]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/md/raid5.c
md: replace STRIPE_OP_COMPUTE_BLK with STRIPE_COMPUTE_RUN
[linux-2.6-omap-h63xx.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->bm_write is the number of the last batch successfully written.
31  * conf->bm_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is bm_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/module.h>
47 #include <linux/slab.h>
48 #include <linux/highmem.h>
49 #include <linux/bitops.h>
50 #include <linux/kthread.h>
51 #include <asm/atomic.h>
52 #include "raid6.h"
53
54 #include <linux/raid/bitmap.h>
55 #include <linux/async_tx.h>
56
57 /*
58  * Stripe cache
59  */
60
61 #define NR_STRIPES              256
62 #define STRIPE_SIZE             PAGE_SIZE
63 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
64 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
65 #define IO_THRESHOLD            1
66 #define BYPASS_THRESHOLD        1
67 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
68 #define HASH_MASK               (NR_HASH - 1)
69
70 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
71
72 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
73  * order without overlap.  There may be several bio's per stripe+device, and
74  * a bio could span several devices.
75  * When walking this list for a particular stripe+device, we must never proceed
76  * beyond a bio that extends past this device, as the next bio might no longer
77  * be valid.
78  * This macro is used to determine the 'next' bio in the list, given the sector
79  * of the current stripe+device
80  */
81 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
82 /*
83  * The following can be used to debug the driver
84  */
85 #define RAID5_PARANOIA  1
86 #if RAID5_PARANOIA && defined(CONFIG_SMP)
87 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
88 #else
89 # define CHECK_DEVLOCK()
90 #endif
91
92 #ifdef DEBUG
93 #define inline
94 #define __inline__
95 #endif
96
97 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
98
99 #if !RAID6_USE_EMPTY_ZERO_PAGE
100 /* In .bss so it's zeroed */
101 const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
102 #endif
103
104 static inline int raid6_next_disk(int disk, int raid_disks)
105 {
106         disk++;
107         return (disk < raid_disks) ? disk : 0;
108 }
109
110 static void return_io(struct bio *return_bi)
111 {
112         struct bio *bi = return_bi;
113         while (bi) {
114
115                 return_bi = bi->bi_next;
116                 bi->bi_next = NULL;
117                 bi->bi_size = 0;
118                 bio_endio(bi, 0);
119                 bi = return_bi;
120         }
121 }
122
123 static void print_raid5_conf (raid5_conf_t *conf);
124
125 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
126 {
127         if (atomic_dec_and_test(&sh->count)) {
128                 BUG_ON(!list_empty(&sh->lru));
129                 BUG_ON(atomic_read(&conf->active_stripes)==0);
130                 if (test_bit(STRIPE_HANDLE, &sh->state)) {
131                         if (test_bit(STRIPE_DELAYED, &sh->state)) {
132                                 list_add_tail(&sh->lru, &conf->delayed_list);
133                                 blk_plug_device(conf->mddev->queue);
134                         } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
135                                    sh->bm_seq - conf->seq_write > 0) {
136                                 list_add_tail(&sh->lru, &conf->bitmap_list);
137                                 blk_plug_device(conf->mddev->queue);
138                         } else {
139                                 clear_bit(STRIPE_BIT_DELAY, &sh->state);
140                                 list_add_tail(&sh->lru, &conf->handle_list);
141                         }
142                         md_wakeup_thread(conf->mddev->thread);
143                 } else {
144                         BUG_ON(sh->ops.pending);
145                         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
146                                 atomic_dec(&conf->preread_active_stripes);
147                                 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
148                                         md_wakeup_thread(conf->mddev->thread);
149                         }
150                         atomic_dec(&conf->active_stripes);
151                         if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
152                                 list_add_tail(&sh->lru, &conf->inactive_list);
153                                 wake_up(&conf->wait_for_stripe);
154                                 if (conf->retry_read_aligned)
155                                         md_wakeup_thread(conf->mddev->thread);
156                         }
157                 }
158         }
159 }
160 static void release_stripe(struct stripe_head *sh)
161 {
162         raid5_conf_t *conf = sh->raid_conf;
163         unsigned long flags;
164
165         spin_lock_irqsave(&conf->device_lock, flags);
166         __release_stripe(conf, sh);
167         spin_unlock_irqrestore(&conf->device_lock, flags);
168 }
169
170 static inline void remove_hash(struct stripe_head *sh)
171 {
172         pr_debug("remove_hash(), stripe %llu\n",
173                 (unsigned long long)sh->sector);
174
175         hlist_del_init(&sh->hash);
176 }
177
178 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
179 {
180         struct hlist_head *hp = stripe_hash(conf, sh->sector);
181
182         pr_debug("insert_hash(), stripe %llu\n",
183                 (unsigned long long)sh->sector);
184
185         CHECK_DEVLOCK();
186         hlist_add_head(&sh->hash, hp);
187 }
188
189
190 /* find an idle stripe, make sure it is unhashed, and return it. */
191 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
192 {
193         struct stripe_head *sh = NULL;
194         struct list_head *first;
195
196         CHECK_DEVLOCK();
197         if (list_empty(&conf->inactive_list))
198                 goto out;
199         first = conf->inactive_list.next;
200         sh = list_entry(first, struct stripe_head, lru);
201         list_del_init(first);
202         remove_hash(sh);
203         atomic_inc(&conf->active_stripes);
204 out:
205         return sh;
206 }
207
208 static void shrink_buffers(struct stripe_head *sh, int num)
209 {
210         struct page *p;
211         int i;
212
213         for (i=0; i<num ; i++) {
214                 p = sh->dev[i].page;
215                 if (!p)
216                         continue;
217                 sh->dev[i].page = NULL;
218                 put_page(p);
219         }
220 }
221
222 static int grow_buffers(struct stripe_head *sh, int num)
223 {
224         int i;
225
226         for (i=0; i<num; i++) {
227                 struct page *page;
228
229                 if (!(page = alloc_page(GFP_KERNEL))) {
230                         return 1;
231                 }
232                 sh->dev[i].page = page;
233         }
234         return 0;
235 }
236
237 static void raid5_build_block (struct stripe_head *sh, int i);
238
239 static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
240 {
241         raid5_conf_t *conf = sh->raid_conf;
242         int i;
243
244         BUG_ON(atomic_read(&sh->count) != 0);
245         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
246         BUG_ON(sh->ops.pending || sh->ops.ack || sh->ops.complete);
247
248         CHECK_DEVLOCK();
249         pr_debug("init_stripe called, stripe %llu\n",
250                 (unsigned long long)sh->sector);
251
252         remove_hash(sh);
253
254         sh->sector = sector;
255         sh->pd_idx = pd_idx;
256         sh->state = 0;
257
258         sh->disks = disks;
259
260         for (i = sh->disks; i--; ) {
261                 struct r5dev *dev = &sh->dev[i];
262
263                 if (dev->toread || dev->read || dev->towrite || dev->written ||
264                     test_bit(R5_LOCKED, &dev->flags)) {
265                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
266                                (unsigned long long)sh->sector, i, dev->toread,
267                                dev->read, dev->towrite, dev->written,
268                                test_bit(R5_LOCKED, &dev->flags));
269                         BUG();
270                 }
271                 dev->flags = 0;
272                 raid5_build_block(sh, i);
273         }
274         insert_hash(conf, sh);
275 }
276
277 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
278 {
279         struct stripe_head *sh;
280         struct hlist_node *hn;
281
282         CHECK_DEVLOCK();
283         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
284         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
285                 if (sh->sector == sector && sh->disks == disks)
286                         return sh;
287         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
288         return NULL;
289 }
290
291 static void unplug_slaves(mddev_t *mddev);
292 static void raid5_unplug_device(struct request_queue *q);
293
294 static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
295                                              int pd_idx, int noblock)
296 {
297         struct stripe_head *sh;
298
299         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
300
301         spin_lock_irq(&conf->device_lock);
302
303         do {
304                 wait_event_lock_irq(conf->wait_for_stripe,
305                                     conf->quiesce == 0,
306                                     conf->device_lock, /* nothing */);
307                 sh = __find_stripe(conf, sector, disks);
308                 if (!sh) {
309                         if (!conf->inactive_blocked)
310                                 sh = get_free_stripe(conf);
311                         if (noblock && sh == NULL)
312                                 break;
313                         if (!sh) {
314                                 conf->inactive_blocked = 1;
315                                 wait_event_lock_irq(conf->wait_for_stripe,
316                                                     !list_empty(&conf->inactive_list) &&
317                                                     (atomic_read(&conf->active_stripes)
318                                                      < (conf->max_nr_stripes *3/4)
319                                                      || !conf->inactive_blocked),
320                                                     conf->device_lock,
321                                                     raid5_unplug_device(conf->mddev->queue)
322                                         );
323                                 conf->inactive_blocked = 0;
324                         } else
325                                 init_stripe(sh, sector, pd_idx, disks);
326                 } else {
327                         if (atomic_read(&sh->count)) {
328                           BUG_ON(!list_empty(&sh->lru));
329                         } else {
330                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
331                                         atomic_inc(&conf->active_stripes);
332                                 if (list_empty(&sh->lru) &&
333                                     !test_bit(STRIPE_EXPANDING, &sh->state))
334                                         BUG();
335                                 list_del_init(&sh->lru);
336                         }
337                 }
338         } while (sh == NULL);
339
340         if (sh)
341                 atomic_inc(&sh->count);
342
343         spin_unlock_irq(&conf->device_lock);
344         return sh;
345 }
346
347 /* test_and_ack_op() ensures that we only dequeue an operation once */
348 #define test_and_ack_op(op, pend) \
349 do {                                                    \
350         if (test_bit(op, &sh->ops.pending) &&           \
351                 !test_bit(op, &sh->ops.complete)) {     \
352                 if (test_and_set_bit(op, &sh->ops.ack)) \
353                         clear_bit(op, &pend);           \
354                 else                                    \
355                         ack++;                          \
356         } else                                          \
357                 clear_bit(op, &pend);                   \
358 } while (0)
359
360 /* find new work to run, do not resubmit work that is already
361  * in flight
362  */
363 static unsigned long get_stripe_work(struct stripe_head *sh)
364 {
365         unsigned long pending;
366         int ack = 0;
367
368         pending = sh->ops.pending;
369
370         test_and_ack_op(STRIPE_OP_BIOFILL, pending);
371         test_and_ack_op(STRIPE_OP_COMPUTE_BLK, pending);
372         test_and_ack_op(STRIPE_OP_PREXOR, pending);
373         test_and_ack_op(STRIPE_OP_BIODRAIN, pending);
374         test_and_ack_op(STRIPE_OP_POSTXOR, pending);
375         test_and_ack_op(STRIPE_OP_CHECK, pending);
376
377         sh->ops.count -= ack;
378         if (unlikely(sh->ops.count < 0)) {
379                 printk(KERN_ERR "pending: %#lx ops.pending: %#lx ops.ack: %#lx "
380                         "ops.complete: %#lx\n", pending, sh->ops.pending,
381                         sh->ops.ack, sh->ops.complete);
382                 BUG();
383         }
384
385         return pending;
386 }
387
388 static void
389 raid5_end_read_request(struct bio *bi, int error);
390 static void
391 raid5_end_write_request(struct bio *bi, int error);
392
393 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
394 {
395         raid5_conf_t *conf = sh->raid_conf;
396         int i, disks = sh->disks;
397
398         might_sleep();
399
400         for (i = disks; i--; ) {
401                 int rw;
402                 struct bio *bi;
403                 mdk_rdev_t *rdev;
404                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
405                         rw = WRITE;
406                 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
407                         rw = READ;
408                 else
409                         continue;
410
411                 bi = &sh->dev[i].req;
412
413                 bi->bi_rw = rw;
414                 if (rw == WRITE)
415                         bi->bi_end_io = raid5_end_write_request;
416                 else
417                         bi->bi_end_io = raid5_end_read_request;
418
419                 rcu_read_lock();
420                 rdev = rcu_dereference(conf->disks[i].rdev);
421                 if (rdev && test_bit(Faulty, &rdev->flags))
422                         rdev = NULL;
423                 if (rdev)
424                         atomic_inc(&rdev->nr_pending);
425                 rcu_read_unlock();
426
427                 if (rdev) {
428                         if (s->syncing || s->expanding || s->expanded)
429                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
430
431                         set_bit(STRIPE_IO_STARTED, &sh->state);
432
433                         bi->bi_bdev = rdev->bdev;
434                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
435                                 __func__, (unsigned long long)sh->sector,
436                                 bi->bi_rw, i);
437                         atomic_inc(&sh->count);
438                         bi->bi_sector = sh->sector + rdev->data_offset;
439                         bi->bi_flags = 1 << BIO_UPTODATE;
440                         bi->bi_vcnt = 1;
441                         bi->bi_max_vecs = 1;
442                         bi->bi_idx = 0;
443                         bi->bi_io_vec = &sh->dev[i].vec;
444                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
445                         bi->bi_io_vec[0].bv_offset = 0;
446                         bi->bi_size = STRIPE_SIZE;
447                         bi->bi_next = NULL;
448                         if (rw == WRITE &&
449                             test_bit(R5_ReWrite, &sh->dev[i].flags))
450                                 atomic_add(STRIPE_SECTORS,
451                                         &rdev->corrected_errors);
452                         generic_make_request(bi);
453                 } else {
454                         if (rw == WRITE)
455                                 set_bit(STRIPE_DEGRADED, &sh->state);
456                         pr_debug("skip op %ld on disc %d for sector %llu\n",
457                                 bi->bi_rw, i, (unsigned long long)sh->sector);
458                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
459                         set_bit(STRIPE_HANDLE, &sh->state);
460                 }
461         }
462 }
463
464 static struct dma_async_tx_descriptor *
465 async_copy_data(int frombio, struct bio *bio, struct page *page,
466         sector_t sector, struct dma_async_tx_descriptor *tx)
467 {
468         struct bio_vec *bvl;
469         struct page *bio_page;
470         int i;
471         int page_offset;
472
473         if (bio->bi_sector >= sector)
474                 page_offset = (signed)(bio->bi_sector - sector) * 512;
475         else
476                 page_offset = (signed)(sector - bio->bi_sector) * -512;
477         bio_for_each_segment(bvl, bio, i) {
478                 int len = bio_iovec_idx(bio, i)->bv_len;
479                 int clen;
480                 int b_offset = 0;
481
482                 if (page_offset < 0) {
483                         b_offset = -page_offset;
484                         page_offset += b_offset;
485                         len -= b_offset;
486                 }
487
488                 if (len > 0 && page_offset + len > STRIPE_SIZE)
489                         clen = STRIPE_SIZE - page_offset;
490                 else
491                         clen = len;
492
493                 if (clen > 0) {
494                         b_offset += bio_iovec_idx(bio, i)->bv_offset;
495                         bio_page = bio_iovec_idx(bio, i)->bv_page;
496                         if (frombio)
497                                 tx = async_memcpy(page, bio_page, page_offset,
498                                         b_offset, clen,
499                                         ASYNC_TX_DEP_ACK,
500                                         tx, NULL, NULL);
501                         else
502                                 tx = async_memcpy(bio_page, page, b_offset,
503                                         page_offset, clen,
504                                         ASYNC_TX_DEP_ACK,
505                                         tx, NULL, NULL);
506                 }
507                 if (clen < len) /* hit end of page */
508                         break;
509                 page_offset +=  len;
510         }
511
512         return tx;
513 }
514
515 static void ops_complete_biofill(void *stripe_head_ref)
516 {
517         struct stripe_head *sh = stripe_head_ref;
518         struct bio *return_bi = NULL;
519         raid5_conf_t *conf = sh->raid_conf;
520         int i;
521
522         pr_debug("%s: stripe %llu\n", __func__,
523                 (unsigned long long)sh->sector);
524
525         /* clear completed biofills */
526         spin_lock_irq(&conf->device_lock);
527         for (i = sh->disks; i--; ) {
528                 struct r5dev *dev = &sh->dev[i];
529
530                 /* acknowledge completion of a biofill operation */
531                 /* and check if we need to reply to a read request,
532                  * new R5_Wantfill requests are held off until
533                  * !STRIPE_BIOFILL_RUN
534                  */
535                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
536                         struct bio *rbi, *rbi2;
537
538                         BUG_ON(!dev->read);
539                         rbi = dev->read;
540                         dev->read = NULL;
541                         while (rbi && rbi->bi_sector <
542                                 dev->sector + STRIPE_SECTORS) {
543                                 rbi2 = r5_next_bio(rbi, dev->sector);
544                                 if (--rbi->bi_phys_segments == 0) {
545                                         rbi->bi_next = return_bi;
546                                         return_bi = rbi;
547                                 }
548                                 rbi = rbi2;
549                         }
550                 }
551         }
552         spin_unlock_irq(&conf->device_lock);
553         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
554
555         return_io(return_bi);
556
557         set_bit(STRIPE_HANDLE, &sh->state);
558         release_stripe(sh);
559 }
560
561 static void ops_run_biofill(struct stripe_head *sh)
562 {
563         struct dma_async_tx_descriptor *tx = NULL;
564         raid5_conf_t *conf = sh->raid_conf;
565         int i;
566
567         pr_debug("%s: stripe %llu\n", __func__,
568                 (unsigned long long)sh->sector);
569
570         for (i = sh->disks; i--; ) {
571                 struct r5dev *dev = &sh->dev[i];
572                 if (test_bit(R5_Wantfill, &dev->flags)) {
573                         struct bio *rbi;
574                         spin_lock_irq(&conf->device_lock);
575                         dev->read = rbi = dev->toread;
576                         dev->toread = NULL;
577                         spin_unlock_irq(&conf->device_lock);
578                         while (rbi && rbi->bi_sector <
579                                 dev->sector + STRIPE_SECTORS) {
580                                 tx = async_copy_data(0, rbi, dev->page,
581                                         dev->sector, tx);
582                                 rbi = r5_next_bio(rbi, dev->sector);
583                         }
584                 }
585         }
586
587         atomic_inc(&sh->count);
588         async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
589                 ops_complete_biofill, sh);
590 }
591
592 static void ops_complete_compute5(void *stripe_head_ref)
593 {
594         struct stripe_head *sh = stripe_head_ref;
595         int target = sh->ops.target;
596         struct r5dev *tgt = &sh->dev[target];
597
598         pr_debug("%s: stripe %llu\n", __func__,
599                 (unsigned long long)sh->sector);
600
601         set_bit(R5_UPTODATE, &tgt->flags);
602         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
603         clear_bit(R5_Wantcompute, &tgt->flags);
604         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
605         if (sh->check_state == check_state_compute_run)
606                 sh->check_state = check_state_compute_result;
607         set_bit(STRIPE_HANDLE, &sh->state);
608         release_stripe(sh);
609 }
610
611 static struct dma_async_tx_descriptor *
612 ops_run_compute5(struct stripe_head *sh, unsigned long pending)
613 {
614         /* kernel stack size limits the total number of disks */
615         int disks = sh->disks;
616         struct page *xor_srcs[disks];
617         int target = sh->ops.target;
618         struct r5dev *tgt = &sh->dev[target];
619         struct page *xor_dest = tgt->page;
620         int count = 0;
621         struct dma_async_tx_descriptor *tx;
622         int i;
623
624         pr_debug("%s: stripe %llu block: %d\n",
625                 __func__, (unsigned long long)sh->sector, target);
626         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
627
628         for (i = disks; i--; )
629                 if (i != target)
630                         xor_srcs[count++] = sh->dev[i].page;
631
632         atomic_inc(&sh->count);
633
634         if (unlikely(count == 1))
635                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
636                         0, NULL, ops_complete_compute5, sh);
637         else
638                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
639                         ASYNC_TX_XOR_ZERO_DST, NULL,
640                         ops_complete_compute5, sh);
641
642         /* ack now if postxor is not set to be run */
643         if (tx && !test_bit(STRIPE_OP_POSTXOR, &pending))
644                 async_tx_ack(tx);
645
646         return tx;
647 }
648
649 static void ops_complete_prexor(void *stripe_head_ref)
650 {
651         struct stripe_head *sh = stripe_head_ref;
652
653         pr_debug("%s: stripe %llu\n", __func__,
654                 (unsigned long long)sh->sector);
655
656         set_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
657 }
658
659 static struct dma_async_tx_descriptor *
660 ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
661 {
662         /* kernel stack size limits the total number of disks */
663         int disks = sh->disks;
664         struct page *xor_srcs[disks];
665         int count = 0, pd_idx = sh->pd_idx, i;
666
667         /* existing parity data subtracted */
668         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
669
670         pr_debug("%s: stripe %llu\n", __func__,
671                 (unsigned long long)sh->sector);
672
673         for (i = disks; i--; ) {
674                 struct r5dev *dev = &sh->dev[i];
675                 /* Only process blocks that are known to be uptodate */
676                 if (dev->towrite && test_bit(R5_Wantprexor, &dev->flags))
677                         xor_srcs[count++] = dev->page;
678         }
679
680         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
681                 ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
682                 ops_complete_prexor, sh);
683
684         return tx;
685 }
686
687 static struct dma_async_tx_descriptor *
688 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx,
689                  unsigned long pending)
690 {
691         int disks = sh->disks;
692         int pd_idx = sh->pd_idx, i;
693
694         /* check if prexor is active which means only process blocks
695          * that are part of a read-modify-write (Wantprexor)
696          */
697         int prexor = test_bit(STRIPE_OP_PREXOR, &pending);
698
699         pr_debug("%s: stripe %llu\n", __func__,
700                 (unsigned long long)sh->sector);
701
702         for (i = disks; i--; ) {
703                 struct r5dev *dev = &sh->dev[i];
704                 struct bio *chosen;
705                 int towrite;
706
707                 towrite = 0;
708                 if (prexor) { /* rmw */
709                         if (dev->towrite &&
710                             test_bit(R5_Wantprexor, &dev->flags))
711                                 towrite = 1;
712                 } else { /* rcw */
713                         if (i != pd_idx && dev->towrite &&
714                                 test_bit(R5_LOCKED, &dev->flags))
715                                 towrite = 1;
716                 }
717
718                 if (towrite) {
719                         struct bio *wbi;
720
721                         spin_lock(&sh->lock);
722                         chosen = dev->towrite;
723                         dev->towrite = NULL;
724                         BUG_ON(dev->written);
725                         wbi = dev->written = chosen;
726                         spin_unlock(&sh->lock);
727
728                         while (wbi && wbi->bi_sector <
729                                 dev->sector + STRIPE_SECTORS) {
730                                 tx = async_copy_data(1, wbi, dev->page,
731                                         dev->sector, tx);
732                                 wbi = r5_next_bio(wbi, dev->sector);
733                         }
734                 }
735         }
736
737         return tx;
738 }
739
740 static void ops_complete_postxor(void *stripe_head_ref)
741 {
742         struct stripe_head *sh = stripe_head_ref;
743
744         pr_debug("%s: stripe %llu\n", __func__,
745                 (unsigned long long)sh->sector);
746
747         set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
748         set_bit(STRIPE_HANDLE, &sh->state);
749         release_stripe(sh);
750 }
751
752 static void ops_complete_write(void *stripe_head_ref)
753 {
754         struct stripe_head *sh = stripe_head_ref;
755         int disks = sh->disks, i, pd_idx = sh->pd_idx;
756
757         pr_debug("%s: stripe %llu\n", __func__,
758                 (unsigned long long)sh->sector);
759
760         for (i = disks; i--; ) {
761                 struct r5dev *dev = &sh->dev[i];
762                 if (dev->written || i == pd_idx)
763                         set_bit(R5_UPTODATE, &dev->flags);
764         }
765
766         set_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
767         set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
768
769         set_bit(STRIPE_HANDLE, &sh->state);
770         release_stripe(sh);
771 }
772
773 static void
774 ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx,
775                 unsigned long pending)
776 {
777         /* kernel stack size limits the total number of disks */
778         int disks = sh->disks;
779         struct page *xor_srcs[disks];
780
781         int count = 0, pd_idx = sh->pd_idx, i;
782         struct page *xor_dest;
783         int prexor = test_bit(STRIPE_OP_PREXOR, &pending);
784         unsigned long flags;
785         dma_async_tx_callback callback;
786
787         pr_debug("%s: stripe %llu\n", __func__,
788                 (unsigned long long)sh->sector);
789
790         /* check if prexor is active which means only process blocks
791          * that are part of a read-modify-write (written)
792          */
793         if (prexor) {
794                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
795                 for (i = disks; i--; ) {
796                         struct r5dev *dev = &sh->dev[i];
797                         if (dev->written)
798                                 xor_srcs[count++] = dev->page;
799                 }
800         } else {
801                 xor_dest = sh->dev[pd_idx].page;
802                 for (i = disks; i--; ) {
803                         struct r5dev *dev = &sh->dev[i];
804                         if (i != pd_idx)
805                                 xor_srcs[count++] = dev->page;
806                 }
807         }
808
809         /* check whether this postxor is part of a write */
810         callback = test_bit(STRIPE_OP_BIODRAIN, &pending) ?
