]> www.pilppa.org Git - linux-2.6-omap-h63xx.git/blob - drivers/kvm/vmx.c
c55635ddf426057ede5e11570f975fcc1fa93aea
[linux-2.6-omap-h63xx.git] / drivers / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "kvm.h"
19 #include "vmx.h"
20 #include "kvm_vmx.h"
21 #include <linux/module.h>
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <asm/io.h>
25 #include <asm/desc.h>
26
27 #include "segment_descriptor.h"
28
29
30 MODULE_AUTHOR("Qumranet");
31 MODULE_LICENSE("GPL");
32
33 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
34 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
35
36 #ifdef CONFIG_X86_64
37 #define HOST_IS_64 1
38 #else
39 #define HOST_IS_64 0
40 #endif
41
42 static struct vmcs_descriptor {
43         int size;
44         int order;
45         u32 revision_id;
46 } vmcs_descriptor;
47
48 #define VMX_SEGMENT_FIELD(seg)                                  \
49         [VCPU_SREG_##seg] = {                                   \
50                 .selector = GUEST_##seg##_SELECTOR,             \
51                 .base = GUEST_##seg##_BASE,                     \
52                 .limit = GUEST_##seg##_LIMIT,                   \
53                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
54         }
55
56 static struct kvm_vmx_segment_field {
57         unsigned selector;
58         unsigned base;
59         unsigned limit;
60         unsigned ar_bytes;
61 } kvm_vmx_segment_fields[] = {
62         VMX_SEGMENT_FIELD(CS),
63         VMX_SEGMENT_FIELD(DS),
64         VMX_SEGMENT_FIELD(ES),
65         VMX_SEGMENT_FIELD(FS),
66         VMX_SEGMENT_FIELD(GS),
67         VMX_SEGMENT_FIELD(SS),
68         VMX_SEGMENT_FIELD(TR),
69         VMX_SEGMENT_FIELD(LDTR),
70 };
71
72 static const u32 vmx_msr_index[] = {
73 #ifdef CONFIG_X86_64
74         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
75 #endif
76         MSR_EFER, MSR_K6_STAR,
77 };
78 #define NR_VMX_MSR (sizeof(vmx_msr_index) / sizeof(*vmx_msr_index))
79
80 static inline int is_page_fault(u32 intr_info)
81 {
82         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
83                              INTR_INFO_VALID_MASK)) ==
84                 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
85 }
86
87 static inline int is_external_interrupt(u32 intr_info)
88 {
89         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
90                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
91 }
92
93 static struct vmx_msr_entry *find_msr_entry(struct kvm_vcpu *vcpu, u32 msr)
94 {
95         int i;
96
97         for (i = 0; i < vcpu->nmsrs; ++i)
98                 if (vcpu->guest_msrs[i].index == msr)
99                         return &vcpu->guest_msrs[i];
100         return 0;
101 }
102
103 static void vmcs_clear(struct vmcs *vmcs)
104 {
105         u64 phys_addr = __pa(vmcs);
106         u8 error;
107
108         asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
109                       : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
110                       : "cc", "memory");
111         if (error)
112                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
113                        vmcs, phys_addr);
114 }
115
116 static void __vcpu_clear(void *arg)
117 {
118         struct kvm_vcpu *vcpu = arg;
119         int cpu = raw_smp_processor_id();
120
121         if (vcpu->cpu == cpu)
122                 vmcs_clear(vcpu->vmcs);
123         if (per_cpu(current_vmcs, cpu) == vcpu->vmcs)
124                 per_cpu(current_vmcs, cpu) = NULL;
125 }
126
127 static unsigned long vmcs_readl(unsigned long field)
128 {
129         unsigned long value;
130
131         asm volatile (ASM_VMX_VMREAD_RDX_RAX
132                       : "=a"(value) : "d"(field) : "cc");
133         return value;
134 }
135
136 static u16 vmcs_read16(unsigned long field)
137 {
138         return vmcs_readl(field);
139 }
140
141 static u32 vmcs_read32(unsigned long field)
142 {
143         return vmcs_readl(field);
144 }
145
146 static u64 vmcs_read64(unsigned long field)
147 {
148 #ifdef CONFIG_X86_64
149         return vmcs_readl(field);
150 #else
151         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
152 #endif
153 }
154
155 static void vmcs_writel(unsigned long field, unsigned long value)
156 {
157         u8 error;
158
159         asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
160                        : "=q"(error) : "a"(value), "d"(field) : "cc" );
161         if (error)
162                 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
163                        field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
164 }
165
166 static void vmcs_write16(unsigned long field, u16 value)
167 {
168         vmcs_writel(field, value);
169 }
170
171 static void vmcs_write32(unsigned long field, u32 value)
172 {
173         vmcs_writel(field, value);
174 }
175
176 static void vmcs_write64(unsigned long field, u64 value)
177 {
178 #ifdef CONFIG_X86_64
179         vmcs_writel(field, value);
180 #else
181         vmcs_writel(field, value);
182         asm volatile ("");
183         vmcs_writel(field+1, value >> 32);
184 #endif
185 }
186
187 /*
188  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
189  * vcpu mutex is already taken.
190  */
191 static struct kvm_vcpu *vmx_vcpu_load(struct kvm_vcpu *vcpu)
192 {
193         u64 phys_addr = __pa(vcpu->vmcs);
194         int cpu;
195
196         cpu = get_cpu();
197
198         if (vcpu->cpu != cpu) {
199                 smp_call_function(__vcpu_clear, vcpu, 0, 1);
200                 vcpu->launched = 0;
201         }
202
203         if (per_cpu(current_vmcs, cpu) != vcpu->vmcs) {
204                 u8 error;
205
206                 per_cpu(current_vmcs, cpu) = vcpu->vmcs;
207                 asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
208                               : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
209                               : "cc");
210                 if (error)
211                         printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
212                                vcpu->vmcs, phys_addr);
213         }
214
215         if (vcpu->cpu != cpu) {
216                 struct descriptor_table dt;
217                 unsigned long sysenter_esp;
218
219                 vcpu->cpu = cpu;
220                 /*
221                  * Linux uses per-cpu TSS and GDT, so set these when switching
222                  * processors.
223                  */
224                 vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
225                 get_gdt(&dt);
226                 vmcs_writel(HOST_GDTR_BASE, dt.base);   /* 22.2.4 */
227
228                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
229                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
230         }
231         return vcpu;
232 }
233
234 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
235 {
236         put_cpu();
237 }
238
239 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
240 {
241         return vmcs_readl(GUEST_RFLAGS);
242 }
243
244 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
245 {
246         vmcs_writel(GUEST_RFLAGS, rflags);
247 }
248
249 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
250 {
251         unsigned long rip;
252         u32 interruptibility;
253
254         rip = vmcs_readl(GUEST_RIP);
255         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
256         vmcs_writel(GUEST_RIP, rip);
257
258         /*
259          * We emulated an instruction, so temporary interrupt blocking
260          * should be removed, if set.
261          */
262         interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
263         if (interruptibility & 3)
264                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
265                              interruptibility & ~3);
266         vcpu->interrupt_window_open = 1;
267 }
268
269 static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
270 {
271         printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
272                vmcs_readl(GUEST_RIP));
273         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
274         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
275                      GP_VECTOR |
276                      INTR_TYPE_EXCEPTION |
277                      INTR_INFO_DELIEVER_CODE_MASK |
278                      INTR_INFO_VALID_MASK);
279 }
280
281 /*
282  * reads and returns guest's timestamp counter "register"
283  * guest_tsc = host_tsc + tsc_offset    -- 21.3
284  */
285 static u64 guest_read_tsc(void)
286 {
287         u64 host_tsc, tsc_offset;
288
289         rdtscll(host_tsc);
290         tsc_offset = vmcs_read64(TSC_OFFSET);
291         return host_tsc + tsc_offset;
292 }
293
294 /*
295  * writes 'guest_tsc' into guest's timestamp counter "register"
296  * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
297  */
298 static void guest_write_tsc(u64 guest_tsc)
299 {
300         u64 host_tsc;
301
302         rdtscll(host_tsc);
303         vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
304 }
305
306 static void reload_tss(void)
307 {
308 #ifndef CONFIG_X86_64
309
310         /*
311          * VT restores TR but not its size.  Useless.
