active\n");
3918
3919         md_check_recovery(mddev);
3920
3921         handled = 0;
3922         spin_lock_irq(&conf->device_lock);
3923         while (1) {
3924                 struct bio *bio;
3925
3926                 if (conf->seq_flush != conf->seq_write) {
3927                         int seq = conf->seq_flush;
3928                         spin_unlock_irq(&conf->device_lock);
3929                         bitmap_unplug(mddev->bitmap);
3930                         spin_lock_irq(&conf->device_lock);
3931                         conf->seq_write = seq;
3932                         activate_bit_delay(conf);
3933                 }
3934
3935                 while ((bio = remove_bio_from_retry(conf))) {
3936                         int ok;
3937                         spin_unlock_irq(&conf->device_lock);
3938                         ok = retry_aligned_read(conf, bio);
3939                         spin_lock_irq(&conf->device_lock);
3940                         if (!ok)
3941                                 break;
3942                         handled++;
3943                 }
3944
3945                 sh = __get_priority_stripe(conf);
3946
3947                 if (!sh) {
3948                         async_tx_issue_pending_all();
3949                         break;
3950                 }
3951                 spin_unlock_irq(&conf->device_lock);
3952                 
3953                 handled++;
3954                 handle_stripe(sh, conf->spare_page);
3955                 release_stripe(sh);
3956
3957                 spin_lock_irq(&conf->device_lock);
3958         }
3959         pr_debug("%d stripes handled\n", handled);
3960
3961         spin_unlock_irq(&conf->device_lock);
3962
3963         unplug_slaves(mddev);
3964
3965         pr_debug("--- raid5d inactive\n");
3966 }
3967
3968 static ssize_t
3969 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
3970 {
3971         raid5_conf_t *conf = mddev_to_conf(mddev);
3972         if (conf)
3973                 return sprintf(page, "%d\n", conf->max_nr_stripes);
3974         else
3975                 return 0;
3976 }
3977
3978 static ssize_t
3979 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
3980 {
3981         raid5_conf_t *conf = mddev_to_conf(mddev);
3982         unsigned long new;
3983         if (len >= PAGE_SIZE)
3984                 return -EINVAL;
3985         if (!conf)
3986                 return -ENODEV;
3987
3988         if (strict_strtoul(page, 10, &new))
3989                 return -EINVAL;
3990         if (new <= 16 || new > 32768)
3991                 return -EINVAL;
3992         while (new < conf->max_nr_stripes) {
3993                 if (drop_one_stripe(conf))
3994                         conf->max_nr_stripes--;
3995                 else
3996                         break;
3997         }
3998         md_allow_write(mddev);
3999         while (new > conf->max_nr_stripes) {
4000                 if (grow_one_stripe(conf))
4001                         conf->max_nr_stripes++;
4002                 else break;
4003         }
4004         return len;
4005 }
4006
4007 static struct md_sysfs_entry
4008 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4009                                 raid5_show_stripe_cache_size,
4010                                 raid5_store_stripe_cache_size);
4011
4012 static ssize_t
4013 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4014 {
4015         raid5_conf_t *conf = mddev_to_conf(mddev);
4016         if (conf)
4017                 return sprintf(page, "%d\n", conf->bypass_threshold);
4018         else
4019                 return 0;
4020 }
4021
4022 static ssize_t
4023 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4024 {
4025         raid5_conf_t *conf = mddev_to_conf(mddev);
4026         unsigned long new;
4027         if (len >= PAGE_SIZE)
4028                 return -EINVAL;
4029         if (!conf)
4030                 return -ENODEV;
4031
4032         if (strict_strtoul(page, 10, &new))
4033                 return -EINVAL;
4034         if (new > conf->max_nr_stripes)
4035                 return -EINVAL;
4036         conf->bypass_threshold = new;
4037         return len;
4038 }
4039
4040 static struct md_sysfs_entry
4041 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4042                                         S_IRUGO | S_IWUSR,
4043                                         raid5_show_preread_threshold,
4044                                         raid5_store_preread_threshold);
4045
4046 static ssize_t
4047 stripe_cache_active_show(mddev_t *mddev, char *page)
4048 {
4049         raid5_conf_t *conf = mddev_to_conf(mddev);
4050         if (conf)
4051                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4052         else
4053                 return 0;
4054 }
4055
4056 static struct md_sysfs_entry
4057 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4058
4059 static struct attribute *raid5_attrs[] =  {
4060         &raid5_stripecache_size.attr,
4061         &raid5_stripecache_active.attr,
4062         &raid5_preread_bypass_threshold.attr,
4063         NULL,
4064 };
4065 static struct attribute_group raid5_attrs_group = {
4066         .name = NULL,
4067         .attrs = raid5_attrs,
4068 };
4069
4070 static int run(mddev_t *mddev)
4071 {
4072         raid5_conf_t *conf;
4073         int raid_disk, memory;
4074         mdk_rdev_t *rdev;
4075         struct disk_info *disk;
4076         struct list_head *tmp;
4077         int working_disks = 0;
4078
4079         if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
4080                 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4081                        mdname(mddev), mddev->level);
4082                 return -EIO;
4083         }
4084
4085         if (mddev->reshape_position != MaxSector) {
4086                 /* Check that we can continue the reshape.