811                 ops_complete_write : ops_complete_postxor;
812
813         /* 1/ if we prexor'd then the dest is reused as a source
814          * 2/ if we did not prexor then we are redoing the parity
815          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
816          * for the synchronous xor case
817          */
818         flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
819                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
820
821         atomic_inc(&sh->count);
822
823         if (unlikely(count == 1)) {
824                 flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
825                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
826                         flags, tx, callback, sh);
827         } else
828                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
829                         flags, tx, callback, sh);
830 }
831
832 static void ops_complete_check(void *stripe_head_ref)
833 {
834         struct stripe_head *sh = stripe_head_ref;
835
836         pr_debug("%s: stripe %llu\n", __func__,
837                 (unsigned long long)sh->sector);
838
839         sh->check_state = check_state_check_result;
840         set_bit(STRIPE_HANDLE, &sh->state);
841         release_stripe(sh);
842 }
843
844 static void ops_run_check(struct stripe_head *sh)
845 {
846         /* kernel stack size limits the total number of disks */
847         int disks = sh->disks;
848         struct page *xor_srcs[disks];
849         struct dma_async_tx_descriptor *tx;
850
851         int count = 0, pd_idx = sh->pd_idx, i;
852         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
853
854         pr_debug("%s: stripe %llu\n", __func__,
855                 (unsigned long long)sh->sector);
856
857         for (i = disks; i--; ) {
858                 struct r5dev *dev = &sh->dev[i];
859                 if (i != pd_idx)
860                         xor_srcs[count++] = dev->page;
861         }
862
863         tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
864                 &sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
865
866         atomic_inc(&sh->count);
867         tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
868                 ops_complete_check, sh);
869 }
870
871 static void raid5_run_ops(struct stripe_head *sh, unsigned long pending,
872                           unsigned long ops_request)
873 {
874         int overlap_clear = 0, i, disks = sh->disks;
875         struct dma_async_tx_descriptor *tx = NULL;
876
877         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
878                 ops_run_biofill(sh);
879                 overlap_clear++;
880         }
881
882         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request))
883                 tx = ops_run_compute5(sh, pending);
884
885         if (test_bit(STRIPE_OP_PREXOR, &pending))
886                 tx = ops_run_prexor(sh, tx);
887
888         if (test_bit(STRIPE_OP_BIODRAIN, &pending)) {
889                 tx = ops_run_biodrain(sh, tx, pending);
890                 overlap_clear++;
891         }
892
893         if (test_bit(STRIPE_OP_POSTXOR, &pending))
894                 ops_run_postxor(sh, tx, pending);
895
896         if (test_bit(STRIPE_OP_CHECK, &ops_request))
897                 ops_run_check(sh);
898
899         if (overlap_clear)
900                 for (i = disks; i--; ) {
901                         struct r5dev *dev = &sh->dev[i];
902                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
903                                 wake_up(&sh->raid_conf->wait_for_overlap);
904                 }
905 }
906
907 static int grow_one_stripe(raid5_conf_t *conf)
908 {
909         struct stripe_head *sh;
910         sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
911         if (!sh)
912                 return 0;
913         memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
914         sh->raid_conf = conf;
915         spin_lock_init(&sh->lock);
916
917         if (grow_buffers(sh, conf->raid_disks)) {
918                 shrink_buffers(sh, conf->raid_disks);
919                 kmem_cache_free(conf->slab_cache, sh);
920                 return 0;
921         }
922         sh->disks = conf->raid_disks;
923         /* we just created an active stripe so... */
924         atomic_set(&sh->count, 1);
925         atomic_inc(&conf->active_stripes);
926         INIT_LIST_HEAD(&sh->lru);
927         release_stripe(sh);
928         return 1;
929 }
930
931 static int grow_stripes(raid5_conf_t *conf, int num)
932 {
933         struct kmem_cache *sc;
934         int devs = conf->raid_disks;
935
936         sprintf(conf->cache_name[0], "raid5-%s", mdname(conf->mddev));
937         sprintf(conf->cache_name[1], "raid5-%s-alt", mdname(conf->mddev));
938         conf->active_name = 0;
939         sc = kmem_cache_create(conf->cache_name[conf->active_name],
940                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
941                                0, 0, NULL);
942         if (!sc)
943                 return 1;
944         conf->slab_cache = sc;
945         conf->pool_size = devs;
946         while (num--)
947                 if (!grow_one_stripe(conf))
948                         return 1;
949         return 0;
950 }
951
952 #ifdef CONFIG_MD_RAID5_RESHAPE
953 static int resize_stripes(raid5_conf_t *conf, int newsize)
954 {
955         /* Make all the stripes able to hold 'newsize' devices.
956          * New slots in each stripe get 'page' set to a new page.
957          *
958          * This happens in stages:
959          * 1/ create a new kmem_cache and allocate the required number of
960          *    stripe_heads.
961          * 2/ gather all the old stripe_heads and tranfer the pages across
962          *    to the new stripe_heads.  This will have the side effect of
963          *    freezing the array as once all stripe_heads have been collected,
964          *    no IO will be possible.  Old stripe heads are freed once their
965          *    pages have been transferred over, and the old kmem_cache is
966          *    freed when all stripes are done.
967          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
968          *    we simple return a failre status - no need to clean anything up.
969          * 4/ allocate new pages for the new slots in the new stripe_heads.
970          *    If this fails, we don't bother trying the shrink the
971          *    stripe_heads down again, we just leave them as they are.
972          *    As each stripe_head is processed the new one is released into
973          *    active service.
974          *
975          * Once step2 is started, we cannot afford to wait for a write,
976          * so we use GFP_NOIO allocations.
977          */
978         struct stripe_head *osh, *nsh;
979         LIST_HEAD(newstripes);
980         struct disk_info *ndisks;
981         int err = 0;
982         struct kmem_cache *sc;
983         int i;
984
985         if (newsize <= conf->pool_size)
986                 return 0; /* never bother to shrink */
987
988         md_allow_write(conf->mddev);
989
990         /* Step 1 */
991         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
992                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
993                                0, 0, NULL);
994         if (!sc)
995                 return -ENOMEM;
996
997         for (i = conf->max_nr_stripes; i; i--) {
998                 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
999                 if (!nsh)
1000                         break;
1001
1002                 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1003
1004                 nsh->raid_conf = conf;
1005                 spin_lock_init(&nsh->lock);
1006
1007                 list_add(&nsh->lru, &newstripes);
1008         }
1009         if (i) {
1010                 /* didn't get enough, give up */
1011                 while (!list_empty(&newstripes)) {
1012                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1013                         list_del(&nsh->lru);
1014                         kmem_cache_free(sc, nsh);
1015                 }
1016                 kmem_cache_destroy(sc);
1017                 return -ENOMEM;
1018         }
1019         /* Step 2 - Must use GFP_NOIO now.
1020          * OK, we have enough stripes, start collecting inactive
1021          * stripes and copying them over
1022          */
1023         list_for_each_entry(nsh, &newstripes, lru) {
1024                 spin_lock_irq(&conf->device_lock);
1025                 wait_event_lock_irq(conf->wait_for_stripe,
1026                                     !list_empty(&conf->inactive_list),
1027                                     conf->device_lock,
1028                                     unplug_slaves(conf->mddev)
1029                         );
1030                 osh = get_free_stripe(conf);
1031                 spin_unlock_irq(&conf->device_lock);
1032                 atomic_set(&nsh->count, 1);
1033                 for(i=0; i<conf->pool_size; i++)
1034                         nsh->dev[i].page = osh->dev[i].page;
1035                 for( ; i<newsize; i++)
1036                         nsh->dev[i].page = NULL;
1037                 kmem_cache_free(conf->slab_cache, osh);
1038         }
1039         kmem_cache_destroy(conf->slab_cache);
1040
1041         /* Step 3.
1042          * At this point, we are holding all the stripes so the array
1043          * is completely stalled, so now is a good time to resize
1044          * conf->disks.
1045          */
1046         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1047         if (ndisks) {
1048                 for (i=0; i<conf->raid_disks; i++)
1049                         ndisks[i] = conf->disks[i];
1050                 kfree(conf->disks);
1051                 conf->disks = ndisks;
1052         } else
1053                 err = -ENOMEM;
1054
1055         /* Step 4, return new stripes to service */
1056         while(!list_empty(&newstripes)) {
1057                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1058                 list_del_init(&nsh->lru);
1059                 for (i=conf->raid_disks; i < newsize; i++)
1060                         if (nsh->dev[i].page == NULL) {
1061                                 struct page *p = alloc_page(GFP_NOIO);
1062                                 nsh->dev[i].page = p;
1063                                 if (!p)
1064                                         err = -ENOMEM;
1065                         }
1066                 release_stripe(nsh);
1067         }
1068         /* critical section pass, GFP_NOIO no longer needed */
1069
1070         conf->slab_cache = sc;
1071         conf->active_name = 1-conf->active_name;
1072         conf->pool_size = newsize;
1073         return err;
1074 }
1075 #endif
1076
1077 static int drop_one_stripe(raid5_conf_t *conf)
1078 {
1079         struct stripe_head *sh;
1080
1081         spin_lock_irq(&conf->device_lock);
1082         sh = get_free_stripe(conf);
1083         spin_unlock_irq(&conf->device_lock);
1084         if (!sh)
1085                 return 0;
1086         BUG_ON(atomic_read(&sh->count));
1087         shrink_buffers(sh, conf->pool_size);
1088         kmem_cache_free(conf->slab_cache, sh);
1089         atomic_dec(&conf->active_stripes);
1090         return 1;
1091 }
1092
1093 static void shrink_stripes(raid5_conf_t *conf)
1094 {
1095         while (drop_one_stripe(conf))
1096                 ;
1097
1098         if (conf->slab_cache)
1099                 kmem_cache_destroy(conf->slab_cache);
1100         conf->slab_cache = NULL;
1101 }
1102
1103 static void raid5_end_read_request(struct bio * bi, int error)
1104 {
1105         struct stripe_head *sh = bi->bi_private;
1106         raid5_conf_t *conf = sh->raid_conf;
1107         int disks = sh->disks, i;
1108         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1109         char b[BDEVNAME_SIZE];
1110         mdk_rdev_t *rdev;
1111
1112
1113         for (i=0 ; i<disks; i++)
1114                 if (bi == &sh->dev[i].req)
1115                         break;
1116
1117         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1118                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1119                 uptodate);
1120         if (i == disks) {
1121                 BUG();
1122                 return;
1123         }
1124
1125         if (uptodate) {
1126                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1127                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1128                         rdev = conf->disks[i].rdev;
1129                         printk_rl(KERN_INFO "raid5:%s: read error corrected"
1130                                   " (%lu sectors at %llu on %s)\n",
1131                                   mdname(conf->mddev), STRIPE_SECTORS,
1132                                   (unsigned long long)(sh->sector
1133                                                        + rdev->data_offset),
1134                                   bdevname(rdev->bdev, b));
1135                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1136                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1137                 }
1138                 if (atomic_read(&conf->disks[i].rdev->read_errors))
1139                         atomic_set(&conf->disks[i].rdev->read_errors, 0);
1140         } else {
1141                 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1142                 int retry = 0;
1143                 rdev = conf->disks[i].rdev;
1144
1145                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1146                 atomic_inc(&rdev->read_errors);
1147                 if (conf->mddev->degraded)
1148                         printk_rl(KERN_WARNING
1149                                   "raid5:%s: read error not correctable "
1150                                   "(sector %llu on %s).\n",
1151                                   mdname(conf->mddev),
1152                                   (unsigned long long)(sh->sector
1153                                                        + rdev->data_offset),
1154                                   bdn);
1155                 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1156                         /* Oh, no!!! */
1157                         printk_rl(KERN_WARNING
1158                                   "raid5:%s: read error NOT corrected!! "
1159                                   "(sector %llu on %s).\n",
1160                                   mdname(conf->mddev),
1161                                   (unsigned long long)(sh->sector
1162                                                        + rdev->data_offset),
1163                                   bdn);
1164                 else if (atomic_read(&rdev->read_errors)
1165                          > conf->max_nr_stripes)
1166                         printk(KERN_WARNING
1167                                "raid5:%s: Too many read errors, failing device %s.\n",
1168                                mdname(conf->mddev), bdn);
1169                 else
1170                         retry = 1;
1171                 if (retry)
1172                         set_bit(R5_ReadError, &sh->dev[i].flags);
1173                 else {
1174                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1175                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1176                         md_error(conf->mddev, rdev);
1177                 }
1178         }
1179         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1180         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1181         set_bit(STRIPE_HANDLE, &sh->state);
1182         release_stripe(sh);
1183 }
1184
1185 static void raid5_end_write_request (struct bio *bi, int error)
1186 {
1187         struct stripe_head *sh = bi->bi_private;
1188         raid5_conf_t *conf = sh->raid_conf;
1189         int disks = sh->disks, i;
1190         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1191
1192         for (i=0 ; i<disks; i++)
1193                 if (bi == &sh->dev[i].req)
1194                         break;
1195
1196         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1197                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1198                 uptodate);
1199         if (i == disks) {
1200                 BUG();
1201                 return;
1202         }
1203
1204         if (!uptodate)
1205                 md_error(conf->mddev, conf->disks[i].rdev);
1206
1207         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1208         
1209         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1210         set_bit(STRIPE_HANDLE, &sh->state);
1211         release_stripe(sh);
1212 }
1213
1214
1215 static sector_t compute_blocknr(struct stripe_head *sh, int i);
1216         
1217 static void raid5_build_block (struct stripe_head *sh, int i)
1218 {
1219         struct r5dev *dev = &sh->dev[i];
1220
1221         bio_init(&dev->req);
1222         dev->req.bi_io_vec = &dev->vec;
1223         dev->req.bi_vcnt++;
1224         dev->req.bi_max_vecs++;
1225         dev->vec.bv_page = dev->page;
1226         dev->vec.bv_len = STRIPE_SIZE;
1227         dev->vec.bv_offset = 0;
1228
1229         dev->req.bi_sector = sh->sector;
1230         dev->req.bi_private = sh;
1231
1232         dev->flags = 0;
1233         dev->sector = compute_blocknr(sh, i);
1234 }
1235
1236 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1237 {
1238         char b[BDEVNAME_SIZE];
1239         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1240         pr_debug("raid5: error called\n");
1241
1242         if (!test_bit(Faulty, &rdev->flags)) {
1243                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1244                 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1245                         unsigned long flags;
1246                         spin_lock_irqsave(&conf->device_lock, flags);
1247                         mddev->degraded++;
1248                         spin_unlock_irqrestore(&conf->device_lock, flags);
1249                         /*
1250                          * if recovery was running, make sure it aborts.
1251                          */
1252                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1253                 }
1254                 set_bit(Faulty, &rdev->flags);
1255                 printk (KERN_ALERT
1256                         "raid5: Disk failure on %s, disabling device.\n"
1257                         "raid5: Operation continuing on %d devices.\n",
1258                         bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1259         }
1260 }
1261
1262 /*
1263  * Input: a 'big' sector number,
1264  * Output: index of the data and parity disk, and the sector # in them.
1265  */
1266 static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
1267                         unsigned int data_disks, unsigned int * dd_idx,
1268                         unsigned int * pd_idx, raid5_conf_t *conf)
1269 {
1270         long stripe;
1271         unsigned long chunk_number;
1272         unsigned int chunk_offset;
1273         sector_t new_sector;
1274         int sectors_per_chunk = conf->chunk_size >> 9;
1275
1276         /* First compute the information on this sector */
1277
1278         /*
1279          * Compute the chunk number and the sector offset inside the chunk
1280          */
1281         chunk_offset = sector_div(r_sector, sectors_per_chunk);
1282         chunk_number = r_sector;
1283         BUG_ON(r_sector != chunk_number);
1284
1285         /*
1286          * Compute the stripe number
1287          */
1288         stripe = chunk_number / data_disks;
1289
1290         /*
1291          * Compute the data disk and parity disk indexes inside the stripe
1292          */
1293         *dd_idx = chunk_number % data_disks;
1294
1295         /*
1296          * Select the parity disk based on the user selected algorithm.