312          */
313         struct descriptor_table gdt;
314         struct segment_descriptor *descs;
315
316         get_gdt(&gdt);
317         descs = (void *)gdt.base;
318         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
319         load_TR_desc();
320 #endif
321 }
322
323 /*
324  * Reads an msr value (of 'msr_index') into 'pdata'.
325  * Returns 0 on success, non-0 otherwise.
326  * Assumes vcpu_load() was already called.
327  */
328 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
329 {
330         u64 data;
331         struct vmx_msr_entry *msr;
332
333         if (!pdata) {
334                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
335                 return -EINVAL;
336         }
337
338         switch (msr_index) {
339 #ifdef CONFIG_X86_64
340         case MSR_FS_BASE:
341                 data = vmcs_readl(GUEST_FS_BASE);
342                 break;
343         case MSR_GS_BASE:
344                 data = vmcs_readl(GUEST_GS_BASE);
345                 break;
346         case MSR_EFER:
347                 return kvm_get_msr_common(vcpu, msr_index, pdata);
348 #endif
349         case MSR_IA32_TIME_STAMP_COUNTER:
350                 data = guest_read_tsc();
351                 break;
352         case MSR_IA32_SYSENTER_CS:
353                 data = vmcs_read32(GUEST_SYSENTER_CS);
354                 break;
355         case MSR_IA32_SYSENTER_EIP:
356                 data = vmcs_read32(GUEST_SYSENTER_EIP);
357                 break;
358         case MSR_IA32_SYSENTER_ESP:
359                 data = vmcs_read32(GUEST_SYSENTER_ESP);
360                 break;
361         default:
362                 msr = find_msr_entry(vcpu, msr_index);
363                 if (msr) {
364                         data = msr->data;
365                         break;
366                 }
367                 return kvm_get_msr_common(vcpu, msr_index, pdata);
368         }
369
370         *pdata = data;
371         return 0;
372 }
373
374 /*
375  * Writes msr value into into the appropriate "register".
376  * Returns 0 on success, non-0 otherwise.
377  * Assumes vcpu_load() was already called.
378  */
379 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
380 {
381         struct vmx_msr_entry *msr;
382         switch (msr_index) {
383 #ifdef CONFIG_X86_64
384         case MSR_EFER:
385                 return kvm_set_msr_common(vcpu, msr_index, data);
386         case MSR_FS_BASE:
387                 vmcs_writel(GUEST_FS_BASE, data);
388                 break;
389         case MSR_GS_BASE:
390                 vmcs_writel(GUEST_GS_BASE, data);
391                 break;
392 #endif
393         case MSR_IA32_SYSENTER_CS:
394                 vmcs_write32(GUEST_SYSENTER_CS, data);
395                 break;
396         case MSR_IA32_SYSENTER_EIP:
397                 vmcs_write32(GUEST_SYSENTER_EIP, data);
398                 break;
399         case MSR_IA32_SYSENTER_ESP:
400                 vmcs_write32(GUEST_SYSENTER_ESP, data);
401                 break;
402         case MSR_IA32_TIME_STAMP_COUNTER: {
403                 guest_write_tsc(data);
404                 break;
405         }
406         default:
407                 msr = find_msr_entry(vcpu, msr_index);
408                 if (msr) {
409                         msr->data = data;
410                         break;
411                 }
412                 return kvm_set_msr_common(vcpu, msr_index, data);
413                 msr->data = data;
414                 break;
415         }
416
417         return 0;
418 }
419
420 /*
421  * Sync the rsp and rip registers into the vcpu structure.  This allows
422  * registers to be accessed by indexing vcpu->regs.
423  */
424 static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
425 {
426         vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
427         vcpu->rip = vmcs_readl(GUEST_RIP);
428 }
429
430 /*
431  * Syncs rsp and rip back into the vmcs.  Should be called after possible
432  * modification.
433  */
434 static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
435 {
436         vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
437         vmcs_writel(GUEST_RIP, vcpu->rip);
438 }
439
440 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
441 {
442         unsigned long dr7 = 0x400;
443         u32 exception_bitmap;
444         int old_singlestep;
445
446         exception_bitmap = vmcs_read32(EXCEPTION_BITMAP);
447         old_singlestep = vcpu->guest_debug.singlestep;
448
449         vcpu->guest_debug.enabled = dbg->enabled;
450         if (vcpu->guest_debug.enabled) {
451                 int i;
452
453                 dr7 |= 0x200;  /* exact */
454                 for (i = 0; i < 4; ++i) {
455                         if (!dbg->breakpoints[i].enabled)
456                                 continue;
457                         vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
458                         dr7 |= 2 << (i*2);    /* global enable */
459                         dr7 |= 0 << (i*4+16); /* execution breakpoint */
460                 }
461
462                 exception_bitmap |= (1u << 1);  /* Trap debug exceptions */
463
464                 vcpu->guest_debug.singlestep = dbg->singlestep;
465         } else {
466                 exception_bitmap &= ~(1u << 1); /* Ignore debug exceptions */
467                 vcpu->guest_debug.singlestep = 0;
468         }
469
470         if (old_singlestep && !vcpu->guest_debug.singlestep) {
471                 unsigned long flags;
472
473                 flags = vmcs_readl(GUEST_RFLAGS);
474                 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
475                 vmcs_writel(GUEST_RFLAGS, flags);
476         }
477
478         vmcs_write32(EXCEPTION_BITMAP, exception_bitmap);
479         vmcs_writel(GUEST_DR7, dr7);
480
481         return 0;
482 }
483
484 static __init int cpu_has_kvm_support(void)
485 {
486         unsigned long ecx = cpuid_ecx(1);
487         return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
488 }
489
490 static __init int vmx_disabled_by_bios(void)
491 {
492         u64 msr;
493
494         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
495         return (msr & 5) == 1; /* locked but not enabled */
496 }
497
498 static __init void hardware_enable(void *garbage)
499 {
500         int cpu = raw_smp_processor_id();
501         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
502         u64 old;
503
504         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
505         if ((old & 5) != 5)
506                 /* enable and lock */
507                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | 5);
508         write_cr4(read_cr4() | CR4_VMXE); /* FIXME: not cpu hotplug safe */
509         asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
510                       : "memory", "cc");
511 }
512
513 static void hardware_disable(void *garbage)
514 {
515         asm volatile (ASM_VMX_VMXOFF : : : "cc");
516 }
517
518 static __init void setup_vmcs_descriptor(void)
519 {
520         u32 vmx_msr_low, vmx_msr_high;
521
522         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
523         vmcs_descriptor.size = vmx_msr_high & 0x1fff;
524         vmcs_descriptor.order = get_order(vmcs_descriptor.size);
525         vmcs_descriptor.revision_id = vmx_msr_low;
526 }
527
528 static struct vmcs *alloc_vmcs_cpu(int cpu)
529 {
530         int node = cpu_to_node(cpu);
531         struct page *pages;
532         struct vmcs *vmcs;
533
534         pages = alloc_pages_node(node, GFP_KERNEL, vmcs_descriptor.order);
535         if (!pages)
536                 return NULL;
537         vmcs = page_address(pages);
538         memset(vmcs, 0, vmcs_descriptor.size);
539         vmcs->revision_id = vmcs_descriptor.revision_id; /* vmcs revision id */
540         return vmcs;
541 }
542
543 static struct vmcs *alloc_vmcs(void)
544 {
545         return alloc_vmcs_cpu(raw_smp_processor_id());
546 }
547
548 static void free_vmcs(struct vmcs *vmcs)
549 {
550         free_pages((unsigned long)vmcs, vmcs_descriptor.order);
551 }
552
553 static __exit void free_kvm_area(void)
554 {
555         int cpu;
556
557         for_each_online_cpu(cpu)
558                 free_vmcs(per_cpu(vmxarea, cpu));
559 }
560
561 extern struct vmcs *alloc_vmcs_cpu(int cpu);
562
563 static __init int alloc_kvm_area(void)
564 {
565         int cpu;
566
567         for_each_online_cpu(cpu) {
568                 struct vmcs *vmcs;
569
570                 vmcs = alloc_vmcs_cpu(cpu);
571                 if (!vmcs) {
572                         free_kvm_area();
573                         return -ENOMEM;
574                 }
575
576                 per_cpu(vmxarea, cpu) = vmcs;
577         }
578         return 0;
579 }
580
581 static __init int hardware_setup(void)
582 {
583         setup_vmcs_descriptor();
584         return alloc_kvm_area();
585 }
586
587 static __exit void hardware_unsetup(void)
588 {
589         free_kvm_area();
590 }
591
592 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
593 {
594         if (vcpu->rmode.active)
595                 vmcs_write32(EXCEPTION_BITMAP, ~0);
596         else
597                 vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
598 }
599
600 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
601 {
602         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
603
604         if (vmcs_readl(sf->base) == save->base) {
605                 vmcs_write16(sf->selector, save->selector);
606                 vmcs_writel(sf->base, save->base);
607                 vmcs_write32(sf->limit, save->limit);
608                 vmcs_write32(sf->ar_bytes, save->ar);
609         } else {