4087                  * Currently only disks can change, it must
4088                  * increase, and we must be past the point where
4089                  * a stripe over-writes itself
4090                  */
4091                 sector_t here_new, here_old;
4092                 int old_disks;
4093                 int max_degraded = (mddev->level == 5 ? 1 : 2);
4094
4095                 if (mddev->new_level != mddev->level ||
4096                     mddev->new_layout != mddev->layout ||
4097                     mddev->new_chunk != mddev->chunk_size) {
4098                         printk(KERN_ERR "raid5: %s: unsupported reshape "
4099                                "required - aborting.\n",
4100                                mdname(mddev));
4101                         return -EINVAL;
4102                 }
4103                 if (mddev->delta_disks <= 0) {
4104                         printk(KERN_ERR "raid5: %s: unsupported reshape "
4105                                "(reduce disks) required - aborting.\n",
4106                                mdname(mddev));
4107                         return -EINVAL;
4108                 }
4109                 old_disks = mddev->raid_disks - mddev->delta_disks;
4110                 /* reshape_position must be on a new-stripe boundary, and one
4111                  * further up in new geometry must map after here in old
4112                  * geometry.
4113                  */
4114                 here_new = mddev->reshape_position;
4115                 if (sector_div(here_new, (mddev->chunk_size>>9)*
4116                                (mddev->raid_disks - max_degraded))) {
4117                         printk(KERN_ERR "raid5: reshape_position not "
4118                                "on a stripe boundary\n");
4119                         return -EINVAL;
4120                 }
4121                 /* here_new is the stripe we will write to */
4122                 here_old = mddev->reshape_position;
4123                 sector_div(here_old, (mddev->chunk_size>>9)*
4124                            (old_disks-max_degraded));
4125                 /* here_old is the first stripe that we might need to read
4126                  * from */
4127                 if (here_new >= here_old) {
4128                         /* Reading from the same stripe as writing to - bad */
4129                         printk(KERN_ERR "raid5: reshape_position too early for "
4130                                "auto-recovery - aborting.\n");
4131                         return -EINVAL;
4132                 }
4133                 printk(KERN_INFO "raid5: reshape will continue\n");
4134                 /* OK, we should be able to continue; */
4135         }
4136
4137
4138         mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
4139         if ((conf = mddev->private) == NULL)
4140                 goto abort;
4141         if (mddev->reshape_position == MaxSector) {
4142                 conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
4143         } else {
4144                 conf->raid_disks = mddev->raid_disks;
4145                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4146         }
4147
4148         conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4149                               GFP_KERNEL);
4150         if (!conf->disks)
4151                 goto abort;
4152
4153         conf->mddev = mddev;
4154
4155         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4156                 goto abort;
4157
4158         if (mddev->level == 6) {
4159                 conf->spare_page = alloc_page(GFP_KERNEL);
4160                 if (!conf->spare_page)
4161                         goto abort;
4162         }
4163         spin_lock_init(&conf->device_lock);
4164         mddev->queue->queue_lock = &conf->device_lock;
4165         init_waitqueue_head(&conf->wait_for_stripe);
4166         init_waitqueue_head(&conf->wait_for_overlap);
4167         INIT_LIST_HEAD(&conf->handle_list);
4168         INIT_LIST_HEAD(&conf->hold_list);
4169         INIT_LIST_HEAD(&conf->delayed_list);
4170         INIT_LIST_HEAD(&conf->bitmap_list);
4171         INIT_LIST_HEAD(&conf->inactive_list);
4172         atomic_set(&conf->active_stripes, 0);
4173         atomic_set(&conf->preread_active_stripes, 0);
4174         atomic_set(&conf->active_aligned_reads, 0);
4175         conf->bypass_threshold = BYPASS_THRESHOLD;
4176
4177         pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4178
4179         rdev_for_each(rdev, tmp, mddev) {