1297          */
1298         switch(conf->level) {
1299         case 4:
1300                 *pd_idx = data_disks;
1301                 break;
1302         case 5:
1303                 switch (conf->algorithm) {
1304                 case ALGORITHM_LEFT_ASYMMETRIC:
1305                         *pd_idx = data_disks - stripe % raid_disks;
1306                         if (*dd_idx >= *pd_idx)
1307                                 (*dd_idx)++;
1308                         break;
1309                 case ALGORITHM_RIGHT_ASYMMETRIC:
1310                         *pd_idx = stripe % raid_disks;
1311                         if (*dd_idx >= *pd_idx)
1312                                 (*dd_idx)++;
1313                         break;
1314                 case ALGORITHM_LEFT_SYMMETRIC:
1315                         *pd_idx = data_disks - stripe % raid_disks;
1316                         *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1317                         break;
1318                 case ALGORITHM_RIGHT_SYMMETRIC:
1319                         *pd_idx = stripe % raid_disks;
1320                         *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1321                         break;
1322                 default:
1323                         printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1324                                 conf->algorithm);
1325                 }
1326                 break;
1327         case 6:
1328
1329                 /**** FIX THIS ****/
1330                 switch (conf->algorithm) {
1331                 case ALGORITHM_LEFT_ASYMMETRIC:
1332                         *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1333                         if (*pd_idx == raid_disks-1)
1334                                 (*dd_idx)++;    /* Q D D D P */
1335                         else if (*dd_idx >= *pd_idx)
1336                                 (*dd_idx) += 2; /* D D P Q D */
1337                         break;
1338                 case ALGORITHM_RIGHT_ASYMMETRIC:
1339                         *pd_idx = stripe % raid_disks;
1340                         if (*pd_idx == raid_disks-1)
1341                                 (*dd_idx)++;    /* Q D D D P */
1342                         else if (*dd_idx >= *pd_idx)
1343                                 (*dd_idx) += 2; /* D D P Q D */
1344                         break;
1345                 case ALGORITHM_LEFT_SYMMETRIC:
1346                         *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1347                         *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1348                         break;
1349                 case ALGORITHM_RIGHT_SYMMETRIC:
1350                         *pd_idx = stripe % raid_disks;
1351                         *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1352                         break;
1353                 default:
1354                         printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1355                                 conf->algorithm);
1356                 }
1357                 break;
1358         }
1359
1360         /*
1361          * Finally, compute the new sector number
1362          */
1363         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1364         return new_sector;
1365 }
1366
1367
1368 static sector_t compute_blocknr(struct stripe_head *sh, int i)
1369 {
1370         raid5_conf_t *conf = sh->raid_conf;
1371         int raid_disks = sh->disks;
1372         int data_disks = raid_disks - conf->max_degraded;
1373         sector_t new_sector = sh->sector, check;
1374         int sectors_per_chunk = conf->chunk_size >> 9;
1375         sector_t stripe;
1376         int chunk_offset;
1377         int chunk_number, dummy1, dummy2, dd_idx = i;
1378         sector_t r_sector;
1379
1380
1381         chunk_offset = sector_div(new_sector, sectors_per_chunk);
1382         stripe = new_sector;
1383         BUG_ON(new_sector != stripe);
1384
1385         if (i == sh->pd_idx)
1386                 return 0;
1387         switch(conf->level) {
1388         case 4: break;
1389         case 5:
1390                 switch (conf->algorithm) {
1391                 case ALGORITHM_LEFT_ASYMMETRIC:
1392                 case ALGORITHM_RIGHT_ASYMMETRIC:
1393                         if (i > sh->pd_idx)
1394                                 i--;
1395                         break;
1396                 case ALGORITHM_LEFT_SYMMETRIC:
1397                 case ALGORITHM_RIGHT_SYMMETRIC:
1398                         if (i < sh->pd_idx)
1399                                 i += raid_disks;
1400                         i -= (sh->pd_idx + 1);
1401                         break;
1402                 default:
1403                         printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1404                                conf->algorithm);
1405                 }
1406                 break;
1407         case 6:
1408                 if (i == raid6_next_disk(sh->pd_idx, raid_disks))
1409                         return 0; /* It is the Q disk */
1410                 switch (conf->algorithm) {
1411                 case ALGORITHM_LEFT_ASYMMETRIC:
1412                 case ALGORITHM_RIGHT_ASYMMETRIC:
1413                         if (sh->pd_idx == raid_disks-1)
1414                                 i--;    /* Q D D D P */
1415                         else if (i > sh->pd_idx)
1416                                 i -= 2; /* D D P Q D */
1417                         break;
1418                 case ALGORITHM_LEFT_SYMMETRIC:
1419                 case ALGORITHM_RIGHT_SYMMETRIC:
1420                         if (sh->pd_idx == raid_disks-1)
1421                                 i--; /* Q D D D P */
1422                         else {
1423                                 /* D D P Q D */
1424                                 if (i < sh->pd_idx)
1425                                         i += raid_disks;
1426                                 i -= (sh->pd_idx + 2);
1427                         }
1428                         break;
1429                 default:
1430                         printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1431                                 conf->algorithm);
1432                 }
1433                 break;
1434         }
1435
1436         chunk_number = stripe * data_disks + i;
1437         r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1438
1439         check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
1440         if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
1441                 printk(KERN_ERR "compute_blocknr: map not correct\n");
1442                 return 0;
1443         }
1444         return r_sector;
1445 }
1446
1447
1448
1449 /*
1450  * Copy data between a page in the stripe cache, and one or more bion
1451  * The page could align with the middle of the bio, or there could be
1452  * several bion, each with several bio_vecs, which cover part of the page
1453  * Multiple bion are linked together on bi_next.  There may be extras
1454  * at the end of this list.  We ignore them.
1455  */
1456 static void copy_data(int frombio, struct bio *bio,
1457                      struct page *page,
1458                      sector_t sector)
1459 {
1460         char *pa = page_address(page);
1461         struct bio_vec *bvl;
1462         int i;
1463         int page_offset;
1464
1465         if (bio->bi_sector >= sector)
1466                 page_offset = (signed)(bio->bi_sector - sector) * 512;
1467         else
1468                 page_offset = (signed)(sector - bio->bi_sector) * -512;
1469         bio_for_each_segment(bvl, bio, i) {
1470                 int len = bio_iovec_idx(bio,i)->bv_len;
1471                 int clen;
1472                 int b_offset = 0;
1473
1474                 if (page_offset < 0) {
1475                         b_offset = -page_offset;
1476                         page_offset += b_offset;
1477                         len -= b_offset;
1478                 }
1479
1480                 if (len > 0 && page_offset + len > STRIPE_SIZE)
1481                         clen = STRIPE_SIZE - page_offset;
1482                 else clen = len;
1483
1484                 if (clen > 0) {
1485                         char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1486                         if (frombio)
1487                                 memcpy(pa+page_offset, ba+b_offset, clen);
1488                         else
1489                                 memcpy(ba+b_offset, pa+page_offset, clen);
1490                         __bio_kunmap_atomic(ba, KM_USER0);
1491                 }
1492                 if (clen < len) /* hit end of page */
1493                         break;
1494                 page_offset +=  len;
1495         }
1496 }
1497
1498 #define check_xor()     do {                                              \
1499                                 if (count == MAX_XOR_BLOCKS) {            \
1500                                 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1501                                 count = 0;                                \
1502                            }                                              \
1503                         } while(0)
1504
1505 static void compute_parity6(struct stripe_head *sh, int method)
1506 {
1507         raid6_conf_t *conf = sh->raid_conf;
1508         int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1509         struct bio *chosen;
1510         /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1511         void *ptrs[disks];
1512
1513         qd_idx = raid6_next_disk(pd_idx, disks);
1514         d0_idx = raid6_next_disk(qd_idx, disks);
1515
1516         pr_debug("compute_parity, stripe %llu, method %d\n",
1517                 (unsigned long long)sh->sector, method);
1518
1519         switch(method) {
1520         case READ_MODIFY_WRITE:
1521                 BUG();          /* READ_MODIFY_WRITE N/A for RAID-6 */
1522         case RECONSTRUCT_WRITE:
1523                 for (i= disks; i-- ;)
1524                         if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1525                                 chosen = sh->dev[i].towrite;
1526                                 sh->dev[i].towrite = NULL;
1527
1528                                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1529                                         wake_up(&conf->wait_for_overlap);
1530
1531                                 BUG_ON(sh->dev[i].written);
1532                                 sh->dev[i].written = chosen;
1533                         }
1534                 break;
1535         case CHECK_PARITY:
1536                 BUG();          /* Not implemented yet */
1537         }
1538
1539         for (i = disks; i--;)
1540                 if (sh->dev[i].written) {
1541                         sector_t sector = sh->dev[i].sector;
1542                         struct bio *wbi = sh->dev[i].written;
1543                         while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1544                                 copy_data(1, wbi, sh->dev[i].page, sector);
1545                                 wbi = r5_next_bio(wbi, sector);
1546                         }
1547
1548                         set_bit(R5_LOCKED, &sh->dev[i].flags);
1549                         set_bit(R5_UPTODATE, &sh->dev[i].flags);
1550                 }
1551
1552 //      switch(method) {
1553 //      case RECONSTRUCT_WRITE:
1554 //      case CHECK_PARITY:
1555 //      case UPDATE_PARITY:
1556                 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1557                 /* FIX: Is this ordering of drives even remotely optimal? */
1558                 count = 0;
1559                 i = d0_idx;
1560                 do {
1561                         ptrs[count++] = page_address(sh->dev[i].page);
1562                         if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1563                                 printk("block %d/%d not uptodate on parity calc\n", i,count);
1564                         i = raid6_next_disk(i, disks);
1565                 } while ( i != d0_idx );
1566 //              break;
1567 //      }
1568
1569         raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
1570
1571         switch(method) {
1572         case RECONSTRUCT_WRITE:
1573                 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1574                 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1575                 set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
1576                 set_bit(R5_LOCKED,   &sh->dev[qd_idx].flags);
1577                 break;
1578         case UPDATE_PARITY:
1579                 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1580                 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1581                 break;
1582         }
1583 }
1584
1585
1586 /* Compute one missing block */
1587 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1588 {
1589         int i, count, disks = sh->disks;
1590         void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1591         int pd_idx = sh->pd_idx;
1592         int qd_idx = raid6_next_disk(pd_idx, disks);
1593
1594         pr_debug("compute_block_1, stripe %llu, idx %d\n",
1595                 (unsigned long long)sh->sector, dd_idx);
1596
1597         if ( dd_idx == qd_idx ) {
1598                 /* We're actually computing the Q drive */
1599                 compute_parity6(sh, UPDATE_PARITY);
1600         } else {
1601                 dest = page_address(sh->dev[dd_idx].page);
1602                 if (!nozero) memset(dest, 0, STRIPE_SIZE);
1603                 count = 0;
1604                 for (i = disks ; i--; ) {
1605                         if (i == dd_idx || i == qd_idx)
1606                                 continue;
1607                         p = page_address(sh->dev[i].page);
1608                         if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1609                                 ptr[count++] = p;
1610                         else
1611                                 printk("compute_block() %d, stripe %llu, %d"
1612                                        " not present\n", dd_idx,
1613                                        (unsigned long long)sh->sector, i);
1614
1615                         check_xor();
1616                 }
1617                 if (count)
1618                         xor_blocks(count, STRIPE_SIZE, dest, ptr);
1619                 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1620                 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1621         }
1622 }
1623
1624 /* Compute two missing blocks */
1625 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1626 {
1627         int i, count, disks = sh->disks;
1628         int pd_idx = sh->pd_idx;
1629         int qd_idx = raid6_next_disk(pd_idx, disks);
1630         int d0_idx = raid6_next_disk(qd_idx, disks);
1631         int faila, failb;
1632
1633         /* faila and failb are disk numbers relative to d0_idx */
1634         /* pd_idx become disks-2 and qd_idx become disks-1 */
1635         faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
1636         failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
1637
1638         BUG_ON(faila == failb);
1639         if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1640
1641         pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1642                (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
1643
1644         if ( failb == disks-1 ) {
1645                 /* Q disk is one of the missing disks */
1646                 if ( faila == disks-2 ) {
1647                         /* Missing P+Q, just recompute */
1648                         compute_parity6(sh, UPDATE_PARITY);
1649                         return;
1650                 } else {
1651                         /* We're missing D+Q; recompute D from P */
1652                         compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
1653                         compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1654                         return;
1655                 }
1656         }
1657
1658         /* We're missing D+P or D+D; build pointer table */
1659         {
1660                 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1661                 void *ptrs[disks];
1662
1663                 count = 0;
1664                 i = d0_idx;
1665                 do {
1666                         ptrs[count++] = page_address(sh->dev[i].page);
1667                         i = raid6_next_disk(i, disks);
1668                         if (i != dd_idx1 && i != dd_idx2 &&
1669                             !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1670                                 printk("compute_2 with missing block %d/%d\n", count, i);
1671                 } while ( i != d0_idx );
1672
1673                 if ( failb == disks-2 ) {
1674                         /* We're missing D+P. */
1675                         raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
1676                 } else {
1677                         /* We're missing D+D. */
1678                         raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
1679                 }
1680
1681                 /* Both the above update both missing blocks */
1682                 set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1683                 set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1684         }
1685 }
1686
1687 static int
1688 handle_write_operations5(struct stripe_head *sh, int rcw, int expand)
1689 {
1690         int i, pd_idx = sh->pd_idx, disks = sh->disks;
1691         int locked = 0;
1692
1693         if (rcw) {
1694                 /* if we are not expanding this is a proper write request, and
1695                  * there will be bios with new data to be drained into the
1696                  * stripe cache
1697                  */
1698                 if (!expand) {
1699                         set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1700                         sh->ops.count++;
1701                 }
1702
1703                 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1704                 sh->ops.count++;
1705
1706                 for (i = disks; i--; ) {
1707                         struct r5dev *dev = &sh->dev[i];
1708
1709                         if (dev->towrite) {
1710                                 set_bit(R5_LOCKED, &dev->flags);
1711                                 if (!expand)
1712                                         clear_bit(R5_UPTODATE, &dev->flags);
1713                                 locked++;
1714                         }
1715                 }
1716                 if (locked + 1 == disks)
1717                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
1718                                 atomic_inc(&sh->raid_conf->pending_full_writes);
1719         } else {
1720                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1721                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1722
1723                 set_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
1724                 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1725                 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1726
1727                 sh->ops.count += 3;
1728
1729                 for (i = disks; i--; ) {
1730                         struct r5dev *dev = &sh->dev[i];
1731                         if (i == pd_idx)
1732                                 continue;
1733
1734                         /* For a read-modify write there may be blocks that are
1735                          * locked for reading while others are ready to be
1736                          * written so we distinguish these blocks by the
1737                          * R5_Wantprexor bit
1738                          */
1739                         if (dev->towrite &&
1740                             (test_bit(R5_UPTODATE, &dev->flags) ||
1741                             test_bit(R5_Wantcompute, &dev->flags))) {
1742                                 set_bit(R5_Wantprexor, &dev->flags);
1743                                 set_bit(R5_LOCKED, &dev->flags);
1744                                 clear_bit(R5_UPTODATE, &dev->flags);
1745                                 locked++;
1746                         }
1747                 }
1748         }
1749
1750         /* keep the parity disk locked while asynchronous operations
1751          * are in flight
1752          */
1753         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1754         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1755         locked++;
1756
1757         pr_debug("%s: stripe %llu locked: %d pending: %lx\n",
1758                 __func__, (unsigned long long)sh->sector,
1759                 locked, sh->ops.pending);
1760
1761         return locked;
1762 }
1763
1764 /*
1765  * Each stripe/dev can have one or more bion attached.
1766  * toread/towrite point to the first in a chain.
1767  * The bi_next chain must be in order.
1768  */
1769 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1770 {
1771         struct bio **bip;
1772         raid5_conf_t *conf = sh->raid_conf;
1773         int firstwrite=0;
1774
1775         pr_debug("adding bh b#%llu to stripe s#%llu\n",
1776                 (unsigned long long)bi->bi_sector,
1777                 (unsigned long long)sh->sector);
1778
1779
1780         spin_lock(&sh->lock);
1781         spin_lock_irq(&conf->device_lock);
1782         if (forwrite) {
1783                 bip = &sh->dev[dd_idx].towrite;
1784                 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1785                         firstwrite = 1;
1786         } else
1787                 bip = &sh->dev[dd_idx].toread;
1788         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1789                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1790                         goto overlap;
1791                 bip = & (*bip)->bi_next;
1792         }
1793         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1794                 goto overlap;
1795
1796         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1797         if (*bip)
1798                 bi->bi_next = *bip;
1799         *bip = bi;
1800         bi->bi_phys_segments ++;
1801         spin_unlock_irq(&conf->device_lock);
1802         spin_unlock(&sh->lock);
1803
1804         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1805                 (unsigned long long)bi->bi_sector,
1806                 (unsigned long long)sh->sector, dd_idx);
1807
1808         if (conf->mddev->bitmap && firstwrite) {
1809                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1810                                   STRIPE_SECTORS, 0);
1811                 sh->bm_seq = conf->seq_flush+1;
1812                 set_bit(STRIPE_BIT_DELAY, &sh->state);
1813         }
1814
1815         if (forwrite) {
1816                 /* check if page is covered */
1817                 sector_t sector = sh->dev[dd_idx].sector;
1818                 for (bi=sh->dev[dd_idx].towrite;
1819                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1820                              bi && bi->bi_sector <= sector;
1821                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1822                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1823                                 sector = bi->bi_sector + (bi->bi_size>>9);
1824                 }
1825                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1826                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1827         }
1828         return 1;
1829
1830  overlap:
1831         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1832         spin_unlock_irq(&conf->device_lock);
1833         spin_unlock(&sh->lock);
1834         return 0;
1835 }
1836
1837 static void end_reshape(raid5_conf_t *conf);
1838
1839 static int page_is_zero(struct page *p)
1840 {
1841         char *a = page_address(p);
1842         return ((*(u32*)a) == 0 &&
1843                 memcmp(a, a+4, STRIPE_SIZE-4)==0);
1844 }
1845
1846 static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
1847 {
1848         int sectors_per_chunk = conf->chunk_size >> 9;
1849         int pd_idx, dd_idx;
1850         int chunk_offset = sector_div(stripe, sectors_per_chunk);
1851
1852         raid5_compute_sector(stripe * (disks - conf->max_degraded)
1853                              *sectors_per_chunk + chunk_offset,
1854                              disks, disks - conf->max_degraded,
1855                              &dd_idx, &pd_idx, conf);
1856         return pd_idx;
1857 }
1858
1859 static void
1860 handle_requests_to_failed_array(raid5_conf_t *conf, struct stripe_head *sh,
1861                                 struct stripe_head_state *s, int disks,
1862                                 struct bio **return_bi)
1863 {
1864         int i;
1865         for (i = disks; i--; ) {
1866                 struct bio *bi;
1867                 int bitmap_end = 0;
1868
1869                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1870                         mdk_rdev_t *rdev;
1871                         rcu_read_lock();
1872                         rdev = rcu_dereference(conf->disks[i].rdev);
1873                         if (rdev && test_bit(In_sync, &rdev->flags))
1874                                 /* multiple read failures in one stripe */
1875                                 md_error(conf->mddev, rdev);
1876                         rcu_read_unlock();
1877                 }
1878                 spin_lock_irq(&conf->device_lock);
1879                 /* fail all writes first */
1880                 bi = sh->dev[i].towrite;
1881                 sh->dev[i].towrite = NULL;
1882                 if (bi) {
1883                         s->to_write--;
1884                         bitmap_end = 1;
1885                 }
1886
1887                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1888                         wake_up(&conf->wait_for_overlap);
1889
1890                 while (bi && bi->bi_sector <
1891                         sh->dev[i].sector + STRIPE_SECTORS) {
1892                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1893                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
1894                         if (--bi->bi_phys_segments == 0) {
1895                                 md_write_end(conf->mddev);
1896                                 bi->bi_next = *return_bi;
1897                                 *return_bi = bi;
1898                         }
1899                         bi = nextbi;
1900                 }
1901                 /* and fail all 'written' */
1902                 bi = sh->dev[i].written;
1903                 sh->dev[i].written = NULL;
1904                 if (bi) bitmap_end = 1;
1905                 while (bi && bi->bi_sector <
1906                        sh->dev[i].sector + STRIPE_SECTORS) {
1907                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1908                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
1909                         if (--bi->bi_phys_segments == 0) {
1910                                 md_write_end(conf->mddev);
1911                                 bi->bi_next = *return_bi;
1912                                 *return_bi = bi;
1913                         }
1914                         bi = bi2;
1915                 }
1916
1917                 /* fail any reads if this device is non-operational and
1918                  * the data has not reached the cache yet.