610                 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
611                         << AR_DPL_SHIFT;
612                 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
613         }
614 }
615
616 static void enter_pmode(struct kvm_vcpu *vcpu)
617 {
618         unsigned long flags;
619
620         vcpu->rmode.active = 0;
621
622         vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
623         vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
624         vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
625
626         flags = vmcs_readl(GUEST_RFLAGS);
627         flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
628         flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
629         vmcs_writel(GUEST_RFLAGS, flags);
630
631         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~CR4_VME_MASK) |
632                         (vmcs_readl(CR4_READ_SHADOW) & CR4_VME_MASK));
633
634         update_exception_bitmap(vcpu);
635
636         fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
637         fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
638         fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
639         fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
640
641         vmcs_write16(GUEST_SS_SELECTOR, 0);
642         vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
643
644         vmcs_write16(GUEST_CS_SELECTOR,
645                      vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
646         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
647 }
648
649 static int rmode_tss_base(struct kvm* kvm)
650 {
651         gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
652         return base_gfn << PAGE_SHIFT;
653 }
654
655 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
656 {
657         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
658
659         save->selector = vmcs_read16(sf->selector);
660         save->base = vmcs_readl(sf->base);
661         save->limit = vmcs_read32(sf->limit);
662         save->ar = vmcs_read32(sf->ar_bytes);
663         vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
664         vmcs_write32(sf->limit, 0xffff);
665         vmcs_write32(sf->ar_bytes, 0xf3);
666 }
667
668 static void enter_rmode(struct kvm_vcpu *vcpu)
669 {
670         unsigned long flags;
671
672         vcpu->rmode.active = 1;
673
674         vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
675         vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
676
677         vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
678         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
679
680         vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
681         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
682
683         flags = vmcs_readl(GUEST_RFLAGS);
684         vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
685
686         flags |= IOPL_MASK | X86_EFLAGS_VM;
687
688         vmcs_writel(GUEST_RFLAGS, flags);
689         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | CR4_VME_MASK);
690         update_exception_bitmap(vcpu);
691
692         vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
693         vmcs_write32(GUEST_SS_LIMIT, 0xffff);
694         vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
695
696         vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
697         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
698         vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
699
700         fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
701         fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
702         fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
703         fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
704 }
705
706 #ifdef CONFIG_X86_64
707
708 static void enter_lmode(struct kvm_vcpu *vcpu)
709 {
710         u32 guest_tr_ar;
711
712         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
713         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
714                 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
715                        __FUNCTION__);
716                 vmcs_write32(GUEST_TR_AR_BYTES,
717                              (guest_tr_ar & ~AR_TYPE_MASK)
718                              | AR_TYPE_BUSY_64_TSS);
719         }
720
721         vcpu->shadow_efer |= EFER_LMA;
722
723         find_msr_entry(vcpu, MSR_EFER)->data |= EFER_LMA | EFER_LME;
724         vmcs_write32(VM_ENTRY_CONTROLS,
725                      vmcs_read32(VM_ENTRY_CONTROLS)
726                      | VM_ENTRY_CONTROLS_IA32E_MASK);
727 }
728
729 static void exit_lmode(struct kvm_vcpu *vcpu)
730 {
731         vcpu->shadow_efer &= ~EFER_LMA;
732
733         vmcs_write32(VM_ENTRY_CONTROLS,
734                      vmcs_read32(VM_ENTRY_CONTROLS)
735                      & ~VM_ENTRY_CONTROLS_IA32E_MASK);
736 }
737
738 #endif
739
740 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
741 {
742         if (vcpu->rmode.active && (cr0 & CR0_PE_MASK))
743                 enter_pmode(vcpu);
744
745         if (!vcpu->rmode.active && !(cr0 & CR0_PE_MASK))
746                 enter_rmode(vcpu);
747
748 #ifdef CONFIG_X86_64
749         if (vcpu->shadow_efer & EFER_LME) {
750                 if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK))
751                         enter_lmode(vcpu);
752                 if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK))
753                         exit_lmode(vcpu);
754         }
755 #endif
756
757         vmcs_writel(CR0_READ_SHADOW, cr0);
758         vmcs_writel(GUEST_CR0,
759                     (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
760         vcpu->cr0 = cr0;
761 }
762
763 /*
764  * Used when restoring the VM to avoid corrupting segment registers
765  */
766 static void vmx_set_cr0_no_modeswitch(struct kvm_vcpu *vcpu, unsigned long cr0)
767 {
768         vcpu->rmode.active = ((cr0 & CR0_PE_MASK) == 0);
769         update_exception_bitmap(vcpu);
770         vmcs_writel(CR0_READ_SHADOW, cr0);
771         vmcs_writel(GUEST_CR0,
772                     (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
773         vcpu->cr0 = cr0;
774 }
775
776 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
777 {
778         vmcs_writel(GUEST_CR3, cr3);
779 }
780
781 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
782 {
783         vmcs_writel(CR4_READ_SHADOW, cr4);
784         vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
785                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
786         vcpu->cr4 = cr4;
787 }
788
789 #ifdef CONFIG_X86_64
790
791 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
792 {
793         struct vmx_msr_entry *msr = find_msr_entry(vcpu, MSR_EFER);
794
795         vcpu->shadow_efer = efer;
796         if (efer & EFER_LMA) {
797                 vmcs_write32(VM_ENTRY_CONTROLS,
798                                      vmcs_read32(VM_ENTRY_CONTROLS) |
799                                      VM_ENTRY_CONTROLS_IA32E_MASK);
800                 msr->data = efer;
801
802         } else {
803                 vmcs_write32(VM_ENTRY_CONTROLS,
804                                      vmcs_read32(VM_ENTRY_CONTROLS) &
805                                      ~VM_ENTRY_CONTROLS_IA32E_MASK);
806
807                 msr->data = efer & ~EFER_LME;
808         }
809 }
810
811 #endif
812
813 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
814 {
815         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
816
817         return vmcs_readl(sf->base);
818 }
819
820 static void vmx_get_segment(struct kvm_vcpu *vcpu,
821                             struct kvm_segment *var, int seg)
822 {
823         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
824         u32 ar;
825
826         var->base = vmcs_readl(sf->base);
827         var->limit = vmcs_read32(sf->limit);
828         var->selector = vmcs_read16(sf->selector);
829         ar = vmcs_read32(sf->ar_bytes);
830         if (ar & AR_UNUSABLE_MASK)
831                 ar = 0;
832         var->type = ar & 15;
833         var->s = (ar >> 4) & 1;
834         var->dpl = (ar >> 5) & 3;
835         var->present = (ar >> 7) & 1;
836         var->avl = (ar >> 12) & 1;
837         var->l = (ar >> 13) & 1;
838         var->db = (ar >> 14) & 1;
839         var->g = (ar >> 15) & 1;
840         var->unusable = (ar >> 16) & 1;
841 }
842
843 static void vmx_set_segment(struct kvm_vcpu *vcpu,
844                             struct kvm_segment *var, int seg)
845 {
846         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
847         u32 ar;
848
849         vmcs_writel(sf->base, var->base);
850         vmcs_write32(sf->limit, var->limit);
851         vmcs_write16(sf->selector, var->selector);
852         if (var->unusable)
853                 ar = 1 << 16;
854         else {
855                 ar = var->type & 15;
856                 ar |= (var->s & 1) << 4;
857                 ar |= (var->dpl & 3) << 5;
858                 ar |= (var->present & 1) << 7;
859                 ar |= (var->avl & 1) << 12;
860                 ar |= (var->l & 1) << 13;
861                 ar |= (var->db & 1) << 14;
862                 ar |= (var->g & 1) << 15;
863         }
864         if (ar == 0) /* a 0 value means unusable */
865                 ar = AR_UNUSABLE_MASK;
866         vmcs_write32(sf->ar_bytes, ar);
867 }
868
869 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
870 {
871         u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
872
873         *db = (ar >> 14) & 1;
874         *l = (ar >> 13) & 1;
875 }
876
877 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