4180                 raid_disk = rdev->raid_disk;
4181                 if (raid_disk >= conf->raid_disks
4182                     || raid_disk < 0)
4183                         continue;
4184                 disk = conf->disks + raid_disk;
4185
4186                 disk->rdev = rdev;
4187
4188                 if (test_bit(In_sync, &rdev->flags)) {
4189                         char b[BDEVNAME_SIZE];
4190                         printk(KERN_INFO "raid5: device %s operational as raid"
4191                                 " disk %d\n", bdevname(rdev->bdev,b),
4192                                 raid_disk);
4193                         working_disks++;
4194                 } else
4195                         /* Cannot rely on bitmap to complete recovery */
4196                         conf->fullsync = 1;
4197         }
4198
4199         /*
4200          * 0 for a fully functional array, 1 or 2 for a degraded array.
4201          */
4202         mddev->degraded = conf->raid_disks - working_disks;
4203         conf->mddev = mddev;
4204         conf->chunk_size = mddev->chunk_size;
4205         conf->level = mddev->level;
4206         if (conf->level == 6)
4207                 conf->max_degraded = 2;
4208         else
4209                 conf->max_degraded = 1;
4210         conf->algorithm = mddev->layout;
4211         conf->max_nr_stripes = NR_STRIPES;
4212         conf->expand_progress = mddev->reshape_position;
4213
4214         /* device size must be a multiple of chunk size */
4215         mddev->size &= ~(mddev->chunk_size/1024 -1);
4216         mddev->resync_max_sectors = mddev->size << 1;
4217
4218         if (conf->level == 6 && conf->raid_disks < 4) {
4219                 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4220                        mdname(mddev), conf->raid_disks);
4221                 goto abort;
4222         }
4223         if (!conf->chunk_size || conf->chunk_size % 4) {
4224                 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4225                         conf->chunk_size, mdname(mddev));
4226                 goto abort;
4227         }
4228         if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
4229                 printk(KERN_ERR 
4230                         "raid5: unsupported parity algorithm %d for %s\n",
4231                         conf->algorithm, mdname(mddev));
4232                 goto abort;
4233         }
4234         if (mddev->degraded > conf->max_degraded) {
4235                 printk(KERN_ERR "raid5: not enough operational devices for %s"
4236                         " (%d/%d failed)\n",
4237                         mdname(mddev), mddev->degraded, conf->raid_disks);
4238                 goto abort;
4239         }
4240
4241         if (mddev->degraded > 0 &&
4242             mddev->recovery_cp != MaxSector) {
4243                 if (mddev->ok_start_degraded)
4244                         printk(KERN_WARNING
4245                                "raid5: starting dirty degraded array: %s"
4246                                "- data corruption possible.\n",
4247                                mdname(mddev));
4248                 else {
4249                         printk(KERN_ERR
4250                                "raid5: cannot start dirty degraded array for %s\n",
4251                                mdname(mddev));
4252                         goto abort;
4253                 }
4254         }
4255
4256         {
4257                 mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4258                 if (!mddev->thread) {
4259                         printk(KERN_ERR 
4260                                 "raid5: couldn't allocate thread for %s\n",
4261                                 mdname(mddev));
4262                         goto abort;
4263                 }
4264         }
4265         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4266                  conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4267         if (grow_stripes(conf, conf->max_nr_stripes)) {
4268                 printk(KERN_ERR 
4269                         "raid5: couldn't allocate %dkB for buffers\n", memory);
4270                 shrink_stripes(conf);
4271                 md_unregister_thread(mddev->thread);
4272                 goto abort;
4273         } else
4274                 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4275                         memory, mdname(mddev));
4276
4277         if (mddev->degraded == 0)
4278                 printk("raid5: raid level %d set %s active with %d out of %d"