1919                  */
1920                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
1921                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1922                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
1923                         bi = sh->dev[i].toread;
1924                         sh->dev[i].toread = NULL;
1925                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1926                                 wake_up(&conf->wait_for_overlap);
1927                         if (bi) s->to_read--;
1928                         while (bi && bi->bi_sector <
1929                                sh->dev[i].sector + STRIPE_SECTORS) {
1930                                 struct bio *nextbi =
1931                                         r5_next_bio(bi, sh->dev[i].sector);
1932                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1933                                 if (--bi->bi_phys_segments == 0) {
1934                                         bi->bi_next = *return_bi;
1935                                         *return_bi = bi;
1936                                 }
1937                                 bi = nextbi;
1938                         }
1939                 }
1940                 spin_unlock_irq(&conf->device_lock);
1941                 if (bitmap_end)
1942                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1943                                         STRIPE_SECTORS, 0, 0);
1944         }
1945
1946         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
1947                 if (atomic_dec_and_test(&conf->pending_full_writes))
1948                         md_wakeup_thread(conf->mddev->thread);
1949 }
1950
1951 /* __handle_issuing_new_read_requests5 - returns 0 if there are no more disks
1952  * to process
1953  */
1954 static int __handle_issuing_new_read_requests5(struct stripe_head *sh,
1955                         struct stripe_head_state *s, int disk_idx, int disks)
1956 {
1957         struct r5dev *dev = &sh->dev[disk_idx];
1958         struct r5dev *failed_dev = &sh->dev[s->failed_num];
1959
1960         /* is the data in this block needed, and can we get it? */
1961         if (!test_bit(R5_LOCKED, &dev->flags) &&
1962             !test_bit(R5_UPTODATE, &dev->flags) && (dev->toread ||
1963             (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1964              s->syncing || s->expanding || (s->failed &&
1965              (failed_dev->toread || (failed_dev->towrite &&
1966              !test_bit(R5_OVERWRITE, &failed_dev->flags)
1967              ))))) {
1968                 /* We would like to get this block, possibly by computing it,
1969                  * otherwise read it if the backing disk is insync
1970                  */
1971                 if ((s->uptodate == disks - 1) &&
1972                     (s->failed && disk_idx == s->failed_num)) {
1973                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
1974                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
1975                         set_bit(R5_Wantcompute, &dev->flags);
1976                         sh->ops.target = disk_idx;
1977                         s->req_compute = 1;
1978                         /* Careful: from this point on 'uptodate' is in the eye
1979                          * of raid5_run_ops which services 'compute' operations
1980                          * before writes. R5_Wantcompute flags a block that will
1981                          * be R5_UPTODATE by the time it is needed for a
1982                          * subsequent operation.
1983                          */
1984                         s->uptodate++;
1985                         return 0; /* uptodate + compute == disks */
1986                 } else if (test_bit(R5_Insync, &dev->flags)) {
1987                         set_bit(R5_LOCKED, &dev->flags);
1988                         set_bit(R5_Wantread, &dev->flags);
1989                         s->locked++;
1990                         pr_debug("Reading block %d (sync=%d)\n", disk_idx,
1991                                 s->syncing);
1992                 }
1993         }
1994
1995         return ~0;
1996 }
1997
1998 static void handle_issuing_new_read_requests5(struct stripe_head *sh,
1999                         struct stripe_head_state *s, int disks)
2000 {
2001         int i;
2002
2003         /* look for blocks to read/compute, skip this if a compute
2004          * is already in flight, or if the stripe contents are in the
2005          * midst of changing due to a write
2006          */
2007         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2008             !test_bit(STRIPE_OP_PREXOR, &sh->ops.pending) &&
2009             !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2010                 for (i = disks; i--; )
2011                         if (__handle_issuing_new_read_requests5(
2012                                 sh, s, i, disks) == 0)
2013                                 break;
2014         }
2015         set_bit(STRIPE_HANDLE, &sh->state);
2016 }
2017
2018 static void handle_issuing_new_read_requests6(struct stripe_head *sh,
2019                         struct stripe_head_state *s, struct r6_state *r6s,
2020                         int disks)
2021 {
2022         int i;
2023         for (i = disks; i--; ) {
2024                 struct r5dev *dev = &sh->dev[i];
2025                 if (!test_bit(R5_LOCKED, &dev->flags) &&
2026                     !test_bit(R5_UPTODATE, &dev->flags) &&
2027                     (dev->toread || (dev->towrite &&
2028                      !test_bit(R5_OVERWRITE, &dev->flags)) ||
2029                      s->syncing || s->expanding ||
2030                      (s->failed >= 1 &&
2031                       (sh->dev[r6s->failed_num[0]].toread ||
2032                        s->to_write)) ||
2033                      (s->failed >= 2 &&
2034                       (sh->dev[r6s->failed_num[1]].toread ||
2035                        s->to_write)))) {
2036                         /* we would like to get this block, possibly
2037                          * by computing it, but we might not be able to
2038                          */
2039                         if ((s->uptodate == disks - 1) &&
2040                             (s->failed && (i == r6s->failed_num[0] ||
2041                                            i == r6s->failed_num[1]))) {
2042                                 pr_debug("Computing stripe %llu block %d\n",
2043                                        (unsigned long long)sh->sector, i);
2044                                 compute_block_1(sh, i, 0);
2045                                 s->uptodate++;
2046                         } else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2047                                 /* Computing 2-failure is *very* expensive; only
2048                                  * do it if failed >= 2
2049                                  */
2050                                 int other;
2051                                 for (other = disks; other--; ) {
2052                                         if (other == i)
2053                                                 continue;
2054                                         if (!test_bit(R5_UPTODATE,
2055                                               &sh->dev[other].flags))
2056                                                 break;
2057                                 }
2058                                 BUG_ON(other < 0);
2059                                 pr_debug("Computing stripe %llu blocks %d,%d\n",
2060                                        (unsigned long long)sh->sector,
2061                                        i, other);
2062                                 compute_block_2(sh, i, other);
2063                                 s->uptodate += 2;
2064                         } else if (test_bit(R5_Insync, &dev->flags)) {
2065                                 set_bit(R5_LOCKED, &dev->flags);
2066                                 set_bit(R5_Wantread, &dev->flags);
2067                                 s->locked++;
2068                                 pr_debug("Reading block %d (sync=%d)\n",
2069                                         i, s->syncing);
2070                         }
2071                 }
2072         }
2073         set_bit(STRIPE_HANDLE, &sh->state);
2074 }
2075
2076
2077 /* handle_completed_write_requests
2078  * any written block on an uptodate or failed drive can be returned.
2079  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2080  * never LOCKED, so we don't need to test 'failed' directly.
2081  */
2082 static void handle_completed_write_requests(raid5_conf_t *conf,
2083         struct stripe_head *sh, int disks, struct bio **return_bi)
2084 {
2085         int i;
2086         struct r5dev *dev;
2087
2088         for (i = disks; i--; )
2089                 if (sh->dev[i].written) {
2090                         dev = &sh->dev[i];
2091                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2092                                 test_bit(R5_UPTODATE, &dev->flags)) {
2093                                 /* We can return any write requests */
2094                                 struct bio *wbi, *wbi2;
2095                                 int bitmap_end = 0;
2096                                 pr_debug("Return write for disc %d\n", i);
2097                                 spin_lock_irq(&conf->device_lock);
2098                                 wbi = dev->written;
2099                                 dev->written = NULL;
2100                                 while (wbi && wbi->bi_sector <
2101                                         dev->sector + STRIPE_SECTORS) {
2102                                         wbi2 = r5_next_bio(wbi, dev->sector);
2103                                         if (--wbi->bi_phys_segments == 0) {
2104                                                 md_write_end(conf->mddev);
2105                                                 wbi->bi_next = *return_bi;
2106                                                 *return_bi = wbi;
2107                                         }
2108                                         wbi = wbi2;
2109                                 }
2110                                 if (dev->towrite == NULL)
2111                                         bitmap_end = 1;
2112                                 spin_unlock_irq(&conf->device_lock);
2113                                 if (bitmap_end)
2114                                         bitmap_endwrite(conf->mddev->bitmap,
2115                                                         sh->sector,
2116                                                         STRIPE_SECTORS,
2117                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2118                                                         0);
2119                         }
2120                 }
2121
2122         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2123                 if (atomic_dec_and_test(&conf->pending_full_writes))
2124                         md_wakeup_thread(conf->mddev->thread);
2125 }
2126
2127 static void handle_issuing_new_write_requests5(raid5_conf_t *conf,
2128                 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2129 {
2130         int rmw = 0, rcw = 0, i;
2131         for (i = disks; i--; ) {
2132                 /* would I have to read this buffer for read_modify_write */
2133                 struct r5dev *dev = &sh->dev[i];
2134                 if ((dev->towrite || i == sh->pd_idx) &&
2135                     !test_bit(R5_LOCKED, &dev->flags) &&
2136                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2137                       test_bit(R5_Wantcompute, &dev->flags))) {
2138                         if (test_bit(R5_Insync, &dev->flags))
2139                                 rmw++;
2140                         else
2141                                 rmw += 2*disks;  /* cannot read it */
2142                 }
2143                 /* Would I have to read this buffer for reconstruct_write */
2144                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2145                     !test_bit(R5_LOCKED, &dev->flags) &&
2146                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2147                     test_bit(R5_Wantcompute, &dev->flags))) {
2148                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2149                         else
2150                                 rcw += 2*disks;
2151                 }
2152         }
2153         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2154                 (unsigned long long)sh->sector, rmw, rcw);
2155         set_bit(STRIPE_HANDLE, &sh->state);
2156         if (rmw < rcw && rmw > 0)
2157                 /* prefer read-modify-write, but need to get some data */
2158                 for (i = disks; i--; ) {
2159                         struct r5dev *dev = &sh->dev[i];
2160                         if ((dev->towrite || i == sh->pd_idx) &&
2161                             !test_bit(R5_LOCKED, &dev->flags) &&
2162                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2163                             test_bit(R5_Wantcompute, &dev->flags)) &&
2164                             test_bit(R5_Insync, &dev->flags)) {
2165                                 if (
2166                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2167                                         pr_debug("Read_old block "
2168                                                 "%d for r-m-w\n", i);
2169                                         set_bit(R5_LOCKED, &dev->flags);
2170                                         set_bit(R5_Wantread, &dev->flags);
2171                                         s->locked++;
2172                                 } else {
2173                                         set_bit(STRIPE_DELAYED, &sh->state);
2174                                         set_bit(STRIPE_HANDLE, &sh->state);
2175                                 }
2176                         }
2177                 }
2178         if (rcw <= rmw && rcw > 0)
2179                 /* want reconstruct write, but need to get some data */
2180                 for (i = disks; i--; ) {
2181                         struct r5dev *dev = &sh->dev[i];
2182                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2183                             i != sh->pd_idx &&
2184                             !test_bit(R5_LOCKED, &dev->flags) &&
2185                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2186                             test_bit(R5_Wantcompute, &dev->flags)) &&
2187                             test_bit(R5_Insync, &dev->flags)) {
2188                                 if (
2189                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2190                                         pr_debug("Read_old block "
2191                                                 "%d for Reconstruct\n", i);
2192                                         set_bit(R5_LOCKED, &dev->flags);
2193                                         set_bit(R5_Wantread, &dev->flags);
2194                                         s->locked++;
2195                                 } else {
2196                                         set_bit(STRIPE_DELAYED, &sh->state);
2197                                         set_bit(STRIPE_HANDLE, &sh->state);
2198                                 }
2199                         }
2200                 }
2201         /* now if nothing is locked, and if we have enough data,
2202          * we can start a write request
2203          */
2204         /* since handle_stripe can be called at any time we need to handle the
2205          * case where a compute block operation has been submitted and then a
2206          * subsequent call wants to start a write request.  raid5_run_ops only
2207          * handles the case where compute block and postxor are requested
2208          * simultaneously.  If this is not the case then new writes need to be
2209          * held off until the compute completes.
2210          */
2211         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2212             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2213             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2214                 s->locked += handle_write_operations5(sh, rcw == 0, 0);
2215 }
2216
2217 static void handle_issuing_new_write_requests6(raid5_conf_t *conf,
2218                 struct stripe_head *sh, struct stripe_head_state *s,
2219                 struct r6_state *r6s, int disks)
2220 {
2221         int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2222         int qd_idx = r6s->qd_idx;
2223         for (i = disks; i--; ) {
2224                 struct r5dev *dev = &sh->dev[i];
2225                 /* Would I have to read this buffer for reconstruct_write */
2226                 if (!test_bit(R5_OVERWRITE, &dev->flags)
2227                     && i != pd_idx && i != qd_idx
2228                     && (!test_bit(R5_LOCKED, &dev->flags)
2229                             ) &&
2230                     !test_bit(R5_UPTODATE, &dev->flags)) {
2231                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2232                         else {
2233                                 pr_debug("raid6: must_compute: "
2234                                         "disk %d flags=%#lx\n", i, dev->flags);
2235                                 must_compute++;
2236                         }
2237                 }
2238         }
2239         pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2240                (unsigned long long)sh->sector, rcw, must_compute);
2241         set_bit(STRIPE_HANDLE, &sh->state);
2242
2243         if (rcw > 0)
2244                 /* want reconstruct write, but need to get some data */
2245                 for (i = disks; i--; ) {
2246                         struct r5dev *dev = &sh->dev[i];
2247                         if (!test_bit(R5_OVERWRITE, &dev->flags)
2248                             && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2249                             && !test_bit(R5_LOCKED, &dev->flags) &&
2250                             !test_bit(R5_UPTODATE, &dev->flags) &&
2251                             test_bit(R5_Insync, &dev->flags)) {
2252                                 if (
2253                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2254                                         pr_debug("Read_old stripe %llu "
2255                                                 "block %d for Reconstruct\n",
2256                                              (unsigned long long)sh->sector, i);
2257                                         set_bit(R5_LOCKED, &dev->flags);
2258                                         set_bit(R5_Wantread, &dev->flags);
2259                                         s->locked++;
2260                                 } else {
2261                                         pr_debug("Request delayed stripe %llu "
2262                                                 "block %d for Reconstruct\n",
2263                                              (unsigned long long)sh->sector, i);
2264                                         set_bit(STRIPE_DELAYED, &sh->state);
2265                                         set_bit(STRIPE_HANDLE, &sh->state);
2266                                 }
2267                         }
2268                 }
2269         /* now if nothing is locked, and if we have enough data, we can start a
2270          * write request
2271          */
2272         if (s->locked == 0 && rcw == 0 &&
2273             !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2274                 if (must_compute > 0) {
2275                         /* We have failed blocks and need to compute them */
2276                         switch (s->failed) {
2277                         case 0:
2278                                 BUG();
2279                         case 1:
2280                                 compute_block_1(sh, r6s->failed_num[0], 0);
2281                                 break;
2282                         case 2:
2283                                 compute_block_2(sh, r6s->failed_num[0],
2284                                                 r6s->failed_num[1]);
2285                                 break;
2286                         default: /* This request should have been failed? */
2287                                 BUG();
2288                         }
2289                 }
2290
2291                 pr_debug("Computing parity for stripe %llu\n",
2292                         (unsigned long long)sh->sector);
2293                 compute_parity6(sh, RECONSTRUCT_WRITE);
2294                 /* now every locked buffer is ready to be written */
2295                 for (i = disks; i--; )
2296                         if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2297                                 pr_debug("Writing stripe %llu block %d\n",
2298                                        (unsigned long long)sh->sector, i);
2299                                 s->locked++;
2300                                 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2301                         }
2302                 if (s->locked == disks)
2303                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2304                                 atomic_inc(&conf->pending_full_writes);
2305                 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2306                 set_bit(STRIPE_INSYNC, &sh->state);
2307
2308                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2309                         atomic_dec(&conf->preread_active_stripes);
2310                         if (atomic_read(&conf->preread_active_stripes) <
2311                             IO_THRESHOLD)
2312                                 md_wakeup_thread(conf->mddev->thread);
2313                 }
2314         }
2315 }
2316
2317 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2318                                 struct stripe_head_state *s, int disks)
2319 {
2320         struct r5dev *dev = NULL;
2321
2322         set_bit(STRIPE_HANDLE, &sh->state);
2323
2324         switch (sh->check_state) {
2325         case check_state_idle:
2326                 /* start a new check operation if there are no failures */
2327                 if (s->failed == 0) {
2328                         BUG_ON(s->uptodate != disks);
2329                         sh->check_state = check_state_run;
2330                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2331                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2332                         s->uptodate--;
2333                         break;
2334                 }
2335                 dev = &sh->dev[s->failed_num];
2336                 /* fall through */
2337         case check_state_compute_result:
2338                 sh->check_state = check_state_idle;
2339                 if (!dev)
2340                         dev = &sh->dev[sh->pd_idx];
2341
2342                 /* check that a write has not made the stripe insync */
2343                 if (test_bit(STRIPE_INSYNC, &sh->state))
2344                         break;
2345
2346                 /* either failed parity check, or recovery is happening */
2347                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2348                 BUG_ON(s->uptodate != disks);
2349
2350                 set_bit(R5_LOCKED, &dev->flags);
2351                 s->locked++;
2352                 set_bit(R5_Wantwrite, &dev->flags);
2353
2354                 clear_bit(STRIPE_DEGRADED, &sh->state);
2355                 set_bit(STRIPE_INSYNC, &sh->state);
2356                 break;
2357         case check_state_run:
2358                 break; /* we will be called again upon completion */
2359         case check_state_check_result:
2360                 sh->check_state = check_state_idle;
2361
2362                 /* if a failure occurred during the check operation, leave
2363                  * STRIPE_INSYNC not set and let the stripe be handled again
2364                  */
2365                 if (s->failed)
2366                         break;
2367
2368                 /* handle a successful check operation, if parity is correct
2369                  * we are done.  Otherwise update the mismatch count and repair
2370                  * parity if !MD_RECOVERY_CHECK
2371                  */
2372                 if (sh->ops.zero_sum_result == 0)
2373                         /* parity is correct (on disc,
2374                          * not in buffer any more)
2375                          */
2376                         set_bit(STRIPE_INSYNC, &sh->state);
2377                 else {
2378                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2379                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2380                                 /* don't try to repair!! */
2381                                 set_bit(STRIPE_INSYNC, &sh->state);
2382                         else {
2383                                 sh->check_state = check_state_compute_run;
2384                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2385                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2386                                 set_bit(R5_Wantcompute,
2387                                         &sh->dev[sh->pd_idx].flags);
2388                                 sh->ops.target = sh->pd_idx;
2389                                 s->uptodate++;
2390                         }
2391                 }
2392                 break;
2393         case check_state_compute_run:
2394                 break;
2395         default:
2396                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2397                        __func__, sh->check_state,
2398                        (unsigned long long) sh->sector);
2399                 BUG();
2400         }
2401 }
2402
2403
2404 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2405                                 struct stripe_head_state *s,
2406                                 struct r6_state *r6s, struct page *tmp_page,
2407                                 int disks)
2408 {
2409         int update_p = 0, update_q = 0;
2410         struct r5dev *dev;
2411         int pd_idx = sh->pd_idx;
2412         int qd_idx = r6s->qd_idx;
2413
2414         set_bit(STRIPE_HANDLE, &sh->state);
2415
2416         BUG_ON(s->failed > 2);
2417         BUG_ON(s->uptodate < disks);
2418         /* Want to check and possibly repair P and Q.
2419          * However there could be one 'failed' device, in which
2420          * case we can only check one of them, possibly using the
2421          * other to generate missing data
2422          */
2423
2424         /* If !tmp_page, we cannot do the calculations,
2425          * but as we have set STRIPE_HANDLE, we will soon be called
2426          * by stripe_handle with a tmp_page - just wait until then.
2427          */
2428         if (tmp_page) {
2429                 if (s->failed == r6s->q_failed) {
2430                         /* The only possible failed device holds 'Q', so it
2431                          * makes sense to check P (If anything else were failed,
2432                          * we would have used P to recreate it).