878 {
879         dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
880         dt->base = vmcs_readl(GUEST_IDTR_BASE);
881 }
882
883 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
884 {
885         vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
886         vmcs_writel(GUEST_IDTR_BASE, dt->base);
887 }
888
889 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
890 {
891         dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
892         dt->base = vmcs_readl(GUEST_GDTR_BASE);
893 }
894
895 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
896 {
897         vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
898         vmcs_writel(GUEST_GDTR_BASE, dt->base);
899 }
900
901 static int init_rmode_tss(struct kvm* kvm)
902 {
903         struct page *p1, *p2, *p3;
904         gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
905         char *page;
906
907         p1 = _gfn_to_page(kvm, fn++);
908         p2 = _gfn_to_page(kvm, fn++);
909         p3 = _gfn_to_page(kvm, fn);
910
911         if (!p1 || !p2 || !p3) {
912                 kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
913                 return 0;
914         }
915
916         page = kmap_atomic(p1, KM_USER0);
917         memset(page, 0, PAGE_SIZE);
918         *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
919         kunmap_atomic(page, KM_USER0);
920
921         page = kmap_atomic(p2, KM_USER0);
922         memset(page, 0, PAGE_SIZE);
923         kunmap_atomic(page, KM_USER0);
924
925         page = kmap_atomic(p3, KM_USER0);
926         memset(page, 0, PAGE_SIZE);
927         *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
928         kunmap_atomic(page, KM_USER0);
929
930         return 1;
931 }
932
933 static void vmcs_write32_fixedbits(u32 msr, u32 vmcs_field, u32 val)
934 {
935         u32 msr_high, msr_low;
936
937         rdmsr(msr, msr_low, msr_high);
938
939         val &= msr_high;
940         val |= msr_low;
941         vmcs_write32(vmcs_field, val);
942 }
943
944 static void seg_setup(int seg)
945 {
946         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
947
948         vmcs_write16(sf->selector, 0);
949         vmcs_writel(sf->base, 0);
950         vmcs_write32(sf->limit, 0xffff);
951         vmcs_write32(sf->ar_bytes, 0x93);
952 }
953
954 /*
955  * Sets up the vmcs for emulated real mode.
956  */
957 static int vmx_vcpu_setup(struct kvm_vcpu *vcpu)
958 {
959         u32 host_sysenter_cs;
960         u32 junk;
961         unsigned long a;
962         struct descriptor_table dt;
963         int i;
964         int ret = 0;
965         int nr_good_msrs;
966         extern asmlinkage void kvm_vmx_return(void);
967
968         if (!init_rmode_tss(vcpu->kvm)) {
969                 ret = -ENOMEM;
970                 goto out;
971         }
972
973         memset(vcpu->regs, 0, sizeof(vcpu->regs));
974         vcpu->regs[VCPU_REGS_RDX] = get_rdx_init_val();
975         vcpu->cr8 = 0;
976         vcpu->apic_base = 0xfee00000 |
977                         /*for vcpu 0*/ MSR_IA32_APICBASE_BSP |
978                         MSR_IA32_APICBASE_ENABLE;
979
980         fx_init(vcpu);
981
982         /*
983          * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
984          * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh.
985          */
986         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
987         vmcs_writel(GUEST_CS_BASE, 0x000f0000);
988         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
989         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
990
991         seg_setup(VCPU_SREG_DS);
992         seg_setup(VCPU_SREG_ES);
993         seg_setup(VCPU_SREG_FS);
994         seg_setup(VCPU_SREG_GS);
995         seg_setup(VCPU_SREG_SS);
996
997         vmcs_write16(GUEST_TR_SELECTOR, 0);
998         vmcs_writel(GUEST_TR_BASE, 0);
999         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
1000         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1001
1002         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
1003         vmcs_writel(GUEST_LDTR_BASE, 0);
1004         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
1005         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
1006
1007         vmcs_write32(GUEST_SYSENTER_CS, 0);
1008         vmcs_writel(GUEST_SYSENTER_ESP, 0);
1009         vmcs_writel(GUEST_SYSENTER_EIP, 0);
1010
1011         vmcs_writel(GUEST_RFLAGS, 0x02);
1012         vmcs_writel(GUEST_RIP, 0xfff0);
1013         vmcs_writel(GUEST_RSP, 0);
1014
1015         vmcs_writel(GUEST_CR3, 0);
1016
1017         //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
1018         vmcs_writel(GUEST_DR7, 0x400);
1019
1020         vmcs_writel(GUEST_GDTR_BASE, 0);
1021         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
1022
1023         vmcs_writel(GUEST_IDTR_BASE, 0);
1024         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
1025
1026         vmcs_write32(GUEST_ACTIVITY_STATE, 0);
1027         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
1028         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
1029
1030         /* I/O */
1031         vmcs_write64(IO_BITMAP_A, 0);
1032         vmcs_write64(IO_BITMAP_B, 0);
1033
1034         guest_write_tsc(0);
1035
1036         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1037
1038         /* Special registers */
1039         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
1040
1041         /* Control */
1042         vmcs_write32_fixedbits(MSR_IA32_VMX_PINBASED_CTLS,
1043                                PIN_BASED_VM_EXEC_CONTROL,
1044                                PIN_BASED_EXT_INTR_MASK   /* 20.6.1 */
1045                                | PIN_BASED_NMI_EXITING   /* 20.6.1 */
1046                         );
1047         vmcs_write32_fixedbits(MSR_IA32_VMX_PROCBASED_CTLS,
1048                                CPU_BASED_VM_EXEC_CONTROL,
1049                                CPU_BASED_HLT_EXITING         /* 20.6.2 */
1050                                | CPU_BASED_CR8_LOAD_EXITING    /* 20.6.2 */
1051                                | CPU_BASED_CR8_STORE_EXITING   /* 20.6.2 */
1052                                | CPU_BASED_UNCOND_IO_EXITING   /* 20.6.2 */
1053                                | CPU_BASED_INVDPG_EXITING
1054                                | CPU_BASED_MOV_DR_EXITING
1055                                | CPU_BASED_USE_TSC_OFFSETING   /* 21.3 */
1056                         );
1057
1058         vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
1059         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
1060         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
1061         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
1062
1063         vmcs_writel(HOST_CR0, read_cr0());  /* 22.2.3 */
1064         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
1065         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
1066
1067         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
1068         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1069         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1070         vmcs_write16(HOST_FS_SELECTOR, read_fs());    /* 22.2.4 */
1071         vmcs_write16(HOST_GS_SELECTOR, read_gs());    /* 22.2.4 */
1072         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1073 #ifdef CONFIG_X86_64
1074         rdmsrl(MSR_FS_BASE, a);
1075         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1076         rdmsrl(MSR_GS_BASE, a);
1077         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1078 #else
1079         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1080         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1081 #endif
1082
1083         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
1084
1085         get_idt(&dt);
1086         vmcs_writel(HOST_IDTR_BASE, dt.base);   /* 22.2.4 */
1087
1088
1089         vmcs_writel(HOST_RIP, (unsigned long)kvm_vmx_return); /* 22.2.5 */
1090
1091         rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1092         vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1093         rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1094         vmcs_writel(HOST_IA32_SYSENTER_ESP, a);   /* 22.2.3 */
1095         rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1096         vmcs_writel(HOST_IA32_SYSENTER_EIP, a);   /* 22.2.3 */
1097
1098         for (i = 0; i < NR_VMX_MSR; ++i) {
1099                 u32 index = vmx_msr_index[i];
1100                 u32 data_low, data_high;
1101                 u64 data;
1102                 int j = vcpu->nmsrs;
1103
1104                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
1105                         continue;
1106                 data = data_low | ((u64)data_high << 32);
1107                 vcpu->host_msrs[j].index = index;
1108                 vcpu->host_msrs[j].reserved = 0;
1109                 vcpu->host_msrs[j].data = data;
1110                 vcpu->guest_msrs[j] = vcpu->host_msrs[j];
1111                 ++vcpu->nmsrs;
1112         }
1113         printk(KERN_DEBUG "kvm: msrs: %d\n", vcpu->nmsrs);
1114
1115         nr_good_msrs = vcpu->nmsrs - NR_BAD_MSRS;
1116         vmcs_writel(VM_ENTRY_MSR_LOAD_ADDR,
1117                     virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS));
1118         vmcs_writel(VM_EXIT_MSR_STORE_ADDR,
1119                     virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS));
1120         vmcs_writel(VM_EXIT_MSR_LOAD_ADDR,
1121                     virt_to_phys(vcpu->host_msrs + NR_BAD_MSRS));
1122         vmcs_write32_fixedbits(MSR_IA32_VMX_EXIT_CTLS, VM_EXIT_CONTROLS,