4279                         " devices, algorithm %d\n", conf->level, mdname(mddev), 
4280                         mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4281                         conf->algorithm);
4282         else
4283                 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4284                         " out of %d devices, algorithm %d\n", conf->level,
4285                         mdname(mddev), mddev->raid_disks - mddev->degraded,
4286                         mddev->raid_disks, conf->algorithm);
4287
4288         print_raid5_conf(conf);
4289
4290         if (conf->expand_progress != MaxSector) {
4291                 printk("...ok start reshape thread\n");
4292                 conf->expand_lo = conf->expand_progress;
4293                 atomic_set(&conf->reshape_stripes, 0);
4294                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4295                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4296                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4297                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4298                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4299                                                         "%s_reshape");
4300         }
4301
4302         /* read-ahead size must cover two whole stripes, which is
4303          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4304          */
4305         {
4306                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4307                 int stripe = data_disks *
4308                         (mddev->chunk_size / PAGE_SIZE);
4309                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4310                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4311         }
4312
4313         /* Ok, everything is just fine now */
4314         if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4315                 printk(KERN_WARNING
4316                        "raid5: failed to create sysfs attributes for %s\n",
4317                        mdname(mddev));
4318
4319         mddev->queue->unplug_fn = raid5_unplug_device;
4320         mddev->queue->backing_dev_info.congested_data = mddev;
4321         mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4322
4323         mddev->array_size =  mddev->size * (conf->previous_raid_disks -
4324                                             conf->max_degraded);
4325
4326         blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4327
4328         return 0;
4329 abort:
4330         if (conf) {
4331                 print_raid5_conf(conf);
4332                 safe_put_page(conf->spare_page);
4333                 kfree(conf->disks);
4334                 kfree(conf->stripe_hashtbl);
4335                 kfree(conf);
4336         }
4337         mddev->private = NULL;
4338         printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4339         return -EIO;
4340 }
4341
4342
4343
4344 static int stop(mddev_t *mddev)
4345 {
4346         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4347
4348         md_unregister_thread(mddev->thread);
4349         mddev->thread = NULL;
4350         shrink_stripes(conf);
4351         kfree(conf->stripe_hashtbl);
4352         mddev->queue->backing_dev_info.congested_fn = NULL;
4353         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
4354         sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
4355         kfree(conf->disks);
4356         kfree(conf);
4357         mddev->private = NULL;
4358         return 0;
4359 }
4360
4361 #ifdef DEBUG
4362 static void print_sh (struct seq_file *seq, struct stripe_head *sh)
4363 {
4364         int i;
4365
4366         seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4367                    (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4368         seq_printf(seq, "sh %llu,  count %d.\n",
4369                    (unsigned long long)sh->sector, atomic_read(&sh->count));
4370         seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4371         for (i = 0; i < sh->disks; i++) {
4372                 seq_printf(seq, "(cache%d: %p %ld) ",
4373                            i, sh->dev[i].page, sh->dev[i].flags);
4374         }
4375         seq_printf(seq, "\n");
4376 }
4377
4378 static void printall (struct seq_file *seq, raid5_conf_t *conf)
4379 {
4380         struct stripe_head *sh;
4381         struct hlist_node *hn;
4382         int i;
4383
4384         spin_lock_irq(&conf->device_lock);
4385         for (i = 0; i < NR_HASH; i++) {