2433                          */
2434                         compute_block_1(sh, pd_idx, 1);
2435                         if (!page_is_zero(sh->dev[pd_idx].page)) {
2436                                 compute_block_1(sh, pd_idx, 0);
2437                                 update_p = 1;
2438                         }
2439                 }
2440                 if (!r6s->q_failed && s->failed < 2) {
2441                         /* q is not failed, and we didn't use it to generate
2442                          * anything, so it makes sense to check it
2443                          */
2444                         memcpy(page_address(tmp_page),
2445                                page_address(sh->dev[qd_idx].page),
2446                                STRIPE_SIZE);
2447                         compute_parity6(sh, UPDATE_PARITY);
2448                         if (memcmp(page_address(tmp_page),
2449                                    page_address(sh->dev[qd_idx].page),
2450                                    STRIPE_SIZE) != 0) {
2451                                 clear_bit(STRIPE_INSYNC, &sh->state);
2452                                 update_q = 1;
2453                         }
2454                 }
2455                 if (update_p || update_q) {
2456                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2457                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2458                                 /* don't try to repair!! */
2459                                 update_p = update_q = 0;
2460                 }
2461
2462                 /* now write out any block on a failed drive,
2463                  * or P or Q if they need it
2464                  */
2465
2466                 if (s->failed == 2) {
2467                         dev = &sh->dev[r6s->failed_num[1]];
2468                         s->locked++;
2469                         set_bit(R5_LOCKED, &dev->flags);
2470                         set_bit(R5_Wantwrite, &dev->flags);
2471                 }
2472                 if (s->failed >= 1) {
2473                         dev = &sh->dev[r6s->failed_num[0]];
2474                         s->locked++;
2475                         set_bit(R5_LOCKED, &dev->flags);
2476                         set_bit(R5_Wantwrite, &dev->flags);
2477                 }
2478
2479                 if (update_p) {
2480                         dev = &sh->dev[pd_idx];
2481                         s->locked++;
2482                         set_bit(R5_LOCKED, &dev->flags);
2483                         set_bit(R5_Wantwrite, &dev->flags);
2484                 }
2485                 if (update_q) {
2486                         dev = &sh->dev[qd_idx];
2487                         s->locked++;
2488                         set_bit(R5_LOCKED, &dev->flags);
2489                         set_bit(R5_Wantwrite, &dev->flags);
2490                 }
2491                 clear_bit(STRIPE_DEGRADED, &sh->state);
2492
2493                 set_bit(STRIPE_INSYNC, &sh->state);
2494         }
2495 }
2496
2497 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2498                                 struct r6_state *r6s)
2499 {
2500         int i;
2501
2502         /* We have read all the blocks in this stripe and now we need to
2503          * copy some of them into a target stripe for expand.
2504          */
2505         struct dma_async_tx_descriptor *tx = NULL;
2506         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2507         for (i = 0; i < sh->disks; i++)
2508                 if (i != sh->pd_idx && (!r6s || i != r6s->qd_idx)) {
2509                         int dd_idx, pd_idx, j;
2510                         struct stripe_head *sh2;
2511
2512                         sector_t bn = compute_blocknr(sh, i);
2513                         sector_t s = raid5_compute_sector(bn, conf->raid_disks,
2514                                                 conf->raid_disks -
2515                                                 conf->max_degraded, &dd_idx,
2516                                                 &pd_idx, conf);
2517                         sh2 = get_active_stripe(conf, s, conf->raid_disks,
2518                                                 pd_idx, 1);
2519                         if (sh2 == NULL)
2520                                 /* so far only the early blocks of this stripe
2521                                  * have been requested.  When later blocks
2522                                  * get requested, we will try again
2523                                  */
2524                                 continue;
2525                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2526                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2527                                 /* must have already done this block */
2528                                 release_stripe(sh2);
2529                                 continue;
2530                         }
2531
2532                         /* place all the copies on one channel */
2533                         tx = async_memcpy(sh2->dev[dd_idx].page,
2534                                 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2535                                 ASYNC_TX_DEP_ACK, tx, NULL, NULL);
2536
2537                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2538                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2539                         for (j = 0; j < conf->raid_disks; j++)
2540                                 if (j != sh2->pd_idx &&
2541                                     (!r6s || j != raid6_next_disk(sh2->pd_idx,
2542                                                                  sh2->disks)) &&
2543                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
2544                                         break;
2545                         if (j == conf->raid_disks) {
2546                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2547                                 set_bit(STRIPE_HANDLE, &sh2->state);
2548                         }
2549                         release_stripe(sh2);
2550
2551                 }
2552         /* done submitting copies, wait for them to complete */
2553         if (tx) {
2554                 async_tx_ack(tx);
2555                 dma_wait_for_async_tx(tx);
2556         }
2557 }
2558
2559
2560 /*
2561  * handle_stripe - do things to a stripe.
2562  *
2563  * We lock the stripe and then examine the state of various bits
2564  * to see what needs to be done.
2565  * Possible results:
2566  *    return some read request which now have data
2567  *    return some write requests which are safely on disc
2568  *    schedule a read on some buffers
2569  *    schedule a write of some buffers
2570  *    return confirmation of parity correctness
2571  *
2572  * buffers are taken off read_list or write_list, and bh_cache buffers
2573  * get BH_Lock set before the stripe lock is released.
2574  *
2575  */
2576
2577 static void handle_stripe5(struct stripe_head *sh)
2578 {
2579         raid5_conf_t *conf = sh->raid_conf;
2580         int disks = sh->disks, i;
2581         struct bio *return_bi = NULL;
2582         struct stripe_head_state s;
2583         struct r5dev *dev;
2584         unsigned long pending = 0;
2585         mdk_rdev_t *blocked_rdev = NULL;
2586         int prexor;
2587
2588         memset(&s, 0, sizeof(s));
2589         pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d "
2590                 "ops=%lx:%lx:%lx\n", (unsigned long long)sh->sector, sh->state,
2591                 atomic_read(&sh->count), sh->pd_idx,
2592                 sh->ops.pending, sh->ops.ack, sh->ops.complete);
2593
2594         spin_lock(&sh->lock);
2595         clear_bit(STRIPE_HANDLE, &sh->state);
2596         clear_bit(STRIPE_DELAYED, &sh->state);
2597
2598         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2599         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2600         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2601
2602         /* Now to look around and see what can be done */
2603         rcu_read_lock();
2604         for (i=disks; i--; ) {
2605                 mdk_rdev_t *rdev;
2606                 struct r5dev *dev = &sh->dev[i];
2607                 clear_bit(R5_Insync, &dev->flags);
2608
2609                 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2610                         "written %p\n", i, dev->flags, dev->toread, dev->read,
2611                         dev->towrite, dev->written);
2612
2613                 /* maybe we can request a biofill operation
2614                  *
2615                  * new wantfill requests are only permitted while
2616                  * ops_complete_biofill is guaranteed to be inactive
2617                  */
2618                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2619                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2620                         set_bit(R5_Wantfill, &dev->flags);
2621
2622                 /* now count some things */
2623                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2624                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2625                 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2626
2627                 if (test_bit(R5_Wantfill, &dev->flags))
2628                         s.to_fill++;
2629                 else if (dev->toread)
2630                         s.to_read++;
2631                 if (dev->towrite) {
2632                         s.to_write++;
2633                         if (!test_bit(R5_OVERWRITE, &dev->flags))
2634                                 s.non_overwrite++;
2635                 }
2636                 if (dev->written)
2637                         s.written++;
2638                 rdev = rcu_dereference(conf->disks[i].rdev);
2639                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2640                         blocked_rdev = rdev;
2641                         atomic_inc(&rdev->nr_pending);
2642                         break;
2643                 }
2644                 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2645                         /* The ReadError flag will just be confusing now */
2646                         clear_bit(R5_ReadError, &dev->flags);
2647                         clear_bit(R5_ReWrite, &dev->flags);
2648                 }
2649                 if (!rdev || !test_bit(In_sync, &rdev->flags)
2650                     || test_bit(R5_ReadError, &dev->flags)) {
2651                         s.failed++;
2652                         s.failed_num = i;
2653                 } else
2654                         set_bit(R5_Insync, &dev->flags);
2655         }
2656         rcu_read_unlock();
2657
2658         if (unlikely(blocked_rdev)) {
2659                 set_bit(STRIPE_HANDLE, &sh->state);
2660                 goto unlock;
2661         }
2662
2663         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
2664                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
2665                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
2666         }
2667
2668         pr_debug("locked=%d uptodate=%d to_read=%d"
2669                 " to_write=%d failed=%d failed_num=%d\n",
2670                 s.locked, s.uptodate, s.to_read, s.to_write,
2671                 s.failed, s.failed_num);
2672         /* check if the array has lost two devices and, if so, some requests might
2673          * need to be failed
2674          */
2675         if (s.failed > 1 && s.to_read+s.to_write+s.written)
2676                 handle_requests_to_failed_array(conf, sh, &s, disks,
2677                                                 &return_bi);
2678         if (s.failed > 1 && s.syncing) {
2679                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2680                 clear_bit(STRIPE_SYNCING, &sh->state);
2681                 s.syncing = 0;
2682         }
2683
2684         /* might be able to return some write requests if the parity block
2685          * is safe, or on a failed drive
2686          */
2687         dev = &sh->dev[sh->pd_idx];
2688         if ( s.written &&
2689              ((test_bit(R5_Insync, &dev->flags) &&
2690                !test_bit(R5_LOCKED, &dev->flags) &&
2691                test_bit(R5_UPTODATE, &dev->flags)) ||
2692                (s.failed == 1 && s.failed_num == sh->pd_idx)))
2693                 handle_completed_write_requests(conf, sh, disks, &return_bi);
2694
2695         /* Now we might consider reading some blocks, either to check/generate
2696          * parity, or to satisfy requests
2697          * or to load a block that is being partially written.
2698          */
2699         if (s.to_read || s.non_overwrite ||
2700             (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
2701                 handle_issuing_new_read_requests5(sh, &s, disks);
2702
2703         /* Now we check to see if any write operations have recently
2704          * completed
2705          */
2706
2707         /* leave prexor set until postxor is done, allows us to distinguish
2708          * a rmw from a rcw during biodrain
2709          */
2710         prexor = 0;
2711         if (test_bit(STRIPE_OP_PREXOR, &sh->ops.complete) &&
2712                 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2713
2714                 prexor = 1;
2715                 clear_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
2716                 clear_bit(STRIPE_OP_PREXOR, &sh->ops.ack);
2717                 clear_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
2718
2719                 for (i = disks; i--; )
2720                         clear_bit(R5_Wantprexor, &sh->dev[i].flags);
2721         }
2722
2723         /* if only POSTXOR is set then this is an 'expand' postxor */
2724         if (test_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete) &&
2725                 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2726
2727                 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
2728                 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.ack);
2729                 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
2730
2731                 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2732                 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2733                 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2734
2735                 /* All the 'written' buffers and the parity block are ready to
2736                  * be written back to disk
2737                  */
2738                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2739                 for (i = disks; i--; ) {
2740                         dev = &sh->dev[i];
2741                         if (test_bit(R5_LOCKED, &dev->flags) &&
2742                                 (i == sh->pd_idx || dev->written)) {
2743                                 pr_debug("Writing block %d\n", i);
2744                                 set_bit(R5_Wantwrite, &dev->flags);
2745                                 if (prexor)
2746                                         continue;
2747                                 if (!test_bit(R5_Insync, &dev->flags) ||
2748                                     (i == sh->pd_idx && s.failed == 0))
2749                                         set_bit(STRIPE_INSYNC, &sh->state);
2750                         }
2751                 }
2752                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2753                         atomic_dec(&conf->preread_active_stripes);
2754                         if (atomic_read(&conf->preread_active_stripes) <
2755                                 IO_THRESHOLD)
2756                                 md_wakeup_thread(conf->mddev->thread);
2757                 }
2758         }
2759
2760         /* Now to consider new write requests and what else, if anything
2761          * should be read.  We do not handle new writes when:
2762          * 1/ A 'write' operation (copy+xor) is already in flight.
2763          * 2/ A 'check' operation is in flight, as it may clobber the parity
2764          *    block.
2765          */
2766         if (s.to_write && !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending) &&
2767             !sh->check_state)
2768                 handle_issuing_new_write_requests5(conf, sh, &s, disks);
2769
2770         /* maybe we need to check and possibly fix the parity for this stripe
2771          * Any reads will already have been scheduled, so we just see if enough
2772          * data is available.  The parity check is held off while parity
2773          * dependent operations are in flight.
2774          */
2775         if (sh->check_state ||
2776             (s.syncing && s.locked == 0 &&
2777              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
2778              !test_bit(STRIPE_INSYNC, &sh->state)))
2779                 handle_parity_checks5(conf, sh, &s, disks);
2780
2781         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2782                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2783                 clear_bit(STRIPE_SYNCING, &sh->state);
2784         }
2785
2786         /* If the failed drive is just a ReadError, then we might need to progress
2787          * the repair/check process
2788          */
2789         if (s.failed == 1 && !conf->mddev->ro &&
2790             test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2791             && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2792             && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
2793                 ) {
2794                 dev = &sh->dev[s.failed_num];
2795                 if (!test_bit(R5_ReWrite, &dev->flags)) {
2796                         set_bit(R5_Wantwrite, &dev->flags);
2797                         set_bit(R5_ReWrite, &dev->flags);
2798                         set_bit(R5_LOCKED, &dev->flags);
2799                         s.locked++;
2800                 } else {
2801                         /* let's read it back */
2802                         set_bit(R5_Wantread, &dev->flags);
2803                         set_bit(R5_LOCKED, &dev->flags);
2804                         s.locked++;
2805                 }
2806         }
2807
2808         /* Finish postxor operations initiated by the expansion
2809          * process
2810          */
2811         if (test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete) &&
2812                 !test_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending)) {
2813
2814                 clear_bit(STRIPE_EXPANDING, &sh->state);
2815
2816                 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2817                 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2818                 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2819
2820                 for (i = conf->raid_disks; i--; )
2821                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
2822                         set_bit(R5_LOCKED, &dev->flags);
2823                         s.locked++;
2824         }
2825
2826         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2827                 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2828                 /* Need to write out all blocks after computing parity */
2829                 sh->disks = conf->raid_disks;
2830                 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
2831                         conf->raid_disks);
2832                 s.locked += handle_write_operations5(sh, 1, 1);
2833         } else if (s.expanded &&
2834                    s.locked == 0 &&
2835                 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2836                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
2837                 atomic_dec(&conf->reshape_stripes);
2838                 wake_up(&conf->wait_for_overlap);
2839                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2840         }
2841
2842         if (s.expanding && s.locked == 0 &&
2843             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
2844                 handle_stripe_expansion(conf, sh, NULL);
2845
2846         if (sh->ops.count)
2847                 pending = get_stripe_work(sh);
2848
2849  unlock:
2850         spin_unlock(&sh->lock);
2851
2852         /* wait for this device to become unblocked */
2853         if (unlikely(blocked_rdev))
2854                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
2855
2856         if (pending || s.ops_request)
2857                 raid5_run_ops(sh, pending, s.ops_request);
2858
2859         ops_run_io(sh, &s);
2860
2861         return_io(return_bi);
2862 }
2863
2864 static void handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
2865 {
2866         raid6_conf_t *conf = sh->raid_conf;
2867         int disks = sh->disks;
2868         struct bio *return_bi = NULL;
2869         int i, pd_idx = sh->pd_idx;
2870         struct stripe_head_state s;
2871         struct r6_state r6s;
2872         struct r5dev *dev, *pdev, *qdev;
2873         mdk_rdev_t *blocked_rdev = NULL;
2874
2875         r6s.qd_idx = raid6_next_disk(pd_idx, disks);
2876         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
2877                 "pd_idx=%d, qd_idx=%d\n",
2878                (unsigned long long)sh->sector, sh->state,
2879                atomic_read(&sh->count), pd_idx, r6s.qd_idx);
2880         memset(&s, 0, sizeof(s));
2881
2882         spin_lock(&sh->lock);
2883         clear_bit(STRIPE_HANDLE, &sh->state);
2884         clear_bit(STRIPE_DELAYED, &sh->state);
2885
2886         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2887         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2888         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2889         /* Now to look around and see what can be done */
2890
2891         rcu_read_lock();
2892         for (i=disks; i--; ) {
2893                 mdk_rdev_t *rdev;
2894                 dev = &sh->dev[i];
2895                 clear_bit(R5_Insync, &dev->flags);
2896
2897                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
2898                         i, dev->flags, dev->toread, dev->towrite, dev->written);
2899                 /* maybe we can reply to a read */
2900                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
2901                         struct bio *rbi, *rbi2;
2902                         pr_debug("Return read for disc %d\n", i);
2903                         spin_lock_irq(&conf->device_lock);
2904                         rbi = dev->toread;
2905                         dev->toread = NULL;
2906                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
2907                                 wake_up(&conf->wait_for_overlap);
2908                         spin_unlock_irq(&conf->device_lock);
2909                         while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
2910                                 copy_data(0, rbi, dev->page, dev->sector);
2911                                 rbi2 = r5_next_bio(rbi, dev->sector);
2912                                 spin_lock_irq(&conf->device_lock);
2913                                 if (--rbi->bi_phys_segments == 0) {
2914                                         rbi->bi_next = return_bi;
2915                                         return_bi = rbi;
2916                                 }
2917                                 spin_unlock_irq(&conf->device_lock);
2918                                 rbi = rbi2;
2919                         }
2920                 }
2921
2922                 /* now count some things */
2923                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2924                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2925
2926
2927                 if (dev->toread)
2928                         s.to_read++;
2929                 if (dev->towrite) {
2930                         s.to_write++;
2931                         if (!test_bit(R5_OVERWRITE, &dev->flags))
2932                                 s.non_overwrite++;
2933                 }
2934                 if (dev->written)
2935                         s.written++;
2936                 rdev = rcu_dereference(conf->disks[i].rdev);
2937                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2938                         blocked_rdev = rdev;
2939                         atomic_inc(&rdev->nr_pending);
2940                         break;
2941                 }
2942                 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2943                         /* The ReadError flag will just be confusing now */
2944                         clear_bit(R5_ReadError, &dev->flags);
2945                         clear_bit(R5_ReWrite, &dev->flags);
2946                 }
2947                 if (!rdev || !test_bit(In_sync, &rdev->flags)
2948                     || test_bit(R5_ReadError, &dev->flags)) {
2949                         if (s.failed < 2)
2950                                 r6s.failed_num[s.failed] = i;
2951                         s.failed++;
2952                 } else
2953                         set_bit(R5_Insync, &dev->flags);
2954         }
2955         rcu_read_unlock();
2956
2957         if (unlikely(blocked_rdev)) {
2958                 set_bit(STRIPE_HANDLE, &sh->state);
2959                 goto unlock;
2960         }
2961         pr_debug("locked=%d uptodate=%d to_read=%d"
2962                " to_write=%d failed=%d failed_num=%d,%d\n",
2963                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
2964                r6s.failed_num[0], r6s.failed_num[1]);
2965         /* check if the array has lost >2 devices and, if so, some requests
2966          * might need to be failed
2967          */
2968         if (s.failed > 2 && s.to_read+s.to_write+s.written)
2969                 handle_requests_to_failed_array(conf, sh, &s, disks,
2970                                                 &return_bi);
2971         if (s.failed > 2 && s.syncing) {
2972                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2973                 clear_bit(STRIPE_SYNCING, &sh->state);
2974                 s.syncing = 0;
2975         }
2976
2977         /*
2978          * might be able to return some write requests if the parity blocks
2979          * are safe, or on a failed drive
2980          */
2981         pdev = &sh->dev[pd_idx];
2982         r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
2983                 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
2984         qdev = &sh->dev[r6s.qd_idx];
2985         r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == r6s.qd_idx)
2986                 || (s.failed >= 2 && r6s.failed_num[1] == r6s.qd_idx);
2987
2988         if ( s.written &&
2989              ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
2990                              && !test_bit(R5_LOCKED, &pdev->flags)
2991                              && test_bit(R5_UPTODATE, &pdev->flags)))) &&
2992              ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
2993                              && !test_bit(R5_LOCKED, &qdev->flags)
2994                              && test_bit(R5_UPTODATE, &qdev->flags)))))
2995                 handle_completed_write_requests(conf, sh, disks, &return_bi);
2996
2997         /* Now we might consider reading some blocks, either to check/generate
2998          * parity, or to satisfy requests
2999          * or to load a block that is being partially written.