1123                                (HOST_IS_64 << 9));  /* 22.2,1, 20.7.1 */
1124         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, nr_good_msrs); /* 22.2.2 */
1125         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, nr_good_msrs);  /* 22.2.2 */
1126         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
1127
1128
1129         /* 22.2.1, 20.8.1 */
1130         vmcs_write32_fixedbits(MSR_IA32_VMX_ENTRY_CTLS,
1131                                VM_ENTRY_CONTROLS, 0);
1132         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
1133
1134 #ifdef CONFIG_X86_64
1135         vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0);
1136         vmcs_writel(TPR_THRESHOLD, 0);
1137 #endif
1138
1139         vmcs_writel(CR0_GUEST_HOST_MASK, KVM_GUEST_CR0_MASK);
1140         vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
1141
1142         vcpu->cr0 = 0x60000010;
1143         vmx_set_cr0(vcpu, vcpu->cr0); // enter rmode
1144         vmx_set_cr4(vcpu, 0);
1145 #ifdef CONFIG_X86_64
1146         vmx_set_efer(vcpu, 0);
1147 #endif
1148
1149         return 0;
1150
1151 out:
1152         return ret;
1153 }
1154
1155 static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
1156 {
1157         u16 ent[2];
1158         u16 cs;
1159         u16 ip;
1160         unsigned long flags;
1161         unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
1162         u16 sp =  vmcs_readl(GUEST_RSP);
1163         u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
1164
1165         if (sp > ss_limit || sp - 6 > sp) {
1166                 vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
1167                             __FUNCTION__,
1168                             vmcs_readl(GUEST_RSP),
1169                             vmcs_readl(GUEST_SS_BASE),
1170                             vmcs_read32(GUEST_SS_LIMIT));
1171                 return;
1172         }
1173
1174         if (kvm_read_guest(vcpu, irq * sizeof(ent), sizeof(ent), &ent) !=
1175                                                                 sizeof(ent)) {
1176                 vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
1177                 return;
1178         }
1179
1180         flags =  vmcs_readl(GUEST_RFLAGS);
1181         cs =  vmcs_readl(GUEST_CS_BASE) >> 4;
1182         ip =  vmcs_readl(GUEST_RIP);
1183
1184
1185         if (kvm_write_guest(vcpu, ss_base + sp - 2, 2, &flags) != 2 ||
1186             kvm_write_guest(vcpu, ss_base + sp - 4, 2, &cs) != 2 ||
1187             kvm_write_guest(vcpu, ss_base + sp - 6, 2, &ip) != 2) {
1188                 vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
1189                 return;
1190         }
1191
1192         vmcs_writel(GUEST_RFLAGS, flags &
1193                     ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
1194         vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
1195         vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
1196         vmcs_writel(GUEST_RIP, ent[0]);
1197         vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
1198 }
1199
1200 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1201 {
1202         int word_index = __ffs(vcpu->irq_summary);
1203         int bit_index = __ffs(vcpu->irq_pending[word_index]);
1204         int irq = word_index * BITS_PER_LONG + bit_index;
1205
1206         clear_bit(bit_index, &vcpu->irq_pending[word_index]);
1207         if (!vcpu->irq_pending[word_index])
1208                 clear_bit(word_index, &vcpu->irq_summary);
1209
1210         if (vcpu->rmode.active) {
1211                 inject_rmode_irq(vcpu, irq);
1212                 return;
1213         }
1214         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1215                         irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1216 }
1217
1218
1219 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1220                                        struct kvm_run *kvm_run)
1221 {
1222         u32 cpu_based_vm_exec_control;
1223
1224         vcpu->interrupt_window_open =
1225                 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
1226                  (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
1227
1228         if (vcpu->interrupt_window_open &&
1229             vcpu->irq_summary &&
1230             !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
1231                 /*
1232                  * If interrupts enabled, and not blocked by sti or mov ss. Good.
1233                  */
1234                 kvm_do_inject_irq(vcpu);
1235
1236         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
1237         if (!vcpu->interrupt_window_open &&
1238             (vcpu->irq_summary || kvm_run->request_interrupt_window))
1239                 /*
1240                  * Interrupts blocked.  Wait for unblock.
1241                  */
1242                 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
1243         else
1244                 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
1245         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
1246 }
1247
1248 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
1249 {
1250         struct kvm_guest_debug *dbg = &vcpu->guest_debug;
1251
1252         set_debugreg(dbg->bp[0], 0);
1253         set_debugreg(dbg->bp[1], 1);
1254         set_debugreg(dbg->bp[2], 2);
1255         set_debugreg(dbg->bp[3], 3);
1256
1257         if (dbg->singlestep) {
1258                 unsigned long flags;
1259
1260                 flags = vmcs_readl(GUEST_RFLAGS);
1261                 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1262                 vmcs_writel(GUEST_RFLAGS, flags);
1263         }
1264 }
1265
1266 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
1267                                   int vec, u32 err_code)
1268 {
1269         if (!vcpu->rmode.active)
1270                 return 0;
1271
1272         if (vec == GP_VECTOR && err_code == 0)
1273                 if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
1274                         return 1;
1275         return 0;
1276 }
1277
1278 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1279 {
1280         u32 intr_info, error_code;
1281         unsigned long cr2, rip;
1282         u32 vect_info;
1283         enum emulation_result er;
1284
1285         vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1286         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
1287
1288         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
1289                                                 !is_page_fault(intr_info)) {
1290                 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
1291                        "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
1292         }
1293
1294         if (is_external_interrupt(vect_info)) {
1295                 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
1296                 set_bit(irq, vcpu->irq_pending);
1297                 set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
1298         }
1299
1300         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
1301                 asm ("int $2");
1302                 return 1;
1303         }
1304         error_code = 0;
1305         rip = vmcs_readl(GUEST_RIP);
1306         if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
1307                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
1308         if (is_page_fault(intr_info)) {
1309                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
1310
1311                 spin_lock(&vcpu->kvm->lock);
1312                 if (!vcpu->mmu.page_fault(vcpu, cr2, error_code)) {
1313                         spin_unlock(&vcpu->kvm->lock);
1314                         return 1;
1315                 }
1316
1317                 er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
1318                 spin_unlock(&vcpu->kvm->lock);
1319
1320                 switch (er) {
1321                 case EMULATE_DONE:
1322                         return 1;
1323                 case EMULATE_DO_MMIO:
1324                         ++kvm_stat.mmio_exits;
1325                         kvm_run->exit_reason = KVM_EXIT_MMIO;
1326                         return 0;
1327                  case EMULATE_FAIL:
1328                         vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
1329                         break;
1330                 default:
1331                         BUG();
1332                 }
1333         }
1334
1335         if (vcpu->rmode.active &&
1336             handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
1337                                                                 error_code))
1338                 return 1;
1339
1340         if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
1341                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1342                 return 0;
1343         }
1344         kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
1345         kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
1346         kvm_run->ex.error_code = error_code;
1347         return 0;
1348 }
1349
1350 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
1351                                      struct kvm_run *kvm_run)
1352 {
1353         ++kvm_stat.irq_exits;
1354         return 1;
1355 }
1356
1357
1358 static int get_io_count(struct kvm_vcpu *vcpu, u64 *count)
1359 {
1360         u64 inst;
1361         gva_t rip;
1362         int countr_size;
1363         int i, n;
1364
1365         if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_VM)) {
1366                 countr_size = 2;
1367         } else {
1368                 u32 cs_ar = vmcs_read32(GUEST_CS_AR_BYTES);