4386                 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4387                         if (sh->raid_conf != conf)
4388                                 continue;
4389                         print_sh(seq, sh);
4390                 }
4391         }
4392         spin_unlock_irq(&conf->device_lock);
4393 }
4394 #endif
4395
4396 static void status (struct seq_file *seq, mddev_t *mddev)
4397 {
4398         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4399         int i;
4400
4401         seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
4402         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4403         for (i = 0; i < conf->raid_disks; i++)
4404                 seq_printf (seq, "%s",
4405                                conf->disks[i].rdev &&
4406                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4407         seq_printf (seq, "]");
4408 #ifdef DEBUG
4409         seq_printf (seq, "\n");
4410         printall(seq, conf);
4411 #endif
4412 }
4413
4414 static void print_raid5_conf (raid5_conf_t *conf)
4415 {
4416         int i;
4417         struct disk_info *tmp;
4418
4419         printk("RAID5 conf printout:\n");
4420         if (!conf) {
4421                 printk("(conf==NULL)\n");
4422                 return;
4423         }
4424         printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4425                  conf->raid_disks - conf->mddev->degraded);
4426
4427         for (i = 0; i < conf->raid_disks; i++) {
4428                 char b[BDEVNAME_SIZE];
4429                 tmp = conf->disks + i;
4430                 if (tmp->rdev)
4431                 printk(" disk %d, o:%d, dev:%s\n",
4432                         i, !test_bit(Faulty, &tmp->rdev->flags),
4433                         bdevname(tmp->rdev->bdev,b));
4434         }
4435 }
4436
4437 static int raid5_spare_active(mddev_t *mddev)
4438 {
4439         int i;
4440         raid5_conf_t *conf = mddev->private;
4441         struct disk_info *tmp;
4442
4443         for (i = 0; i < conf->raid_disks; i++) {
4444                 tmp = conf->disks + i;
4445                 if (tmp->rdev
4446                     && !test_bit(Faulty, &tmp->rdev->flags)
4447                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4448                         unsigned long flags;
4449                         spin_lock_irqsave(&conf->device_lock, flags);
4450                         mddev->degraded--;
4451                         spin_unlock_irqrestore(&conf->device_lock, flags);
4452                 }
4453         }
4454         print_raid5_conf(conf);
4455         return 0;
4456 }
4457
4458 static int raid5_remove_disk(mddev_t *mddev, int number)
4459 {
4460         raid5_conf_t *conf = mddev->private;
4461         int err = 0;
4462         mdk_rdev_t *rdev;
4463         struct disk_info *p = conf->disks + number;
4464
4465         print_raid5_conf(conf);
4466         rdev = p->rdev;
4467         if (rdev) {
4468                 if (test_bit(In_sync, &rdev->flags) ||
4469                     atomic_read(&rdev->nr_pending)) {
4470                         err = -EBUSY;
4471                         goto abort;
4472                 }
4473                 /* Only remove non-faulty devices if recovery
4474                  * isn't possible.
4475                  */
4476                 if (!test_bit(Faulty, &rdev->flags) &&
4477                     mddev->degraded <= conf->max_degraded) {
4478                         err = -EBUSY;
4479                         goto abort;
4480                 }
4481                 p->rdev = NULL;
4482                 synchronize_rcu();
4483                 if (atomic_read(&rdev->nr_pending)) {
4484                         /* lost the race, try later */
4485                         err = -EBUSY;
4486                         p->rdev = rdev;
4487                 }
4488         }
4489 abort:
4490
4491         print_raid5_conf(conf);
4492         return err;
4493 }
4494
4495 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4496 {
4497         raid5_conf_t *conf = mddev->private;
4498         int err = -EEXIST;
4499         int disk;
4500         struct disk_info *p;
4501         int first = 0;
4502         int last = conf->raid_disks - 1;
4503
4504         if (mddev->degraded > conf->max_degraded)
4505                 /* no point adding a device */
4506                 return -EINVAL;
4507
4508         if (rdev->raid_disk >= 0)
4509                 first = last = rdev->raid_disk;
4510
4511         /*
4512          * find the disk ... but prefer rdev->saved_raid_disk
4513          * if possible.