3000          */
3001         if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3002             (s.syncing && (s.uptodate < disks)) || s.expanding)
3003                 handle_issuing_new_read_requests6(sh, &s, &r6s, disks);
3004
3005         /* now to consider writing and what else, if anything should be read */
3006         if (s.to_write)
3007                 handle_issuing_new_write_requests6(conf, sh, &s, &r6s, disks);
3008
3009         /* maybe we need to check and possibly fix the parity for this stripe
3010          * Any reads will already have been scheduled, so we just see if enough
3011          * data is available
3012          */
3013         if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
3014                 handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
3015
3016         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3017                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3018                 clear_bit(STRIPE_SYNCING, &sh->state);
3019         }
3020
3021         /* If the failed drives are just a ReadError, then we might need
3022          * to progress the repair/check process
3023          */
3024         if (s.failed <= 2 && !conf->mddev->ro)
3025                 for (i = 0; i < s.failed; i++) {
3026                         dev = &sh->dev[r6s.failed_num[i]];
3027                         if (test_bit(R5_ReadError, &dev->flags)
3028                             && !test_bit(R5_LOCKED, &dev->flags)
3029                             && test_bit(R5_UPTODATE, &dev->flags)
3030                                 ) {
3031                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3032                                         set_bit(R5_Wantwrite, &dev->flags);
3033                                         set_bit(R5_ReWrite, &dev->flags);
3034                                         set_bit(R5_LOCKED, &dev->flags);
3035                                 } else {
3036                                         /* let's read it back */
3037                                         set_bit(R5_Wantread, &dev->flags);
3038                                         set_bit(R5_LOCKED, &dev->flags);
3039                                 }
3040                         }
3041                 }
3042
3043         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
3044                 /* Need to write out all blocks after computing P&Q */
3045                 sh->disks = conf->raid_disks;
3046                 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
3047                                              conf->raid_disks);
3048                 compute_parity6(sh, RECONSTRUCT_WRITE);
3049                 for (i = conf->raid_disks ; i-- ;  ) {
3050                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3051                         s.locked++;
3052                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3053                 }
3054                 clear_bit(STRIPE_EXPANDING, &sh->state);
3055         } else if (s.expanded) {
3056                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3057                 atomic_dec(&conf->reshape_stripes);
3058                 wake_up(&conf->wait_for_overlap);
3059                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3060         }
3061
3062         if (s.expanding && s.locked == 0 &&
3063             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3064                 handle_stripe_expansion(conf, sh, &r6s);
3065
3066  unlock:
3067         spin_unlock(&sh->lock);
3068
3069         /* wait for this device to become unblocked */
3070         if (unlikely(blocked_rdev))
3071                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3072
3073         ops_run_io(sh, &s);
3074
3075         return_io(return_bi);
3076 }
3077
3078 static void handle_stripe(struct stripe_head *sh, struct page *tmp_page)
3079 {
3080         if (sh->raid_conf->level == 6)
3081                 handle_stripe6(sh, tmp_page);
3082         else
3083                 handle_stripe5(sh);
3084 }
3085
3086
3087
3088 static void raid5_activate_delayed(raid5_conf_t *conf)
3089 {
3090         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3091                 while (!list_empty(&conf->delayed_list)) {
3092                         struct list_head *l = conf->delayed_list.next;
3093                         struct stripe_head *sh;
3094                         sh = list_entry(l, struct stripe_head, lru);
3095                         list_del_init(l);
3096                         clear_bit(STRIPE_DELAYED, &sh->state);
3097                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3098                                 atomic_inc(&conf->preread_active_stripes);
3099                         list_add_tail(&sh->lru, &conf->hold_list);
3100                 }
3101         } else
3102                 blk_plug_device(conf->mddev->queue);
3103 }
3104
3105 static void activate_bit_delay(raid5_conf_t *conf)
3106 {
3107         /* device_lock is held */
3108         struct list_head head;
3109         list_add(&head, &conf->bitmap_list);
3110         list_del_init(&conf->bitmap_list);
3111         while (!list_empty(&head)) {
3112                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3113                 list_del_init(&sh->lru);
3114                 atomic_inc(&sh->count);
3115                 __release_stripe(conf, sh);
3116         }
3117 }
3118
3119 static void unplug_slaves(mddev_t *mddev)
3120 {
3121         raid5_conf_t *conf = mddev_to_conf(mddev);
3122         int i;
3123
3124         rcu_read_lock();
3125         for (i=0; i<mddev->raid_disks; i++) {
3126                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3127                 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3128                         struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3129
3130                         atomic_inc(&rdev->nr_pending);
3131                         rcu_read_unlock();
3132
3133                         blk_unplug(r_queue);
3134
3135                         rdev_dec_pending(rdev, mddev);
3136                         rcu_read_lock();
3137                 }
3138         }
3139         rcu_read_unlock();
3140 }
3141
3142 static void raid5_unplug_device(struct request_queue *q)
3143 {
3144         mddev_t *mddev = q->queuedata;
3145         raid5_conf_t *conf = mddev_to_conf(mddev);
3146         unsigned long flags;
3147
3148         spin_lock_irqsave(&conf->device_lock, flags);
3149
3150         if (blk_remove_plug(q)) {
3151                 conf->seq_flush++;
3152                 raid5_activate_delayed(conf);
3153         }
3154         md_wakeup_thread(mddev->thread);
3155
3156         spin_unlock_irqrestore(&conf->device_lock, flags);
3157
3158         unplug_slaves(mddev);
3159 }
3160
3161 static int raid5_congested(void *data, int bits)
3162 {
3163         mddev_t *mddev = data;
3164         raid5_conf_t *conf = mddev_to_conf(mddev);
3165
3166         /* No difference between reads and writes.  Just check
3167          * how busy the stripe_cache is
3168          */
3169         if (conf->inactive_blocked)
3170                 return 1;
3171         if (conf->quiesce)
3172                 return 1;
3173         if (list_empty_careful(&conf->inactive_list))
3174                 return 1;
3175
3176         return 0;
3177 }
3178
3179 /* We want read requests to align with chunks where possible,
3180  * but write requests don't need to.
3181  */
3182 static int raid5_mergeable_bvec(struct request_queue *q, struct bio *bio, struct bio_vec *biovec)
3183 {
3184         mddev_t *mddev = q->queuedata;
3185         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3186         int max;
3187         unsigned int chunk_sectors = mddev->chunk_size >> 9;
3188         unsigned int bio_sectors = bio->bi_size >> 9;
3189
3190         if (bio_data_dir(bio) == WRITE)
3191                 return biovec->bv_len; /* always allow writes to be mergeable */
3192
3193         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3194         if (max < 0) max = 0;
3195         if (max <= biovec->bv_len && bio_sectors == 0)
3196                 return biovec->bv_len;
3197         else
3198                 return max;
3199 }
3200
3201
3202 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3203 {
3204         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3205         unsigned int chunk_sectors = mddev->chunk_size >> 9;
3206         unsigned int bio_sectors = bio->bi_size >> 9;
3207
3208         return  chunk_sectors >=
3209                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3210 }
3211
3212 /*
3213  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3214  *  later sampled by raid5d.
3215  */
3216 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3217 {
3218         unsigned long flags;
3219
3220         spin_lock_irqsave(&conf->device_lock, flags);
3221
3222         bi->bi_next = conf->retry_read_aligned_list;
3223         conf->retry_read_aligned_list = bi;
3224
3225         spin_unlock_irqrestore(&conf->device_lock, flags);
3226         md_wakeup_thread(conf->mddev->thread);
3227 }
3228
3229
3230 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3231 {
3232         struct bio *bi;
3233
3234         bi = conf->retry_read_aligned;
3235         if (bi) {
3236                 conf->retry_read_aligned = NULL;
3237                 return bi;
3238         }
3239         bi = conf->retry_read_aligned_list;
3240         if(bi) {
3241                 conf->retry_read_aligned_list = bi->bi_next;
3242                 bi->bi_next = NULL;
3243                 bi->bi_phys_segments = 1; /* biased count of active stripes */
3244                 bi->bi_hw_segments = 0; /* count of processed stripes */
3245         }
3246
3247         return bi;
3248 }
3249
3250
3251 /*
3252  *  The "raid5_align_endio" should check if the read succeeded and if it
3253  *  did, call bio_endio on the original bio (having bio_put the new bio
3254  *  first).
3255  *  If the read failed..
3256  */
3257 static void raid5_align_endio(struct bio *bi, int error)
3258 {
3259         struct bio* raid_bi  = bi->bi_private;
3260         mddev_t *mddev;
3261         raid5_conf_t *conf;
3262         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3263         mdk_rdev_t *rdev;
3264
3265         bio_put(bi);
3266
3267         mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3268         conf = mddev_to_conf(mddev);
3269         rdev = (void*)raid_bi->bi_next;
3270         raid_bi->bi_next = NULL;
3271
3272         rdev_dec_pending(rdev, conf->mddev);
3273
3274         if (!error && uptodate) {
3275                 bio_endio(raid_bi, 0);
3276                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3277                         wake_up(&conf->wait_for_stripe);
3278                 return;
3279         }
3280
3281
3282         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3283
3284         add_bio_to_retry(raid_bi, conf);
3285 }
3286
3287 static int bio_fits_rdev(struct bio *bi)
3288 {
3289         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3290
3291         if ((bi->bi_size>>9) > q->max_sectors)
3292                 return 0;
3293         blk_recount_segments(q, bi);
3294         if (bi->bi_phys_segments > q->max_phys_segments ||
3295             bi->bi_hw_segments > q->max_hw_segments)
3296                 return 0;
3297
3298         if (q->merge_bvec_fn)
3299                 /* it's too hard to apply the merge_bvec_fn at this stage,
3300                  * just just give up
3301                  */
3302                 return 0;
3303
3304         return 1;
3305 }
3306
3307
3308 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3309 {
3310         mddev_t *mddev = q->queuedata;
3311         raid5_conf_t *conf = mddev_to_conf(mddev);
3312         const unsigned int raid_disks = conf->raid_disks;
3313         const unsigned int data_disks = raid_disks - conf->max_degraded;
3314         unsigned int dd_idx, pd_idx;
3315         struct bio* align_bi;
3316         mdk_rdev_t *rdev;
3317
3318         if (!in_chunk_boundary(mddev, raid_bio)) {
3319                 pr_debug("chunk_aligned_read : non aligned\n");
3320                 return 0;
3321         }
3322         /*
3323          * use bio_clone to make a copy of the bio
3324          */
3325         align_bi = bio_clone(raid_bio, GFP_NOIO);
3326         if (!align_bi)
3327                 return 0;
3328         /*
3329          *   set bi_end_io to a new function, and set bi_private to the
3330          *     original bio.
3331          */
3332         align_bi->bi_end_io  = raid5_align_endio;
3333         align_bi->bi_private = raid_bio;
3334         /*
3335          *      compute position
3336          */
3337         align_bi->bi_sector =  raid5_compute_sector(raid_bio->bi_sector,
3338                                         raid_disks,
3339                                         data_disks,
3340                                         &dd_idx,
3341                                         &pd_idx,
3342                                         conf);
3343
3344         rcu_read_lock();
3345         rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3346         if (rdev && test_bit(In_sync, &rdev->flags)) {
3347                 atomic_inc(&rdev->nr_pending);
3348                 rcu_read_unlock();
3349                 raid_bio->bi_next = (void*)rdev;
3350                 align_bi->bi_bdev =  rdev->bdev;
3351                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3352                 align_bi->bi_sector += rdev->data_offset;
3353
3354                 if (!bio_fits_rdev(align_bi)) {
3355                         /* too big in some way */
3356                         bio_put(align_bi);
3357                         rdev_dec_pending(rdev, mddev);
3358                         return 0;
3359                 }
3360
3361                 spin_lock_irq(&conf->device_lock);
3362                 wait_event_lock_irq(conf->wait_for_stripe,
3363                                     conf->quiesce == 0,
3364                                     conf->device_lock, /* nothing */);
3365                 atomic_inc(&conf->active_aligned_reads);
3366                 spin_unlock_irq(&conf->device_lock);
3367
3368                 generic_make_request(align_bi);
3369                 return 1;
3370         } else {
3371                 rcu_read_unlock();
3372                 bio_put(align_bi);
3373                 return 0;
3374         }
3375 }
3376
3377 /* __get_priority_stripe - get the next stripe to process
3378  *
3379  * Full stripe writes are allowed to pass preread active stripes up until
3380  * the bypass_threshold is exceeded.  In general the bypass_count
3381  * increments when the handle_list is handled before the hold_list; however, it
3382  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3383  * stripe with in flight i/o.  The bypass_count will be reset when the
3384  * head of the hold_list has changed, i.e. the head was promoted to the
3385  * handle_list.
3386  */
3387 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3388 {
3389         struct stripe_head *sh;
3390
3391         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3392                   __func__,
3393                   list_empty(&conf->handle_list) ? "empty" : "busy",
3394                   list_empty(&conf->hold_list) ? "empty" : "busy",
3395                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
3396
3397         if (!list_empty(&conf->handle_list)) {
3398                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3399
3400                 if (list_empty(&conf->hold_list))
3401                         conf->bypass_count = 0;
3402                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3403                         if (conf->hold_list.next == conf->last_hold)
3404                                 conf->bypass_count++;
3405                         else {
3406                                 conf->last_hold = conf->hold_list.next;
3407                                 conf->bypass_count -= conf->bypass_threshold;
3408                                 if (conf->bypass_count < 0)
3409                                         conf->bypass_count = 0;
3410                         }
3411                 }
3412         } else if (!list_empty(&conf->hold_list) &&
3413                    ((conf->bypass_threshold &&
3414                      conf->bypass_count > conf->bypass_threshold) ||
3415                     atomic_read(&conf->pending_full_writes) == 0)) {
3416                 sh = list_entry(conf->hold_list.next,
3417                                 typeof(*sh), lru);
3418                 conf->bypass_count -= conf->bypass_threshold;
3419                 if (conf->bypass_count < 0)
3420                         conf->bypass_count = 0;
3421         } else
3422                 return NULL;
3423
3424         list_del_init(&sh->lru);
3425         atomic_inc(&sh->count);
3426         BUG_ON(atomic_read(&sh->count) != 1);
3427         return sh;
3428 }
3429
3430 static int make_request(struct request_queue *q, struct bio * bi)
3431 {
3432         mddev_t *mddev = q->queuedata;
3433         raid5_conf_t *conf = mddev_to_conf(mddev);
3434         unsigned int dd_idx, pd_idx;
3435         sector_t new_sector;
3436         sector_t logical_sector, last_sector;
3437         struct stripe_head *sh;
3438         const int rw = bio_data_dir(bi);
3439         int remaining;
3440
3441         if (unlikely(bio_barrier(bi))) {
3442                 bio_endio(bi, -EOPNOTSUPP);
3443                 return 0;
3444         }
3445
3446         md_write_start(mddev, bi);
3447
3448         disk_stat_inc(mddev->gendisk, ios[rw]);
3449         disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
3450
3451         if (rw == READ &&
3452              mddev->reshape_position == MaxSector &&
3453              chunk_aligned_read(q,bi))
3454                 return 0;
3455
3456         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3457         last_sector = bi->bi_sector + (bi->bi_size>>9);
3458         bi->bi_next = NULL;
3459         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
3460
3461         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3462                 DEFINE_WAIT(w);
3463                 int disks, data_disks;
3464
3465         retry:
3466                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3467                 if (likely(conf->expand_progress == MaxSector))
3468                         disks = conf->raid_disks;
3469                 else {
3470                         /* spinlock is needed as expand_progress may be
3471                          * 64bit on a 32bit platform, and so it might be
3472                          * possible to see a half-updated value
3473                          * Ofcourse expand_progress could change after
3474                          * the lock is dropped, so once we get a reference
3475                          * to the stripe that we think it is, we will have
3476                          * to check again.
3477                          */
3478                         spin_lock_irq(&conf->device_lock);
3479                         disks = conf->raid_disks;
3480                         if (logical_sector >= conf->expand_progress)
3481                                 disks = conf->previous_raid_disks;
3482                         else {
3483                                 if (logical_sector >= conf->expand_lo) {
3484                                         spin_unlock_irq(&conf->device_lock);
3485                                         schedule();
3486                                         goto retry;
3487                                 }
3488                         }
3489                         spin_unlock_irq(&conf->device_lock);
3490                 }
3491                 data_disks = disks - conf->max_degraded;
3492
3493                 new_sector = raid5_compute_sector(logical_sector, disks, data_disks,
3494                                                   &dd_idx, &pd_idx, conf);
3495                 pr_debug("raid5: make_request, sector %llu logical %llu\n",
3496                         (unsigned long long)new_sector, 
3497                         (unsigned long long)logical_sector);
3498
3499                 sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
3500                 if (sh) {
3501                         if (unlikely(conf->expand_progress != MaxSector)) {
3502                                 /* expansion might have moved on while waiting for a
3503                                  * stripe, so we must do the range check again.
3504                                  * Expansion could still move past after this
3505                                  * test, but as we are holding a reference to
3506                                  * 'sh', we know that if that happens,
3507                                  *  STRIPE_EXPANDING will get set and the expansion
3508                                  * won't proceed until we finish with the stripe.
3509                                  */
3510                                 int must_retry = 0;
3511                                 spin_lock_irq(&conf->device_lock);
3512                                 if (logical_sector <  conf->expand_progress &&
3513                                     disks == conf->previous_raid_disks)
3514                                         /* mismatch, need to try again */
3515                                         must_retry = 1;
3516                                 spin_unlock_irq(&conf->device_lock);
3517                                 if (must_retry) {
3518                                         release_stripe(sh);
3519                                         goto retry;
3520                                 }
3521                         }
3522                         /* FIXME what if we get a false positive because these
3523                          * are being updated.
3524                          */
3525                         if (logical_sector >= mddev->suspend_lo &&
3526                             logical_sector < mddev->suspend_hi) {
3527                                 release_stripe(sh);
3528                                 schedule();
3529                                 goto retry;
3530                         }
3531
3532                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3533                             !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3534                                 /* Stripe is busy expanding or
3535                                  * add failed due to overlap.  Flush everything
3536                                  * and wait a while
3537                                  */
3538                                 raid5_unplug_device(mddev->queue);
3539                                 release_stripe(sh);
3540                                 schedule();
3541                                 goto retry;
3542                         }
3543                         finish_wait(&conf->wait_for_overlap, &w);
3544                         set_bit(STRIPE_HANDLE, &sh->state);
3545                         clear_bit(STRIPE_DELAYED, &sh->state);
3546                         release_stripe(sh);
3547                 } else {
3548                         /* cannot get stripe for read-ahead, just give-up */
3549                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
3550                         finish_wait(&conf->wait_for_overlap, &w);
3551                         break;
3552                 }
3553                         
3554         }
3555         spin_lock_irq(&conf->device_lock);
3556         remaining = --bi->bi_phys_segments;
3557         spin_unlock_irq(&conf->device_lock);
3558         if (remaining == 0) {
3559
3560                 if ( rw == WRITE )
3561                         md_write_end(mddev);
3562
3563                 bio_endio(bi, 0);
3564         }
3565         return 0;
3566 }
3567
3568 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3569 {
3570         /* reshaping is quite different to recovery/resync so it is
3571          * handled quite separately ... here.
3572          *
3573          * On each call to sync_request, we gather one chunk worth of
3574          * destination stripes and flag them as expanding.
3575          * Then we find all the source stripes and request reads.
3576          * As the reads complete, handle_stripe will copy the data
3577          * into the destination stripe and release that stripe.
3578          */
3579         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3580         struct stripe_head *sh;
3581         int pd_idx;
3582         sector_t first_sector, last_sector;
3583         int raid_disks = conf->previous_raid_disks;
3584         int data_disks = raid_disks - conf->max_degraded;
3585         int new_data_disks = conf->raid_disks - conf->max_degraded;
3586         int i;
3587         int dd_idx;
3588         sector_t writepos, safepos, gap;
3589
3590         if (sector_nr == 0 &&
3591             conf->expand_progress != 0) {
3592                 /* restarting in the middle, skip the initial sectors */
3593                 sector_nr = conf->expand_progress;
3594                 sector_div(sector_nr, new_data_disks);
3595                 *skipped = 1;
3596                 return sector_nr;
3597         }
3598
3599         /* we update the metadata when there is more than 3Meg
3600          * in the block range (that is rather arbitrary, should
3601          * probably be time based) or when the data about to be
3602          * copied would over-write the source of the data at
3603          * the front of the range.