1369
1370                 countr_size = (cs_ar & AR_L_MASK) ? 8:
1371                               (cs_ar & AR_DB_MASK) ? 4: 2;
1372         }
1373
1374         rip =  vmcs_readl(GUEST_RIP);
1375         if (countr_size != 8)
1376                 rip += vmcs_readl(GUEST_CS_BASE);
1377
1378         n = kvm_read_guest(vcpu, rip, sizeof(inst), &inst);
1379
1380         for (i = 0; i < n; i++) {
1381                 switch (((u8*)&inst)[i]) {
1382                 case 0xf0:
1383                 case 0xf2:
1384                 case 0xf3:
1385                 case 0x2e:
1386                 case 0x36:
1387                 case 0x3e:
1388                 case 0x26:
1389                 case 0x64:
1390                 case 0x65:
1391                 case 0x66:
1392                         break;
1393                 case 0x67:
1394                         countr_size = (countr_size == 2) ? 4: (countr_size >> 1);
1395                 default:
1396                         goto done;
1397                 }
1398         }
1399         return 0;
1400 done:
1401         countr_size *= 8;
1402         *count = vcpu->regs[VCPU_REGS_RCX] & (~0ULL >> (64 - countr_size));
1403         return 1;
1404 }
1405
1406 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1407 {
1408         u64 exit_qualification;
1409
1410         ++kvm_stat.io_exits;
1411         exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1412         kvm_run->exit_reason = KVM_EXIT_IO;
1413         if (exit_qualification & 8)
1414                 kvm_run->io.direction = KVM_EXIT_IO_IN;
1415         else
1416                 kvm_run->io.direction = KVM_EXIT_IO_OUT;
1417         kvm_run->io.size = (exit_qualification & 7) + 1;
1418         kvm_run->io.string = (exit_qualification & 16) != 0;
1419         kvm_run->io.string_down
1420                 = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
1421         kvm_run->io.rep = (exit_qualification & 32) != 0;
1422         kvm_run->io.port = exit_qualification >> 16;
1423         if (kvm_run->io.string) {
1424                 if (!get_io_count(vcpu, &kvm_run->io.count))
1425                         return 1;
1426                 kvm_run->io.address = vmcs_readl(GUEST_LINEAR_ADDRESS);
1427         } else
1428                 kvm_run->io.value = vcpu->regs[VCPU_REGS_RAX]; /* rax */
1429         return 0;
1430 }
1431
1432 static int handle_invlpg(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1433 {
1434         u64 address = vmcs_read64(EXIT_QUALIFICATION);
1435         int instruction_length = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1436         spin_lock(&vcpu->kvm->lock);
1437         vcpu->mmu.inval_page(vcpu, address);
1438         spin_unlock(&vcpu->kvm->lock);
1439         vmcs_writel(GUEST_RIP, vmcs_readl(GUEST_RIP) + instruction_length);
1440         return 1;
1441 }
1442
1443 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1444 {
1445         u64 exit_qualification;
1446         int cr;
1447         int reg;
1448
1449         exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1450         cr = exit_qualification & 15;
1451         reg = (exit_qualification >> 8) & 15;
1452         switch ((exit_qualification >> 4) & 3) {
1453         case 0: /* mov to cr */
1454                 switch (cr) {
1455                 case 0:
1456                         vcpu_load_rsp_rip(vcpu);
1457                         set_cr0(vcpu, vcpu->regs[reg]);
1458                         skip_emulated_instruction(vcpu);
1459                         return 1;
1460                 case 3:
1461                         vcpu_load_rsp_rip(vcpu);
1462                         set_cr3(vcpu, vcpu->regs[reg]);
1463                         skip_emulated_instruction(vcpu);
1464                         return 1;
1465                 case 4:
1466                         vcpu_load_rsp_rip(vcpu);
1467                         set_cr4(vcpu, vcpu->regs[reg]);
1468                         skip_emulated_instruction(vcpu);
1469                         return 1;
1470                 case 8:
1471                         vcpu_load_rsp_rip(vcpu);
1472                         set_cr8(vcpu, vcpu->regs[reg]);
1473                         skip_emulated_instruction(vcpu);
1474                         return 1;
1475                 };
1476                 break;
1477         case 1: /*mov from cr*/
1478                 switch (cr) {
1479                 case 3:
1480                         vcpu_load_rsp_rip(vcpu);
1481                         vcpu->regs[reg] = vcpu->cr3;
1482                         vcpu_put_rsp_rip(vcpu);
1483                         skip_emulated_instruction(vcpu);
1484                         return 1;
1485                 case 8:
1486                         printk(KERN_DEBUG "handle_cr: read CR8 "
1487                                "cpu erratum AA15\n");
1488                         vcpu_load_rsp_rip(vcpu);
1489                         vcpu->regs[reg] = vcpu->cr8;
1490                         vcpu_put_rsp_rip(vcpu);
1491                         skip_emulated_instruction(vcpu);
1492                         return 1;
1493                 }
1494                 break;
1495         case 3: /* lmsw */
1496                 lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
1497
1498                 skip_emulated_instruction(vcpu);
1499                 return 1;
1500         default:
1501                 break;
1502         }
1503         kvm_run->exit_reason = 0;
1504         printk(KERN_ERR "kvm: unhandled control register: op %d cr %d\n",
1505                (int)(exit_qualification >> 4) & 3, cr);
1506         return 0;
1507 }
1508
1509 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1510 {
1511         u64 exit_qualification;
1512         unsigned long val;
1513         int dr, reg;
1514
1515         /*
1516          * FIXME: this code assumes the host is debugging the guest.
1517          *        need to deal with guest debugging itself too.
1518          */
1519         exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1520         dr = exit_qualification & 7;
1521         reg = (exit_qualification >> 8) & 15;
1522         vcpu_load_rsp_rip(vcpu);
1523         if (exit_qualification & 16) {
1524                 /* mov from dr */
1525                 switch (dr) {
1526                 case 6:
1527                         val = 0xffff0ff0;
1528                         break;
1529                 case 7:
1530                         val = 0x400;
1531                         break;
1532                 default:
1533                         val = 0;
1534                 }
1535                 vcpu->regs[reg] = val;
1536         } else {
1537                 /* mov to dr */
1538         }
1539         vcpu_put_rsp_rip(vcpu);
1540         skip_emulated_instruction(vcpu);
1541         return 1;
1542 }
1543
1544 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1545 {
1546         kvm_run->exit_reason = KVM_EXIT_CPUID;
1547         return 0;
1548 }
1549
1550 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1551 {
1552         u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1553         u64 data;
1554
1555         if (vmx_get_msr(vcpu, ecx, &data)) {
1556                 vmx_inject_gp(vcpu, 0);
1557                 return 1;
1558         }
1559
1560         /* FIXME: handling of bits 32:63 of rax, rdx */
1561         vcpu->regs[VCPU_REGS_RAX] = data & -1u;
1562         vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
1563         skip_emulated_instruction(vcpu);
1564         return 1;
1565 }
1566
1567 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1568 {
1569         u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1570         u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
1571                 | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
1572
1573         if (vmx_set_msr(vcpu, ecx, data) != 0) {
1574                 vmx_inject_gp(vcpu, 0);
1575                 return 1;
1576         }
1577
1578         skip_emulated_instruction(vcpu);
1579         return 1;
1580 }
1581
1582 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
1583                               struct kvm_run *kvm_run)
1584 {
1585         kvm_run->if_flag = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) != 0;
1586         kvm_run->cr8 = vcpu->cr8;
1587         kvm_run->apic_base = vcpu->apic_base;
1588         kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open &&
1589                                                   vcpu->irq_summary == 0);
1590 }
1591
1592 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
1593                                    struct kvm_run *kvm_run)
1594 {
1595         /*
1596          * If the user space waits to inject interrupts, exit as soon as
1597          * possible
1598          */
1599         if (kvm_run->request_interrupt_window &&
1600             !vcpu->irq_summary &&
1601             (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF)) {
1602                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
1603                 ++kvm_stat.irq_window_exits;
1604                 return 0;
1605         }
1606         return 1;
1607 }
1608
1609 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1610 {
1611         skip_emulated_instruction(vcpu);
1612         if (vcpu->irq_summary)
1613                 return 1;
1614
1615         kvm_run->exit_reason = KVM_EXIT_HLT;
1616         ++kvm_stat.halt_exits;
1617         return 0;
1618 }
1619
1620 /*
1621  * The exit handlers return 1 if the exit was handled fully and guest execution
1622  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
1623  * to be done to userspace and return 0.