4514          */
4515         if (rdev->saved_raid_disk >= 0 &&
4516             rdev->saved_raid_disk >= first &&
4517             conf->disks[rdev->saved_raid_disk].rdev == NULL)
4518                 disk = rdev->saved_raid_disk;
4519         else
4520                 disk = first;
4521         for ( ; disk <= last ; disk++)
4522                 if ((p=conf->disks + disk)->rdev == NULL) {
4523                         clear_bit(In_sync, &rdev->flags);
4524                         rdev->raid_disk = disk;
4525                         err = 0;
4526                         if (rdev->saved_raid_disk != disk)
4527                                 conf->fullsync = 1;
4528                         rcu_assign_pointer(p->rdev, rdev);
4529                         break;
4530                 }
4531         print_raid5_conf(conf);
4532         return err;
4533 }
4534
4535 static int raid5_resize(mddev_t *mddev, sector_t sectors)
4536 {
4537         /* no resync is happening, and there is enough space
4538          * on all devices, so we can resize.
4539          * We need to make sure resync covers any new space.
4540          * If the array is shrinking we should possibly wait until
4541          * any io in the removed space completes, but it hardly seems
4542          * worth it.
4543          */
4544         raid5_conf_t *conf = mddev_to_conf(mddev);
4545
4546         sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4547         mddev->array_size = (sectors * (mddev->raid_disks-conf->max_degraded))>>1;
4548         set_capacity(mddev->gendisk, mddev->array_size << 1);
4549         mddev->changed = 1;
4550         if (sectors/2  > mddev->size && mddev->recovery_cp == MaxSector) {
4551                 mddev->recovery_cp = mddev->size << 1;
4552                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4553         }
4554         mddev->size = sectors /2;
4555         mddev->resync_max_sectors = sectors;
4556         return 0;
4557 }
4558
4559 #ifdef CONFIG_MD_RAID5_RESHAPE
4560 static int raid5_check_reshape(mddev_t *mddev)
4561 {
4562         raid5_conf_t *conf = mddev_to_conf(mddev);
4563         int err;
4564
4565         if (mddev->delta_disks < 0 ||
4566             mddev->new_level != mddev->level)
4567                 return -EINVAL; /* Cannot shrink array or change level yet */
4568         if (mddev->delta_disks == 0)
4569                 return 0; /* nothing to do */
4570
4571         /* Can only proceed if there are plenty of stripe_heads.
4572          * We need a minimum of one full stripe,, and for sensible progress
4573          * it is best to have about 4 times that.
4574          * If we require 4 times, then the default 256 4K stripe_heads will
4575          * allow for chunk sizes up to 256K, which is probably OK.
4576          * If the chunk size is greater, user-space should request more
4577          * stripe_heads first.
4578          */
4579         if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4580             (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
4581                 printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
4582                        (mddev->chunk_size / STRIPE_SIZE)*4);
4583                 return -ENOSPC;
4584         }
4585
4586         err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4587         if (err)
4588                 return err;
4589
4590         if (mddev->degraded > conf->max_degraded)
4591                 return -EINVAL;
4592         /* looks like we might be able to manage this */
4593         return 0;
4594 }
4595
4596 static int raid5_start_reshape(mddev_t *mddev)
4597 {
4598         raid5_conf_t *conf = mddev_to_conf(mddev);
4599         mdk_rdev_t *rdev;
4600         struct list_head *rtmp;
4601         int spares = 0;
4602         int added_devices = 0;
4603         unsigned long flags;
4604
4605         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4606                 return -EBUSY;
4607
4608         rdev_for_each(rdev, rtmp, mddev)
4609                 if (rdev->raid_disk < 0 &&
4610                     !test_bit(Faulty, &rdev->flags))
4611                         spares++;
4612
4613         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
4614                 /* Not enough devices even to make a degraded array
4615                  * of that size
4616                  */
4617                 return -EINVAL;
4618
4619         atomic_set(&conf->reshape_stripes, 0);
4620         spin_lock_irq(&conf->device_lock);
4621         conf->previous_raid_disks = conf->raid_disks;
4622         conf->raid_disks += mddev->delta_disks;
4623         conf->expand_progress = 0;
4624         conf->expand_lo = 0;
4625         spin_unlock_irq(&conf->device_lock);
4626
4627         /* Add some new drives, as many as will fit.