3604          * i.e. one new_stripe forward from expand_progress new_maps
3605          * to after where expand_lo old_maps to
3606          */
3607         writepos = conf->expand_progress +
3608                 conf->chunk_size/512*(new_data_disks);
3609         sector_div(writepos, new_data_disks);
3610         safepos = conf->expand_lo;
3611         sector_div(safepos, data_disks);
3612         gap = conf->expand_progress - conf->expand_lo;
3613
3614         if (writepos >= safepos ||
3615             gap > (new_data_disks)*3000*2 /*3Meg*/) {
3616                 /* Cannot proceed until we've updated the superblock... */
3617                 wait_event(conf->wait_for_overlap,
3618                            atomic_read(&conf->reshape_stripes)==0);
3619                 mddev->reshape_position = conf->expand_progress;
3620                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3621                 md_wakeup_thread(mddev->thread);
3622                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
3623                            kthread_should_stop());
3624                 spin_lock_irq(&conf->device_lock);
3625                 conf->expand_lo = mddev->reshape_position;
3626                 spin_unlock_irq(&conf->device_lock);
3627                 wake_up(&conf->wait_for_overlap);
3628         }
3629
3630         for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
3631                 int j;
3632                 int skipped = 0;
3633                 pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
3634                 sh = get_active_stripe(conf, sector_nr+i,
3635                                        conf->raid_disks, pd_idx, 0);
3636                 set_bit(STRIPE_EXPANDING, &sh->state);
3637                 atomic_inc(&conf->reshape_stripes);
3638                 /* If any of this stripe is beyond the end of the old
3639                  * array, then we need to zero those blocks
3640                  */
3641                 for (j=sh->disks; j--;) {
3642                         sector_t s;
3643                         if (j == sh->pd_idx)
3644                                 continue;
3645                         if (conf->level == 6 &&
3646                             j == raid6_next_disk(sh->pd_idx, sh->disks))
3647                                 continue;
3648                         s = compute_blocknr(sh, j);
3649                         if (s < (mddev->array_size<<1)) {
3650                                 skipped = 1;
3651                                 continue;
3652                         }
3653                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3654                         set_bit(R5_Expanded, &sh->dev[j].flags);
3655                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
3656                 }
3657                 if (!skipped) {
3658                         set_bit(STRIPE_EXPAND_READY, &sh->state);
3659                         set_bit(STRIPE_HANDLE, &sh->state);
3660                 }
3661                 release_stripe(sh);
3662         }
3663         spin_lock_irq(&conf->device_lock);
3664         conf->expand_progress = (sector_nr + i) * new_data_disks;
3665         spin_unlock_irq(&conf->device_lock);
3666         /* Ok, those stripe are ready. We can start scheduling
3667          * reads on the source stripes.
3668          * The source stripes are determined by mapping the first and last
3669          * block on the destination stripes.
3670          */
3671         first_sector =
3672                 raid5_compute_sector(sector_nr*(new_data_disks),
3673                                      raid_disks, data_disks,
3674                                      &dd_idx, &pd_idx, conf);
3675         last_sector =
3676                 raid5_compute_sector((sector_nr+conf->chunk_size/512)
3677                                      *(new_data_disks) -1,
3678                                      raid_disks, data_disks,
3679                                      &dd_idx, &pd_idx, conf);
3680         if (last_sector >= (mddev->size<<1))
3681                 last_sector = (mddev->size<<1)-1;
3682         while (first_sector <= last_sector) {
3683                 pd_idx = stripe_to_pdidx(first_sector, conf,
3684                                          conf->previous_raid_disks);
3685                 sh = get_active_stripe(conf, first_sector,
3686                                        conf->previous_raid_disks, pd_idx, 0);
3687                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3688                 set_bit(STRIPE_HANDLE, &sh->state);
3689                 release_stripe(sh);
3690                 first_sector += STRIPE_SECTORS;
3691         }
3692         /* If this takes us to the resync_max point where we have to pause,
3693          * then we need to write out the superblock.
3694          */
3695         sector_nr += conf->chunk_size>>9;
3696         if (sector_nr >= mddev->resync_max) {
3697                 /* Cannot proceed until we've updated the superblock... */
3698                 wait_event(conf->wait_for_overlap,
3699                            atomic_read(&conf->reshape_stripes) == 0);
3700                 mddev->reshape_position = conf->expand_progress;
3701                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3702                 md_wakeup_thread(mddev->thread);
3703                 wait_event(mddev->sb_wait,
3704                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
3705                            || kthread_should_stop());
3706                 spin_lock_irq(&conf->device_lock);
3707                 conf->expand_lo = mddev->reshape_position;
3708                 spin_unlock_irq(&conf->device_lock);
3709                 wake_up(&conf->wait_for_overlap);
3710         }
3711         return conf->chunk_size>>9;
3712 }
3713
3714 /* FIXME go_faster isn't used */
3715 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3716 {
3717         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3718         struct stripe_head *sh;
3719         int pd_idx;
3720         int raid_disks = conf->raid_disks;
3721         sector_t max_sector = mddev->size << 1;
3722         int sync_blocks;
3723         int still_degraded = 0;
3724         int i;
3725
3726         if (sector_nr >= max_sector) {
3727                 /* just being told to finish up .. nothing much to do */
3728                 unplug_slaves(mddev);
3729                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3730                         end_reshape(conf);
3731                         return 0;
3732                 }
3733
3734                 if (mddev->curr_resync < max_sector) /* aborted */
3735                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3736                                         &sync_blocks, 1);
3737                 else /* completed sync */
3738                         conf->fullsync = 0;
3739                 bitmap_close_sync(mddev->bitmap);
3740
3741                 return 0;
3742         }
3743
3744         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3745                 return reshape_request(mddev, sector_nr, skipped);
3746
3747         /* No need to check resync_max as we never do more than one
3748          * stripe, and as resync_max will always be on a chunk boundary,
3749          * if the check in md_do_sync didn't fire, there is no chance
3750          * of overstepping resync_max here
3751          */
3752
3753         /* if there is too many failed drives and we are trying
3754          * to resync, then assert that we are finished, because there is
3755          * nothing we can do.
3756          */
3757         if (mddev->degraded >= conf->max_degraded &&
3758             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3759                 sector_t rv = (mddev->size << 1) - sector_nr;
3760                 *skipped = 1;
3761                 return rv;
3762         }
3763         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3764             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3765             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3766                 /* we can skip this block, and probably more */
3767                 sync_blocks /= STRIPE_SECTORS;
3768                 *skipped = 1;
3769                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3770         }
3771
3772
3773         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3774
3775         pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
3776         sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
3777         if (sh == NULL) {
3778                 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
3779                 /* make sure we don't swamp the stripe cache if someone else
3780                  * is trying to get access
3781                  */
3782                 schedule_timeout_uninterruptible(1);
3783         }
3784         /* Need to check if array will still be degraded after recovery/resync
3785          * We don't need to check the 'failed' flag as when that gets set,
3786          * recovery aborts.
3787          */
3788         for (i=0; i<mddev->raid_disks; i++)
3789                 if (conf->disks[i].rdev == NULL)
3790                         still_degraded = 1;
3791
3792         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
3793
3794         spin_lock(&sh->lock);
3795         set_bit(STRIPE_SYNCING, &sh->state);
3796         clear_bit(STRIPE_INSYNC, &sh->state);
3797         spin_unlock(&sh->lock);
3798
3799         handle_stripe(sh, NULL);
3800         release_stripe(sh);
3801
3802         return STRIPE_SECTORS;
3803 }
3804
3805 static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
3806 {
3807         /* We may not be able to submit a whole bio at once as there
3808          * may not be enough stripe_heads available.
3809          * We cannot pre-allocate enough stripe_heads as we may need
3810          * more than exist in the cache (if we allow ever large chunks).
3811          * So we do one stripe head at a time and record in
3812          * ->bi_hw_segments how many have been done.
3813          *
3814          * We *know* that this entire raid_bio is in one chunk, so
3815          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3816          */
3817         struct stripe_head *sh;
3818         int dd_idx, pd_idx;
3819         sector_t sector, logical_sector, last_sector;
3820         int scnt = 0;
3821         int remaining;
3822         int handled = 0;
3823
3824         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3825         sector = raid5_compute_sector(  logical_sector,
3826                                         conf->raid_disks,
3827                                         conf->raid_disks - conf->max_degraded,
3828                                         &dd_idx,
3829                                         &pd_idx,
3830                                         conf);
3831         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
3832
3833         for (; logical_sector < last_sector;
3834              logical_sector += STRIPE_SECTORS,
3835                      sector += STRIPE_SECTORS,
3836                      scnt++) {
3837
3838                 if (scnt < raid_bio->bi_hw_segments)
3839                         /* already done this stripe */
3840                         continue;
3841
3842                 sh = get_active_stripe(conf, sector, conf->raid_disks, pd_idx, 1);
3843
3844                 if (!sh) {
3845                         /* failed to get a stripe - must wait */
3846                         raid_bio->bi_hw_segments = scnt;
3847                         conf->retry_read_aligned = raid_bio;
3848                         return handled;
3849                 }
3850
3851                 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
3852                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
3853                         release_stripe(sh);
3854                         raid_bio->bi_hw_segments = scnt;
3855                         conf->retry_read_aligned = raid_bio;
3856                         return handled;
3857                 }
3858
3859                 handle_stripe(sh, NULL);
3860                 release_stripe(sh);
3861                 handled++;
3862         }
3863         spin_lock_irq(&conf->device_lock);
3864         remaining = --raid_bio->bi_phys_segments;
3865         spin_unlock_irq(&conf->device_lock);
3866         if (remaining == 0)
3867                 bio_endio(raid_bio, 0);
3868         if (atomic_dec_and_test(&conf->active_aligned_reads))
3869                 wake_up(&conf->wait_for_stripe);
3870         return handled;
3871 }
3872
3873
3874
3875 /*
3876  * This is our raid5 kernel thread.
3877  *
3878  * We scan the hash table for stripes which can be handled now.
3879  * During the scan, completed stripes are saved for us by the interrupt
3880  * handler, so that they will not have to wait for our next wakeup.
3881  */
3882 static void raid5d(mddev_t *mddev)
3883 {
3884         struct stripe_head *sh;
3885         raid5_conf_t *conf = mddev_to_conf(mddev);
3886         int handled;
3887
3888         pr_debug("+++ raid5d active\n");
3889
3890         md_check_recovery(mddev);
3891
3892         handled = 0;
3893         spin_lock_irq(&conf->device_lock);
3894         while (1) {
3895                 struct bio *bio;
3896
3897                 if (conf->seq_flush != conf->seq_write) {
3898                         int seq = conf->seq_flush;
3899                         spin_unlock_irq(&conf->device_lock);
3900                         bitmap_unplug(mddev->bitmap);
3901                         spin_lock_irq(&conf->device_lock);
3902                         conf->seq_write = seq;
3903                         activate_bit_delay(conf);
3904                 }
3905
3906                 while ((bio = remove_bio_from_retry(conf))) {
3907                         int ok;
3908                         spin_unlock_irq(&conf->device_lock);
3909                         ok = retry_aligned_read(conf, bio);
3910                         spin_lock_irq(&conf->device_lock);
3911                         if (!ok)
3912                                 break;
3913                         handled++;
3914                 }
3915
3916                 sh = __get_priority_stripe(conf);
3917
3918                 if (!sh) {
3919                         async_tx_issue_pending_all();
3920                         break;
3921                 }
3922                 spin_unlock_irq(&conf->device_lock);
3923                 
3924                 handled++;
3925                 handle_stripe(sh, conf->spare_page);
3926                 release_stripe(sh);
3927
3928                 spin_lock_irq(&conf->device_lock);
3929         }
3930         pr_debug("%d stripes handled\n", handled);
3931
3932         spin_unlock_irq(&conf->device_lock);
3933
3934         unplug_slaves(mddev);
3935
3936         pr_debug("--- raid5d inactive\n");
3937 }
3938
3939 static ssize_t
3940 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
3941 {
3942         raid5_conf_t *conf = mddev_to_conf(mddev);
3943         if (conf)
3944                 return sprintf(page, "%d\n", conf->max_nr_stripes);
3945         else
3946                 return 0;
3947 }
3948
3949 static ssize_t
3950 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
3951 {
3952         raid5_conf_t *conf = mddev_to_conf(mddev);
3953         unsigned long new;
3954         if (len >= PAGE_SIZE)
3955                 return -EINVAL;
3956         if (!conf)
3957                 return -ENODEV;
3958
3959         if (strict_strtoul(page, 10, &new))
3960                 return -EINVAL;
3961         if (new <= 16 || new > 32768)
3962                 return -EINVAL;
3963         while (new < conf->max_nr_stripes) {
3964                 if (drop_one_stripe(conf))
3965                         conf->max_nr_stripes--;
3966                 else
3967                         break;
3968         }
3969         md_allow_write(mddev);
3970         while (new > conf->max_nr_stripes) {
3971                 if (grow_one_stripe(conf))
3972                         conf->max_nr_stripes++;
3973                 else break;
3974         }
3975         return len;
3976 }
3977
3978 static struct md_sysfs_entry
3979 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
3980                                 raid5_show_stripe_cache_size,
3981                                 raid5_store_stripe_cache_size);
3982
3983 static ssize_t
3984 raid5_show_preread_threshold(mddev_t *mddev, char *page)
3985 {
3986         raid5_conf_t *conf = mddev_to_conf(mddev);
3987         if (conf)
3988                 return sprintf(page, "%d\n", conf->bypass_threshold);
3989         else
3990                 return 0;
3991 }
3992
3993 static ssize_t
3994 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
3995 {
3996         raid5_conf_t *conf = mddev_to_conf(mddev);
3997         unsigned long new;
3998         if (len >= PAGE_SIZE)
3999                 return -EINVAL;
4000         if (!conf)
4001                 return -ENODEV;
4002
4003         if (strict_strtoul(page, 10, &new))
4004                 return -EINVAL;
4005         if (new > conf->max_nr_stripes)
4006                 return -EINVAL;
4007         conf->bypass_threshold = new;
4008         return len;
4009 }
4010
4011 static struct md_sysfs_entry
4012 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4013                                         S_IRUGO | S_IWUSR,
4014                                         raid5_show_preread_threshold,
4015                                         raid5_store_preread_threshold);
4016
4017 static ssize_t
4018 stripe_cache_active_show(mddev_t *mddev, char *page)
4019 {
4020         raid5_conf_t *conf = mddev_to_conf(mddev);
4021         if (conf)
4022                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4023         else
4024                 return 0;
4025 }
4026
4027 static struct md_sysfs_entry
4028 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4029
4030 static struct attribute *raid5_attrs[] =  {
4031         &raid5_stripecache_size.attr,
4032         &raid5_stripecache_active.attr,
4033         &raid5_preread_bypass_threshold.attr,
4034         NULL,
4035 };
4036 static struct attribute_group raid5_attrs_group = {
4037         .name = NULL,
4038         .attrs = raid5_attrs,
4039 };
4040
4041 static int run(mddev_t *mddev)
4042 {
4043         raid5_conf_t *conf;
4044         int raid_disk, memory;
4045         mdk_rdev_t *rdev;
4046         struct disk_info *disk;
4047         struct list_head *tmp;
4048         int working_disks = 0;
4049
4050         if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
4051                 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4052                        mdname(mddev), mddev->level);
4053                 return -EIO;
4054         }
4055
4056         if (mddev->reshape_position != MaxSector) {
4057                 /* Check that we can continue the reshape.
4058                  * Currently only disks can change, it must
4059                  * increase, and we must be past the point where
4060                  * a stripe over-writes itself
4061                  */
4062                 sector_t here_new, here_old;
4063                 int old_disks;
4064                 int max_degraded = (mddev->level == 5 ? 1 : 2);
4065
4066                 if (mddev->new_level != mddev->level ||
4067                     mddev->new_layout != mddev->layout ||
4068                     mddev->new_chunk != mddev->chunk_size) {
4069                         printk(KERN_ERR "raid5: %s: unsupported reshape "
4070                                "required - aborting.\n",
4071                                mdname(mddev));
4072                         return -EINVAL;
4073                 }
4074                 if (mddev->delta_disks <= 0) {
4075                         printk(KERN_ERR "raid5: %s: unsupported reshape "
4076                                "(reduce disks) required - aborting.\n",
4077                                mdname(mddev));
4078                         return -EINVAL;
4079                 }
4080                 old_disks = mddev->raid_disks - mddev->delta_disks;
4081                 /* reshape_position must be on a new-stripe boundary, and one
4082                  * further up in new geometry must map after here in old
4083                  * geometry.
4084                  */
4085                 here_new = mddev->reshape_position;
4086                 if (sector_div(here_new, (mddev->chunk_size>>9)*
4087                                (mddev->raid_disks - max_degraded))) {
4088                         printk(KERN_ERR "raid5: reshape_position not "
4089                                "on a stripe boundary\n");
4090                         return -EINVAL;
4091                 }
4092                 /* here_new is the stripe we will write to */
4093                 here_old = mddev->reshape_position;
4094                 sector_div(here_old, (mddev->chunk_size>>9)*
4095                            (old_disks-max_degraded));
4096                 /* here_old is the first stripe that we might need to read
4097                  * from */
4098                 if (here_new >= here_old) {
4099                         /* Reading from the same stripe as writing to - bad */
4100                         printk(KERN_ERR "raid5: reshape_position too early for "
4101                                "auto-recovery - aborting.\n");
4102                         return -EINVAL;
4103                 }
4104                 printk(KERN_INFO "raid5: reshape will continue\n");
4105                 /* OK, we should be able to continue; */
4106         }
4107
4108
4109         mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
4110         if ((conf = mddev->private) == NULL)
4111                 goto abort;
4112         if (mddev->reshape_position == MaxSector) {
4113                 conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
4114         } else {
4115                 conf->raid_disks = mddev->raid_disks;
4116                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4117         }
4118
4119         conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4120                               GFP_KERNEL);
4121         if (!conf->disks)
4122                 goto abort;
4123
4124         conf->mddev = mddev;
4125
4126         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4127                 goto abort;
4128
4129         if (mddev->level == 6) {
4130                 conf->spare_page = alloc_page(GFP_KERNEL);
4131                 if (!conf->spare_page)
4132                         goto abort;
4133         }
4134         spin_lock_init(&conf->device_lock);
4135         mddev->queue->queue_lock = &conf->device_lock;
4136         init_waitqueue_head(&conf->wait_for_stripe);
4137         init_waitqueue_head(&conf->wait_for_overlap);
4138         INIT_LIST_HEAD(&conf->handle_list);
4139         INIT_LIST_HEAD(&conf->hold_list);
4140         INIT_LIST_HEAD(&conf->delayed_list);
4141         INIT_LIST_HEAD(&conf->bitmap_list);
4142         INIT_LIST_HEAD(&conf->inactive_list);
4143         atomic_set(&conf->active_stripes, 0);
4144         atomic_set(&conf->preread_active_stripes, 0);
4145         atomic_set(&conf->active_aligned_reads, 0);
4146         conf->bypass_threshold = BYPASS_THRESHOLD;
4147
4148         pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4149
4150         rdev_for_each(rdev, tmp, mddev) {
4151                 raid_disk = rdev->raid_disk;
4152                 if (raid_disk >= conf->raid_disks
4153                     || raid_disk < 0)
4154                         continue;
4155                 disk = conf->disks + raid_disk;
4156
4157                 disk->rdev = rdev;
4158
4159                 if (test_bit(In_sync, &rdev->flags)) {
4160                         char b[BDEVNAME_SIZE];
4161                         printk(KERN_INFO "raid5: device %s operational as raid"
4162                                 " disk %d\n", bdevname(rdev->bdev,b),
4163                                 raid_disk);
4164                         working_disks++;
4165                 } else
4166                         /* Cannot rely on bitmap to complete recovery */
4167                         conf->fullsync = 1;
4168         }
4169
4170         /*
4171          * 0 for a fully functional array, 1 or 2 for a degraded array.