1624  */
1625 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
1626                                       struct kvm_run *kvm_run) = {
1627         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
1628         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
1629         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
1630         [EXIT_REASON_INVLPG]                  = handle_invlpg,
1631         [EXIT_REASON_CR_ACCESS]               = handle_cr,
1632         [EXIT_REASON_DR_ACCESS]               = handle_dr,
1633         [EXIT_REASON_CPUID]                   = handle_cpuid,
1634         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
1635         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
1636         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
1637         [EXIT_REASON_HLT]                     = handle_halt,
1638 };
1639
1640 static const int kvm_vmx_max_exit_handlers =
1641         sizeof(kvm_vmx_exit_handlers) / sizeof(*kvm_vmx_exit_handlers);
1642
1643 /*
1644  * The guest has exited.  See if we can fix it or if we need userspace
1645  * assistance.
1646  */
1647 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1648 {
1649         u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1650         u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
1651
1652         if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
1653                                 exit_reason != EXIT_REASON_EXCEPTION_NMI )
1654                 printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
1655                        "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
1656         kvm_run->instruction_length = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1657         if (exit_reason < kvm_vmx_max_exit_handlers
1658             && kvm_vmx_exit_handlers[exit_reason])
1659                 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
1660         else {
1661                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1662                 kvm_run->hw.hardware_exit_reason = exit_reason;
1663         }
1664         return 0;
1665 }
1666
1667 /*
1668  * Check if userspace requested an interrupt window, and that the
1669  * interrupt window is open.
1670  *
1671  * No need to exit to userspace if we already have an interrupt queued.
1672  */
1673 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
1674                                           struct kvm_run *kvm_run)
1675 {
1676         return (!vcpu->irq_summary &&
1677                 kvm_run->request_interrupt_window &&
1678                 vcpu->interrupt_window_open &&
1679                 (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
1680 }
1681
1682 static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1683 {
1684         u8 fail;
1685         u16 fs_sel, gs_sel, ldt_sel;
1686         int fs_gs_ldt_reload_needed;
1687
1688 again:
1689         /*
1690          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1691          * allow segment selectors with cpl > 0 or ti == 1.
1692          */
1693         fs_sel = read_fs();
1694         gs_sel = read_gs();
1695         ldt_sel = read_ldt();
1696         fs_gs_ldt_reload_needed = (fs_sel & 7) | (gs_sel & 7) | ldt_sel;
1697         if (!fs_gs_ldt_reload_needed) {
1698                 vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1699                 vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1700         } else {
1701                 vmcs_write16(HOST_FS_SELECTOR, 0);
1702                 vmcs_write16(HOST_GS_SELECTOR, 0);
1703         }
1704
1705 #ifdef CONFIG_X86_64
1706         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1707         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1708 #else
1709         vmcs_writel(HOST_FS_BASE, segment_base(fs_sel));
1710         vmcs_writel(HOST_GS_BASE, segment_base(gs_sel));
1711 #endif
1712
1713         do_interrupt_requests(vcpu, kvm_run);
1714
1715         if (vcpu->guest_debug.enabled)
1716                 kvm_guest_debug_pre(vcpu);
1717
1718         fx_save(vcpu->host_fx_image);
1719         fx_restore(vcpu->guest_fx_image);
1720
1721         save_msrs(vcpu->host_msrs, vcpu->nmsrs);
1722         load_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
1723
1724         asm (
1725                 /* Store host registers */
1726                 "pushf \n\t"
1727 #ifdef CONFIG_X86_64
1728                 "push %%rax; push %%rbx; push %%rdx;"
1729                 "push %%rsi; push %%rdi; push %%rbp;"
1730                 "push %%r8;  push %%r9;  push %%r10; push %%r11;"
1731                 "push %%r12; push %%r13; push %%r14; push %%r15;"
1732                 "push %%rcx \n\t"
1733                 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
1734 #else
1735                 "pusha; push %%ecx \n\t"
1736                 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
1737 #endif
1738                 /* Check if vmlaunch of vmresume is needed */
1739                 "cmp $0, %1 \n\t"
1740                 /* Load guest registers.  Don't clobber flags. */
1741 #ifdef CONFIG_X86_64
1742                 "mov %c[cr2](%3), %%rax \n\t"
1743                 "mov %%rax, %%cr2 \n\t"
1744                 "mov %c[rax](%3), %%rax \n\t"
1745                 "mov %c[rbx](%3), %%rbx \n\t"
1746                 "mov %c[rdx](%3), %%rdx \n\t"
1747                 "mov %c[rsi](%3), %%rsi \n\t"
1748                 "mov %c[rdi](%3), %%rdi \n\t"
1749                 "mov %c[rbp](%3), %%rbp \n\t"
1750                 "mov %c[r8](%3),  %%r8  \n\t"
1751                 "mov %c[r9](%3),  %%r9  \n\t"
1752                 "mov %c[r10](%3), %%r10 \n\t"
1753                 "mov %c[r11](%3), %%r11 \n\t"
1754                 "mov %c[r12](%3), %%r12 \n\t"
1755                 "mov %c[r13](%3), %%r13 \n\t"
1756                 "mov %c[r14](%3), %%r14 \n\t"
1757                 "mov %c[r15](%3), %%r15 \n\t"
1758                 "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
1759 #else
1760                 "mov %c[cr2](%3), %%eax \n\t"
1761                 "mov %%eax,   %%cr2 \n\t"
1762                 "mov %c[rax](%3), %%eax \n\t"
1763                 "mov %c[rbx](%3), %%ebx \n\t"
1764                 "mov %c[rdx](%3), %%edx \n\t"
1765                 "mov %c[rsi](%3), %%esi \n\t"
1766                 "mov %c[rdi](%3), %%edi \n\t"
1767                 "mov %c[rbp](%3), %%ebp \n\t"
1768                 "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
1769 #endif
1770                 /* Enter guest mode */
1771                 "jne launched \n\t"
1772                 ASM_VMX_VMLAUNCH "\n\t"
1773                 "jmp kvm_vmx_return \n\t"
1774                 "launched: " ASM_VMX_VMRESUME "\n\t"
1775                 ".globl kvm_vmx_return \n\t"
1776                 "kvm_vmx_return: "
1777                 /* Save guest registers, load host registers, keep flags */
1778 #ifdef CONFIG_X86_64
1779                 "xchg %3,     0(%%rsp) \n\t"
1780                 "mov %%rax, %c[rax](%3) \n\t"
1781                 "mov %%rbx, %c[rbx](%3) \n\t"
1782                 "pushq 0(%%rsp); popq %c[rcx](%3) \n\t"
1783                 "mov %%rdx, %c[rdx](%3) \n\t"
1784                 "mov %%rsi, %c[rsi](%3) \n\t"
1785                 "mov %%rdi, %c[rdi](%3) \n\t"
1786                 "mov %%rbp, %c[rbp](%3) \n\t"
1787                 "mov %%r8,  %c[r8](%3) \n\t"
1788                 "mov %%r9,  %c[r9](%3) \n\t"
1789                 "mov %%r10, %c[r10](%3) \n\t"
1790                 "mov %%r11, %c[r11](%3) \n\t"
1791                 "mov %%r12, %c[r12](%3) \n\t"
1792                 "mov %%r13, %c[r13](%3) \n\t"
1793                 "mov %%r14, %c[r14](%3) \n\t"
1794                 "mov %%r15, %c[r15](%3) \n\t"
1795                 "mov %%cr2, %%rax   \n\t"
1796                 "mov %%rax, %c[cr2](%3) \n\t"
1797                 "mov 0(%%rsp), %3 \n\t"
1798
1799                 "pop  %%rcx; pop  %%r15; pop  %%r14; pop  %%r13; pop  %%r12;"
1800                 "pop  %%r11; pop  %%r10; pop  %%r9;  pop  %%r8;"
1801                 "pop  %%rbp; pop  %%rdi; pop  %%rsi;"
1802                 "pop  %%rdx; pop  %%rbx; pop  %%rax \n\t"
1803 #else
1804                 "xchg %3, 0(%%esp) \n\t"
1805                 "mov %%eax, %c[rax](%3) \n\t"
1806                 "mov %%ebx, %c[rbx](%3) \n\t"
1807                 "pushl 0(%%esp); popl %c[rcx](%3) \n\t"
1808                 "mov %%edx, %c[rdx](%3) \n\t"
1809                 "mov %%esi, %c[rsi](%3) \n\t"
1810                 "mov %%edi, %c[rdi](%3) \n\t"
1811                 "mov %%ebp, %c[rbp](%3) \n\t"
1812                 "mov %%cr2, %%eax  \n\t"
1813                 "mov %%eax, %c[cr2](%3) \n\t"
1814                 "mov 0(%%esp), %3 \n\t"
1815
1816                 "pop %%ecx; popa \n\t"
1817 #endif
1818                 "setbe %0 \n\t"
1819                 "popf \n\t"
1820               : "=g" (fail)
1821               : "r"(vcpu->launched), "d"((unsigned long)HOST_RSP),
1822                 "c"(vcpu),
1823                 [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
1824                 [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
1825                 [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
1826                 [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
1827                 [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
1828                 [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
1829                 [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
1830 #ifdef CONFIG_X86_64
1831                 [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
1832                 [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
1833                 [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
1834                 [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
1835                 [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
1836                 [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
1837                 [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
1838                 [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
1839 #endif
1840                 [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
1841               : "cc", "memory" );
1842
1843         ++kvm_stat.exits;
1844
1845         save_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
1846         load_msrs(vcpu->host_msrs, NR_BAD_MSRS);
1847
1848         fx_save(vcpu->guest_fx_image);
1849         fx_restore(vcpu->host_fx_image);
1850         vcpu->interrupt_window_open = (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
1851
1852 #ifndef CONFIG_X86_64
1853         asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
1854 #endif
1855
1856         kvm_run->exit_type = 0;
1857         if (fail) {
1858                 kvm_run->exit_type = KVM_EXIT_TYPE_FAIL_ENTRY;
1859                 kvm_run->exit_reason = vmcs_read32(VM_INSTRUCTION_ERROR);
1860         } else {
1861                 if (fs_gs_ldt_reload_needed) {
1862                         load_ldt(ldt_sel);
1863                         load_fs(fs_sel);
1864                         /*
1865                          * If we have to reload gs, we must take care to
1866                          * preserve our gs base.