4628          * We know there are enough to make the newly sized array work.
4629          */
4630         rdev_for_each(rdev, rtmp, mddev)
4631                 if (rdev->raid_disk < 0 &&
4632                     !test_bit(Faulty, &rdev->flags)) {
4633                         if (raid5_add_disk(mddev, rdev) == 0) {
4634                                 char nm[20];
4635                                 set_bit(In_sync, &rdev->flags);
4636                                 added_devices++;
4637                                 rdev->recovery_offset = 0;
4638                                 sprintf(nm, "rd%d", rdev->raid_disk);
4639                                 if (sysfs_create_link(&mddev->kobj,
4640                                                       &rdev->kobj, nm))
4641                                         printk(KERN_WARNING
4642                                                "raid5: failed to create "
4643                                                " link %s for %s\n",
4644                                                nm, mdname(mddev));
4645                         } else
4646                                 break;
4647                 }
4648
4649         spin_lock_irqsave(&conf->device_lock, flags);
4650         mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
4651         spin_unlock_irqrestore(&conf->device_lock, flags);
4652         mddev->raid_disks = conf->raid_disks;
4653         mddev->reshape_position = 0;
4654         set_bit(MD_CHANGE_DEVS, &mddev->flags);
4655
4656         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4657         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4658         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4659         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4660         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4661                                                 "%s_reshape");
4662         if (!mddev->sync_thread) {
4663                 mddev->recovery = 0;
4664                 spin_lock_irq(&conf->device_lock);
4665                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4666                 conf->expand_progress = MaxSector;
4667                 spin_unlock_irq(&conf->device_lock);
4668                 return -EAGAIN;
4669         }
4670         md_wakeup_thread(mddev->sync_thread);
4671         md_new_event(mddev);
4672         return 0;
4673 }
4674 #endif
4675
4676 static void end_reshape(raid5_conf_t *conf)
4677 {
4678         struct block_device *bdev;
4679
4680         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
4681                 conf->mddev->array_size = conf->mddev->size *
4682                         (conf->raid_disks - conf->max_degraded);
4683                 set_capacity(conf->mddev->gendisk, conf->mddev->array_size << 1);
4684                 conf->mddev->changed = 1;
4685
4686                 bdev = bdget_disk(conf->mddev->gendisk, 0);
4687                 if (bdev) {
4688                         mutex_lock(&bdev->bd_inode->i_mutex);
4689                         i_size_write(bdev->bd_inode, (loff_t)conf->mddev->array_size << 10);
4690                         mutex_unlock(&bdev->bd_inode->i_mutex);
4691                         bdput(bdev);
4692                 }
4693                 spin_lock_irq(&conf->device_lock);
4694                 conf->expand_progress = MaxSector;
4695                 spin_unlock_irq(&conf->device_lock);
4696                 conf->mddev->reshape_position = MaxSector;
4697
4698                 /* read-ahead size must cover two whole stripes, which is
4699                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4700                  */
4701                 {
4702                         int data_disks = conf->previous_raid_disks - conf->max_degraded;
4703                         int stripe = data_disks *
4704                                 (conf->mddev->chunk_size / PAGE_SIZE);
4705                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4706                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4707                 }
4708         }
4709 }
4710
4711 static void raid5_quiesce(mddev_t *mddev, int state)
4712 {
4713         raid5_conf_t *conf = mddev_to_conf(mddev);
4714
4715         switch(state) {
4716         case 2: /* resume for a suspend */
4717                 wake_up(&conf->wait_for_overlap);
4718                 break;
4719
4720         case 1: /* stop all writes */