4172          */
4173         mddev->degraded = conf->raid_disks - working_disks;
4174         conf->mddev = mddev;
4175         conf->chunk_size = mddev->chunk_size;
4176         conf->level = mddev->level;
4177         if (conf->level == 6)
4178                 conf->max_degraded = 2;
4179         else
4180                 conf->max_degraded = 1;
4181         conf->algorithm = mddev->layout;
4182         conf->max_nr_stripes = NR_STRIPES;
4183         conf->expand_progress = mddev->reshape_position;
4184
4185         /* device size must be a multiple of chunk size */
4186         mddev->size &= ~(mddev->chunk_size/1024 -1);
4187         mddev->resync_max_sectors = mddev->size << 1;
4188
4189         if (conf->level == 6 && conf->raid_disks < 4) {
4190                 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4191                        mdname(mddev), conf->raid_disks);
4192                 goto abort;
4193         }
4194         if (!conf->chunk_size || conf->chunk_size % 4) {
4195                 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4196                         conf->chunk_size, mdname(mddev));
4197                 goto abort;
4198         }
4199         if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
4200                 printk(KERN_ERR 
4201                         "raid5: unsupported parity algorithm %d for %s\n",
4202                         conf->algorithm, mdname(mddev));
4203                 goto abort;
4204         }
4205         if (mddev->degraded > conf->max_degraded) {
4206                 printk(KERN_ERR "raid5: not enough operational devices for %s"
4207                         " (%d/%d failed)\n",
4208                         mdname(mddev), mddev->degraded, conf->raid_disks);
4209                 goto abort;
4210         }
4211
4212         if (mddev->degraded > 0 &&
4213             mddev->recovery_cp != MaxSector) {
4214                 if (mddev->ok_start_degraded)
4215                         printk(KERN_WARNING
4216                                "raid5: starting dirty degraded array: %s"
4217                                "- data corruption possible.\n",
4218                                mdname(mddev));
4219                 else {
4220                         printk(KERN_ERR
4221                                "raid5: cannot start dirty degraded array for %s\n",
4222                                mdname(mddev));
4223                         goto abort;
4224                 }
4225         }
4226
4227         {
4228                 mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4229                 if (!mddev->thread) {
4230                         printk(KERN_ERR 
4231                                 "raid5: couldn't allocate thread for %s\n",
4232                                 mdname(mddev));
4233                         goto abort;
4234                 }
4235         }
4236         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4237                  conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4238         if (grow_stripes(conf, conf->max_nr_stripes)) {
4239                 printk(KERN_ERR 
4240                         "raid5: couldn't allocate %dkB for buffers\n", memory);
4241                 shrink_stripes(conf);
4242                 md_unregister_thread(mddev->thread);
4243                 goto abort;
4244         } else
4245                 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4246                         memory, mdname(mddev));
4247
4248         if (mddev->degraded == 0)
4249                 printk("raid5: raid level %d set %s active with %d out of %d"
4250                         " devices, algorithm %d\n", conf->level, mdname(mddev), 
4251                         mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4252                         conf->algorithm);
4253         else
4254                 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4255                         " out of %d devices, algorithm %d\n", conf->level,
4256                         mdname(mddev), mddev->raid_disks - mddev->degraded,
4257                         mddev->raid_disks, conf->algorithm);
4258
4259         print_raid5_conf(conf);
4260
4261         if (conf->expand_progress != MaxSector) {
4262                 printk("...ok start reshape thread\n");
4263                 conf->expand_lo = conf->expand_progress;
4264                 atomic_set(&conf->reshape_stripes, 0);
4265                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4266                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4267                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4268                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4269                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4270                                                         "%s_reshape");
4271         }
4272
4273         /* read-ahead size must cover two whole stripes, which is
4274          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4275          */
4276         {
4277                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4278                 int stripe = data_disks *
4279                         (mddev->chunk_size / PAGE_SIZE);
4280                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4281                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4282         }
4283
4284         /* Ok, everything is just fine now */
4285         if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4286                 printk(KERN_WARNING
4287                        "raid5: failed to create sysfs attributes for %s\n",
4288                        mdname(mddev));
4289
4290         mddev->queue->unplug_fn = raid5_unplug_device;
4291         mddev->queue->backing_dev_info.congested_data = mddev;
4292         mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4293
4294         mddev->array_size =  mddev->size * (conf->previous_raid_disks -
4295                                             conf->max_degraded);
4296
4297         blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4298
4299         return 0;
4300 abort:
4301         if (conf) {
4302                 print_raid5_conf(conf);
4303                 safe_put_page(conf->spare_page);
4304                 kfree(conf->disks);
4305                 kfree(conf->stripe_hashtbl);
4306                 kfree(conf);
4307         }
4308         mddev->private = NULL;
4309         printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4310         return -EIO;
4311 }
4312
4313
4314
4315 static int stop(mddev_t *mddev)
4316 {
4317         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4318
4319         md_unregister_thread(mddev->thread);
4320         mddev->thread = NULL;
4321         shrink_stripes(conf);
4322         kfree(conf->stripe_hashtbl);
4323         mddev->queue->backing_dev_info.congested_fn = NULL;
4324         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
4325         sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
4326         kfree(conf->disks);
4327         kfree(conf);
4328         mddev->private = NULL;
4329         return 0;
4330 }
4331
4332 #ifdef DEBUG
4333 static void print_sh (struct seq_file *seq, struct stripe_head *sh)
4334 {
4335         int i;
4336
4337         seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4338                    (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4339         seq_printf(seq, "sh %llu,  count %d.\n",
4340                    (unsigned long long)sh->sector, atomic_read(&sh->count));
4341         seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4342         for (i = 0; i < sh->disks; i++) {
4343                 seq_printf(seq, "(cache%d: %p %ld) ",
4344                            i, sh->dev[i].page, sh->dev[i].flags);
4345         }
4346         seq_printf(seq, "\n");
4347 }
4348
4349 static void printall (struct seq_file *seq, raid5_conf_t *conf)
4350 {
4351         struct stripe_head *sh;
4352         struct hlist_node *hn;
4353         int i;
4354
4355         spin_lock_irq(&conf->device_lock);
4356         for (i = 0; i < NR_HASH; i++) {
4357                 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4358                         if (sh->raid_conf != conf)
4359                                 continue;
4360                         print_sh(seq, sh);
4361                 }
4362         }
4363         spin_unlock_irq(&conf->device_lock);
4364 }
4365 #endif
4366
4367 static void status (struct seq_file *seq, mddev_t *mddev)
4368 {
4369         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4370         int i;
4371
4372         seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
4373         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4374         for (i = 0; i < conf->raid_disks; i++)
4375                 seq_printf (seq, "%s",
4376                                conf->disks[i].rdev &&
4377                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4378         seq_printf (seq, "]");
4379 #ifdef DEBUG
4380         seq_printf (seq, "\n");
4381         printall(seq, conf);
4382 #endif
4383 }
4384
4385 static void print_raid5_conf (raid5_conf_t *conf)
4386 {
4387         int i;
4388         struct disk_info *tmp;
4389
4390         printk("RAID5 conf printout:\n");
4391         if (!conf) {
4392                 printk("(conf==NULL)\n");
4393                 return;
4394         }
4395         printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4396                  conf->raid_disks - conf->mddev->degraded);
4397
4398         for (i = 0; i < conf->raid_disks; i++) {
4399                 char b[BDEVNAME_SIZE];
4400                 tmp = conf->disks + i;
4401                 if (tmp->rdev)
4402                 printk(" disk %d, o:%d, dev:%s\n",
4403                         i, !test_bit(Faulty, &tmp->rdev->flags),
4404                         bdevname(tmp->rdev->bdev,b));
4405         }
4406 }
4407
4408 static int raid5_spare_active(mddev_t *mddev)
4409 {
4410         int i;
4411         raid5_conf_t *conf = mddev->private;
4412         struct disk_info *tmp;
4413
4414         for (i = 0; i < conf->raid_disks; i++) {
4415                 tmp = conf->disks + i;
4416                 if (tmp->rdev
4417                     && !test_bit(Faulty, &tmp->rdev->flags)
4418                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4419                         unsigned long flags;
4420                         spin_lock_irqsave(&conf->device_lock, flags);
4421                         mddev->degraded--;
4422                         spin_unlock_irqrestore(&conf->device_lock, flags);
4423                 }
4424         }
4425         print_raid5_conf(conf);
4426         return 0;
4427 }
4428
4429 static int raid5_remove_disk(mddev_t *mddev, int number)
4430 {
4431         raid5_conf_t *conf = mddev->private;
4432         int err = 0;
4433         mdk_rdev_t *rdev;
4434         struct disk_info *p = conf->disks + number;
4435
4436         print_raid5_conf(conf);
4437         rdev = p->rdev;
4438         if (rdev) {
4439                 if (test_bit(In_sync, &rdev->flags) ||
4440                     atomic_read(&rdev->nr_pending)) {
4441                         err = -EBUSY;
4442                         goto abort;
4443                 }
4444                 /* Only remove non-faulty devices if recovery
4445                  * isn't possible.
4446                  */
4447                 if (!test_bit(Faulty, &rdev->flags) &&
4448                     mddev->degraded <= conf->max_degraded) {
4449                         err = -EBUSY;
4450                         goto abort;
4451                 }
4452                 p->rdev = NULL;
4453                 synchronize_rcu();
4454                 if (atomic_read(&rdev->nr_pending)) {
4455                         /* lost the race, try later */
4456                         err = -EBUSY;
4457                         p->rdev = rdev;
4458                 }
4459         }
4460 abort:
4461
4462         print_raid5_conf(conf);
4463         return err;
4464 }
4465
4466 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4467 {
4468         raid5_conf_t *conf = mddev->private;
4469         int err = -EEXIST;
4470         int disk;
4471         struct disk_info *p;
4472         int first = 0;
4473         int last = conf->raid_disks - 1;
4474
4475         if (mddev->degraded > conf->max_degraded)
4476                 /* no point adding a device */
4477                 return -EINVAL;
4478
4479         if (rdev->raid_disk >= 0)
4480                 first = last = rdev->raid_disk;
4481
4482         /*
4483          * find the disk ... but prefer rdev->saved_raid_disk
4484          * if possible.
4485          */
4486         if (rdev->saved_raid_disk >= 0 &&
4487             rdev->saved_raid_disk >= first &&
4488             conf->disks[rdev->saved_raid_disk].rdev == NULL)
4489                 disk = rdev->saved_raid_disk;
4490         else
4491                 disk = first;
4492         for ( ; disk <= last ; disk++)
4493                 if ((p=conf->disks + disk)->rdev == NULL) {
4494                         clear_bit(In_sync, &rdev->flags);
4495                         rdev->raid_disk = disk;
4496                         err = 0;
4497                         if (rdev->saved_raid_disk != disk)
4498                                 conf->fullsync = 1;
4499                         rcu_assign_pointer(p->rdev, rdev);
4500                         break;
4501                 }
4502         print_raid5_conf(conf);
4503         return err;
4504 }
4505
4506 static int raid5_resize(mddev_t *mddev, sector_t sectors)
4507 {
4508         /* no resync is happening, and there is enough space
4509          * on all devices, so we can resize.
4510          * We need to make sure resync covers any new space.
4511          * If the array is shrinking we should possibly wait until
4512          * any io in the removed space completes, but it hardly seems
4513          * worth it.
4514          */
4515         raid5_conf_t *conf = mddev_to_conf(mddev);
4516
4517         sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4518         mddev->array_size = (sectors * (mddev->raid_disks-conf->max_degraded))>>1;
4519         set_capacity(mddev->gendisk, mddev->array_size << 1);
4520         mddev->changed = 1;
4521         if (sectors/2  > mddev->size && mddev->recovery_cp == MaxSector) {
4522                 mddev->recovery_cp = mddev->size << 1;
4523                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4524         }
4525         mddev->size = sectors /2;
4526         mddev->resync_max_sectors = sectors;
4527         return 0;
4528 }
4529
4530 #ifdef CONFIG_MD_RAID5_RESHAPE
4531 static int raid5_check_reshape(mddev_t *mddev)
4532 {
4533         raid5_conf_t *conf = mddev_to_conf(mddev);
4534         int err;
4535
4536         if (mddev->delta_disks < 0 ||
4537             mddev->new_level != mddev->level)
4538                 return -EINVAL; /* Cannot shrink array or change level yet */
4539         if (mddev->delta_disks == 0)
4540                 return 0; /* nothing to do */
4541
4542         /* Can only proceed if there are plenty of stripe_heads.
4543          * We need a minimum of one full stripe,, and for sensible progress
4544          * it is best to have about 4 times that.
4545          * If we require 4 times, then the default 256 4K stripe_heads will
4546          * allow for chunk sizes up to 256K, which is probably OK.
4547          * If the chunk size is greater, user-space should request more
4548          * stripe_heads first.
4549          */
4550         if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4551             (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
4552                 printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
4553                        (mddev->chunk_size / STRIPE_SIZE)*4);
4554                 return -ENOSPC;
4555         }
4556
4557         err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4558         if (err)
4559                 return err;
4560
4561         if (mddev->degraded > conf->max_degraded)
4562                 return -EINVAL;
4563         /* looks like we might be able to manage this */
4564         return 0;
4565 }
4566
4567 static int raid5_start_reshape(mddev_t *mddev)
4568 {
4569         raid5_conf_t *conf = mddev_to_conf(mddev);
4570         mdk_rdev_t *rdev;
4571         struct list_head *rtmp;
4572         int spares = 0;
4573         int added_devices = 0;
4574         unsigned long flags;
4575
4576         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4577                 return -EBUSY;
4578
4579         rdev_for_each(rdev, rtmp, mddev)
4580                 if (rdev->raid_disk < 0 &&
4581                     !test_bit(Faulty, &rdev->flags))
4582                         spares++;
4583
4584         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
4585                 /* Not enough devices even to make a degraded array
4586                  * of that size
4587                  */
4588                 return -EINVAL;
4589
4590         atomic_set(&conf->reshape_stripes, 0);
4591         spin_lock_irq(&conf->device_lock);
4592         conf->previous_raid_disks = conf->raid_disks;
4593         conf->raid_disks += mddev->delta_disks;
4594         conf->expand_progress = 0;
4595         conf->expand_lo = 0;
4596         spin_unlock_irq(&conf->device_lock);
4597
4598         /* Add some new drives, as many as will fit.
4599          * We know there are enough to make the newly sized array work.
4600          */
4601         rdev_for_each(rdev, rtmp, mddev)
4602                 if (rdev->raid_disk < 0 &&
4603                     !test_bit(Faulty, &rdev->flags)) {
4604                         if (raid5_add_disk(mddev, rdev) == 0) {
4605                                 char nm[20];
4606                                 set_bit(In_sync, &rdev->flags);
4607                                 added_devices++;
4608                                 rdev->recovery_offset = 0;
4609                                 sprintf(nm, "rd%d", rdev->raid_disk);
4610                                 if (sysfs_create_link(&mddev->kobj,
4611                                                       &rdev->kobj, nm))
4612                                         printk(KERN_WARNING
4613                                                "raid5: failed to create "
4614                                                " link %s for %s\n",
4615                                                nm, mdname(mddev));
4616                         } else
4617                                 break;
4618                 }
4619
4620         spin_lock_irqsave(&conf->device_lock, flags);
4621         mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
4622         spin_unlock_irqrestore(&conf->device_lock, flags);
4623         mddev->raid_disks = conf->raid_disks;
4624         mddev->reshape_position = 0;
4625         set_bit(MD_CHANGE_DEVS, &mddev->flags);
4626
4627         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4628         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4629         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4630         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4631         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4632                                                 "%s_reshape");
4633         if (!mddev->sync_thread) {
4634                 mddev->recovery = 0;
4635                 spin_lock_irq(&conf->device_lock);
4636                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4637                 conf->expand_progress = MaxSector;
4638                 spin_unlock_irq(&conf->device_lock);
4639                 return -EAGAIN;
4640         }
4641         md_wakeup_thread(mddev->sync_thread);
4642         md_new_event(mddev);
4643         return 0;
4644 }
4645 #endif
4646
4647 static void end_reshape(raid5_conf_t *conf)
4648 {
4649         struct block_device *bdev;
4650
4651         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
4652                 conf->mddev->array_size = conf->mddev->size *
4653                         (conf->raid_disks - conf->max_degraded);
4654                 set_capacity(conf->mddev->gendisk, conf->mddev->array_size << 1);
4655                 conf->mddev->changed = 1;
4656
4657                 bdev = bdget_disk(conf->mddev->gendisk, 0);
4658                 if (bdev) {
4659                         mutex_lock(&bdev->bd_inode->i_mutex);
4660                         i_size_write(bdev->bd_inode, (loff_t)conf->mddev->array_size << 10);
4661                         mutex_unlock(&bdev->bd_inode->i_mutex);
4662                         bdput(bdev);
4663                 }
4664                 spin_lock_irq(&conf->device_lock);
4665                 conf->expand_progress = MaxSector;
4666                 spin_unlock_irq(&conf->device_lock);
4667                 conf->mddev->reshape_position = MaxSector;
4668
4669                 /* read-ahead size must cover two whole stripes, which is
4670                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4671                  */
4672                 {
4673                         int data_disks = conf->previous_raid_disks - conf->max_degraded;
4674                         int stripe = data_disks *
4675                                 (conf->mddev->chunk_size / PAGE_SIZE);
4676                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4677                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4678                 }
4679         }
4680 }
4681
4682 static void raid5_quiesce(mddev_t *mddev, int state)
4683 {
4684         raid5_conf_t *conf = mddev_to_conf(mddev);
4685
4686         switch(state) {
4687         case 2: /* resume for a suspend */
4688                 wake_up(&conf->wait_for_overlap);
4689                 break;
4690
4691         case 1: /* stop all writes */
4692                 spin_lock_irq(&conf->device_lock);
4693                 conf->quiesce = 1;
4694                 wait_event_lock_irq(conf->wait_for_stripe,
4695                                     atomic_read(&conf->active_stripes) == 0 &&
4696                                     atomic_read(&conf->active_aligned_reads) == 0,
4697                                     conf->device_lock, /* nothing */);
4698                 spin_unlock_irq(&conf->device_lock);
4699                 break;
4700
4701         case 0: /* re-enable writes */
4702                 spin_lock_irq(&conf->device_lock);
4703                 conf->quiesce = 0;
4704                 wake_up(&conf->wait_for_stripe);
4705                 wake_up(&conf->wait_for_overlap);
4706                 spin_unlock_irq(&conf->device_lock);
4707                 break;
4708         }
4709 }
4710
4711 static struct mdk_personality raid6_personality =
4712 {
4713         .name           = "raid6",
4714         .level          = 6,
4715         .owner          = THIS_MODULE,
4716         .make_request   = make_request,
4717         .run            = run,
4718         .stop           = stop,
4719         .status         = status,
4720         .error_handler  = error,
4721         .hot_add_disk   = raid5_add_disk,
4722         .hot_remove_disk= raid5_remove_disk,
4723         .spare_active   = raid5_spare_active,
4724         .sync_request   = sync_request,
4725         .resize         = raid5_resize,
4726 #ifdef CONFIG_MD_RAID5_RESHAPE
4727         .check_reshape  = raid5_check_reshape,
4728         .start_reshape  = raid5_start_reshape,
4729 #endif
4730         .quiesce        = raid5_quiesce,
4731 };
4732 static struct mdk_personality raid5_personality =
4733 {
4734         .name           = "raid5",
4735         .level          = 5,
4736         .owner          = THIS_MODULE,
4737         .make_request   = make_request,
4738         .run            = run,
4739         .stop           = stop,
4740         .status         = status,
4741         .error_handler  = error,
4742         .hot_add_disk   = raid5_add_disk,
4743         .hot_remove_disk= raid5_remove_disk,
4744         .spare_active   = raid5_spare_active,
4745         .sync_request   = sync_request,
4746         .resize         = raid5_resize,
4747 #ifdef CONFIG_MD_RAID5_RESHAPE
4748         .check_reshape  = raid5_check_reshape,
4749         .start_reshape  = raid5_start_reshape,
4750 #endif
4751         .quiesce        = raid5_quiesce,
4752 };
4753
4754 static struct mdk_personality raid4_personality =
4755 {
4756         .name           = "raid4",
4757         .level          = 4,
4758         .owner          = THIS_MODULE,
4759         .make_request   = make_request,
4760         .run            = run,
4761         .stop           = stop,
4762         .status         = status,
4763         .error_handler  = error,
4764         .hot_add_disk   = raid5_add_disk,
4765         .hot_remove_disk= raid5_remove_disk,
4766         .spare_active   = raid5_spare_active,
4767         .sync_request   = sync_request,
4768         .resize         = raid5_resize,
4769 #ifdef CONFIG_MD_RAID5_RESHAPE
4770         .check_reshape  = raid5_check_reshape,
4771         .start_reshape  = raid5_start_reshape,
4772 #endif
4773         .quiesce        = raid5_quiesce,
4774 };
4775
4776 static int __init raid5_init(void)
4777 {
4778         int e;
4779
4780         e = raid6_select_algo();
4781         if ( e )
4782                 return e;
4783         register_md_personality(&raid6_personality);
4784         register_md_personality(&raid5_personality);
4785         register_md_personality(&raid4_personality);
4786         return 0;
4787 }
4788
4789 static void raid5_exit(void)
4790 {
4791         unregister_md_personality(&raid6_personality);
4792         unregister_md_personality(&raid5_personality);
4793         unregister_md_personality(&raid4_personality);
4794 }
4795
4796 module_init(raid5_init);
4797 module_exit(raid5_exit);
4798 MODULE_LICENSE("GPL");
4799 MODULE_ALIAS("md-personality-4"); /* RAID5 */
4800 MODULE_ALIAS("md-raid5");
4801 MODULE_ALIAS("md-raid4");
4802 MODULE_ALIAS("md-level-5");
4803 MODULE_ALIAS("md-level-4");
4804 MODULE_ALIAS("md-personality-8"); /* RAID6 */
4805 MODULE_ALIAS("md-raid6");
4806 MODULE_ALIAS("md-level-6");
4807
4808 /* This used to be two separate modules, they were: */
4809 MODULE_ALIAS("raid5");
4810 MODULE_ALIAS("raid6");