1867                          */
1868                         local_irq_disable();
1869                         load_gs(gs_sel);
1870 #ifdef CONFIG_X86_64
1871                         wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
1872 #endif
1873                         local_irq_enable();
1874
1875                         reload_tss();
1876                 }
1877                 vcpu->launched = 1;
1878                 kvm_run->exit_type = KVM_EXIT_TYPE_VM_EXIT;
1879                 if (kvm_handle_exit(kvm_run, vcpu)) {
1880                         /* Give scheduler a change to reschedule. */
1881                         if (signal_pending(current)) {
1882                                 ++kvm_stat.signal_exits;
1883                                 post_kvm_run_save(vcpu, kvm_run);
1884                                 return -EINTR;
1885                         }
1886
1887                         if (dm_request_for_irq_injection(vcpu, kvm_run)) {
1888                                 ++kvm_stat.request_irq_exits;
1889                                 post_kvm_run_save(vcpu, kvm_run);
1890                                 return -EINTR;
1891                         }
1892
1893                         kvm_resched(vcpu);
1894                         goto again;
1895                 }
1896         }
1897
1898         post_kvm_run_save(vcpu, kvm_run);
1899         return 0;
1900 }
1901
1902 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1903 {
1904         vmcs_writel(GUEST_CR3, vmcs_readl(GUEST_CR3));
1905 }
1906
1907 static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
1908                                   unsigned long addr,
1909                                   u32 err_code)
1910 {
1911         u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1912
1913         ++kvm_stat.pf_guest;
1914
1915         if (is_page_fault(vect_info)) {
1916                 printk(KERN_DEBUG "inject_page_fault: "
1917                        "double fault 0x%lx @ 0x%lx\n",
1918                        addr, vmcs_readl(GUEST_RIP));
1919                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
1920                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1921                              DF_VECTOR |
1922                              INTR_TYPE_EXCEPTION |
1923                              INTR_INFO_DELIEVER_CODE_MASK |
1924                              INTR_INFO_VALID_MASK);
1925                 return;
1926         }
1927         vcpu->cr2 = addr;
1928         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
1929         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1930                      PF_VECTOR |
1931                      INTR_TYPE_EXCEPTION |
1932                      INTR_INFO_DELIEVER_CODE_MASK |
1933                      INTR_INFO_VALID_MASK);
1934
1935 }
1936
1937 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
1938 {
1939         if (vcpu->vmcs) {
1940                 on_each_cpu(__vcpu_clear, vcpu, 0, 1);
1941                 free_vmcs(vcpu->vmcs);
1942                 vcpu->vmcs = NULL;
1943         }
1944 }
1945
1946 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
1947 {
1948         vmx_free_vmcs(vcpu);
1949 }
1950
1951 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
1952 {
1953         struct vmcs *vmcs;
1954
1955         vcpu->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
1956         if (!vcpu->guest_msrs)
1957                 return -ENOMEM;
1958
1959         vcpu->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
1960         if (!vcpu->host_msrs)
1961                 goto out_free_guest_msrs;
1962
1963         vmcs = alloc_vmcs();
1964         if (!vmcs)
1965                 goto out_free_msrs;
1966
1967         vmcs_clear(vmcs);
1968         vcpu->vmcs = vmcs;
1969         vcpu->launched = 0;
1970
1971         return 0;
1972
1973 out_free_msrs:
1974         kfree(vcpu->host_msrs);
1975         vcpu->host_msrs = NULL;
1976
1977 out_free_guest_msrs:
1978         kfree(vcpu->guest_msrs);
1979         vcpu->guest_msrs = NULL;
1980
1981         return -ENOMEM;
1982 }
1983
1984 static struct kvm_arch_ops vmx_arch_ops = {
1985         .cpu_has_kvm_support = cpu_has_kvm_support,
1986         .disabled_by_bios = vmx_disabled_by_bios,
1987         .hardware_setup = hardware_setup,
1988         .hardware_unsetup = hardware_unsetup,
1989         .hardware_enable = hardware_enable,
1990         .hardware_disable = hardware_disable,
1991
1992         .vcpu_create = vmx_create_vcpu,
1993         .vcpu_free = vmx_free_vcpu,
1994
1995         .vcpu_load = vmx_vcpu_load,
1996         .vcpu_put = vmx_vcpu_put,
1997
1998         .set_guest_debug = set_guest_debug,
1999         .get_msr = vmx_get_msr,
2000         .set_msr = vmx_set_msr,
2001         .get_segment_base = vmx_get_segment_base,
2002         .get_segment = vmx_get_segment,
2003         .set_segment = vmx_set_segment,
2004         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
2005         .set_cr0 = vmx_set_cr0,
2006         .set_cr0_no_modeswitch = vmx_set_cr0_no_modeswitch,
2007         .set_cr3 = vmx_set_cr3,
2008         .set_cr4 = vmx_set_cr4,
2009 #ifdef CONFIG_X86_64
2010         .set_efer = vmx_set_efer,
2011 #endif
2012         .get_idt = vmx_get_idt,
2013         .set_idt = vmx_set_idt,
2014         .get_gdt = vmx_get_gdt,
2015         .set_gdt = vmx_set_gdt,
2016         .cache_regs = vcpu_load_rsp_rip,
2017         .decache_regs = vcpu_put_rsp_rip,
2018         .get_rflags = vmx_get_rflags,
2019         .set_rflags = vmx_set_rflags,
2020
2021         .tlb_flush = vmx_flush_tlb,
2022         .inject_page_fault = vmx_inject_page_fault,
2023
2024         .inject_gp = vmx_inject_gp,
2025
2026         .run = vmx_vcpu_run,
2027         .skip_emulated_instruction = skip_emulated_instruction,
2028         .vcpu_setup = vmx_vcpu_setup,
2029 };
2030
2031 static int __init vmx_init(void)
2032 {
2033         return kvm_init_arch(&vmx_arch_ops, THIS_MODULE);
2034 }
2035
2036 static void __exit vmx_exit(void)
2037 {
2038         kvm_exit_arch();
2039 }
2040
2041 module_init(vmx_init)
2042 module_exit(vmx_exit)