4721                 spin_lock_irq(&conf->device_lock);
4722                 conf->quiesce = 1;
4723                 wait_event_lock_irq(conf->wait_for_stripe,
4724                                     atomic_read(&conf->active_stripes) == 0 &&
4725                                     atomic_read(&conf->active_aligned_reads) == 0,
4726                                     conf->device_lock, /* nothing */);
4727                 spin_unlock_irq(&conf->device_lock);
4728                 break;
4729
4730         case 0: /* re-enable writes */
4731                 spin_lock_irq(&conf->device_lock);
4732                 conf->quiesce = 0;
4733                 wake_up(&conf->wait_for_stripe);
4734                 wake_up(&conf->wait_for_overlap);
4735                 spin_unlock_irq(&conf->device_lock);
4736                 break;
4737         }
4738 }
4739
4740 static struct mdk_personality raid6_personality =
4741 {
4742         .name           = "raid6",
4743         .level          = 6,
4744         .owner          = THIS_MODULE,
4745         .make_request   = make_request,
4746         .run            = run,
4747         .stop           = stop,
4748         .status         = status,
4749         .error_handler  = error,
4750         .hot_add_disk   = raid5_add_disk,
4751         .hot_remove_disk= raid5_remove_disk,
4752         .spare_active   = raid5_spare_active,
4753         .sync_request   = sync_request,
4754         .resize         = raid5_resize,
4755 #ifdef CONFIG_MD_RAID5_RESHAPE
4756         .check_reshape  = raid5_check_reshape,
4757         .start_reshape  = raid5_start_reshape,
4758 #endif
4759         .quiesce        = raid5_quiesce,
4760 };
4761 static struct mdk_personality raid5_personality =
4762 {
4763         .name           = "raid5",
4764         .level          = 5,
4765         .owner          = THIS_MODULE,
4766         .make_request   = make_request,
4767         .run            = run,
4768         .stop           = stop,
4769         .status         = status,
4770         .error_handler  = error,
4771         .hot_add_disk   = raid5_add_disk,
4772         .hot_remove_disk= raid5_remove_disk,
4773         .spare_active   = raid5_spare_active,
4774         .sync_request   = sync_request,
4775         .resize         = raid5_resize,
4776 #ifdef CONFIG_MD_RAID5_RESHAPE
4777         .check_reshape  = raid5_check_reshape,
4778         .start_reshape  = raid5_start_reshape,
4779 #endif
4780         .quiesce        = raid5_quiesce,
4781 };
4782
4783 static struct mdk_personality raid4_personality =
4784 {
4785         .name           = "raid4",
4786         .level          = 4,
4787         .owner          = THIS_MODULE,
4788         .make_request   = make_request,
4789         .run            = run,
4790         .stop           = stop,
4791         .status         = status,
4792         .error_handler  = error,
4793         .hot_add_disk   = raid5_add_disk,
4794         .hot_remove_disk= raid5_remove_disk,
4795         .spare_active   = raid5_spare_active,
4796         .sync_request   = sync_request,
4797         .resize         = raid5_resize,
4798 #ifdef CONFIG_MD_RAID5_RESHAPE
4799         .check_reshape  = raid5_check_reshape,
4800         .start_reshape  = raid5_start_reshape,
4801 #endif
4802         .quiesce        = raid5_quiesce,
4803 };
4804
4805 static int __init raid5_init(void)
4806 {
4807         int e;
4808
4809         e = raid6_select_algo();
4810         if ( e )
4811                 return e;
4812         register_md_personality(&raid6_personality);
4813         register_md_personality(&raid5_personality);
4814         register_md_personality(&raid4_personality);
4815         return 0;
4816 }
4817
4818 static void raid5_exit(void)
4819 {
4820         unregister_md_personality(&raid6_personality);
4821         unregister_md_personality(&raid5_personality);
4822         unregister_md_personality(&raid4_personality);
4823 }
4824
4825 module_init(raid5_init);
4826 module_exit(raid5_exit);
4827 MODULE_LICENSE("GPL");
4828 MODULE_ALIAS("md-personality-4"); /* RAID5 */
4829 MODULE_ALIAS("md-raid5");
4830 MODULE_ALIAS("md-raid4");
4831 MODULE_ALIAS("md-level-5");
4832 MODULE_ALIAS("md-level-4");
4833 MODULE_ALIAS("md-personality-8"); /* RAID6 */
4834 MODULE_ALIAS("md-raid6");
4835 MODULE_ALIAS("md-level-6");
4836
4837 /* This used to be two separate modules, they were: */
4838 MODULE_ALIAS("raid5");
4839 MODULE_ALIAS("raid6");